WO2020000319A1 - 散射角测量装置和散射角测量方法 - Google Patents

散射角测量装置和散射角测量方法 Download PDF

Info

Publication number
WO2020000319A1
WO2020000319A1 PCT/CN2018/093431 CN2018093431W WO2020000319A1 WO 2020000319 A1 WO2020000319 A1 WO 2020000319A1 CN 2018093431 W CN2018093431 W CN 2018093431W WO 2020000319 A1 WO2020000319 A1 WO 2020000319A1
Authority
WO
WIPO (PCT)
Prior art keywords
scattering
directions
angle
scattered light
incident
Prior art date
Application number
PCT/CN2018/093431
Other languages
English (en)
French (fr)
Inventor
蒋鹏
任新东
郭子成
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2018/093431 priority Critical patent/WO2020000319A1/zh
Priority to CN201880000919.7A priority patent/CN109073549A/zh
Publication of WO2020000319A1 publication Critical patent/WO2020000319A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4704Angular selective
    • G01N2021/4711Multiangle measurement

Definitions

  • the present application relates to the field of optical measurement, and more particularly, to a scattering angle measurement device and a scattering angle measurement method.
  • Light scattering phenomenon can be used to detect materials such as molecular structure and morphology, polymer solution crystallization, adsorption and other microscopic phenomena. It has been widely used in many fields such as physics, biology, chemistry, meteorology and so on. Light will be scattered after passing through the measured sample, and the scattering angle formed usually requires a special measuring device. However, the current scattering angle measurement devices usually require a large number of photodetectors, the structure is more complicated, and the device cost is higher.
  • the embodiments of the present application provide a scattering angle measuring device and a scattering angle measuring method, which can reduce the complexity of the scattering angle measuring device and reduce the cost of the scattering angle measuring device.
  • a scattering angle measuring device includes a laser for emitting light to a device under test to obtain scattered light formed by the light passing through the device under test; a signal; An acquisition unit configured to move within the incident plane of the light to collect the scattered light in a plurality of scattering directions in the incident plane; a processing unit configured to according to the scattered light in the plurality of scattered directions Strong to determine the scattering angle of the DUT.
  • the signal acquisition unit in the scattering angle measurement device collects scattered light in each scattering direction by moving in multiple scattering directions in the incident plane, and the processing unit collects the scattered light in accordance with the multiple scatterings collected by the signal acquisition unit.
  • the scattered light intensity in the direction calculates the scattering angle of the DUT. Because the signal acquisition unit can move in the incident plane, only one signal acquisition unit is needed to collect scattered light in various scattering directions, which greatly reduces the cost of the measurement device.
  • the signal acquisition unit is specifically configured to: in the incident plane, take an incident point of the light on the DUT as a center Rotating to collect the scattered light in the plurality of scattering directions.
  • the multiple scattering directions include an incident direction and N scattering directions on one side of the incident direction
  • the angle between the i-th scattering direction and the incident direction among the N scattering directions is smaller than the angle between the i + 1th scattering direction and the incident direction, and 1 ⁇ i ⁇ N.
  • the processing unit is specifically configured to: if the incident direction and a direction of a scattered onto the first scatterer M 1 direction and the scattered light intensity, scattered light intensity on the sum of the plurality of scattering directions ratio reaches a predetermined value, it is determined that the M th angle between a direction of the scattering is the scattering angle of the incident direction of the test specimen, 1 ⁇ M 1 ⁇ N.
  • the multiple scattering directions include an incident direction and are located symmetrically with respect to the incident direction in the incident direction N scattering directions on the first side of N and N scattering directions on the second side of the incident direction, a sandwich between the i-th scattering direction in the N scattering directions on the first side and the incident direction
  • the angle is smaller than the angle between the i + 1th scattering direction and the incident direction, and the angle between the ith scattering direction and the incident direction among the N scattering directions on the second side is smaller than the i
  • the included angle between the +1 scattering direction and the incident direction is 1 ⁇ i ⁇ N.
  • the processing unit is specifically configured to: if the direction of incidence of the first side of the first direction to a second scatterer M 2 scatterer directions, and a scattering direction of the first side to the second M 2 of the light intensity in the scatterer and the direction of the scattering, the scattering ratio of the plurality of directions of the sum of the scattered light intensity reaches a preset value, the second scatterer M 2 and the direction of the incident direction is determined
  • the included angle is the scattering angle of the DUT, 1 ⁇ M 2 ⁇ N.
  • the scattering angle measurement device further includes an execution unit, and the signal acquisition unit is disposed in the execution unit The execution unit is configured to drive the signal acquisition unit to move in the incident plane to collect the scattered light in the multiple scattering directions.
  • the execution unit before the signal acquisition unit collects the scattered light in the multiple scattering directions, is further configured to: drive the signal acquisition unit to move to the incident direction of the light, and the position of the signal acquisition unit in the incident direction is the position where the signal acquisition unit moves in the incident plane. starting point.
  • the execution unit includes a rotation axis and a rotation arm, and the signal acquisition unit is disposed on the rotation arm
  • the rotating arm is configured to rotate around the rotating axis, so as to drive the signal acquisition unit on the rotating arm to center the incident point of the light on the device under test in the incident plane. Rotating to collect the scattered light in the plurality of scattering directions.
  • the rotation axis is perpendicular to the incident plane
  • the rotation arm is a right-angled arm
  • the right-angled One right-angle side of the arm is connected to the rotation axis and perpendicular to the rotation axis
  • the other right-angle side of the right-angle arm is parallel to the rotation axis
  • the signal acquisition unit is disposed at a right angle parallel to the rotation axis On the edge.
  • the signal acquisition unit includes a photoelectric sensor, and the photoelectric sensor is configured to be in the incident plane. Moving to collect the scattered light in the plurality of scattering directions and convert an optical signal of the scattered light in the plurality of scattering directions into an electrical signal.
  • the signal acquisition unit includes an optical fiber sensor, and the optical fiber sensor is configured to be in the incident plane. Move to collect the scattered light in the plurality of scattering directions, convert an optical signal of the scattered light in the plurality of scattering directions into an electric signal, and The scattered light is subjected to spectral analysis.
  • the scattering angle measurement device further includes a data acquisition card connected to the signal acquisition unit, and the The data acquisition card is configured to acquire the electrical signals of the scattered light in the multiple scattering directions from the signal acquisition unit, and send the electrical signals of the scattered light in the multiple scattering directions to the processing. unit.
  • the incident direction of the light ray is perpendicular to a surface of the component under test.
  • the device under test is an organic polymer material or an organic light emitting diode OLED screen.
  • the processing unit is further configured to: determine the object to be measured according to a scattering angle of the object to be measured. Material properties of the test piece.
  • the processing unit is specifically configured to: if the scattering angle of the DUT is less than a preset threshold, It is determined that the material properties of the DUT are qualified.
  • a scattering angle measurement method is provided.
  • the method is performed by a scattering angle measurement device.
  • the scattering angle measurement device includes a laser, a signal acquisition unit, and a processing unit.
  • a processing unit determines a scattering angle of the DUT according to the scattered light intensities in the multiple scattering directions.
  • the method for measuring the scattering angle in the embodiment of the present application can only move a single signal acquisition unit in multiple scattering directions in the incident plane, thereby collecting scattered light in each scattering direction, and the processing unit can collect according to the signal
  • the scattered light intensities in the multiple scattering directions collected by the unit are used to calculate the scattering angle of the DUT. Because the signal acquisition unit can move in the incident plane, only one signal acquisition unit is needed to collect scattered light in various scattering directions, which greatly reduces the cost of the measurement device.
  • the signal acquisition unit moves in an incident plane of the light to collect scattered light in multiple scattering directions in the incident plane
  • the method includes: the signal acquisition unit is rotated in the incident plane around the incident point of the light on the DUT to collect the scattered light in the multiple scattering directions.
  • the multiple scattering directions include an incident direction and N scattering directions on one side of the incident direction
  • the angle between the i-th scattering direction and the incident direction among the N scattering directions is smaller than the angle between the i + 1th scattering direction and the incident direction, and 1 ⁇ i ⁇ N.
  • the processing unit determines the scattering angle of the DUT according to the scattered light intensities in the multiple scattering directions, including: if the incident direction and the first scattering direction to the M 1st scattering direction And the ratio of the sum of the scattered light intensities to the sum of the scattered light intensities in the plurality of scattering directions reaches a preset value, it is determined that an angle between the M 1st scattering direction and the incident direction is the The scattering angle of the DUT is 1 ⁇ M 1 ⁇ N.
  • the multiple scattering directions include an incident direction and are located symmetrically with respect to the incident direction in the incident direction N scattering directions on the first side of N and N scattering directions on the second side of the incident direction, a sandwich between the i-th scattering direction in the N scattering directions on the first side and the incident direction
  • the angle is smaller than the angle between the i + 1th scattering direction and the incident direction, and the angle between the ith scattering direction and the incident direction among the N scattering directions on the second side is smaller than the i
  • the included angle between the +1 scattering direction and the incident direction is 1 ⁇ i ⁇ N.
  • the processing unit determines the scattering angle of the DUT according to the scattered light intensities in the multiple scattering directions, including: if the incident direction, the first scattering direction of the first side to the first M 2 scattering directions, and the sum of the scattered light intensities in the first scattering direction from the second side to the M 2 scattering direction, and the sum of the scattered light intensities in the plurality of scattering directions
  • the preset value it is determined that the included angle between the M 2nd scattering direction and the incident direction is the scattering angle of the DUT, 1 ⁇ M 2 ⁇ N.
  • the method further includes: moving the signal acquisition unit to an incident direction of the light, wherein the position of the signal acquisition unit in the incidence direction is a starting point of the signal acquisition unit moving in the incident plane. Starting position.
  • the signal acquisition unit includes a photoelectric sensor, and the signal acquisition unit is at an incident plane of the light Moving inside to collect the scattered light in a plurality of scattering directions in the incident plane includes: the photoelectric sensor moves in the incident plane to collect the scattered light in the plurality of scattering directions And converting the optical signals of the scattered light in the plurality of scattering directions into electrical signals.
  • the signal acquisition unit includes an optical fiber sensor, and the signal acquisition unit is at an incident plane of the light Moving inward to collect the scattered light in the plurality of scattering directions in the incident plane includes: the optical fiber sensor moving in the incident plane to collect the scattered light in the plurality of scattering directions And converting the light signals of the scattered light in the plurality of scattering directions into electrical signals, and performing spectral analysis on the scattered light in the plurality of scattering directions.
  • the scattering angle measurement device further includes a data acquisition card connected to the signal acquisition unit, and the The method further includes: the data acquisition card acquiring electrical signals of the scattered light in the plurality of scattering directions from the signal acquisition unit, and transmitting the electrical signals of the scattered light in the plurality of scattering directions To the processing unit.
  • the incident direction of the light is perpendicular to a surface of the component to be tested.
  • the device under test is an organic polymer material or an organic light emitting diode OLED screen.
  • the method further includes: the processing unit determines, according to a scattering angle of the device under test, Describe the material properties of the DUT.
  • the processing unit determines a material of the component to be tested according to a scattering angle of the component to be tested The performance includes: if the scattering angle of the DUT is less than a preset threshold, the processing unit determines that the material property of the DUT is qualified.
  • FIG. 1 is a schematic block diagram of scattered light formed by light passing through a device under test in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a scattering angle measurement device according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of measuring a scattering angle according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of measuring a scattering angle according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an execution unit according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of measuring a scattering angle according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a scattering angle measurement result according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of measuring a scattering angle according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a scattering angle measurement result according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a scattering angle measurement device according to an embodiment of the present application.
  • FIG. 11 is a possible structural diagram of a scattering angle measurement device according to an embodiment of the present application.
  • FIG. 12 is a schematic flowchart of a scattering angle measurement method according to an embodiment of the present application.
  • existing scattering measurement devices usually use a large number of photoelectric sensors to form a sensor array, and obtain the light intensity distribution at different positions through multi-channel data collection and processing, or use a large number of optical lenses and optical imaging devices to collect light scattering image information and process them by algorithms. The light intensity distribution of the scattered light is obtained.
  • these measurement devices can achieve the measurement of the scattering angle of the object to be measured, their groups are usually more complex and require a large number of components, which not only increases the device cost, but also has low measurement accuracy.
  • the scattering angle measuring device may include only one signal acquisition unit, for example, only a photoelectric sensor or a fiber optic sensor.
  • the plurality of scattering directions within the plurality of scattering directions are moved to collect scattered light in each scattering direction, and the processing unit calculates the scattering angle of the DUT according to the scattered light intensities in the multiple scattering directions collected by the signal acquisition unit. Since the signal acquisition unit is not fixed, but can be moved in the incident plane, only one signal acquisition unit is needed to collect scattered light signals in multiple scattering directions, which reduces the cost of the measurement device.
  • FIG. 1 is a schematic diagram of scattered light formed by light passing through a device under test in an embodiment of the present application.
  • the material of the DUT is polarized due to the action of the laser electric field, and a dipole moment induced by the external electric field appears. Since the laser electric field is a time variable, the dipole moment also changes with time to form a radiation source of electromagnetic waves, thereby generating scattered light.
  • the angle ⁇ shown in FIG. 1 is the scattering angle of the DUT.
  • the percentage of the scattered light intensity in the range of the angle ⁇ to the total scattered light intensity of the DUT needs to reach a certain threshold, such as 90%.
  • FIG. 2 is a schematic diagram of a scattering angle measurement device according to an embodiment of the present application.
  • the apparatus 200 shown in FIG. 2 can be used to measure the scattering angle of the device under test.
  • the device under test may be an organic light emitting diode (OLED) display, a liquid crystal display (LCD), or other materials such as an organic polymer material.
  • OLED organic light emitting diode
  • LCD liquid crystal display
  • the outer shell of the scattering angle measurement device 200 can be blackened to avoid the influence of external stray light on the measurement result.
  • the scattering angle measurement device 200 may include a laser 210, a signal acquisition unit 220, and a processing unit 230, where:
  • the laser 210 is configured to emit light to a device under test to obtain scattered light formed after the light passes through the device under test.
  • the signal acquisition unit 220 is configured to move within the incident plane of the light to collect the scattered light in multiple scattering directions in the incident plane.
  • the processing unit 230 is configured to determine a scattering angle of the DUT according to the scattered light intensities in the multiple scattering directions.
  • the laser 210 emits light toward the device under test, and the incident direction of the light may be perpendicular to the surface of the device under test.
  • the scattered light shown in FIG. 1 is formed.
  • the signal acquisition unit 220 may move within an incident plane of the light, for example, move to different scattering directions in the incident plane to collect scattered light in the different scattering directions.
  • the information of the scattered light may be transmitted to the processing unit 230, so that the processing unit 230 obtains the scattered light intensity in each scattering direction, and then The intensity of the scattered light determines the scattering angle of the DUT.
  • the processing unit 230 may further determine the material properties of the device under test according to the scattering angle of the device under test.
  • the material properties of the device under test can be determined by the scattering angle of the device under test. For example, taking an OLED display as an example, if the measurement result of the OLED display to be measured indicates that the scattering angle of the OLED display is less than a preset threshold, the OLED display can be considered to be qualified. If the angle is greater than the preset threshold, the OLED display screen can be considered as unqualified.
  • the signal acquisition unit 220 in the scattering angle measurement device 200 can be moved according to a certain rule in the incident plane of the incident light.
  • the signal acquisition unit moves in the incident plane to collect scattered light in multiple scattering directions in the incident plane, and does not need other optical elements such as imaging lenses, so the cost of the scattering angle measuring device is greatly reduced.
  • the scattering angle measurement device 200 further includes an execution unit 240.
  • the signal acquisition unit 220 is disposed on the execution unit 240.
  • the execution unit 240 is used to drive the signal acquisition unit 220 to move in the incident plane to acquire Scattered light in the plurality of scattering directions.
  • the acquisition points where the signal acquisition unit 220 collects scattered light in the multiple scattering directions may be located on a straight line.
  • the signal acquisition unit 220 may collect the scattered light in the five scattering directions at the collection point 1 to the collection point 5 respectively.
  • the motion track of the signal acquisition unit 220 is only a simple linear motion, so the structure of the execution unit 240 can be designed to be relatively simple.
  • the loss of scattered light increases with the increase of the transmission path during the propagation process. Therefore, the light intensity loss of the scattered light collected at the collection points 2 and 4 in FIG. 3 will be higher than the light intensity loss of the scattered light collected at the collection point 1.
  • the collection points 3 and 5 The light intensity loss of the scattered light collected at the location will be higher than the light intensity loss of the scattered light collected at the collection point 2 and the collection point 4. Considering that the error of the scattered light intensity collected at different collection points is different, it may affect the measurement accuracy of the scattering angle.
  • the actuator 240 can also drive the signal acquisition unit 220 to rotate in the incident plane around the incident point of the incident light on the device under test, so that the signal acquisition unit 220 can collect Scattered light in the plurality of scattering directions.
  • the signal acquisition unit 220 may collect scattered light in the five scattering directions at the collection point 1 to the collection point 5, respectively.
  • the signal acquisition unit 220 rotates with the incident point of the incident light on the DUT as the center, and sequentially collects scattered light in the scattering direction where the acquisition point is located after reaching each acquisition point in turn. Since each of the collection points 1 to 5 is at the same distance from the incident point A, the loss on the light propagation path is also the same. Compared with the method shown in FIG. 3, this method can significantly improve the measurement accuracy of the scattering angle.
  • an embodiment of the present application further provides a possible structure of the execution unit 240.
  • the execution unit 240 may include a rotation axis and a rotation arm.
  • the signal acquisition unit 220 is disposed on the rotation arm, and the rotation arm is configured to rotate around an axis of the rotation axis to drive the rotation arm on the rotation arm.
  • the signal acquisition unit 220 rotates around the incident point of the light on the DUT in the incident plane to collect scattered light in the plurality of scattering directions.
  • the execution unit 240 may be as shown in FIG. 5.
  • the rotation axis is perpendicular to the incident plane
  • the rotation arm is a right-angled arm
  • one right-angle side of the right-angled arm is connected to the rotation axis and perpendicular to the rotation axis
  • another right-angled side of the right-angled arm is connected to the The rotation axis
  • the signal acquisition unit is disposed on a right-angle side parallel to the rotation axis.
  • the rotation axis is perpendicular to an incident plane for the signal acquisition unit 220 to move to collect scattered light, and a right-angled side (denoted as a right-angled side) of the right-angled arm is vertically connected to the rotation axis, so that another The right-angled side (referred to as the second right-angled side) is parallel to the rotation axis, that is, the second right-angled side is also perpendicular to the incident plane. Therefore, as long as the signal acquisition unit 220 is set on the second right-angle side, and the signal acquisition unit 220 is set on a position where the second right-angle side intersects the incident plane, the second right-angle side can be rotated when the right-angle arm is rotated.
  • the signal acquisition unit 220 is driven to move in multiple scattering directions in the incident plane. And because the length of the first right-angle side is fixed, and the second right-angle side is rotated around the rotation axis with the first right-angle side as a radius, the second right-angle side drives the signal acquisition unit 220 to move into the incident plane. In each scattering direction, the straight-line distances of the collection points of the signal acquisition unit 220 in each scattering direction from the rotation axis are the same.
  • the two sides of the right-angled arm can be integrally formed, or the two right-angled sides can be connected vertically by other connecting members.
  • the execution unit 240 may also have other forms, as long as the signal acquisition unit 220 can be driven to rotate around the incident plane with the incident point as the center.
  • the rotation of the rotating arm around the axis of the rotating shaft can be achieved in different ways.
  • the rotation arm and the rotation axis can be fixedly connected, that is, there is no relative movement between the rotation arm and the rotation axis, so when the rotation axis rotates, the rotation arm will rotate the rotation arm together; or, in the process of collecting scattered light, the rotation
  • the shaft may also be fixed, and the rotating arm may rotate around the fixed rotating shaft.
  • the embodiment of the present application does not limit this in any way, and the rotation arm can be rotated around the axis of the rotation axis, so that the signal acquisition unit on the rotation arm can be used to collect the to-be-measured in different angle directions in the incident plane. Pieces of scattered light.
  • the position of the incident point of the incident light on the device under test should be on the line where the rotation axis is located, that is, the surface of the device under test and the rotation axis at the same height as shown in FIG. 5.
  • the position of the incident point of light on the DUT surface may be different, or because of a height error between the rotation axis and the stage, the signal acquisition unit 220 may not be incident.
  • the point rotates around the center, but only rotates around the rotation axis.
  • the signal acquisition unit 220 can be approximately considered to rotate around the incident point, and all meet the measurement requirements.
  • the signal acquisition unit 220 can move within the incident plane and collect scattered light in multiple scattering directions.
  • the multiple scattering directions are multiple scattering directions within a preset angle, that is, the multiple scattering directions.
  • the included angle between each scattering direction and the incident direction is less than or equal to the preset angle.
  • the signal acquisition unit 220 may collect only scattered light in a scattering direction on one side of the incident direction, for example, may collect scattered light in a scattering direction on one side in a clockwise direction or scattered light in a scattering direction on one side in a counterclockwise direction;
  • the collecting unit 220 may also collect scattered light in a scattering direction on both sides of the incident direction, for example, may collect scattered light in a scattering direction on a clockwise side and a counterclockwise side.
  • the two methods are described below with reference to FIGS. 6 and 7 respectively.
  • the plurality of scattering directions collected by the signal acquisition unit 220 include an incident direction and N scattering directions on one side of the incident direction.
  • An i-th scattering direction among the N scattering directions is equal to the incident direction.
  • the included angle between them is smaller than the included angle between the i + 1th scattering direction and the incident direction, and 1 ⁇ i ⁇ N.
  • the processing unit 230 is specifically configured to: if the incident direction and a second direction to a scattered light intensity of scattering at the first scatterer directions and M 1, and the ratio of the scattering directions of the scattered light intensity of a plurality of sum reaches a pre- set value, the first scatterer M 1 direction is determined and the angle between the incident direction of the test specimen for scattering angles, 1 ⁇ M 1 ⁇ N.
  • the processing unit 230 can obtain the scattered light intensity distribution map shown in FIG. 7 according to the scattered light intensities in the N scattering directions, for example.
  • the processing unit 230 may integrate the scattered light intensity in the angular range corresponding to each scattering party in the N scattering directions to obtain the integrated light intensity.
  • the integrated light intensity corresponding to the i-th scattering direction includes the sum of the incident direction and the scattered light intensity from the first scattering direction to the i-th scattering direction
  • the integrated light intensity corresponding to the N-th scattering direction is the total scattering direction. The sum of the scattered light intensities on.
  • the processing unit 230 may be between the M 1 -th and incident directions scatterer
  • the included angle is determined as the scattering angle of the DUT. As shown in FIG. 7, the first M 1 scatterer angle and incident direction is 13 °, a scattering angle of the test specimen was 13 °.
  • the plurality of scattering directions collected by the signal acquisition unit 220 include an incident direction, and N scattering directions located on a first side of the incident direction and symmetrical to the incident direction on a second side of the incident direction.
  • the angle between the i-th scattering direction and the incident direction in the N-scattering directions on the first side is smaller than the angle between the i + 1th scattering direction and the incident direction
  • the first Among the N scattering directions on the two sides the angle between the i-th scattering direction and the incident direction is smaller than the angle between the i + 1th scattering direction and the incident direction, and 1 ⁇ i ⁇ N.
  • the processing unit 230 is specifically configured to: if the direction of incidence of a scattering direction of the first side to the second scatterer directions M 2, and a first scattering direction of the second side to the second scatterer M 2 And the ratio of the sum of the scattered light intensities in the directions to the sum of the scattered light intensities in the plurality of scattering directions reaches a preset value, it is determined that the angle between the M 2nd scattering direction and the incident direction is the measurement to be measured
  • the scattering angle of the part is 1 ⁇ M 2 ⁇ N.
  • the processing unit 230 may according to the scattered light in these scattering directions collected by the signal acquisition unit 220 Strongly obtain, for example, the scattered light intensity distribution map shown in FIG. 9.
  • the processing unit 230 may integrate the scattered light intensity in an angular range corresponding to each scattering side in these scattering directions to obtain an integrated light intensity.
  • the integrated light intensity corresponding to the i-th scattering direction includes the incident direction, the scattered light intensity in the first scattering direction to the i-th scattering direction on the first side, and the first scattering direction to the i-th scattering direction in the second side.
  • the sum of the scattered light intensities in each scattering direction, and the integrated light intensity corresponding to the Nth scattering direction is the sum of the scattered light intensities in all scattering directions.
  • the processing unit 230 of the angle between the scatterer M 2 and incident directions can be determined for the test specimen of the scattering angle. As shown in FIG. 9, the angle between the second scatterer M 2 and incident direction is 14 °, a scattering angle of the test specimen was 14 °.
  • the signal acquisition unit 220 may collect scattered light in a plurality of scattering directions spaced at a unit angle from each other, that is, the unit angle differs between the i-th scattering direction and the i + 1-th scattering direction. .
  • the unit angle may be less than 1 °, for example.
  • the signal acquisition unit 220 includes a photoelectric sensor for moving in the incident plane to collect scattered light in a plurality of scattering directions and convert the light signals of the scattered light in the plurality of scattering directions. Into electrical signals.
  • the photoelectric sensor may include a conditioning circuit for converting the light signal of the scattered light into an electrical signal.
  • the signal acquisition unit 220 includes an optical fiber sensor for moving in the incident plane to collect scattered light in a plurality of scattering directions and convert the scattered light in the plurality of scattering directions. Optical signals are converted into electrical signals.
  • the optical fiber sensor can also perform spectral analysis on the scattered light in multiple scattering directions, for example, determine the material according to the absorption of the DUT in different wavelength bands. Molecular structure, density, and distribution.
  • the laser 210 may emit light having a certain wavelength, or emit light having a certain wavelength range.
  • the wavelength of the light emitted by the laser 210 is, for example, 532 ⁇ 10 nm
  • the spectral response range of the photoelectric sensor should be the visible light range.
  • the signal acquisition unit 220 is an optical fiber sensor
  • the laser 210 can emit incident light having a certain wavelength range.
  • FIG. 10 is a specific schematic block diagram of a scattering angle measurement device 200.
  • the scattering angle measurement device 200 may further include a data acquisition card 250 connected to the signal acquisition unit 220.
  • the data acquisition card 250 is configured to acquire multiple scattering directions from the signal acquisition unit 220.
  • the electrical signals of the scattered light are transmitted to the processing unit 230.
  • the data acquisition card 250 uses a high-precision data acquisition card to improve the accuracy of the scattering angle measurement.
  • the scattering angle measurement device 200 may further include an electric control unit 260, which is configured to send an instruction to the execution unit 240 to control the execution unit 240 to perform a corresponding operation, thereby driving the installation to the execution
  • the signal acquisition unit 220 on the unit 240 moves in a plurality of scattering directions in the incident plane to collect scattered light.
  • the unit angle of each rotation of the rotating shaft in the execution unit 240 can be set, so that the signal acquisition unit 220 on the rotating arm is driven to rotate the unit angle each time to move to the next scattering direction.
  • FIG. 11 is a diagram of a possible specific structure of a scattering angle measurement device according to an embodiment of the present application.
  • the test sample can be placed on a stage.
  • the electronic control unit 260 may control the execution unit 240 to perform zero adjustment on the signal acquisition unit 220, for example, adjust the signal acquisition unit 220 to be located in the incident direction of the laser 210 as a starting signal acquisition position.
  • the laser 210 is turned on, and the laser 210 emits light and is incident on the surface of the DUT perpendicularly to generate scattered light.
  • the signal acquisition unit 220 is driven by the execution unit 240 to rotate in a predetermined order with the incident point as the center in the incident plane, thereby collecting scattered light in multiple scattering directions in the incident plane.
  • the signal acquisition unit 220 can convert the collected scattered light signal into an electrical signal and pass it to the data acquisition card 250.
  • the data acquisition card 250 sends the received light intensity data to the processing unit. 230, so that the processing unit 230 sends an instruction and drives the signal acquisition unit 220 on the execution unit 240 to rotate to the next scattering direction through the electronic control unit 260.
  • the processing unit 230 performs operations such as data processing, display, and storage to obtain the scattering angle of the device under test.
  • the scattering angle measurement device according to the embodiment of the present application is described in detail above.
  • the scattering angle measurement method according to the embodiment of the present application will be described below with reference to FIG. 12.
  • the technical features described in the device embodiment are applicable to the following method embodiments.
  • FIG. 12 is a schematic flowchart of a scattering angle measurement method according to an embodiment of the present application.
  • the method 1200 shown in FIG. 12 can be used to measure the scattering angle of the device under test.
  • the device under test may be an OLED display, an LCD display, or other materials such as organic polymer materials.
  • the method 1200 may be performed by a scattering angle measurement device 200, which may include a laser 210, a signal acquisition unit 220, and a processing unit 230. As shown in FIG. 2, the method 1200 may include some or all of the following steps.
  • the laser 210 emits light to the device under test to obtain scattered light formed after the light passes through the device under test.
  • the incident direction of the light is perpendicular to the surface of the device under test.
  • the signal acquisition unit 220 moves in the incident plane of the light to collect the scattered light in a plurality of scattering directions in the incident plane.
  • the processing unit 230 determines a scattering angle of the DUT according to the scattered light intensities in the multiple scattering directions.
  • the method for measuring the scattering angle in the embodiment of the present application can only move a single signal acquisition unit in multiple scattering directions in the incident plane, thereby collecting scattered light in each scattering direction, and the processing unit can collect according to the signal
  • the scattered light intensities in the multiple scattering directions collected by the unit are used to calculate the scattering angle of the DUT. Since the signal acquisition unit is not fixed in the scattering angle measuring device, but can be moved according to a predetermined rule in the incident plane, only a signal acquisition unit can be used to collect scattered light signals in multiple scattering directions, greatly Reduced the cost of the measuring device.
  • the signal acquisition unit 220 moves in the incident plane of the light to collect the scattered light in multiple scattering directions in the incident plane, including: the signal acquisition unit 220 is in the incident plane Inside, the light is rotated around the incident point on the DUT to collect the scattered light in the multiple scattering directions.
  • the plurality of scattering directions include an incident direction and N scattering directions on one side of the incident direction, and an angle between an i-th scattering direction and the incident direction in the N scattering directions is smaller than an i + The angle between one scattering direction and the incident direction is 1 ⁇ i ⁇ N.
  • the processing unit 230 determines the scattering angle of the DUT according to the scattered light intensities in the multiple scattering directions, including: if the incident direction and the first scattering direction to the M 1 scattering direction And the ratio of the sum of the scattered light intensities on the multiple scattering directions to the sum of the scattered light intensities in a plurality of scattering directions reaches a preset value, it is determined that the angle between the M 1st scattering direction and the incident direction is the device under test The scattering angle is 1 ⁇ M 1 ⁇ N.
  • the plurality of scattering directions include an incident direction and N scattering directions on the first side of the incident direction and N scattering directions on the second side of the incident direction, the first The angle between the i-th scattering direction and the incident direction in the N-scattering direction on the side is smaller than the angle between the i + 1th scattering direction and the incident direction. The angle between the i-th scattering direction and the incident direction is smaller than the angle between the i + 1th scattering direction and the incident direction, and 1 ⁇ i ⁇ N.
  • the processing unit 230 determines the scattering angle of the DUT according to the scattered light intensities in the multiple scattering directions, including: if the incident direction, the first scattering direction from the first side to the first a first scattering direction M 2 scatterers directions, and the second side to the first optical intensity M 2 of the scattering and the scattering direction, the ratio of the scattering directions of the plurality of scattered light intensity reaches a preset sum value, it is determined that the second scatterer M 2 and the angle between the direction of the scattering angle for the incident direction of the test specimen, 1 ⁇ M 2 ⁇ N.
  • the signal acquisition unit 220 includes a photoelectric sensor.
  • the signal acquisition unit 220 moves in the incident plane of the light to collect the scattered light in multiple scattering directions in the incident plane, including: :
  • the photoelectric sensor moves in the incident plane to collect the scattered light in the plurality of scattering directions, and convert the light signals of the scattered light in the plurality of scattering directions into electrical signals.
  • the signal acquisition unit 220 includes an optical fiber sensor.
  • the signal acquisition unit 220 moves in the incident plane of the light to collect the scattered light in multiple scattering directions in the incident plane, including :
  • the fiber optic sensor moves in the incident plane to collect the scattered light in the plurality of scattering directions, convert the light signals of the scattered light in the plurality of scattering directions into electrical signals, and scatter the plurality of scattering signals. This scattered light in the direction is subjected to spectral analysis.
  • the scattering angle side face device 200 further includes a data acquisition card connected to the signal acquisition unit 220, and the method further includes: the data acquisition card acquires the scattering in the plurality of scattering directions from the signal acquisition unit 220 The electrical signals of the light, and the electrical signals of the scattered light in the plurality of scattering directions are sent to the processing unit 230.
  • the method further includes: the processing unit 230 determines a material property of the device under test according to a scattering angle of the device under test.
  • the processing unit 230 determines the material properties of the DUT according to the scattering angle of the DUT, including: if the scattering angle of the DUT is less than a preset threshold, the processing unit 230 determines the The material properties of the DUT are qualified.
  • the signal acquisition unit 220 may also be zero-adjusted, that is, the signal acquisition unit 220 is located in the incident direction of light, and then the above-mentioned 1210 to 1230 are performed.
  • the position of the signal acquisition unit 220 in the incident direction is the starting position where the signal acquisition unit 220 moves in the incident plane and collects scattered light.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or may Integration into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, which may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one detection unit, or each unit may exist separately physically, or two or more units may be integrated into one unit.

Abstract

一种散射角测量装置(200)包括:激光器(210),用于向待测件发射光线,以得到光线经过待测件后形成的散射光;信号采集单元(220),用于在光线的入射平面内移动,以采集入射平面内的多个散射方向上的散射光;处理单元(230),用于根据多个散射方向上的散射光强,确定待测件的散射角。因此,信号采集单元(220)通过在入射平面内的多个散射方向上移动从而采集各个散射方向上的散射光,并由处理单元(230)根据该信号采集单元(220)采集到的多个散射方向上的散射光强计算待测件的散射角。由于信号采集单元(220)可以在入射平面内进行移动,因此仅需要一个信号采集单元(220)就能够采集到各个散射方向上的散射光,大大降低了测量装置的成本。

Description

散射角测量装置和散射角测量方法 技术领域
本申请涉及光学测量领域,并且更具体地,涉及一种散射角测量装置和散射角测量方法。
背景技术
光散射现象可以用于检测材料的分子结构形态、高分子溶液结晶、吸附等微观现象,在物理、生物、化学、气象等许多方面的研究中得到广泛应用。光线透过被测样品后会发生散射,所形成的散射角通常需要专用的测量装置。但目前的散射角测量装置通常需要使用大量的光电探测器件,结构较为复杂,装置成本较高。
发明内容
本申请实施例提供了一种散射角测量装置和散射角测量方法,能够降低散射角测量装置的复杂度,降低散射角测量装置的成本。
第一方面,提供了一种散射角测量装置,所述散射角测量装置包括:激光器,用于向待测件发射光线,以得到所述光线经过所述待测件后形成的散射光;信号采集单元,用于在所述光线的入射平面内移动,以采集所述入射平面内的多个散射方向上的所述散射光;处理单元,用于根据所述多个散射方向上的散射光强,确定所述待测件的散射角。
因此,该散射角测量装置中的信号采集单元通过在入射平面内的多个散射方向上移动从而采集各个散射方向上的散射光,并由处理单元根据该信号采集单元采集到的该多个散射方向上的散射光强,计算该待测件的散射角。由于该信号采集单元可以在入射平面内进行移动,因此仅需要一个信号采集单元就能够采集到各个散射方向上的散射光,大大降低了测量装置的成本。
结合第一方面,在第一方面的一种可能的实现方式中,所述信号采集单元具体用于:在所述入射平面内,以所述光线在所述待测件上的入射点为中心旋转,以采集所述多个散射方向上的所述散射光。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述多个散射方向包括入射方向和位于所述入射方向一侧的 N个散射方向,所述N个散射方向中的第i个散射方向与所述入射方向之间的夹角小于第i+1个散射方向与所述入射方向之间的夹角,1≤i≤N。
其中,所述处理单元具体用于:若所述入射方向以及第1个散射方向至第M 1个散射方向上的散射光强之和,与所述多个散射方向上的散射光强总和的比值达到预设值,则确定所述第M 1个散射方向与所述入射方向之间的夹角为所述待测件的散射角,1≤M 1≤N。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述多个散射方向包括入射方向以及关于所述入射方向对称的位于所述入射方向的第一侧的N个散射方向和位于所述入射方向的第二侧的N个散射方向,所述第一侧的N散射方向中的第i个散射方向与所述入射方向之间的夹角小于第i+1个散射方向与所述入射方向之间的夹角,所述第二侧的N个散射方向中的第i个散射方向与所述入射方向之间的夹角小于第i+1个散射方向与所述入射方向之间的夹角,1≤i≤N。
其中,所述处理单元具体用于:若所述入射方向、所述第一侧的第1个散射方向至第M 2个散射方向、以及所述第二侧的第1个散射方向至所述第M 2个散射方向上的散射光强之和,与所述多个散射方向上的散射光强总和的比值达到预设值,则确定所述第M 2个散射方向与所述入射方向之间的夹角为所述待测件的散射角,1≤M 2≤N。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述散射角测量装置还包括执行单元,所述信号采集单元设置在所述执行单元上,所述执行单元用于带动所述信号采集单元在所述入射平面内移动,以采集所述多个散射方向上的所述散射光。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,在所述信号采集单元采集所述多个散射方向上的所述散射光之前,所述执行单元还用于:带动所述信号采集单元移动至所述光线的入射方向上,所述信号采集单元在所述入射方向上的位置为所述信号采集单元在所述入射平面内移动的起始位置。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述执行单元包括旋转轴和旋转臂,所述信号采集单元设置在所述旋转臂上,所述旋转臂用于围绕所述旋转轴旋转,以带动所述旋转臂上的所述信号采集单元在所述入射平面内以所述光线在所述待测件上的入 射点为中心旋转,以采集所述多个散射方向上的所述散射光。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述旋转轴与所述入射平面垂直,所述旋转臂为直角臂,所述直角臂的一个直角边与所述旋转轴连接且垂直与所述旋转轴,所述直角臂的另一个直角边与所述旋转轴平行,所述信号采集单元设置在与所述旋转轴平行的直角边上。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述信号采集单元包括一个光电传感器,所述光电传感器用于在所述入射平面内移动,以采集所述多个散射方向上的所述散射光,并将所述多个散射方向上的所述散射光的光信号转化为电信号。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述信号采集单元包括一个光纤传感器,所述光纤传感器用于在所述入射平面内移动,以采集所述多个散射方向上的所述散射光,并将所述多个散射方向上的所述散射光的光信号转化为电信号,并且对所述多个散射方向上的所述散射光进行光谱分析。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述散射角测量装置还包括与所述信号采集单元相连的数据采集卡,所述数据采集卡用于从所述信号采集单元获取所述多个散射方向上的所述散射光的电信号,并将所述多个散射方向上的所述散射光的电信号发送给所述处理单元。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述光线的所述入射方向与所述待测件的表面垂直。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述待测件为有机高分子材料或有机发光二极管OLED屏。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述处理单元还用于:根据所述待测件的散射角,确定所述待测件的材料性能。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,所述处理单元具体用于:若所述待测件的散射角小于预设阈值,则确定所述待测件的材料性能为合格。
第二方面,提供了一种散射角测量方法,所述方法由散射角测量装置执 行,所述散射角测量装置包括激光器、信号采集单元和处理单元,所述方法包括:激光器向待测件发射光线,以得到所述光线经过所述待测件后形成的散射光;信号采集单元在所述光线的入射平面内移动,以采集所述入射平面内的多个散射方向上的所述散射光;处理单元根据所述多个散射方向上的散射光强,确定所述待测件的散射角。
因此,本申请实施例的散射角测量方法可以仅通过一个信号采集单元在入射平面内的多个散射方向上的移动,从而采集到各个散射方向上的散射光,并由处理单元根据该信号采集单元采集到的该多个散射方向上的散射光强,计算该待测件的散射角。由于该信号采集单元可以在入射平面内进行移动,因此仅需要一个信号采集单元就能够采集到各个散射方向上的散射光,大大降低了测量装置的成本。
结合第二方面,在第二方面的一种可能的实现方式中,所述信号采集单元在所述光线的入射平面内移动,以采集所述入射平面内的多个散射方向上的散射光,包括:所述信号采集单元在所述入射平面内,以所述光线在所述待测件上的入射点为中心旋转,以采集所述多个散射方向上的所述散射光。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,所述多个散射方向包括入射方向和位于所述入射方向一侧的N个散射方向,所述N个散射方向中的第i个散射方向与所述入射方向之间的夹角小于第i+1个散射方向与所述入射方向之间的夹角,1≤i≤N。
其中,所述处理单元根据所述多个散射方向上的散射光强,确定所述待测件的散射角,包括:若所述入射方向以及第1个散射方向至第M 1个散射方向上的散射光强之和,与所述多个散射方向上的散射光强总和的比值达到预设值,则确定所述第M 1个散射方向与所述入射方向之间的夹角为所述待测件的散射角,1≤M 1≤N。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,所述多个散射方向包括入射方向以及关于所述入射方向对称的位于所述入射方向的第一侧的N个散射方向和位于所述入射方向的第二侧的N个散射方向,所述第一侧的N散射方向中的第i个散射方向与所述入射方向之间的夹角小于第i+1个散射方向与所述入射方向之间的夹角,所述第二侧的N个散射方向中的第i个散射方向与所述入射方向之间的夹角小于第i+1个散射方向与所述入射方向之间的夹角,1≤i≤N。
其中,所述处理单元根据所述多个散射方向上的散射光强,确定所述待测件的散射角,包括:若所述入射方向、所述第一侧的第1个散射方向至第M 2个散射方向、以及所述第二侧的第1个散射方向至所述第M 2个散射方向上的散射光强之和,与所述多个散射方向上的散射光强总和的比值达到预设值,则确定所述第M 2个散射方向与所述入射方向之间的夹角为所述待测件的散射角,1≤M 2≤N。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,在所述信号采集单元采集所述多个散射方向上的所述散射光之前,所述方法还包括:所述信号采集单元移动至所述光线的入射方向上,其中,所述信号采集单元在所述入射方向上的位置为所述信号采集单元在所述入射平面内移动的起始位置。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,所述信号采集单元包括一个光电传感器,所述信号采集单元在所述光线的入射平面内移动,以采集所述入射平面内的多个散射方向上的所述散射光,包括:所述光电传感器在所述入射平面内移动,以采集所述多个散射方向上的所述散射光,并将所述多个散射方向上的所述散射光的光信号转化为电信号。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,所述信号采集单元包括一个光纤传感器,所述信号采集单元在所述光线的入射平面内移动,以采集所述入射平面内的多个散射方向上的所述散射光,包括:所述光纤传感器在所述入射平面内移动,以采集所述多个散射方向上的所述散射光,并将所述多个散射方向上的所述散射光的光信号转化为电信号,并且对所述多个散射方向上的所述散射光进行光谱分析。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,所述散射角测量装置还包括与所述信号采集单元相连的数据采集卡,所述方法还包括:所述数据采集卡从所述信号采集单元获取所述多个散射方向上的所述散射光的电信号,并将所述多个散射方向上的所述散射光的电信号发送给所述处理单元。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,所述光线的所述入射方向与所述待测件的表面垂直。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能 的实现方式中,所述待测件为有机高分子材料或有机发光二极管OLED屏。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,所述方法还包括:所述处理单元根据所述待测件的散射角,确定所述待测件的材料性能。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,所述处理单元根据所述待测件的散射角,确定所述待测件的材料性能,包括:若所述待测件的散射角小于预设阈值,所述处理单元确定所述待测件的材料性能为合格。
附图说明
图1是本申请实施例中光线经过待测件后形成散射光的示意性框图。
图2是本申请实施例的散射角测量装置的示意图。
图3是本申请实施例的测量散射角的示意图。
图4是本申请实施例的测量散射角的示意图。
图5是本申请实施例的执行单元的示意图。
图6是本申请实施例的测量散射角的示意图。
图7是本申请实施例的散射角测量结果的示意图。
图8是本申请实施例的测量散射角的示意图。
图9是本申请实施例的散射角测量结果的示意图。
图10是本申请实施例的散射角测量装置的示意性框图。
图11是本申请实施例的散射角测量装置的一种可能的结构图。
图12是本申请实施例的散射角测量方法的示意性流程图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
目前已有散射测量装置通常采用大量光电传感器构成传感器阵列,并通过多通道数据采集与处理得到不同位置的光强分布,或者采用大量光学透镜和光学成像器件采集光散射图像信息,并通过算法处理得到散射光的光强分布。虽然这些测量装置可以实现对待测件的散射角的测量,但其组通常较为复杂,需要大量元件,不仅增加了装置成本,并且测量精度也不高。
为降低装置复杂度,本申请实施例提出了一种散射角测量装置,该散射 角测量装置中可以仅包括一个信号采集单元例如仅包括一个光电传感器或光纤传感器,该信号采集单元通过在入射平面内的多个散射方向上移动从而采集各个散射方向上的散射光,并由处理单元根据该信号采集单元采集到的该多个散射方向上的散射光强,计算该待测件的散射角。由于该信号采集单元并非是固定的,而是可以在入射平面内进行移动,因此仅需要一个信号采集单元就能采集到多个散射方向上的散射光信号,降低了测量装置的成本。
图1是本申请实施例中光线经过待测件后形成散射光的示意图。光源发出的光线入射至待测件时,由于激光电场的作用使待测件的材料产生极化,出现由外电场诱导而形成的偶极矩。由于激光电场是时间变量,故偶极矩也随时间变化而形成一个电磁波的辐射源,由此产生散射光。图1中所示的角度θ即为该待测件的散射角,角度θ范围内的散射光强占该待测件的总散射光强的百分比需到达一定阈值例如90%。
图2是本申请实施例的散射角测量装置的示意图。图2所示的装置200可以用于对待测件的散射角进行测量。可选地,该待测件可以是有机发光二极管(Organic Light Emitting Diode,OLED)显示屏、液晶显示屏(Liquid Crystal Display,LCD)或其他材料例如有机高分子材料等。该散射角测量装置200的外壳箱体可以均做发黑处理,以避免外界环境杂光对测量结果的影响。如图2所示,该散射角测量装置200可以包括激光器210、信号采集单元220和处理单元230,其中:
激光器210,用于向待测件发射光线,以得到所述光线经过所述待测件后形成的散射光。
信号采集单元220,用于在该光线的入射平面内移动,以采集该入射平面内的多个散射方向上的该散射光。
处理单元230,用于根据该多个散射方向上的散射光强,确定该待测件的散射角。
具体地,激光器210向待测件发射光线,该光线的入射方向可以与所述待测件的表面垂直。该光线经过待测件的散射后,形成例如图1所示的散射光。信号采集单元220可以在该光线的一个入射平面内移动,例如移动至该入射平面内的不同散射方向上,以采集该不同散射方向上的散射光。信号采集单元220采集各个散射方向上的散射光后,可以将该散射光的信息传递给处理单元230,从而处理单元230获取各个散射方向上的散射光强后,根据 该多个散射方向上的散射光强,确定该待测件的散射角。
在确定所述待测件的散射角之后,可选地,处理单元230还可以根据该待测件的散射角,确定该待测件的材料性能。
由于待测件的材料性能例如分子结构、分子排列方式等不同时,该待测件对入射光线的散射能力也不同,因此可以通过该待测件的散射角判定该待测件的材料性能。例如,以OLED显示屏为例,若待测的OLED显示屏的测量结果表明该OLED显示屏的散射角小于预设阈值,则可以认为该OLED显示屏是合格的,若该OLED显示屏的散射角大于该预设阈值,则可以认为该OLED显示屏是不合格的。
目前已有的基于光散射原理的散射仪器中,信号采集单元总是设置在固定在特定的位置上,因此,为了采集多个散射方向的散射光时,就需要多个信号采集单元分别对不同散射方向的散射光进行采集,从而增加了装置结构的复杂度,提高了测量装置的成本。而本申请实施例中,散射角测量装置200中的信号采集单元220可以在入射光线的入射平面内按照一定规则进行移动,因此该散射角测量装置中可以仅设置一个信号采集单元,就能够通过该信号采集单元在该入射平面内的移动从而采集到该入射平面内的多个散射方向上的散射光,并且也不需要其他成像透镜等光学元件,因此大大降低了该散射角测量装置的成本。
可选地,该散射角测量装置200还包括执行单元240,该信号采集单元220设置在该执行单元240上,该执行单元240用于带动该信号采集单元220在该入射平面内移动,以采集该多个散射方向上的散射光。
该执行机构240带动信号采集单元220在该入射平面内移动时,信号采集单元220在该多个散射方向上分别进行散射光采集的采集点可以位于一条直线。例如图3所示,信号采集单元220可以在采集点1至采集点5上分别采集这五个散射方向上的散射光。
这种方式下,信号采集单元220的运动轨仅为简单的直线运动,因此执行单元240的结构可以设计得较为简单。但是,考虑到散射光在传播过程中随传输路径的增加损耗也会增加。因此,图3中的采集点2和采集点4处采集到的散射光的光强损耗就会高于采集点1处采集到的散射光的光强损耗,同样,采集点3和采集点5处采集到的散射光的光强损耗就会高于采集点2和采集点4处采集到的散射光的光强损耗。考虑到不同采集点处采集到的散 射光强的误差不同,可能会影响散射角的测量精度。
因此,本申请实施例中,该执行机构240也可以带动该信号采集单元220在该入射平面内,以入射光线在待测件上的入射点为中心进行旋转,从而使得信号采集单元220能够采集该多个散射方向上的散射光。
例如图4所示,信号采集单元220可以在采集点1至采集点5上分别采集这五个散射方向上的散射光。信号采集单元220以入射光线在待测件上的入射点为中心进行旋转,依次在到达每个采集点后采集该采集点所在的散射方向上的散射光。由于采集点1至采集点5中每个采集点距离该入射点A的距离相同,因此光传播路径上的损耗也相同。这种方式相比于图3所示的方式可以明显提高散射角的测量精度。
为了使信号采集单元220能够以该入射点为中心旋转以采集该入射平面内的多个散射方向上的散射光,本申请实施例还提供了一种可能的执行单元240的结构。
可选地,该执行单元240可以包括旋转轴和旋转臂,该信号采集单元220设置在该旋转臂上,该旋转臂用于围绕该旋转轴的轴线进行旋转,以带动该旋转臂上的该信号采集单元220在该入射平面内以该光线在该待测件上的入射点为中心旋转,以采集该多个散射方向上的散射光。
例如,该执行单元240可以如图5所示。在图5中,该旋转轴与该入射平面垂直,该旋转臂为直角臂,该直角臂的一个直角边与该旋转轴连接且垂直于该旋转轴,该直角臂的另一个直角边与该旋转轴平行,该信号采集单元设置在与该旋转轴平行的直角边上。
该旋转轴垂直于用于信号采集单元220移动以采集散射光的入射平面,该直角臂的一个直角边(记作第一直角边)垂直连接在该旋转轴上,使得该直角臂的另一个直角边(记作第二直角边)与该旋转轴平行,即该第二直角边也垂直与该入射平面。因此,只要将该信号采集单元220设置在第二直角边上,且将信号采集单元220设置该第二直角边与入射平面相交的位置,则该直角臂在旋转时,第二直角边就能够带动该信号采集单元220在该入射平面内的多个散射方向上移动。并且由于第一直角边的长度是固定,而第二直角边是以第一直角边为半径围绕旋转轴进行旋转的,因此,该第二直角边带动信号采集单元220移动至该入射平面内的各个散射方向上时,该信号采集单元220在各个散射方向上的采集点距离旋转轴的直线距离都是一样的。
该直角臂的两个边可以一体成型,也可以通过其他连接件将这两个直角边垂直地连接在一起。本申请实施例中,该执行单元240还可以具有其他形式,只要能够带动信号采集单元220在该入射平面以入射点为中心进行旋转移动即可。
还应理解,该旋转臂围绕该旋转轴的轴线进行旋转,可以通过不同的方式实现。例如,旋转臂和旋转轴之间可以固定连接,即旋转臂和旋转轴之间不存在相对运动,因此旋转轴在旋转时,会带动旋转臂一起旋转;或者,在散射光采集过程中,旋转轴也可以是固定不动的,而旋转臂可以围绕该固定的旋转轴进行旋转。本申请实施例对此并不做任何限定,能够实现该旋转臂围绕该旋转轴的轴线进行旋转即可,从而带动旋转臂上的信号采集单元在该入射平面内的不同角度方向上采集待测件的散射光。
理想情况下,应使得入射光线在待测件上的入射点的位置,位于旋转轴所在的直线上,即图5中所示的待测件的表面与旋转轴位于同一高度。但实际操作中,由于待测件厚度可能导致光线在待测件表面上的入射点位置不同,或者由于旋转轴与载物台之间存在高度误差等原因,信号采集单元220可能并不是以入射点为中心旋转,而是仅以旋转轴为中心进行旋转。但应理解,只要旋转轴和光线入射点的位置之间的高度差在可接受的范围内,都能够近似认为信号采集单元220是围绕入射点进行旋转移动的,都是满足测量要求的。
信号采集单元220可以在该入射平面内移动并采集多个散射方向上的散射光,可选地,该多个散射方向是某个预设角度内的多个散射方向,即该多个散射方向中每个散射方向与该入射方向之间的夹角均小于或等于该预设角度。信号采集单元220可以只采集该入射方向一侧的散射方向上的散射光,例如可以采集顺时针方向一侧的散射方向上的散射光或逆时针方向一侧的散射方向上的散射光;信号采集单元220也可以同时采集该入射方向两侧的散射方向上的散射光,例如可以采集顺时针方向一侧和逆时针方向一侧的散射方向上的散射光。下面结合图6和图7分别描述这两种方式。
方式1
例如图6所示,信号采集单元220采集的该多个散射方向包括入射方向和位于该入射方向一侧的N个散射方向,该N个散射方向中的第i个散射方向与该入射方向之间的夹角小于第i+1个散射方向与该入射方向之间的夹 角,1≤i≤N。
其中,处理单元230具体用于:若该入射方向以及第1个散射方向至第M 1个散射方向上的散射光强之和,与该多个散射方向上的散射光强总和的比值达到预设值,则确定该第M 1个散射方向与该入射方向之间的夹角为该待测件的散射角,1≤M 1≤N。
假设该预设值为90%,第N个散射方向与入射方向之间的夹角是20°。信号采集单元220采集入射方向以及该N个散射方向上的散射光后,处理单元230可以根据这N个散射方向上的散射光强得到例如图7所示的散射光强分布图。处理单元230可以对N个散射方向中每个散射方对应的角度范围内的散射光强进行积分以得到积分光强。例如,第i个散射方向对应的积分光强包括入射方向以及第1个散射方向至第i个散射方向上的散射光强之和,第N个散射方向对应的积分光强即为全部散射方向上的散射光强总和。
假设第M 1个散射方向对应的积分光强占全部散射方向上的散射光强总和的百分比达到该预设值90%,则处理单元230则可以将第M 1个散射方向与入射方向之间的夹角确定为该待测件的散射角。例如图7所示,第M 1个散射方向与入射方向的夹角为13°,则该待测件的散射角为13°。
方式2
例如图8所示,信号采集单元220采集的该多个散射方向包括入射方向、以及关于该入射方向对称的位于该入射方向的第一侧的N个散射方向和位于该入射方向的第二侧的N个散射方向,该第一侧的N散射方向中的第i个散射方向与该入射方向之间的夹角小于第i+1个散射方向与该入射方向之间的夹角,该第二侧的N个散射方向中的第i个散射方向与该入射方向之间的夹角小于第i+1个散射方向与该入射方向之间的夹角,1≤i≤N。
其中,处理单元230具体用于:若该入射方向、该第一侧的第1个散射方向至第M 2个散射方向、以及该第二侧的第1个散射方向至该第M 2个散射方向上的散射光强之和,与该多个散射方向上的散射光强总和的比值达到预设值,则确定该第M 2个散射方向与该入射方向之间的夹角为该待测件的散射角,1≤M 2≤N。
假设该预设值为95%,第一侧的第N个散射方向与入射方向之间的夹角是20°,第二侧的第N个散射方向与入射方向之间的夹角是20°。信号采集单元220采集入射方向、第一侧的N个散射方向以及第二侧的N个散 射方向上的散射光后,处理单元230可以根据信号采集单元220所采集的这些散射方向上的散射光强得到例如图9所示的散射光强分布图。
处理单元230可以对这些散射方向中每个散射方对应的角度范围内的散射光强进行积分得到积分光强。例如,第i个散射方向对应的积分光强包括入射方向、第一侧的第1个散射方向至第i个散射方向上的散射光强、以及第二侧的第1个散射方向至第i个散射方向上的散射光强之和,第N个散射方向对应的积分光强即为全部散射方向上的散射光强总和。
假设第一侧的第M 2个散射方向至第二侧的第M 2个散射方向之间的各个散射方向上的散射光强之和,占全部散射方向上的散射光强总和的百分比达到该预设值95%,则处理单元230则可以将第M 2个散射方向与入射方向之间的夹角确定为该待测件的散射角。例如图9所示,第M 2个散射方向与入射方向的夹角为14°,则该待测件的散射角为14°。
应理解,本申请实施例中,信号采集单元220可以采集相互间隔为单位角度的多个散射方向上的散射光,即第i个散射方向和第i+1个散射方向之间相差该单位角度。该单位角度越小,表明信号采集单元220的各个方向上的采集点之间的密度越大,测量的该待测件的散射角越精确,通常,该单位角度例如可以小于1°。
可选地,信号采集单元220包括一个光电传感器,该光电传感器用于在该入射平面内移动,以采集多个散射方向上的散射光,并将该多个散射方向上的散射光的光信号转化为电信号。该光电传感器中可以包括调理电路,用于将该散射光的光信号转化为电信号。
或者,可选地,信号采集单元220包括一个光纤传感器,该光纤传感器用于在该入射平面内移动,以采集多个散射方向上的散射光,并将该多个散射方向上的散射光的光信号转化为电信号。并且,将该光电传感器替换成该光纤传感器后,可选地,该光纤传感器还可以对该多个散射方向上的散射光进行光谱分析,例如根据该待测件对不同波段的吸收确定该材料的分子结构、密度和分布等。
激光器210可以发出具有某个特定波长的光线,或者发出具有一定波长范围的光线。当激光器210发出的光线的波长例如为532±10nm时,光电传感器的光谱响应范围应为可见光范围。当该信号采集单元220为一个光纤传感器时,该激光器210可以发出具有一定波长范围的入射光线。
图10所示为散射角测量装置200的一种具体的示意性框图。可选地,如图10所示,该散射角测量装置200还可以包括与信号采集单元220相连的数据采集卡250,该数据采集卡250用于从信号采集单元220获取多个散射方向上的散射光的电信号,并将该多个散射方向上的散射光的电信号发送给处理单元230。优选地,该数据采集卡250采用高精度的数据采集卡,以提高散射角测量的精度。
可选地,如图10所示,散射角测量装置200还可以包括电控单元260,电控单元260用于向执行单元240发送指令以控制执行单元240执行相应操作,从而带动设置于该执行单元240上的信号采集单元220在入射平面内的多个散射方向上移动以采集散射光。可以设置执行单元240中的旋转轴每次转动的单位角度,从而带动旋转臂上的信号采集单元220每次旋转该单位角度从而移动至下一个散射方向上。
举例来说,图11是本申请实施例的散射角测量装置的一种可能的具体结构图。测试样品可以置于载物台上。在进行散射角检测之前,电控单元260可以控制执行单元240对信号采集单元220进行归零调整,例如将信号采集单元220调整至位于激光器210的入射方向上,作为起始的信号采集位置。打开激光器210,激光器210发出光线并垂直入射至该待测件表面从而产生散射光。信号采集单元220在执行单元240的带动下,在入射平面内以入射点为中心按照预定顺序旋转,从而采集该入射平面内的多个散射方向上的散射光。其中每采集一个方向上的散射光后,信号采集单元220可以将采集后的散射光信号转换为电信号并传递至数据采集卡250,数据采集卡250将接收到的光强数据发送至处理单元230,从而处理单元230发送指令并通过电控单元260带动执行单元240上的信号采集单元220旋转至下一个散射方向上。当信号采集单元220旋转至与入射方向呈预设角度的散射方向上时,停止散射光的采集,之后处理单元230进行数据处理、显示、存储等操作,从而得到待测件的散射角。
上文中详细描述了根据本申请实施例的散射角测量装置,下面将结合图12描述根据本申请实施例的散射角测量方法,装置实施例所描述的技术特征适用于以下方法实施例。
图12是本申请实施例的散射角测量方法的示意性流程图。图12所示的方法1200可以用于对待测件的散射角进行测量。可选地,该待测件可以是 OLED显示屏、LCD显示屏或其他材料例如有机高分子材料等。该方法1200可以由散射角测量装置200执行,该散射角测量装置200可以包括激光器210、信号采集单元220和处理单元230。如图2所示,该方法1200可以包括以下部分或全部步骤。
在1210中,激光器210向待测件发射光线,以得到该光线经过该待测件后形成的散射光。
可选地,该光线的入射方向与该待测件的表面垂直。
在1220中,信号采集单元220在该光线的入射平面内移动,以采集该入射平面内的多个散射方向上的该散射光。
在1230中,处理单元230根据该多个散射方向上的散射光强,确定该待测件的散射角。
因此,本申请实施例的散射角测量方法可以仅通过一个信号采集单元在入射平面内的多个散射方向上的移动,从而采集到各个散射方向上的散射光,并由处理单元根据该信号采集单元采集到的该多个散射方向上的散射光强,计算该待测件的散射角。由于该信号采集单元并非是固定在散射角测量装置中的,而是可以在入射平面内按照预定规则移动,因此仅需要一个信号采集单元就能够采集到多个散射方向上的散射光信号,大大降低了测量装置的成本。
可选地,在1220中,该信号采集单元220在该光线的入射平面内移动,以采集该入射平面内的多个散射方向上的该散射光,包括:该信号采集单元220在该入射平面内,以该光线在该待测件上的入射点为中心旋转,以采集该多个散射方向上的该散射光。
可选地,该多个散射方向包括入射方向和位于该入射方向一侧的N个散射方向,该N个散射方向中的第i个散射方向与该入射方向之间的夹角小于第i+1个散射方向与该入射方向之间的夹角,1≤i≤N。
其中,在1230中,该处理单元230根据该多个散射方向上的散射光强,确定该待测件的散射角,包括:若该入射方向以及第1个散射方向至第M 1个散射方向上的散射光强之和,与该多个散射方向上的散射光强总和的比值达到预设值,则确定该第M 1个散射方向与该入射方向之间的夹角为该待测件的散射角,1≤M 1≤N。
可选地,该多个散射方向包括入射方向以及关于该入射方向对称的位于 该入射方向的第一侧的N个散射方向和位于该入射方向的第二侧的N个散射方向,该第一侧的N散射方向中的第i个散射方向与该入射方向之间的夹角小于第i+1个散射方向与该入射方向之间的夹角,该第二侧的N个散射方向中的第i个散射方向与该入射方向之间的夹角小于第i+1个散射方向与该入射方向之间的夹角,1≤i≤N。
其中,在1230中,该处理单元230根据该多个散射方向上的散射光强,确定该待测件的散射角,包括:若该入射方向、该第一侧的第1个散射方向至第M 2个散射方向、以及该第二侧的第1个散射方向至该第M 2个散射方向上的散射光强之和,与该多个散射方向上的散射光强总和的比值达到预设值,则确定该第M 2个散射方向与该入射方向之间的夹角为该待测件的散射角,1≤M 2≤N。
可选地,该信号采集单元220包括一个光电传感器,在1220中,该信号采集单元220在该光线的入射平面内移动,以采集该入射平面内的多个散射方向上的该散射光,包括:该光电传感器在该入射平面内移动,以采集该多个散射方向上的该散射光,并将该多个散射方向上的该散射光的光信号转化为电信号。
可选地,该信号采集单元220包括一个光纤传感器,在1220中,该信号采集单元220在该光线的入射平面内移动,以采集该入射平面内的多个散射方向上的该散射光,包括:该光纤传感器在该入射平面内移动,以采集该多个散射方向上的该散射光,并将该多个散射方向上的该散射光的光信号转化为电信号,并且对该多个散射方向上的该散射光进行光谱分析。
可选地,该散射角侧脸装置200还包括与该信号采集单元220相连的数据采集卡,该方法还包括:该数据采集卡从该信号采集单元220获取该多个散射方向上的该散射光的电信号,并将该多个散射方向上的该散射光的电信号发送给该处理单元230。
可选地,该方法还包括:该处理单元230根据该待测件的散射角,确定该待测件的材料性能。
进一步地,可选地,该处理单元230根据该待测件的散射角,确定该待测件的材料性能,包括:若该待测件的散射角小于预设阈值,该处理单元230确定该待测件的材料性能为合格。
可选地,在进行散射角测量之前,还可以对该信号采集单元220进行调 零,即,使该信号采集单元220位于光线的入射方向上,之后再执行上述1210至1230。该信号采集单元220在入射方向上的位置即为信号采集单元220在入射平面内移动并进行散射光采集的起始位置。
应理解,该散射角测量方法1200的相关描述可以参考前述对散射角测量装置200的相关描述,为了简洁,这里不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个检测单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请适合私利的保护范围之内。因此,本申请实施例的保护范围应该以权利要求的保护范围为准。

Claims (26)

  1. 一种散射角测量装置,其特征在于,所述散射角测量装置包括:
    激光器,用于向待测件发射光线,以得到所述光线经过所述待测件后形成的散射光;
    信号采集单元,用于在所述光线的入射平面内移动,以采集所述入射平面内的多个散射方向上的所述散射光;
    处理单元,用于根据所述多个散射方向上的散射光强,确定所述待测件的散射角。
  2. 根据权利要求1所述的散射角测量装置,其特征在于,所述信号采集单元具体用于:
    在所述入射平面内,以所述光线在所述待测件上的入射点为中心旋转,以采集所述多个散射方向上的所述散射光。
  3. 根据权利要求1或2所述的散射角测量装置,其特征在于,所述多个散射方向包括入射方向和位于所述入射方向一侧的N个散射方向,所述N个散射方向中的第i个散射方向与所述入射方向之间的夹角小于第i+1个散射方向与所述入射方向之间的夹角,1≤i≤N,
    其中,所述处理单元具体用于:
    若所述入射方向以及第1个散射方向至第M 1个散射方向上的散射光强之和,与所述多个散射方向上的散射光强总和的比值达到预设值,则确定所述第M 1个散射方向与所述入射方向之间的夹角为所述待测件的散射角,1≤M 1≤N。
  4. 根据权利要求1或2所述的散射角测量装置,其特征在于,所述多个散射方向包括入射方向、以及关于所述入射方向对称的位于所述入射方向的第一侧的N个散射方向和位于所述入射方向的第二侧的N个散射方向,所述第一侧的N散射方向中的第i个散射方向与所述入射方向之间的夹角小于第i+1个散射方向与所述入射方向之间的夹角,所述第二侧的N个散射方向中的第i个散射方向与所述入射方向之间的夹角小于第i+1个散射方向与所述入射方向之间的夹角,1≤i≤N,
    其中,所述处理单元具体用于:
    若所述入射方向、所述第一侧的第1个散射方向至第M 2个散射方向、以及所述第二侧的第1个散射方向至所述第M 2个散射方向上的散射光强之 和,与所述多个散射方向上的散射光强总和的比值达到预设值,则确定所述第M 2个散射方向与所述入射方向之间的夹角为所述待测件的散射角,1≤M 2≤N。
  5. 根据权利要求1至4中任一项所述的散射角测量装置,其特征在于,所述散射角测量装置还包括执行单元,所述信号采集单元设置在所述执行单元上,所述执行单元用于带动所述信号采集单元在所述入射平面内移动,以采集所述多个散射方向上的所述散射光。
  6. 根据权利要求5所述的散射角测量装置,其特征在于,在所述信号采集单元采集所述多个散射方向上的所述散射光之前,所述执行单元还用于:
    带动所述信号采集单元移动至所述光线的入射方向上,所述信号采集单元在所述入射方向上的位置为所述信号采集单元在所述入射平面内移动的起始位置。
  7. 根据权利要求5或6所述的散射角测量装置,其特征在于,所述执行单元包括旋转轴和旋转臂,所述信号采集单元设置在所述旋转臂上,
    所述旋转臂用于围绕所述旋转轴的轴线进行旋转,以带动所述旋转臂上的所述信号采集单元在所述入射平面内以所述光线在所述待测件上的入射点为中心旋转,以采集所述多个散射方向上的所述散射光。
  8. 根据权利要求7所述的散射角测量装置,其特征在于,所述旋转轴与所述入射平面垂直,所述旋转臂为直角臂,所述直角臂的一个直角边与所述旋转轴连接且垂直与所述旋转轴,所述直角臂的另一个直角边与所述旋转轴平行,所述信号采集单元设置在与所述旋转轴平行的直角边上。
  9. 根据权利要求1至8中任一项所述的散射角测量装置,其特征在于,所述信号采集单元包括一个光电传感器,所述光电传感器用于在所述入射平面内移动,以采集所述多个散射方向上的所述散射光,并将所述多个散射方向上的所述散射光的光信号转化为电信号。
  10. 根据权利要求1至8中任一项所述的散射角测量装置,其特征在于,所述信号采集单元包括一个光纤传感器,所述光纤传感器用于在所述入射平面内移动,以采集所述多个散射方向上的所述散射光,并将所述多个散射方向上的所述散射光的光信号转化为电信号,并且对所述多个散射方向上的所述散射光进行光谱分析。
  11. 根据权利要求9或10所述的散射角测量装置,其特征在于,所述散射角测量装置还包括与所述信号采集单元相连的数据采集卡,所述数据采集卡用于从所述信号采集单元获取所述多个散射方向上的所述散射光的电信号,并将所述多个散射方向上的所述散射光的电信号发送给所述处理单元。
  12. 根据权利要求1至11中任一项所述的散射角测量装置,其特征在于,所述光线的所述入射方向与所述待测件的表面垂直。
  13. 根据权利要求1至12中任一项所述的散射角测量装置,其特征在于,所述待测件为有机高分子材料或有机发光二极管OLED屏。
  14. 根据权利要求1至13中任一项所述的散射角测量装置,其特征在于,所述处理单元还用于:
    根据所述待测件的散射角,确定所述待测件的材料性能。
  15. 根据权利要求14所述的散射角测量装置,其特征在于,所述处理单元具体用于:
    若所述待测件的散射角小于预设阈值,则确定所述待测件的材料性能为合格。
  16. 一种散射角测量方法,其特征在于,所述方法由散射角测量装置执行,所述散射角测量装置包括激光器、信号采集单元和处理单元,所述方法包括:
    激光器向待测件发射光线,以得到所述光线经过所述待测件后形成的散射光;
    信号采集单元在所述光线的入射平面内移动,以采集所述入射平面内的多个散射方向上的所述散射光;
    处理单元根据所述多个散射方向上的散射光强,确定所述待测件的散射角。
  17. 根据权利要求16所述的方法,其特征在于,所述信号采集单元在所述光线的入射平面内移动,以采集所述入射平面内的多个散射方向上的所述散射光,包括:
    所述信号采集单元在所述入射平面内,以所述光线在所述待测件上的入射点为中心旋转,以采集所述多个散射方向上的所述散射光。
  18. 根据权利要求16或17所述的方法,其特征在于,所述多个散射方 向包括入射方向和位于所述入射方向一侧的N个散射方向,所述N个散射方向中的第i个散射方向与所述入射方向之间的夹角小于第i+1个散射方向与所述入射方向之间的夹角,1≤i≤N,
    其中,所述处理单元根据所述多个散射方向上的散射光强,确定所述待测件的散射角,包括:
    若所述入射方向以及第1个散射方向至第M 1个散射方向上的散射光强之和,与所述多个散射方向上的散射光强总和的比值达到预设值,则确定所述第M 1个散射方向与所述入射方向之间的夹角为所述待测件的散射角,1≤M 1≤N。
  19. 根据权利要求16或17所述的方法,其特征在于,所述多个散射方向包括入射方向以及关于所述入射方向对称的位于所述入射方向的第一侧的N个散射方向和位于所述入射方向的第二侧的N个散射方向,所述第一侧的N散射方向中的第i个散射方向与所述入射方向之间的夹角小于第i+1个散射方向与所述入射方向之间的夹角,所述第二侧的N个散射方向中的第i个散射方向与所述入射方向之间的夹角小于第i+1个散射方向与所述入射方向之间的夹角,1≤i≤N,
    其中,所述处理单元根据所述多个散射方向上的散射光强,确定所述待测件的散射角,包括:
    若所述入射方向、所述第一侧的第1个散射方向至第M 2个散射方向、以及所述第二侧的第1个散射方向至所述第M 2个散射方向上的散射光强之和,与所述多个散射方向上的散射光强总和的比值达到预设值,则确定所述第M 2个散射方向与所述入射方向之间的夹角为所述待测件的散射角,1≤M 2≤N。
  20. 根据权利要求16至19中任一项所述的方法,其特征在于,所述信号采集单元包括一个光电传感器,
    所述信号采集单元在所述光线的入射平面内移动,以采集所述入射平面内的多个散射方向上的所述散射光,包括:
    所述光电传感器在所述入射平面内移动,以采集所述多个散射方向上的所述散射光,并将所述多个散射方向上的所述散射光的光信号转化为电信号。
  21. 根据权利要求16至19中任一项所述的方法,其特征在于,所述信 号采集单元包括一个光纤传感器,
    所述信号采集单元在所述光线的入射平面内移动,以采集所述入射平面内的多个散射方向上的所述散射光,包括:
    所述光纤传感器在所述入射平面内移动,以采集所述多个散射方向上的所述散射光,并将所述多个散射方向上的所述散射光的光信号转化为电信号,并且对所述多个散射方向上的所述散射光进行光谱分析。
  22. 根据权利要求20或21所述的方法,其特征在于,所述散射角测量装置还包括与所述信号采集单元相连的数据采集卡,所述方法还包括:
    所述数据采集卡从所述信号采集单元获取所述多个散射方向上的所述散射光的电信号,并将所述多个散射方向上的所述散射光的电信号发送给所述处理单元。
  23. 根据权利要求16至22中任一项所述的方法,其特征在于,所述光线的所述入射方向与所述待测件的表面垂直。
  24. 根据权利要求16至23中任一项所述的方法,其特征在于,所述待测件为有机高分子材料或有机发光二极管OLED屏。
  25. 根据权利要求16至24中任一项所述的方法,其特征在于,所述方法还包括:
    所述处理单元根据所述待测件的散射角,确定所述待测件的材料性能。
  26. 根据权利要求25所述的方法,其特征在于,所述处理单元根据所述待测件的散射角,确定所述待测件的材料性能,包括:
    若所述待测件的散射角小于预设阈值,所述处理单元确定所述待测件的材料性能为合格。
PCT/CN2018/093431 2018-06-28 2018-06-28 散射角测量装置和散射角测量方法 WO2020000319A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/093431 WO2020000319A1 (zh) 2018-06-28 2018-06-28 散射角测量装置和散射角测量方法
CN201880000919.7A CN109073549A (zh) 2018-06-28 2018-06-28 散射角测量装置和散射角测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/093431 WO2020000319A1 (zh) 2018-06-28 2018-06-28 散射角测量装置和散射角测量方法

Publications (1)

Publication Number Publication Date
WO2020000319A1 true WO2020000319A1 (zh) 2020-01-02

Family

ID=64789400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093431 WO2020000319A1 (zh) 2018-06-28 2018-06-28 散射角测量装置和散射角测量方法

Country Status (2)

Country Link
CN (1) CN109073549A (zh)
WO (1) WO2020000319A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109490271A (zh) * 2018-12-26 2019-03-19 华讯方舟科技有限公司 一种荧光光谱的测试装置及测试方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1279763A (zh) * 1997-11-19 2001-01-10 大塚电子株式会社 光学角度特性测定装置
CN1908625A (zh) * 2005-08-01 2007-02-07 中国科学院化学研究所 大角小角兼备的时间分辨二维激光光散射仪
CN201622228U (zh) * 2009-11-26 2010-11-03 上海理工大学 动态偏振光散射颗粒测量装置
CN105043946A (zh) * 2015-07-08 2015-11-11 浙江大学 基于双波长的散射角自标定全场彩虹测量方法及装置
WO2017119703A1 (ko) * 2016-01-06 2017-07-13 엘지이노텍(주) 입자 센싱 장치
CN107345893A (zh) * 2017-07-24 2017-11-14 哈尔滨工业大学 一种粒子散射相函数测量装置及测量方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4616927A (en) * 1984-11-15 1986-10-14 Wyatt Technology Corporation Sample cell for light scattering measurements
JP5141419B2 (ja) * 2008-07-24 2013-02-13 いすゞ自動車株式会社 すす濃度測定装置
CN102419315B (zh) * 2011-09-08 2015-09-30 苏州汉朗光电有限公司 近晶态液晶空间散射度测量方法和装置
CN204405543U (zh) * 2014-11-04 2015-06-17 湖南科技大学 旋转可变多角度激光光散射仪
CN105891063B (zh) * 2016-03-31 2018-08-03 华中科技大学 一种多角度动态光散射粒径分布测量装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1279763A (zh) * 1997-11-19 2001-01-10 大塚电子株式会社 光学角度特性测定装置
CN1908625A (zh) * 2005-08-01 2007-02-07 中国科学院化学研究所 大角小角兼备的时间分辨二维激光光散射仪
CN201622228U (zh) * 2009-11-26 2010-11-03 上海理工大学 动态偏振光散射颗粒测量装置
CN105043946A (zh) * 2015-07-08 2015-11-11 浙江大学 基于双波长的散射角自标定全场彩虹测量方法及装置
WO2017119703A1 (ko) * 2016-01-06 2017-07-13 엘지이노텍(주) 입자 센싱 장치
CN107345893A (zh) * 2017-07-24 2017-11-14 哈尔滨工业大学 一种粒子散射相函数测量装置及测量方法

Also Published As

Publication number Publication date
CN109073549A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
CN105492889B (zh) 光学元件旋转类型的穆勒矩阵椭圆偏振仪及用于使用其测量样品的穆勒矩阵的方法
US10317334B2 (en) Achromatic rotating-element ellipsometer and method for measuring mueller-matrix elements of sample using the same
US20170003372A1 (en) Apparatus and method of measuring six degrees of freedom
KR20190096831A (ko) 편광 측정 장치, 편광 측정 방법 및 광 배향 방법
EP0383244A1 (en) Fiber optic scatterometer
CN101231238A (zh) 一种用于椭偏测量中的光强调节方法和装置
CN102854149A (zh) 用于连续光谱双向散射分布函数的测量装置
CN106768874A (zh) 一种x射线聚焦光学聚焦性能测量装置
CN108572143B (zh) 全偏振测量显微镜
WO2020000319A1 (zh) 散射角测量装置和散射角测量方法
US20080043232A1 (en) Multi-angle and multi-channel inspecting device
CN106404715A (zh) 测量折射率的方法
KR20150031827A (ko) 면감지 타원 계측기
CN109341554A (zh) 一种测量膜厚的装置及方法
CN103148807B (zh) 外场环境下紫外与可见光双光轴平行性校准装置
CN108061527A (zh) 一种抗空气扰动的二维激光自准直仪
CN102809550A (zh) 连续光谱双向透射分布函数测量装置
CN101893509B (zh) 一种测量大数值孔径显微物镜调制传递函数的装置及方法
CN106017441B (zh) 一种便携式高精度激光大工作距自准直装置与方法
TW202248615A (zh) 光學檢測系統
JP2017009338A (ja) 光学特性の測定方法及び光学特性の測定装置
CN101561317B (zh) 一种高精度自动测量目标对传输光束偏振态影响的系统
CN107843414B (zh) 大口径系统的波前检测方法及系统
CN106052659B (zh) 一种便携式激光大工作距自准直装置与方法
CN106198399B (zh) 一种清晰度测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924697

Country of ref document: EP

Kind code of ref document: A1