WO2020000773A1 - 一种平顶型的光学滤波器 - Google Patents

一种平顶型的光学滤波器 Download PDF

Info

Publication number
WO2020000773A1
WO2020000773A1 PCT/CN2018/110046 CN2018110046W WO2020000773A1 WO 2020000773 A1 WO2020000773 A1 WO 2020000773A1 CN 2018110046 W CN2018110046 W CN 2018110046W WO 2020000773 A1 WO2020000773 A1 WO 2020000773A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical filter
optical
fiber
module
output end
Prior art date
Application number
PCT/CN2018/110046
Other languages
English (en)
French (fr)
Inventor
徐颖鑫
张江涛
金顺平
徐炜
谢红
Original Assignee
昂纳信息技术(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昂纳信息技术(深圳)有限公司 filed Critical 昂纳信息技术(深圳)有限公司
Publication of WO2020000773A1 publication Critical patent/WO2020000773A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems

Definitions

  • the invention relates to the field of optical filters, in particular to a flat-topped optical filter.
  • An optical filter is an instrument used for wavelength selection. It can select the required wavelength from a large number of wavelengths, and light other than this wavelength will be rejected.
  • An optical filter based on the fiber Bragg grating structure can achieve an all-fiber structure and a flat top, but it is more difficult to tune.
  • Optical filters based on thin film filters can achieve tunable and flat tops, but the devices are complex and difficult to miniaturize.
  • the optical filter based on Fabry-Perot resonator has a simple structure but poor working stability.
  • a tunable filter based on free-space optical structure Because of its wide center wavelength range, high tuning accuracy, and low cost, this filter is currently the most widely used structure, but its passband is generally Gaussian.
  • a slit diaphragm can be used to achieve the flat top, but the structure is more complicated and the size is larger.
  • the technical problem to be solved by the present invention is to provide a flat-topped optical filter to overcome the defects of the prior art, which overcomes the defects of uncoordinated, complicated devices, and poor working stability performance.
  • the present invention provides a flat top optical filter
  • the optical filter includes a fiber input end and a fiber output end, and an optical filter path provided between the fiber input end and the fiber output end,
  • the optical filter path includes a collimating lens, a transmission grating, and a wavelength tuning module.
  • the optical filter further includes a light-varying lens disposed in the optical filter path.
  • the light-varying lens includes a plane mirror intersecting two, The plane mirror is arranged symmetrically along the center of the center of the optical filtering path.
  • the light-changing lens is a triangular prism
  • the plane mirror is both sides of the triangular prism
  • the triangular prism is disposed at any position in the optical filtering path.
  • the preferred solution is that the vertex angle formed by the two sides of the triangular prism is 160-180 degrees.
  • the thickness of the triangular prism is between 0.5 and 20 mm.
  • the optically variable lens is a reflective lens
  • the wavelength tuning module includes a MEMS module
  • two plane mirrors of the optically variable lens are disposed on the MEMS module.
  • intersection angle of the two plane mirrors is 160-180 degrees.
  • the wavelength tuning module includes a MEMS module and a mirror connected to the MEMS module
  • the optical filter further includes a dual fiber connector connected to an optical fiber input end and an optical fiber output end, respectively.
  • the preferred solution is that the adjustment range of the MEMS module is between 0 and 10 degrees.
  • the optical filter further includes a processing module connected to the output end of the optical fiber, and the processing module superimposes a Gaussian beam output from the output end of the optical fiber to form a flat-topped beam.
  • optical filter comprises a housing, and the collimating lens, the transmission grating, the wavelength tuning module, and the optically variable lens are all disposed in a cavity of the housing.
  • the optical fiber input end and the optical fiber output end are arranged on the casing through a double fiber connector, and communicate with the cavity of the casing.
  • the beneficial effect of the present invention is that, compared with the prior art, the present invention provides a flat-topped optical filter.
  • the optical filter is provided with a light-changing lens, and the light-changing lens divides an optical path into two paths. Forming two Gaussian beams with different center wavelengths; further, the optical filter is further provided with a processing module, and the two Gaussian beams are superimposed to form a flat-topped beam through the processing module; finally, the optical filter is further provided There is a housing, the collimating lens, transmission grating, wavelength tuning module, and optically variable lens are all arranged in the cavity of the housing, and the optical fiber input end and the optical fiber output end are arranged on the housing through a double fiber connector, and are connected with The cavity of the shell is communicated, and the flat-top filtering can be coordinated, and the structure is simple and miniaturized.
  • FIG. 1 is a schematic structural diagram of a first embodiment of an optical filter according to the present invention.
  • FIG. 2 is a schematic structural diagram of a second embodiment of an optical filter according to the present invention.
  • FIG. 3 is a schematic structural diagram of a third embodiment of an optical filter according to the present invention.
  • FIG. 4 is a schematic structural diagram of a fourth embodiment of an optical filter according to the present invention.
  • FIG. 5 is a schematic structural diagram of a fifth embodiment of an optical filter according to the present invention.
  • FIG. 6 is a schematic structural diagram of a processing module according to the present invention.
  • FIG. 7 is a schematic structural diagram of a housing-based optical filter according to the present invention.
  • the present invention provides a preferred embodiment of the flat-top type optical filter.
  • a flat-top type optical filter includes an optical fiber input end 111 and an optical fiber output end 112, and an optical filter path provided between the optical fiber input end 111 and the optical fiber output end 112, and the optical filter path
  • the optical filter further includes a collimating lens 120, a transmission grating 130, and a wavelength tuning module.
  • the optical filter further includes a light-varying lens 100 disposed in the optical filtering path.
  • the light-varying lens 100 includes a plane mirror intersected by two. The plane mirrors are arranged symmetrically along the center of the center of the optical filtering path.
  • the wavelength tuning module includes a MEMS module 150 and a reflector 140 connected to the MEMS module 150, and the optical filter includes a dual fiber connector connected to the fiber input terminal 111 and the fiber output 112 respectively. 110.
  • the light enters from the fiber input end 111 of the dual-fiber connector 110, and is divided into two Gaussian beams with a certain center wavelength difference through the optical lens 100. After being collimated by the collimating lens 120, the light with different wavelengths is transmitted through the transmission grating 130. After being separated from the angle, it is incident on the reflector 140 provided on the MEMS module 150, and then the optical path is returned through the reflector 140. The returned light passes through the transmission grating 130 and then is converged by the collimator lens 120. After the convergence, the original path returns To the fiber output terminal 112 on the dual fiber connector 110.
  • the wavelength tuning module includes a MEMS module 150 and a refractive mirror 140 connected to the MEMS module 150.
  • the light enters from the optical fiber input end 111 and is divided into two Gaussian beams with a certain gap in center wavelength through the optically variable lens 100. After being collimated by the collimating lens 120, the light with different wavelengths is separated from the angle by the transmission grating 130. It is then incident on the refractive mirror 140 disposed on the MEMS module 150, and the light beam is incident on the optical fiber output end 112 through the refractive mirror 140.
  • the adjustment range of the MEMS module is 0-10 degrees.
  • the optically variable lens is composed of plane mirrors whose two sides intersect at a certain angle, and the two plane mirrors are arranged symmetrically along the center of the center line of the optical filtering path.
  • the present invention provides a preferred embodiment of a triangular prism-based optical filter.
  • the optical variable lens 100 is a triangular prism.
  • a triangular prism is a transparent body that is optically triangular in cross section. It is an optical instrument with a triangular cross section made of a transparent material. It belongs to a type of dispersion prism, which can make polychromatic light disperse when passing through the prism.
  • Sunlight is a multi-color light composed of many different frequencies of light. These lights have different refractive indices for the same medium.
  • the triangular prism 100 may be disposed in three positions, namely, between the dual fiber connector 110 and the collimating lens 120, between the collimating lens 120 and the transmission grating 130, and between the transmission grating 130 and the wavelength tuning module. between.
  • the vertex angle formed by the two sides of the triangular prism is 160-180 degrees.
  • the thickness of the triangular prism is between 0.5 and 20 mm.
  • the present invention provides a preferred embodiment of an optical filter based on a reflective lens.
  • the optically variable lens is a reflective lens 100, and the wavelength tuning module includes a MEMS module 150.
  • two plane mirrors of the optically variable lens 100 are disposed on a MEMS module 150, and an intersection angle of the two plane mirrors is 160 to 180 degrees.
  • the present invention provides a preferred embodiment of an optical filter based on a processing module.
  • the optical filter further includes a processing module 160 connected to the optical fiber output terminal 112.
  • the processing module 160 superposes a Gaussian beam output from the optical fiber output terminal 112 to form a flat-topped beam.
  • the present invention provides a preferred embodiment of a housing-based optical filter.
  • the optical filter includes a housing 200.
  • the collimating lens 120, the transmission grating 130, the wavelength tuning module, and the optical variable lens 100 are all disposed in a cavity of the housing 200.
  • the optical fiber input end 111 and the optical fiber are provided.
  • the output terminal 112 is disposed on the casing through the double fiber connector 110 and communicates with the cavity of the casing 200.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种平顶型的光学滤波器,包括光纤输入端(111)和光纤输出端(112),以及设置在光纤输入端和光纤输出端之间的光学滤波路径,光学滤波路径包括准直透镜(120)、透射光栅(130)和波长调谐模块,光学滤波器还包括设置在光学滤波路径中的光变镜片(100)。光变镜片将光路分成两路,形成两束中心波长不同的两束高斯光束,两束高斯光束再通过处理模块叠加形成一束平顶光束;光学滤波器还设置有壳体(200),准直透镜、透射光栅、波长调谐模块以及光变镜片均设置在壳体的腔体内,实现了可协调平顶滤波,并且结构简单小型化。

Description

一种平顶型的光学滤波器 技术领域
本发明涉及光滤波器领域,具体涉及一种平顶型的光学滤波器。
背景技术
光滤波器是用来进行波长选择的仪器,它可以从众多的波长中挑选出所需的波长,而除此波长以外的光将会被拒绝通过。
在现代智能光通信网中,可调谐光学滤波器是不可或缺的器件,平顶、小型化是其发展趋势。从工作原理上主要有四种方案可以实现光纤通讯网络中的光学滤波,分别是基于光纤Bragg光栅结构、基于薄膜滤波片、基于Fabry-Perot谐振腔以及基于自由空间光学结构的可调谐滤波器。
但是,上述方案均存在缺陷,具体是:
1.基于光纤Bragg光栅结构的光学滤波器,可以实现全光纤结构和平顶,但是比较难调谐。
2.基于薄膜滤波片的光学滤波器,可以实现可调谐和平顶,但是器件复杂,比较难小型化。
3.基于Fabry-Perot谐振腔的光学滤波器,结构简单,但是工作稳定性较差。
4.基于自由空间光学结构的可调谐滤波器,由于其中心波长范围宽、调谐精度高、成本低,所以该滤波器是目前应用最广泛的结构,但是它的通带一般为高斯型,要实现平顶可以采用狭缝光阑,但结构较复杂、尺寸较大。
所以,设计一种小型化平顶型的可协调光学滤波器是本领域一直重点研究的问题。
技术问题
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种平顶型的光学滤波器,克服了不可协调、器件复杂以及工作稳定性能差的缺陷。
技术解决方案
为解决该技术问题,本发明提供一种平顶型的光学滤波器,所述光学滤波器包括光纤输入端和光纤输出端,以及设置在光纤输入端和光纤输出端之间的光学滤波路径,所述光学滤波路径包括准直透镜、透射光栅和波长调谐模块,所述光学滤波器还包括设置在光学滤波路径中的光变镜片,所述光变镜片包括由两相交的平面镜,两个所述平面镜沿着光学滤波路径的中线中心对称设置。
其中,较佳方案为所述光变镜片为三棱镜,所述平面镜为三棱镜的两侧面,所述三棱镜设置于光学滤波路径中的任意位置。
其中,较佳方案为所述三棱镜的两侧面构成的顶角角度为160~180度。
其中,较佳方案为所述三棱镜的厚度为0.5~20mm之间。
其中,较佳方案为所述光变镜片为反射镜片,所述波长调谐模块包括MEMS模块,所述光变镜片的两平面镜设置在MEMS模块上。
其中,较佳方案为所述两个平面镜的相交角度为160~180度。
其中,较佳方案为所述波长调谐模块包括MEMS模块和与MEMS模块连接的反射镜,所述光学滤波器还包括分别与光纤输入端和光纤输出端连接的双纤接头。
其中,较佳方案为所述MEMS模块的调节范围为0~10度之间。
其中,较佳方案为所述光学滤波器还包括与光纤输出端连接的处理模块,所述处理模块将从光纤输出端输出的高斯光束叠加形成平顶光束。
根据权利要求1所述的光学滤波器,其特征在于:所述光学滤波器包括壳体,所述准直透镜、透射光栅、波长调谐模块以及光变镜片均设置在壳体的腔体内,所述光纤输入端和光纤输出端通过双纤接头设置在壳体上,并与壳体的腔体连通。
有益效果
本发明的有益效果在于,与现有技术相比,本发明通过设置一种平顶型的光学滤波器,所述光学滤波器设置有光变镜片,所述光变镜片将光路分成两路,形成两束中心波长不同的两束高斯光束;进一步地,所述光学滤波器还设置有处理模块,所述两束高斯光束通过处理模块叠加形成平顶光束;最后,所述光学滤波器还设置有壳体,所述准直透镜、透射光栅、波长调谐模块以及光变镜片均设置在壳体的腔体内,所述光纤输入端和光纤输出端通过双纤接头设置在壳体上,并与壳体的腔体连通,实现了可协调平顶滤波,并且结构简单小型化。
附图说明                                    
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1为本发明光学滤波器实施例一的结构示意图;
图2为本发明光学滤波器实施例二的结构示意图;
图3为本发明光学滤波器实施例三的结构示意图;
图4为本发明光学滤波器实施例四的结构示意图;
图5为本发明光学滤波器实施例五的结构示意图;
图6为本发明处理模块的结构示意图;
图7为本发明基于壳体的光学滤波器的结构示意图。
本发明的最佳实施方式
现结合附图,对本发明的较佳实施例作详细说明。
如图1所示,本发明提供所述一种平顶型的光学滤波器的优选实施例。
一种平顶型的光学滤波器,所述光学滤波器包括光纤输入端111和光纤输出端112,以及设置在光纤输入端111和光纤输出端112之间的光学滤波路径,所述光学滤波路径包括准直透镜120、透射光栅130和波长调谐模块,所述光学滤波器还包括设置在光学滤波路径中的光变镜片100,所述光变镜片100包括由两相交的平面镜,两个所述平面镜沿着光学滤波路径的中线中心对称设置。
具体提供两种较佳方案,
方案一,并参考图1,所述波长调谐模块包括MEMS模块150和与MEMS模块150连接的反射镜140,所述光学滤波器包括分别与光纤输入端111和光纤输出112端连接的双纤接头110。
具体地,光从双纤接头110的光纤输入端111射入,经过光学镜片100分成两束中心波长有一定差距的高斯光束,经过准直透镜120准直后通过透射光栅130将不同波长的光从角度上分开后射入设置在MEMS模块150上的反射镜140上,再通过反射镜140将光路原路返回,返回光通过透射光栅130后再通过准直透镜120汇聚,汇聚后原路返回至双纤接头110上的光纤输出端112。
方案二,并参考图5,所述波长调谐模块包括MEMS模块150和与MEMS模块150连接的折射镜140。
具体地,光从光纤输入端111射入,经过光变镜片100分成两束中心波长有一定差距的高斯光束,经过准直透镜120准直后通过透射光栅130将不同波长的光从角度上分开后射入设置在MEMS模块150上的折射镜140上,再通过折射镜140将光束射入至光纤输出端112。
在本实施例中,所述MEMS模块的调节范围为0~10度。
在本实施例中,光变镜片由两面相交成一定角度的平面镜组成,两个所述平面镜沿着光学滤波路径的中线中心对称设置。
如图1至图3所示,本发明提供一种基于三棱镜的光学滤波器的较佳实施例。
所述光变镜片100为三棱镜。三棱镜是光学上横截面为三角形的透明体。它是由透明材料作成的截面呈三角形的光学仪器,属于色散棱镜的一种,能够使复色光在通过棱镜时发生色散。
阳光是由很多不同频率的光组成的复色光,这些光对于同一介质的折射率不同,当一束光进入三棱镜后,发生偏转角度不同的折射(光的折射定律:入射角的正弦正比于折射角的正弦,比例系数为折射率),折射率取决于光的在介质中的速率,间接取决于光的频率。光的频率越大,波长越小,在介质中的衰减的速率越大,在介质中的速率越小,折射率就越大。所以原本一个方向前进的光束就会被分解成按偏转角度顺序排列的光带。(偏转角=折射角-入射角)
参考图1至图3,所述三棱镜100可以设置在三个位置,分别为双纤接头110与准直透镜120之间、准直透镜120与透射光栅130之间以及透射光栅130与波长调谐模块之间。
优选地,所述三棱镜的两侧面构成的顶角角度为160~180度。所述三棱镜的厚度为0.5~20mm之间。
如图4所示,本发明提供一种基于反射镜片的光学滤波器的较佳实施例。
所述光变镜片为反射镜片100,所述波长调谐模块包括MEMS模块150。
参考图4,所述光变镜片100的两平面镜设置在MEMS模块150上,并且两个所述平面镜的相交角度为160~180度。
如图6所示,本发明提供一种基于处理模块的光学滤波器的较佳实施例。
参考图6,所述光学滤波器还包括与光纤输出端112连接的处理模块160,所述处理模块160将从光纤输出端112输出的高斯光束叠加形成平顶光束。
如图7所示,本发明提供一种基于壳体的光学滤波器的较佳实施例。
参考图7,所述光学滤波器包括壳体200,所述准直透镜120、透射光栅130、波长调谐模块和光变镜片100均设置在壳体200的腔体内,所述光纤输入端111和光纤输出端112通过双纤接头110设置在壳体上,并与壳体200的腔体连通。
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所做的任何修改,等同替换,改进等,均应包含在本发明的保护范围内。

Claims (10)

  1. 一种平顶型的光学滤波器,所述光学滤波器包括光纤输入端和光纤输出端,以及设置在光纤输入端和光纤输出端之间的光学滤波路径,所述光学滤波路径包括准直透镜、透射光栅和波长调谐模块,其特征在于:所述光学滤波器还包括设置在光学滤波路径中的光变镜片,所述光变镜片包括由两相交的平面镜,两个所述平面镜沿着光学滤波路径的中线中心对称设置。
  2. 根据权利要求1所述的光学滤波器,其特征在于:所述光变镜片为三棱镜,所述平面镜为三棱镜的两侧面,所述三棱镜设置于光学滤波路径中的任意位置。
  3. 根据权利要求2所述的光学滤波器,其特征在于:所述三棱镜的两侧面构成的顶角角度为160~180度。
  4. 根据权利要求2所述的光学滤波器,其特征在于:所述三棱镜的厚度为0.5~20mm之间。
  5. 根据权利要求1所述的光学滤波器,其特征在于:所述光变镜片为反射镜片,所述波长调谐模块包括MEMS模块,所述光变镜片的两平面镜设置在MEMS模块上。
  6. 根据权利要求5所述的光学滤波器,其特征在于:所述两个平面镜的相交角度为160~180度。
  7. 根据权利要求1所述的光学滤波器,其特征在于:所述波长调谐模块包括MEMS模块和与MEMS模块连接的反射镜,所述光学滤波器还包括分别与光纤输入端和光纤输出端连接的双纤接头。
  8. 根据权利要求5或者7所述的光学滤波器,其特征在于:所述MEMS模块的调节范围为0~10度之间。
  9. 根据权利要求1至9任一所述的光学滤波器,其特征在于:所述光学滤波器还包括与光纤输出端连接的处理模块,所述处理模块将从光纤输出端输出的高斯光束叠加形成平顶光束。
  10. 根据权利要求1所述的光学滤波器,其特征在于:所述光学滤波器包括壳体,所述准直透镜、透射光栅、波长调谐模块以及光变镜片均设置在壳体的腔体内,所述光纤输入端和光纤输出端通过双纤接头设置在壳体上,并与壳体的腔体连通。
PCT/CN2018/110046 2018-06-29 2018-10-12 一种平顶型的光学滤波器 WO2020000773A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810713123.8A CN108710200A (zh) 2018-06-29 2018-06-29 一种平顶型的光学滤波器
CN201810713123.8 2018-06-29

Publications (1)

Publication Number Publication Date
WO2020000773A1 true WO2020000773A1 (zh) 2020-01-02

Family

ID=63873279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110046 WO2020000773A1 (zh) 2018-06-29 2018-10-12 一种平顶型的光学滤波器

Country Status (2)

Country Link
CN (1) CN108710200A (zh)
WO (1) WO2020000773A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212977A (zh) * 2019-06-10 2019-09-06 昂纳信息技术(深圳)有限公司 一种波长及功率监控装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6715936B2 (en) * 2002-01-22 2004-04-06 Megasense, Inc. Photonic component package and method of packaging
CN104090362A (zh) * 2014-07-28 2014-10-08 华中科技大学 一种基于mems的可调谐平顶窄带型光学滤波器
CN105785515A (zh) * 2014-12-26 2016-07-20 福州高意通讯有限公司 一种带宽可调的平顶型光学滤波器
CN106019580A (zh) * 2016-07-19 2016-10-12 华中科技大学 一种具有超宽调谐范围的灵活宽型光学滤波器
CN206757098U (zh) * 2017-06-13 2017-12-15 福州高意通讯有限公司 一种mems型可调节光学滤波器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102608708B (zh) * 2012-03-05 2013-06-26 华中科技大学 一种波长可调的光学滤波器
CN103869510A (zh) * 2012-12-18 2014-06-18 福州高意通讯有限公司 一种可调滤波结构及滤波器
CN208752310U (zh) * 2018-06-29 2019-04-16 昂纳信息技术(深圳)有限公司 一种平顶型的光学滤波器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6715936B2 (en) * 2002-01-22 2004-04-06 Megasense, Inc. Photonic component package and method of packaging
CN104090362A (zh) * 2014-07-28 2014-10-08 华中科技大学 一种基于mems的可调谐平顶窄带型光学滤波器
CN105785515A (zh) * 2014-12-26 2016-07-20 福州高意通讯有限公司 一种带宽可调的平顶型光学滤波器
CN106019580A (zh) * 2016-07-19 2016-10-12 华中科技大学 一种具有超宽调谐范围的灵活宽型光学滤波器
CN206757098U (zh) * 2017-06-13 2017-12-15 福州高意通讯有限公司 一种mems型可调节光学滤波器

Also Published As

Publication number Publication date
CN108710200A (zh) 2018-10-26

Similar Documents

Publication Publication Date Title
WO2016065865A1 (zh) 微型同波长单芯双向光收发模块
CN105717589A (zh) 一种单光口多路并行光发射组件
JPH04212111A (ja) マルチポート光デバイス
CN216248409U (zh) 一种低成本的光可调滤波器
WO2016201625A1 (zh) 一种准直透镜以及包括其的光模块
WO2020000773A1 (zh) 一种平顶型的光学滤波器
CN108732744A (zh) 一种mems可调光滤波器
CN208752310U (zh) 一种平顶型的光学滤波器
CN106896450A (zh) 一种基于棱镜耦合的多通带极窄带光学滤波器
US6574049B1 (en) Optical interleaver and de-interleaver
CN113777712B (zh) 一种基于倾斜光栅的可编程光谱滤波器
CN105891961A (zh) 一种带宽可角度切换的多模导模共振光学滤波器
CN111694103B (zh) 一种光学滤波器的设计方法
CN213365087U (zh) 一种多次滤波的光学滤波系统
CN112578503B (zh) 一种多波长信号共纤同传的系统
CN209946542U (zh) 一种光滤波装置、系统及封装结构
CN209657023U (zh) 一种超微型光环行器
US6766084B1 (en) Coarse wave division multiplexer
CN217879719U (zh) 一种高阶高斯光滤波器
CN208188408U (zh) 一种超窄带平顶气调滤波器
CN112255814A (zh) 一种窄带可调滤波器
CN220961920U (zh) 一种平顶型光学滤波器
JP3362696B2 (ja) 波長可変光フィルタ
CN219179636U (zh) 一种光学滤波结构和光学滤波器
CN110908150A (zh) 一种自由空间环行器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924072

Country of ref document: EP

Kind code of ref document: A1