WO2020000774A1 - 一种光开关装置 - Google Patents

一种光开关装置 Download PDF

Info

Publication number
WO2020000774A1
WO2020000774A1 PCT/CN2018/110047 CN2018110047W WO2020000774A1 WO 2020000774 A1 WO2020000774 A1 WO 2020000774A1 CN 2018110047 W CN2018110047 W CN 2018110047W WO 2020000774 A1 WO2020000774 A1 WO 2020000774A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical fiber
array
switch device
lens group
Prior art date
Application number
PCT/CN2018/110047
Other languages
English (en)
French (fr)
Inventor
绪海波
Original Assignee
昂纳信息技术(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昂纳信息技术(深圳)有限公司 filed Critical 昂纳信息技术(深圳)有限公司
Publication of WO2020000774A1 publication Critical patent/WO2020000774A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • G02B6/3518Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror the reflective optical element being an intrinsic part of a MEMS device, i.e. fabricated together with the MEMS device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/3546NxM switch, i.e. a regular array of switches elements of matrix type constellation

Definitions

  • the invention relates to the field of optical devices, in particular to an optical switching device.
  • An optical switch is an optical device with one or more optional transmission ports, and its role is to perform physical switching or logical operations on optical signals in an optical transmission line or integrated optical path.
  • optical switches based on NxN are generally manufactured by mechanical principles, or cascaded design by 1xN optical switches.
  • the technical problem to be solved by the present invention is to provide an optical switch device in response to the foregoing defects of the prior art, and solve the problems of high cost and large size of the existing optical switch device.
  • the technical solution adopted by the present invention to solve its technical problem is to provide an optical switch device including an optical fiber array, an optical lens group, and a DMD chip.
  • the optical fiber array includes multiple optical fiber input ends and multiple optical fiber output ends.
  • the DMD chip includes a plurality of specific reflection areas arranged in an array; wherein a plurality of the optical fiber input ends output a light beam and enters the corresponding specific reflection area through the optical lens group to cause light reflection, and is then coupled to the corresponding through the optical lens group. Fiber output.
  • the optical lens group includes a converging lens, a plurality of the optical fiber input ends output a light beam and pass through the converging lens to form a plurality of first converging positions, and a specific reflection area of the DMD chip and the first Convergence position is set accordingly.
  • the reflection lens of the specific reflection area adjusts the reflection direction by the rotation mechanism of the DMD chip, and a plurality of light beams reflected by the specific reflection area pass through the converging lens to form a plurality of second converging positions.
  • the optical fiber output end is set corresponding to the second convergence position.
  • the optical lens group includes a plurality of converging lenses arranged in an array, and the converging lenses are respectively aligned with the optical fiber input end and the optical fiber output end of the optical fiber array.
  • the optical lens group further includes collimating lenses arranged in an array, the collimating lenses are arranged between the converging lens and the optical fiber array, and the collimating lenses are respectively connected to the optical fiber input of the optical fiber array. End and fiber output end are aligned.
  • the fiber array is arranged in an N * N array
  • the collimating lens is also arranged in an N * N array.
  • the optical lens group further includes a substrate, and the substrate is provided with a plurality of through holes arranged in an array and corresponding to the position of the collimating lens, and the collimating lens is embedded in the substrate. Through hole.
  • the optical fiber array includes a plurality of optical fiber interfaces arranged in an array, and each of the optical fiber interfaces serves as an optical fiber input end and / or an optical fiber output end, and is connected to an external optical fiber.
  • the optical fiber interface is a dual-fiber pigtail, and each dual-fiber pigtail is connected to an input fiber and an output fiber respectively.
  • the optical lens group includes collimating lenses arranged in an array, and the collimating lenses are respectively aligned with at least one double fiber pigtail.
  • the beneficial effect of the present invention is that, compared with the prior art, the present invention realizes the NxN design of the optical switch by designing an optical switch device and using the DMD chip to form a compact structure, which does not require additional design of a reflective structure, and reduces design and production costs. And improve the practicality of the optical switch device.
  • FIG. 1 is a schematic structural diagram of an optical switching device according to the present invention.
  • FIG. 2 is a schematic structural diagram of a DMD chip according to the present invention.
  • FIG. 3 is a schematic structural diagram of a condensing lens according to the present invention.
  • FIG. 4 is a schematic structural diagram of an optical lens group according to the present invention.
  • the present invention provides a preferred embodiment of an optical switching device.
  • An optical switch device includes an optical fiber array 110, an optical lens group 120, and a DMD chip 130.
  • the optical fiber array 110 includes a plurality of optical fiber input terminals and a plurality of optical fiber output terminals.
  • the DMD chip 130 includes a plurality of arrays. Reflection area 131; wherein a plurality of optical fiber input ends output light beams and enter the corresponding specific reflection area 131 through the optical lens group 120 to generate light reflection, and are then coupled to the corresponding optical fiber output ends through the optical lens group 120 .
  • the optical fiber array 110 includes a plurality of optical fibers 111 arranged in an array, and a plurality of optical fiber incident light beams, and passes through the optical lens group 120, such as collimation, convergence, filtering, etc., and is incident on a specific DMD chip 130.
  • the reflection area 131 and by adjusting the parameters or types of the optical lens group 120, it is preferable that different incident light beams can be incident on the specific reflection area 131 on the set DMD chip 130, that is, the DMD chip 130 is used to control the specific reflection area
  • the 131 mirror can complete the light selection of the optical switch device or the optical switch.
  • an optical fiber input end when an optical fiber input end outputs a light beam, it enters the first specific reflection area 131 of the DMD chip 130 after passing through the optical lens group 120, and is coupled to the corresponding optical fiber output end through the first specific reflection area 131.
  • Two kinds of control can be realized. First, the reflection direction of the mirror of the first specific reflection area 131 of the DMD chip 130 can be controlled, and the light beam coupled to the output end of the optical fiber can be reflected to other places to close the optical path, or reflected to other optical output ends. , To achieve the light path conversion, and secondly, the first specific reflection area 131 of the DMD chip 130 can be controlled to prevent the mirror from reflecting, so that the light path is closed.
  • the present invention provides a preferred embodiment of a condensing lens.
  • the optical lens group 120 includes a converging lens 121, a plurality of the optical fiber input ends output light beams and pass through the converging lens 121 to form a plurality of first converging positions, and the specific reflection area 131 and the first converging position of the DMD chip 130. Corresponding setting.
  • a plurality of the optical fiber input ends output light beams and pass through a converging lens 121 to form a plurality of first converging positions, and the first converging positions form an array arrangement to facilitate control of the DMD chip 130.
  • the beams converged by the convergent lenses 121 of the adjacent optical fiber input ends are concentrated in the same specific reflection area 131, and the above can be achieved by adjusting the convergent lenses 121.
  • the optical lens group 120 includes a plurality of converging lenses 121 arranged in an array, and the converging lenses 121 are respectively aligned with the optical fiber input end and the optical fiber output end of the optical fiber array 110, and are in line with only one condensing lens 121.
  • the effect of adjusting the optical path is the best, and the light beam passing through the focusing lens 121 can be accurately incident into the corresponding first focusing position.
  • the reflection lens of the specific reflection area 131 adjusts the reflection direction through the rotation mechanism of the DMD chip 130, and the light beams reflected by the plurality of specific reflection areas 131 pass through the converging lens 121 to form a plurality of second converging positions.
  • the output end is set corresponding to the second convergence position.
  • the mirror of each specific reflection area 131 of the DMD chip 130 has only two adjustment angles, the first adjustment angle is reflected to the corresponding fiber output end, and the second adjustment The angle is reflected to other places to realize the opening and closing of the light path.
  • the mirror of each specific reflection area 131 of the DMD chip 130 is provided with at least two adjustment angles, the first adjustment angle is reflected to the first fiber output end, and the second adjustment The angle is reflected to the output end of the second optical fiber, and there are other adjustment angles that are reflected to the other optical fiber output end to realize the optical path conversion.
  • the mirror of each specific reflection area 131 of the DMD chip 130 is provided with at least three adjustment angles.
  • the first adjustment angle is reflected to the first optical fiber output end
  • the second The adjustment angle is reflected to the second fiber output end
  • the third adjustment angle is reflected to the blank position to close the optical path
  • other adjustment angles are reflected to other optical fiber output ends to realize optical path conversion.
  • the present invention provides a preferred embodiment of a condensing lens.
  • the optical lens group 120 further includes collimating lenses 122 arranged in an array.
  • the collimating lenses 122 are disposed between the converging lens 121 and the optical fiber array 110.
  • the collimating lenses 122 are respectively connected to the optical fibers of the optical fiber array 110. End and fiber output end are aligned.
  • the optical fiber array 110 is provided in an N * N array
  • the collimating lens 122 is also provided in an N * N array.
  • the optical lens group 120 includes collimating lenses 122 arranged in an array, and the collimating lenses 122 are respectively aligned with at least one double fiber pigtail.
  • the optical lens group 120 further includes a substrate.
  • the substrate is provided with a plurality of through-holes arranged in an array and corresponding to the position of the collimating lens 122.
  • the collimating lens 122 is embedded in the substrate. In the hole.
  • the optical fiber array 110 includes a plurality of optical fiber interfaces arranged in an array, and each of the optical fiber interfaces serves as an optical fiber input end and / or an optical fiber output end, and is connected to an external optical fiber.
  • the optical fiber interface is a double-fiber pigtail, and each double-fiber pigtail is connected to an input fiber and an output fiber, respectively.
  • the optical path of each double-fiber pigtail is turned on or off through the DMD chip 130, that is, the optical fiber input end of each double-fiber pigtail inputs the light beam into the optical switch device, and converges in the corresponding specific reflection area 131 of the DMD chip 130
  • the specific reflection area 131 is turned on under control, the light beam is coupled to the optical fiber output end of the corresponding double-fiber pigtail.
  • the specific reflection area 131 is turned off under control, all The beam is reflected to a blank position.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光开关装置,包括光纤阵列(110)、光学镜片组(120)和DMD芯片(130),光纤阵列包括多个光纤输入端和多个光纤输出端,DMD芯片包括多个阵列设置的特定反射区域(131);其中,多个光纤输入端输出光束并经过光学镜片组入射到对应的特定反射区域中以发生光反射,并再经过光学镜片组耦合至对应的光纤输出端中。这种光开关装置,采用DMD芯片构成一紧凑结构,实现光开关的N´N设计,不需要额外设计反射结构,降低设计及生产成本,以及提高光开关装置的实用性。

Description

一种光开关装置 技术领域
本发明涉及光学器件领域,具体涉及一种光开关装置。
背景技术
光开关是一种具有一个或多个可选的传输端口的光学器件,其作用是对光传输线路或集成光路中的光信号进行物理切换或逻辑操作。
特别是基于NxN的光开关,一般通过机械式的原理进行制作,或者通过1xN光学开关进行级联设计。
但是,上述两个方案的外形尺寸大,成本高,不适合大规模的生产。
技术问题
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种光开关装置,解决现有光开关装置的成本高、尺寸大的问题。
技术解决方案
本发明解决其技术问题所采用的技术方案是:提供一种光开关装置,包括光纤阵列、光学镜片组和DMD芯片,所述光纤阵列包括多个光纤输入端和多个光纤输出端,所述DMD芯片包括多个阵列设置的特定反射区域;其中,多个所述光纤输入端输出光束并经过光学镜片组入射到对应的特定反射区域中以发生光反射,并再经过光学镜片组耦合至对应的光纤输出端中。
其中,较佳方案是:所述光学镜片组包括汇聚透镜,多个所述所述光纤输入端输出光束并经过汇聚透镜形成多个第一汇聚位置,所述DMD芯片的特定反射区域与第一汇聚位置对应设置。
其中,较佳方案是:所述特定反射区域的反射镜片通过DMD芯片的转动机构进行反射方向调整,多个所述特定反射区域反射的光束并经过汇聚透镜形成多个第二汇聚位置,所述光纤输出端与第二汇聚位置对应设置。
其中,较佳方案是:所述光学镜片组包括多个成阵列排布的汇聚透镜,所述汇聚透镜分别与光纤阵列的光纤输入端和光纤输出端对齐设置。
其中,较佳方案是:所述光学镜片组还包括成阵列排布的准直透镜,所述准直透镜设置在汇聚透镜和光纤阵列之间,所述准直透镜分别与光纤阵列的光纤输入端和光纤输出端对齐设置。
其中,较佳方案是:所述光纤阵列为N*N阵列设置,所述准直透镜也为N*N阵列设置。
其中,较佳方案是:所述所述光学镜片组还包括一基板,所述基板上设有多个阵列排布且与准直透镜位置对应的通孔,所述准直透镜嵌入在基板的通孔中。
其中,较佳方案是:所述光纤阵列包括多个阵列排布的光纤接口,每一所述光纤接口均作为一光纤输入端或/和光纤输出端,并与外部的光纤连接。
其中,较佳方案是:所述光纤接口为双纤尾纤,每一双纤尾纤均分别与一输入光纤和一输出光纤连接。
其中,较佳方案是:所述光学镜片组包括成阵列排布的准直透镜,所述准直透镜分别与至少一双纤尾纤对齐设置。
有益效果
本发明的有益效果在于,与现有技术相比,本发明通过设计光开关装置,采用DMD芯片构成一紧凑结构,实现光开关的NxN设计,不需要额外设计反射结构,降低设计及生产成本,以及提高所述光开关装置的实用性。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明光开关装置的结构示意图;
图2是本发明DMD芯片的结构示意图;
图3是本发明汇聚透镜的结构示意图;
图4是本发明光学镜片组的结构示意图。
本发明的最佳实施方式
现结合附图,对本发明的较佳实施例作详细说明。
如图1和图2所示,本发明提供一种光开关装置的优选实施例。 
一种光开关装置,包括光纤阵列110、光学镜片组120和DMD芯片130,所述光纤阵列110包括多个光纤输入端和多个光纤输出端,所述DMD芯片130包括多个阵列设置的特定反射区域131;其中,多个所述光纤输入端输出光束并经过光学镜片组120入射到对应的特定反射区域131中以发生光反射,并再经过光学镜片组120耦合至对应的光纤输出端中。
具体地,光纤阵列110包括成阵列设置的多个光纤111,以及多个光纤入射光束,并经过光学镜片组120,如进行准直、汇聚、滤光等处理,入射至DMD芯片130上的特定反射区域131,并且,通过调整光学镜片组120的参数或种类,优选将不同入射的光束都能入射至设置的DMD芯片130上的特定反射区域131,即采用DMD芯片130,控制其特定反射区域131的反射镜,即可完成光开关装置的光选择,或光开关。
例如,当某一光纤输入端输出光束,在经过光学镜片组120后入射至DMD芯片130的第一特定反射区域131,并通过第一特定反射区域131耦合至对应的光纤输出端中,此时,可以实现两种控制,首先,可控制DMD芯片130的第一特定反射区域131反射镜的反射方向,将耦合至光纤输出端的光束反射至其他地方,实现光路关闭,或者反射至其他光纤输出端,实现光路转换,其次,可控制DMD芯片130的第一特定反射区域131反射镜不反射,实现光路关闭。
如图1和3所示,本发明提供一种汇聚透镜的优选实施例。
所述光学镜片组120包括汇聚透镜121,多个所述所述光纤输入端输出光束并经过汇聚透镜121形成多个第一汇聚位置,所述DMD芯片130的特定反射区域131与第一汇聚位置对应设置。
具体地,多个所述所述光纤输入端输出光束并经过汇聚透镜121形成多个第一汇聚位置,所述第一汇聚位置时构成阵列排布,便于DMD芯片130的控制,一般而言,邻近的几个光纤输入端,其经过汇聚透镜121汇聚的光束,集中在同一特定反射区域131中,上述均可通过对汇聚透镜121的调整实现。进一步地,所述光学镜片组120包括多个成阵列排布的汇聚透镜121,所述汇聚透镜121分别与光纤阵列110的光纤输入端和光纤输出端对齐设置,与只设置一汇聚透镜121相比,此方案虽然成本会有所增加,工艺会更复杂,但是其调整光路路径效果最佳,可以准确将经过汇聚透镜121的光束,入射至对应的第一汇聚位置中。
以及,所述特定反射区域131的反射镜片通过DMD芯片130的转动机构进行反射方向调整,多个所述特定反射区域131反射的光束并经过汇聚透镜121形成多个第二汇聚位置,所述光纤输出端与第二汇聚位置对应设置。
优选地,假如光开关装置进实现光路开启或关闭,DMD芯片130的每一特定反射区域131的反射镜只有两个调整角度,第一调整角度是反射至对应光纤输出端中,而第二调整角度是反射至其他地方,实现光路开启和关闭。或者,假如光开关装置进实现光路转换,DMD芯片130的每一特定反射区域131的反射镜至少设有两个调整角度,第一调整角度是反射至第一光纤输出端中,而第二调整角度是反射至第二光纤输出端,以及还有其他调整角度就反射至其他的光纤输出端中,实现光路转换。或者,假如光开关装置进实现光路转换和关闭,DMD芯片130的每一特定反射区域131的反射镜至少设有三个调整角度,第一调整角度是反射至第一光纤输出端中,而第二调整角度是反射至第二光纤输出端,第三调整角度是反射至空白位置,实现光路关闭,以及还有其他调整角度就反射至其他的光纤输出端中,实现光路转换。
如图4所示,本发明提供一种汇聚透镜的优选实施例。
所述光学镜片组120还包括成阵列排布的准直透镜122,所述准直透镜122设置在汇聚透镜121和光纤阵列110之间,所述准直透镜122分别与光纤阵列110的光纤输入端和光纤输出端对齐设置。
进一步地,所述光纤阵列110为N*N阵列设置,所述准直透镜122也为N*N阵列设置。或者,所述光学镜片组120包括成阵列排布的准直透镜122,所述准直透镜122分别与至少一双纤尾纤对齐设置。
进一步地,所述所述光学镜片组120还包括一基板,所述基板上设有多个阵列排布且与准直透镜122位置对应的通孔,所述准直透镜122嵌入在基板的通孔中。
进一步地,所述光纤阵列110包括多个阵列排布的光纤接口,每一所述光纤接口均作为一光纤输入端或/和光纤输出端,并与外部的光纤连接。
优选地,所述光纤接口为双纤尾纤,每一双纤尾纤均分别与一输入光纤和一输出光纤连接。具体地,通过DMD芯片130实现每一双纤尾纤的光路开启或关闭,即每一双纤尾纤的光纤输入端输入光束至光开关装置中,并汇聚在DMD芯片130的对应特定反射区域131中,当所述特定反射区域131在控制下为开启状态,将所述光束耦合至对应双纤尾纤的光纤输出端中,反之,当所述特定反射区域131在控制下为关闭状态,将所述光束反射至空白位置。
 以上所述者,仅为本发明最佳实施例而已,并非用于限制本发明的范围,凡依本发明申请专利范围所作的等效变化或修饰,皆为本发明所涵盖。

Claims (10)

  1. 一种光开关装置,其特征在于,包括光纤阵列、光学镜片组和DMD芯片,所述光纤阵列包括多个光纤输入端和多个光纤输出端,所述DMD芯片包括多个阵列设置的特定反射区域;其中,多个所述光纤输入端输出光束并经过光学镜片组入射到对应的特定反射区域中以发生光反射,并再经过光学镜片组耦合至对应的光纤输出端中。
  2. 根据权利要求1所述的光开关装置,其特征在于:所述光学镜片组包括汇聚透镜,多个所述所述光纤输入端输出光束并经过汇聚透镜形成多个第一汇聚位置,所述DMD芯片的特定反射区域与第一汇聚位置对应设置。
  3. 根据权利要求2所述的光开关装置,其特征在于:所述特定反射区域的反射镜片通过DMD芯片的转动机构进行反射方向调整,多个所述特定反射区域反射的光束并经过汇聚透镜形成多个第二汇聚位置,所述光纤输出端与第二汇聚位置对应设置。
  4. 根据权利要求2所述的光开关装置,其特征在于:所述光学镜片组包括多个成阵列排布的汇聚透镜,所述汇聚透镜分别与光纤阵列的光纤输入端和光纤输出端对齐设置。
  5. 根据权利要求2至4任一所述的光开关装置,其特征在于:所述光学镜片组还包括成阵列排布的准直透镜,所述准直透镜设置在汇聚透镜和光纤阵列之间,所述准直透镜分别与光纤阵列的光纤输入端和光纤输出端对齐设置。
  6. 根据权利要求5所述的光开关装置,其特征在于:所述光纤阵列为N*N阵列设置,所述准直透镜也为N*N阵列设置。
  7. 根据权利要求5所述的光开关装置,其特征在于:所述所述光学镜片组还包括一基板,所述基板上设有多个阵列排布且与准直透镜位置对应的通孔,所述准直透镜嵌入在基板的通孔中。
  8. 根据权利要求1所述的光开关装置,其特征在于:所述光纤阵列包括多个阵列排布的光纤接口,每一所述光纤接口均作为一光纤输入端或/和光纤输出端,并与外部的光纤连接。
  9. 根据权利要求8所述的光开关装置,其特征在于:所述光纤接口为双纤尾纤,每一双纤尾纤均分别与一输入光纤和一输出光纤连接。
  10. 根据权利要求9所述的光开关装置,其特征在于:所述光学镜片组包括成阵列排布的准直透镜,所述准直透镜分别与至少一双纤尾纤对齐设置。
PCT/CN2018/110047 2018-06-29 2018-10-12 一种光开关装置 WO2020000774A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810714493.3 2018-06-29
CN201810714493.3A CN108717232A (zh) 2018-06-29 2018-06-29 一种光开关装置

Publications (1)

Publication Number Publication Date
WO2020000774A1 true WO2020000774A1 (zh) 2020-01-02

Family

ID=63912385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110047 WO2020000774A1 (zh) 2018-06-29 2018-10-12 一种光开关装置

Country Status (2)

Country Link
CN (1) CN108717232A (zh)
WO (1) WO2020000774A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114089487A (zh) * 2021-09-30 2022-02-25 哈尔滨新光光电科技股份有限公司 一种基于dmd的激光三维成像模拟器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104345394A (zh) * 2013-07-25 2015-02-11 华为技术有限公司 光开关和光开关阵列
US20150293308A1 (en) * 2012-11-01 2015-10-15 The Arizona Board Of Regents On Behalf Of The University Of Arizona Reconfigurable diffractive optical switch
CN105008993A (zh) * 2012-12-07 2015-10-28 日本电信电话株式会社 光输入输出装置
CN105891965A (zh) * 2016-05-10 2016-08-24 许德蛟 大容量光纤开关装置及程控交换方法
CN106772822A (zh) * 2017-01-20 2017-05-31 深圳大学 一种高速光开关器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150293308A1 (en) * 2012-11-01 2015-10-15 The Arizona Board Of Regents On Behalf Of The University Of Arizona Reconfigurable diffractive optical switch
CN105008993A (zh) * 2012-12-07 2015-10-28 日本电信电话株式会社 光输入输出装置
CN104345394A (zh) * 2013-07-25 2015-02-11 华为技术有限公司 光开关和光开关阵列
CN105891965A (zh) * 2016-05-10 2016-08-24 许德蛟 大容量光纤开关装置及程控交换方法
CN106772822A (zh) * 2017-01-20 2017-05-31 深圳大学 一种高速光开关器件

Also Published As

Publication number Publication date
CN108717232A (zh) 2018-10-30

Similar Documents

Publication Publication Date Title
US6317530B1 (en) Micro-opto mechanical multistage interconnection switch
US9964707B2 (en) Cross-connect switch using 1D arrays of beam steering elements
CN203630394U (zh) 1×n 多通道mems 光开关结构
CN209961954U (zh) 一种1xn的mems光开关
US20210356646A1 (en) Optical waveguide element and control method thereof, backlight module and display device
US20070098320A1 (en) Beam steering element with built-in detector and system for use thereof
CN109445037A (zh) 一种基于阵列光波导和mems微镜的1×n端口光开关
US20210231879A1 (en) Optical device for redirecting optical signals
WO2020000774A1 (zh) 一种光开关装置
US11187961B2 (en) Liquid crystal lens and imaging device using the same
CN210514694U (zh) 一种2xn的mems光开关
CA2253954C (en) Optical deflection switch
JP2000131626A (ja) 可変光減衰器と光減衰方法
US6920258B2 (en) Optical switch
CN208314326U (zh) 一种光开关装置
TW503330B (en) Optical switch and method for alignment thereof
US7557980B2 (en) Optical path switching device
CN207008117U (zh) 一种全玻璃集成的一体化声光开关
JP2006162981A (ja) 光スイッチ装置および光学部材ユニット
JP2000098136A (ja) 可変光減衰器
CN107765370B (zh) 光交叉连接装置
US11506884B2 (en) MEMS optical circuit switch
WO2019084710A1 (zh) 一种多级mems光开关单元和光交叉装置
LU101124B1 (en) Multi-channel optical passive physical switch
CN110646959B (zh) 反射式环形器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924110

Country of ref document: EP

Kind code of ref document: A1