WO2020000924A1 - 一种车联网中聚合两种信任评估的消息可靠性评估方法 - Google Patents

一种车联网中聚合两种信任评估的消息可靠性评估方法 Download PDF

Info

Publication number
WO2020000924A1
WO2020000924A1 PCT/CN2018/121121 CN2018121121W WO2020000924A1 WO 2020000924 A1 WO2020000924 A1 WO 2020000924A1 CN 2018121121 W CN2018121121 W CN 2018121121W WO 2020000924 A1 WO2020000924 A1 WO 2020000924A1
Authority
WO
WIPO (PCT)
Prior art keywords
trust
node
message
event
distance
Prior art date
Application number
PCT/CN2018/121121
Other languages
English (en)
French (fr)
Inventor
翁健
刘志全
董彩芹
魏凯敏
冯丙文
杨雅希
Original Assignee
暨南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 暨南大学 filed Critical 暨南大学
Priority to AU2018308958A priority Critical patent/AU2018308958A1/en
Publication of WO2020000924A1 publication Critical patent/WO2020000924A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/02Protecting privacy or anonymity, e.g. protecting personally identifiable information [PII]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/04Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
    • H04L63/0428Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload
    • H04L63/0442Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload wherein the sending and receiving network entities apply asymmetric encryption, i.e. different keys for encryption and decryption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3247Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving digital signatures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3263Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving certificates, e.g. public key certificate [PKC] or attribute certificate [AC]; Public key infrastructure [PKI] arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences

Definitions

  • the present invention relates to the technical field of vehicle networking security, and in particular, to a message reliability evaluation method for aggregating two types of trust evaluation (ie, entity-oriented trust evaluation and data-oriented trust evaluation) in a vehicle networking.
  • the Internet of Vehicles plays a vital role in urban road transportation. It can provide various information services, improve driving safety and efficiency, and promote energy saving and emission reduction. .
  • a malicious vehicle also known as a “node” or “entity”
  • node also known as a “node” or “entity”
  • messages also known as “data” or “report”
  • each node needs to distinguish other honest nodes and malicious nodes, real messages and false messages, and follow the real messages issued by honest nodes to make correct decisions.
  • Trust management as a theory that can solve the problem of uncertainty, plays a vital role in the Internet of Vehicles. It enables each node to detect other malicious nodes and false messages in advance to avoid serious consequences. At present, trust management in the connected car is still in its infancy. According to the evaluation object, the existing trust evaluation methods can be roughly divided into entity-oriented trust evaluation and data-oriented trust evaluation.
  • a novel trust model is proposed from the perspective of social networks, in which the message receiver simultaneously considers reporting an event and its opposite event to comprehensively judge whether it is reliable, but the model is completely Ignoring entity-oriented trust and giving equal weight to messages from honest vehicles and messages from malicious vehicles, its actual performance is poor.
  • the purpose of the present invention is to solve the above-mentioned shortcomings in the prior art, and to provide a message reliability evaluation method for aggregating two types of trust evaluations in a connected vehicle.
  • a message reliability assessment method for aggregating two types of trust assessments in a car network includes a trust center, a number of roadside units and nodes, and the nodes and roadside units communicate wirelessly through the relays of other nodes, while the roadside units Wired communication is used with the trust center.
  • the trust center is responsible for maintaining the trust information of the nodes, and updates the trust value of each node every ⁇ t time. For each node, the trust center first selects other node pairs in the local storage. The latest trust feedback of the node is at most n, and the latest trust value of the node is calculated accordingly, and then it is used to overwrite the previously stored trust value of the node.
  • the evaluation method is as follows:
  • Step S1 Whenever each node enters the communication range of a roadside unit after an interval of ⁇ t, the node requests the latest trust certificate of its own node from the trust center. After receiving the request information of a node S, the trust center first verifies that the request information actually comes from The node retrieves the latest trust value of the node in the local storage, and then generates a trust certificate for it. The trust center sends the trust certificate to the node through the roadside unit, and guarantees its confidentiality through asymmetric encryption. The node Update the local store after receiving the trust certificate for use in sending messages;
  • Step S2 When an event E occurs, neighboring nodes can witness the occurrence and broadcast the event to subsequent nodes as a message publisher.
  • a node R as a message receiver receives a report of an event E or its opposite event-E In the message, the judgment strategy of the node R is determined according to the relationship between the distance DT (R, E) between the node R and the place where the event occurred, and the maximum recognition distance, maximum decision distance, and maximum influence distance;
  • Step S3 When the distance DT (R, E) between a node R as the receiver of the message and the event occurs is less than or equal to the maximum recognition distance, the actual state of the event E can be witnessed and the quality of each previously received message Rating is performed, and a trust feedback is generated for each message publisher.
  • the trust feedback is sent to the trust center, and then the trust center verifies its signature information and updates the local storage.
  • TF (A, S) (ID (A), ID (S), TR (A, S), TS (A, S), DS (A, S)),
  • ID (A) and ID (S) represent the unique identifiers of feedbacker A and node S, respectively.
  • TR (A, S) represents the rating score generated by feedbacker A based on the previous message quality of node S
  • TS (A, S) indicates the time stamp when TF (A, S) was generated
  • DS (A, S) indicates the digital signature information.
  • step S2 the determination strategy for determining the node R according to the relationship between the distance DT (R, E) between the node R and the place where the event occurred and the maximum recognition distance, maximum decision distance, and maximum influence distance is as follows:
  • node R can witness the actual status of event E and rate the quality of the previously received message.
  • step S23 the process for the node R to make a comprehensive decision based on the multiple received messages of the report event E or its opposite event-E from different nodes is as follows:
  • node R If node R's overall trust value TV (R, E)> 0 for event E, then node R, as the message receiver, trusts event E, and considers all messages reporting event E reliable, and all messages reporting event-E Unreliable, meanwhile, node R takes action according to the message reporting event E;
  • node R If node R's overall trust value TV (R, E) ⁇ 0 for event E, then node R, as the message receiver, trusts event-E, and considers all messages reporting event-E as reliable, and all reporting event E The message is unreliable, and at the same time, node R takes action according to the message reporting event-E;
  • node R which is the receiver of the message, does not trust event E and event-E, and considers all messages reporting event E and event-E. Unreliable, meanwhile, node R takes no action.
  • , and the corresponding messages are MS (S, E), MS (S ′, E), ..., the report event E and the opposite event -E are represented by 1 and -1, respectively, as the message
  • the receiver's node R considers the following weights when calculating the comprehensive trust value TV (R, E) of event E:
  • Time decay weight Wc (R, S, E) of the trust certificate exponential decay is performed according to the time difference between the current timestamp TN and the timestamp in the trust certificate, and the calculation formula is:
  • is the trust attenuation factor, which controls the speed of Wm (R, S, E) decay with time difference.
  • the value of the comprehensive trust value TV (R, E) is derived from the following formula:
  • weight considered in the process of the trust center updating the trust value TV (S) of the node S includes:
  • is the trust attenuation factor, which controls the speed of Wt (A, S) decay with time difference.
  • the calculation formula of the trust value TV (S) is as follows:
  • the trust value TV (S) is set to a small initial trust value, that is:
  • the trust value TV (S) is derived from the following formula:
  • request information format sent by the node S to the trust center is:
  • RQ (S, TA) (ID (S), TS (S, TA), DS (S, TA)),
  • ID (S) represents the unique identifier of node S
  • TS (S, TA) represents the time stamp when RQ (S, TA) was generated
  • DS (S, TA) represents the digital signature information.
  • the format of the trust certificate generated by the trust center for the node S is:
  • TC (TA, S) (ID (S), TV (S), TS (TA, S), DS (TA, S)),
  • ID (S) represents the unique identifier of node S
  • TV (S) is the trust value of node S
  • TS (TA, S) represents the time stamp when the trust certificate was generated
  • DS (TA, S) represents the digital signature information .
  • the TR (A, S) represents a rating score generated by the feedbacker A based on the previous message quality of the node S, and its value is an integer between 0-4, and the higher the message quality, the higher the rating score .
  • the present invention has the following advantages and effects:
  • the present invention aggregates two types of trust evaluations, and comprehensively considers multiple messages from different senders who report an event or its opposite event to evaluate its reliability, so the evaluation result is more accurate.
  • the solution provided by the present invention is compatible with the situation where the vehicle cannot connect to the trust center within a short time, and is more in line with the highly dynamic characteristics of the Internet of Vehicles.
  • FIG. 1 is a schematic diagram of main steps in the technical solution of the present invention
  • FIG. 2 is a schematic diagram of three kinds of distances (that is, the maximum recognition distance, the maximum decision distance, and the maximum influence distance) in the technical solution of the present invention.
  • the technical solution according to the invention mainly includes three elements, namely, a Trust Center (TA), a Road-Side Unit (RSU), and a vehicle (ie, a node).
  • TA Trust Center
  • RSU Road-Side Unit
  • vehicle ie, a node
  • the vehicle and the road-side unit pass through other
  • the vehicle's relay performs wireless communication
  • the roadside unit and the trust center use wired communication.
  • the trust center is responsible for maintaining the trust information of the nodes, and the trust value of each node is updated every ⁇ t time.
  • the format of the trust feedback is:
  • TF (A, S) (ID (A), ID (S), TR (A, S), TS (A, S), DS (A, S)), (1)
  • ID (A) and ID (S) represent the unique identifiers of the responder A and the node S
  • TR (A, S) represents the rating score generated by the responder A based on the previous message quality of the node S (that is, 0-4 An integer between them, and the higher the message quality, the higher the rating score)
  • TS (A, S) represents the time stamp when TF (A, S) was generated
  • DS (A, S) represents the digital signature information.
  • TF (B, S), TF (C, S) and other trust feedback formats are consistent with TF (A, S).
  • the weights considered in the calculation of the trust value TV (S) include:
  • is the trust attenuation factor, which controls the speed of Wt (A, S) decay with time difference.
  • the trust value TV (S) is set to a small initial trust value, that is:
  • the trust value TV (S) is derived from the following formula:
  • the trust center uses it to overwrite the previously stored trust value of node S.
  • each node requests its latest trust certificate (TC) from the trust center every time it enters the communication range of a certain roadside unit after an interval of ⁇ t.
  • TC trust certificate
  • RQ (S, TA) (ID (S), TS (S, TA), DS (S, TA)), (6)
  • ID (S) represents the unique identifier of node S
  • TS (S, TA) represents the time stamp when RQ (S, TA) was generated
  • DS (S, TA) represents the digital signature information.
  • the trust center After receiving the request information of node S, the trust center first verifies that the request information really comes from node S through DS (S, TA), and retrieves the latest trust value TV (S) of node S in the local storage, and then generates trust for it Certificate in the format:
  • TC (TA, S) (ID (S), TV (S), TS (TA, S), DS (TA, S)), (7)
  • ID (S) represents the unique identifier of node S
  • TS (TA, S) represents the time stamp when the trusted certificate is generated
  • DS (TA, S) represents the digital signature information.
  • the trust center sends TC (TA, S) to the node S through the roadside unit, and guarantees its confidentiality through asymmetric encryption.
  • the node S updates the local storage for use in sending messages.
  • Step S2 When an event E (such as a road icing) occurs, a neighboring node (such as a node S) can witness the occurrence and broadcast the event to a subsequent node.
  • Node S is called a witness, also known as a message publisher. Its message format is:
  • MS (S, E) (ID (S), MC (S, E), TC (TA, S), TS (S, E), DS (S, E)), (8)
  • ID (S) represents the unique identifier of node S
  • MC (S, E) represents the message content
  • TC (TA, S) represents the trust certificate of node S
  • TS (S, E) represents the time stamp when the message was generated
  • DS (S, E) represents digital signature information.
  • nodes such as node S, node S ', etc.
  • multiple nodes may witness it and report to subsequent nodes.
  • a node that is, a message receiver, such as node R
  • receives a message reporting an event E or its opposite event -E it determines its specific strategy according to its distance from the place where the event occurred DT (R, E).
  • node R verifies the digital signature information in the received message and stores the message reporting event E or its opposite event-E;
  • node R makes a comprehensive decision based on the received multiple events from different nodes that report event E or its opposite event -E;
  • node R can witness the actual state of event E and rate the quality of the previously received message.
  • , and the corresponding messages are MS (S, E), MS (S ′, E), etc., the report event E and the opposite event -E are represented by 1 and -1, respectively.
  • the message receiver R considers the following weights when calculating the comprehensive trust value TV (R, E) of event E:
  • Time decay weight Wc (R, S, E) of the trust certificate exponential decay according to the time difference between the current timestamp TN and the timestamp in the trust certificate, the calculation formula is:
  • is the trust attenuation factor, which controls the speed of Wm (R, S, E) decay with time difference.
  • Ws (R, S, E), Wc (R, S, E), and Wm (R, S, E) are in the range [0,1]
  • TV ( R, E) range is [-1,1].
  • node R trusts event-E, and considers that all messages reporting event-E are reliable, and all messages reporting event E are unreliable. In addition, node R acts in accordance with the message reporting event-E.
  • Step S3 When the distance between the message receiver R and the place where the event occurs is less than or equal to the maximum recognition distance, the actual state of the event E can be witnessed, and the quality of each previously received message can be rated, and each message is released
  • the author generates a trust feedback in the format shown in formula (1).
  • the trust feedback is sent to the trust center, and then the trust center verifies its signature information and updates the local storage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种车联网中聚合两种信任评估的消息可靠性评估方法,其中,信任中心负责维护车辆的信任信息,车辆定期向信任中心请求自己最新的信任证书;消息发布者发送消息时附带最新的信任证书以证明自己可信赖;消息接收者收到每条消息后提取信任证书并综合考虑多个消息发布者的消息以判断其是否可靠,然后根据消息质量为每个消息发布者生成一条信任反馈,并发送至信任中心,随后信任中心更新本地存储。本方法高效聚合两种信任评估,且无需消息接收者实时请求信任中心,因而评估结果更加准确,评估速度更快,且兼容车辆短时间内无法连接到信任中心的情况,更符合车联网的高动态特性。

Description

一种车联网中聚合两种信任评估的消息可靠性评估方法 技术领域
本发明涉及车联网安全技术领域,具体涉及一种车联网中聚合两种信任评估(即面向实体的信任评估和面向数据的信任评估)的消息可靠性评估方法。
背景技术
车联网作为物联网在汽车行业的主要应用和智能交通系统的核心组成部分,在城市道路交通方面发挥着至关重要的作用,能够提供各类信息服务、提高行车安全与效率、促进节能减排。
然而,由于大规模、开放式、分布式、稀疏和高动态等特性,车联网对于恶意行为和攻击是脆弱的。例如,恶意车辆(“车辆”也称“节点”或“实体”)可能散布大量的虚假消息(“消息”也称“数据”或“报告”)以欺骗其他节点,进而对道路交通的安全性和可靠性造成极大的威胁。因此,每个节点需要甄别其他诚实节点和恶意节点、真实消息和虚假消息,并遵照诚实节点发布的真实消息以做出正确的决策。
信任管理作为一种能够解决不确定性问题的理论,在车联网中扮演至关重要的角色,它使得每个节点能够预先检测其他恶意节点和虚假消息以避免严重后果。当前,车联网中的信任管理仍然处于初级阶段。根据评估对象,现有的信任评估方法可大致分为面向实体的信任评估和面向数据的信任评估。
Park等人[S.Park,B.Aslam,and C.C.Zou,“Long-term reputation system for vehicular networking based on vehicle’s daily commute routine,”in Proc.2011CNCC,2011,pp.436-441.]提出一个基于基础设施的长期声望模型,其中路侧单元负责监测车辆的日常行为并维护其信任信息,但该模型 孤立考虑每个消息发送者的消息,完全忽略了面向数据的信任,因而其实际性能受到限制。Huang等人[Z.Huang,S.Ruj,M.A.Cavenaghi,M.Stojmenovic,and A.Nayak,“A social network approach to trust management in VANETs,”Peer Peer Netw.Appl.,vol.7,no.3,pp.229-242,Sep.2014.]从社交网络的视角提出一个新颖的信任模型,其中消息接收者同时考虑报告某事件及其对立事件的消息以综合判断其是否可靠,但该模型完全忽略了面向实体的信任,并赋予诚实车辆的消息和恶意车辆的消息以相同的权重,因而其实际性能不佳。
发明内容
本发明的目的是为了解决现有技术中的上述缺陷,提供一种车联网中聚合两种信任评估的消息可靠性评估方法。
本发明的目的可以通过采取如下技术方案达到:
一种车联网中聚合两种信任评估的消息可靠性评估方法,该车联网包括信任中心、若干路侧单元和节点,节点与路侧单元通过其他节点的中继进行无线通信,而路侧单元与信任中心之间采用有线通信方式,其中,信任中心负责维护节点的信任信息,每当间隔Δt时间更新各节点的信任值,对于每个节点,信任中心首先在本地存储中选出其他节点对该节点的最新的至多η条信任反馈,并据此计算该节点的最新信任值,然后用其覆盖先前存储的该节点的信任值,所述的评估方法如下:
步骤S1、各节点每当间隔Δt时间且进入某个路侧单元通信范围后向信任中心请求自身节点最新的信任证书,信任中心收到某节点S的请求信息后,首先验证请求信息确实来自于该节点,并在本地存储中检索该节点的最新信任值,然后为其生成信任证书,信任中心通过路侧单元将信任证书发送给该节点,并通过非对称加密方式保证其机密性,该节点收到信任证书后更新本地存储以备发送消息时使用;
步骤S2、当某事件E发生时,临近节点能够目击其发生,并作为消息 发布者向后面节点广播该事件,当某节点R作为消息接收者收到报告某事件E或其对立事件-E的消息时,根据节点R与事件发生地的距离DT(R,E)和最大识别距离、最大决策距离、最大影响距离的大小关系决定节点R的判断策略;
步骤S3、当某节点R作为消息接收者与事件发生地的距离DT(R,E)小于或等于最大识别距离时,能够目击事件E的实际状态,并对先前收到的每条消息的质量进行评级,同时为每个消息发布者生成一条信任反馈,当消息接收者进入某个路侧单元通信范围后将信任反馈发送至信任中心,随后信任中心验证其签名信息并更新本地存储。
进一步地,所述的信任反馈的格式为:
TF(A,S)=(ID(A),ID(S),TR(A,S),TS(A,S),DS(A,S)),
其中,ID(A)和ID(S)分别表示反馈者A和节点S的唯一标识符,TR(A,S)表示反馈者A根据节点S先前的消息质量生成的评级分数,TS(A,S)表示TF(A,S)生成时的时间戳,DS(A,S)表示数字签名信息。
进一步地,所述的步骤S2中根据节点R与事件发生地的距离DT(R,E)和最大识别距离、最大决策距离、最大影响距离的大小关系决定节点R的判断策略具体如下:
S21、当DT(R,E)大于最大影响距离时,节点R直接丢弃报告事件E或其对立事件-E的消息;
S22、当DT(R,E)介于最大决策距离和最大影响距离之间时,节点R验证所收消息中的数字签名信息并存储报告事件E或其对立事件-E的消息;
S23、当DT(R,E)介于最大识别距离和最大决策距离之间时,节点R根据收到的多条来自于不同节点的报告事件E或其对立事件-E的消息进行综合决策;
S24、当DT(R,E)小于或等于最大识别距离时,节点R能够目击事件E 的实际状态,并对先前收到消息的质量进行评级。
进一步地,所述的步骤S23中节点R根据收到的多条来自于不同节点的报告事件E或其对立事件-E的消息进行综合决策的过程如下:
1)若节点R对事件E的综合信任值TV(R,E)>0,则作为消息接收者的节点R信任事件E,并认为所有报告事件E的消息可靠,所有报告事件-E的消息不可靠,同时,节点R遵照报告事件E的消息采取行动;
2)若节点R对事件E的综合信任值TV(R,E)<0,则作为消息接收者的节点R信任事件-E,并认为所有报告事件-E的消息可靠,所有报告事件E的消息不可靠,同时,节点R遵照报告事件-E的消息采取行动;
3)若节点R对事件E的综合信任值TV(R,E)=0,则作为消息接收者的节点R不信任事件E和事件-E,并认为所有报告事件E和事件-E的消息不可靠,同时,节点R不采取任何行动。
进一步地,所述的步骤S23中,设多个消息发布者为节点S、节点S′、…,集合表示为SS(E),即SS(E)={S,S′,…},其元素个数记为|SS(E)|,对应消息为MS(S,E)、MS(S′,E)、…,报告事件E和对立事件-E分别用1和-1表示,作为消息接收者的节点R在计算事件E的综合信任值TV(R,E)时考虑以下权重:
1)消息发布者信任值权重Ws(R,S,E):由信任证书中所提取的消息发布者S的信任值TV(S)所决定,计算公式为:
Ws(R,S,E)=TV(S);
2)信任证书的时间衰减权重Wc(R,S,E):根据当前时间戳TN和信任证书中时间戳的时间差进行指数衰减,计算公式为:
Figure PCTCN2018121121-appb-000001
其中
Figure PCTCN2018121121-appb-000002
为信任衰减因子,控制Wc(R,S,E)随时间差衰减的速度;
3)消息的时间衰减权重Wm(R,S,E):根据当前时间戳TN和消息中时间戳的时间差进行指数衰减,计算公式为:
Figure PCTCN2018121121-appb-000003
其中ψ为信任衰减因子,控制Wm(R,S,E)随时间差衰减的速度。
所述的综合信任值TV(R,E)的值由以下公式导出:
Figure PCTCN2018121121-appb-000004
进一步地,信任中心更新节点S的信任值TV(S)的过程中考虑的权重包括:
1)反馈者信任值权重Wf(A,S):由反馈者A的信任值决定,计算公式为:
Wf(A,S)=TV(A);
2)时间衰减权重Wt(A,S):根据当前时间戳TN和信任反馈中时间戳的时间差进行指数衰减,计算公式为:
Figure PCTCN2018121121-appb-000005
其中λ为信任衰减因子,控制Wt(A,S)随时间差衰减的速度。
所述的信任值TV(S)的计算公式如下:
如果关于节点S的信任反馈的总数量小于η,则信任值TV(S)被设为较小的信任初值,即:
TV(S)=τ∈[0,1],
否则,信任值TV(S)由以下公式导出:
Figure PCTCN2018121121-appb-000006
进一步地,节点S发送给信任中心的请求信息格式为:
RQ(S,TA)=(ID(S),TS(S,TA),DS(S,TA)),
其中ID(S)表示节点S的唯一标识符,TS(S,TA)表示生成RQ(S,TA)时的时间戳,DS(S,TA)表示数字签名信息。
进一步地,信任中心为节点S生成的信任证书的格式为:
TC(TA,S)=(ID(S),TV(S),TS(TA,S),DS(TA,S)),
其中ID(S)表示节点S的唯一标识符,TV(S)为节点S的信任值,TS(TA,S)表示生成该信任证书时的时间戳,DS(TA,S)表示数字签名信息。
进一步地,所述的TR(A,S)表示反馈者A根据节点S先前的消息质量生成的评级分数,其取值为0-4之间的整数,且消息质量越高,评级分数越高。
本发明相对于现有技术具有如下的优点及效果:
1)本发明聚合两种信任评估,且综合考虑报告某事件或其对立事件的来自于不同消息发送者的多条消息以评估其可靠性,因而评估结果更加准确。
2)本发明所提方案无需消息接收者实时请求信任中心,因而评估速度更快。
3)本发明所提方案兼容车辆短时间内无法连接到信任中心的情况,更符合车联网的高动态特性。
附图说明
图1是本发明技术方案中主要步骤示意图;
图2是本发明技术方案中三种距离(即最大识别距离、最大决策距离和最大影响距离)示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例
下面结合附图1和附图2对本发明所述的技术方案进行详细说明。
发明所述的技术方案主要包括三种元素,即信任中心(Trust Authority,TA)、路侧单元(Road-Side Unit,RSU)和车辆(即节点,Node),其中车辆与路侧单元通过其他车辆的中继进行无线通信,而路侧单元与信任中心之间采用有线通信方式。
信任中心负责维护节点的信任信息,每当间隔Δt时间更新各节点的信任值。
以计算节点S的信任值TV(S)为例,信任中心首先在本地存储中选出其他节点(即反馈者,如A、B、C等)对节点S的最新的至多η条信任反馈(即TF(A,S)、TF(B,S)、TF(C,S)等),并将对应的反馈者加入节点S的反馈者集合FS(S),即FS(S)={A,B,C,…}。
信任反馈的格式为:
TF(A,S)=(ID(A),ID(S),TR(A,S),TS(A,S),DS(A,S)),  (1)
其中,ID(A)和ID(S)分别表示反馈者A和节点S的唯一标识符,TR(A,S)表示反馈者A根据节点S先前的消息质量生成的评级分数(即0-4之间的整数,且消息质量越高,评级分数越高),TS(A,S)表示TF(A,S)生成时的时间戳,DS(A,S)表示数字签名信息。TF(B,S)、TF(C,S)等其他信任反馈的格式与TF(A,S)一致。
信任值TV(S)的计算过程中考虑的权重包括:
1)反馈者信任值权重Wf(A,S):由反馈者A的信任值决定,计算公式为:
Wf(A,S)=TV(A);  (2)
2)时间衰减权重Wt(A,S):根据当前时间戳TN和信任反馈中时间戳的时间差进行指数衰减,计算公式为:
Figure PCTCN2018121121-appb-000007
其中λ为信任衰减因子,控制Wt(A,S)随时间差衰减的速度。
如果关于节点S的信任反馈的总数量小于η,则信任值TV(S)被设为较小的信任初值,即:
TV(S)=τ∈[0,1],  (4)
否则,信任值TV(S)由以下公式导出:
Figure PCTCN2018121121-appb-000008
由公式(2)-(5)可得Wf(A,S)、Wt(A,S)、TV(S)的范围均为[0,1]。在导出TV(S)的值后,信任中心用其覆盖先前存储的节点S的信任值。
步骤S1、各节点每当间隔Δt时间且进入某个路侧单元通信范围后向信 任中心请求自己最新的信任证书(Trust Certificate,TC)。以节点S为例,它发送给信任中心的请求信息格式为:
RQ(S,TA)=(ID(S),TS(S,TA),DS(S,TA)),  (6)
其中ID(S)表示节点S的唯一标识符,TS(S,TA)表示生成RQ(S,TA)时的时间戳,DS(S,TA)表示数字签名信息。
信任中心收到节点S的请求信息后,首先通过DS(S,TA)验证请求信息确实来自于节点S,并在本地存储中检索节点S的最新信任值TV(S),然后为其生成信任证书,其格式为:
TC(TA,S)=(ID(S),TV(S),TS(TA,S),DS(TA,S)),  (7)
其中ID(S)表示节点S的唯一标识符,表示TS(TA,S)表示生成该信任证书时的时间戳,DS(TA,S)表示数字签名信息。随后,信任中心通过路侧单元将TC(TA,S)发送给节点S,并通过非对称加密方式保证其机密性。节点S收到TC(TA,S)后更新本地存储以备发送消息时使用。
步骤S2、当某事件E(如道路结冰)发生时,临近节点(如节点S)能够目击其发生,并向后面节点广播该事件。节点S称为目击者,也称为消息发布者,其消息的格式为:
MS(S,E)=(ID(S),MC(S,E),TC(TA,S),TS(S,E),DS(S,E)),  (8)
其中ID(S)表示节点S的唯一标识符,MC(S,E)表示消息内容,TC(TA,S)表示节点S的信任证书,TS(S,E)表示生成该消息时的时间戳,DS(S,E)表示数字签名信息。
在实际中,当某事件E发生时,可能有多个节点(如节点S、节点S'等)目击其发生并向后面节点报告。这些目击节点中可能存在部分恶意节点,它们会向后面节点报告事件E的对立事件-E(如道路畅通)以欺骗其 他节点。因此,当某节点评估事件E的可靠性时,应尽可能同时考虑报告事件E或其对立事件-E的来自于不同消息发送者的多条消息以提高评估可靠性。
当某节点(即消息接收者,如节点R)收到报告某事件E或其对立事件-E的消息时,根据它与事件发生地的距离DT(R,E)决定其具体策略。
如图2所示,在事件发生地附近共设置三种距离,即最大识别距离、最大决策距离和最大影响距离:
1)当DT(R,E)大于最大影响距离时,节点R直接丢弃报告事件E或其对立事件-E的消息;
2)当DT(R,E)介于最大决策距离和最大影响距离时,节点R验证所收消息中的数字签名信息并存储报告事件E或其对立事件-E的消息;
3)当DT(R,E)介于最大识别距离和最大决策距离时,节点R根据收到的多条来自于不同节点的报告事件E或其对立事件-E的消息进行综合决策;
4)当DT(R,E)小于或等于最大识别距离时,节点R能够目击事件E的实际状态,并对先前收到消息的质量进行评级。
在以上情形3)中,设多个消息发布者为节点S、节点S'等,集合表示为SS(E),即SS(E)={S,S′,…},其元素个数记为|SS(E)|,对应消息为MS(S,E)、MS(S′,E)等,报告事件E和对立事件-E分别用1和-1表示。
消息接收者R在计算事件E的综合信任值TV(R,E)时考虑以下权重:
1)消息发布者信任值权重Ws(R,S,E):由信任证书中所提取的消息发布者的信任值所决定,计算公式为:
Ws(R,S,E)=TV(S);       (9)
2)信任证书的时间衰减权重Wc(R,S,E):根据当前时间戳TN和信任证 书中时间戳的时间差进行指数衰减,计算公式为:
Figure PCTCN2018121121-appb-000009
其中
Figure PCTCN2018121121-appb-000010
为信任衰减因子,控制Wc(R,S,E)随时间差衰减的速度;
3)消息的时间衰减权重Wm(R,S,E):根据当前时间戳TN和消息中时间戳的时间差进行指数衰减,计算公式为:
Figure PCTCN2018121121-appb-000011
其中ψ为信任衰减因子,控制Wm(R,S,E)随时间差衰减的速度。
TV(R,E)的值由以下公式导出:
Figure PCTCN2018121121-appb-000012
由公式(9)-(12)可得Ws(R,S,E)、Wc(R,S,E)、Wm(R,S,E)的范围均为[0,1],而TV(R,E)范围为[-1,1]。
1)若TV(R,E)>0,则节点R信任事件E,并认为所有报告事件E的消息可靠,所有报告事件-E的消息不可靠。此外,节点R遵照报告事件E的消息采取行动。
2)若TV(R,E)<0,则节点R信任事件-E,并认为所有报告事件-E的消息可靠,所有报告事件E的消息不可靠。此外,节点R遵照报告事件-E的消息采取行动。
3)若TV(R,E)=0(此情况在实际中极少出现),则节点R不信任事件E和事件-E,并认为所有报告事件E和事件-E的消息不可靠。此外,节点R不采取任何行动。
步骤S3、当消息接收者R与事件发生地的距离小于或等于最大识别距 离时,能够目击事件E的实际状态,并对先前收到的每条消息的质量进行评级,同时为每个消息发布者生成一条信任反馈,其格式如公式(1)所示。此外,当消息接收者R进入某个路侧单元通信范围后将信任反馈发送至信任中心,随后信任中心验证其签名信息并更新本地存储。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

  1. 一种车联网中聚合两种信任评估的消息可靠性评估方法,该车联网包括信任中心、若干路侧单元和节点,节点与路侧单元通过其他节点的中继进行无线通信,而路侧单元与信任中心之间采用有线通信方式,其中,信任中心负责维护节点的信任信息,每当间隔Δt时间更新各节点的信任值,对于每个节点,信任中心首先在本地存储中选出其他节点对该节点的最新的至多η条信任反馈,并据此计算该节点的最新信任值,然后用其覆盖先前存储的该节点的信任值,其特征在于,所述的评估方法如下:
    步骤S1、各节点每当间隔Δt时间且进入某个路侧单元通信范围后向信任中心请求自身节点最新的信任证书,信任中心收到某节点S的请求信息后,首先验证请求信息确实来自于该节点,并在本地存储中检索该节点的最新信任值,然后为其生成信任证书,信任中心通过路侧单元将信任证书发送给该节点,并通过非对称加密方式保证其机密性,该节点收到信任证书后更新本地存储以备发送消息时使用;
    步骤S2、当某事件E发生时,临近节点能够目击其发生,并作为消息发布者向后面节点广播该事件,当某节点R作为消息接收者收到报告某事件E或其对立事件-E的消息时,根据节点R与事件发生地的距离DT(R,E)和最大识别距离、最大决策距离、最大影响距离的大小关系决定节点R的判断策略;
    步骤S3、当某节点R作为消息接收者与事件发生地的距离DT(R,E)小于或等于最大识别距离时,能够目击事件E的实际状态,并对先前收到的每条消息的质量进行评级,同时为每个消息发布者生成一条信任反馈,当消息接收者进入某个路侧单元通信范围后将信任反馈发送至信任中心,随后信任中心验证其签名信息并更新本地存储。
  2. 根据权利要求1所述的一种车联网中聚合两种信任评估的消息可 靠性评估方法,其特征在于,所述的信任反馈的格式为:
    TF(A,S)=(ID(A),ID(S),TR(A,S),TS(A,S),DS(A,S)),
    其中,ID(A)和ID(S)分别表示反馈者A和节点S的唯一标识符,TR(A,S)表示反馈者A根据节点S先前的消息质量生成的评级分数,TS(A,S)表示TF(A,S)生成时的时间戳,DS(A,S)表示数字签名信息。
  3. 根据权利要求1所述的一种车联网中聚合两种信任评估的消息可靠性评估方法,其特征在于,所述的步骤S2中根据节点R与事件发生地的距离DT(R,E)和最大识别距离、最大决策距离、最大影响距离的大小关系决定节点R的判断策略具体如下:
    S21、当DT(R,E)大于最大影响距离时,节点R直接丢弃报告事件E或其对立事件-E的消息;
    S22、当DT(R,E)介于最大决策距离和最大影响距离之间时,节点R验证所收消息中的数字签名信息并存储报告事件E或其对立事件-E的消息;
    S23、当DT(R,E)介于最大识别距离和最大决策距离之间时,节点R根据收到的多条来自于不同节点的报告事件E或其对立事件-E的消息进行综合决策;
    S24、当DT(R,E)小于或等于最大识别距离时,节点R能够目击事件E的实际状态,并对先前收到消息的质量进行评级。
  4. 根据权利要求1所述的一种车联网中聚合两种信任评估的消息可靠性评估方法,其特征在于,所述的步骤S23中节点R根据收到的多条来自于不同节点的报告事件E或其对立事件-E的消息进行综合决策的过程如下:
    1)若节点R对事件E的综合信任值TV(R,E)>0,则作为消息接收者的节点R信任事件E,并认为所有报告事件E的消息可靠,所有报告事件 -E的消息不可靠,同时,节点R遵照报告事件E的消息采取行动;
    2)若节点R对事件E的综合信任值TV(R,E)<0,则作为消息接收者的节点R信任事件-E,并认为所有报告事件-E的消息可靠,所有报告事件E的消息不可靠,同时,节点R遵照报告事件-E的消息采取行动;
    3)若节点R对事件E的综合信任值TV(R,E)=0,则作为消息接收者的节点R不信任事件E和事件-E,并认为所有报告事件E和事件-E的消息不可靠,同时,节点R不采取任何行动。
  5. 根据权利要求1所述的一种车联网中聚合两种信任评估的消息可靠性评估方法,其特征在于,所述的步骤S23中,设多个消息发布者为节点S、节点S′、…,集合表示为SS(E),即SS(E)={S,S′,…},其元素个数记为|SS(E)|,对应消息为MS(S,E)、MS(S′,E)、…,报告事件E和对立事件-E分别用1和-1表示,作为消息接收者的节点R在计算事件E的综合信任值TV(R,E)时考虑以下权重:
    1)消息发布者信任值权重Ws(R,S,E):由信任证书中所提取的消息发布者S的信任值TV(S)所决定,计算公式为:
    Ws(R,S,E)=TV(S);
    2)信任证书的时间衰减权重Wc(R,S,E):根据当前时间戳TN和信任证书中时间戳的时间差进行指数衰减,计算公式为:
    Figure PCTCN2018121121-appb-100001
    其中
    Figure PCTCN2018121121-appb-100002
    为信任衰减因子,控制Wc(R,S,E)随时间差衰减的速度;
    3)消息的时间衰减权重Wm(R,S,E):根据当前时间戳TN和消息中时间戳的时间差进行指数衰减,计算公式为:
    Figure PCTCN2018121121-appb-100003
    其中ψ为信任衰减因子,控制Wm(R,S,E)随时间差衰减的速度。
    所述的综合信任值TV(R,E)的值由以下公式导出:
    Figure PCTCN2018121121-appb-100004
  6. 根据权利要求1所述的一种车联网中聚合两种信任评估的消息可靠性评估方法,其特征在于,信任中心更新节点S的信任值TV(S)的过程中考虑的权重包括:
    1)反馈者信任值权重Wf(A,S):由反馈者A的信任值决定,计算公式为:
    Wf(A,S)=TV(A);
    2)时间衰减权重Wt(A,S):根据当前时间戳TN和信任反馈中时间戳的时间差进行指数衰减,计算公式为:
    Figure PCTCN2018121121-appb-100005
    其中λ为信任衰减因子,控制Wt(A,S)随时间差衰减的速度。
    所述的信任值TV(S)的计算公式如下:
    如果关于节点S的信任反馈的总数量小于η,则信任值TV(S)被设为较小的信任初值,即:
    TV(S)=τ∈[0,1],
    否则,信任值TV(S)由以下公式导出:
    Figure PCTCN2018121121-appb-100006
  7. 根据权利要求1所述的一种车联网中聚合两种信任评估的消息可 靠性评估方法,其特征在于,节点S发送给信任中心的请求信息格式为:
    RQ(S,TA)=(ID(S),TS(S,TA),DS(S,TA)),
    其中ID(S)表示节点S的唯一标识符,TS(S,TA)表示生成RQ(S,TA)时的时间戳,DS(S,TA)表示数字签名信息。
  8. 根据权利要求1所述的一种车联网中聚合两种信任评估的消息可靠性评估方法,其特征在于,信任中心为节点S生成的信任证书的格式为:
    TC(TA,S)=(ID(S),TV(S),TS(TA,S),DS(TA,S)),
    其中ID(S)表示节点S的唯一标识符,TV(S)为节点S的信任值,TS(TA,S)表示生成该信任证书时的时间戳,DS(TA,S)表示数字签名信息。
  9. 根据权利要求1所述的一种车联网中聚合两种信任评估的消息可靠性评估方法,其特征在于,所述的TR(A,S)表示反馈者A根据节点S先前的消息质量生成的评级分数,其取值为0-4之间的整数,且消息质量越高,评级分数越高。
PCT/CN2018/121121 2018-10-12 2018-12-14 一种车联网中聚合两种信任评估的消息可靠性评估方法 WO2020000924A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2018308958A AU2018308958A1 (en) 2018-10-12 2018-12-14 An aggregated trust evaluation method for message reliability in vanets

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811190159.9A CN109195162B (zh) 2018-10-12 2018-10-12 一种车联网中聚合两种信任评估的消息可靠性评估方法
CN201811190159.9 2018-10-12

Publications (1)

Publication Number Publication Date
WO2020000924A1 true WO2020000924A1 (zh) 2020-01-02

Family

ID=64948279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121121 WO2020000924A1 (zh) 2018-10-12 2018-12-14 一种车联网中聚合两种信任评估的消息可靠性评估方法

Country Status (3)

Country Link
CN (1) CN109195162B (zh)
AU (2) AU2018308958A1 (zh)
WO (1) WO2020000924A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111885539A (zh) * 2020-07-23 2020-11-03 杭州师范大学 一种基于更新间隔动态调整的车联网车辆信誉更新方法
CN115002002A (zh) * 2022-04-02 2022-09-02 中国兵器科学研究院 一种装备体系信息通联能力评估方法、装置、设备及介质

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110418309B (zh) * 2019-07-30 2022-06-28 深圳成谷科技有限公司 一种车路协同证书发放的方法、装置、设备及车载单元
CN112399347B (zh) * 2019-07-31 2022-04-05 华为技术有限公司 一种报文处理方法及设备
CN110445788B (zh) * 2019-08-09 2021-07-27 西安电子科技大学 一种车载自组网环境下面向内容的信任评估系统及方法
CN110446204B (zh) * 2019-09-11 2022-10-04 南通大学 一种适用于车联网络车辆结点的信任值计算方法
CN110809253B (zh) * 2019-11-11 2023-03-24 上海第二工业大学 一种车载自组网的无证书聚合签名方法
CN111507564B (zh) * 2020-03-09 2022-04-29 浙江大学 一种融合时空关联性的城市道路警报消息可靠性评估方法
CN113380024B (zh) * 2021-05-27 2022-09-02 重庆邮电大学 一种基于车联网的声誉更新方法及信任度计算方法
CN115174615B (zh) * 2022-06-27 2024-04-19 武汉大学 一种基于起源信息的分布式车联网动态信任管理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130083679A1 (en) * 2011-10-03 2013-04-04 Qualcomm Incorporated Method and apparatus for filtering and processing received vehicle peer transmissions based on reliability information
CN104732237A (zh) * 2015-03-23 2015-06-24 江苏大学 一种车联网中虚假交通信息的识别方法
CN106953839A (zh) * 2017-01-13 2017-07-14 重庆邮电大学 车联网中非可信资源传播的阻控系统及方法
CN108053665A (zh) * 2018-01-15 2018-05-18 长安大学 车联网环境中双信任机制的交通信息识别转发方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101404591B (zh) * 2008-11-14 2010-11-10 西安交通大学 一种自适应的动态信任权重评估方法
CN103957525B (zh) * 2014-05-12 2018-02-27 江苏大学 车联网中基于分簇信任评估的恶意节点检测方法
CN104333596B (zh) * 2014-11-11 2017-06-16 安徽大学 一种车联网环境下的信息可靠性评估方法
KR101736007B1 (ko) * 2015-09-16 2017-05-15 한양대학교 에리카산학협력단 소유자의 익명성을 보장하면서 차량용 카메라 영상 데이터의 시간과 위치를 검증하는 방법 및 장치
CN105430638B (zh) * 2015-10-22 2018-12-28 重庆邮电大学 一种带有公钥信任程度感知的数据安全转发方法
CN107835077B (zh) * 2017-09-22 2020-10-02 中国人民解放军国防科技大学 一种面向车载网匿名认证的互信簇协同验证方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130083679A1 (en) * 2011-10-03 2013-04-04 Qualcomm Incorporated Method and apparatus for filtering and processing received vehicle peer transmissions based on reliability information
CN104732237A (zh) * 2015-03-23 2015-06-24 江苏大学 一种车联网中虚假交通信息的识别方法
CN106953839A (zh) * 2017-01-13 2017-07-14 重庆邮电大学 车联网中非可信资源传播的阻控系统及方法
CN108053665A (zh) * 2018-01-15 2018-05-18 长安大学 车联网环境中双信任机制的交通信息识别转发方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS INC.: "V2V/V2I communication", 3GPP TSG-SA WG1 MEETING #70 SL-151103, vol. SA WG1, 3 April 2015 (2015-04-03), Los Cabos, Mexico, pages 1 - 3, XP050960619 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111885539A (zh) * 2020-07-23 2020-11-03 杭州师范大学 一种基于更新间隔动态调整的车联网车辆信誉更新方法
CN111885539B (zh) * 2020-07-23 2023-10-10 杭州师范大学 一种基于更新间隔动态调整的车联网车辆信誉更新方法
CN115002002A (zh) * 2022-04-02 2022-09-02 中国兵器科学研究院 一种装备体系信息通联能力评估方法、装置、设备及介质
CN115002002B (zh) * 2022-04-02 2024-02-13 中国兵器科学研究院 一种装备体系信息通联能力评估方法、装置、设备及介质

Also Published As

Publication number Publication date
AU2018102186A4 (en) 2020-11-12
CN109195162B (zh) 2020-05-08
AU2018308958A1 (en) 2020-04-30
CN109195162A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
WO2020000924A1 (zh) 一种车联网中聚合两种信任评估的消息可靠性评估方法
CN110300107B (zh) 一种基于区块链的车联网隐私保护信任模型
Liu et al. TCEMD: A trust cascading-based emergency message dissemination model in VANETs
Tangade et al. Trust management scheme based on hybrid cryptography for secure communications in VANETs
Yang et al. Blockchain-based decentralized trust management in vehicular networks
CN107508859B (zh) 车载自组织网络中基于区块链技术的车辆通信方法
CN110830998B (zh) 一种基于信任机制的车联网恶意节点识别方法
Chen et al. TMEC: a trust management based on evidence combination on attack-resistant and collaborative internet of vehicles
Wang et al. Challenges and solutions in autonomous driving: A blockchain approach
CN111756546A (zh) 一种车联网环境下基于动态信誉机制的区块链共识方法
Dong et al. A blockchain-based hierarchical reputation management scheme in vehicular network
Kerrache et al. RITA: RIsk‐aware Trust‐based Architecture for collaborative multi‐hop vehicular communications
CN111885544A (zh) 车联网中兼顾信任管理和隐私保护的紧急消息散播方法及系统
Wu et al. A dempster-shafer theory based traffic information trust model in vehicular ad hoc networks
Liu et al. HDRS: A hybrid reputation system with dynamic update interval for detecting malicious vehicles in VANETs
CN111093189A (zh) 一种车联网中基于信任级联的紧急消息散播方法和系统
Zhang et al. Blockchain based secure package delivery via ridesharing
Ayobi et al. A lightweight blockchain-based trust model for smart vehicles in vanets
Kerrache et al. Hierarchical adaptive trust establishment solution for vehicular networks
Fan et al. COBATS: A Novel Consortium Blockchain-Based Trust Model for Data Sharing in Vehicular Networks
Ahmed et al. Blockchain-assisted trust management scheme for securing VANETs
Wang et al. BIBRM: A Bayesian inference based road message trust model in vehicular ad hoc networks
Thenmozhi et al. Towards modelling a trusted and secured centralised reputation system for VANET’s
CN112351408B (zh) 一种智能网联电动车的数据安全传输方法和系统
Costantino et al. CARS: Context aware reputation systems to evaluate vehicles' behaviour

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924036

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018308958

Country of ref document: AU

Date of ref document: 20181214

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924036

Country of ref document: EP

Kind code of ref document: A1