WO2020001224A1 - 多路选择开关及相关产品 - Google Patents

多路选择开关及相关产品 Download PDF

Info

Publication number
WO2020001224A1
WO2020001224A1 PCT/CN2019/089131 CN2019089131W WO2020001224A1 WO 2020001224 A1 WO2020001224 A1 WO 2020001224A1 CN 2019089131 W CN2019089131 W CN 2019089131W WO 2020001224 A1 WO2020001224 A1 WO 2020001224A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
function
ports
electronic device
receiving
Prior art date
Application number
PCT/CN2019/089131
Other languages
English (en)
French (fr)
Inventor
杨鑫
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2020001224A1 publication Critical patent/WO2020001224A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0064Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with separate antennas for the more than one band

Definitions

  • the present application relates to the field of electronic technology, and in particular, to a multi-way selection switch and related products.
  • the electronic equipment in the fourth generation 4G mobile communication system generally adopts a single antenna or a dual antenna radio frequency system architecture.
  • the fifth-generation 5G mobile communication system new air interface NR system proposes electronic equipment that supports a 4-antenna radio frequency system architecture.
  • the embodiments of the present application provide a multi-channel selection switch and related products, which are used to improve the radio frequency index performance and functionality of electronic equipment.
  • an embodiment of the present application provides a multi-channel selection switch, which is applied to an electronic device.
  • the electronic device includes an antenna system and a radio frequency circuit.
  • the antenna system includes 4 antennas.
  • the multi-channel selection switch includes 4 antennas. T port and 4 P ports, the 4 T ports include a first T port and 3 second T ports, the electronic device supports a single-shot mode, and the first T port is fully connected to the 4 ports P port, each second T port is connected to 2 of the 4 P ports, and the P port connected to multiple second T ports supporting the signal receiving function of the same frequency band covers the 4 P ports, And the P ports connected to each of the 4 T ports in the signal receiving state are different from each other;
  • the multiplexer is used to connect the radio frequency circuit and the antenna system to implement a preset function of the electronic device in the FDD system.
  • the preset function includes a first function and a second function.
  • One function is to support the transmission of four-port SRS by transmitting between the transmitting antennas through the SRS, and the second function is to support the four antennas to receive data simultaneously.
  • an embodiment of the present application provides a function control method, which is applied to an electronic device.
  • the electronic device includes an antenna system and a radio frequency circuit.
  • the antenna system includes 4 antennas.
  • the multi-way selection switch includes 4 Ts. Port and 4 P ports, the 4 T ports include a first T port and 3 second T ports, the electronic device supports a single-shot mode, and the first T port is fully connected to the 4 P ports Port, each second T port is connected to 2 of the 4 P ports, and the P port connected to multiple second T ports supporting the signal receiving function of the same frequency band covers the 4 P ports, and
  • the P ports connected to each of the four T ports in the signal receiving state are different from each other; the method includes:
  • the electronic device determines to execute a preset function, the preset function includes a first function and a second function, and the first function is a function that supports transmitting through a SRS between transmitting antennas and sending a 4-port SRS.
  • the second function is a function to support the simultaneous reception of data by the four antennas;
  • the electronic device adjusts three T ports and the four of the four T ports currently occupied by the second function according to the P port currently occupied by the first function.
  • the 3 T ports are 3 T ports among the 4 T ports except for a single first T port currently occupied by the first function.
  • an embodiment of the present application provides a radio frequency system, including an antenna system, a radio frequency circuit, and the multiplexer according to any one of the first aspects;
  • the multiplexer is used to connect the radio frequency circuit and the antenna system to implement a preset function of the electronic device in the FDD system.
  • the preset function includes a first function and a second function.
  • One function is to support the transmission of four-port SRS by transmitting between the transmitting antennas through the SRS, and the second function is to support the four antennas to receive data simultaneously.
  • an embodiment of the present application provides a wireless communication device, including an antenna system, a radio frequency circuit, and the multiplexer according to any one of the first aspect;
  • the multiplexer is used to connect the radio frequency circuit and the antenna system to implement a preset function of the electronic device in the FDD system.
  • the preset function includes a first function and a second function.
  • One function is to support the function of transmitting four-port SRS by transmitting between the transmitting antennas through the SRS, and the second function is to support the four antennas to receive data simultaneously;
  • the wireless communication device includes at least one of the following: an electronic device and a base station.
  • the electronic device includes an antenna system, a radio frequency circuit, and a multi-channel selection switch.
  • the antenna system specifically includes 4 antennas.
  • the multi-channel selection switch includes 4 T ports and 4 P ports.
  • a multi-select switch is connected to the radio frequency circuit and the antenna system. Since the second T port of the multi-select switch only needs to be connected to two P ports, a preset function in the FDD system can be realized, compared to all T ports.
  • the number of switches can be effectively reduced, thereby reducing the insertion loss of RF link switches, improving the radio frequency performance of electronic equipment, and supporting FDD compared to the second T port connected to only a single P port
  • the preset function in the standard mode expands the functionality of the electronic device.
  • FIG. 1 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a 4P4T full-connection switch according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a 4P4T simplified switch provided by an embodiment of the present application.
  • FIG. 4 is an example structure of a transmit-receive signal processing circuit and a receive-signal processing circuit according to an embodiment of the present application
  • FIG. 5 is an example structure of a multi-channel selection switch in a single frequency single transmission mode according to an embodiment of the present application
  • FIG. 6 is an example structure of a radio frequency circuit of an electronic device according to an embodiment of the present application.
  • FIG. 7 is another example radio frequency circuit structure of an electronic device according to an embodiment of the present application.
  • FIG. 8 is another example structure of a radio frequency circuit of an electronic device according to an embodiment of the present application.
  • FIG. 9 is an example structure of an integrated processing circuit for transmitting and receiving signals and an integrated processing circuit for receiving signals according to an embodiment of the present application.
  • FIG. 10 is an example structure of a multi-channel selection switch in a dual-frequency single-shot mode according to an embodiment of the present application.
  • FIG. 11 is another example structure of a radio frequency circuit of an electronic device according to an embodiment of the present application.
  • FIG. 12 is another example structure of a radio frequency circuit of an electronic device according to an embodiment of the present application.
  • FIG. 13 is another example structure of a radio frequency circuit of an electronic device according to an embodiment of the present application.
  • FIG. 15 is an example structure of another antenna system according to an embodiment of the present application.
  • 16 is a schematic flowchart of a function control method for an electronic device according to an embodiment of the present application.
  • FIG. 17 is an example structure of a radio frequency system according to an embodiment of the present application.
  • FIG. 19 is a schematic diagram of a wireless charging receiver that multiplexes an antenna of a wireless communication device according to an embodiment of the present application
  • FIG. 20 is a schematic structural diagram of a loop array antenna composed of four antennas according to an embodiment of the present application.
  • an embodiment herein means that a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are they independent or alternative embodiments that are mutually exclusive with other embodiments. It is clearly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments.
  • the electronic devices involved in the embodiments of the present application may include various handheld devices with wireless communication functions in the 5G NR system, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to a wireless modem, and various forms of User equipment (User Equipment), mobile station (MS), terminal device (Customer equipment), customer contract equipment (Customer Equipment (CPE)) or portable broadband wireless device (Mobile Wifi, MIFI) and so on.
  • User Equipment User Equipment
  • MS mobile station
  • terminal device Customer equipment
  • Customer Equipment Customer Equipment
  • CPE Customer Equipment
  • MIFI portable broadband wireless device
  • the mobile phone ’s SRS switching4 antenna transmission function is a mandatory option for China Mobile Communications Group CMCC in the “China Mobile 5G Scale Test Technology White Paper_Terminal”, which is optional in the 3rd Generation Partnership Project 3GPP. Its main purpose is In order for the base station to measure the uplink signal of the 4 antennas of the mobile phone, and then confirm the quality and parameters of the 4 channels, according to the reciprocity of the channel, the downlink is maximized for the 4 channels. Multiple input multiple output Massive MIMO antenna array beamforming, and finally the downlink 4x4 MIMO achieves the best data transmission performance.
  • the RF architecture with a simplified 4PnT antenna switch as the core and 3P3T / DPDT
  • the comparison of multi-channel small switch switching schemes can reduce the number of series switches in each path (collect all or part of the switches into 4PnT switches), thereby reducing link loss and optimizing the overall transmit and receive performance of the terminal.
  • FIG. 1 is a schematic structural diagram of a multi-channel selection switch 10 provided in an embodiment of the present application.
  • the multi-channel selection switch is applied to an electronic device 100 including an antenna system 20 and a radio frequency circuit 30.
  • the antenna system 20 includes four antennas
  • the multiplexer 10 includes four T ports and four P ports
  • the four T ports include one first T port and three second T ports.
  • the electronic device 100 supports a single transmission mode.
  • the first T port is fully connected to the 4 P ports, and each second T port is connected to 2 of the 4 P ports, and supports signal reception in the same frequency band.
  • the P ports connected to the multiple second T ports of the function cover the 4 P ports, and the P ports connected to each of the 4 T ports in the signal receiving state are different from each other;
  • the multiplexer 10 is used to connect the radio frequency circuit 30 and the antenna system 20 to implement a preset function of the electronic device in a Frequency Division Duplexing (FDD) system.
  • the preset The function includes a first function and a second function.
  • the first function is a function that supports transmitting a 4-port SRS by transmitting among the transmitting antennas through sounding reference signals (SRS).
  • SRS sounding reference signals
  • the second function is to support all The function of four antennas receiving data simultaneously is described.
  • the function of supporting round transmission between transmitting antennas through SRS, and the function of sending 4-port SRS refers to a process in which an electronic device determines a channel quality corresponding to each antenna by interacting with a base station through a round training mechanism.
  • the electronic device further includes a radio frequency transceiver, which is connected to the radio frequency circuit, and forms a radio frequency system of the electronic device with the radio frequency circuit, a multi-way selection switch, and an antenna system.
  • a radio frequency transceiver which is connected to the radio frequency circuit, and forms a radio frequency system of the electronic device with the radio frequency circuit, a multi-way selection switch, and an antenna system.
  • the English full name of the P port in this application is a Port (polarized) port, the designation of the port used to connect the antenna in the multi-select switch in this application, and the full English name of the T port is Throw (throw, throw). It is used for the title of the port connected to the radio frequency circuit in the multi-select switch, such as a 4P4T switch.
  • each port of the second T port is connected to only two antennas for reception, as compared to each of the four T ports.
  • the way that all T ports are fully connected to 4 P ports can reduce the number / volume / cost of field effect tubes built in 4PnT switches. Compared with the simplest state where each port in the second T port is only connected to a single P port, it is functionally Expanded support for the simultaneous operation of the SRS function in the FDD system and the downlink 4X4MIMO function, thereby improving the applicability. This section is explained in detail below.
  • the electronic device includes an antenna system, a radio frequency circuit, and a multi-channel selection switch.
  • the antenna system specifically includes 4 antennas.
  • the multi-channel selection switch includes 4 T ports and 4 P ports.
  • a multi-select switch is connected to the radio frequency circuit and the antenna system. Since the second T port of the multi-select switch only needs to be connected to two P ports, a preset function in the FDD system can be realized, compared to all T ports.
  • the number of switches can be effectively reduced, thereby reducing the insertion loss of RF link switches, improving the radio frequency performance of electronic equipment, and supporting FDD compared to the second T port connected to only a single P port
  • the preset function in the standard mode expands the functionality of the electronic device.
  • each of the four P ports is connected to a corresponding antenna; the first T port supports a signal transmitting and receiving function, and the second T port only supports a signal receiving function.
  • the support for transmitting and receiving functions refers to supporting a signal receiving function and a signal transmitting function.
  • the multi-way selection switch is specifically composed of one first T port and three second T ports, the shape of the multi-way selection switch is reduced to the number of switches compared to all T ports. It can reduce the number of switches of the radio frequency system of electronic equipment, can reduce path loss, thereby improving transmit power and receiving sensitivity, improving data transmission rate in 5G NR, improving mobile phone uplink and downlink coverage, reducing power consumption and cost.
  • the single-shot mode includes a single-frequency single-shot mode and a dual-frequency single-shot mode.
  • the single-frequency single-transmission mode refers to a working mode in which the maximum capacity of an electronic device can support a single frequency band, a UL single transmission path or a DL4 receiving path
  • the dual-frequency single-transmission mode refers to a maximum capacity of an electronic device that can support dual-frequency, UL single-pass channels.
  • the multi-way switch includes 4 first switch tubes, 30 second switch tubes, and 4 third switch tubes.
  • the first switch tube corresponds to the T port
  • the first Three switch tubes correspond to the P port
  • every three of the second switch tubes form a switch subunit between the T port and the P port in series, and two second switch tubes at both ends of the switch subunit.
  • 1 T port and 1 P port are connected respectively, the second switch tube in the middle of the switch subunit is grounded, each first switch tube, each said second switch tube, and each third switch tube
  • the gates are connected to the switch control chip.
  • the switch sub-unit is set to 3 switch tubes, of which 3 The two switching tubes can be connected to a common source. When the two switching tubes on both sides are disconnected, the middle switching tube is grounded.
  • connection, full connection, etc. between the T port and the P port in the multi-way selection switch described in the embodiments of the present application refer to the connection of the T port in the multi-way selection switch to the P port through the switch subunit. status.
  • the first, second, and third switching transistors may be metal-oxide-semiconductor MOS transistors, and the like.
  • the electronic device may be connected to the gate of each of the first, second, and third switching transistors through the port of the switch control chip.
  • the control chip can adopt the mobile industry processor interface MIPI interface, and the electronic device controls the signal of the drive port of the switch control chip to control the connection state between any T port and P port.
  • the switch subunit of the multi-way selection switch since the switch subunit of the multi-way selection switch includes three second switch tubes, the second switch tube in the middle is grounded, so that the parasitic parameters of the current switch tube can be prevented from affecting the performance of other conducting ports in the open state The effect of improving the stability of switch control.
  • the single-shot mode is a single-frequency single-shot mode
  • the radio frequency circuit of the electronic device logically includes one transmission signal processing circuit and four reception signal processing circuits; one transmission signal processing
  • the circuit and the 1-channel receiving signal processing circuit are connected in parallel by a duplexer to form a transmitting and receiving signal processing circuit.
  • the duplexer is used to combine transmitting signals and receiving signals in the same frequency band, so as to realize that the electronic device transmits and receives signals under the FDD system. Receiving works simultaneously on different frequency points;
  • the radio frequency circuit is physically composed of at least one independent circuit module
  • the signal receiving and receiving port of the at least one independent circuit module is used to connect to the first T port, and the signal receiving port of the at least one independent circuit module is used to connect to the second T port.
  • the signal transmitting and receiving port is a port of the transmitting and receiving signal processing circuit near the multi-select switch
  • the signal receiving port is a port of the receiving signal processing circuit near the multi-select switch
  • the radio frequency processing circuit can transmit and receive signal processing circuits in parallel by using a duplexer to transmit and process a signal processing circuit and a receiving signal processing circuit, the transmitting and receiving signals of the same frequency band are combined to realize the electronics.
  • the device works simultaneously when transmitting and receiving at different frequency points under the FDD system, expanding the functionality of the electronic device.
  • the transmitting and receiving signal processing circuit includes a power amplifier PA, a low noise amplifier LNA, a duplexer, and a power coupler coupler.
  • the radio frequency transceiver is connected to an input port of the PA.
  • the LNA output port, the PA output port and the LNA input port are connected to the duplexer, the duplexer is connected to the coupler, and the coupler is connected to the first T port;
  • the received signal processing circuit includes a low noise amplifier LNA and a filter, the radio frequency transceiver is connected to an output port of the LNA, an input port of the LNA is connected to the filter, and the filter is connected to the second T port .
  • the transmit and receive signal processing circuit and the receive signal processing circuit support their corresponding functions in a relatively simplified manner, which is beneficial to modularization and cost reduction, and improves the configuration efficiency of the radio frequency system in electronic equipment.
  • Nx indicates the frequency band supported by electronic equipment, such as n77 (3.3-4.2GHz), n78 (3.3-3.8GHz), n79 (4.4GHz-4.99GHz), etc.
  • TRX indicates support for signal transmission and reception Function port
  • TX means the port supporting the signal transmitting function
  • RX means the port supporting the signal receiving function.
  • the structure shown in this figure is only an example.
  • the structure of the multi-way selection switch can also be other forms, and is not the only one here. limited.
  • the at least one independent circuit module includes an independent circuit module, and one channel for transmitting and receiving signals and three channels for receiving signals are disposed in the same independent circuit module. As shown in Figure 6.
  • the radio frequency circuit includes only one independent circuit module, which has a high degree of integration, takes up less space, and reduces costs.
  • the at least one independent circuit module includes two independent circuit modules, and one channel for transmitting and receiving signals is disposed in one independent circuit module among the two independent circuit modules, and three channels for receiving signal processing circuits. And provided in another independent circuit module of the two independent circuit modules. As shown in Figure 7.
  • the radio frequency circuit includes two independent circuit modules, with fewer independent circuit modules, high integration, small footprint, and reduced cost.
  • the at least one independent circuit module includes four independent circuit modules, and one channel for transmitting and receiving signals is disposed in one independent circuit module among the four independent circuit modules, and three channels for receiving signal processing circuits.
  • the three independent circuit modules are respectively arranged in the four independent circuit modules. As shown in Figure 8.
  • the radio frequency circuit includes four independent circuit modules, and each independent circuit template is provided with only one processing circuit, thereby avoiding the problem that the processing circuits interfere with each other.
  • the single transmission mode is a dual-frequency single transmission mode
  • the radio frequency circuit of the electronic device logically includes two transmission signal processing circuits and eight reception signal processing circuits; one transmission signal processing The circuit and one receiving signal processing circuit supporting the same frequency band are connected in parallel to form a transmitting and receiving signal processing circuit.
  • Two receiving and transmitting signal processing circuits of different frequency bands are connected in parallel to form an integrated processing circuit for transmitting and receiving signals through a switch.
  • Two receiving signals of different frequency bands are received.
  • the processing circuit forms a receiving signal integrated processing circuit through a switch in parallel.
  • the duplexer is used to combine the transmitting signal and the receiving signal of the same frequency band, so as to realize that the electronic device transmits and receives at different frequency points under the FDD system. Work at the same time;
  • the radio frequency circuit is physically composed of at least one independent circuit module
  • the signal receiving and receiving port of the at least one independent circuit module is used to connect to the first T port, and the signal receiving port of the at least one independent circuit module is used to connect to the second T port.
  • the signal transmitting and receiving port is a port of the transmitting and receiving signal processing circuit near the multi-select switch
  • the signal receiving port is a port of the receiving signal processing circuit near the multi-select switch
  • the radio frequency processing circuit can transmit and receive signal processing circuits in parallel by using a duplexer to transmit and process a signal processing circuit and a receiving signal processing circuit, the transmitting and receiving signals of the same frequency band are combined to realize the electronics.
  • the device works simultaneously when transmitting and receiving at different frequency points under the FDD system, expanding the functionality of the electronic device.
  • the integrated transmit and receive signal processing circuit includes a first power amplifier PA, a first low noise amplifier LNA, a first duplexer, a second power amplifier PA, and a second low noise.
  • the received signal integrated processing circuit includes a first LNA, a first filter, a second LNA, a second filter, and a switch.
  • the radio frequency transceiver is connected to an output port of the first LNA and an output port of the second LNA.
  • An input port of the first LNA is connected to the first filter
  • an input port of the second LNA is connected to the second filter
  • the first filter and the second filter are connected to the switch
  • a switch is connected to the second T port.
  • the PAs in the multi-transmit signal processing circuit will not work at the same time, so multiple PAs of the multi-transmit signal processing circuit can be set in the same independent circuit module.
  • the integrated processing circuit for receiving and transmitting signals and the integrated processing circuit for receiving signals support their corresponding functions in a relatively simplified manner, which is beneficial to modularization and cost reduction, and improves the configuration efficiency of radio frequency systems in electronic equipment.
  • Nx indicates the first frequency band supported by the electronic device
  • Ny indicates the second frequency band supported by the electronic device, such as n77 (3.3-4.2GHz), n78 (3.3-3.8GHz) in a 5G NR system ), N79 (4.4GHz ⁇ 4.99GHz), etc.
  • TRX indicates the port supporting the signal transmitting and receiving function
  • TX indicates the port supporting the signal transmitting function
  • RX indicates the port supporting the signal receiving function.
  • the structure shown in this figure is only an example.
  • the structure of the multi-way selection switch can also be other forms, which is not limited here.
  • the at least one independent circuit module includes an independent circuit module, and one integrated circuit for transmitting and receiving signals and three integrated processing circuits for receiving signals are disposed in the same independent circuit module. The details are shown in FIG. 11.
  • the radio frequency circuit includes only one independent circuit module, which has a high degree of integration, takes up less space, and reduces costs.
  • the at least one independent circuit module includes two independent circuit modules, and one integrated circuit for transmitting and receiving signals is provided in one independent circuit module among the two independent circuit modules, and three channels for receiving signals are integrated.
  • the processing circuit is disposed in another independent circuit module of the two independent circuit modules. The details are shown in FIG. 12.
  • the radio frequency circuit includes only two independent circuit modules, which has a high degree of integration, takes up less space, and reduces costs.
  • the at least one independent circuit module includes four independent circuit modules, and one integrated circuit for transmitting and receiving signals is provided in one independent circuit module among the four independent circuit modules, and three channels for receiving signals are integrated.
  • the processing circuits are respectively disposed in the other three independent circuit modules among the four independent circuit modules. The details are shown in FIG. 13.
  • the radio frequency circuit includes four independent circuit modules, and each independent circuit template is provided with only one processing circuit, thereby avoiding the problem that the processing circuits interfere with each other.
  • the four antennas include a first antenna, a second antenna, a third antenna, and a fourth antenna, and the first antenna, the second antenna, the third antenna, and the fourth antenna are all Support 5G NR band antenna.
  • the 5G NR frequency band may include, for example, 3.3 GHz-3.8 GHz and 4.4 GHz-5 GHz.
  • the four antennas include a first antenna, a second antenna, a third antenna, and a fourth antenna
  • the first antenna and the fourth antenna are antennas supporting an LTE frequency band and a 5G NR frequency band.
  • the second antenna and the third antenna are antennas that only support a 5G NR frequency band.
  • the first and fourth antennas are to support DL 4x4 MIMO of individual frequency bands on LTE terminals. Its two receiving antennas are shared with 5G NR antennas.
  • the LTE frequency band may include, for example, 1880-1920 MHz and 2496-2690 MHz.
  • the antenna system further includes a first combiner and a second combiner, wherein a first port of the first combiner is used to connect the first combiner An antenna, the second port of the first combiner is used to connect the first receiving path in LTE 4x4 MIMO of the electronic device, and the third port of the first combiner is used to connect the multiple channels Select the corresponding P port in the switch; the first port of the second combiner is used to connect the fourth antenna, and the second port of the second combiner is used to connect the LTE 4x4 MIMO of the electronic device A second receiving path in the, and a third port of the second combiner is used to connect a corresponding P port in the multi-way selection switch.
  • the LTE 4 * 4 MIMO is a downlink LTE receiving circuit and can be defined as a third receiving path. Because the current LTE has two channels of reception. When supporting LTE 4x4 MIMO, there will be additional third and fourth receiving channels.
  • the electronic device will leave one antenna with better performance for the main set in the circuit to receive PRX for standby use, and the first T port in the switch has the transceiver function, that is, it can do TX and
  • the PRX function can switch antennas arbitrarily, so there is no need to limit the connection port of the shared antenna here.
  • the antenna system further includes a first SPDT switch and a second SPDT switch, wherein a first port of the first SPDT switch is used to connect the first SPDT switch An antenna, the second port of the first SPDT switch is used to connect the first receiving path in LTE 4x4 MIMO of the electronic device, and the third port of the first SPDT switch is used to connect the multi-way selection switch
  • the corresponding P port of the second SPDT switch; the first port of the second SPDT switch is used to connect the fourth antenna, and the second port of the second SPDT switch is used to connect the LTE 4x4 MIMO of the electronic device.
  • a third port of the second SPDT switch is used to connect to a corresponding P port in the multi-way selection switch.
  • FIG. 16 is a schematic flowchart of a function control method according to an embodiment of the present application, which is applied to an electronic device
  • the electronic device includes an antenna system and a radio frequency circuit
  • the antenna system includes 4 antennas
  • the multiplexer includes 4 T ports and 4 P ports.
  • the 4 T ports include a first T port and 3 second T ports.
  • the electronic device supports a single-shot mode.
  • the first T port The ports are all connected to the 4 P ports, and each second T port is connected to 2 of the 4 P ports.
  • the P ports connected to multiple second T ports supporting the signal receiving function of the same frequency band are covered.
  • the 4 P ports, and the P ports connected to each of the 4 T ports in a signal receiving state are different from each other; the method includes:
  • Step 1601 The electronic device determines to execute a preset function, the preset function includes a first function and a second function, and the first function is to support rotating the reference signal SRS between transmitting antennas and sending a 4-port SRS
  • the second function is a function of supporting the four antennas to receive data simultaneously.
  • Step 1602 In the process of enabling the first function, the electronic device adjusts, according to the P port currently occupied by the first function, 3 T ports and 4 T ports currently occupied by the second function. The matching state between the four P ports is described, and the three T ports are three T ports except the single first T port currently occupied by the first function among the four T ports.
  • the electronic device performs the first and second functions, and can meet the functional requirements in the 5G NR and FDD system.
  • the electronic device can realize the preset function in the 5G NR FDD system through the radio frequency system constructed based on the multi-channel selector switch, and because the multi-channel selector switch has a simplified structure and efficient control, it is beneficial to improving the electronic device. Real-time and efficiency to complete preset functions.
  • step 1602 may specifically be:
  • the electronic device determines a P port occupied by the T port 1 where the first function is located in the current detection cycle, and determines that the Nx frequency band where the second function is currently occupied by the P port
  • One T port if the one T port is a second T port, adjust one P port currently occupied by the one T port to another P port.
  • the one T port may be one of T2, T3, and T4.
  • step 1602 may specifically be:
  • the electronic device determines a P port occupied by the T port 2 where the first function is located in the current detection cycle, and determines that the Ny frequency band where the second function is currently occupied by the P port
  • One T port if the one T port is a second T port, adjust one P port currently occupied by the one T port to another P port.
  • the one T port may be one of T2, T3, and T4.
  • the following uses the multi-way switch shown in FIG. 5 as an example to describe in detail the switching process between the T port and the P port in the embodiment of the present application. Since the 5G NR protocol currently limits 4 P ports to work only in the same frequency band at the same time, it is assumed here to detect the Nx frequency band. It is assumed that in the initial state of the multiplex switch, 4 T ports are connected to 4 P ports in parallel, that is, T1 is connected to P1 , T2 is connected to P2, T3 is connected to P3, T4 is connected to P4, and four P ports are connected to four antennas respectively.
  • the electronic device determines to enable the preset function, the electronic device is in the process of enabling SRS, and the electronic device is in the first detection cycle.
  • Signals can be sent and received through the T1 and P1 paths (the path is pre-connected as a receiving path) for signal reception and channel quality detection of the first antenna.
  • the first detection period is not occupied because the P ports corresponding to T2, T3, and T4 are not occupied. , So no switching occurs during this cycle.
  • the electronic device can control T1 and P2 to conduct transmission signals to perform channel detection of the second antenna for signal reception.
  • P2 corresponding to the original T2 is occupied.
  • T2 needs Switch to P1.
  • the electronic device can control T1 and P3 to conduct transmission and reception signals for signal reception and third antenna channel detection during the third detection period.
  • P3 corresponding to the original T3 is occupied.
  • T3 needs Switch to P2.
  • the electronic device can control T1 and P4 to turn on and send signals for signal reception and fourth antenna channel detection.
  • P4 corresponding to the original T4 is occupied.
  • T4 needs Switch to P3.
  • the electronic device completes the SRS detection process, and T1 is connected to P4 for signal reception, T2 is connected to P1 for signal reception, T3 is connected to P2 for signal reception, and T4 is connected to P3 for signal reception.
  • FIG. 17 is a schematic structural diagram of a radio frequency system according to an embodiment of the present application.
  • the radio frequency system includes an antenna system, a radio frequency circuit, and a multi-way selection switch according to any one of the foregoing embodiments.
  • the multiplexer is used to connect the radio frequency circuit and the antenna system to implement a preset function of the electronic device in the FDD system.
  • the preset function includes a first function and a second function.
  • One function is to support the transmission of four-port SRS by transmitting between the transmitting antennas through the SRS, and the second function is to support the four antennas to receive data simultaneously.
  • FIG. 18 is a schematic structural diagram of a wireless communication device according to an embodiment of the present application.
  • the wireless communication device includes an antenna system, a radio frequency circuit, and a multi-way selection switch according to any one of the foregoing embodiments.
  • the multiplexer is used to connect the radio frequency circuit and the antenna system to implement a preset function of the electronic device in a frequency division multiplexed FDD system, and the preset function includes a first function and a second function.
  • the first function is a function of supporting transmitting four-port SRS by transmitting the reference signal SRS among transmitting antennas
  • the second function is a function of supporting the simultaneous reception of data by the four antennas;
  • the wireless communication device includes at least one of the following: an electronic device and a base station.
  • the four antennas in the antenna system described in the embodiment of the present application can also be multiplexed by the wireless charging receiver of the electronic device.
  • the wireless charging receiver includes a receiving antenna, a receiving The control circuit, the receiving antenna matches the transmitting antenna of the wireless charging transmitter (resonates under the same frequency or similar conditions, and the energy is transmitted wirelessly by means of radiative resonance magnetic coupling), and the receiving control circuit passes the loop array antenna The energy is converted into DC power and output to charge the battery.
  • the receiving control circuit can dynamically adjust the frequency of the loop array antenna and match the frequency of the transmitting antenna of the wireless charging transmitter to achieve paired charging, or real-time and wireless charging.
  • the transmitter interacts with the frequency range to achieve the "exclusive encryption" wireless charging mode.
  • the receiving antenna may be an antenna composed of at least one of the four antennas (in the case of multiple antennas, the antenna and the antenna are gated by a switch).
  • the receiving antenna is a loop array antenna composed of the foregoing four antennas.
  • the four antennas include antenna 1, antenna 2, antenna 3, and antenna 4, where antenna 1 and antenna 4 support LTE and 5G. NR frequency band, antenna 2 and antenna 3 only support 5G NR frequency band.
  • the port of antenna 1 and the port of antenna 4 are used as the port of the loop array antenna.
  • the adjacent antennas are connected through a gating circuit 170 with isolation function.
  • the pass circuit 170 includes an isolation sheet 171 and a switch 172.
  • the isolation sheet 171 is a conductor.
  • the switch 172 is also connected to a controller.
  • the electronic device can communicate with the switch 172 of each gate circuit 170 in a wireless charging mode to form a loop array antenna to receive energy. .
  • the gating circuit 170 reduces the mutual coupling between the multiple antennas of the electronic device in the normal communication mode, improves the isolation between the multiple antennas, and optimizes the antenna performance.
  • the switch 171 multiple antennas can be connected in series to form a circular array antenna, so as to better match the transmitting antenna to transmit energy.
  • the antenna 1 and the antenna 4 are stronger than the antenna 2 and the antenna 3, the thus configured circular array antenna can Minimize energy transmission losses.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

本申请公开了一种多路选择开关及相关产品,应用于电子设备,所述电子设备包括天线系统和射频电路,所述天线系统包括4支天线,所述多路选择开关包括4个T端口和4个P端口,所述4个T端口包括1个第一T端口和3个第二T端口,所述电子设备支持单发模式,所述第一T端口全连接所述4个P端口,每个第二T端口连接所述4个P端口中的2个P端口,支持相同频段的信号接收功能的多个第二T端口所连接的P端口覆盖所述4个P端口,且处于信号接收状态的所述4个T端口中每个T端口所连接的P端口互不相同。本申请提供的技术方案具有降低开关数量,提高电子设备的射频的指标性能的优点。

Description

多路选择开关及相关产品 技术领域
本申请涉及电子技术领域,尤其涉及一种多路选择开关及相关产品。
背景技术
随着智能手机等电子设备的大量普及应用,智能手机能够支持的应用越来越多,功能越来越强大,智能手机向着多样化、个性化的方向发展,成为用户生活中不可缺少的电子用品。第四代4G移动通信系统中电子设备一般采用单天线或双天线射频系统架构,目前第五代5G移动通信系统新空口NR系统中提出支持4天线的射频系统架构的电子设备。
发明内容
本申请实施例提供一种多路选择开关及相关产品,用于提高电子设备的射频的指标性能和功能性。
第一方面,本申请实施例提供一种多路选择开关,应用于电子设备,所述电子设备包括天线系统和射频电路,所述天线系统包括4支天线,所述多路选择开关包括4个T端口和4个P端口,所述4个T端口包括1个第一T端口和3个第二T端口,所述电子设备支持单发模式,所述第一T端口全连接所述4个P端口,每个第二T端口连接所述4个P端口中的2个P端口,支持相同频段的信号接收功能的多个第二T端口所连接的P端口覆盖所述4个P端口,且处于信号接收状态的所述4个T端口中每个T端口所连接的P端口互不相同;
所述多路选择开关用于连接所述射频电路和所述天线系统以实现所述电子设备在FDD制式中的预设功能,所述预设功能包括第一功能和第二功能,所述第一功能为支持通过SRS在发射天线间轮发,发送4端口SRS的功能,所述第二功能为支持所述4支天线同时接收数据的功能。
第二方面,本申请实施例提供一种功能控制方法,应用于电子设备,所述电子设备包括天线系统和射频电路,所述天线系统包括4支天线,所述多路选择开关包括4个T端口和4个P端口,所述4个T端口包括1个第一T端口和3个第二T端口,所述电子设备支持单发模式,所述第一T端口全连接所述4个P端口,每个第二T端口连接所述4个P端口中的2个P端口,支持相同频段的信号接收功能的多个第二T端口所连接的P端口覆盖所述4个P端口,且处于信号接收状态的所述4个T端口中每个T端口所连接的P端口互不相同;所述方法包括:
所述电子设备确定执行预设功能,所述预设功能包括第一功能和第二功能,所述第一功能为支持通过SRS在发射天线间轮发,发送4端口SRS的功能,所述第二功能为支持所述4支天线同时接收数据的功能;
在启用所述第一功能的过程中,所述电子设备根据所述第一功能当前占用的P端口调整所述第二功能当前占用的4个T端口中的3个T端口与所述4个P端口之间的匹配状态,所述3个T端口为所述4个T端口中除所述第一功能当前占用的单个第一T端口之外的3个T端口。
第三方面,本申请实施例提供一种射频系统,包括天线系统、射频电路以及如第一方面任一项所述的多路选择开关;
所述多路选择开关用于连接所述射频电路和所述天线系统以实现所述电子设备在FDD制式中的预设功能,所述预设功能包括第一功能和第二功能,所述第一功能为支持通过SRS在发射天线间轮发,发送4端口SRS的功能,所述第二功能为支持所述4支天线同时接收 数据的功能。
第四方面,本申请实施例提供一种无线通信设备,包括天线系统、射频电路以及如第一方面任一项所述的多路选择开关;
所述多路选择开关用于连接所述射频电路和所述天线系统以实现所述电子设备在FDD制式中的预设功能,所述预设功能包括第一功能和第二功能,所述第一功能为支持通过SRS在发射天线间轮发,发送4端口SRS的功能,所述第二功能为支持所述4支天线同时接收数据的功能;
所述无线通信设备至少包括以下任意一种:电子设备、基站。
可以看出,本申请实施例中,电子设备包括天线系统、射频电路和多路选择开关,该天线系统具体包括4支天线,多路选择开关包括4个T端口和4个P端口,且该多路选择开关连接所述射频电路和所述天线系统,由于该多路选择开关的第二T端口仅需要连接2个P端口即可实现在FDD制式中的预设功能,相对于所有T端口全连接的开关来说,可以有效较低开关数量,从而降低射频链路开关插损,提高电子设备的射频的指标性能,且相对于第二T端口仅连接单个P端口来说,能够支持FDD制式下的预设功能,即拓展了电子设备的功能性。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种电子设备的结构示意图;
图2是本申请实施例提供的一种4P4T全连接开关的结构示意图;
图3是本申请实施例提供的一种4P4T简化开关的结构示意图;
图4是本申请实施例提供的一种收发信号处理电路和接收信号处理电路的示例结构;
图5是本申请实施例提供的在单频单发模式下的多路选择开关的示例结构;
图6是本申请实施例提供的电子设备的一种射频电路示例结构;
图7是本申请实施例提供的电子设备的另一种射频电路示例结构;
图8是本申请实施例提供的电子设备的另一种射频电路示例结构;
图9是本申请实施例提供的一种收发信号集成处理电路和接收信号集成处理电路的示例结构;
图10是本申请实施例提供的在双频单发模式下的多路选择开关的示例结构;
图11是本申请实施例提供的电子设备的另一种射频电路示例结构;
图12是本申请实施例提供的电子设备的另一种射频电路示例结构;
图13是本申请实施例提供的电子设备的另一种射频电路示例结构;
图14是本申请实施例提供的一种天线系统的示例结构;
图15是本申请实施例提供的一种另一种天线系统的示例结构;
图16是本申请实施例提供的电子设备的功能控制方法的流程示意图;
图17是本申请实施例提供的一种射频系统的示例结构;
图18是本申请实施例提供的一种无线通信设备的示例结构;
图19是本申请实施例提供的一种复用无线通信设备的天线的无线充电接收器的示意图;
图20是本申请实施例提供的一种由4支天线构成的环形阵列天线的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
以下分别进行详细说明。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请实施例所涉及到的电子设备可以包括5G NR系统中各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端设备(terminal device),客户签约设备(Customer Premise Equipment,CPE)或者便携式宽带无线装置(Mobile Wifi,MIFI)等等。为方便描述,上面提到的设备统称为电子设备。
目前,手机的SRS切换switching4天线发射功能是中国移动通信集团CMCC在《中国移动5G规模试验技术白皮书_终端》中的必选项,在第三代合作伙伴计划3GPP中为可选,其主要目的是为了基站通过测量手机4天线上行信号,进而确认4路信道质量及参数,根据信道互易性再针对4路信道做下行最大化多输入多输出Massive MIMO天线阵列的波束赋形,最终使下行4x4 MIMO获得最佳数据传输性能。
为满足FDD NR系统和/或FDD LTE系统中4天线SRS切换switching发射和下行4X4MIMO功能的同时工作的要求,本申请实施例提出的以简化的4PnT天线开关为核心的射频架构,和3P3T/DPDT/多路小开关切换方案比较,可以减少各路径串联开关数量(将所有或部分开关集合到4PnT开关中),从而减少链路损耗,优化终端整体的发射接收性能。下面对本申请实施例进行详细介绍。
请参阅图1,图1是本申请实施例提供了一种多路选择开关10的结构示意图,该多路选择开关应用于电子设备100,所述电子设备100包括天线系统20和射频电路30,所述天线系统20包括4支天线,所述多路选择开关10包括4个T端口和4个P端口,所述4个T端口包括1个第一T端口和3个第二T端口,所述电子设备100支持单发模式,所述第一T端口全连接所述4个P端口,每个第二T端口连接所述4个P端口中的2个P端口,支持相同频段的信号接收功能的多个第二T端口所连接的P端口覆盖所述4个P端口,且处于信号接收状态的所述4个T端口中每个T端口所连接的P端口互不相同;
所述多路选择开关10用于连接所述射频电路30和所述天线系统20以实现所述电子设备在频分复用(Frequency Division Duplexing,FDD)制式中的预设功能,所述预设功能包括第一功能和第二功能,所述第一功能为支持通过探测参考信号(Sounding Reference Signa,SRS)在发射天线间轮发,发送4端口SRS的功能,所述第二功能为支持所述4支天线同时接收数据的功能。
其中,所述支持通过SRS在发射天线间轮发,发送4端口SRS的功能是指电子设备通过轮训机制与基站交互确定每个天线对应的信道质量的过程。所述电子设备还包括射频收发器,该射频收发器连接所述射频电路,并与射频电路、多路选择开关以及天线系统组成该电子设备的射频系统。所述电子设备处于下行4*4多输入多输出MIMO工作模式时,同一频段的4个下行通路中T端口与P端口之间是一一对应的。从设计原理上来说,相同频段的四个支持接收功能的T端口必须分别连接4个P端口,从而确保能够实现下行四路接收功能。
其中,本申请中的P端口英文全称是Port(极化)端口,本申请中用于多路选择开关中连接天线的端口的称谓,T端口英文全称是Throw(投、掷),本申请中用于多路选择开关中连接射频电路的端口的称谓,如4P4T开关。
其中,由于4个T端口中的只有1个第一T端口全连接所述4个P端口,第二T端口中每个端口只连接2支天线做接收使用,相对于4个T端口中每个T端口均全连接4个P端口的方式,可减少4PnT开关内置场效应管数量/体积/成本,相对于第二T端口中每个端口仅连接单个P端口的最简化状态,在功能上拓展支持FDD制式下的SRS功能和下行4X4MIMO的功能的同步工作,从而提升适用性。下面对该部分做详细说明。
举例来说,所述多路选择开关由场效应管构成,若该4个T端口中每个T端口均全连接4个P端口,则如图2所示的多路选择开关的示例结构图,该多路选择开关的场效应管的数量为4+4*4*3+4=56;若该4个T端口中仅有1个T端口全连接4个P端口,其余每个T端口连接2个P端口,则如图3所示的多路选择开关的示例结构图,该多路选择开关的场效应管的数量为4+(1*4+(4-1)*2)*3+4=38。
由此可见,通过限定T端口中全连接4个P端口的T端口的数量,可以有效减少电子设备射频系统的开关数量。也就是说,该全连接型T端口的数量对射频系统的性能有着较大影响。
可以看出,本申请实施例中,电子设备包括天线系统、射频电路和多路选择开关,该天线系统具体包括4支天线,多路选择开关包括4个T端口和4个P端口,且该多路选择开关连接所述射频电路和所述天线系统,由于该多路选择开关的第二T端口仅需要连接2个P端口即可实现在FDD制式中的预设功能,相对于所有T端口全连接的开关来说,可以有效较低开关数量,从而降低射频链路开关插损,提高电子设备的射频的指标性能,且相对于第二T端口仅连接单个P端口来说,能够支持FDD制式下的预设功能,即拓展了电子设备的功能性。
在一个可能的示例中,所述4个P端口中的每个P端口连接对应的天线;所述第一T端口支持信号收发功能,所述第二T端口仅支持信号接收功能。
其中,所述支持收发功能是指支持信号接收功能和信号发射功能。
可见,本示例中,由于多路选择开关具体由1个第一T端口和3个第二T端口组成,故而该多路选择开关相对于全部T端口全连接P端口的形态减少了开关数量,能够减少电子设备射频系统的开关数量,可以减少路径损耗,从而提升发射功率和接收灵敏度,改善5G NR中数据传输速率,改善手机上下行覆盖范围,减少功耗和成本。
在一个可能的示例中,所述单发模式包括单频单发模式和双频单发模式。
其中,所述单频单发模式是指电子设备最大能力可以支持单频段、UL单发射通路或者DL4接收通路的工作模式,双频单发模式是指电子设备最大能力可以支持双频段、UL单发射通路或者DL4接收通路的工作模式。
在一个可能的示例中,所述多路切换开关包括4个第一开关管、30个第二开关管、4个第三开关管,所述第一开关管对应所述T端口,所述第三开关管对应所述P端口,每3个所述第二开关管串联构成所述T端口和所述P端口之间的开关子单元,所述开关子单元 的两端的2个第二开关管分别连接1个T端口和1个P端口,所述开关子单元的中间的第二开关管接地,每个第一开关管、每个所述第二开关管、所述每个第三开关管的门极均连接开关控制芯片。
具体实现中,由于开关子单元断开时,若没有接地,寄生参数对多路选择开关中其他导通的端口性能影响太大,所以这里将开关子单元设置为3个开关管,其中,3个开关管可以共源极连接,断开时,两侧的2个开关管都断开,中间的开关管接地导通。
其中,本申请实施例所描述的多路选择开关中T端口与P端口之间的连接、全连接等概念,均是指多路选择开关中的T端口通过所述开关子单元连接P端口的状态。所述第一、第二、第三开关管可以是金属氧化物半导体MOS管等,电子设备可以通过开关控制芯片的端口连接第一第二第三开关管中每个MOS管的门极,开关控制芯片可以采用移动产业处理器接口MIPI接口,电子设备控制该开关控制芯片的驱动端口的信号即可控制任意T端口与P端口之间的连接状态。
可见,本示例中,由于多路选择开关的开关子单元包括三个第二开关管,中间的第二开关管接地,从而可以在断路状态下避免当前开关管的寄生参数对其他导通端口性能的影响,提高开关控制稳定性。
在一个可能的示例中,所述单发模式为单频单发模式;所述电子设备的所述射频电路逻辑上包括1路发射信号处理电路和4路接收信号处理电路;1路发射信号处理电路和1路接收信号处理电路通过双工器并联形成收发信号处理电路,所述双工器用于合路相同频段的发射信号和接收信号,以实现所述电子设备在所述FDD制式下发射和接收在不同频点上的同时工作;
所述射频电路物理形态上由至少一个独立电路模块组成;
所述至少一个独立电路模块的信号收发端口用于连接所述第一T端口,所述至少一个独立电路模块的信号接收端口用于连接所述第二T端口。
其中,所述信号收发端口为所述收发信号处理电路的靠近多路选择开关的端口,所述信号接收端口为所述接收信号处理电路的靠近所述多路选择开关的端口。
可见,本示例中,由于射频处理电路中可以通过双工器并联发射信号处理电路和1路接收信号处理电路形成收发信号处理电路,从而合路相同频段的发射信号和接收信号,实现所述电子设备在所述FDD制式下发射和接收在不同频点上的同时工作,拓展电子设备的功能性。
在一个可能的示例中,如图4所示,所述收发信号处理电路包括功率放大器PA、低噪声放大器LNA、双工器和功率耦合器coupler,所述射频收发器连接所述PA的输入端口和所述LNA的输出端口,所述PA的输出端口和所述LNA的输入端口连接所述双工器,所述双工器连接所述coupler,所述coupler连接所述第一T端口;
所述接收信号处理电路包括低噪声放大器LNA和滤波器filter,所述射频收发器连接所述LNA的输出端口,所述LNA的输入端口连接所述filter,所述filter连接所述第二T端口。
可见,本示例中,收发信号处理电路和接收信号处理电路均以比较简化的方式来支持其对应的功能,有利于模块化和降低成本,提高射频系统在电子设备中的配置效率。
在一个可能的示例中,如图5所示,在单频单发模式下,该多路切换开关的开关管的数量为4+(1*4+(4-1)*2)*3+4=38,Nx表示电子设备所支持的频段,如5G NR系统中的n77(3.3~4.2GHz)、n78(3.3~3.8GHz)、n79(4.4GHz~4.99GHz)等,TRX表示支持信号收发功能的端口,TX表示支持信号发射功能的端口,RX表示支持信号接收功能的端口,此附图所示结构仅为示例,该多路选择开关的结构还可以是其他形态,此处不做唯一限定。
在一个可能的示例中,所述至少一个独立电路模块包括一个独立电路模块,1路收发信号处理电路和3路接收信号处理电路设置于同一个独立电路模块中。具体如图6所示。
可见,本示例中,射频电路仅包括1个独立电路模块,集成度高,占用空间小,降低成本。
在一个可能的示例中,所述至少一个独立电路模块包括两个独立电路模块,1路收发信号处理电路设置于所述两个独立电路模块中的一个独立电路模块中,3路接收信号处理电路设置于所述两个独立电路模块中的另一个独立电路模块中。具体如图7所示。
可见,本示例中,射频电路包括2个独立电路模块,独立电路模块较少,集成度高,占用空间小,降低成本。
在一个可能的示例中,所述至少一个独立电路模块包括四个独立电路模块,1路收发信号处理电路设置于所述四个独立电路模块中的一个独立电路模块中,3路接收信号处理电路分别设置于所述四个独立电路模块中的另三个独立电路模块中。具体如图8所示。
可见,本示例中,射频电路包括4个独立电路模块,每个独立电路模板仅设置一个处理电路,避免了处理电路互相干扰的问题。
在一个可能的示例中,所述单发模式为双频单发模式,所述电子设备的所述射频电路逻辑上包括2路发射信号处理电路和8路接收信号处理电路;1路发射信号处理电路和支持相同频段的1路接收信号处理电路通过双工器并联形成收发信号处理电路,不同频段的2路收发信号处理电路通过切换开关并联形成收发信号集成处理电路,不同频段的2路接收信号处理电路通过切换开关并联形成接收信号集成处理电路,所述双工器用于合路相同频段的发射信号和接收信号,以实现所述电子设备在所述FDD制式下发射和接收在不同频点上的同时工作;
所述射频电路物理形态上由至少一个独立电路模块组成;
所述至少一个独立电路模块的信号收发端口用于连接所述第一T端口,所述至少一个独立电路模块的信号接收端口用于连接所述第二T端口。
其中,所述信号收发端口为所述收发信号处理电路的靠近多路选择开关的端口,所述信号接收端口为所述接收信号处理电路的靠近所述多路选择开关的端口。
可见,本示例中,由于射频处理电路中可以通过双工器并联发射信号处理电路和1路接收信号处理电路形成收发信号处理电路,从而合路相同频段的发射信号和接收信号,实现所述电子设备在所述FDD制式下发射和接收在不同频点上的同时工作,拓展电子设备的功能性。
在一个可能的示例中,如图9所示,所述收发信号集成处理电路包括第一功率放大器PA、第一低噪声放大器LNA、第一双工器、第二功率放大器PA、第二低噪声放大器LNA、第二双工器、功率耦合器coupler和切换开关(例如单刀双掷SPDT开关),所述射频收发器连接所述第一PA的输入端口、所述第二PA的输入端口、所述第一LNA的输出端口、所述第二LNA的输出端口,所述第一PA的输出端口和所述第一LNA的输入端口连接所述第一双工器,所述第二PA的输出端口和所述第二LNA的输入端口连接所述第二双工器,所述第一双工器和所述第二双工器连接所述coupler,所述coupler连接所述切换开关,所述切换开关连接所述第一T端口;
所述接收信号集成处理电路包括第一LNA、第一filter、第二LNA、第二filter、切换开关,所述射频收发器连接所述第一LNA的输出端口和所述第二LNA的输出端口,所述第一LNA的输入端口连接所述第一filter,所述第二LNA的输入端口连接所述第二filter,所述第一filter和所述第二filter连接所述切换开关,所述切换开关连接所述第二T端口。
其中,由于FDD制式、单发模式下,多路发射信号处理电路中的PA不会同时工作,因此多路发射信号处理电路的多个PA可以设置于同一个独立电路模块中。
可见,本示例中,收发信号集成处理电路和接收信号集成处理电路均以比较简化的方式来支持其对应的功能,有利于模块化和降低成本,提高射频系统在电子设备中的配置效率。
在一个可能的示例中,如图10所示,在双频单发模式下,该多路切换开关的开关管的数量为4+(1*4+(4-1)*2)*3+4=38,Nx表示所述电子设备所支持的第一频段,Ny表示所述电子设备所支持的第二频段,如5G NR系统中的n77(3.3~4.2GHz)、n78(3.3~3.8GHz)、n79(4.4GHz~4.99GHz)等,TRX表示支持信号收发功能的端口,TX表示支持信号发射功能的端口,RX表示支持信号接收功能的端口,此附图所示结构仅为示例,该多路选择开关的结构还可以是其他形态,此处不做唯一限定。
在一个可能的示例中,所述至少一个独立电路模块包括一个独立电路模块,1路收发信号集成处理电路和3路接收信号集成处理电路设置于同一个独立电路模块中。具体如图11所示。
可见,本示例中,射频电路仅包括1个独立电路模块,集成度高,占用空间小,降低成本。
在一个可能的示例中,所述至少一个独立电路模块包括两个独立电路模块,1路收发信号集成处理电路设置于所述两个独立电路模块中的一个独立电路模块中,3路接收信号集成处理电路设置于所述两个独立电路模块中的另一个独立电路模块中。具体如图12所示。
可见,本示例中,射频电路仅包括2个独立电路模块,集成度高,占用空间小,降低成本。
在一个可能的示例中,所述至少一个独立电路模块包括四个独立电路模块,1路收发信号集成处理电路设置于所述四个独立电路模块中的一个独立电路模块中,3路接收信号集成处理电路分别设置于所述四个独立电路模块中的另三个独立电路模块中。具体如图13所示。
可见,本示例中,射频电路包括4个独立电路模块,每个独立电路模板仅设置一个处理电路,避免了处理电路互相干扰的问题。
在一个可能的示例中,所述4支天线包括第一天线、第二天线、第三天线和第四天线,所述第一天线、第二天线、第三天线和所述第四天线均为支持5G NR频段的天线。
其中,所述5G NR频段例如可以包括3.3GHz-3.8GHz,4.4GHz-5GHz。
在一个可能的示例中,所述4支天线包括第一天线、第二天线、第三天线和第四天线,所述第一天线和所述第四天线为支持LTE频段和5G NR频段的天线,所述第二天线和所述第三天线为仅支持5G NR频段的天线。
其中,第一和第四天线是为了支持LTE终端上个别频段的DL 4x4 MIMO。其2支接收天线与5G NR的天线共用。所述LTE频段例如可以包括1880-1920MHz、2496-2690MHz。
在一个可能的示例中,如图14所示,所述天线系统还包括第一合路器和第二合路器,其中,所述第一合路器的第一端口用于连接所述第一天线,所述第一合路器的第二端口用于连接所述电子设备的LTE 4x4 MIMO中的第一接收通路,所述第一合路器的第三端口用于连接所述多路选择开关中对应的P端口;所述第二合路器的第一端口用于连接所述第四天线,所述第二合路器的第二端口用于连接所述电子设备的LTE 4x4 MIMO中的第二接收通路,所述第二合路器的第三端口用于连接所述多路选择开关中对应的P端口。
其中,所述LTE 4*4MIMO是下行LTE接收电路,可以定义为第三接收通路。因为当前LTE已经有2路接收。在支持LTE 4x4 MIMO时,会有增加第三和第四接收通道。
其中,电子设备会根据实际4支天线情况,将性能较好的1支天线留给电路中主集接收PRX做待机使用,且开关中第一T端口具备收发功能的,即其可以做TX和PRX功能, 可任意切换天线,因此不需要对此处的共用天线做连接端口的限制。
在一个可能的示例中,如图15所示,所述天线系统还包括第一单刀双掷SPDT开关和第二SPDT开关,其中,所述第一SPDT开关的第一端口用于连接所述第一天线,所述第一SPDT开关的第二端口用于连接所述电子设备的LTE 4x4 MIMO中的第一接收通路,所述第一SPDT开关的第三端口用于连接所述多路选择开关中对应的P端口;所述第二SPDT开关的第一端口用于连接所述第四天线,所述第二SPDT开关的第二端口用于连接所述电子设备的所述LTE 4x4 MIMO中的第二接收通路,所述第二SPDT开关的第三端口用于连接所述多路选择开关中对应的P端口。
请参阅图16,图16是本申请实施例提供了一种功能控制方法的流程示意图,应用于电子设备,所述电子设备包括天线系统和射频电路,所述天线系统包括4支天线,所述多路选择开关包括4个T端口和4个P端口,所述4个T端口包括1个第一T端口和3个第二T端口,所述电子设备支持单发模式,所述第一T端口全连接所述4个P端口,每个第二T端口连接所述4个P端口中的2个P端口,支持相同频段的信号接收功能的多个第二T端口所连接的P端口覆盖所述4个P端口,且处于信号接收状态的所述4个T端口中每个T端口所连接的P端口互不相同;所述方法包括:
步骤1601:所述电子设备确定执行预设功能,所述预设功能包括第一功能和第二功能,所述第一功能为支持通过探测参考信号SRS在发射天线间轮发,发送4端口SRS的功能,所述第二功能为支持所述4支天线同时接收数据的功能。
步骤1602:在启用所述第一功能的过程中,所述电子设备根据所述第一功能当前占用的P端口调整所述第二功能当前占用的4个T端口中的3个T端口与所述4个P端口之间的匹配状态,所述3个T端口为所述4个T端口中除所述第一功能当前占用的单个第一T端口之外的3个T端口。
其中,电子设备执行第一第二功能,能够满足5G NR FDD制式系统中功能要求。
可见,本申请实施例中,电子设备能够通过基于多路选择开关构建的射频系统实现5G NR FDD制式系统中的预设功能,且由于多路选择开关结构简化,控制高效,有利于提高电子设备完成预设功能的实时性和效率。
具体地,步骤1602的实现方法具体可以为:
如单频段为Nx频段,所述电子设备确定所述第一功能所在的T端口1在当前探测周期占用的一个P端口,确定所述第二功能所在的Nx频段当前占用所述一个P端口的一个T端口,如该一个T端口为第二T端口,将所述一个T端口当前占用一个P端口调整至另一个P端口。
上述一个T端口具体可以为T2、T3、T4中间的一个。
具体地,步骤1602的实现方法具体可以为:
如单频段为Ny频段,所述电子设备确定所述第一功能所在的T端口2在当前探测周期占用的一个P端口,确定所述第二功能所在的Ny频段当前占用所述一个P端口的一个T端口,如该一个T端口为第二T端口,将所述一个T端口当前占用一个P端口调整至另一个P端口。
上述一个T端口具体可以为T2、T3、T4中间的一个。
下面以如图5所示的多路切换开关为例,详细说明本申请实施例中的T端口和P端口之间的切换过程。由于5G NR协议目前限定4个P端口在同一时段只能工作在同一频段,这里假设检测Nx频段,假设该多路切换开关初始状态下4个T端口平行连接4个P端口,即T1连接P1,T2连接P2,T3连接P3,T4连接P4,4个P端口分别连接4支天线,当电子设备确定启用预设功能时,则电子设备在启用SRS的过程中,电子设备在第一探测周 期可以通过T1与P1通路(该通路预先导通作为接收通路使用)收发信号以进行信号接收和第一天线的信道质量探测,第一探测周期由于T2、T3以及T4对应的P端口均未被占用,故而本周期内不发生切换。
其次,电子设备在第二探测周期可以控制T1与P2导通发射信号以进行信号接收第二天线的信道探测,此周期原T2对应的P2被占用,则为了维持T2的信号接收功能,T2需要切换连接至P1。
再次,电子设备在第三探测周期可以控制T1与P3导通收发信号以进行信号接收和第三天线信道探测,此周期原T3对应的P3被占用,则为了维持T3的信号接收功能,T3需要切换连接至P2。
最后,电子设备在第四探测周期可以控制T1与P4导通收发信号以进行信号接收和第四天线信道探测,此周期原T4对应的P4被占用,则为了维持T4的信号接收功能,T4需要切换连接至P3。
至此,电子设备完成SRS探测过程,且T1连接P4进行信号接收,T2连接P1进行信号接收,T3连接P2进行信号接收,T4连接P3进行信号接收。
请参阅图17,图17是本申请实施例提供了一种射频系统的结构示意图,该射频系统包括天线系统、射频电路以及上述任一实施例所述的多路选择开关;
所述多路选择开关用于连接所述射频电路和所述天线系统以实现所述电子设备在FDD制式中的预设功能,所述预设功能包括第一功能和第二功能,所述第一功能为支持通过SRS在发射天线间轮发,发送4端口SRS的功能,所述第二功能为支持所述4支天线同时接收数据的功能。
请参阅图18,图18是本申请实施例提供了一种无线通信设备的结构示意图,该无线通信设备包括天线系统、射频电路以及上述任一实施例所述的多路选择开关;
所述多路选择开关用于连接所述射频电路和所述天线系统以实现所述电子设备在频分复用FDD制式中的预设功能,所述预设功能包括第一功能和第二功能,所述第一功能为支持通过探测参考信号SRS在发射天线间轮发,发送4端口SRS的功能,所述第二功能为支持所述4支天线同时接收数据的功能;
所述无线通信设备至少包括以下任意一种:电子设备、基站。
此外,如图19所示,本申请实施例所描述的天线系统中的4支天线还可以被该电子设备的无线充电接收器所复用,具体的,该无线充电接收器包括接收天线、接收控制电路,该接收天线与无线充电发射器的发射天线匹配(频率相同或相近情况下谐振,以辐射性谐振磁耦合的方式,将能量通过无线传送的方式传输),接收控制电路通过环形阵列天线将能量转变为直流电DC输出给电池充电,接收控制电路能够动态调整该环形阵列天线的频率,并使之与无线充电发射器的发射天线的频率匹配,以实现配对充电,或者,实时与无线充电发射器进行频率变化范围交互,以实现“专属加密”无线充电模式。
其中,所述接收天线可以是由4支天线中的至少1支天线所组成的天线(多支情况下天线与天线之间通过开关选通)。
例如:如图20所示,该接收天线为由上述4支天线构成的环形阵列天线,4支天线具体包括天线1、天线2、天线3、天线4,其中天线1和天线4支持LTE和5G NR频段,天线2和天线3仅支持5G NR频段,天线1的端口和天线4的端口作为该环形阵列天线的端口,其中相邻天线之间通过具有隔离功能的选通电路170连接,该选通电路170包括隔离片171和开关172,隔离片171为导体,开关172还连接控制器,电子设备在无线充电模式下可以连通每个选通电路170的开关172,以形成环形阵列天线接收能量。通过在天线间加入隔离片171,该选通电路170一方面降低了电子设备在正常通信模式下的多天线间 的互耦性,提升了多天线间的隔离度,优化了天线性能,另一方面通过开关171能够将多天线串联形成环形阵列天线,以便于更好的匹配发射天线以传输能量,此外,由于天线1和天线4能力强于天线2和天线3,如此设置的环形阵列天线可以尽可能减少能量传输损耗。
以上是本申请实施例的实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种多路选择开关,其特征在于,应用于电子设备,所述电子设备包括天线系统和射频电路,所述天线系统包括4支天线,所述多路选择开关包括4个T端口和4个P端口,所述4个T端口包括1个第一T端口和3个第二T端口,所述电子设备支持单发模式,所述第一T端口全连接所述4个P端口,每个第二T端口连接所述4个P端口中的2个P端口,支持相同频段的信号接收功能的多个第二T端口所连接的P端口覆盖所述4个P端口,且处于信号接收状态的所述4个T端口中每个T端口所连接的P端口互不相同;
    所述多路选择开关用于连接所述射频电路和所述天线系统以实现所述电子设备在频分复用FDD制式中的预设功能,所述预设功能包括第一功能和第二功能,所述第一功能为支持通过探测参考信号SRS在发射天线间轮发,发送4端口SRS的功能,所述第二功能为支持所述4支天线同时接收数据的功能。
  2. 根据权利要求1所述的多路选择开关,其特征在于,所述4个P端口中的每个P端口连接对应的天线;所述第一T端口支持信号收发功能,所述第二T端口仅支持信号接收功能。
  3. 根据权利要求1或2所述的多路选择开关,其特征在于,所述单发模式包括单频单发模式和双频单发模式。
  4. 根据权利要求1-3任一项所述的多路选择开关,其特征在于,所述多路切换开关包括4个第一开关管、30个第二开关管、4个第三开关管,所述第一开关管对应所述T端口,所述第三开关管对应所述P端口,每3个所述第二开关管串联构成所述T端口和所述P端口之间的开关子单元,所述开关子单元的两端的2个第二开关管分别连接1个T端口和1个P端口,所述开关子单元的中间的第二开关管接地,每个第一开关管、每个所述第二开关管、所述每个第三开关管的门极均连接开关控制芯片。
  5. 根据权利要求1-4任一项所述的多路选择开关,其特征在于,所述单发模式为单频单发模式;所述电子设备的所述射频电路逻辑上包括1路发射信号处理电路和4路接收信号处理电路;1路发射信号处理电路和1路接收信号处理电路通过双工器并联形成收发信号处理电路,所述双工器用于合路相同频段的发射信号和接收信号,以实现所述电子设备在所述FDD制式下发射和接收在不同频点上的同时工作;
    所述射频电路物理形态上由至少一个独立电路模块组成;
    所述至少一个独立电路模块的信号收发端口用于连接所述第一T端口,所述至少一个独立电路模块的信号接收端口用于连接所述第二T端口。
  6. 根据权利要求5所述的多路选择开关,其特征在于,所述至少一个独立电路模块包括一个独立电路模块,1路收发信号处理电路和3路接收信号处理电路设置于同一个独立电路模块中。
  7. 根据权利要求5所述的多路选择开关,其特征在于,所述至少一个独立电路模块包括两个独立电路模块,1路收发信号处理电路设置于所述两个独立电路模块中的一个独立电路模块中,3路接收信号处理电路设置于所述两个独立电路模块中的另一个独立电路模块中。
  8. 根据权利要求5所述的多路选择开关,其特征在于,所述至少一个独立电路模块包括四个独立电路模块,1路收发信号处理电路设置于所述四个独立电路模块中的一个独立电路模块中,3路接收信号处理电路分别设置于所述四个独立电路模块中的另三个独立电路模块中。
  9. 根据权利要求1-4任一项所述的多路选择开关,其特征在于,所述单发模式为双频单发模式,所述电子设备的所述射频电路逻辑上包括2路发射信号处理电路和8路接收信 号处理电路;1路发射信号处理电路和支持相同频段的1路接收信号处理电路通过双工器并联形成收发信号处理电路,不同频段的2路收发信号处理电路通过切换开关并联形成收发信号集成处理电路,不同频段的2路接收信号处理电路通过切换开关并联形成接收信号集成处理电路,所述双工器用于合路相同频段的发射信号和接收信号,以实现所述电子设备在所述FDD制式下发射和接收在不同频点上的同时工作;
    所述射频电路物理形态上由至少一个独立电路模块组成;
    所述至少一个独立电路模块的信号收发端口用于连接所述第一T端口,所述至少一个独立电路模块的信号接收端口用于连接所述第二T端口。
  10. 根据权利要求9所述的多路选择开关,其特征在于,所述至少一个独立电路模块包括一个独立电路模块,1路收发信号集成处理电路和3路接收信号集成处理电路设置于同一个独立电路模块中。
  11. 根据权利要求9所述的多路选择开关,其特征在于,所述至少一个独立电路模块包括两个独立电路模块,1路收发信号集成处理电路设置于所述两个独立电路模块中的一个独立电路模块中,3路接收信号集成处理电路设置于所述两个独立电路模块中的另一个独立电路模块中。
  12. 根据权利要求9所述的多路选择开关,其特征在于,所述至少一个独立电路模块包括四个独立电路模块,1路收发信号集成处理电路设置于所述四个独立电路模块中的一个独立电路模块中,3路接收信号集成处理电路分别设置于所述四个独立电路模块中的另三个独立电路模块中。
  13. 根据权利要求1-12任一项所述的多路选择开关,其特征在于,所述4支天线包括第一天线、第二天线、第三天线和第四天线,所述第一天线和所述第四天线为支持长期演进LTE频段和第五代新空口5G NR频段的天线,所述第二天线和所述第三天线为仅支持5G NR频段的天线。
  14. 根据权利要求13所述的多路选择开关,其特征在于,所述天线系统还包括第一合路器和第二合路器,其中,所述第一合路器的第一端口用于连接所述第一天线,所述第一合路器的第二端口用于连接所述电子设备的LTE 4x4 MIMO中的第一接收通路,所述第一合路器的第三端口用于连接所述多路选择开关中对应的P端口;所述第二合路器的第一端口用于连接所述第四天线,所述第二合路器的第二端口用于连接所述电子设备的LTE 4x4 MIMO中的第二接收通路,所述第二合路器的第三端口用于连接所述多路选择开关中对应的P端口。
  15. 根据权利要求13所述的多路选择开关,其特征在于,所述天线系统还包括第一单刀双掷SPDT开关和第二SPDT开关,其中,所述第一SPDT开关的第一端口用于连接所述第一天线,所述第一SPDT开关的第二端口用于连接所述电子设备的LTE 4x4 MIMO中的第一接收通路,所述第一SPDT开关的第三端口用于连接所述多路选择开关中对应的P端口;所述第二SPDT开关的第一端口用于连接所述第四天线,所述第二SPDT开关的第二端口用于连接所述电子设备的LTE 4x4 MIMO中的第二接收通路,所述第二SPDT开关的第三端口用于连接所述多路选择开关中对应的P端口。
  16. 一种功能控制方法,其特征在于,应用于电子设备,所述电子设备包括天线系统和射频电路,所述天线系统包括4支天线,所述多路选择开关包括4个T端口和4个P端口,所述4个T端口包括1个第一T端口和3个第二T端口,所述电子设备支持单发模式,所述第一T端口全连接所述4个P端口,每个第二T端口连接所述4个P端口中的2个P端口,支持相同频段的信号接收功能的多个第二T端口所连接的P端口覆盖所述4个P端口,且处于信号接收状态的所述4个T端口中每个T端口所连接的P端口互不相同;所述方法包括:
    所述电子设备确定执行预设功能,所述预设功能包括第一功能和第二功能,所述第一功能为支持通过探测参考信号SRS在发射天线间轮发,发送4端口SRS的功能,所述第二功能为支持所述4支天线同时接收数据的功能;
    在启用所述第一功能的过程中,所述电子设备根据所述第一功能当前占用的P端口调整所述第二功能当前占用的4个T端口中的3个T端口与所述4个P端口之间的匹配状态,所述3个T端口为所述4个T端口中除所述第一功能当前占用的单个第一T端口之外的3个T端口。
  17. 根据权利要求16所述的方法,其特征在于,所述电子设备根据所述第一功能当前占用的P端口调整所述第二功能当前占用的4个T端口中的3个T端口与所述4个P端口之间的匹配状态,包括:
    如单频段为Nx频段,所述电子设备确定所述第一功能所在的T端口1在当前探测周期占用的一个P端口,确定所述第二功能所在的Nx频段当前占用所述一个P端口的一个T端口,如该一个T端口为第二T端口,将所述一个T端口当前占用一个P端口调整至另一个P端口。
  18. 根据权利要求16所述的方法,其特征在于,所述电子设备根据所述第一功能当前占用的P端口调整所述第二功能当前占用的4个T端口中的3个T端口与所述4个P端口之间的匹配状态,包括:
    如单频段为Ny频段,所述电子设备确定所述第一功能所在的T端口2在当前探测周期占用的一个P端口,确定所述第二功能所在的Ny频段当前占用所述一个P端口的一个T端口,如该一个T端口为第二T端口,将所述一个T端口当前占用一个P端口调整至另一个P端口。
  19. 一种射频系统,其特征在于,包括天线系统、射频电路以及如权利要求1-15任一项所述的多路选择开关;
    所述多路选择开关用于连接所述射频电路和所述天线系统以实现所述电子设备在频分复用FDD制式中的预设功能,所述预设功能包括第一功能和第二功能,所述第一功能为支持通过探测参考信号SRS在发射天线间轮发,发送4端口SRS的功能,所述第二功能为支持所述4支天线同时接收数据的功能。
  20. 一种无线通信设备,其特征在于,包括天线系统、射频电路以及如权利要求1-15任一项所述的多路选择开关;
    所述多路选择开关用于连接所述射频电路和所述天线系统以实现所述电子设备在频分复用FDD制式中的预设功能,所述预设功能包括第一功能和第二功能,所述第一功能为支持通过探测参考信号SRS在发射天线间轮发,发送4端口SRS的功能,所述第二功能为支持所述4支天线同时接收数据的功能;
    所述无线通信设备至少包括以下任意一种:电子设备、基站。
PCT/CN2019/089131 2018-06-29 2019-05-29 多路选择开关及相关产品 WO2020001224A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810714090.9A CN108900201B (zh) 2018-06-29 2018-06-29 多路选择开关、射频系统及电子设备
CN201810714090.9 2018-06-29

Publications (1)

Publication Number Publication Date
WO2020001224A1 true WO2020001224A1 (zh) 2020-01-02

Family

ID=64347876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089131 WO2020001224A1 (zh) 2018-06-29 2019-05-29 多路选择开关及相关产品

Country Status (2)

Country Link
CN (1) CN108900201B (zh)
WO (1) WO2020001224A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021248518A1 (zh) * 2020-06-12 2021-12-16 芯朴科技(上海)有限公司 5g射频接收电路、无线通信设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108900201B (zh) * 2018-06-29 2020-07-28 Oppo广东移动通信有限公司 多路选择开关、射频系统及电子设备
CN108964675B (zh) * 2018-06-29 2021-05-04 Oppo广东移动通信有限公司 多路选择开关及相关产品
CN112468178B (zh) * 2020-11-27 2022-08-09 Oppo广东移动通信有限公司 射频系统、天线切换方法和客户前置设备
CN114640369B (zh) * 2020-12-16 2023-03-24 Oppo广东移动通信有限公司 射频收发系统及通信设备
WO2022193092A1 (zh) * 2021-03-15 2022-09-22 深圳市大疆创新科技有限公司 信号传输装置、可移动平台及控制方法、系统、存储介质
CN115133950B (zh) * 2022-06-29 2024-03-26 联想(北京)有限公司 一种信号收发电路、测量方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867402A (zh) * 2010-05-04 2010-10-20 西安交通大学 一种自适应天线选择的mimo系统及其应用方法
CN103905104A (zh) * 2012-12-28 2014-07-02 中兴通讯股份有限公司 一种根据探测参考信号的多天线发送方法及终端及基站
US9929769B1 (en) * 2017-01-20 2018-03-27 Resonant Inc. Communications receiver using multi-band transmit blocking filters
CN108199726A (zh) * 2018-03-16 2018-06-22 广东欧珀移动通信有限公司 多路选择开关及相关产品
CN108900201A (zh) * 2018-06-29 2018-11-27 Oppo广东移动通信有限公司 多路选择开关及相关产品

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101321012A (zh) * 2007-06-06 2008-12-10 北京信威通信技术股份有限公司 一种在tdd模式下利用开关阵实现射频链路收发共用的方法及装置
CN102111176B (zh) * 2011-02-25 2014-03-12 华为技术有限公司 射频模块、射频信号收发设备及方法、基站系统
KR102448058B1 (ko) * 2016-09-08 2022-09-26 삼성전자주식회사 Rf 설정 방법 및 이를 수행하는 전자 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867402A (zh) * 2010-05-04 2010-10-20 西安交通大学 一种自适应天线选择的mimo系统及其应用方法
CN103905104A (zh) * 2012-12-28 2014-07-02 中兴通讯股份有限公司 一种根据探测参考信号的多天线发送方法及终端及基站
US9929769B1 (en) * 2017-01-20 2018-03-27 Resonant Inc. Communications receiver using multi-band transmit blocking filters
CN108199726A (zh) * 2018-03-16 2018-06-22 广东欧珀移动通信有限公司 多路选择开关及相关产品
CN108900201A (zh) * 2018-06-29 2018-11-27 Oppo广东移动通信有限公司 多路选择开关及相关产品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021248518A1 (zh) * 2020-06-12 2021-12-16 芯朴科技(上海)有限公司 5g射频接收电路、无线通信设备

Also Published As

Publication number Publication date
CN108900201B (zh) 2020-07-28
CN108900201A (zh) 2018-11-27

Similar Documents

Publication Publication Date Title
AU2018413670B2 (en) Multiway switch, radio frequency system, and wireless communication device
AU2018412818B2 (en) Multiway switch, radio frequency system, and wireless communication device
WO2019174265A1 (en) Multiway switch, radio frequency system, and wireless communication device
CN108923790B (zh) 多路选择开关、射频系统和无线通信设备
AU2018413406B2 (en) Multiway switch, radio frequency system, and wireless communication device
WO2020001224A1 (zh) 多路选择开关及相关产品
US10567027B2 (en) Multiway switch, radio frequency system, and wireless communication device
CN108880602B (zh) 多路选择开关以及相关产品
US10727584B2 (en) Multiway switch for transmitting sounding reference signal successively through a set of antennas
WO2020001211A1 (zh) 多路选择开关及相关产品
CN108599777B (zh) 多路选择开关及相关产品
US10454550B2 (en) Multiway switch, radio frequency system, and wireless communication device
CN108923792B (zh) 多路选择开关及相关产品
US10567028B2 (en) Multiway switch, radio frequency system, and wireless communication device
CN109039367B (zh) 多路选择开关及相关产品
CN108923793B (zh) 多路选择开关及相关产品
CN108923789B (zh) 多路选择开关及相关产品
CN108923791B (zh) 多路选择开关及相关产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19826197

Country of ref document: EP

Kind code of ref document: A1