WO2020001133A1 - 多流制电力机车的网侧变流装置的处理方法及装置 - Google Patents
多流制电力机车的网侧变流装置的处理方法及装置 Download PDFInfo
- Publication number
- WO2020001133A1 WO2020001133A1 PCT/CN2019/082871 CN2019082871W WO2020001133A1 WO 2020001133 A1 WO2020001133 A1 WO 2020001133A1 CN 2019082871 W CN2019082871 W CN 2019082871W WO 2020001133 A1 WO2020001133 A1 WO 2020001133A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sub
- module
- submodule
- input terminal
- power supply
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60M—POWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
- B60M3/00—Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/0074—Plural converter units whose inputs are connected in series
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/007—Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L9/00—Electric propulsion with power supply external to the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L9/00—Electric propulsion with power supply external to the vehicle
- B60L9/16—Electric propulsion with power supply external to the vehicle using ac induction motors
- B60L9/30—Electric propulsion with power supply external to the vehicle using ac induction motors fed from different kinds of power-supply lines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60M—POWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
- B60M3/00—Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
- B60M3/02—Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power with means for maintaining voltage within a predetermined range
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/007—Plural converter units in cascade
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/10—Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/66—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
- H02M7/68—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
- H02M7/72—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/79—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/797—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/26—Rail vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/20—AC to AC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/40—DC to AC converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the present application relates to the technical field of multi-flow electric locomotive, and in particular, to a method and device for processing a grid-side converter of a multi-flow electric locomotive.
- Multi-stream electric locomotive refers to electric locomotive that can operate under two or more power supply systems.
- the grid-side converters including transformers, four quadrant converters, Side filter circuit, intermediate DC link, secondary resonance circuit, etc.
- the main purpose of this application is to provide a method and device for processing a grid-side converter of a multi-current electric locomotive, so as to solve the large volume and weight of transformers required by the grid-side converter of a multi-current electric locomotive in the related art. , High manufacturing difficulties and high manufacturing costs.
- a method for processing a grid-side converter device of a multi-flow electric locomotive includes: determining a target power supply standard of the multi-flow electric locomotive; Next, the input ends of the sub-modules using the intermediate frequency transformer in the grid-side converter are connected in a target manner; after the input ends of the sub-modules are connected in the target manner, they are respectively connected to the power supply network and the ground.
- the method further includes: according to the target power supply system and the operation of the multi-flow electric locomotive. State to control the sub-module to adopt a corresponding working mode.
- the grid-side converter device includes a power supply bus, a ground bus, N sub-modules, and a plurality of switching devices.
- Each sub-module includes two positive and negative input ports and two positive and negative output ports.
- the input terminal is connected to the power supply bus through a switching device;
- the negative input terminal of each submodule is connected to the ground bus through a switching device;
- the negative input terminal of each submodule is connected to the positive input terminal of the next submodule through a switching device, where:
- the negative input terminal of the first sub-module is connected to the positive input terminal of the second sub-module through a switching device, and the negative input terminal of the second sub-module is connected to the positive input terminal of the third sub-module through a switching device until the N-th
- the negative input terminal of submodule 1 is connected to the positive input terminal of the Nth submodule through a switching device, and the negative input terminal of the Nth submodule is connected to the positive input terminal of the first submodule
- connecting the input terminals of the sub-modules using the intermediate frequency transformer in the grid-side converter in a target manner includes: connecting the input terminals of all the sub-modules in series; After the input ends of the sub-modules are connected in the target manner, and then connected to the power supply network and the ground, respectively, the input ends of all the sub-modules are connected in series to the 25 kV / 50 Hz power supply network and the ground, respectively.
- sequentially connecting the input terminals of all the sub-modules in series includes: connecting the negative input terminal of the first sub-module with the positive input terminal of the second sub-module, and the negative input terminal of the second sub-module is connected to the third sub-module.
- the positive input terminals of the N-th sub-module are connected to the positive input terminals of the N-th sub-module, where N is the total number of sub-modules in the grid-side converter; After the input terminals of all the sub-modules are connected in series to the 25kV / 50Hz power supply network and ground respectively, the method includes: connecting the positive input terminal of the first sub-module with the 25kV / 50Hz power supply network, and connecting the Nth sub-module to the negative The input terminal is connected to the ground; controlling the sub-module to adopt a corresponding working mode according to the operating status of the target power supply system and the multi-current electric locomotive includes: under the 25 kV / 50 Hz power supply system, in the multi-current When the electric locomotive is in a traction working state, the sub-module selects a rectification working mode; if the multi-current electric locomotive is in a regenerative braking working state, the sub-module selects an inverter working mode.
- sequentially connecting the input terminals of all the sub-modules in series includes: closing a switching device between the negative input terminal of the first sub-module and the positive input terminal of the second sub-module, and The switching device between the negative input terminal and the positive input terminal of the third submodule is closed until the switching device between the negative input terminal of the N-1th submodule and the positive input terminal of the Nth submodule is closed.
- Closed, closing the switching device between the positive input terminal of the first submodule and the power supply bus, closing the switching device between the negative input terminal of the Nth submodule and the ground bus; closing the input terminals of all the submodules After being connected in series, being respectively connected to the 25kV / 50Hz power supply network and the ground includes: closing the AC switch between the power supply bus and the 25kV / 50Hz AC power supply network; grounding the ground bus is always connected to the ground.
- connecting the input terminals of the sub-modules using the intermediate frequency transformer in the grid-side converter in a target manner includes: dividing the N sub-modules into two groups, each group Contains N / 2 sub-modules; N / 2 sub-module input terminals inside each sub-module group are connected in series in sequence; the input terminals of the two sub-module groups are connected in parallel, where N is the total number of sub-modules in the grid-side converter
- Connecting the input ends of the sub-modules in the target manner and then respectively connecting them to the power supply network and the ground includes: connecting the input ends of the two sub-module groups in parallel with the 15 kV / 16.7 Hz power supply network and the ground, respectively; .
- the N / 2 sub-module input terminals in each sub-module group are connected in series in sequence: connecting the negative input terminal of the first sub-module with the positive input terminal of the second sub-module, and the negative input of the second sub-module End is connected to the positive input end of the third sub-module until the negative input end of the N / 2-1 sub-module is connected to the positive input end of the N / 2-th sub-module;
- the negative input terminal is connected to the positive input terminal of the N / 2 + 2 submodule, and the negative input terminal of the N / 2 + 2 submodule is connected to the positive input terminal of the N / 2 + 3 submodule until
- the negative input terminal of the N-1th submodule is connected to the positive input terminal of the Nth submodule, where N is the total number of submodules in the grid-side converter;
- the input terminals of the two submodule groups include : Connecting the positive input terminal of the first submodule with the positive input terminal of the
- the method includes: connecting the positive input terminal of the first sub-module with the N / 2 + 1th sub-module.
- Module After the positive input terminal of the Nth sub-module is connected in parallel with the 15kV / 16.7Hz power supply network, the negative input terminal of the N / 2th sub-module and the negative input terminal of the N-th sub-module are connected in parallel to ground;
- the operating state of the target power supply system and the multi-flow electric locomotive, and controlling the sub-module to adopt a corresponding working mode includes: under the 15 kV / 16.7 Hz power supply system, the multi-flow electric locomotive is in a traction working state In the case, the sub-module selects a rectification operation mode; if the multi-flow electric locomotive is in a regenerative braking operation state, the sub-module selects an inverter operation mode.
- the N / 2 sub-module input terminals inside each sub-module group in series include: closing a switching device between the negative input terminal of the first sub-module and the positive input terminal of the second sub-module, and the second sub-module
- the switching device between the negative input terminal of the module and the positive input terminal of the third submodule is closed until the switching device between the negative input terminal of the N / 2-1th submodule and the positive input terminal of the N / 2th submodule Closed; closing a switching device between the negative input terminal of the N / 2 + 1th sub-module and the positive input terminal of the N / 22 + 2 sub-module, and the negative input of the N / 2 + 2 sub-module
- the switching device between the terminal and the positive input terminal of the N / 2 + 3 submodule is closed until the switching device between the negative input terminal of the N-1th submodule and the positive input terminal of the Nth submodule is closed, where: N is the total number of sub-modules in the
- the connection to ground includes: the input terminals between the sub-module groups are connected in parallel to the 3kV DC power supply network and ground respectively.
- the series connection of the M sub-module input terminals in each sub-module group includes: connecting the negative input terminal of the first sub-module in the first sub-module group with the positive input terminal of the second sub-module, and The negative input terminal is connected to the positive input terminal of the third sub-module until the negative input terminal of the M-1th sub-module is connected to the positive input terminal of the M-th sub-module, and the M + 1th in the second sub-module group is connected.
- the negative input of the submodule is connected to the positive input of the M + 2 submodule, and the negative input of the M + 2 submodule is connected to the positive input of the M + 3 submodule until the 2M-1 sub
- the negative input of the module is connected to the positive input of the 2M submodule, and so on until the negative input of the (L-1) * M + 1 submodule in the Lth submodule group is connected to the (L- 1)
- the positive input of * M + 2 sub-module is connected, the negative input of (L-1) * M + 2 sub-module is connected to the positive input of (L-1) * M + 3 sub-module Until the negative input terminal of the L * M-1 sub-module is connected to the positive input terminal of the L * M sub-module;
- the input terminals between the sub-module groups are connected in parallel in sequence: the first sub-module, the M + 1 sub-module up to (L-1) * M + 1 sub-module
- the input terminals are
- the module adopts the corresponding working mode including: under the 3kV DC power supply system, if the multi-current electric locomotive is in a traction working state, the sub-module selects a forward DC-DC change operating mode; if the multi-current system The electric locomotive is in a regenerative braking working state, and the 3kV DC power supply network has energy absorption capabilities.
- the sub-module selects a reverse DC-DC change operating mode; if the multi-flow electric locomotive is in a non-regenerative braking working state, all The sub-module selects the locked state, where the DC-DC power in the forward operating mode change from the input terminal to the output terminal, the reverse power the DC-DC operating mode change from the output terminal to the input terminal.
- the series connection of the M sub-module input terminals in each sub-module group includes: closing a switching device between the negative input terminal of the first sub-module in the first sub-module group and the positive input terminal of the second sub-module; The switching device between the negative input terminal of the second submodule and the positive input terminal of the third submodule is closed until the switching device between the negative input terminal of the M-1th submodule and the positive input terminal of the Mth submodule is closed, The switching device between the negative input terminal of the M + 1th submodule and the positive input terminal of the M + 2th submodule in the second submodule group is closed, and the negative input terminal of the M + 2th submodule and the M + th The switching device between the positive input terminals of the 3 submodules is closed until the switching device between the negative input terminal of the 2M-1 submodule and the positive input terminal of the 2M submodule is closed, and so on until the L submodule is closed.
- the switching device between the negative input of the (L-1) * M + 1 submodule and the positive input of the (L-1) * M + 2 submodule in the group is closed, and the (L-1) * The switching device between the negative input terminal of the M + 2 submodule and the positive input terminal of the (L-1) * M + 3 submodule is closed until the negative input terminal of the L * M-1 submodule and the The switching devices between the positive input terminals of the L * M sub-modules are closed; the input terminals between the sub-module groups are connected in parallel in sequence: closing the switching devices between the positive input terminals of the first sub-module and the power supply bus.
- the switching device between the positive input terminal of the M + 1 submodule and the power supply bus is closed until the switching device between the positive input terminal of the M + 1 submodule and the power supply bus is closed;
- the switching device between the negative input terminal of the M submodule and the ground bus is closed, and the switching device between the negative input terminal of the 2M submodule and the ground bus is closed until the L * M submodule is closed.
- the switching device between the negative input terminal and the ground bus is closed; the input terminals between the sub-module groups are connected in parallel to the 3kV DC power supply network and ground, respectively, including: connecting the power supply bus to the 3kV DC power supply network The DC switch is closed; the ground bus is always connected to the ground.
- connecting the Q sub-module input terminals in the sub-module group in series includes: connecting the negative input terminal of the first sub-module in the first sub-module group with the second sub-module.
- the positive input of the module is connected, and the negative input of the second sub-module is connected to the positive input of the third sub-module until the negative input of the Q-1 sub-module is connected to the positive input of the Q-th sub-module.
- the negative input terminal of the Q + 1 submodule in the second submodule group is connected to the positive input terminal of the Q + 2 submodule, and the negative input terminal of the Q + 2 submodule is connected to the Q + 3 submodule
- the positive input of the 2Q-1 sub-module is connected until the negative input of the 2Q-1 sub-module is connected to the positive input of the 2Q sub-module, and so on until the (P-1) * Q in the P-th sub-module group.
- the negative input of the +1 submodule is connected to the positive input of the (P-1) * Q + 2 submodule, and the negative input of the (P-1) * Q + 2 submodule is connected to the (P-1 ) * Q + 3 positive input terminals of sub-modules are connected until the negative input terminal of P * Q-1 sub-module is connected to the positive input terminal of P * Q sub-module; the input terminals between the sub-module groups are in order
- the parallel connection includes: connecting the first sub-module, The Q + 1th sub-module up to the positive input terminal of the (P-1) * Q + 1th sub-module is connected in parallel, and the Qth sub-module and the 2Q-th sub-module up to the negative of the P * Q sub-module
- the input terminals are connected in parallel; after the input terminals between the sub-module groups are connected in parallel, they are respectively connected to the 1.5kV DC power supply network and the ground, including: connecting the first sub-module and the Q
- connecting the input terminals of all the sub-modules in parallel includes: closing the switching devices between the positive input terminals of all the sub-modules and the power supply bus; closing the switching devices between the negative input terminals of all the sub-current conversion modules and the ground;
- the Q sub-module input terminals inside the module group are connected in series: closing a switching device between the negative input terminal of the first sub-module in the first sub-module group and the positive input terminal of the second sub-module, and the negative of the second sub-module
- the switching device between the input terminal and the positive input terminal of the third submodule is closed until the switching device between the negative input terminal of the Q-1th submodule and the positive input terminal of the Qth submodule is closed, and the second submodule is closed.
- the switching device between the negative input of the Q + 1 submodule and the positive input of the Q + 2 submodule is closed, and the negative input of the Q + 2 submodule and the positive of the Q + 3 submodule are closed.
- the switching device between the input terminals is closed until the switching device between the negative input terminal of the 2Q-1 submodule and the positive input terminal of the 2Q submodule is closed, and so on until the ( P-1) * Q + 1 sub-module's negative input and the (P-1) * Q + 2 sub-module's
- the switching device between the input terminals is closed, and the switching device between the negative input terminal of the (P-1) * Q + 2 submodule and the positive input terminal of the (P-1) * Q + 3 submodule is closed until The switching device between the negative input terminal of the P * Q-1 submodule and the positive input terminal of the P * Q submodule is closed; the input terminals between the submodule groups are connected in parallel in sequence: The switching device between the positive input terminal and the power
- a processing device for a grid-side converter of a multi-flow electric locomotive which includes: a determining unit configured to determine a target power supply system of the multi-flow electric locomotive A first connection unit configured to connect the input terminals of the sub-modules using the intermediate frequency transformer in the grid-side converter in a target manner under the target power supply system; and a second connection unit configured to connect the sub-modules After the input terminals are connected in the target manner, they are connected to the power supply network and ground respectively.
- the device further includes: a control unit configured to connect the input ends of the sub-modules in the target mode, and then connect the input terminals of the sub-modules to the power supply network and the ground, respectively, according to the target power supply system and multi-stream It controls the running state of the electric locomotive, and controls the sub-module to adopt the corresponding working mode.
- a control unit configured to connect the input ends of the sub-modules in the target mode, and then connect the input terminals of the sub-modules to the power supply network and the ground, respectively, according to the target power supply system and multi-stream It controls the running state of the electric locomotive, and controls the sub-module to adopt the corresponding working mode.
- the grid-side converter device includes a power supply bus, a ground bus, N sub-modules, and a plurality of switching devices.
- Each sub-module includes two positive and negative input ports and two positive and negative output ports.
- the input terminal is connected to the power supply bus through a switching device;
- the negative input terminal of each submodule is connected to the ground bus through a switching device;
- the negative input terminal of each submodule is connected to the positive input terminal of the next submodule through a switching device, where:
- the negative input terminal of the first sub-module is connected to the positive input terminal of the second sub-module through a switching device, and the negative input terminal of the second sub-module is connected to the positive input terminal of the third sub-module through a switching device until the N-th
- the negative input terminal of submodule 1 is connected to the positive input terminal of the Nth submodule through a switching device, and the negative input terminal of the Nth submodule is connected to the positive input terminal of the first submodule
- FIG. 1 is a flowchart of a processing method of a grid-side converter device of a multi-flow electric locomotive according to an embodiment of the present application
- FIG. 2 is an equivalent circuit diagram of a method for processing a grid-side converter device of a multi-current electric locomotive according to an embodiment of the present application at a power supply system of 25 kV / 50 Hz;
- FIG. 3 is an equivalent circuit diagram of a method for processing a grid-side converter device of a multi-current electric locomotive according to an embodiment of the present application at a power supply system of 15 kV / 16.7 Hz;
- FIG. 4 is an equivalent circuit diagram of a method for processing a grid-side converter device of a multi-current electric locomotive according to an embodiment of the present application at a 3 kV DC power supply system;
- FIG. 5 is an equivalent circuit diagram of a processing method of a grid-side converter device of a multi-current electric locomotive according to an embodiment of the present application under a 1.5 kV DC power supply system;
- FIG. 6 is an implementation principle diagram of a processing method of a grid-side converter device of a multi-flow electric locomotive according to an embodiment of the present application
- FIG. 7 is a circuit schematic diagram of a sub-module of a grid-side converter device of a multi-current electric locomotive according to an embodiment of the present application.
- FIG. 8 is a schematic diagram of a processing device of a grid-side converter device of a multi-flow electric locomotive according to an embodiment of the present application.
- a modular medium-voltage converter uses a series of basic converter modules SM in series to achieve AC-DC conversion under medium-voltage conditions. That is, the basic module SM can be implemented with a half-bridge circuit structure or an H-shaped full-bridge structure.
- MMC technology has been widely used in the field of power, especially in the field of HVDC.
- the main application of MMC is also concentrated in the field of static converter devices of the railway power grid, that is, using MMC technology to change the 3-phase 50Hz voltage of the common network to single-phase 15kV / 16.7Hz or single-phase 25kV / 50Hz.
- a method for processing a grid-side converter of a multi-flow electric locomotive is provided.
- FIG. 1 is a flowchart of a processing method of a grid-side converter device of a multi-flow electric locomotive according to an embodiment of the present application. As shown in Figure 1, the method includes the following steps:
- Step S101 Determine a target power supply system for a multi-flow electric locomotive.
- step S102 under the target power supply system, the input terminals of the sub-modules using the intermediate frequency transformer in the grid-side converter are connected in a target manner.
- step S103 after the input ends of the sub-modules are connected in a target manner, they are respectively connected to the power supply network and the ground.
- the method for processing a grid-side converter device of a multi-flow electric locomotive determines a target power supply system of the multi-flow electric locomotive; under the target power supply system, the sub-modules in the grid-side converter device are adopted Connect in a target manner; and connect the submodules connected in a target manner to the power grid and ground.
- the problems of large volume and weight of the transformer, high manufacturing difficulty, and high manufacturing cost required by the grid-side converter of the multi-flow electric locomotive in the related art are solved.
- transformers with high weight, volume, manufacturing difficulty and manufacturing cost required by the traditional multi-current electric locomotive grid-side converter are avoided, which is easier to implement on power-dispersed EMUs / high-speed rails.
- n + x redundant design the grid-side converter and reliability of the multi-flow electric locomotive have been greatly improved.
- the method further includes: controlling the sub-module to adopt a corresponding working mode according to the target power supply system and the operating state of the multi-flow electric locomotive.
- the grid-side converter includes a power supply bus, a ground bus, N sub-modules, and multiple switching devices.
- the modules include two positive and negative input ports and two positive and negative output ports.
- each submodule The positive input terminal of each submodule is connected to the power supply bus through a switching device; the negative input terminal of each submodule is connected to the ground bus through a switching device; each submodule The negative input terminal of the second sub-module is connected to the positive input terminal of the next sub-module through a switching device, wherein the negative input terminal of the first sub-module is connected to the positive input terminal of the second sub-module through the switching device, and the negative input terminal of the second sub-module is connected.
- the positive input is connected through a switching device; the power supply bus is connected to the AC or DC power supply network by closing the AC or DC switch.
- the sub-system using an intermediate frequency transformer in the grid-side converter device is used.
- the input terminals of the module are connected in a target manner including: connecting the input terminals of all sub-modules in series; connecting the input terminals of the sub-modules in a target manner and then respectively connecting with the power supply network and ground include: connecting the input terminals of all sub-modules in series It is connected with 25kV / 50Hz power supply network and ground respectively.
- sequentially connecting the input terminals of all the sub-modules in series includes: connecting the negative input terminal of the first sub-module with the second The positive input of the submodule is connected, and the negative input of the second submodule is connected to the positive input of the third submodule until the negative input of the N-1th submodule is in phase with the positive input of the Nth submodule.
- N is the number of submodules in the grid-side converter; connecting all submodule inputs in series with the 25kV / 50Hz power supply network and ground respectively includes: connecting the positive input of the first submodule with 25kV / 50Hz power supply network is connected, the negative input terminal of the Nth sub-module is connected to the ground; according to the target power supply system and the operating status of the multi-flow electric locomotive, the control sub-module adopts the corresponding working modes including: 25kV / 50Hz power supply system Under the condition that the multi-flow electric locomotive is in a traction working state, the sub-module selects a rectification working mode; if the multi-flow electric locomotive is in a regenerative braking working state, the sub-module selects an inverter working mode.
- the network-side converter has N sub-modules SM.
- Each sub-module includes two AC or DC input terminals and two DC output terminals.
- the positive and negative poles of the DCs of all the sub-modules are respectively connected in parallel to form the DC output end of the multi-current electric locomotive grid-side converter.
- the input terminals of all sub-modules SM1 ... SMN are connected in series to the 25kV / 50Hz power supply network and ground respectively.
- the effective value of the input voltage of each module is 25 / N kV (peak voltage (35.4 / N kV).
- sequentially connecting the input terminals of all the sub-modules in series includes: connecting the negative input terminal of the first sub-module with the second The switching device between the positive input of the submodule is closed, and the switching device between the negative input of the second submodule and the positive input of the third submodule is closed until the negative input of the N-1th submodule and the first The switching device between the positive input terminal of the N submodule is closed, the switching device between the positive input terminal of the first submodule and the power supply bus is closed, and the switching device between the negative input terminal of the Nth submodule and the ground bus is closed.
- Closed; connecting all the submodule input terminals in series with the 25kV / 50Hz power supply network and ground respectively includes: closing the AC switch between the power supply bus and the 25kV / 50Hz AC power supply network; the grounding ground bus is always connected to the ground.
- the first sub-module is SM 1
- the second sub-module is SM 2
- the third sub-module is SM 3
- the N-1th sub-module is SM N-1
- the N-th sub-module is SM N
- the switching device between 1 and SM 2 is closed, the switching device between SM 2 and SM 3 is closed, ... until the switching device between SM N-1 and SM N is closed.
- K AC is closed, K DC is open, K 1, Grid is closed, K 2, Grid ... K N, Grid is open; K 1, GND ... K N-1, GND is disconnected, K N, Grid is closed; K 1, Next ... K N-1, Next is closed, K N, Next is open.
- This circuit is similar to a ring network topology.
- Under the 25kV / 50Hz power supply system in addition to being connected to the power supply bus through the first sub-module SM 1 and to the ground bus through the N-th sub-module SM 1 Any i-th submodule is connected to the power supply bus, and is connected to the ground bus through the i-1th sub-module. As a result, redundancy and higher reliability are achieved.
- K AC in FIG. 6 is an AC main circuit breaker and K DC is a DC main circuit breaker.
- the power supply bus is connected to the AC or DC contact network through K AC or K DC , and the ground bus is grounded through the wheel-rail contact.
- the grid-side converter device using an intermediate frequency transformer
- the input terminals of the sub-modules are connected in a targeted manner, including: dividing N sub-modules into two groups, each group containing N / 2 sub-modules; the input terminals of N / 2 sub-modules within each sub-module group are connected in series in sequence;
- the input terminals are connected in parallel, where N is the number of sub-modules in the grid-side converter; after the input ends of the sub-modules are connected in a targeted manner, they are respectively connected to the power supply network and ground, including: the inputs of the two sub-module groups After the terminals are connected in parallel, they are respectively connected to 15kV / 16.7Hz power supply network and ground.
- the N / 2 sub-module input terminals in each sub-module group are connected in series in sequence: The negative input is connected to the positive input of the second sub-module, and the negative input of the second sub-module is connected to the positive input of the third sub-module until the negative input of the N / 2-1 sub-module is connected to the The positive input of the N / 2 submodule is connected; the negative input of the N / 2 + 1 submodule is connected to the positive input of the N / 22 + 2 submodule.
- the negative input terminal is connected to the positive input terminal of the N / 2 + 3 submodule until the negative input terminal of the N-1th submodule is connected to the positive input terminal of the Nth submodule, where N is the grid-side converter
- the number of sub-modules in the device; the parallel input of two sub-module groups includes: paralleling the positive input of the first sub-module with the positive input of the N / 2 + 1th sub-module;
- the negative input terminal is connected in parallel with the negative input terminal of the Nth sub-module; after the inputs of the two sub-module groups are connected in parallel, they are respectively connected to the 15kV / 16.7Hz power supply network and ground.
- the first sub-module The positive input is connected in parallel with the positive input of the N / 2 + 1 sub-module and is connected to the 15kV / 16.7Hz power supply network.
- the control sub-module adopts the corresponding working modes including: under the 15kV / 16.7Hz power supply system, the multi-flow electric locomotive is in the traction working state
- the sub-module selects the rectification working mode; if the multi-flow electric locomotive is in the regenerative braking working state, the sub-module selects the inverter working mode.
- the N / 2 sub-module input terminals in each sub-module group are connected in series in sequence: The switching device between the negative input terminal and the positive input terminal of the second sub-module is closed, and the switching device between the negative input terminal of the second sub-module and the positive input terminal of the third sub-module is closed until the N / 2-1 The switching device between the negative input terminal of the submodule and the positive input terminal of the N / 2th submodule is closed; the negative input terminal of the N / 2 + 1th submodule and the positive input terminal of the N / 22 + 2th submodule are closed.
- the switching device between them is closed, and the switching device between the negative input terminal of the N / 2 + 2 submodule and the positive input terminal of the N / 2 + 3 submodule is closed until the negative input terminal of the N-1th submodule.
- the switching device is closed to the positive input terminal of the Nth sub-module, where N is the number of sub-modules in the grid-side converter; the parallel input of the two sub-module groups includes: connecting the positive input of the first sub-module
- the switching device between the terminal and the power supply bus is closed, and the positive input terminal of the N / 2 + 1th sub-module is connected to the power supply bus.
- the switching device is closed; the switching device between the negative input terminal of the N / 2th sub-module and the ground bus is closed, and the switching device between the negative input terminal of the Nth sub-module and the ground bus is closed; the inputs of the two sub-module groups After the terminals are connected in parallel, they are respectively connected to the 15kV / 16.7Hz power supply network and ground, including: closing the AC switch between the power supply bus and the 15kV / 16.7Hz AC power supply network; the ground bus is always connected to the ground.
- the network-side converter has N sub-modules SM.
- Each sub-module includes two AC or DC input terminals and two DC output terminals.
- the positive and negative poles of the DCs of all the sub-modules are respectively connected in parallel to form the DC output end of the multi-current electric locomotive grid-side converter.
- SMN are connected in series respectively, and then connected in parallel and connected to the 15kV / 16.7Hz power supply network and ground phase
- the effective value of the input voltage of each module is 30 / N kV (the peak voltage is 42.4 / N kV).
- K AC is closed; K DC is open; K 1, Grid is closed, K 2, Grid ... K N / 2, Gri d is open; K N / 2 + 1 , Grid closed, K N / 2 + 2, Grid ... K N, Grid open; K 1, GND ... K N / 2-1, GND open, K N / 2, Grid closed; K N / 2 + 1 , GND ... K N-1, GND is open, K N, Grid is closed; K 1, Next ... K N / 2-1, Next is closed, K N / 2, Next is open; K N / 2, Next ... K N-1, Next is closed, K N, Next is open; Under the 15kV / 16.7Hz power supply system, the circuit is formed by paralleling two ring-like topologies.
- Each type of ring network circuit can be connected to the power supply bus through the positive input of any of the sub-modules SM i, and connected to the ground bus through the negative input of its previous sub-module SM i-1, thereby achieving redundancy. And high reliability.
- the target power supply system is a 3 kV DC power supply system
- the series connection of the M sub-module input terminals in each sub-module group includes: The negative input of one submodule is connected to the positive input of the second submodule, and the negative input of the second submodule is connected to the positive input of the third submodule, up to the negative input of the M-1th submodule.
- the negative input of the (L-1) * M + 1 submodule in the group is connected to the positive input of the (L-1) * M + 2 submodule, and the (L-1) * M + 2 sub
- the negative input of the module is connected to the positive input of the (L-1) * M + 3 submodule, until the negative input of the L * M-1 submodule is in phase with the positive input of the L * M submodule.
- input terminals between sub-module groups are connected in sequence Including: connecting the first sub-module and the M + 1th sub-module up to the positive input terminal of the (L-1) * M + 1 sub-module in parallel, connecting the M-th sub-module and the 2M-sub
- the modules are connected in parallel to the negative input terminal of the L * M sub-module;
- the input terminals between the sub-module groups are connected in parallel to the 3kV DC power supply network and ground, respectively, including: connecting the first sub-module, the M-th module +1 sub-module up to the (L-1) * M + 1 sub-module's positive input is connected in parallel with the 3kV DC power supply network;
- the negative input terminal of the sub-module is connected to the ground after being connected in parallel; controlling the sub-module to adopt the corresponding working mode according to the operating status of the target power supply system and the multi
- the series connection of the M sub-module input terminals in each sub-module group includes: The switching device between the negative input terminal of one submodule and the positive input terminal of the second submodule is closed, and the switching device between the negative input terminal of the second submodule and the positive input terminal of the third submodule is closed until the Mth
- the switching device between the negative input terminal of the -1 submodule and the positive input terminal of the Mth submodule is closed, and the negative input terminal of the M + 1th submodule in the second submodule group and the The switching device between the positive input terminals is closed, and the switching device between the negative input terminal of the M + 2 submodule and the positive input terminal of the M + 3 submodule is closed until the negative input terminal of the 2M-1 submodule and
- the switching device between the positive input terminal of the 2M submodule is closed, and so on until the negative input terminal of the (L-
- the switching device between the positive input terminals of the switch is closed until the switching device between the negative input terminal of the L * M-1 submodule and the positive input terminal of the L * M submodule is closed; the input terminal between the submodule groups
- the parallel connection in sequence includes: closing the switching device between the positive input terminal of the first submodule and the power supply bus, closing the switching device between the positive input terminal of the M + 1th submodule and the power supply bus, until the (L- 1) The switching device between the positive input terminal of the * M + 1 submodule and the power supply bus is closed; the switching device between the negative input terminal of the Mth submodule and the ground bus is closed, and the 2M submodule is closed The switching device between the negative input terminal and the ground bus is closed until the switching device between the negative input terminal of the L * M sub-module and the ground bus is closed; the input between the sub-module groups After the terminals are connected in parallel, they are respectively connected to the 3kV DC power supply network and the ground, including: closing a DC switch
- the grid-side converter has N sub-modules SM.
- Each sub-module includes two AC or DC input terminals and two DC output terminals.
- the positive and negative poles of the DCs of all the sub-modules are respectively connected in parallel to form the DC output end of the multi-current electric locomotive grid-side converter.
- the input terminals of the sub-modules SM1 and SM2, SM3 and SM4 ... SMN-1 and SMN are connected in series, and then connected in parallel and connected to the 3kV DC power supply network and ground.
- the effective value of the input voltage of the module is 1.5kV.
- K AC is disconnected; K DC is closed (K DC is the DC main circuit breaker); every two sub-modules are a group, such as SM 1 and SM 2, SM 3 and SM 4 ... SM N-1 and SM N; Take SM 1 and SM 2 as an example: K1, Grid closed, K1, GND open; K2, Grid open, K2, GN D closed; K 1, Next closed, K 2, Next is disconnected; and so on, every two sub-modules of the circuit are connected in series and connected to the power supply and ground bus in parallel. Therefore, any group of sub-modules can be switched in or removed at any time, which has a high redundancy Residual and reliable.
- the switching devices between the first submodule, the second submodule, and the third submodule may be closed, and the fourth submodule, the fifth submodule, and the sixth submodule may be closed.
- the switching devices between them are closed until the switching devices between the N-2th sub-module, the N-1th sub-module and the Nth sub-module are closed, and the first sub-module, the fourth sub-module to the N-2th sub-module are closed.
- the third sub-module, the sixth sub-module to the N-th sub-module are connected in parallel.
- the number of sub-modules that group the sub-modules in series is not limited.
- the two sub-modules can be connected in series as a group.
- Three sub-modules can be connected in series as a group, and each group of sub-modules can be connected in parallel to the power supply and ground bus. Any group of sub-modules can be switched in or removed at any time, which has high fault redundancy and reliability.
- an intermediate frequency transformer is used in the grid-side converter
- the input terminals of the sub-modules are connected in a target manner including: dividing N sub-modules into P sub-module groups, each sub-module group contains Q sub-modules, and the Q sub-module input terminals of the sub-module group are connected in series, and between each sub-module group
- the target power supply system is a 1.5 kV DC power supply system
- Q sub-modules in the sub-module group are input.
- the series connection includes: connecting the negative input terminal of the first submodule in the first submodule group with the positive input terminal of the second submodule, and the negative input terminal of the second submodule is connected with the positive input terminal of the third submodule.
- the connection includes: connecting the first sub-module, the Q + 1th sub-module up to the positive input terminal of the (P-1) * Q + 1-sub-module in parallel with a 1.5kV DC power supply network; connecting the The negative input terminals of the Qth submodule, the 2Qth submodule up to the P * Qth submodule are connected in parallel to the ground; and the submodule is controlled according to the operating status of the target power supply system and the multi-flow electric locomotive
- Adopting the corresponding working mode includes: under the 1.5kV DC power supply system, if the multi-current electric locomotive is in a traction working state, the sub-module selects a forward DC-DC change operating mode; if the multi-current system The electric locomotive is in the state of regenerative braking and the 1.5kV DC power supply network has energy absorption capability.
- Reverse DC-DC change working mode if the multi-flow electric locomotive is in a non-regenerative braking working state, the sub-module selects a blocking state, wherein in the forward DC-DC changing working mode, electric energy is input by The terminal flows to the output terminal, and the electric energy flows from the output terminal to the input terminal in the reverse DC-DC change operation mode.
- connecting the input terminals of all sub-modules in parallel includes: connecting the positive input terminals of all sub-modules with the power supply bus.
- the switching devices are closed; the switching devices between the negative input terminals of all sub-converter modules and ground are closed; the Q sub-module input terminals in the sub-module group are connected in series including: connecting the negative of the first sub-module in the first sub-module group
- the switching device between the input terminal and the positive input terminal of the second sub-module is closed, and the switching device between the negative input terminal of the second sub-module and the positive input terminal of the third sub-module is closed until the The switching device between the negative input terminal and the positive input terminal of the Qth submodule is closed, and the negative input terminal of the Q + 1th submodule in the second submodule group is connected to the positive input terminal of the Q + 2th submodule.
- the switching device is closed, and the switching device between the negative input terminal of the Q + 2 submodule and the positive input terminal of the Q + 3 submodule is closed until the negative input terminal of the 2Q-1 submodule and the 2Q submodule
- the switching device between the positive inputs is closed, and so on until The switching device between the negative input terminal of the (P-1) * Q + 1 submodule and the positive input terminal of the (P-1) * Q + 2 submodule in the P submodule group is closed, and the (P -1)
- the switching device between the negative input of * Q + 2 submodule and the positive input of (P-1) * Q + 3 submodule is closed until the negative input of P * Q-1 submodule
- the switching device between the positive input terminal of the P * Q sub-module is closed; the input terminals of the sub-module group are connected in parallel in sequence: closing the switching device between the positive input terminal of the first sub-module and the power supply bus , The switching device between the positive input terminal of the Q + 1
- the network-side converter has N sub-modules SM.
- Each sub-module includes two AC or DC input terminals and two DC output terminals.
- the positive and negative poles of the DC output terminals of all sub-modules are respectively connected in parallel to form the DC output terminals of the multi-current electric locomotive grid-side converter.
- the input terminals of all sub-modules SM1 ... SMN are connected to the 1.5kV DC power supply network and ground respectively, and the effective value of the input voltage of each module is 1.5kV.
- K AC is disconnected; K DC is closed, all sub-modules K i, Grid are closed, K i, GND is closed, and K i, Next are open (i represents the ith sub-module ), Each sub-module of this circuit can be cut in or cut out at any time, with high fault redundancy and reliability.
- the locomotive does not need to reduce its rated power for operation.
- the above-mentioned sub-module SM circuit structure is shown in FIG. 7 and includes a four-quadrant converter and a DC / DC converter including (intermediate frequency) transformer isolation.
- the four-quadrant converter can adopt different working modes according to different current systems and working conditions of the locomotive: AC power supply mode, traction condition: rectification; AC power supply mode, regenerative braking condition: inverter; DC power supply mode, Traction conditions: boost chopper; DC power supply mode, regenerative braking conditions: Usually DC power supply network does not support regenerative braking (if the DC power supply network supports regenerative braking, you can refer to step-down chopper working mode).
- DC / DC converters are required to be able to change in both directions, and include transformers to achieve electrical isolation of the input / output and voltage changes.
- the transformer is usually an intermediate frequency transformer.
- the DC / DC converter can be implemented by a circuit with a PWM structure (such as a DAB) or a resonant converter circuit.
- the following uses 7.2MW DC output power as an example to explain the specific implementation of the multi-current electric locomotive grid-side converter.
- the input power is 7.58MW.
- the output voltage of this grid-side converter is 1.8kV.
- Table 2 The grouping and series-parallel combination of submodules under different power supply systems, as well as the voltage and current load conditions of the submodules are shown in Table 2:
- 3.3kV, 450 / 500A IGBT devices can be used for implementation.
- it can also be implemented with 1.7kV or 1.2kV IGBT modules, but the number of required sub-modules N also needs to be increased accordingly.
- the sub-module grouping scheme for 3kV and 1.5kV DC power supply systems also needs to be adjusted accordingly.
- the embodiment of the present application further provides a processing device of a grid-side converter of a multi-flow electric locomotive. It should be noted that the processing device of the grid-side converter of a multi-flow electric locomotive according to the embodiment of the present application may be used. A processing method for a grid-side converter device of a multi-flow electric locomotive provided in an embodiment of the present application is executed. The following describes the processing device of the grid-side converter of the multi-flow electric locomotive provided in the embodiments of the present application.
- FIG. 8 is a schematic diagram of a processing device of a grid-side converter of a multi-flow electric locomotive according to an embodiment of the present application. As shown in FIG. 8, the device includes a determination unit 10, a first connection unit 20, and a second connection unit 30.
- the determining unit 10 is configured to determine a target power supply system of a multi-flow electric locomotive
- the first connection unit 20 is configured to connect the input terminals of the sub-modules using the intermediate frequency transformer in the grid-side converter in a target manner under the target power supply system;
- the second connection unit 30 is configured to connect the input ends of the sub-modules in a target manner, and then connect the input ends of the sub-modules to the power supply network and the ground, respectively.
- the processing device of the grid-side converter of the multi-flow electric locomotive determines the target power supply system of the multi-flow electric locomotive through the determination unit 10; the first connection unit 20 sets the network side under the target power supply system.
- the input terminals of the sub-modules using the intermediate frequency transformer in the converter are connected in a target manner; and the second connection unit 30 connects the input terminals of the sub-modules in a target manner, and then is connected to the power supply network and ground respectively, which solves the related technology
- the grid-side converter of a multi-current system electric locomotive requires problems such as large volume and weight of the transformer, high manufacturing difficulty and high manufacturing cost.
- the device further includes a control unit configured to connect the input ends of the sub-modules in a target manner, and then After being connected to the power supply network and ground respectively, the control sub-module adopts the corresponding working mode according to the operating status of the target power supply system and the multi-flow electric locomotive.
- the grid-side converter includes a power supply bus, a ground bus, N sub-modules, and multiple switching devices.
- the modules include two positive and negative input ports and two positive and negative output ports.
- each submodule The positive input terminal of each submodule is connected to the power supply bus through a switching device; the negative input terminal of each submodule is connected to the ground bus through a switching device; each submodule The negative input terminal of the second sub-module is connected to the positive input terminal of the next sub-module through a switching device, wherein the negative input terminal of the first sub-module is connected to the positive input terminal of the second sub-module through the switching device, and the negative input terminal of the second sub-module is connected.
- the positive input is connected through a switching device; the power supply bus is connected to the AC or DC power supply network by closing the AC or DC switch.
- the first connection unit 20 includes a first series module, The input terminals of all the sub-modules are arranged in series;
- the second connection unit 30 includes: a first connection module configured to connect the input terminals of all the sub-modules in series with the 25kV / 50Hz power supply network and ground respectively.
- the first series module is further configured to connect the negative input terminal of the first sub-module with the positive input of the second sub-module.
- the input terminals are connected, and the negative input terminal of the second submodule is connected to the positive input terminal of the third submodule until the negative input terminal of the N-1th submodule is connected to the positive input terminal of the Nth submodule, where: N is the number of sub-modules in the grid-side converter;
- the first connection module is also used to connect the positive input of the first sub-module to the 25kV / 50Hz power supply network, and connect the negative input of the N-th sub-module to the ground
- the control unit is also used in the 25kV / 50Hz power supply system and the sub-module selects the rectification mode when the multi-current electric locomotive is in the traction working state; if the multi-current electric locomotive is in the regenerative braking working state, the sub
- the first series module is further configured to connect the negative input terminal of the first sub-module with the positive input of the second sub-module.
- the switching device between the input terminals is closed, and the switching device between the negative input terminal of the second submodule and the positive input terminal of the third submodule is closed until the negative input terminal of the N-1th submodule and the
- the switching device between the positive input terminals is closed, the switching device between the positive input terminal of the first submodule and the power supply bus is closed, and the switching device between the negative input terminal of the Nth submodule and the ground bus is closed;
- the first The connection module is also used to close the AC switch between the power supply bus and the 25kV / 50Hz AC power supply network; the ground bus is always connected to the ground.
- the first connection unit 20 further includes: a first group Module, set to divide N sub-modules into two groups, each group contains N / 2 sub-modules; second series module, set to N / 2 sub-module input terminals inside each sub-module group in series; first parallel module, The input terminals of the two sub-module groups are set in parallel, where N is the number of sub-modules in the grid-side converter; the second connection unit 30 further includes: a second connection module, which is set at the input terminals of the two sub-module groups After being connected in parallel, they are respectively connected to the 15kV / 16.7Hz power supply network and ground.
- the second series module is further configured to connect the negative input terminal of the first submodule with the positive of the second submodule.
- the input terminals are connected, and the negative input terminal of the second submodule is connected to the positive input terminal of the third submodule until the negative input terminal of the N / 2-1th submodule is in phase with the positive input terminal of the N / 2th submodule.
- the positive inputs of the submodules are connected until the negative input of the N-1th submodule is connected to the positive input of the Nth submodule, where N is the number of submodules in the grid-side converter;
- the parallel module is also used to connect the positive input of the first sub-module with the positive input of the N / 2 + 1th sub-module in parallel; connect the negative input of the N / 2-th sub-module with the negative input of the N-th sub-module in parallel ;
- the second connection module is also used to connect the positive input of the first sub-module with the positive input of the N / 2 + 1 sub-module in parallel to the 15kV / 16.7Hz power supply network to connect the Negative input and the first The negative input terminal of the N sub-module is connected
- the second series module is further configured to connect the negative input terminal of the first submodule with the positive of the second submodule.
- the switching device between the input terminals is closed, and the switching device between the negative input terminal of the second submodule and the positive input terminal of the third submodule is closed until the negative input terminal of the N / 2-1th submodule and the N / th.
- the switching device between the positive input terminals of the 2 submodule is closed; the switching device between the negative input terminal of the N / 2 + 1th submodule and the positive input terminal of the N / 22 + 2th submodule is closed, and the N /
- the switching device between the negative input of the 2 + 2 sub-module and the positive input of the N / 2 + 3 sub-module is closed until the negative input of the N-1th sub-module and the positive input of the N-th sub-module
- the switching devices are closed, where N is the number of
- the switching device between them closes the switching device between the negative input of the Nth sub-module and the ground bus;
- the second connection module is also used to close the AC switch between the power bus and the 15kV / 16.7Hz AC power supply network ;
- the ground bus is always connected to the ground.
- the third series module is further configured to use the negative input terminal of the first sub-module in the first sub-module group. It is connected to the positive input of the second sub-module, and the negative input of the second sub-module is connected to the positive input of the third sub-module until the negative input of the M-1 sub-module is connected to the positive of the M-sub module.
- the input terminals are connected, and the negative input terminal of the M + 1th submodule in the second submodule group is connected to the positive input terminal of the M + 2th submodule, and the negative input terminal of the M + 2th submodule is connected to the Mth
- the positive input of the +3 submodule is connected until the negative input of the 2M-1 submodule is connected to the positive input of the 2M submodule, and so on until the (L- 1)
- the negative input of the * M + 1 submodule is connected to the positive input of the (L-1) * M + 2 submodule, and the negative input of the (L-1) * M + 2 submodule is connected to the
- the positive input of (L-1) * M + 3 submodule is connected until the negative input of L * M-1 submodule is connected to the positive input of L * M submodule;
- the second parallel module is also The first sub-module and the M + 1-th sub-module are directly connected to each other.
- the third connection module It is also used to connect the first submodule, the M + 1th submodule up to the (L-1) * M + 1th submodule's positive input terminal in parallel with the 3kV DC power supply network;
- the negative input terminals of the M submodule, the 2M submodule up to the L * M submodule are connected in parallel with the ground;
- the control unit is also used for the 3kV DC power supply system if the multi-current electric locomotive is in traction work , The sub-module selects the forward DC-DC change working mode; if the multi-flow electric locomotive is in the regenerative braking working state, and the 3kV DC power supply network has energy absorption capability, the sub-module selects the reverse DC-DC change working mode; if more The flow-controlled electric locomotive is in a non
- the third series module is further configured to use the negative input terminal of the first sub-module in the first sub-module group.
- the switching device between the positive input terminal of the second sub-module is closed, and the switching device between the negative input terminal of the second sub-module and the positive input terminal of the third sub-module is closed until the negative input of the M-1th sub-module.
- the switching device between the terminal and the positive input terminal of the Mth submodule is closed, and the switch between the negative input terminal of the M + 1th submodule in the second submodule group and the positive input terminal of the M + 2th submodule is closed.
- the device is closed, and the switching device between the negative input of the M + 2 submodule and the positive input of the M + 3 submodule is closed until the negative input of the 2M-1 submodule and the positive input of the 2M submodule
- the switching device between the terminals is closed, and so on until the negative input terminal of the (L-1) * M + 1 submodule in the Lth submodule group and the (L-1) * M + 2 submodule
- the switching device between the positive input terminals is closed, and the switch between the negative input terminal of the (L-1) * M + 2 submodule and the positive input terminal of the (L-1) * M + 3 submodule Close until the switching device between the negative input terminal of the L * M-1 sub-module and the positive input terminal of the L * M sub-module is closed; the second parallel module is further configured to switch the positive input of the first sub-module
- the switching device between the terminal and the power supply bus is closed, and the switching device between the positive input terminal of the M + 1th submodul
- the first connection unit 20 includes a third parallel module, It is set to divide N sub-modules into P sub-module groups.
- Each sub-module group contains Q sub-modules.
- the input terminals of Q sub-modules in the sub-module group are connected in series, and the input terminals of each sub-module group are connected in parallel in sequence.
- the second connection unit 30 includes a fourth connection module configured to connect the input ends of all sub-modules in parallel with the 1.5 kV DC power supply network and the ground, respectively.
- the third parallel module is further configured to convert the first sub-module
- the negative input of the first sub-module in the module group is connected to the positive input of the second sub-module, and the negative input of the second sub-module is connected to the positive input of the third sub-module until the Q-1 sub-module.
- the negative input of the module is connected to the positive input of the Qth submodule.
- the negative input of the Q + 1th submodule in the second submodule group is connected to the positive input of the Q + 2th submodule.
- the negative input of the Q + 2 submodule is connected to the positive input of the Q + 3 submodule, until the negative input of the 2Q-1 submodule is connected to the positive input of the 2Q submodule, and so on until Connect the negative input of the (P-1) * Q + 1 submodule in the Pth submodule group with the positive input of the (P-1) * Q + 2 submodule, and (P-1)
- the negative input of * Q + 2 submodule is connected to the positive input of (P-1) * Q + 3 submodule, until the negative input of P * Q-1 submodule is connected to P * Q submodule.
- the positive inputs of the The terminals are connected in parallel in sequence: the positive input terminals of the first submodule and the Q + 1th submodule up to the (P-1) * Q + 1th submodule are connected in parallel, and the Qth submodule and the The 2Q sub-module up to the negative input terminal of the P * Q sub-module is connected in parallel; the fourth connection module is also used to connect the first sub-module and the Q + 1-th sub-module up to the (P-1) * Q +
- the positive input terminal of the 1 sub-module is connected in parallel to the 1.5kV DC power supply network; the negative input terminals of the Qth sub-module, the 2Q-sub-module up to the P * Q-sub-module are connected in parallel to the ground;
- the control unit is also used in the 1.5kV DC power supply system.
- the sub-module selects the forward DC-DC change working mode; if the multi-flow electric locomotive is in the regenerative braking working state, at the same time
- the 1.5kV DC power supply network has energy absorption capability.
- the sub-module selects the reverse DC-DC operating mode. If the multi-current electric locomotive is in the non-regenerative braking working state, the sub-module selects the blocking state. Among them, the forward DC-DC The electric energy flows from the input terminal to the output terminal in the changing working mode. In the reverse DC-DC changing working mode, the electric energy is The output flows to the input.
- the third parallel module is further configured to close the switching devices between the positive input ends of all sub-modules and the power supply bus. ; Closing the switching devices between the negative input terminals of all sub-converter modules and ground; the Q sub-module input terminals in the sub-module group in series include: connecting the negative input terminal of the first sub-module in the first sub-module group with the The switching device between the positive input of the second sub-module is closed, and the switching device between the negative input of the second sub-module and the positive input of the third sub-module is closed until the negative input of the Q-1 sub-module The switching device between the positive input terminal of the Qth submodule is closed, and the switching device between the negative input terminal of the Q + 1th submodule in the second submodule group and the positive input terminal of the Q + 2th submodule is closed.
- the switching device between the negative input of the Q + 2 submodule and the positive input of the Q + 3 submodule is closed until the negative input of the 2Q-1 submodule and the positive input of the 2Q submodule between the switching devices, and so on until the P sub-module
- the switching device between the negative input of the (P-1) * Q + 1 submodule and the positive input of the (P-1) * Q + 2 submodule in the group is closed, and the (P-1) *
- the switching device between the negative input of the Q + 2 submodule and the positive input of the (P-1) * Q + 3 submodule is closed until the negative input of the P * Q-1 submodule and the P *
- the switching device between the positive input terminals of the Q sub-module is closed; the input terminals between the sub-module groups are connected in parallel in sequence: closing the switching device between the positive input terminal of the first sub-module and the power supply bus, and the Q + 1 The switching device between the positive input terminal of the submodule and the power
- the processing device of the grid-side converter of the multi-flow electric locomotive includes a processor and a memory.
- the determining unit 10, the first connection unit 20, the second connection unit 30, and the like are all stored in the memory as program units and processed by the processing unit.
- the processor executes the above program unit stored in the memory to realize the corresponding function.
- the processor contains a kernel, and the kernel retrieves the corresponding program unit from the memory.
- the kernel can be set with one or more, and by adjusting the kernel parameters, the problems of large volume and weight of the transformer, high manufacturing difficulty and high manufacturing cost required by the grid-side converter of the multi-current electric locomotive in the related technology are solved.
- Memory may include non-permanent memory, random access memory (RAM), and / or non-volatile memory in computer-readable media, such as read-only memory (ROM) or flash memory (RAM).
- Memory includes at least one Memory chip.
- An embodiment of the present invention provides a storage medium on which a program is stored.
- a processing method of a grid-side converter device of the multi-flow electric locomotive is implemented.
- An embodiment of the present invention provides a processor for running a program, wherein the program executes a processing method of a grid-side converter device of the multi-flow electric locomotive when the program is run.
- this application may be provided as a method, a system, or a computer program product. Therefore, this application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Moreover, this application may take the form of a computer program product implemented on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) containing computer-usable program code.
- computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
- this application may be provided as a method, a system, or a computer program product. Therefore, this application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Moreover, this application may take the form of a computer program product implemented on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) containing computer-usable program code.
- computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
一种多流制电力机车的网侧变流装置的处理方法及装置。该方法包括:确定多流制电力机车的目标供电制式(S101);在所述目标供电制式下,将网侧变流装置中使用中频变压器的子模块的输入端采用目标方式连接(S102);以及将所述子模块的输入端采用所述目标方式连接后,再分别与供电网和地相联(S103)。通过上述方法,解决了相关技术中多流制电力机车的网侧变流装置所需要的变压器体积和重量大、制造难度高和制造成本高等问题。
Description
本申请要求于2018年06月26日提交中国专利局、申请号为201810672799.7、发明名称“多流制电力机车的网侧变流装置的处理方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及多流制电力机车技术领域,具体而言,涉及一种多流制电力机车的网侧变流装置的处理方法及装置。
多流制电力机车是指可以在两种或两种以上供电制式下运行的电力机车。为适应不同供电制式的电压和频率,并易于满足不同供电制式以及不同国家的电流谐波和输入阻抗要求,多流制电力机车的网侧变流装置(包括变压器、四象限变流器、网侧滤波电路、中间直流环节、二次谐振回路等)的体积、重量以及设计制造难度与成本很高。
针对上述的问题,目前尚未提出有效的解决方案。
发明内容
本申请的主要目的在于提供一种多流制电力机车的网侧变流装置的处理方法及装置,以解决相关技术中多流制电力机车的网侧变流装置所需要的变压器体积和重量大、制造难度高和制造成本高等问题。
为了实现上述目的,根据本申请的一个方面,提供了一种多流制电力机车的网侧变流装置的处理方法,包括:确定多流制电力机车的目标供电制式;在所述目标供电制式下,将网侧变流装置中使用中频变压器的子模块的输入端采用目标方式连接;以及将所述子模块的输入端采用所述目标方式连接后,再分别与供电网和地相联。
进一步地,将所述子模块的输入端采用所述目标方式连接后,再分别与供电网和地相联之后,所述方法还包括:根据所述目标供电制式和多流制电力机车的运行状态,控制所述子模块采用相应的工作模式。
进一步地,所述网侧变流装置包括供电母线、接地母线、N个子模块和多个开关器件,每个子模块均包括正负两个输入端口和正负两个输出端口,每个子模块的正输 入端通过开关器件与供电母线联接;每个子模块的负输入端通过开关器件与所述接地母线联接;每个子模块的负输入端通过开关器件与下一个子模块的正输入端联接,其中,第一子模块的负输入端与第二子模块的正输入端通过开关器件联接,所述第二子模块的负输入端与第三子模块的正输入端通过开关器件联接,直至第N-1子模块负输入端与第N子模块正输入端通过开关器件联接,所述第N子模块的负输入端与所述第一子模块的正输入端通过开关器件联接;所述供电母线通过闭合交流或直流开关与交流或直流供电网联接。
进一步地,若所述目标供电制式为25kV/50Hz供电制式,将网侧变流装置中使用中频变压器的子模块的输入端采用目标方式连接包括:将所有子模块的输入端依次串联;将所述子模块的输入端采用所述目标方式连接后,再分别与供电网和地相联包括:将所有子模块输入端串联后分别与25kV/50Hz供电网和地相联。
进一步地,将所有子模块的输入端依次串联包括:将第一子模块的负输入端与第二子模块的正输入端相联,所述第二子模块的负输入端与第三子模块的正输入端相联,直到第N-1子模块的负输入端与第N子模块的正输入端相联,其中,N为所述网侧变流装置中的子模块的总数量;将所有子模块输入端串联后分别与25kV/50Hz供电网和地相联包括:将所述第一子模块的正输入端与所述25kV/50Hz供电网相联,将所述第N子模块负输入端与地相联;根据所述目标供电制式和多流制电力机车的运行状态,控制所述子模块采用相应的工作模式包括:在所述25kV/50Hz供电制式下,在所述多流制电力机车处于牵引工作状态的情况下,所述子模块选择整流工作模式;若所述多流制电力机车处于再生制动工作状态,所述子模块选择逆变工作模式。
进一步地,将所有子模块的输入端依次串联包括:将所述第一子模块的负输入端与所述第二子模块的正输入端之间的开关器件闭合,所述第二子模块的负输入端与所述第三子模块的正输入端之间的开关器件闭合,直至第所述N-1子模块的负输入端与所述第N子模块的正输入端之间的开关器件闭合,将所述第一子模块的正输入端与供电母线之间的开关器件闭合,将所述第N子模块的负输入端与接地母线之间的开关器件闭合;将所有子模块输入端串联后分别与25kV/50Hz供电网和地相联包括:将供电母线与25kV/50Hz交流供电网之间的交流开关闭合;接地所述接地母线始终与地相联。
进一步地,若所述目标供电制式为15kV/16.7Hz供电制式,将网侧变流装置中使用中频变压器的子模块的输入端采用目标方式连接包括:将N个子模块分为两组,每组包含N/2个子模块;每个子模块组内部的N/2个子模块输入端依次串联;两个子模块组的输入端并联,其中,N为所述网侧变流装置中的子模块的总数量;将所述子模块的输入端采用所述目标方式连接后,再分别与供电网和地相联包括:在两个子模 块组的输入端并联后分别与15kV/16.7Hz供电网和地相联。
进一步地,每个子模块组内部的N/2个子模块输入端依次串联包括:将第一子模块的负输入端与第二子模块的正输入端相联,所述第二子模块的负输入端与第三子模块的正输入端相联,直到第N/2-1子模块的负输入端与第N/2子模块的正输入端相联;将第N/2+1子模块的负输入端与第N/2+2子模块的正输入端相联,所述第N/2+2子模块的负输入端与第N/2+3子模块的正输入端相联,直到第N-1子模块的负输入端与第N子模块的正输入端相联,其中,N为所述网侧变流装置中的子模块的总数量;两个子模块组的输入端并联包括:将所述第一子模块的正输入端与所述第N/2+1子模块的正输入端并联;将所述第N/2子模块的负输入端与所述第N子模块的负输入端并联;在两个子模块组的输入端并联后分别与15kV/16.7Hz供电网和地相联包括:将所述第一子模块的正输入端与所述第N/2+1子模块的正输入端并联后与所述15kV/16.7Hz供电网相联,将所述第N/2子模块的负输入端与所述第N子模块的负输入端并联后与地相联;根据所述目标供电制式和多流制电力机车的运行状态,控制所述子模块采用相应的工作模式包括:在所述15kV/16.7Hz供电制式下,在所述多流制电力机车处于牵引工作状态的情况下,所述子模块选择整流工作模式;若所述多流制电力机车处于再生制动工作状态,所述子模块选择逆变工作模式。
进一步地,每个子模块组内部的N/2个子模块输入端依次串联包括:将第一子模块的负输入端与第二子模块的正输入端之间的开关器件闭合,所述第二子模块的负输入端与第三子模块的正输入端之间的开关器件闭合,直到第N/2-1子模块的负输入端与第N/2子模块的正输入端之间的开关器件闭合;将所述第N/2+1子模块的负输入端与第N/2+2子模块的正输入端之间的开关器件闭合,所述第N/2+2子模块的负输入端与第N/2+3子模块的正输入端之间的开关器件闭合,直到第N-1子模块的负输入端与第N子模块的正输入端之间的开关器件闭合,其中,N为所述网侧变流装置中的子模块的总数量;两个子模块组的输入端并联包括:将所述第一子模块的正输入端与供电母线之间的开关器件闭合,将所述第N/2+1子模块的正输入端与供电母线之间的开关器件闭合;将所述第N/2子模块的负输入端与接地母线之间的开关器件闭合,将所述第N子模块的负输入端与所述接地母线之间的开关器件闭合;两个子模块组的输入端并联后分别与15kV/16.7Hz供电网和地相联包括:将供电母线与15kV/16.7Hz交流供电网之间的交流开关闭合;所述接地母线始终与地相联。
进一步地,若所述目标供电制式为3kV直流供电制式;将网侧变流装置中使用中频变压器的子模块的输入端采用目标方式连接包括:将N个子模块分为L个子模块组,每个子模块组包含M个子模块,每个子模块组内部的M个子模块输入端串联,每个子模块组之间的输入端依次并联,其中,N为所述网侧变流装置中的子模块的总数量,L为子模块组的数量,M为每个子模块组中所包含的子模块数量,N=L*M;将所述子 模块的输入端采用所述目标方式连接后,再分别与供电网和地相联包括:在子模块组之间的输入端依次并联后分别与3kV直流供电网和地相联。
进一步地,每个子模块组内部的M个子模块输入端串联包括:将第一子模块组中的第一子模块的负输入端与第二子模块的正输入端相联,第二子模块的负输入端与第三子模块的正输入端相联,直到第M-1子模块的负输入端与第M子模块的正输入端相联,将第二子模块组中的第M+1子模块的负输入端与第M+2子模块的正输入端相联,第M+2子模块的负输入端与第M+3子模块的正输入端相联,直到第2M-1子模块的负输入端与第2M子模块的正输入端相联,以此类推直至将第L个子模块组中的第(L-1)*M+1子模块的负输入端与第(L-1)*M+2子模块的正输入端相联,第(L-1)*M+2子模块的负输入端与第(L-1)*M+3子模块的正输入端相联,直到第L*M-1子模块的负输入端与第L*M子模块的正输入端相联;子模块组之间的输入端依次并联包括:将所述第一子模块、所述第M+1子模块直至第(L-1)*M+1子模块的正输入端并联,将所述第M子模块、所述第2M子模块直至第L*M子模块的负输入端并联;在子模块组之间的输入端依次并联后分别与3kV直流供电网和地相联包括:将所述第一子模块、所述第M+1子模块直至第(L-1)*M+1子模块的正输入端并联后与3kV直流供电网相联;将所述第M子模块、所述第2M子模块直至第L*M子模块的负输入端并联后与地相联;根据所述目标供电制式和多流制电力机车的运行状态,控制所述子模块采用相应的工作模式包括:在所述3kV直流供电制式下,若所述多流制电力机车处于牵引工作状态,所述子模块选择正向DC-DC变化工作模式;若所述多流制电力机车处于再生制动工作状态,同时3kV直流供电网具备能量吸收能力,所述子模块选择反向DC-DC变化工作模式;若所述多流制电力机车处于非再生制动工作状态,所述子模块选择闭锁状态,其中,在所述正向DC-DC变化工作模式下电能由输入端流向输出端,在所述反向DC-DC变化工作模式下电能由输出端流向输入端。
进一步地,每个子模块组内部的M个子模块输入端串联包括:将第一子模块组中的第一子模块的负输入端与第二子模块的正输入端之间的开关器件闭合,第二子模块的负输入端与第三子模块的正输入端之间的开关器件闭合,直到第M-1子模块的负输入端与第M子模块的正输入端之间的开关器件闭合,将第二子模块组中的第M+1子模块的负输入端与第M+2子模块的正输入端之间的开关器件闭合,第M+2子模块的负输入端与第M+3子模块的正输入端之间的开关器件闭合,直到第2M-1子模块的负输入端与第2M子模块的正输入端之间的开关器件闭合,以此类推直至将第L个子模块组中的第(L-1)*M+1子模块的负输入端与第(L-1)*M+2子模块的正输入端之间的开关器件闭合,第(L-1)*M+2子模块的负输入端与第(L-1)*M+3子模块的正输入端之间的开关器件闭合,直到第L*M-1子模块的负输入端与第L*M子模块的正输入端之间的开关器件闭合;子模块组之间的输入端依次并联包括:将所述第一子模块的正输入 端与供电母线之间的开关器件闭合,第M+1子模块的正输入端与供电母线之间的开关器件闭合,直至第(L-1)*M+1子模块的正输入端与供电母线之间的开关器件闭合;将所述第M子模块的负输入端与接地母线之间的开关器件闭合,将所述第2M子模块的负输入端与所述接地母线之间的开关器件闭合,直至将所述第L*M子模块的负输入端与所述接地母线之间的开关器件闭合;在子模块组之间的输入端依次并联后分别与3kV直流供电网和地相联包括:将供电母线与3kV直流供电网之间的直流开关闭合;所述接地母线始终与地相联。
进一步地,若所述目标供电制式为1.5kV直流供电制式;将网侧变流装置中使用中频变压器的子模块的输入端采用目标方式连接包括:将N个子模块分为P个子模块组,每个子模块组包含Q个子模块,子模块组内部的Q个子模块输入端串联,每个子模块组之间的输入端依次并联,其中,N为所述网侧变流装置中的子模块的总数量,P为子模块组的数量,Q为每个子模块组中所包含的子模块数量,N=P*Q,因为所述1.5kV直流供电制式电压为3kV直流供电制式电压值的一半,其中,P=2L,Q=M/2;将所述子模块的输入端采用所述目标方式连接后,再分别与供电网和地相联包括:将所有子模块的输入端并联后分别与1.5kV直流供电网和地相联。
进一步地,若所述目标供电制式为1.5kV直流供电制式下,子模块组内部的Q个子模块输入端串联包括:将第一子模块组中的第一子模块的负输入端与第二子模块的正输入端相联,第二子模块的负输入端与第三子模块的正输入端相联,直到第Q-1子模块的负输入端与第Q子模块的正输入端相联,将第二子模块组中的第Q+1子模块的负输入端与第Q+2子模块的正输入端相联,第Q+2子模块的负输入端与第Q+3子模块的正输入端相联,直到第2Q-1子模块的负输入端与第2Q子模块的正输入端相联,以此类推直至将第P个子模块组中的第(P-1)*Q+1子模块的负输入端与第(P-1)*Q+2子模块的正输入端相联,第(P-1)*Q+2子模块的负输入端与第(P-1)*Q+3子模块的正输入端相联,直到第P*Q-1子模块的负输入端与第P*Q子模块的正输入端相联;子模块组之间的输入端依次并联包括:将所述第一子模块、所述第Q+1子模块直至第(P-1)*Q+1子模块的正输入端并联,将所述第Q子模块、所述第2Q子模块直至第P*Q子模块的负输入端并联;在子模块组之间的输入端依次并联后分别与1.5kV直流供电网和地相联包括:将所述第一子模块、所述第Q+1子模块直至第(P-1)*Q+1子模块的正输入端并联后与1.5kV直流供电网相联;将所述第Q子模块、所述第2Q子模块直至第P*Q子模块的负输入端并联后与地相联;根据所述目标供电制式和多流制电力机车的运行状态,控制所述子模块采用相应的工作模式包括:在所述1.5kV直流供电制式下,若所述多流制电力机车处于牵引工作状态,所述子模块选择正向DC-DC变化工作模式;若所述多流制电力机车处于再生制动工作状态,同时1.5kV直流供电网具备能量吸收能力,所述子模块选择反向DC-DC变化工作模式;若所述多流制电力机车处于非再 生制动工作状态,所述子模块选择闭锁状态,其中,在所述正向DC-DC变化工作模式下电能由输入端流向输出端,在所述反向DC-DC变化工作模式下电能由输出端流向输入端。
进一步地,将所有子模块的输入端并联包括:将所有子模块正输入端与供电母线之间的开关器件闭合;将所有子变流模块的负输入端与地之间的开关器件闭合;子模块组内部的Q个子模块输入端串联包括:将第一子模块组中的第一子模块的负输入端与第二子模块的正输入端之间的开关器件闭合,第二子模块的负输入端与第三子模块的正输入端之间的开关器件闭合,直到第Q-1子模块的负输入端与第Q子模块的正输入端之间的开关器件闭合,将第二子模块组中的第Q+1子模块的负输入端与第Q+2子模块的正输入端之间的开关器件闭合,第Q+2子模块的负输入端与第Q+3子模块的正输入端之间的开关器件闭合,直到第2Q-1子模块的负输入端与第2Q子模块的正输入端之间的开关器件闭合,以此类推直至将第P个子模块组中的第(P-1)*Q+1子模块的负输入端与第(P-1)*Q+2子模块的正输入端之间的开关器件闭合,第(P-1)*Q+2子模块的负输入端与第(P-1)*Q+3子模块的正输入端之间的开关器件闭合,直到第P*Q-1子模块的负输入端与第P*Q子模块的正输入端之间的开关器件闭合;子模块组之间的输入端依次并联包括:将所述第一子模块的正输入端与供电母线之间的开关器件闭合,第Q+1子模块的正输入端与供电母线之间的开关器件闭合,直至第(P-1)*Q+1子模块的正输入端与供电母线之间的开关器件闭合;将所述第Q子模块的负输入端与接地母线之间的开关器件闭合,将所述第2Q子模块的负输入端与所述接地母线之间的开关器件闭合,直至将所述第P*Q子模块的负输入端与所述接地母线之间的开关器件闭合;将所述子模块的输入端采用所述目标方式连接后,再分别与供电网和地相联包括:将供电母线与1.5kV直流供电网之间的直流开关闭合;接地母线始终与地相联。
为了实现上述目的,根据本申请的一个方面,提供了一种多流制电力机车的网侧变流装置的处理装置,其中,包括:确定单元,设置为确定多流制电力机车的目标供电制式;第一连接单元,设置为在所述目标供电制式下,将网侧变流装置中使用中频变压器的子模块的输入端采用目标方式连接;以及第二连接单元,设置为将所述子模块的输入端采用所述目标方式连接后,再分别与供电网和地相联。
进一步地,所述装置还包括:控制单元,设置为将所述子模块的输入端采用所述目标方式连接后,再分别与供电网和地相联之后,根据所述目标供电制式和多流制电力机车的运行状态,控制所述子模块采用相应的工作模式。
进一步地,所述网侧变流装置包括供电母线、接地母线、N个子模块和多个开关器件,每个子模块均包括正负两个输入端口和正负两个输出端口,每个子模块的正输入端通过开关器件与供电母线联接;每个子模块的负输入端通过开关器件与所述接地 母线联接;每个子模块的负输入端通过开关器件与下一个子模块的正输入端联接,其中,第一子模块的负输入端与第二子模块的正输入端通过开关器件联接,所述第二子模块的负输入端与第三子模块的正输入端通过开关器件联接,直至第N-1子模块负输入端与第N子模块正输入端通过开关器件联接,所述第N子模块的负输入端与所述第一子模块的正输入端通过开关器件联接;所述供电母线通过闭合交流或直流开关与交流或直流供电网联接。
通过本申请,采用以下步骤:确定多流制电力机车的目标供电制式;在所述目标供电制式下,将网侧变流装置中的子模块采用目标方式连接;以及将采用所述目标方式连接后的子模块与供电网和地相联。解决了相关技术中多流制电力机车的网侧变流装置所需要的变压器体积和重量大、制造难度高和制造成本高等问题。通过采用中频变压器,避免了采用传统多流制电力机车网侧变流装置所需要的重量、体积、制造难度和制造成本均很高的变压器,更易于在动力分散型动车组/高铁上实现,同时通过采用n+x冗余设计也进一步大幅提高了多流制电力机车的网侧变流装置和可靠性。
构成本申请的一部分的附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中,针对3kV直流供电制式我们选择的子模块分组方案为L=N/2,M=2,针对1.5kV直流供电制式我们选择的子模块分组方案为P=N,Q=1:
图1是根据本申请实施例提供的多流制电力机车的网侧变流装置的处理方法的流程图;
图2是根据本申请实施例提供的多流制电力机车的网侧变流装置的处理方法在25kV/50Hz供电制式的等效电路图;
图3是根据本申请实施例提供的多流制电力机车的网侧变流装置的处理方法在15kV/16.7Hz供电制式的等效电路图;
图4是根据本申请实施例提供的多流制电力机车的网侧变流装置的处理方法在3kV直流供电制式的等效电路图;
图5是根据本申请实施例提供的多流制电力机车的网侧变流装置的处理方法在1.5kV直流供电制式下的等效电路图;
图6是根据本申请实施例提供的多流制电力机车的网侧变流装置的处理方法的实现原理图;
图7是根据本申请实施例提供的多流制电力机车的网侧变流装置的子模块的电路原理图;以及
图8是根据本申请实施例提供的多流制电力机车的网侧变流装置的处理装置的示意图。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。在该实施例中,针对3kV直流供电制式我们选择的子模块分组方案为L=N/2,M=2,针对1.5kV直流供电制式我们选择的子模块分组方案为P=N,Q=1。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了便于描述,以下对本申请实施例涉及的部分名词或术语进行说明:
模块化中压变流装置(modular medium-voltage converter,简称MMC)通过串联基本变流器模块SM,从而实现中压条件下的交直流变换。即基本模块SM即可采用半桥电路结构,也可采用H型全桥结构实现。在工业界,MMC技术在电力领域,特别是高压直流输电领域得到了广泛的应用。在轨道交通领域,MMC的主要应用也集中在铁路电网静态变流装置领域,即采用MMC技术,将共网的3相50Hz电压变化为单相15kV/16.7Hz或单相25kV/50Hz。
根据本申请的实施例,提供了一种多流制电力机车的网侧变流装置的处理方法。
图1是根据本申请实施例的多流制电力机车的网侧变流装置的处理方法的流程图。 如图1所示,该方法包括以下步骤:
步骤S101,确定多流制电力机车的目标供电制式。
步骤S102,在目标供电制式下,将网侧变流装置中使用中频变压器的子模块的输入端采用目标方式连接。
步骤S103,将子模块的输入端采用目标方式连接后,再分别与供电网和地相联。
本申请实施例提供的多流制电力机车的网侧变流装置的处理方法,通过确定多流制电力机车的目标供电制式;在目标供电制式下,将网侧变流装置中的子模块采用目标方式连接;以及将采用目标方式连接后的子模块与供电网和地相联。解决了相关技术中多流制电力机车的网侧变流装置所需要的变压器体积和重量大、制造难度高和制造成本高等问题。通过采用中频变压器,避免了采用传统多流制电力机车网侧变流装置所需要的重量、体积、制造难度和制造成本均很高的变压器,更易于在动力分散型动车组/高铁上实现,同时通过采用n+x冗余设计也进一步大幅提高了多流制电力机车的网侧变流装置和可靠性。
可选地,在本申请实施例提供的多流制电力机车的网侧变流装置的处理方法中,将子模块的输入端采用目标方式连接后,再分别与供电网和地相联之后,该方法还包括:根据目标供电制式和多流制电力机车的运行状态,控制子模块采用相应的工作模式。
可选地,在本申请实施例提供的多流制电力机车的网侧变流装置的处理方法中,网侧变流装置包括供电母线、接地母线、N个子模块和多个开关器件,每个子模块均包括正负两个输入端口和正负两个输出端口,每个子模块的正输入端通过开关器件与供电母线联接;每个子模块的负输入端通过开关器件与接地母线联接;每个子模块的负输入端通过开关器件与下一个子模块的正输入端联接,其中,第一子模块的负输入端与第二子模块的正输入端通过开关器件联接,第二子模块的负输入端与第三子模块的正输入端通过开关器件联接,直至第N-1子模块负输入端与第N子模块正输入端通过开关器件联接,第N子模块的负输入端与第一子模块的正输入端通过开关器件联接;供电母线通过闭合交流或直流开关与交流或直流供电网联接。
可选地,在本申请实施例提供的多流制电力机车的网侧变流装置的处理方法中,若目标供电制式为25kV/50Hz供电制式,将网侧变流装置中使用中频变压器的子模块的输入端采用目标方式连接包括:将所有子模块的输入端依次串联;将子模块的输入端采用目标方式连接后,再分别与供电网和地相联包括:将所有子模块输入端串联后分别与25kV/50Hz供电网和地相联。
可选地,在本申请实施例提供的多流制电力机车的网侧变流装置的处理方法中,将所有子模块的输入端依次串联包括:将第一子模块的负输入端与第二子模块的正输入端相联,第二子模块的负输入端与第三子模块的正输入端相联,直到第N-1子模块的负输入端与第N子模块的正输入端相联,其中,N为网侧变流装置中的子模块的数量;将所有子模块输入端串联后分别与25kV/50Hz供电网和地相联包括:将第一子模块的正输入端与25kV/50Hz供电网相联,将第N子模块负输入端与地相联;根据目标供电制式和多流制电力机车的运行状态,控制子模块采用相应的工作模式包括:在25kV/50Hz供电制式下,在多流制电力机车处于牵引工作状态的情况下,子模块选择整流工作模式;若多流制电力机车处于再生制动工作状态,子模块选择逆变工作模式。
例如,如图2所示,该网侧变流装置有N个子模块SM。其中,每个子模块包含两个AC或DC输入端和两个DC输出端。所有子模块的DC的正负极分别并联,构成多流制电力机车网侧变流装置的DC输出端。在25kV/50Hz供电制式下,所有子模块SM 1…SM N的输入端串联后分别与25kV/50Hz供电网和地相联,每个模块的输入电压的有效值为25/N kV(电压峰值为35.4/N kV)。
可选地,在本申请实施例提供的多流制电力机车的网侧变流装置的处理方法中,将所有子模块的输入端依次串联包括:将第一子模块的负输入端与第二子模块的正输入端之间的开关器件闭合,第二子模块的负输入端与第三子模块的正输入端之间的开关器件闭合,直至第N-1子模块的负输入端与第N子模块的正输入端之间的开关器件闭合,将第一子模块的正输入端与供电母线之间的开关器件闭合,将第N子模块的负输入端与接地母线之间的开关器件闭合;将所有子模块输入端串联后分别与25kV/50Hz供电网和地相联包括:将供电母线与25kV/50Hz交流供电网之间的交流开关闭合;接地接地母线始终与地相联。
例如,第一子模块为SM
1,第二子模块为SM
2,第三子模块为SM
3,第N-1子模块为SM
N-1,第N子模块为SM
N等等,将SM
1与SM
2之间的开关器件闭合,将SM
2与SM
3之间的开关器件闭合,…直到SM
N-1与SM
N之间的开关器件闭合。将SM
1与25kV/50Hz供电网之间的交流主断器(如图6所示的K
AC)闭合,将SM
N与地之间的开关器件(对应图6中的K
N,GND)闭合。
如图6中,在25kV/50Hz供电制式下,K
AC闭合,K
DC断开,K
1,Grid闭合,K
2,Grid…K
N,Grid断开;K
1,GND…K
N-1,GND断开,K
N,Grid闭合;K
1,Next…K
N-1,Next闭合,K
N,Next断开。该电路类似环网的拓扑结构,在25kV/50Hz供电制式下,除可通过第一个子模块SM 1与供电母线相联,通过第N个子模块SM 1与接地母线相联外,还可以通过任意第i个子模块与供电母线相联,通过第i-1个子模块与接地母线相联。从而实现 了对故障的冗余性和更高的可靠性。
需要说明的是,图6中的K
AC为交流主断路器,K
DC为直流主断路器,供电母线通过K
AC或K
DC与交流或直流接触网相联,接地母线通过轮轨接触接地。
可选地,在本申请实施例提供的多流制电力机车的网侧变流装置的处理方法中,若目标供电制式为15kV/16.7Hz供电制式,将网侧变流装置中使用中频变压器的子模块的输入端采用目标方式连接包括:将N个子模块分为两组,每组包含N/2个子模块;每个子模块组内部的N/2个子模块输入端依次串联;两个子模块组的输入端并联,其中,N为网侧变流装置中的子模块的数量;将子模块的输入端采用目标方式连接后,再分别与供电网和地相联包括:在两个子模块组的输入端并联后分别与15kV/16.7Hz供电网和地相联。
可选地,在本申请实施例提供的多流制电力机车的网侧变流装置的处理方法中,每个子模块组内部的N/2个子模块输入端依次串联包括:将第一子模块的负输入端与第二子模块的正输入端相联,第二子模块的负输入端与第三子模块的正输入端相联,直到第N/2-1子模块的负输入端与第N/2子模块的正输入端相联;将第N/2+1子模块的负输入端与第N/2+2子模块的正输入端相联,第N/2+2子模块的负输入端与第N/2+3子模块的正输入端相联,直到第N-1子模块的负输入端与第N子模块的正输入端相联,其中,N为网侧变流装置中的子模块的数量;两个子模块组的输入端并联包括:将第一子模块的正输入端与第N/2+1子模块的正输入端并联;将第N/2子模块的负输入端与第N子模块的负输入端并联;在两个子模块组的输入端并联后分别与15kV/16.7Hz供电网和地相联包括:将第一子模块的正输入端与第N/2+1子模块的正输入端并联后与15kV/16.7Hz供电网相联,将第N/2子模块的负输入端与第N子模块的负输入端并联后与地相联;根据目标供电制式和多流制电力机车的运行状态,控制子模块采用相应的工作模式包括:在15kV/16.7Hz供电制式下,在多流制电力机车处于牵引工作状态的情况下,子模块选择整流工作模式;若多流制电力机车处于再生制动工作状态,子模块选择逆变工作模式。
可选地,在本申请实施例提供的多流制电力机车的网侧变流装置的处理方法中,每个子模块组内部的N/2个子模块输入端依次串联包括:将第一子模块的负输入端与第二子模块的正输入端之间的开关器件闭合,第二子模块的负输入端与第三子模块的正输入端之间的开关器件闭合,直到第N/2-1子模块的负输入端与第N/2子模块的正输入端之间的开关器件闭合;将第N/2+1子模块的负输入端与第N/2+2子模块的正输入端之间的开关器件闭合,第N/2+2子模块的负输入端与第N/2+3子模块的正输入端之间的开关器件闭合,直到第N-1子模块的负输入端与第N子模块的正输入端之间的开关器件闭合,其中,N为网侧变流装置中的子模块的数量;两个子模块组的输入端 并联包括:将第一子模块的正输入端与供电母线之间的开关器件闭合,将第N/2+1子模块的正输入端与供电母线之间的开关器件闭合;将第N/2子模块的负输入端与接地母线之间的开关器件闭合,将第N子模块的负输入端与接地母线之间的开关器件闭合;两个子模块组的输入端并联后分别与15kV/16.7Hz供电网和地相联包括:将供电母线与15kV/16.7Hz交流供电网之间的交流开关闭合;接地母线始终与地相联。
例如,如图3所示,该网侧变流装置有N个子模块SM。其中,每个子模块包含两个AC或DC输入端和两个DC输出端。所有子模块的DC的正负极分别并联,构成多流制电力机车网侧变流装置的DC输出端。在15kV/16.7Hz供电制式下,子模块SM 1…SM N/2以及子模块SM N/2+1…SM N的输入端分别串联,之后再并联并与15kV/16.7Hz供电网和地相联,每个模块的输入电压的有效值为30/N kV(电压峰值为42.4/N kV)。
如图6中,在15kV/16.7Hz供电制式下,K
AC闭合;K
DC断开;K
1,Grid闭合,K
2,Grid…K
N/2,Grid断开;K
N/2+1,Grid闭合,K
N/2+2,Grid…K
N,Grid断开;K
1,GND…K
N/2-1,GND断开,K
N/2,Grid闭合;K
N/2+1,GND…K
N-1,GND断开,K
N,Grid闭合;K
1,Next…K
N/2-1,Next闭合,K
N/2,Next断开;K
N/2,Next…K
N-1,Next闭合,K
N,Next断开;在15kV/16.7Hz供电制式下,由于该电路由两个类似环网的拓扑结构并联而成。每个类环网电路均可通过任意一个子模块SM i的正输入端与供电母线相联,通过其上一个子模块SM i-1的负输入端与接地母线相联,从而实现冗余性和高可靠性。
可选地,在本申请实施例提供的多流制电力机车的网侧变流装置的处理方法中,若目标供电制式为3kV直流供电制式;将网侧变流装置中使用中频变压器的子模块的输入端采用目标方式连接包括:将N个子模块分为L个子模块组,每个子模块组包含M个子模块,每个子模块组内部的M个子模块输入端串联,每个子模块组之间的输入端依次并联,其中,N为所述网侧变流装置中的子模块的总数量,L为子模块组的数量,M为每个子模块组中所包含的子模块数量,N=L*M;将所述子模块的输入端采用所述目标方式连接后,再分别与供电网和地相联包括:在子模块组之间的输入端依次并联后分别与3kV直流供电网和地相联。
可选地,在本申请实施例提供的多流制电力机车的网侧变流装置的处理方法中,每个子模块组内部的M个子模块输入端串联包括:将第一子模块组中的第一子模块的负输入端与第二子模块的正输入端相联,第二子模块的负输入端与第三子模块的正输入端相联,直到第M-1子模块的负输入端与第M子模块的正输入端相联,将第二子模块组中的第M+1子模块的负输入端与第M+2子模块的正输入端相联,第M+2子模块的负输入端与第M+3子模块的正输入端相联,直到第2M-1子模块的负输入端与第2M子模块的正输入端相联,以此类推直至将第L个子模块组中的第(L-1)*M+1子模块 的负输入端与第(L-1)*M+2子模块的正输入端相联,第(L-1)*M+2子模块的负输入端与第(L-1)*M+3子模块的正输入端相联,直到第L*M-1子模块的负输入端与第L*M子模块的正输入端相联;子模块组之间的输入端依次并联包括:将所述第一子模块、所述第M+1子模块直至第(L-1)*M+1子模块的正输入端并联,将所述第M子模块、所述第2M子模块直至第L*M子模块的负输入端并联;在子模块组之间的输入端依次并联后分别与3kV直流供电网和地相联包括:将所述第一子模块、所述第M+1子模块直至第(L-1)*M+1子模块的正输入端并联后与3kV直流供电网相联;将所述第M子模块、所述第2M子模块直至第L*M子模块的负输入端并联后与地相联;根据所述目标供电制式和多流制电力机车的运行状态,控制所述子模块采用相应的工作模式包括:在所述3kV直流供电制式下,若所述多流制电力机车处于牵引工作状态,所述子模块选择正向DC-DC变化工作模式;若所述多流制电力机车处于再生制动工作状态,同时3kV直流供电网具备能量吸收能力,所述子模块选择反向DC-DC变化工作模式;若所述多流制电力机车处于非再生制动工作状态,所述子模块选择闭锁状态,其中,在所述正向DC-DC变化工作模式下电能由输入端流向输出端,在所述反向DC-DC变化工作模式下电能由输出端流向输入端。
可选地,在本申请实施例提供的多流制电力机车的网侧变流装置的处理方法中,每个子模块组内部的M个子模块输入端串联包括:将第一子模块组中的第一子模块的负输入端与第二子模块的正输入端之间的开关器件闭合,第二子模块的负输入端与第三子模块的正输入端之间的开关器件闭合,直到第M-1子模块的负输入端与第M子模块的正输入端之间的开关器件闭合,将第二子模块组中的第M+1子模块的负输入端与第M+2子模块的正输入端之间的开关器件闭合,第M+2子模块的负输入端与第M+3子模块的正输入端之间的开关器件闭合,直到第2M-1子模块的负输入端与第2M子模块的正输入端之间的开关器件闭合,以此类推直至将第L个子模块组中的第(L-1)*M+1子模块的负输入端与第(L-1)*M+2子模块的正输入端之间的开关器件闭合,第(L-1)*M+2子模块的负输入端与第(L-1)*M+3子模块的正输入端之间的开关器件闭合,直到第L*M-1子模块的负输入端与第L*M子模块的正输入端之间的开关器件闭合;子模块组之间的输入端依次并联包括:将所述第一子模块的正输入端与供电母线之间的开关器件闭合,第M+1子模块的正输入端与供电母线之间的开关器件闭合,直至第(L-1)*M+1子模块的正输入端与供电母线之间的开关器件闭合;将所述第M子模块的负输入端与接地母线之间的开关器件闭合,将所述第2M子模块的负输入端与所述接地母线之间的开关器件闭合,直至将所述第L*M子模块的负输入端与所述接地母线之间的开关器件闭合;在子模块组之间的输入端依次并联后分别与3kV直流供电网和地相联包括:将供电母线与3kV直流供电网之间的直流开关闭合;所述接地母线始终与地相联。
例如,如图4所示,该网侧变流装置有N个子模块SM。其中,每个子模块包含两个AC或DC输入端和两个DC输出端。所有子模块的DC的正负极分别并联,构成多流制电力机车网侧变流装置的DC输出端。在3kV直流供电制式下,子模块SM 1与SM 2,SM 3与SM 4…SM N-1与SM N的输入端分别串联,之后再并联并与3kV直流供电网和地相联,每个模块的输入电压的有效值为1.5kV。
如图6中,在3kV直流供电制式下,K
AC断开;K
DC闭合(K
DC为直流主断路器);每两个子模块为一组,如SM 1与SM 2,SM 3与SM 4…SM N-1与SM N;以SM 1和SM 2这一组为例:K1,Grid闭合,K1,GND断开;K2,Grid断开,K2,GN
D闭合;K
1,Next闭合,K
2,Next断开;依此类推,该电路每两个子模块串联后为一组,并联接入供电和接地母线中,因此可随时切入或切除任意一组子模块,具有很高的故障冗余性和可靠性。
需要说明的是,在本申请实施例中,也可以将第一子模块、第二子模块与第三子模块之间的开关器件闭合,第四子模块、第五子模块与第六子模块之间的开关器件闭合,直到第N-2子模块、第N-1子模块与第N子模块之间的开关器件闭合,将第一子模块、第四子模块至第N-2子模块并联,将第三子模块、第六子模块至第N子模块并联,在本申请实施例中不限定将子模块串联分组的子模块的数量,可以是将两个子模块串联为一组,也可以将三个子模块串联为一组,并将各组子模块并联接入供电和接地母线中,可随时切入或切除任意一组子模块,具有很高的故障冗余性和可靠性。
可选地,在本申请实施例提供的多流制电力机车的网侧变流装置的处理方法中,若所述目标供电制式为1.5kV直流供电制式;将网侧变流装置中使用中频变压器的子模块的输入端采用目标方式连接包括:将N个子模块分为P个子模块组,每个子模块组包含Q个子模块,子模块组内部的Q个子模块输入端串联,每个子模块组之间的输入端依次并联,其中,N为所述网侧变流装置中的子模块的总数量,P为子模块组的数量,Q为每个子模块组中所包含的子模块数量,N=P*Q,因为所述1.5kV直流供电制式电压为3kV直流供电制式电压值的一半,其中,P=2L,Q=M/2;将所述子模块的输入端采用所述目标方式连接后,再分别与供电网和地相联包括:将所有子模块的输入端并联后分别与1.5kV直流供电网和地相联。
可选地,在本申请实施例提供的多流制电力机车的网侧变流装置的处理方法中,若所述目标供电制式为1.5kV直流供电制式下,子模块组内部的Q个子模块输入端串联包括:将第一子模块组中的第一子模块的负输入端与第二子模块的正输入端相联,第二子模块的负输入端与第三子模块的正输入端相联,直到第Q-1子模块的负输入端与第Q子模块的正输入端相联,将第二子模块组中的第Q+1子模块的负输入端与第Q+2子模块的正输入端相联,第Q+2子模块的负输入端与第Q+3子模块的正输入端 相联,直到第2Q-1子模块的负输入端与第2Q子模块的正输入端相联,以此类推直至将第P个子模块组中的第(P-1)*Q+1子模块的负输入端与第(P-1)*Q+2子模块的正输入端相联,第(P-1)*Q+2子模块的负输入端与第(P-1)*Q+3子模块的正输入端相联,直到第P*Q-1子模块的负输入端与第P*Q子模块的正输入端相联;子模块组之间的输入端依次并联包括:将所述第一子模块、所述第Q+1子模块直至第(P-1)*Q+1子模块的正输入端并联,将所述第Q子模块、所述第2Q子模块直至第P*Q子模块的负输入端并联;在子模块组之间的输入端依次并联后分别与1.5kV直流供电网和地相联包括:将所述第一子模块、所述第Q+1子模块直至第(P-1)*Q+1子模块的正输入端并联后与1.5kV直流供电网相联;将所述第Q子模块、所述第2Q子模块直至第P*Q子模块的负输入端并联后与地相联;根据所述目标供电制式和多流制电力机车的运行状态,控制所述子模块采用相应的工作模式包括:在所述1.5kV直流供电制式下,若所述多流制电力机车处于牵引工作状态,所述子模块选择正向DC-DC变化工作模式;若所述多流制电力机车处于再生制动工作状态,同时1.5kV直流供电网具备能量吸收能力,所述子模块选择反向DC-DC变化工作模式;若所述多流制电力机车处于非再生制动工作状态,所述子模块选择闭锁状态,其中,在所述正向DC-DC变化工作模式下电能由输入端流向输出端,在所述反向DC-DC变化工作模式下电能由输出端流向输入端。
可选地,在本申请实施例提供的多流制电力机车的网侧变流装置的处理方法中,将所有子模块的输入端并联包括:将所有子模块正输入端与供电母线之间的开关器件闭合;将所有子变流模块的负输入端与地之间的开关器件闭合;子模块组内部的Q个子模块输入端串联包括:将第一子模块组中的第一子模块的负输入端与第二子模块的正输入端之间的开关器件闭合,第二子模块的负输入端与第三子模块的正输入端之间的开关器件闭合,直到第Q-1子模块的负输入端与第Q子模块的正输入端之间的开关器件闭合,将第二子模块组中的第Q+1子模块的负输入端与第Q+2子模块的正输入端之间的开关器件闭合,第Q+2子模块的负输入端与第Q+3子模块的正输入端之间的开关器件闭合,直到第2Q-1子模块的负输入端与第2Q子模块的正输入端之间的开关器件闭合,以此类推直至将第P个子模块组中的第(P-1)*Q+1子模块的负输入端与第(P-1)*Q+2子模块的正输入端之间的开关器件闭合,第(P-1)*Q+2子模块的负输入端与第(P-1)*Q+3子模块的正输入端之间的开关器件闭合,直到第P*Q-1子模块的负输入端与第P*Q子模块的正输入端之间的开关器件闭合;子模块组之间的输入端依次并联包括:将所述第一子模块的正输入端与供电母线之间的开关器件闭合,第Q+1子模块的正输入端与供电母线之间的开关器件闭合,直至第(P-1)*Q+1子模块的正输入端与供电母线之间的开关器件闭合;将所述第Q子模块的负输入端与接地母线之间的开关器件闭合,将所述第2Q子模块的负输入端与所述接地母线之间的开关器件闭合,直至将所述第P*Q子模块的负输入端与所述接地母线之间的开关器件闭合;将所述子模块 的输入端采用所述目标方式连接后,再分别与供电网和地相联包括:将供电母线与1.5kV直流供电网之间的直流开关闭合;接地母线始终与地相联。
例如,如图5所示,该网侧变流装置有N个子模块SM。其中,每个子模块包含两个AC或DC输入端和两个DC输出端。所有子模块的DC输出端的正负极分别并联,构成多流制电力机车网侧变流装置的DC输出端。在1.5kV直流供电制式下,所有子模块SM 1…SM N的输入端分别与1.5kV直流供电网和地相联,每个模块的输入电压的有效值为1.5kV。
如图6中,在1.5kV直流供电制式下,K
AC断开;K
DC闭合,所有子模块K
i,Grid闭合,K
i,GND闭合,K
i,Next断开(i代表第i个子模块),该电路每个子模块均可随时切入或切除,具有很高的故障冗余性和可靠性。同时,在1.5kV直流供电模式下,机车不需要降低额定功率运行。
需要说明的是,上述的子模块SM电路结构如图7所示,包含四象限变流器和一个包含(中频)变压器隔离的DC/DC变换器。四象限变流器可根据不同的电流制式和机车的工作状态,采取不同的工作模式:AC供电模式,牵引工况:整流;AC供电模式,再生制动工况:逆变;DC供电模式,牵引工况:升压斩波;DC供电模式,再生制动工况:通常直流供电网不支持再生制动(若直流供电网支持再生制动,则可参用降压斩波工作方式)。DC/DC变换器要求能够双向变化,同时要求包含变压器以实现输入/输出的电气隔离以及电压的变化。为降低体积和重量,该变压器通常采用中频变压器。DC/DC变换器可采用PWM结构的电路(如DAB)或谐振变换器电路来实现。
下面以7.2MW DC输出功率为例,来说明该多流制电力机车网侧变流装置的具体实施。在该实施实例中,假设该网侧变流装置的转换效率为95%,则输入功率为7.58MW。该网侧变流装置的输出电压为1.8kV。采用的子模块数为N=30个子模块。针对3kV直流供电制式我们选择的子模块分组方案为L=N/2=15,M=2,针对1.5kV直流供电制式我们选择的子模块分组方案为P=N=30,Q=1。在不同供电制式下子模块的分组和串并联组合方式,以及子模块的电压和电流负荷情况如表2所示:
表2
在具体实现上,可以采用3.3kV,450/500A的IGBT器件来实现。当然,也可以采用1.7kV或1.2kV的IGBT模块来实现,但所需的子模块数量N也需要相应增加,针对3kV和1.5kV直流供电制式条件下的子模块分组方案也需要相应调整。
需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本申请实施例还提供了一种多流制电力机车的网侧变流装置的处理装置,需要说明的是,本申请实施例的多流制电力机车的网侧变流装置的处理装置可以用于执行本申请实施例所提供的用于多流制电力机车的网侧变流装置的处理方法。以下对本申请实施例提供的多流制电力机车的网侧变流装置的处理装置进行介绍。
图8是根据本申请实施例的多流制电力机车的网侧变流装置的处理装置的示意图。如图8所示,该装置包括:确定单元10、第一连接单元20和第二连接单元30。
确定单元10,设置为确定多流制电力机车的目标供电制式;
第一连接单元20,设置为在目标供电制式下,将网侧变流装置中使用中频变压器的子模块的输入端采用目标方式连接;以及
第二连接单元30,设置为将子模块的输入端采用目标方式连接后,再分别与供电网和地相联。
本申请实施例提供的多流制电力机车的网侧变流装置的处理装置,通过确定单元10确定多流制电力机车的目标供电制式;第一连接单元20在目标供电制式下,将网侧变流装置中使用中频变压器的子模块的输入端采用目标方式连接;以及第二连接单元30将子模块的输入端采用目标方式连接后,再分别与供电网和地相联,解决了相关技术中多流制电力机车的网侧变流装置所需要的变压器体积和重量大、制造难度高和制造成本高等问题。通过采用中频变压器,避免了采用传统多流制电力机车网侧变流装置所需要的重量、体积、制造难度和制造成本均很高的变压器,更易于在动力分散型动车组/高铁上实现,同时通过采用n+x冗余设计也进一步大幅提高了多流制电力机车的网侧变流装置和可靠性。
可选地,在本申请实施例提供的多流制电力机车的网侧变流装置的处理装置中,该装置还包括:控制单元,设置为将子模块的输入端采用目标方式连接后,再分别与供电网和地相联之后,根据目标供电制式和多流制电力机车的运行状态,控制子模块采用相应的工作模式。
可选地,在本申请实施例提供的多流制电力机车的网侧变流装置的处理装置中,网侧变流装置包括供电母线、接地母线、N个子模块和多个开关器件,每个子模块均包括正负两个输入端口和正负两个输出端口,每个子模块的正输入端通过开关器件与供电母线联接;每个子模块的负输入端通过开关器件与接地母线联接;每个子模块的负输入端通过开关器件与下一个子模块的正输入端联接,其中,第一子模块的负输入端与第二子模块的正输入端通过开关器件联接,第二子模块的负输入端与第三子模块的正输入端通过开关器件联接,直至第N-1子模块负输入端与第N子模块正输入端通过开关器件联接,第N子模块的负输入端与第一子模块的正输入端通过开关器件联接;供电母线通过闭合交流或直流开关与交流或直流供电网联接。
可选地,在本申请实施例提供的多流制电力机车的网侧变流装置的处理装置中,若目标供电制式为25kV/50Hz供电制式,第一连接单元20包括:第一串联模块,设置为将所有子模块的输入端依次串联;第二连接单元30包括:第一联接模块,设置为将所有子模块输入端串联后分别与25kV/50Hz供电网和地相联。
可选地,在本申请实施例提供的多流制电力机车的网侧变流装置的处理装置中,第一串联模块还用于将第一子模块的负输入端与第二子模块的正输入端相联,第二子模块的负输入端与第三子模块的正输入端相联,直到第N-1子模块的负输入端与第N子模块的正输入端相联,其中,N为网侧变流装置中的子模块的数量;第一联接模块还用于将第一子模块的正输入端与25kV/50Hz供电网相联,将第N子模块负输入端与地相联;控制单元还用于在25kV/50Hz供电制式下,在多流制电力机车处于牵引工作状态的情况下,子模块选择整流工作模式;若多流制电力机车处于再生制动工作状态,子模块选择逆变工作模式。
可选地,在本申请实施例提供的多流制电力机车的网侧变流装置的处理装置中,第一串联模块还用于将第一子模块的负输入端与第二子模块的正输入端之间的开关器件闭合,第二子模块的负输入端与第三子模块的正输入端之间的开关器件闭合,直至第N-1子模块的负输入端与第N子模块的正输入端之间的开关器件闭合,将第一子模块的正输入端与供电母线之间的开关器件闭合,将第N子模块的负输入端与接地母线之间的开关器件闭合;第一联接模块还用于将供电母线与25kV/50Hz交流供电网之间的交流开关闭合;接地接地母线始终与地相联。
可选地,在本申请实施例提供的多流制电力机车的网侧变流装置的处理装置中,若目标供电制式为15kV/16.7Hz供电制式,第一连接单元20还包括:第一分组模块,设置为将N个子模块分为两组,每组包含N/2个子模块;第二串联模块,设置为每个子模块组内部的N/2个子模块输入端依次串联;第一并联模块,设置为两个子模块组的输入端并联,其中,N为网侧变流装置中的子模块的数量;第二连接单元30还包括: 第二联接模块,设置为在两个子模块组的输入端并联后分别与15kV/16.7Hz供电网和地相联。
可选地,在本申请实施例提供的多流制电力机车的网侧变流装置的处理装置中,第二串联模块还用于将第一子模块的负输入端与第二子模块的正输入端相联,第二子模块的负输入端与第三子模块的正输入端相联,直到第N/2-1子模块的负输入端与第N/2子模块的正输入端相联;将第N/2+1子模块的负输入端与第N/2+2子模块的正输入端相联,第N/2+2子模块的负输入端与第N/2+3子模块的正输入端相联,直到第N-1子模块的负输入端与第N子模块的正输入端相联,其中,N为网侧变流装置中的子模块的数量;第一并联模块还用于将第一子模块的正输入端与第N/2+1子模块的正输入端并联;将第N/2子模块的负输入端与第N子模块的负输入端并联;第二联接模块还用于将第一子模块的正输入端与第N/2+1子模块的正输入端并联后与15kV/16.7Hz供电网相联,将第N/2子模块的负输入端与第N子模块的负输入端并联后与地相联;控制单元还用于在15kV/16.7Hz供电制式下,在多流制电力机车处于牵引工作状态的情况下,子模块选择整流工作模式;若多流制电力机车处于再生制动工作状态,子模块选择逆变工作模式。
可选地,在本申请实施例提供的多流制电力机车的网侧变流装置的处理装置中,第二串联模块还用于将第一子模块的负输入端与第二子模块的正输入端之间的开关器件闭合,第二子模块的负输入端与第三子模块的正输入端之间的开关器件闭合,直到第N/2-1子模块的负输入端与第N/2子模块的正输入端之间的开关器件闭合;将第N/2+1子模块的负输入端与第N/2+2子模块的正输入端之间的开关器件闭合,第N/2+2子模块的负输入端与第N/2+3子模块的正输入端之间的开关器件闭合,直到第N-1子模块的负输入端与第N子模块的正输入端之间的开关器件闭合,其中,N为网侧变流装置中的子模块的数量;并联模块还用于将第一子模块的正输入端与供电母线之间的开关器件闭合,将第N/2+1子模块的正输入端与供电母线之间的开关器件闭合;将第N/2子模块的负输入端与接地母线之间的开关器件闭合,将第N子模块的负输入端与接地母线之间的开关器件闭合;第二联接模块还用于将供电母线与15kV/16.7Hz交流供电网之间的交流开关闭合;接地母线始终与地相联。
可选地,在本申请实施例提供的多流制电力机车的网侧变流装置的处理装置中,若目标供电制式为3kV直流供电制式;第一连接单元20还包括:第二分组模块,设置为将N个子模块分为L个子模块组,每个子模块组包含M个子模块;第三串联模块,设置为每个子模块组内部的M个子模块输入端串联;第二并联模块,设置为子模块组之间的输入端依次并联,其中,N为所述网侧变流装置中的子模块的总数量,L为子模块组的数量,M为每个子模块组中所包含的子模块数量,N=L*M;第二连接单元30还包括:第三联接模块,设置为在子模块组之间的输入端依次并联后分别与3kV 直流供电网和地相联。
可选地,在本申请实施例提供的多流制电力机车的网侧变流装置的处理装置中,第三串联模块还用于将第一子模块组中的第一子模块的负输入端与第二子模块的正输入端相联,第二子模块的负输入端与第三子模块的正输入端相联,直到第M-1子模块的负输入端与第M子模块的正输入端相联,将第二子模块组中的第M+1子模块的负输入端与第M+2子模块的正输入端相联,第M+2子模块的负输入端与第M+3子模块的正输入端相联,直到第2M-1子模块的负输入端与第2M子模块的正输入端相联,以此类推直至将第L个子模块组中的第(L-1)*M+1子模块的负输入端与第(L-1)*M+2子模块的正输入端相联,第(L-1)*M+2子模块的负输入端与第(L-1)*M+3子模块的正输入端相联,直到第L*M-1子模块的负输入端与第L*M子模块的正输入端相联;第二并联模块还用于将所述第一子模块、所述第M+1子模块直至第(L-1)*M+1子模块的正输入端并联,将所述第M子模块、所述第2M子模块直至第L*M子模块的负输入端并联;第三联接模块还用于将所述第一子模块、所述第M+1子模块直至第(L-1)*M+1子模块的正输入端并联后与3kV直流供电网相联;将所述第M子模块、所述第2M子模块直至第L*M子模块的负输入端并联后与地相联;控制单元还用于在3kV直流供电制式下,若多流制电力机车处于牵引工作状态,子模块选择正向DC-DC变化工作模式;若多流制电力机车处于再生制动工作状态,同时3kV直流供电网具备能量吸收能力,子模块选择反向DC-DC变化工作模式;若多流制电力机车处于非再生制动工作状态,子模块选择闭锁状态,其中,在正向DC-DC变化工作模式下电能由输入端流向输出端,在反向DC-DC变化工作模式下电能由输出端流向输入端。
可选地,在本申请实施例提供的多流制电力机车的网侧变流装置的处理装置中,第三串联模块还用于将第一子模块组中的第一子模块的负输入端与第二子模块的正输入端之间的开关器件闭合,第二子模块的负输入端与第三子模块的正输入端之间的开关器件闭合,直到第M-1子模块的负输入端与第M子模块的正输入端之间的开关器件闭合,将第二子模块组中的第M+1子模块的负输入端与第M+2子模块的正输入端之间的开关器件闭合,第M+2子模块的负输入端与第M+3子模块的正输入端之间的开关器件闭合,直到第2M-1子模块的负输入端与第2M子模块的正输入端之间的开关器件闭合,以此类推直至将第L个子模块组中的第(L-1)*M+1子模块的负输入端与第(L-1)*M+2子模块的正输入端之间的开关器件闭合,第(L-1)*M+2子模块的负输入端与第(L-1)*M+3子模块的正输入端之间的开关器件闭合,直到第L*M-1子模块的负输入端与第L*M子模块的正输入端之间的开关器件闭合;第二并联模块还用于将所述第一子模块的正输入端与供电母线之间的开关器件闭合,第M+1子模块的正输入端与供电母线之间的开关器件闭合,直至第(L-1)*M+1子模块的正输入端与供电母线之间的开关器件闭合;将所述第M子模块的负输入端与接地母线之间的开关器件闭合,将 所述第2M子模块的负输入端与所述接地母线之间的开关器件闭合,直至将所述第L*M子模块的负输入端与所述接地母线之间的开关器件闭合;第三联接模块还用于将供电母线与3kV直流供电网之间的直流开关闭合;所述接地母线始终与地相联。
可选地,在本申请实施例提供的多流制电力机车的网侧变流装置的处理装置中,若目标供电制式为1.5kV直流供电制式;第一连接单元20包括:第三并联模块,设置为将N个子模块分为P个子模块组,每个子模块组包含Q个子模块,子模块组内部的Q个子模块输入端串联,每个子模块组之间的输入端依次并联,其中,N为所述网侧变流装置中的子模块的总数量,P为子模块组的数量,Q为每个子模块组中所包含的子模块数量,N=P*Q,因为所述1.5kV直流供电制式电压为3kV直流供电制式电压值的一半,其中,P=2L,Q=M/2;
第二连接单元30包括:第四联接模块,设置为将所有子模块的输入端并联后分别与1.5kV直流供电网和地相联。
可选地,在本申请实施例提供的多流制电力机车的网侧变流装置的处理装置中,若目标供电制式为1.5kV直流供电制式下,第三并联模块还用于将第一子模块组中的第一子模块的负输入端与第二子模块的正输入端相联,第二子模块的负输入端与第三子模块的正输入端相联,直到第Q-1子模块的负输入端与第Q子模块的正输入端相联,将第二子模块组中的第Q+1子模块的负输入端与第Q+2子模块的正输入端相联,第Q+2子模块的负输入端与第Q+3子模块的正输入端相联,直到第2Q-1子模块的负输入端与第2Q子模块的正输入端相联,以此类推直至将第P个子模块组中的第(P-1)*Q+1子模块的负输入端与第(P-1)*Q+2子模块的正输入端相联,第(P-1)*Q+2子模块的负输入端与第(P-1)*Q+3子模块的正输入端相联,直到第P*Q-1子模块的负输入端与第P*Q子模块的正输入端相联;子模块组之间的输入端依次并联包括:将所述第一子模块、所述第Q+1子模块直至第(P-1)*Q+1子模块的正输入端并联,将所述第Q子模块、所述第2Q子模块直至第P*Q子模块的负输入端并联;第四联接模块还用于将所述第一子模块、所述第Q+1子模块直至第(P-1)*Q+1子模块的正输入端并联后与1.5kV直流供电网相联;将所述第Q子模块、所述第2Q子模块直至第P*Q子模块的负输入端并联后与地相联;控制单元还用于在1.5kV直流供电制式下,若多流制电力机车处于牵引工作状态,子模块选择正向DC-DC变化工作模式;若多流制电力机车处于再生制动工作状态,同时1.5kV直流供电网具备能量吸收能力,子模块选择反向DC-DC变化工作模式;若多流制电力机车处于非再生制动工作状态,子模块选择闭锁状态,其中,在正向DC-DC变化工作模式下电能由输入端流向输出端,在反向DC-DC变化工作模式下电能由输出端流向输入端。
可选地,在本申请实施例提供的多流制电力机车的网侧变流装置的处理装置中,第三并联模块还用于将所有子模块正输入端与供电母线之间的开关器件闭合;将所有 子变流模块的负输入端与地之间的开关器件闭合;子模块组内部的Q个子模块输入端串联包括:将第一子模块组中的第一子模块的负输入端与第二子模块的正输入端之间的开关器件闭合,第二子模块的负输入端与第三子模块的正输入端之间的开关器件闭合,直到第Q-1子模块的负输入端与第Q子模块的正输入端之间的开关器件闭合,将第二子模块组中的第Q+1子模块的负输入端与第Q+2子模块的正输入端之间的开关器件闭合,第Q+2子模块的负输入端与第Q+3子模块的正输入端之间的开关器件闭合,直到第2Q-1子模块的负输入端与第2Q子模块的正输入端之间的开关器件闭合,以此类推直至将第P个子模块组中的第(P-1)*Q+1子模块的负输入端与第(P-1)*Q+2子模块的正输入端之间的开关器件闭合,第(P-1)*Q+2子模块的负输入端与第(P-1)*Q+3子模块的正输入端之间的开关器件闭合,直到第P*Q-1子模块的负输入端与第P*Q子模块的正输入端之间的开关器件闭合;子模块组之间的输入端依次并联包括:将所述第一子模块的正输入端与供电母线之间的开关器件闭合,第Q+1子模块的正输入端与供电母线之间的开关器件闭合,直至第(P-1)*Q+1子模块的正输入端与供电母线之间的开关器件闭合;将所述第Q子模块的负输入端与接地母线之间的开关器件闭合,将所述第2Q子模块的负输入端与所述接地母线之间的开关器件闭合,直至将所述第P*Q子模块的负输入端与所述接地母线之间的开关器件闭合;第四联接模块还用于将供电母线与1.5kV直流供电网之间的直流开关闭合;接地母线始终与地相联。
所述多流制电力机车的网侧变流装置的处理装置包括处理器和存储器,上述确定单元10、第一连接单元20和第二连接单元30等均作为程序单元存储在存储器中,由处理器执行存储在存储器中的上述程序单元来实现相应的功能。
处理器中包含内核,由内核去存储器中调取相应的程序单元。内核可以设置一个或以上,通过调整内核参数来解决了相关技术中多流制电力机车的网侧变流装置所需要的变压器体积和重量大、制造难度高和制造成本高等问题。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM),存储器包括至少一个存储芯片。
本发明实施例提供了一种存储介质,其上存储有程序,该程序被处理器执行时实现所述多流制电力机车的网侧变流装置的处理方法。
本发明实施例提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行所述多流制电力机车的网侧变流装置的处理方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件 方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。
Claims (18)
- 一种多流制电力机车的网侧变流装置的处理方法,包括:确定多流制电力机车的目标供电制式;在所述目标供电制式下,将网侧变流装置中使用中频变压器的子模块的输入端采用目标方式连接;以及将所述子模块的输入端采用所述目标方式连接后,再分别与供电网和地相联。
- 根据权利要求1所述的处理方法,其中,将所述子模块的输入端采用所述目标方式连接后,再分别与供电网和地相联之后,所述方法还包括:根据所述目标供电制式和多流制电力机车的运行状态,控制所述子模块采用相应的工作模式。
- 根据权利要求1所述的处理方法,其中,所述网侧变流装置包括供电母线、接地母线、N个子模块和多个开关器件,每个子模块均包括正负两个输入端口和正负两个输出端口,每个子模块的正输入端通过开关器件与供电母线联接;每个子模块的负输入端通过开关器件与所述接地母线联接;每个子模块的负输入端通过开关器件与下一个子模块的正输入端联接,其中,第一子模块的负输入端与第二子模块的正输入端通过开关器件联接,所述第二子模块的负输入端与第三子模块的正输入端通过开关器件联接,直至第N-1子模块负输入端与第N子模块正输入端通过开关器件联接,所述第N子模块的负输入端与所述第一子模块的正输入端通过开关器件联接;所述供电母线通过交流或直流开关与交流或直流供电网联接。
- 根据权利要求2所述的处理方法,其中,若所述目标供电制式为25kV/50Hz供电制式,将网侧变流装置中使用中频变压器的子模块的输入端采用目标方式连接包括:将所有子模块的输入端依次串联;将所述子模块的输入端采用所述目标方式连接后,再分别与供电网和地相联包括:将所有子模块输入端串联后分别与25kV/50Hz供电网和地相联。
- 根据权利要求4所述的处理方法,其中,将所有子模块的输入端依次串联包括:将第一子模块的负输入端与第二子模块的正输入端相联,所述第二子模块的负输入端与第三子模块的正输入端相联,直到第N-1子模块的负输入端与第N子模块的正输入端相联,其中,N为所述网侧变流装置中的子模块的总数量;将所有子模块输入端串联后分别与25kV/50Hz供电网和地相联包括:将所述第一子模块的正输入端与所述25kV/50Hz供电网相联,将所述第N子模块负输入端与地相联;根据所述目标供电制式和多流制电力机车的运行状态,控制所述子模块采用相应的工作模式包括:在所述25kV/50Hz供电制式下,在所述多流制电力机车处于牵引工作状态的情况下,所述子模块选择整流工作模式;若所述多流制电力机车处于再生制动工作状态,所述子模块选择逆变工作模式。
- 根据权利要求5所述的处理方法,其中,将所有子模块的输入端依次串联包括:将所述第一子模块的负输入端与所述第二子模块的正输入端之间的开关器件闭合,所述第二子模块的负输入端与所述第三子模块的正输入端之间的开关器件闭合,直至第所述N-1子模块的负输入端与所述第N子模块的正输入端之间的开关器件闭合,将所述第一子模块的正输入端与供电母线之间的开关器件闭合,将所述第N子模块的负输入端与接地母线之间的开关器件闭合;将所有子模块输入端串联后分别与25kV/50Hz供电网和地相联包括:将供电母线与25kV/50Hz交流供电网之间的交流开关闭合;接地所述接地母线始终与地相联。
- 根据权利要求2所述的处理方法,其中,若所述目标供电制式为15kV/16.7Hz供电制式,将网侧变流装置中使用中频变压器的子模块的输入端采用目标方式连接包括:将N个子模块分为两组,每组包含N/2个子模块;每个子模块组内部的N/2个子模块输入端依次串联;两个子模块组的输入端并联,其中,N为所述网侧变流装置中的子模块的总数量;将所述子模块的输入端采用所述目标方式连接后,再分别与供电网和地相联包括:在两个子模块组的输入端并联后分别与15kV/16.7Hz供电网和地相联。
- 根据权利要求7所述的处理方法,其中,每个子模块组内部的N/2个子模块输入端依次串联包括:将第一子模块的负输入端与第二子模块的正输入端相联,所述第二子模块的负输入端与第三子模块的正输入端相联,直到第N/2-1子模块的负输入端与第N/2子模块的正输入端相联;将第N/2+1子模块的负输入端与第N/2+2子模块的正输入端相联,所述第N/2+2子模块的负输入端与第N/2+3子模块的正输入端相联,直到第N-1子模块 的负输入端与第N子模块的正输入端相联,其中,N为所述网侧变流装置中的子模块的总数量;两个子模块组的输入端并联包括:将所述第一子模块的正输入端与所述第N/2+1子模块的正输入端并联;将所述第N/2子模块的负输入端与所述第N子模块的负输入端并联;在两个子模块组的输入端并联后分别与15kV/16.7Hz供电网和地相联包括:将所述第一子模块的正输入端与所述第N/2+1子模块的正输入端并联后与所述15kV/16.7Hz供电网相联,将所述第N/2子模块的负输入端与所述第N子模块的负输入端并联后与地相联;根据所述目标供电制式和多流制电力机车的运行状态,控制所述子模块采用相应的工作模式包括:在所述15kV/16.7Hz供电制式下,在所述多流制电力机车处于牵引工作状态的情况下,所述子模块选择整流工作模式;若所述多流制电力机车处于再生制动工作状态,所述子模块选择逆变工作模式。
- 根据权利要求8所述的处理方法,其中,每个子模块组内部的N/2个子模块输入端依次串联包括:将第一子模块的负输入端与第二子模块的正输入端之间的开关器件闭合,所述第二子模块的负输入端与第三子模块的正输入端之间的开关器件闭合,直到第N/2-1子模块的负输入端与第N/2子模块的正输入端之间的开关器件闭合;将所述第N/2+1子模块的负输入端与第N/2+2子模块的正输入端之间的开关器件闭合,所述第N/2+2子模块的负输入端与第N/2+3子模块的正输入端之间的开关器件闭合,直到第N-1子模块的负输入端与第N子模块的正输入端之间的开关器件闭合,其中,N为所述网侧变流装置中的子模块的总数量;两个子模块组的输入端并联包括:将所述第一子模块的正输入端与供电母线之间的开关器件闭合,将所述第N/2+1子模块的正输入端与供电母线之间的开关器件闭合;将所述第N/2子模块的负输入端与接地母线之间的开关器件闭合,将所述第N子模块的负输入端与所述接地母线之间的开关器件闭合;两个子模块组的输入端并联后分别与15kV/16.7Hz供电网和地相联包括:将供电母线与15kV/16.7Hz交流供电网之间的交流开关闭合;所述接地母线始终与地相联。
- 根据权利要求2所述的处理方法,其中,若所述目标供电制式为3kV直流供电制式;将网侧变流装置中使用中频变压器的子模块的输入端采用目标方式连接包括:将N个子模块分为L个子模块组,每个子模块组包含M个子模块,每个子模块组内部的M个子模块输入端串联,每个子模块组之间的输入端依次并联,其中,N为所述网侧变流装置中的子模块的总数量,L为子模块组的数量,M为每个子模块组中所包含的子模块数量,N=L*M;将所述子模块的输入端采用所述目标方式连接后,再分别与供电网和地相联包括:在子模块组之间的输入端依次并联后分别与3kV直流供电网和地相联。
- 根据权利要求10所述的处理方法,其中,每个子模块组内部的M个子模块输入端串联包括:将第一子模块组中的第一子模块的负输入端与第二子模块的正输入端相联,第二子模块的负输入端与第三子模块的正输入端相联,直到第M-1子模块的负输入端与第M子模块的正输入端相联,将第二子模块组中的第M+1子模块的负输入端与第M+2子模块的正输入端相联,第M+2子模块的负输入端与第M+3子模块的正输入端相联,直到第2M-1子模块的负输入端与第2M子模块的正输入端相联,以此类推直至将第L个子模块组中的第(L-1)*M+1子模块的负输入端与第(L-1)*M+2子模块的正输入端相联,第(L-1)*M+2子模块的负输入端与第(L-1)*M+3子模块的正输入端相联,直到第L*M-1子模块的负输入端与第L*M子模块的正输入端相联;子模块组之间的输入端依次并联包括:将所述第一子模块、所述第M+1子模块直至第(L-1)*M+1子模块的正输入端并联,将所述第M子模块、所述第2M子模块直至第L*M子模块的负输入端并联;在子模块组之间的输入端依次并联后分别与3kV直流供电网和地相联包括:将所述第一子模块、所述第M+1子模块直至第(L-1)*M+1子模块的正输入端并联后与3kV直流供电网相联;将所述第M子模块、所述第2M子模块直至第L*M子模块的负输入端并联后与地相联;根据所述目标供电制式和多流制电力机车的运行状态,控制所述子模块采用相应的工作模式包括:在所述3kV直流供电制式下,若所述多流制电力机车处于牵引工作状态,所述子模块选择正向DC-DC变化工作模式;若所述多流制电力机车处于再生制动工作状态,同时3kV直流供电网具备能量吸收能力,所述子模块选择反向DC-DC变化工作模式;若所述多流制电力机车处于非再生制动工作状态,所述子模块选择闭锁状态,其中,在所述正向DC-DC变化工作模式下电能由输入端流向输出端,在所述反向DC-DC变化工作模式下电能由输出端流向输入端。
- 根据权利要求11所述的处理方法,其中,每个子模块组内部的M个子模块输入端串联包括:将第一子模块组中的第一子模块的负输入端与第二子模块的正输入端之间的开关器件闭合,第二子模块的负输入端与第三子模块的正输入端之间的开关器件闭合,直到第M-1子模块的负输入端与第M子模块的正输入端之间的开关器件闭合,将第二子模块组中的第M+1子模块的负输入端与第M+2子模块的正输入端之间的开关器件闭合,第M+2子模块的负输入端与第M+3子模块的正输入端之间的开关器件闭合,直到第2M-1子模块的负输入端与第2M子模块的正输入端之间的开关器件闭合,以此类推直至将第L个子模块组中的第(L-1)*M+1子模块的负输入端与第(L-1)*M+2子模块的正输入端之间的开关器件闭合,第(L-1)*M+2子模块的负输入端与第(L-1)*M+3子模块的正输入端之间的开关器件闭合,直到第L*M-1子模块的负输入端与第L*M子模块的正输入端之间的开关器件闭合;子模块组之间的输入端依次并联包括:将所述第一子模块的正输入端与供电母线之间的开关器件闭合,第M+1子模块的正输入端与供电母线之间的开关器件闭合,直至第(L-1)*M+1子模块的正输入端与供电母线之间的开关器件闭合;将所述第M子模块的负输入端与接地母线之间的开关器件闭合,将所述第2M子模块的负输入端与所述接地母线之间的开关器件闭合,直至将所述第L*M子模块的负输入端与所述接地母线之间的开关器件闭合;在子模块组之间的输入端依次并联后分别与3kV直流供电网和地相联包括:将供电母线与3kV直流供电网之间的直流开关闭合;所述接地母线始终与地相联。
- 根据权利要求2所述的处理方法,其中,若所述目标供电制式为1.5kV直流供电制式;将网侧变流装置中使用中频变压器的子模块的输入端采用目标方式连接包括:将N个子模块分为P个子模块组,每个子模块组包含Q个子模块,子模块组内部的Q个子模块输入端串联,每个子模块组之间的输入端依次并联,其中,N为所述网侧变流装置中的子模块的总数量,P为子模块组的数量,Q为每个子模块组中所包含的子模块数量,N=P*Q,因为所述1.5kV直流供电制式电压为3kV直流供电制式电压值的一半,其中,P=2L,Q=M/2;将所述子模块的输入端采用所述目标方式连接后,再分别与供电网和地相联包括:将所有子模块的输入端并联后分别与1.5kV直流供电网和地相联。
- 根据权利要求13所述的处理方法,其中,若所述目标供电制式为1.5kV直流供电制式下,子模块组内部的Q个子模块输入端串联包括:将第一子模块组中的第一子模块的负输入端与第二子模块的正输入端相联,第二子模块的负输入端与第三子模块的正输入端相联,直到第Q-1子模块的负输入端与第Q子模块的正输入端相联,将第二子模块组中的第Q+1子模块的负输入端与第Q+2子模块的正输入端相联,第Q+2子模块的负输入端与第Q+3子模块的正输入端相联,直到第2Q-1子模块的负输入端与第2Q子模块的正输入端相联,以此类推直至将第P个子模块组中的第(P-1)*Q+1子模块的负输入端与第(P-1)*Q+2子模块的正输入端相联,第(P-1)*Q+2子模块的负输入端与第(P-1)*Q+3子模块的正输入端相联,直到第P*Q-1子模块的负输入端与第P*Q子模块的正输入端相联;子模块组之间的输入端依次并联包括:将所述第一子模块、所述第Q+1子模块直至第(P-1)*Q+1子模块的正输入端并联,将所述第Q子模块、所述第2Q子模块直至第P*Q子模块的负输入端并联;在子模块组之间的输入端依次并联后分别与1.5kV直流供电网和地相联包括:将所述第一子模块、所述第Q+1子模块直至第(P-1)*Q+1子模块的正输入端并联后与1.5kV直流供电网相联;将所述第Q子模块、所述第2Q子模块直至第P*Q子模块的负输入端并联后与地相联;根据所述目标供电制式和多流制电力机车的运行状态,控制所述子模块采用相应的工作模式包括:在所述1.5kV直流供电制式下,若所述多流制电力机车处于牵引工作状态,所述子模块选择正向DC-DC变化工作模式;若所述多流制电力机车处于再生制动工作状态,同时1.5kV直流供电网具备能量吸收能力,所述子模块选择反向DC-DC变化工作模式;若所述多流制电力机车处于非再生制动工作状态,所述子模块选择闭锁状态,其中,在所述正向DC-DC变化工作模式下电能由输入端流向输出端,在所述反向DC-DC变化工作模式下电能由输出端流向输入端。
- 根据权利要求14所述的处理方法,其中,将所有子模块的输入端并联包括:将所有子模块正输入端与供电母线之间的开关器件闭合;将所有子变流模块的负输入端与地之间的开关器件闭合;子模块组内部的Q个子模块输入端串联包括:将第一子模块组中的第一子模块的负输入端与第二子模块的正输入端之间的开关器件闭合,第二子模块的负输入端与第三子模块的正输入端之间的开关器件闭合,直到第Q-1子模块的负输入端与第Q子模块的正输入端之间的开关器件闭合,将第二子模块组中的第Q+1子模块的负输入端与第Q+2子模块的正输入端之间的开关器件闭合,第Q+2子模块 的负输入端与第Q+3子模块的正输入端之间的开关器件闭合,直到第2Q-1子模块的负输入端与第2Q子模块的正输入端之间的开关器件闭合,以此类推直至将第P个子模块组中的第(P-1)*Q+1子模块的负输入端与第(P-1)*Q+2子模块的正输入端之间的开关器件闭合,第(P-1)*Q+2子模块的负输入端与第(P-1)*Q+3子模块的正输入端之间的开关器件闭合,直到第P*Q-1子模块的负输入端与第P*Q子模块的正输入端之间的开关器件闭合;子模块组之间的输入端依次并联包括:将所述第一子模块的正输入端与供电母线之间的开关器件闭合,第Q+1子模块的正输入端与供电母线之间的开关器件闭合,直至第(P-1)*Q+1子模块的正输入端与供电母线之间的开关器件闭合;将所述第Q子模块的负输入端与接地母线之间的开关器件闭合,将所述第2Q子模块的负输入端与所述接地母线之间的开关器件闭合,直至将所述第P*Q子模块的负输入端与所述接地母线之间的开关器件闭合;将所述子模块的输入端采用所述目标方式连接后,再分别与供电网和地相联包括:将供电母线与1.5kV直流供电网之间的直流开关闭合;接地母线始终与地相联。
- 一种多流制电力机车的网侧变流装置的处理装置,包括:确定单元,设置为确定多流制电力机车的目标供电制式;第一连接单元,设置为在所述目标供电制式下,将网侧变流装置中使用中频变压器的子模块的输入端采用目标方式连接;以及第二连接单元,设置为将所述子模块的输入端采用所述目标方式连接后,再分别与供电网和地相联。
- 根据权利要求16所述的处理装置,其中,所述装置还包括:控制单元,设置为将所述子模块的输入端采用所述目标方式连接后,再分别与供电网和地相联之后,根据所述目标供电制式和多流制电力机车的运行状态,控制所述子模块采用相应的工作模式。
- 根据权利要求16所述的处理装置,其中,所述网侧变流装置包括供电母线、接地母线、N个子模块和多个开关器件,每个子模块均包括正负两个输入端口和正负两个输出端口,每个子模块的正输入端通过开关器件与供电母线联接;每个子模块的负输入端通过开关器件与所述接地母线联接;每个子模块的负输入端通过开关器件与下一个子模块的正输入端联接,其中,第一子模块的负输入端与第二子模块的正输入端通过开关器件联接,所述第二子模块的负输入端与第三子模块的 正输入端通过开关器件联接,直至第N-1子模块负输入端与第N子模块正输入端通过开关器件联接,所述第N子模块的负输入端与所述第一子模块的正输入端通过开关器件联接;所述供电母线通过闭合交流或直流开关与交流或直流供电网联接。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19825003.7A EP3815960B1 (en) | 2018-06-26 | 2019-04-16 | Method and apparatus for handling grid-side converter apparatus of multi-current electric locomotive |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810672799.7A CN108819800B (zh) | 2018-06-26 | 2018-06-26 | 多流制电力机车的网侧变流装置的处理方法及装置 |
CN201810672799.7 | 2018-06-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020001133A1 true WO2020001133A1 (zh) | 2020-01-02 |
Family
ID=64138908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/082871 WO2020001133A1 (zh) | 2018-06-26 | 2019-04-16 | 多流制电力机车的网侧变流装置的处理方法及装置 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3815960B1 (zh) |
CN (1) | CN108819800B (zh) |
WO (1) | WO2020001133A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108819800B (zh) * | 2018-06-26 | 2021-06-01 | 贾晶艳 | 多流制电力机车的网侧变流装置的处理方法及装置 |
CN110254243B (zh) * | 2019-06-28 | 2021-09-17 | 中车株洲电力机车有限公司 | 一种列车供电系统、方法及列车 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3226549A1 (de) * | 1981-07-13 | 1983-02-03 | Kollmorgen Technologies Corp., 75201 Dallas, Tex. | Motorantrieb mit wahlweiser parallel- und serienschaltung |
EP0330055A1 (de) * | 1988-02-22 | 1989-08-30 | Siemens Aktiengesellschaft | Verfahren zur symmetrischen Spannungsaufteilung einer an einem aus n Kondensatoren bestehenden Spannungsteiler anstehenden Gleichspannung und Schaltungsanordnung zur Durchführung des Verfahrens |
CN1188453A (zh) * | 1996-04-13 | 1998-07-22 | Abb戴姆勒-奔驰运输(技术)有限公司 | 高压换流器系统 |
CN104085311A (zh) * | 2014-07-08 | 2014-10-08 | 株洲南车时代电气股份有限公司 | 一种多流制变流系统 |
CN104467455A (zh) * | 2014-12-04 | 2015-03-25 | 株洲南车时代电气股份有限公司 | 一种多流制变流装置 |
CN108819800A (zh) * | 2018-06-26 | 2018-11-16 | 贾晶艳 | 多流制电力机车的网侧变流装置的处理方法及装置 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2749230B1 (fr) * | 1996-06-04 | 2003-01-31 | Gec Alsthom Transport Sa | Chaine de traction multicourant |
DE19801026C1 (de) * | 1998-01-08 | 1999-10-21 | Abb Daimler Benz Transp | Verfahren zur Erzeugung von Stellbefehlen für Stromrichter |
DE19817752B4 (de) * | 1998-04-21 | 2004-08-26 | Siemens Ag | Elektrische Schaltungsanordnung zum Versorgen eines elektrischen Antriebssystems |
EP1288060A1 (fr) * | 2001-08-31 | 2003-03-05 | Alstom Belgium S.A. | Alimentation électrique à tensions multiples pour véhicule ferroviaire |
DE10204219A1 (de) * | 2002-01-29 | 2003-08-14 | Samir Salama | Stromrichtersystem |
CN101552543B (zh) * | 2009-01-08 | 2012-02-29 | 广州金升阳科技有限公司 | 一种多路输入交直流混合供电电源 |
JP4783453B2 (ja) * | 2009-09-10 | 2011-09-28 | 力也 阿部 | 多端子型非同期連系装置、電力機器制御端末装置と電力ネットワークシステムおよびその制御方法 |
RU2422299C1 (ru) * | 2009-12-07 | 2011-06-27 | Ооо "Гамем" | Система электроснабжения электропоезда с асинхронным тяговым приводом |
DE102010039699A1 (de) * | 2010-08-24 | 2012-03-01 | Siemens Aktiengesellschaft | Antriebssystem für ein Schienenfahrzeug |
CN102267405B (zh) * | 2011-05-09 | 2013-11-06 | 株洲变流技术国家工程研究中心有限公司 | 一种能馈型牵引供电装置及其控制方法 |
DE102011085481A1 (de) * | 2011-10-28 | 2013-05-02 | Bombardier Transportation Gmbh | Elektrische Energieversorgungsanordnung für Antriebseinrichtungen, zum Betreiben eines Schienenfahrzeugs an elektrischen Versorgungsnetzen |
DE102012209071A1 (de) * | 2012-05-30 | 2013-12-05 | Siemens Aktiengesellschaft | Vorrichtung für ein elektrisch angetriebenes Schienenfahrzeug |
DE102014201955A1 (de) * | 2014-02-04 | 2015-08-06 | Siemens Aktiengesellschaft | Bordnetzeinheit für ein Schienenfahrzeug |
CN107627862B (zh) * | 2016-07-19 | 2024-03-26 | 株洲中车时代电气股份有限公司 | 一种多流制变流设备 |
CN206698126U (zh) * | 2017-05-17 | 2017-12-01 | 中国铁道科学研究院 | 一种牵引动力装置 |
CN107139736A (zh) * | 2017-06-09 | 2017-09-08 | 华北科技学院 | 一种智能化高效电机车牵引驱动控制系统及其方法 |
-
2018
- 2018-06-26 CN CN201810672799.7A patent/CN108819800B/zh active Active
-
2019
- 2019-04-16 WO PCT/CN2019/082871 patent/WO2020001133A1/zh unknown
- 2019-04-16 EP EP19825003.7A patent/EP3815960B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3226549A1 (de) * | 1981-07-13 | 1983-02-03 | Kollmorgen Technologies Corp., 75201 Dallas, Tex. | Motorantrieb mit wahlweiser parallel- und serienschaltung |
EP0330055A1 (de) * | 1988-02-22 | 1989-08-30 | Siemens Aktiengesellschaft | Verfahren zur symmetrischen Spannungsaufteilung einer an einem aus n Kondensatoren bestehenden Spannungsteiler anstehenden Gleichspannung und Schaltungsanordnung zur Durchführung des Verfahrens |
CN1188453A (zh) * | 1996-04-13 | 1998-07-22 | Abb戴姆勒-奔驰运输(技术)有限公司 | 高压换流器系统 |
CN104085311A (zh) * | 2014-07-08 | 2014-10-08 | 株洲南车时代电气股份有限公司 | 一种多流制变流系统 |
CN104467455A (zh) * | 2014-12-04 | 2015-03-25 | 株洲南车时代电气股份有限公司 | 一种多流制变流装置 |
CN108819800A (zh) * | 2018-06-26 | 2018-11-16 | 贾晶艳 | 多流制电力机车的网侧变流装置的处理方法及装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3815960A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3815960A4 (en) | 2022-03-30 |
CN108819800A (zh) | 2018-11-16 |
CN108819800B (zh) | 2021-06-01 |
EP3815960B1 (en) | 2024-02-28 |
EP3815960A1 (en) | 2021-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104980054B (zh) | 多电平功率转换器 | |
US10924031B2 (en) | Internal paralleled active neutral point clamped converter with logic-based flying capacitor voltage balancing | |
US9800167B2 (en) | Multi-phase AC/AC step-down converter for distribution systems | |
CN104702114B (zh) | 一种开关电容接入的高频链双向直流变压器及其控制方法 | |
US9083230B2 (en) | Multilevel voltage source converters and systems | |
US8779730B2 (en) | Capacitor discharge in a cell based voltage source converter | |
CN107769239B (zh) | 一种新型的交流电力电子变压器拓扑结构 | |
CN105849994B (zh) | 断路器电路 | |
US10003257B2 (en) | Converter | |
CN110635468B (zh) | 一种远海风电场拓扑结构及其控制方法 | |
CN103051236A (zh) | 基于三相多分裂变压器的chb级联型光伏逆变电路 | |
CN106655841A (zh) | 一种新的基于模块化多电平变换器的三相变流器拓扑 | |
US20180241321A1 (en) | Voltage source converter and control thereof | |
CN101645646A (zh) | 一种可变电压等级恒功率输出的变流器实现方法 | |
CN104753322A (zh) | 能量路由器主电路拓扑和供电系统 | |
CN111541370B (zh) | 用于真伪双极互联的柔性直流输电dc/dc变换器 | |
WO2020001133A1 (zh) | 多流制电力机车的网侧变流装置的处理方法及装置 | |
US20190068081A1 (en) | Converter | |
CN104767393A (zh) | 一种级联-并联混合变换器装置 | |
CN103036449A (zh) | 四象限三电平功率单元及高压变频器 | |
CN103178720A (zh) | 一种高压矩阵变换器 | |
CN104811054A (zh) | 一种牵引变压装置及方法 | |
WO2018091065A1 (en) | A modular multilevel converter for use in a high voltage traction system | |
CN108604797B (zh) | 多电平功率变流器及用于控制多电平功率变流器的方法 | |
CN108173447B (zh) | 配网级高频隔离型柔性直流换流器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19825003 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019825003 Country of ref document: EP Effective date: 20210126 |