WO2020001082A1 - 一种基于迁移学习的人脸属性分析方法 - Google Patents
一种基于迁移学习的人脸属性分析方法 Download PDFInfo
- Publication number
- WO2020001082A1 WO2020001082A1 PCT/CN2019/078472 CN2019078472W WO2020001082A1 WO 2020001082 A1 WO2020001082 A1 WO 2020001082A1 CN 2019078472 W CN2019078472 W CN 2019078472W WO 2020001082 A1 WO2020001082 A1 WO 2020001082A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- face
- attributes
- samples
- attribute prediction
- sample
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/168—Feature extraction; Face representation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/172—Classification, e.g. identification
Definitions
- the invention discloses a method for analyzing face attributes based on transfer learning, and belongs to the technical field of computational estimation, in particular to the field of computer vision technology for identifying face attributes.
- Face attribute analysis refers to analyzing whether a particular picture is a human face, correcting a human face that is not in the center of the image or is too small, positioning key points of the face, and judging the facial features of other people's faces.
- the different attributes analyzed can be applied to different occasions: judging whether it is a human face, filtering non-human faces that are misdetected in face detection; correcting faces that are not in the center of the image or being too large or too small, and positioning key points of the face, can fine-tune the face Detection results; judging the facial features of other people's faces can further provide feature indexes for large sample face recognition tasks and can be used to assist other face related tasks.
- face attribute analysis uses deep learning convolutional neural networks for feature extraction, and then classifies according to the extracted features to obtain the relevant attributes of the face.
- convolutional neural networks do not require a large amount of prior knowledge. After training, as long as a picture is input, the features of the picture can be automatically extracted.
- Multi-task learning is a technology widely used in the field of deep learning. Because a single task is too simple, it is easy to fall into a local minimum during training, and it is difficult to achieve good results in prediction. Therefore, when analyzing face attributes, it is often Train multiple related attributes simultaneously. However, face attributes are different from tasks such as face recognition where multi-class samples are easy to obtain. Traditional face attribute analysis methods have only a few simple classification tasks and no regression tasks with high accuracy requirements, so they are still prone to overfitting.
- face attribute analysis usually requires face detection before inputting the detected face image into the attribute analysis system. Because the face detection results are extremely unstable under complex conditions, there are often deviations, which leads to the accuracy of face attribute analysis being affected. For example, when a non-face is input, because there is no assistance in the face recognition task, the traditional attribute analysis system will also output a certain face attribute without identifying a negative sample of the non-face.
- the object of the present invention is to address the shortcomings of the background art described above, and to provide a face attribute analysis method based on transfer learning, to achieve a more flexible and accurate face attribute analysis, and to solve the problem caused by traditional attribute analysis using only simple classification tasks. Overfitting technical issues.
- a method for analyzing face attributes based on transfer learning includes the following steps:
- Step 1 Design the structure of the convolutional neural network.
- the convolutional neural network includes a multi-attribute prediction network and a main attribute prediction network.
- the output of the fully connected layer of the main attribute prediction network only includes the main attribute prediction part.
- the convolution of the main attribute prediction network Layer and the convolutional layer part of the multi-attribute prediction network are exactly the same;
- Step 2 Prepare a training data set.
- the data set includes training sample sets and corresponding annotations established through various face databases. Each picture has its own label.
- the training sample set includes positive face samples (with border information). , Face negative samples, face partial samples (with border information), face keypoint samples, and face facial feature samples.
- the face positive, negative, and partial sample generation steps include random cropping of the face detection data set. And scaling, the generation steps of the face keypoint samples include random cutting and scaling of the face keypoint data set;
- Step 3 Jointly train the sample set containing various types of face attribute samples on the multi-attribute prediction network to basic convergence, and according to the shared feature vector extracted by the convolutional layer in the multi-attribute prediction network and the dimension of the feature attributes required by the loss function Form a fully-connected layer.
- the fully-connected layer discriminates the input sample feature attributes and calls the loss function according to the sample labels to calculate the loss function value.
- the fully-connected layer discriminates the positive, negative, and part of the face and the facial features to call Softmax as Loss function.
- Softmax Softmax
- the discrimination of key points and frames of the face by the fully connected layer calls the mean square error as the loss function.
- the forward loss is calculated by the fully connected layer, only the attributes related to the input sample are activated.
- the loss of each batch is the average of the loss function values of all samples in the batch;
- Step 4 The trained multi-attribute prediction network model is migrated to the main attribute prediction network for retraining to identify the main attribute.
- the parameters of the multi-attribute prediction network loss function are used to initialize the main attribute prediction network.
- the parameters include weight parameters and Offset parameter.
- the face detection data set includes the true border annotations of all faces in the picture, and the division of the positive, negative, and some samples is determined according to the overlap ratio ⁇ of the randomly cut border and all real borders: when ⁇ ⁇ 1
- a positive sample is determined when ⁇ > ⁇ 2 and a partial sample is determined when ⁇ 1 ⁇ ⁇ 2 .
- the face keypoint data set is augmented by randomly rotating the face keypoint data set containing the true coordinates of the face keypoints.
- the specific method is: 1) Set the rotation angle ⁇ , the positive rotation angle corresponds to a counterclockwise, and accordingly , The negative angle corresponds to clockwise; 2) calculate the new coordinates of the four corner points of the picture after rotation to determine the display area after rotation; 3) find the affine transformation matrix based on the coordinates of the four corner points before and after rotation; 4) pair The affine transformation obtained in step 3 is applied to all key points to obtain the key point coordinates after rotation.
- the randomly cropped picture is scaled to the size according to the size of the input image of each layer of the convolutional neural network.
- the face attributes include various face-related linear regression and logistic regression tasks, wherein the face attributes based on logistic regression include face judgment and face facial features, and the face attributes based on linear regression include key points Such as the relative positions of facial features in the face, the relative position of the face frame in the entire picture, etc.
- the present invention first performs joint training on multi-tasks containing various types of face attributes to extract isolated feature attributes, and then migrates the trained model to the main attribute prediction network that trains more attribute-oriented and continues training to achieve isolation.
- the combined analysis of feature attributes improves the prediction accuracy of a single class of attributes, which not only avoids local miniaturization, but also reduces the accuracy reduction caused by overly complex tasks, and can complete high-precision recognition based on regression face attributes;
- the face attribute analysis method disclosed by the present invention enhances the data through the operation of cropping, scaling, and rotation of the existing face data, thereby improving the generalization ability of the model, and can realize the high precision of complex face attribute recognition such as face borders. Recognition can avoid the defect that the traditional face attribute analysis method depends on the face result, and is more accurate and flexible in practical applications.
- FIG. 1 is a flowchart of a face attribute analysis method disclosed in the present invention.
- Figure 2 is a schematic diagram of model parameter migration.
- This application aims at the traditional face attribute analysis method because the task is too simple, and it is easy to fall into the problem of over-fitting during training, and proposes multi-task training that integrates multiple complex face attributes such as face bounding boxes.
- Face attributes include various face-related linear regression and logistic regression tasks. Face attributes based on logistic regression include face judgment and facial features. Face attributes based on linear regression include relative positions of facial features on the face. , The relative position of the face frame in the entire picture, etc.
- the face learning analysis method based on transfer learning proposed by the present invention is shown in FIG. 1, and mainly includes the following four major steps.
- Step 1 Design the structure of the convolutional neural network
- the design of convolutional neural network includes multi-attribute prediction network design and main attribute prediction network design.
- the convolutional neural network structure consists of a convolutional layer and a fully connected layer.
- the output size of the fully connected layer is determined by specific feature attributes.
- the feature vector shared by the output of the convolutional layer is used as the input of the fully connected layer.
- the fully connected layer of the main attribute prediction network only contains the main attribute prediction part, and the convolution layer and the convolution layer part of the multi-attribute prediction network are exactly the same.
- the method uses face keypoint detection as the main attribute.
- Step 2 Prepare the training data set
- the data set includes training sample sets and corresponding annotations established through various face databases, and each picture has its own label.
- the training sample set includes positive face samples (with border information), negative face samples, and face. Partial samples (with border information), face keypoint samples, and face facial feature samples.
- Face positive, negative, and part sample generation steps include random cropping and scaling of the face detection data set, and face keypoint samples.
- the generation steps include random rotation, random cropping, and scaling of the keypoint data set of the face.
- the scaled size of the cropped image is determined by the size of the input image of each layer of the convolutional neural network.
- positive, negative, and partial samples of the face are generated from the Wider face data set, and key points and various face attributes of the face are generated from the CelebA data set. There are more than 40 types of each image in the CelebA data set.
- the labeled attributes 16 attributes related to the key points of the face are selected as samples of the key points of the face and the facial features of the face, such as the width of the eyes, the height of the nose, the thickness of the lips, whether 16 features such as smile.
- the face detection data set includes the true border annotations of all faces in the picture, and the division of the positive, negative, and partial samples is based on the overlap ratio ⁇ of the randomly cut border and all real borders. determine.
- (x 1 , y 1 ) be the coordinates of the upper-left corner of the border
- (x 2 , y 2 ) be the coordinates of the lower-right corner of the border
- w, h are the width and height of the real border
- Face positive samples ( ⁇ > 0.65) are generated as follows:
- the calculation method of the border offset is as follows:
- the face part samples (0.4 ⁇ ⁇ 0.65) are generated in a similar way to the positive samples, and are not repeated here.
- the picture is rotated counterclockwise around the lower left corner to expand the face key point data set
- the method for determining the coordinates of the key point after the rotation on the new picture includes the following steps:
- i is a natural number
- n is the number of key points
- x ′ i x i cos ⁇ -y i sin ⁇ +
- y ′ i x i sin ⁇ + y i cos ⁇ +
- Step 3 Jointly train a sample set containing various types of face attribute samples on a multi-attribute prediction network to basic convergence
- the convolutional layer in the multi-attribute prediction network extracts shared feature vectors from the sample set, constructs a fully connected layer according to the feature vector dimensions required by the loss function, the fully connected layer discriminates the feature attributes of the input sample and calls the loss function according to the sample label to calculate the loss function Values, for example, the fully connected layer calls Softmax as a loss function for the determination of positive, negative, and partial facial features, and the fully connected layer calls the mean square error for the key points and frames of the face as a loss function.
- the fully connected layer calculates the loss for forward propagation, only the attributes related to the sample are activated.
- a batch of data is randomly selected from various types of attribute samples to ensure that the number of types of attribute samples meets a certain level. Proportion.
- the loss for each batch is the average of the loss function values for all samples in the batch.
- Step 4 Transfer the trained model to the main attribute prediction network for retraining to obtain the final main attribute neural network model
- the parameters of the multi-attribute prediction network after joint training are used as the parameters of the main attribute prediction network, and the parameters include weight parameters and bias parameters.
- the present invention has the following beneficial effects:
- the present invention first performs joint training on multi-tasks containing various types of face attributes to extract isolated feature attributes, and then migrates the trained model to the main attribute prediction network that trains more attribute-oriented and continues training to achieve isolation.
- the combined analysis of feature attributes improves the prediction accuracy of a single class of attributes, which not only avoids local miniaturization, but also reduces the accuracy reduction caused by overly complex tasks, and can complete high-precision recognition based on regression face attributes;
- the face attribute analysis method disclosed by the present invention enhances the data through the operation of cropping, scaling, and rotation of the existing face data, thereby improving the generalization ability of the model, and can realize the high precision of complex face attribute recognition such as face borders. Recognition can avoid the defect that the traditional face attribute analysis method depends on the face result, and is more accurate and flexible in practical applications.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Human Computer Interaction (AREA)
- Evolutionary Computation (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Molecular Biology (AREA)
- Evolutionary Biology (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
Description
Claims (10)
- 一种基于迁移学习的人脸属性分析方法,其特征在于,在多属性预测网络上联合训练样本集以预测特征属性,将收敛的多属性预测网络迁移到主属性预测网络,继续训练主属性预测网络并微调参数直至主属性预测网络的损失函数收敛,所述主属性包含但不限于基于逻辑回归的人脸属性以及基于线性回归的人脸属性的主属性。
- 根据权利要求1所述一种基于迁移学习的人脸属性分析方法,其特征在于,所述样本集包含但不限于带边框信息的人脸正样本、人脸负样本、带边框信息的人脸部分样本、人脸关键点样本和人脸面部特征样本。
- 根据权利要求2所述一种基于迁移学习的人脸属性分析方法,其特征在于,基于逻辑回归的人脸属性包含但不限于人脸判断和人脸面部特征,基于线性回归的人脸属性包含但不限于关键点在人脸的相对位置、人脸框在整张图片中的相对位置。
- 根据权利要求2所述一种基于迁移学习的人脸属性分析方法,其特征在于,带边框信息的人脸正样本、人脸负样本、带边框信息的人脸部分样本的生成方法为:对包含人脸真实边框标注的人脸检测数据集进行剪切和/或缩放的预处理,依据预处理后图片的边框与人脸检测数据集的所有真实边框的交叠率δ划分样本,将δ<δ 1的图片划分为人脸负样本,将δ>δ 2的图片划分为带边框信息的正样本,将δ 1<δ<δ 2的图片划分为带边框信息的人脸部分样本,δ 2、δ 1为预处理后图片的边框与人脸检测数据集的所有真实边框的交叠率的上下限。
- 根据权利要求2所述一种基于迁移学习的人脸属性分析方法,其特征在于,所述人脸关键点样本的生成方法为:对人脸关键点数据集进行剪切和/或缩放的预处理。
- 根据权利要求5所述一种基于迁移学习的人脸属性分析方法,其特征在于,对人脸关键点数据集进行旋转以扩充数据的方法为:依据人脸关键点数据集中图片角点旋转前后的坐标确定图片的仿射变换矩阵以及旋转后的图片显示区域,对图片中的关键点坐标进行仿射变换得到旋转后的关键点坐标。
- 根据权利要求2所述一种基于迁移学习的人脸属性分析方法,其特征在于,在多属性预测网络上联合训练样本集以预测特征属性的具体方法为:通过卷积层提取训练样本集的共享特征,判别输入样本的特征属性并根据输入样本的标签调用损失函数,与输入样本相关的属性在前向传播预测样本的损失值时激活。
- 根据权利要求7所述一种基于迁移学习的人脸属性分析方法,其特征在于,输入样本的标签为带边框信息的人脸正样本、人脸负样本、带边框信息的人脸部分样本和人脸面部特征样本时,调用预Softmax作为损失函数。
- 根据权利要求7所述一种基于迁移学习的人脸属性分析方法,其特征在于,输入样本为人脸关键点样本时,调用均方误差作为损失函数。
- 根据权利要求1所述一种基于迁移学习的人脸属性分析方法,其特征在于,将收敛的多属性预测网络迁移到主属性预测网络为:采用收敛的多属性预测网络的参数初始化主属性预测网络参数,参数包括权重参数和偏置参数。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810702472.X | 2018-06-30 | ||
CN201810702472.XA CN109325398B (zh) | 2018-06-30 | 2018-06-30 | 一种基于迁移学习的人脸属性分析方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020001082A1 true WO2020001082A1 (zh) | 2020-01-02 |
Family
ID=65263517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/078472 WO2020001082A1 (zh) | 2018-06-30 | 2019-03-18 | 一种基于迁移学习的人脸属性分析方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109325398B (zh) |
WO (1) | WO2020001082A1 (zh) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111209873A (zh) * | 2020-01-09 | 2020-05-29 | 杭州趣维科技有限公司 | 一种基于深度学习的高精度人脸关键点定位方法及系统 |
CN111507263A (zh) * | 2020-04-17 | 2020-08-07 | 电子科技大学 | 一种基于多源数据的人脸多属性识别方法 |
CN111524226A (zh) * | 2020-04-21 | 2020-08-11 | 中国科学技术大学 | 讽刺肖像画的关键点检测与三维重建方法 |
CN111611920A (zh) * | 2020-05-21 | 2020-09-01 | 杭州智珺智能科技有限公司 | 一种基于属性特征提取的ai人脸风格辨识方法 |
CN111626115A (zh) * | 2020-04-20 | 2020-09-04 | 北京市西城区培智中心学校 | 一种人脸属性识别方法和装置 |
CN111666846A (zh) * | 2020-05-27 | 2020-09-15 | 厦门大学 | 一种人脸属性识别方法和装置 |
CN111723762A (zh) * | 2020-06-28 | 2020-09-29 | 湖南国科微电子股份有限公司 | 人脸属性识别方法、装置、电子设备及存储介质 |
CN111798546A (zh) * | 2020-06-03 | 2020-10-20 | 浙江大学 | 一种基于生成对抗机制的多人表情迁移方法 |
CN111985439A (zh) * | 2020-08-31 | 2020-11-24 | 中移(杭州)信息技术有限公司 | 人脸检测方法、装置、设备和存储介质 |
CN112183332A (zh) * | 2020-09-28 | 2021-01-05 | 成都希盟泰克科技发展有限公司 | 一种基于迁移学习的牦牛脸识别方法 |
CN112287877A (zh) * | 2020-11-18 | 2021-01-29 | 上海泗科智能科技有限公司 | 一种多角色特写镜头追踪方法 |
CN112597944A (zh) * | 2020-12-29 | 2021-04-02 | 北京市商汤科技开发有限公司 | 关键点检测方法及装置、电子设备和存储介质 |
CN112633203A (zh) * | 2020-12-29 | 2021-04-09 | 上海商汤智能科技有限公司 | 关键点检测方法及装置、电子设备和存储介质 |
CN112818770A (zh) * | 2021-01-19 | 2021-05-18 | 中科方寸知微(南京)科技有限公司 | 跨数据集的人脸关键点检测方法 |
CN112906500A (zh) * | 2021-01-29 | 2021-06-04 | 华南理工大学 | 基于深度特权网络的人脸表情识别方法及系统 |
CN113191195A (zh) * | 2021-04-01 | 2021-07-30 | 珠海全志科技股份有限公司 | 基于深度学习的人脸检测方法及系统 |
CN113657486A (zh) * | 2021-08-16 | 2021-11-16 | 浙江新再灵科技股份有限公司 | 基于电梯图片数据的多标签多属性分类模型建立方法 |
CN113989586A (zh) * | 2021-10-26 | 2022-01-28 | 山东省人工智能研究院 | 一种基于人脸几何运动特征的真假视频检测方法 |
CN114005150A (zh) * | 2020-07-28 | 2022-02-01 | 北京君正集成电路股份有限公司 | 一种可量化的前端人脸检测的设计方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109325398B (zh) * | 2018-06-30 | 2020-10-09 | 东南大学 | 一种基于迁移学习的人脸属性分析方法 |
CN110197146B (zh) * | 2019-05-23 | 2021-02-23 | 招商局金融科技有限公司 | 基于深度学习的人脸图像分析方法、电子装置及存储介质 |
CN111695736B (zh) * | 2020-06-15 | 2023-04-21 | 河北锐景能源科技有限公司 | 一种基于多模型融合的光伏发电短期功率预测方法 |
CN111967389B (zh) * | 2020-08-18 | 2022-02-18 | 厦门理工学院 | 基于深度双路径学习网络的人脸属性识别方法及系统 |
CN112329752B (zh) * | 2021-01-06 | 2021-04-06 | 腾讯科技(深圳)有限公司 | 人眼图像处理模型的训练方法、图像处理方法及装置 |
CN114708073B (zh) * | 2022-03-29 | 2023-03-24 | 湖南华菱电子商务有限公司 | 一种围标串标智能检测方法、装置、电子设备及存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105825191A (zh) * | 2016-03-23 | 2016-08-03 | 厦门美图之家科技有限公司 | 基于人脸多属性信息的性别识别方法、系统及拍摄终端 |
CN106447625A (zh) * | 2016-09-05 | 2017-02-22 | 北京中科奥森数据科技有限公司 | 基于人脸图像序列的属性识别方法及装置 |
CN106529402A (zh) * | 2016-09-27 | 2017-03-22 | 中国科学院自动化研究所 | 基于多任务学习的卷积神经网络的人脸属性分析方法 |
CN106845549A (zh) * | 2017-01-22 | 2017-06-13 | 珠海习悦信息技术有限公司 | 一种基于多任务学习的场景与目标识别的方法及装置 |
CN106846364A (zh) * | 2016-12-30 | 2017-06-13 | 明见(厦门)技术有限公司 | 一种基于卷积神经网络的目标跟踪方法及装置 |
CN109325398A (zh) * | 2018-06-30 | 2019-02-12 | 东南大学 | 一种基于迁移学习的人脸属性分析方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130185314A1 (en) * | 2012-01-16 | 2013-07-18 | Microsoft Corporation | Generating scoring functions using transfer learning |
CN106203395B (zh) * | 2016-07-26 | 2020-01-14 | 厦门大学 | 基于多任务深度学习的人脸属性识别方法 |
CN106652025B (zh) * | 2016-12-20 | 2019-10-01 | 五邑大学 | 一种基于视频流与人脸多属性匹配的三维人脸建模方法和打印装置 |
CN107437092B (zh) * | 2017-06-28 | 2019-11-15 | 苏州比格威医疗科技有限公司 | 基于三维卷积神经网络的视网膜oct图像的分类方法 |
CN108021916B (zh) * | 2017-12-31 | 2018-11-06 | 南京航空航天大学 | 基于注意力机制的深度学习糖尿病视网膜病变分类方法 |
-
2018
- 2018-06-30 CN CN201810702472.XA patent/CN109325398B/zh active Active
-
2019
- 2019-03-18 WO PCT/CN2019/078472 patent/WO2020001082A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105825191A (zh) * | 2016-03-23 | 2016-08-03 | 厦门美图之家科技有限公司 | 基于人脸多属性信息的性别识别方法、系统及拍摄终端 |
CN106447625A (zh) * | 2016-09-05 | 2017-02-22 | 北京中科奥森数据科技有限公司 | 基于人脸图像序列的属性识别方法及装置 |
CN106529402A (zh) * | 2016-09-27 | 2017-03-22 | 中国科学院自动化研究所 | 基于多任务学习的卷积神经网络的人脸属性分析方法 |
CN106846364A (zh) * | 2016-12-30 | 2017-06-13 | 明见(厦门)技术有限公司 | 一种基于卷积神经网络的目标跟踪方法及装置 |
CN106845549A (zh) * | 2017-01-22 | 2017-06-13 | 珠海习悦信息技术有限公司 | 一种基于多任务学习的场景与目标识别的方法及装置 |
CN109325398A (zh) * | 2018-06-30 | 2019-02-12 | 东南大学 | 一种基于迁移学习的人脸属性分析方法 |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111209873A (zh) * | 2020-01-09 | 2020-05-29 | 杭州趣维科技有限公司 | 一种基于深度学习的高精度人脸关键点定位方法及系统 |
CN111507263A (zh) * | 2020-04-17 | 2020-08-07 | 电子科技大学 | 一种基于多源数据的人脸多属性识别方法 |
CN111507263B (zh) * | 2020-04-17 | 2022-08-05 | 电子科技大学 | 一种基于多源数据的人脸多属性识别方法 |
CN111626115A (zh) * | 2020-04-20 | 2020-09-04 | 北京市西城区培智中心学校 | 一种人脸属性识别方法和装置 |
CN111524226A (zh) * | 2020-04-21 | 2020-08-11 | 中国科学技术大学 | 讽刺肖像画的关键点检测与三维重建方法 |
CN111524226B (zh) * | 2020-04-21 | 2023-04-18 | 中国科学技术大学 | 讽刺肖像画的关键点检测与三维重建方法 |
CN111611920A (zh) * | 2020-05-21 | 2020-09-01 | 杭州智珺智能科技有限公司 | 一种基于属性特征提取的ai人脸风格辨识方法 |
CN111666846A (zh) * | 2020-05-27 | 2020-09-15 | 厦门大学 | 一种人脸属性识别方法和装置 |
CN111666846B (zh) * | 2020-05-27 | 2023-05-30 | 厦门大学 | 一种人脸属性识别方法和装置 |
CN111798546A (zh) * | 2020-06-03 | 2020-10-20 | 浙江大学 | 一种基于生成对抗机制的多人表情迁移方法 |
CN111798546B (zh) * | 2020-06-03 | 2022-04-26 | 浙江大学 | 一种基于生成对抗机制的多人表情迁移方法 |
CN111723762A (zh) * | 2020-06-28 | 2020-09-29 | 湖南国科微电子股份有限公司 | 人脸属性识别方法、装置、电子设备及存储介质 |
CN114005150A (zh) * | 2020-07-28 | 2022-02-01 | 北京君正集成电路股份有限公司 | 一种可量化的前端人脸检测的设计方法 |
CN114005150B (zh) * | 2020-07-28 | 2024-05-03 | 北京君正集成电路股份有限公司 | 一种可量化的前端人脸检测的设计方法 |
CN111985439A (zh) * | 2020-08-31 | 2020-11-24 | 中移(杭州)信息技术有限公司 | 人脸检测方法、装置、设备和存储介质 |
CN112183332A (zh) * | 2020-09-28 | 2021-01-05 | 成都希盟泰克科技发展有限公司 | 一种基于迁移学习的牦牛脸识别方法 |
CN112287877A (zh) * | 2020-11-18 | 2021-01-29 | 上海泗科智能科技有限公司 | 一种多角色特写镜头追踪方法 |
CN112597944A (zh) * | 2020-12-29 | 2021-04-02 | 北京市商汤科技开发有限公司 | 关键点检测方法及装置、电子设备和存储介质 |
CN112633203A (zh) * | 2020-12-29 | 2021-04-09 | 上海商汤智能科技有限公司 | 关键点检测方法及装置、电子设备和存储介质 |
CN112597944B (zh) * | 2020-12-29 | 2024-06-11 | 北京市商汤科技开发有限公司 | 关键点检测方法及装置、电子设备和存储介质 |
CN112818770A (zh) * | 2021-01-19 | 2021-05-18 | 中科方寸知微(南京)科技有限公司 | 跨数据集的人脸关键点检测方法 |
CN112906500B (zh) * | 2021-01-29 | 2023-08-22 | 华南理工大学 | 基于深度特权网络的人脸表情识别方法及系统 |
CN112906500A (zh) * | 2021-01-29 | 2021-06-04 | 华南理工大学 | 基于深度特权网络的人脸表情识别方法及系统 |
CN113191195A (zh) * | 2021-04-01 | 2021-07-30 | 珠海全志科技股份有限公司 | 基于深度学习的人脸检测方法及系统 |
CN113657486A (zh) * | 2021-08-16 | 2021-11-16 | 浙江新再灵科技股份有限公司 | 基于电梯图片数据的多标签多属性分类模型建立方法 |
CN113657486B (zh) * | 2021-08-16 | 2023-11-07 | 浙江新再灵科技股份有限公司 | 基于电梯图片数据的多标签多属性分类模型建立方法 |
CN113989586A (zh) * | 2021-10-26 | 2022-01-28 | 山东省人工智能研究院 | 一种基于人脸几何运动特征的真假视频检测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109325398B (zh) | 2020-10-09 |
CN109325398A (zh) | 2019-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020001082A1 (zh) | 一种基于迁移学习的人脸属性分析方法 | |
CN109344693B (zh) | 一种基于深度学习的人脸多区域融合表情识别方法 | |
WO2022111236A1 (zh) | 一种结合注意力机制的面部表情识别方法及系统 | |
US11227147B2 (en) | Face image processing methods and apparatuses, and electronic devices | |
CN109344701B (zh) | 一种基于Kinect的动态手势识别方法 | |
WO2020108362A1 (zh) | 人体姿态检测方法、装置、设备及存储介质 | |
WO2021120752A1 (zh) | 域自适应模型训练、图像检测方法、装置、设备及介质 | |
WO2022134337A1 (zh) | 人脸遮挡检测方法、系统、设备及存储介质 | |
CN112800903B (zh) | 一种基于时空图卷积神经网络的动态表情识别方法及系统 | |
WO2022257408A1 (zh) | 一种基于u型网络的医学图像分割方法 | |
US11915514B2 (en) | Method and apparatus for detecting facial key points, computer device, and storage medium | |
CN108776983A (zh) | 基于重建网络的人脸重建方法和装置、设备、介质、产品 | |
WO2019232862A1 (zh) | 嘴巴模型训练方法、嘴巴识别方法、装置、设备及介质 | |
WO2017088432A1 (zh) | 图像识别方法和装置 | |
WO2020187160A1 (zh) | 基于级联的深层卷积神经网络的人脸识别方法及系统 | |
CN101964064A (zh) | 一种人脸比对方法 | |
WO2020001084A1 (zh) | 一种在线学习的人脸识别方法 | |
CN109190561B (zh) | 一种视频播放中的人脸识别方法及系统 | |
CN102654903A (zh) | 一种人脸比对方法 | |
WO2021127916A1 (zh) | 脸部情感识别方法、智能装置和计算机可读存储介质 | |
WO2021196928A1 (zh) | 表情识别方法、装置、计算机设备及可读存储介质 | |
WO2023284182A1 (en) | Training method for recognizing moving target, method and device for recognizing moving target | |
WO2022184133A1 (zh) | 一种基于视觉的人脸表情识别方法 | |
WO2020151148A1 (zh) | 基于神经网络的黑白照片色彩恢复方法、装置及存储介质 | |
US11893773B2 (en) | Finger vein comparison method, computer equipment, and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19824523 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19824523 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19824523 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS (EPO FORM 1205A DATED 10.08.2021) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19824523 Country of ref document: EP Kind code of ref document: A1 |