WO2020000300A1 - 一种无线通信显示电路及无源显示牌 - Google Patents

一种无线通信显示电路及无源显示牌 Download PDF

Info

Publication number
WO2020000300A1
WO2020000300A1 PCT/CN2018/093324 CN2018093324W WO2020000300A1 WO 2020000300 A1 WO2020000300 A1 WO 2020000300A1 CN 2018093324 W CN2018093324 W CN 2018093324W WO 2020000300 A1 WO2020000300 A1 WO 2020000300A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
capacitor
resistor
chip
module
Prior art date
Application number
PCT/CN2018/093324
Other languages
English (en)
French (fr)
Inventor
张云翼
华建武
Original Assignee
深圳市浩博高科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市浩博高科技有限公司 filed Critical 深圳市浩博高科技有限公司
Priority to PCT/CN2018/093324 priority Critical patent/WO2020000300A1/zh
Publication of WO2020000300A1 publication Critical patent/WO2020000300A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes

Definitions

  • This solution belongs to the field of energy-saving display technology, and particularly relates to a wireless communication display circuit and a passive display card.
  • LED display boards are constantly appearing in all areas of people's lives.
  • LED display screens are widely used in banks, billboards, electronic price display cards and other occasions, for people's lives Bring convenience.
  • the purpose of this solution is to provide a wireless communication display circuit and a passive display card, which aims to solve the problem that the existing display card usually requires an external power supply or adopts battery power to cause the use of the display card to be limited.
  • the wireless communication display circuit includes:
  • a photoelectric conversion module for converting the collected light signal into an electrical signal and supplying power to the wireless communication display circuit
  • a communication module connected to the photoelectric conversion module and configured to communicate with the host end;
  • a display module for displaying received information
  • a control signal is transmitted to the display module, so that the display module displays the information to the main control module.
  • the wireless communication display circuit further includes:
  • An ultrasonic detection module which is connected to the photoelectric conversion module and the main control module, and is used to detect the distance between the ultrasonic emission sensor and the object to be detected, and sends a detection signal to the main control module.
  • This solution also provides a passive display card, which includes the wireless communication display circuit described above and a casing for packaging the wireless communication display circuit.
  • This solution provides a wireless communication display circuit and a passive display card.
  • the light energy in the environment is collected through the photoelectric conversion module, and the light energy is converted into electrical energy to power the main control module and the communication module.
  • the main control module passes the communication module. Communicate with the host, and send a second control signal to the display module according to the first control signal input from the communication module.
  • the display module displays the corresponding information according to the second control signal, which realizes the information update of the display card and solves the existing problem.
  • the display card requires external power supply or battery power, which causes the problem that the use range of the display card is limited.
  • FIG. 1 is a schematic structural diagram of a wireless communication display circuit according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a wireless communication display circuit according to an embodiment of the present invention.
  • FIG. 3 is a schematic circuit structure diagram of a photoelectric conversion module of a wireless communication display circuit according to an embodiment of the present invention
  • FIG. 4 is a schematic circuit structure diagram of a communication module of a wireless communication display circuit according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a circuit of an ultrasonic detection module of a wireless communication display circuit according to an embodiment of the present invention
  • FIG. 6 is a schematic circuit structure diagram of a main control module of a wireless communication display circuit according to an embodiment of the present invention.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of this solution, the meaning of "multiple” is two or more, unless it is specifically and specifically defined otherwise.
  • FIG. 1 is a schematic diagram of a module structure of a wireless communication display circuit proposed in an embodiment of the solution.
  • the wireless communication display circuit in this embodiment is wirelessly connected to a host end, and the wireless communication in this embodiment is wireless.
  • the display circuit includes: a photoelectric conversion module 10 for converting the collected optical signal into an electrical signal and supplying power to the wireless communication display circuit; a communication module 30 connected to the photoelectric conversion module 10 and used for communication with the host end; A display module 40 for displaying the received information; and connected to the photoelectric conversion module 10, the display module 40, and the communication module 30, and configured to receive the first control signal output from the host end according to the communication module 30, and control the first control The signal is converted into a second control signal and transmitted to the display module 40, so that the display module 40 displays information to the main control module 20.
  • the photoelectric conversion module 10 is mainly used for collecting light in the environment and performing photoelectric conversion.
  • the photoelectric conversion module 10 is used for an electronic price tag.
  • the low light in the environment is collected.
  • the photoelectric conversion module 10 is connected to the main control module 20, and the main control module 20 controls the photoelectric conversion module after detecting that the voltage signal output by the solar cell in the photoelectric conversion module is greater than a first preset value. 10. Perform energy collection. If the voltage signal output by the solar cell is lower than the second preset value, turn off the collection and conversion of the optical signal by the photoelectric conversion module.
  • the display module 40 in this embodiment may be an information display device such as an electronic price tag or a billboard.
  • the host terminal transmits data to the main control module 20 through the communication module 30.
  • the first control signal is sent to the main control module 20 through the communication module 30.
  • the main control module 20 converts the first control signal into a second control signal that drives the display module 40 to display corresponding information.
  • the display module 40 displays the corresponding display information.
  • FIG. 2 is a schematic diagram of a module structure of a wireless communication display circuit proposed in the embodiment of the present solution.
  • the wireless communication display circuit in this embodiment further includes: a photoelectric conversion module 10 and the main control module 20 are connected, and an ultrasonic detection module 50 for detecting the distance between the ultrasonic emission sensor and the object to be detected and sending a detection signal to the main control module 20.
  • the ultrasonic detection module 50 is mainly used to detect the distance between the ultrasonic emission sensor and the object to be measured.
  • the main control module 20 outputs a third driving signal to the display module 40 and sends a third feedback signal to the main control terminal according to the detection signal.
  • the ultrasonic detection module 50 detects a lack of vegetables in a preset area, and then sends a third feedback signal to the master to indicate that the vegetables are missing information.
  • the wireless communication display circuit When the wireless communication display circuit is used for a billboard, if the ultrasonic detection module 50 detects that someone is approaching, it outputs a third driving signal to the display module 40 to drive the display module 40 to display corresponding advertisement information, thereby achieving the effect of low power consumption and energy saving.
  • the wireless communication display circuit in this embodiment can also be used in the fields of passive traffic information signs, passive item management tags, etc., where the corresponding information displayed by the display module 40 and the main control module 20 output to the display module 40 according to the detection signal
  • the third driving signal and the third feedback signal sent to the master can be set according to user needs.
  • the first voltage detection signal output terminal SOLAR10 of the photoelectric conversion module 10 is connected to the first voltage detection signal input terminal SOLAR of the main control module 20, and the first voltage feedback signal input terminal SOLAR_PWM10 of the photoelectric conversion module 10 is connected to The first voltage feedback signal output terminal SOLAR_PWM of the main control module 10 is connected, and the first voltage signal output terminal VCC10 of the photoelectric conversion module 10 is connected to the power supply input terminal VCC of the main control module 20.
  • FIG. 3 is a schematic circuit structure diagram of a photoelectric conversion module of a wireless communication display circuit proposed in Embodiment 3 of the solution.
  • the photoelectric conversion module 10 includes a solar cell panel SC, a first switching tube M1, a first Two switching tubes M2, a first diode D1, a first inductor L1, and a first capacitor C1.
  • the negative output terminal of the solar cell panel SC is grounded, and the positive output terminal of the solar cell panel SC and the current input terminal of the first switch M1 are connected in common as the first voltage detection signal output terminal SOLAR10 of the photoelectric conversion module 10, the first The control terminal of the switch M1 and the control terminal of the second switch M2 are connected in common as the first voltage feedback signal input terminal SOLAR_PWM10 of the photoelectric conversion module 10, the current output terminal of the first switch M1 and the current input of the second switch M2
  • the first output terminal of the second switch M2, the cathode of the first diode D1, and the first terminal of the first inductor L1 are connected in common.
  • the anode of the first diode D2 is grounded, and the second The terminal and the first terminal of the first capacitor C1 are connected in common as the first voltage signal output terminal VCC10 of the photoelectric conversion module 10, and the second terminal of the first capacitor C1 is grounded.
  • the first switch M1 and the second switch M2 are P-type MOS transistors.
  • the control end of the P-type MOS tube is the control end of the first switch M1 and the second switch M2.
  • the source of the P-type MOS transistor is the current input terminal of the first switch M1 and the second switch M2, and the source-drain of the P-type MOS transistor is the current output terminal of the first switch M1 and the second switch M2.
  • the first power terminal RF_VCC30 of the communication module 30 is connected to the RF chip power output terminal RF_VCC of the main control module 20, and the second power terminal VCC30 of the communication module 30 is output to the first voltage signal of the photoelectric conversion module 10.
  • the terminal VCC10 is connected, the clock signal input terminal U_SCK30 of the communication module 30 is connected to the clock signal output terminal U_SCK of the main control module 20, the serial data terminal U_SDI30 of the communication module 30 is connected to the serial data terminal U_SDI of the main control module 20, and the communication module
  • the first chip selection signal input terminal U_CSN30 of 30 is connected to the first chip selection signal output terminal U_CSN of the main control module 20, and the second chip selection signal input terminal U_SDO30 of the communication module 30 is connected to the second chip selection signal output of the main control module 20.
  • U_SDO connection is connected to the first chip selection signal output terminal U_CSN of the main control module 20.
  • FIG. 4 is a schematic circuit structure diagram of a communication module of a wireless communication display circuit proposed in Embodiment 4 of the present invention.
  • the communication module 30 includes a radio frequency chip U1 and a second capacitor C2 Third capacitor C3, fourth capacitor C4, fifth capacitor C5, sixth capacitor C6, seventh capacitor C7, eighth capacitor C8, ninth capacitor C9, eleventh capacitor C11, twelfth capacitor C12, tenth Three capacitors C13, fourteenth capacitor C14, fifteenth capacitor C15, sixteenth capacitor C16, second inductor L2, third inductor L3, sixth inductor L6, seventh inductor L7, eighth inductor L8, ninth inductor L9, antenna filter unit 301, antenna Antenna, and first crystal oscillator Y1.
  • the clock signal input terminal SCLK of the radio frequency chip U1 and the first terminal of the sixteenth capacitor C16 are connected in common as the clock signal input terminal U_SCK30 of the communication module 30, the serial data terminal SDIO of the radio frequency chip U1 and the fifteenth capacitor C15
  • the first terminal is connected as the serial data terminal U_SDI30 of the communication module 30, and the first chip selection signal input terminal CSB of the radio frequency chip U1 is connected with the first terminal of the fourteenth capacitor C14 as the first chip selection of the communication module 30.
  • the signal input terminal U_CSN30, the second chip selection signal input terminal of the radio frequency chip FCSB and the first terminal of the thirteenth capacitor C13 are connected in common as the second chip selection signal input terminal U_SDO30 of the communication module 30, the second chip selection signal input terminal U_SDO30, Terminal, the second terminal of the fourteenth capacitor C14, the second terminal of the fifteenth capacitor C15, and the second terminal of the sixteenth capacitor C16 are connected to ground in common.
  • the first frequency signal output terminal XO, the first The first terminal of a crystal oscillator Y1 and the first terminal of the twelfth capacitor C12 are connected in common.
  • the second terminal of the eleventh capacitor C11 and the twelfth capacitor is connected to the ground in common, and the ground terminal of the radio frequency chip U1 is connected to the ground.
  • the first power terminal DVDD of the radio frequency chip U1 and the first terminal of the second capacitor C2 are commonly connected as the first power terminal RF_VCC30 of the communication module 30.
  • the second terminal of the second capacitor C2, the first ground terminal of the radio frequency chip U1, the second ground terminal of the radio frequency chip U1, and the first terminal of the third capacitor C3 are connected to the ground in common, and the second terminal of the third capacitor C3 and The second power supply terminal AVDD of the radio frequency chip U1 is commonly connected as the second power supply terminal VCC30 of the communication module 30.
  • first terminal of the sixth inductor L6 are connected in common, the second terminal of the seventh capacitor C7 is grounded, the second differential signal input terminal RFIP of the radio frequency chip U1, the second terminal of the eighth inductor L8, and the first terminal of the seventh inductor L7.
  • One terminal and the first terminal of the ninth capacitor C9 are connected in common, the second terminal of the seventh inductor L7 is grounded, the antenna signal input terminal PA of the radio frequency chip U1, the first terminal of the ninth inductor L9, and the first terminal of the sixth capacitor C6.
  • Terminals are connected in common, the second terminal of the ninth inductor L9, the first terminal of the fourth capacitor C4, and the fifth capacitor
  • the first terminal of C5 is connected in common as the second power terminal VCC30 of the communication module 30, the second terminal of the fourth capacitor C4 and the second terminal of the fifth capacitor C5 are connected to ground in common, and the second terminal of the sixth capacitor C6 is connected to the first
  • the first ends of the two inductors L2 are connected, the second ends of the second inductor L2, the first ends of the eighth capacitor C8, and the first ends of the third inductor L3 are connected in common, and the second ends of the third inductor L3 and the sixth inductor are connected in common.
  • the second end of L6, the second end of the ninth capacitor C9, and the first end of the antenna filtering unit 301 are connected in common, and the second end of the antenna filtering unit 301 is connected to the antenna Antenna.
  • the type of the radio frequency chip is CMT2300A.
  • the communication module 30 communicates with the host once after a regular wake-up, so as to reduce the energy consumption in the communication process as much as possible, that is, Less waiting time to reduce energy consumption during communication.
  • the wireless communication display circuit periodically communicates with the host. If the host has data to update the display information, the host sends data packets that need to be updated, such as price information and advertising information. If the wireless communication display circuit detects that the distance between the ultrasonic emission sensor and the object to be measured is within a preset distance range, it will start to try to communicate with the host. After receiving the data, the host will feed back the wireless communication display circuit with a response signal. When the wireless communication display circuit receives the response signal, it no longer sends data information, and simultaneously displays the corresponding second display information. If the display module is used to display the electronic cargo label, the second display information may be "to be replenished", "Out of stock” and other information.
  • the antenna filtering unit 301 includes a fourth inductor L4, a fifth inductor L5, and a tenth capacitor C10.
  • the first terminal of the fourth inductor L4 is commonly used as the first terminal of the antenna filtering unit 301
  • the second terminal of the fourth inductor L4 the first terminal of the fifth inductor L5, and the first terminal of the tenth capacitor C10.
  • the second terminal of the tenth capacitor C10 is grounded
  • the second terminal of the fifth inductor L5 is used as the second terminal of the antenna filtering unit 301.
  • the power supply terminal AMP_VCC50 of the ultrasonic detection module 50 is connected to the ultrasonic power output terminal AMP_VCC of the main control module 20, and the sound wave input terminal US015_CON50 of the ultrasonic detection module 50 is connected to the sound wave detection signal output terminal US015_CON of the main control module 20.
  • the sound wave output terminal US015_INT50 of the ultrasonic detection module 50 is connected to the sound wave detection signal input terminal US015_INT of the main control module 20, and the first pulse width modulation signal input terminal PWM_A50 of the ultrasonic detection module 50 is connected to the first pulse width modulation signal of the main control module 20.
  • the output terminal PWM_A is connected, and the second pulse width modulation signal input terminal PWM_B50 of the ultrasonic detection module 50 is connected to the second pulse width modulation signal output terminal PWM_B of the main control module 20.
  • FIG. 5 is a schematic circuit configuration diagram of an ultrasonic detection module of a wireless communication display circuit proposed in Embodiment 5 of the present invention.
  • the ultrasonic detection module 50 includes an ultrasonic emission sensor TX, ultrasonic waves, and the like.
  • Receiver sensor RX operational amplifier chip U2, first resistor R1, second resistor R2, third resistor R3, fourth resistor R4, fifth resistor R5, sixth resistor R6, seventh resistor R7, eighth resistor R8, first Ninth resistance R9, tenth resistance R10, eleventh resistance R11, twelfth resistance R12, thirteenth resistance R13, fourteenth resistance R14, fifteenth resistance R15, sixteenth resistance R16, seventeenth resistance R17
  • the first input terminal PWM_A50 of the ultrasonic emission sensor 50 is used as the first pulse width modulation signal input terminal PWM_A50 of the ultrasonic detection module 50
  • the second input terminal PWM_B50 of the ultrasonic emission sensor 50 is used as the second pulse width modulation of the ultrasonic detection module 50.
  • the first output terminal of the ultrasonic receiving sensor RX is connected to the first terminal of the first resistor R1, the second terminal of the first resistor R1, the first terminal of the second resistor R2, and the first terminal of the third resistor R3
  • the first negative input terminal 1IN- of the operational amplifier chip U2 are connected in common, the second terminal of the second resistor R2, the second terminal of the third resistor R3, the first terminal of the fourth resistor R4, and the first terminal of the operational amplifier chip U2.
  • One output terminal 1OUT is connected in common, the first terminal of the tenth resistor R10 is connected to the first positive input terminal 1IN + of the operational amplifier chip U2, the second terminal of the tenth resistor R10 is grounded, the first terminal of the ninth resistor R9, and the tenth
  • the first terminal of the eight capacitor C18, the first terminal of the eleventh resistor R11, and the second positive input terminal 2IN + of the operational amplifier U2 are connected in common.
  • the second terminal of the fourth resistor R4 the first terminal of the seventh resistor R7, and the operation.
  • Amplifier chip U2 The negative input terminal 2IN- is connected.
  • the second terminal of the seventh resistor R7, the first terminal of the nineteenth capacitor C19, and the second output terminal 2OUT of the operational amplifier chip U2 are connected in common.
  • the second terminal of the eighteenth capacitor C18 is grounded.
  • the second output terminal 2OUT of the ultrasonic receiving sensor U2 is connected to the first terminal of the fifth resistor R5, the second terminal of the fifth resistor R5 is connected to the first terminal of the sixth resistor R6, the second terminal of the sixth resistor R6, and the first
  • the first terminal of the fourteen resistor R14 is commonly connected as the power terminal AMP_VCC50 of the ultrasonic detection module 50.
  • the first terminal of the eighth resistor R8 is connected to the power terminal AMP_VCC50 of the ultrasonic detection module 50.
  • the second terminal of the eighth resistor R8 is connected to the ninth.
  • the second end of the resistor R9 is connected, the second end of the eleventh resistor R11 is used as the acoustic wave input terminal US015_CON50 of the ultrasonic detection module 50, and the second end of the nineteenth capacitor C19 is connected to the first end of the twelfth resistor R12.
  • the second terminal of the twelve resistor R12, the first terminal of the thirteenth resistor R13, and the third negative input terminal 3IN- of the operational amplifier chip U2 are connected in common, the third output terminal 3OUT of the operational amplifier chip U2, and the thirteenth resistor R13
  • the second end of the The two terminals of the fifteenth resistor R14, the first terminal of the fifteenth resistor R15, and the third positive input terminal 3IN + of the operational amplifier chip U2 are connected in common.
  • the first terminal of the fifteenth resistor R15, the tenth The first terminal of the six resistor R16 and the fourth positive input terminal 4IN + of the operational amplifier chip U2 are connected in common, the second terminal of the sixteenth resistor R16 is grounded, the fourth negative input terminal 4IN- of the operational amplifier chip U2, and the twentieth capacitor
  • the first terminal of C20, the first terminal of the nineteenth resistor R19, and the positive electrode of the second diode D2 are connected in common.
  • the negative electrode of the second diode D2 is connected to the second terminal of the seventeenth resistor R17.
  • the second terminal of the capacitor C20 and the second terminal of the nineteenth resistor R19 are connected to the power terminal AMP_VCC50 of the ultrasonic detection module 50.
  • the fourth output terminal 4OUT of the operational amplifier chip U2 is connected to the first terminal of the eighteenth resistor R18.
  • the second terminal of the eighteen resistor R18 is connected to the control terminal of the fourth switch Q4.
  • the current output of the fourth switch Q4 is grounded.
  • the current input of the fourth switch Q4 and the first terminal of the twentieth resistor R20 are in common. Connected as the sound wave output terminal US015_INT50 as the ultrasonic detection module 50, the twentieth R20 connected to the second terminal of the power supply terminal AMP_VCC50 ultrasonic detection module 50.
  • the signal of the operational amplifier chip is LM324.
  • the ultrasonic signal after the ultrasonic transmitting sensor TX transmits an ultrasonic signal, the ultrasonic signal reflects an acoustic wave after encountering the object to be measured, and the ultrasonic receiving sensor RX outputs a feedback signal to the operational amplifier chip after receiving the acoustic wave to obtain the ultrasonic transmitting sensor TX and the object to be measured. Distance information between objects.
  • FIG. 6 is a schematic circuit structure diagram of a main control module of a wireless communication display circuit proposed in Embodiment 6 of the present solution.
  • the main control module 20 includes a single-chip microcomputer chip U3, a first The twenty-first capacitor C21, the twenty-second capacitor C22, the twenty-first resistor R21, the twenty-second resistor R22, the twenty-third capacitor C23, the twenty-fourth capacitor C24, and the energy storage unit 201.
  • the power supply terminal VCC of the single-chip microcomputer chip U3, the first terminal of the energy storage unit 201, the first terminal of the twenty-first capacitor C21, and the first terminal of the twenty-second capacitor C22 are commonly connected as the main control module.
  • the power supply input terminal VCC of 20, the second terminal of the twenty-first capacitor C21 and the second terminal of the twenty-second capacitor C22 are connected in common to the ground.
  • the first voltage detection signal input SOLAR of the single chip U3 is used as the first voltage detection signal input SOLAR of the main control module 20, and the first voltage feedback signal output SOLAR_PWM of the single chip U3 is used as the main control module 20
  • the first voltage feedback signal output terminal SOLAR_PWM, the RF chip power output terminal RF_VCC of the single chip U3 is used as the RF chip power output terminal RF_VCC of the main control module 20, and the clock signal output U_SCK of the single chip U3 is used as the clock signal output of the main control module 20.
  • the first chip select signal output terminal U_CSN of the single chip U3 is used as the first chip select signal output terminal U_CSN of the main control module 20, and the second chip select signal of the single chip U3
  • the output U_SDO is used as the second chip selection signal output U_SDO of the main control module 20
  • the ultrasonic power output AMP_VCC of the single chip U3 is used as the ultrasonic power output AMP_VCC of the main control module 20
  • the sound wave detection signal output US015_INT of the single chip U3 is used as The sound wave detection signal output terminal US015_INT of the main control module 20
  • the sound wave detection signal input terminal US015_CON of the single chip U3 is used as the sound wave detection signal input terminal US015_CON of the main control module 20
  • the first pulse width modulation signal output terminal PWM_A of the single chip U3 is used as the main The first pulse width modulation signal output terminal PWM_A of the control module 20, the second pulse width modulation signal output terminal PWM_B of
  • the second terminal of the resistor R22, the second terminal of the second crystal oscillator Y2, and the first terminal of the twenty-fourth capacitor C24 are connected in common.
  • the second terminal of the twenty-third capacitor C23 and the second terminal of the twenty-four capacitor C24 are connected in common. To the ground.
  • the type of the single chip U3 is MSG430G2553.
  • the reset terminal RST of the microcontroller chip U3 is connected to the reset signal source, P2.2, P2.3, P2.4, P2.5, P3.2, P3.3, P3.4 and
  • the P3.5 port is connected to the corresponding driving interface and driving electrode of the display module 40 in turn.
  • the first voltage detection signal input terminal SOLAR of the main control module 20 detects the first voltage detection signal output by the photoelectric conversion module 10, and if the first voltage detection signal is higher than a first voltage preset value, The first voltage feedback signal is sent to the photoelectric conversion module 10 to control the photoelectric conversion module 10 for energy collection. If the voltage of the first voltage detection signal is lower than the second voltage preset value, the photoelectric conversion module 10 is turned off by the first voltage feedback signal.
  • the first switching tube M1 and the second switching tube M2 in the.
  • the second voltage preset value in this embodiment may be 1.8V, that is, when the solar panel is at 20-50 lux, the output voltage is lower than 1.8V, and the energy collected by the solar panel is very weak at this time. , Can not be used, so close the connection between the solar panel and the main control module.
  • the photoelectric conversion module supplies power to the main control module.
  • the first voltage signal output by the photoelectric conversion module is greater than the voltage of the energy storage unit 201, then The energy storage unit 201 is charged through the energy storage unit control terminal BATT of the main control module 20.
  • the main control module 20 outputs the first The voltage feedback signal controls the photoelectric conversion module 10 to start the MPPT system and obtain the maximum energy of the solar energy to charge the energy storage battery.
  • the energy storage unit 201 includes: an energy storage battery and a third switching tube M3; a positive electrode of the energy storage battery serves as a first end of the energy storage unit 201, and a negative electrode of the energy storage battery and a third
  • the current input terminal of the switch tube M3 is connected, the control terminal of the third switch tube M3 is used as the control input terminal of the energy storage unit 201, and the current output terminal of the third switch tube M3 is grounded.
  • the third switching transistor M3 is a P-type MOS transistor
  • the gate of the P-type MOS transistor is a control terminal of the third switching transistor M3
  • the source of the P-type MOS transistor is a current input terminal of the third switching transistor M3.
  • the drain of the P-type MOS tube is the current output terminal of the third switching tube M3.
  • the display module 40 includes a display screen and a driving unit connected to the main control module 20 and configured to drive the display screen to display corresponding information according to a second control signal.
  • the passive display card includes the wireless communication display circuit according to any one of the foregoing embodiments and a casing for packaging the wireless communication display circuit.
  • This solution provides a wireless communication display circuit and a passive display card.
  • the light energy in the environment is collected through the photoelectric conversion module, and the light energy is converted into electrical energy to power the main control module and the communication module.
  • the main control module passes the communication module. Communicate with the host, and send a second control signal to the display module according to the first control signal input from the communication module.
  • the display module displays the corresponding information according to the second control signal, which realizes the information update of the display card and solves the existing problem.
  • the display card requires external power supply or battery power, which causes the problem that the use range of the display card is limited.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Telephone Function (AREA)

Abstract

一种基于共振遂穿二极管的太赫兹振荡电路及振荡器,通过采用共振遂穿二极管产生震荡信号,并通过振荡单元对所述振荡信号进行处理以驱动负载,其中,共振遂穿二极管两端在加入偏压后工作在负阻区域,使太赫兹振荡电路发生振荡,产生太赫兹辐射,实现了在室温下工作产生太赫兹辐射,并且具有功耗较小以及稳定性较高的特点,解决了现有的太赫兹辐射源因为体积较大,使用过程中需要低温冷却,器件寿命较短,极大的限制了太赫兹辐射源的发展和应用范围的问题。

Description

一种无线通信显示电路及无源显示牌 技术领域
本方案属于节能显示技术领域,尤其涉及一种无线通信显示电路及无源显示牌。
背景技术
随着生活的不断发展,LED显示牌不断出现在人们的生活的各个领域,LED显示屏作为一种数字化的显示装置,广泛应用在银行、广告牌、电子价格显示牌等场合,为人们的生活带来了便捷。
然而,现有的显示牌通常需要外接电源或者采用电池供电,极大的限制了显示牌的使用范围。
技术问题
本方案的目的在于提供一种无线通信显示电路及无源显示牌,旨在解决现有的显示牌通常需要外接电源或者采用电池供电,导致显示牌使用范围受限制的问题。
技术解决方案
为实现上述方案目的,本方案采用的技术方案如下:
本方案提供了一种无线通信显示电路,与主机端无线连接,所述无线通信显示电路包括:
用于将采集的光信号转化为电信号,并对所述无线通信显示电路进行供电的光电转换模块;
与所述光电转换模块连接,用于与所述主机端进行通信的通信模块;
用于对接收的信息进行显示的显示模块;以及
与所述光电转换模块、所述显示模块以及所述通信模块连接,用于根据所述通信模块接收到所述主机端输出的第一控制信号,并将所述第一控制信号转换为第二控制信号传输给所述显示模块,以使所述显示模块对所述信息进行显示的主控模块。
进一步的,所述无线通信显示电路还包括:
与所述光电转换模块以及所述主控模块连接,用于检测超声波发射传感器与待检测物体之间的距离,并向所述主控模块发送检测信号的超声波检测模块。
本方案还提供了一种无源显示牌,包括上述的无线通信显示电路以及用于封装所述无线通信显示电路的外壳。
有益效果
本方案提供了一种无线通信显示电路及无源显示牌,通过光电转换模块采集环境中的光能,并将光能转换为电能对主控模块以及通信模块进行供电,主控模块通过通信模块与主机端进行交互通信,并根据通信模块输入的第一控制信号向显示模块发送第二控制信号,显示模块根据第二控制信号显示对应的信息,实现了显示牌的信息更新,解决了现有的显示牌需要外接电源或者采用电池供电,导致显示牌使用范围受限制的问题。
附图说明
图1为本方案实施例提出的一种无线通信显示电路的模块结构示意图;
图2为本方案实施例提出的一种无线通信显示电路的模块结构示意图;
图3为本方案实施例提出的一种无线通信显示电路的光电转换模块的电路结构示意图;
图4为本方案实施例提出的一种无线通信显示电路的通信模块的电路结构示意图;
图5为本方案实施例提出的一种无线通信显示电路的超声波检测模块的电路结构示意图;
图6为本方案实施例提出的一种无线通信显示电路的主控模块的电路结构示意图。
本发明的实施方式
为了使本方案的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本方案进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本方案,并不用于限定本方案。
在本方案的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本方案的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
实施例1
图1为本方案实施例中提出的一种无线通信显示电路的模块结构示意图,如图1所示,本实施例中的无线通信显示电路,与主机端无线连接,本实施例中的无线通信显示电路包括:用于将采集的光信号转化为电信号,并对无线通信显示电路进行供电的光电转换模块10;与光电转换模块10连接,用于与主机端进行通信的通信模块30;用于对接收的信息进行显示的显示模块40;以及与光电转换模块10、显示模块40以及通信模块30连接,用于根据通信模块30接收到主机端输出的第一控制信号,并将第一控制信号转换为第二控制信号传输给显示模块40,以使显示模块40对信息进行显示的主控模块20。
在本实施例中,光电转换模块10主要用于对环境中的光进行采集并进行光电转换,当该无线通信显示电路用于电子价格标签时,光电转换模块10用于对电子价格标签所处环境中的微光进行采集,具体的,光电转换模块10与主控模块20连接,主控模块20检测到光电转换模块中的太阳能电池输出的电压信号大于第一预设值后控制光电转换模块10进行能量采集,若太阳能电池输出的电压信号低于第二预设值,则关闭光电转换模块对光信号的采集和转换。
具体的,本实施例中的显示模块40可以为电子价格标签、广告牌等信息显示装置,主机端通过通信模块30与主控模块20进行数据传输,当主机端需要对显示模块40所显示的信息进行更新时,通过通信模块30向主控模块20发送第一控制信号,主控模块20接收到第一控制信号后将第一控制信号转换为驱动显示模块40显示对应信息的第二控制信号,显示模块40接收到第二控制信号后显示对应的显示信息。
作为本方案一实施例,图2为本方案实施例中提出的一种无线通信显示电路的模块结构示意图,如图2所示,本实施例中的无线通信显示电路还包括:与光电转换模块10以及主控模块20连接,用于检测超声波发射传感器与待检测物体之间的距离并向主控模块20发送检测信号的超声波检测模块50。
在本实施例中,超声波检测模块50主要用于检测超声波发射传感器与待测物体的距离,主控模块20根据检测信号向显示模块40输出第三驱动信号以及向主控端发送第三反馈信号。例如,本实施例中的无线通信显示电路用于电子价格标签时,超声波检测模块50检测到预设区域的蔬菜缺少,则向主控端发送第三反馈信号提示蔬菜缺少信息,本实施例中的无线通信显示电路用于广告牌时,若超声波检测模块50检测到有人走近,则向显示模块40输出第三驱动信号驱动显示模块40显示对应的广告信息,实现了低功耗节能的效果。本实施例中的无线通信显示电路还可以用于无源交通信息指示牌、无源物品管理标签等领域,其中,显示模块40显示的对应信息以及主控模块20根据检测信号向显示模块40输出第三驱动信号以及向主控端发送第三反馈信号可以根据用户需要设置。
作为本方案一实施例,光电转换模块10的第一电压检测信号输出端SOLAR10与主控模块20的第一电压检测信号输入端SOLAR连接,光电转换模块10的第一电压反馈信号输入端SOLAR_PWM10与主控模块10的第一电压反馈信号输出端SOLAR_PWM连接,光电转换模块10的第一电压信号输出端VCC10与主控模块20的供电电源输入端VCC连接。
图3为本方案实施例3中提出的一种无线通信显示电路的光电转换模块的电路结构示意图,如图3所示,光电转换模块10包括:太阳能电池板SC、第一开关管M1、第二开关管M2、第一二极管D1、第一电感L1以及第一电容C1。具体的,太阳能电池板SC的负极输出端接地,太阳能电池板SC的正极输出端与第一开关管M1的电流输入端共接作为光电转换模块10的第一电压检测信号输出端SOLAR10,第一开关管M1的控制端与第二开关管M2的控制端共接作为光电转换模块10的第一电压反馈信号输入端SOLAR_PWM10,第一开关管M1的电流输出端与第二开关管M2的电流输入端连接,第二开关管M2的电流输出端、第一二极管D1的阴极以及第一电感L1的第一端共接,第一二极管D2的阳极接地,第一电感L1的第二端与第一电容C1的第一端共接作为光电转换模块10的第一电压信号输出端VCC10,第一电容C1的第二端接地。
作为本方案一实施例,第一开关管M1、第二开关管M2均为P型MOS管,具体的,P型MOS管的控制端为第一开关管M1、第二开关管M2的控制端,P型MOS管的源极为第一开关管M1、第二开关管M2的电流输入端,P型MOS管的源极漏极为第一开关管M1、第二开关管M2的电流输出端。
作为本方案一实施例,通信模块30的第一电源端RF_VCC30与主控模块20的射频芯片电源输出端RF_VCC连接,通信模块30的第二电源端VCC30与光电转换模块10的第一电压信号输出端VCC10连接,通信模块30的时钟信号输入端U_SCK30与主控模块20的时钟信号输出端U_SCK连接,通信模块30的串行数据端U_SDI30与主控模块20的串行数据端U_SDI连接,通信模块30的第一片选信号输入端U_CSN30与主控模块20的第一片选信号输出端U_CSN连接,通信模块30的第二片选信号输入端U_SDO30与主控模块20的第二片选信号输出端U_SDO连接。
图4为本方案实施例4中提出的一种无线通信显示电路的通信模块的电路结构示意图,如图4所示,在本实施例中,通信模块30包括:射频芯片U1、第二电容C2、第三电容C3、第四电容C4、第五电容C5、第六电容C6、第七电容C7、第八电容C8、第九电容C9、第十一电容C11、第十二电容C12、第十三电容C13、第十四电容C14、第十五电容C15、第十六电容C16、第二电感L2、第三电感L3、第六电感L6、第七电感L7、第八电感L8、第九电感L9、天线滤波单元301、天线Antenna以及第一晶振Y1。具体的,射频芯片U1的时钟信号输入端SCLK与第十六电容C16的第一端共接作为通信模块30的时钟信号输入端U_SCK30,射频芯片U1的串行数据端SDIO与第十五电容C15的第一端共接作为通信模块30的串行数据端U_SDI30,射频芯片U1的第一片选信号输入端CSB与第十四电容C14的第一端共接作为通信模块30的第一片选信号输入端U_CSN30,射频芯片的第二片选信号输入端FCSB与第十三电容C13的第一端共接作为通信模块30的第二片选信号输入端U_SDO30,第十三电容C13的第二端、第十四电容C14的第二端、第十五电容C15的第二端以及第十六电容C16的第二端共接与地相连,射频芯片U1的第一频率信号输出端XO、第一晶振Y1的第一端以及第十二电容C12的第一端共接,射频芯片U1的第一频率信号输入端XI、第一晶振Y1的第二端以及第十一电容C11的第一端共接,第十一电容C11的第二端与第十二电容C12的第二端共接于地,射频芯片U1的接地端与地连接,射频芯片U1的第一电源端DVDD、第二电容C2的第一端共接作为通信模块30的第一电源端RF_VCC30,第二电容C2的第二端、射频芯片U1的第一接地端、射频芯片U1的第二接地端以及第三电容C3的第一端共接于地,第三电容C3的第二端与射频芯片U1的第二电源端AVDD共接作为通信模块30的第二电源端VCC30,射频芯片U1的第一差分信号输入端RFIN、第七电容C7的第一端、第八电感L8的第一端以及第六电感L6的第一端共接,第七电容C7的第二端接地,射频芯片U1的第二差分信号输入端RFIP、第八电感L8的第二端、第七电感L7的第一端以及第九电容C9的第一端共接,第七电感L7的第二端接地,射频芯片U1的天线信号输入端PA、第九电感L9的第一端以及第六电容C6的第一端共接,第九电感L9的第二端、第四电容C4的第一端以及第五电容C5的第一端共接作为通信模块30的第二电源端VCC30,第四电容C4的第二端以及第五电容C5的第二端共接于地,第六电容C6的第二端与第二电感L2的第一端连接,第二电感L2的第二端、第八电容C8的第一端以及第三电感L3的第一端共接,第三电感L3的第二端、第六电感L6的第二端、第九电容C9的第二端以及天线滤波单元301的第一端共接,天线滤波单元301的第二端与天线Antenna连接。
作为本方案一实施例,射频芯片的型号为CMT2300A。
在本实施例中,无线通信显示电路中的通信模块30与主机端交互通信过程中,通过定时唤醒后与主机端通信交互一次,尽可能的较少通信过程中的能耗,即通过尽可能少的等待时间以减少通信过程中的能耗。
具体的,无线通信显示电路定时和主机端进行通信交互,如果主机端有数据更新显示信息,则主机端发送需要更新的数据包,例如价格信息、广告信息等。若无线通信显示电路检测到超声波发射传感器与待测物体的距离在预设距离范围之内,则开始尝试和主机端进行通信,主机端接收到数据后反馈给无线通信显示电路以应答信号,此时无线通信显示电路接收到应答信号后不再发送数据信息,同时显示对应的第二显示信息,若该显示模块用于显示电子货物标签,则该第二显示信息可以为“待补货”、“缺货”等信息。
作为本方案一实施例,参阅图4,天线滤波单元301包括:第四电感L4、第五电感L5以及第十电容C10。具体的,第四电感L4的第一端作为天线滤波单元301的第一端、第四电感L4的第二端、第五电感L5的第一端以及第十电容C10的第一端共接,第十电容C10的第二端接地,第五电感L5的第二端作为天线滤波单元301的第二端。
作为本方案一实施例,超声波检测模块50的电源端AMP_VCC50与主控模块20的超声波电源输出端AMP_VCC连接,超声波检测模块50的声波输入端US015_CON50与主控模块20的声波检测信号输出端US015_CON连接,超声波检测模块50的声波输出端US015_INT50与主控模块20的声波检测信号输入端US015_INT连接,超声波检测模块50的第一脉宽调制信号输入端PWM_A50与主控模块20的第一脉宽调制信号输出端PWM_A连接,超声波检测模块50的第二脉宽调制信号输入端PWM_B50与主控模块20的第二脉宽调制信号输出端PWM_B连接。
图5为本方案实施例5中提出的一种无线通信显示电路的超声波检测模块的电路结构示意图,如图5所示,在本实施例中,超声波检测模块50包括:超声波发射传感器TX、超声波接收传感器RX、运算放大器芯片U2、第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5、第六电阻R6、第七电阻R7、第八电阻R8、第九电阻R9、第十电阻R10、第十一电阻R11、第十二电阻R12、第十三电阻R13、第十四电阻R14、第十五电阻R15、第十六电阻R16、第十七电阻R17、第十八电阻R18、第十九电阻R19、第二十电阻R20、第十八电容C18、第十九电容C19以及第二二极管D2。具体的,超声波发射传感器50的第一输入端PWM_A50作为超声波检测模块50的第一脉宽调制信号输入端PWM_A50,超声波发射传感器50的第二输入端PWM_B50作为超声波检测模块50的第二脉宽调制信号输入端PWM_B50,超声波接收传感器RX的第一输出端与第一电阻R1的第一端连接,第一电阻R1的第二端、第二电阻R2的第一端、第三电阻R3的第一端以及运算放大器芯片U2的第一负输入端1IN-共接,第二电阻R2的第二端、第三电阻R3的第二端、第四电阻R4的第一端以及运算放大器芯片U2的第一输出端1OUT共接,第十电阻R10的第一端与运算放大器芯片U2的第一正输入端1IN+连接,第十电阻R10的第二端接地,第九电阻R9的第一端、第十八电容C18的第一端、第十一电阻R11的第一端以及运算放大器U2的第二正输入端2IN+共接,第四电阻R4的第二端、第七电阻R7的第一端以及运算放大器芯片U2的第二负输入端2IN-连接,第七电阻R7的第二端、第十九电容C19的第一端以及运算放大器芯片U2的第二输出端2OUT共接,第十八电容C18的第二端接地,超声波接收传感器U2的第二输出端2OUT与第五电阻R5的第一端连接,第五电阻R5的第二端与第六电阻R6的第一端连接,第六电阻R6的第二端以及第十四电阻R14的第一端共接作为超声波检测模块50的电源端AMP_VCC50,第八电阻R8的第一端与超声波检测模块50的电源端AMP_VCC50连接,第八电阻R8的第二端与第九电阻R9的第二端连接,第十一电阻R11的第二端作为超声波检测模块50的声波输入端US015_CON50,第十九电容C19的第二端与第十二电阻R12的第一端连接,第十二电阻R12的第二端、第十三电阻R13的第一端以及运算放大器芯片U2的第三负输入端3IN-共接,运算放大器芯片U2的第三输出端3OUT、第十三电阻R13的第二端以及第十七电阻R17的第一端共接,第十四电阻R14的第二端、第十五电阻R15的第一端以及运算放大器芯片U2的第三正输入端3IN+共接,第十五电阻R15的第一端、第十六电阻R16的第一端以及运算放大器芯片U2的第四正输入端4IN+共接,第十六电阻R16的第二端接地,运算放大器芯片U2的第四负输入端4IN-、第二十电容C20的第一端、第十九电阻R19的第一端以及第二二极管D2的正极共接,第二二极管D2的负极与第十七电阻R17的第二端连接,第二十电容C20的第二端以及第十九电阻R19的第二端与超声波检测模块50的电源端AMP_VCC50连接,运算放大器芯片U2的第四输出端4OUT与第十八电阻R18的第一端连接,第十八电阻R18的第二端与第四开关管Q4的控制端连接,第四开关管Q4的电流输出端接地,第四开关管Q4的电流输入端、第二十电阻R20的第一端共接作为超声波检测模块50的声波输出端US015_INT50,第二十电阻R20的第二端与超声波检测模块50的电源端AMP_VCC50连接。
作为本方案一实施例,运算放大器芯片的信号为LM324。
在本实施例中,超声波发射传感器TX发射超声波信号后,超声波信号遇到待测物体后反射声波,超声波接收传感器RX接收到声波后输出反馈信号至运算放大器芯片,获得超声波发射传感器TX与待测物体之间的距离信息。
作为本方案一实施例,图6为本方案实施例6中提出的一种无线通信显示电路的主控模块的电路结构示意图,如图6所示,主控模块20包括:单片机芯片U3、第二十一电容C21、第二十二电容C22、第二十一电阻R21、第二十二电阻R22、第二十三电容C23、第二十四电容C24以及储能单元201。在本实施例中,单片机芯片U3的电源端VCC、储能单元201的第一端、第二十一电容C21的第一端以及第二十二电容C22的第一端共接作为主控模块20的供电电源输入端VCC,第二十一电容C21的第二端以及第二十二电容C22的第二端与地共接,单片机芯片U3的储能单元控制端BATT与储能单元201的控制输入端连接,单片机芯片U3的第一电压检测信号输入端SOLAR作为主控模块20的第一电压检测信号输入端SOLAR,单片机芯片U3的第一电压反馈信号输出端SOLAR_PWM作为主控模块20的第一电压反馈信号输出端SOLAR_PWM,单片机芯片U3的射频芯片电源输出端RF_VCC作为主控模块20的射频芯片电源输出端RF_VCC,单片机芯片U3的时钟信号输出端U_SCK作为主控模块20的时钟信号输出端U_SCK,单片机芯片U3的第一片选信号输出端U_CSN作为主控模块20的第一片选信号输出端U_CSN,单片机芯片U3的第二片选信号输出端U_SDO作为主控模块20的第二片选信号输出端U_SDO,单片机芯片U3的超声波电源输出端AMP_VCC作为主控模块20的超声波电源输出端AMP_VCC,单片机芯片U3的声波检测信号输出端US015_INT作为主控模块20的声波检测信号输出端US015_INT,单片机芯片U3的声波检测信号输入端US015_CON作为主控模块20的声波检测信号输入端US015_CON,单片机芯片U3的第一脉宽调制信号输出端PWM_A作为主控模块20的第一脉宽调制信号输出端PWM_A,单片机芯片U3的第二脉宽调制信号输出端PWM_B作为主控模块20的第二脉宽调制信号输出端PWM_B,单片机芯片U3的接地端GND接地,单片机芯片U3的第一振荡信号端XIN与第二十一电阻R21的第一端连接,单片机芯片U3的第二振荡信号端XOUT与第二十二电阻R22的第一端连接,第二十一电阻R21的第二端、第二晶振Y2的第一端以及二十三电容C23的第一端共接,第二十二电阻R22的第二端、第二晶振Y2的第二端以及第二十四电容C24的第一端共接,第二十三电容C23的第二端以及二十四电容C24的第二端共接于地。
作为本方案一实施例,单片机芯片U3的型号为MSG430G2553。
在本实施例中,单片机芯片U3的复位端RST与复位信号源连接,单片机芯片的P2.2、P2.3、P2.4、P2.5、P3.2、P3.3、P3.4以及P3.5端口依次与显示模块的40的对应的驱动接口与驱动电极连接。
作为本方案一实施例,主控模块20的第一电压检测信号输入端SOLAR对光电转换模块10输出的第一电压检测信号进行检测,若第一电压检测信号高于第一电压预设值,则向光电转换模块10发送第一电压反馈信号控制光电转换模块10进行能量采集,若第一电压检测信号的电压低于第二电压预设值,则通过第一电压反馈信号关闭光电转换模块10中的第一开关管M1以及第二开关管M2。作为本方案一实施例,本实施例中的第二电压预设值可以为1.8V,即太阳能电池板在20-50lux时,输出电压低于1.8V,此时太阳能电池板收集的能量非常弱,无法利用,因此关闭太阳能电池板与主控模块的连接。
当光电转换模块输出的第一电压信号大于主控模块的工作电压时,则光电转换模块对主控模块进行供电,当光电转换模块输出的第一电压信号大于储能单元201的电压时,则通过主控模块20的储能单元控制端BATT对储能单元201进行充电,当光电转换模块输出的第一电压信号大于储能单元201的电压的1.4倍时,则主控模块20输出第一电压反馈信号控制光电转换模块10启动MPPT系统,获取太阳能的最大能量对储能电池进行充电。
作为本方案一实施例,参阅图6,储能单元201包括:储能电池以及第三开关管M3;储能电池的正极作为储能单元201的第一端,储能电池的负极与第三开关管M3的电流输入端连接,第三开关管M3的控制端作为储能单元201的控制输入端,第三开关管M3的电流输出端接地。
作为本方案一实施例,第三开关管M3为P型MOS管,P型MOS管的栅极为第三开关管M3的控制端,P型MOS管的源极为第三开关管M3的电流输入端,P型MOS管的漏极为第三开关管M3的电流输出端。
作为本方案一实施例,显示模块40包括:显示屏,以及与主控模块20连接,用于根据第二控制信号驱动显示屏显示对应的信息的驱动单元。
作为本方案一实施例,本实施例中提出了一种无源显示牌,无源显示牌包括如上述任一项实施例的无线通信显示电路以及用于封装所述无线通信显示电路的外壳。
本方案提供了一种无线通信显示电路及无源显示牌,通过光电转换模块采集环境中的光能,并将光能转换为电能对主控模块以及通信模块进行供电,主控模块通过通信模块与主机端进行交互通信,并根据通信模块输入的第一控制信号向显示模块发送第二控制信号,显示模块根据第二控制信号显示对应的信息,实现了显示牌的信息更新,解决了现有的显示牌需要外接电源或者采用电池供电,导致显示牌使用范围受限制的问题。
以上所述仅为本方案的较佳实施例而已,并不用以限制本方案,凡在本方案的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本方案的保护范围之内。

Claims (10)

  1. 一种无线通信显示电路,与主机端无线连接,其特征在于,所述无线通信显示电路包括:
    用于将采集的光信号转化为电信号,并对所述无线通信显示电路进行供电的光电转换模块;
    与所述光电转换模块连接,用于与所述主机端进行通信的通信模块;
    用于对接收的信息进行显示的显示模块;以及
    与所述光电转换模块、所述显示模块以及所述通信模块连接,用于根据所述通信模块接收到所述主机端输出的第一控制信号,并将所述第一控制信号转换为第二控制信号传输给所述显示模块,以使所述显示模块对所述信息进行显示的主控模块。
  2. 如权利要求1所述的无线通信显示电路,其特征在于,所述无线通信显示电路还包括:
    与所述光电转换模块以及所述主控模块连接,用于检测超声波发射传感器与待检测物体之间的距离,并向所述主控模块发送检测信号的超声波检测模块。
  3. 如权利要求1所述的无线通信显示电路,其特征在于,所述光电转换模块的第一电压检测信号输出端与所述主控模块的第一电压检测信号输入端连接,所述光电转换模块的第一电压反馈信号输入端与所述主控模块的第一电压反馈信号输出端连接,所述光电转换模块的第一电压信号输出端与所述主控模块的供电电源输入端连接;
    所述光电转换模块包括:太阳能电池板、第一开关管、第二开关管、第一二极管、第一电感以及第一电容;
    所述太阳能电池板的负极输出端接地,所述太阳能电池板的正极输出端与所述第一开关管的电流输入端共接作为所述光电转换模块的第一电压检测信号输出端,所述第一开关管的控制端与所述第二开关管的控制端共接作为所述光电转换模块的第一电压反馈信号输入端,所述第一开关管的电流输出端与所述第二开关管的电流输入端连接,所述第二开关管的电流输出端、所述第一二极管的阴极以及所述第一电感的第一端共接,所述第一二极管的阳极接地,所述第一电感的第二端与所述第一电容的第一端共接作为所述光电转换模块的第一电压信号输出端,所述第一电容的第二端接地。
  4. 如权利要求1所述的无线通信显示电路,其特征在于,所述通信模块的第一电源端与所述主控模块的射频芯片电源输出端连接,所述通信模块的第二电源端与所述光电转换模块的第一电压信号输出端连接,所述通信模块的时钟信号输入端与所述主控模块的时钟信号输出端连接,所述通信模块的串行数据端与所述主控模块的串行数据端连接,所述通信模块的第一片选信号输入端与所述主控模块的第一片选信号输出端连接,所述通信模块的第二片选信号输入端与所述主控模块的第二片选信号输出端连接;
    所述通信模块包括:射频芯片、第二电容、第三电容、第四电容、第五电容、第六电容、第七电容、第八电容、第九电容、第十一电容、第十二电容、第十三电容、第十四电容、第十五电容、第十六电容、第二电感、第三电感、第六电感、第七电感、第八电感、第九电感、天线滤波单元、天线以及第一晶振;
    所述射频芯片的时钟信号输入端与所述第十六电容的第一端共接作为所述通信模块的时钟信号输入端,所述射频芯片的串行数据端与所述第十五电容的第一端共接作为所述通信模块的串行数据端,所述射频芯片的第一片选信号输入端与所述第十四电容的第一端共接作为所述通信模块的第一片选信号输入端,所述射频芯片的第二片选信号输入端与所述第十三电容的第一端共接作为所述通信模块的第二片选信号输入端,所述第十三电容的第二端、所述第十四电容的第二端、所述第十五电容的第二端以及所述第十六电容的第二端共接与地相连,所述射频芯片的第一频率信号输出端、所述第一晶振的第一端以及所述第十二电容的第一端共接,所述射频芯片的第一频率信号输入端、所述第一晶振的第二端以及所述第十一电容的第一端共接,所述第十一电容的第二端与所述第十二电容的第二端共接于地,所述射频芯片的接地端与地连接,所述射频芯片的第一电源端、所述第二电容的第一端共接作为所述通信模块的第一电源端,所述第二电容的第二端、所述射频芯片的第一接地端、所述射频芯片的第二接地端以及所述第三电容的第一端共接于地,所述第三电容的第二端与所述射频芯片的第二电源端共接作为所述通信模块的第二电源端,所述射频芯片的第一差分信号输入端、所述第七电容的第一端、所述第八电感的第一端以及所述第六电感的第一端共接,所述第七电容的第二端接地,所述射频芯片的第二差分信号输入端、所述第八电感的第二端、所述第七电感的第一端以及所述第九电容的第一端共接,所述第七电感的第二端接地,所述射频芯片的天线信号输入端、所述第九电感的第一端以及所述第六电容的第一端共接,所述第九电感的第二端、所述第四电容的第一端以及所述第五电容的第一端共接作为所述通信模块的第二电源端,所述第四电容的第二端以及所述第五电容的第二端共接于地,所述第六电容的第二端与所述第二电感的第一端连接,所述第二电感的第二端、所述第八电容的第一端以及所述第三电感的第一端共接,所述第三电感的第二端、所述第六电感的第二端、所述第九电容的第二端以及所述天线滤波单元的第一端共接,所述天线滤波单元的第二端与所述天线连接。
  5. 如权利要求4所述的无线通信显示电路,其特征在于,所述天线滤波单元包括:第四电感、第五电感以及第十电容;
    所述第四电感的第一端作为所述天线滤波单元的第一端、所述第四电感的第二端、所述第五电感的第一端以及所述第十电容的第一端共接,所述第十电容的第二端接地,所述第五电感的第二端作为所述天线滤波单元的第二端。
  6. 如权利要求2所述的无线通信显示电路,其特征在于,所述超声波检测模块的电源端与所述主控模块的超声波电源输出端连接,所述超声波检测模块的声波输入端与所述主控模块的声波检测信号输出端连接,所述超声波检测模块的声波输出端与所述主控模块的声波检测信号输入端连接,所述超声波检测模块的第一脉宽调制信号输入端与所述主控模块的第一脉宽调制信号输出端连接,所述超声波检测模块的第二脉宽调制信号输入端与所述主控模块的第二脉宽调制信号输出端连接;
    所述超声波检测模块包括:超声波发射传感器、超声波接收传感器、运算放大器芯片、第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第六电阻、第七电阻、第八电阻、第九电阻、第十电阻、第十一电阻、第十二电阻、第十三电阻、第十四电阻、第十五电阻、第十六电阻、第十七电阻、第十八电阻、第十九电阻、第二十电阻、第十八电容、第十九电容以及第二二极管;
    所述超声波发射传感器的第一输入端作为所述超声波检测模块的第一脉宽调制信号输入端,所述超声波发射传感器的第二输入端作为所述超声波检测模块的第二脉宽调制信号输入端,所述超声波接收传感器的第一输出端与所述第一电阻的第一端连接,所述第一电阻的第二端、所述第二电阻的第一端、所述第三电阻的第一端以及所述运算放大器芯片的第一负输入端共接,所述第二电阻的第二端、所述第三电阻的第二端、所述第四电阻的第一端以及所述运算放大器芯片的第一输出端共接,所述第十电阻的第一端与所述运算放大器芯片的第一正输入端连接,所述第十电阻的第二端接地,所述第九电阻的第一端、所述第十八电容的第一端、所述第十一电阻的第一端以及所述运算放大器芯片的第二正输入端共接,所述第四电阻的第二端、所述第七电阻的第一端以及所述运算放大器芯片的第二负输入端连接,所述第七电阻的第二端、所述第十九电容的第一端以及所述运算放大器芯片的第二输出端共接,所述第十八电容的第二端接地,所述超声波接收传感器的第二输出端与所述第五电阻的第一端连接,所述第五电阻的第二端与所述第六电阻的第一端连接,所述第六电阻的第二端以及所述第十四电阻的第一端共接作为所述超声波检测模块的电源端,所述第八电阻的第一端与所述超声波检测模块的电源端连接,所述第八电阻的第二端与所述第九电阻的第二端连接,所述第十一电阻的第二端作为所述超声波检测模块的声波输入端,所述第十九电容的第二端与所述第十二电阻的第一端连接,所述第十二电阻的第二端、所述第十三电阻的第一端以及所述运算放大器芯片的第三负输入端共接,所述运算放大器芯片的第三输出端、所述第十三电阻的第二端以及所述第十七电阻的第一端共接,所述第十四电阻的第二端、所述第十五电阻的第一端以及所述运算放大器芯片的第三正输入端共接,所述第十五电阻的第一端、所述第十六电阻的第一端以及所述运算放大器芯片的第四正输入端共接,所述第十六电阻的第二端接地,所述运算放大器芯片的第四负输入端、所述第二十电容的第一端、所述第十九电阻的第一端以及所述第二二极管的正极共接,所述第二二极管的负极与所述第十七电阻的第二端连接,所述第二十电容的第二端以及所述第十九电阻的第二端与所述超声波检测模块的电源端连接,所述运算放大器芯片的第四输出端与所述第十八电阻的第一端连接,所述第十八电阻的第二端与所述第四开关管的控制端连接,所述第四开关管的电流输出端接地,所述第四开关管的电流输入端、所述第二十电阻的第一端共接作为所述超声波检测模块的声波输出端,所述第二十电阻的第二端与所述超声波检测模块的电源端连接。
  7. 如权利要求2所述的无线通信显示电路,其特征在于,所述主控模块包括:单片机芯片、第二十一电容、第二十二电容、第二十一电阻、第二十二电阻、第二十三电容、第二十四电容以及储能单元;
    所述单片机芯片的电源端、所述储能单元的第一端、所述第二十一电容的第一端以及所述第二十二电容的第一端共接作为所述主控模块的供电电源输入端,所述第二十一电容的第二端以及所述第二十二电容的第二端与地共接,所述单片机芯片的储能单元控制端与所述储能单元的控制输入端连接,所述单片机芯片的第一电压检测信号输入端作为所述主控模块的第一电压检测信号输入端,所述单片机芯片的第一电压反馈信号输出端作为所述主控模块的第一电压反馈信号输出端,所述单片机芯片的射频芯片电源输出端作为所述主控模块的射频芯片电源输出端,所述单片机芯片的时钟信号输出端作为所述主控模块的时钟信号输出端,所述单片机芯片的第一片选信号输出端作为所述主控模块的第一片选信号输出端,所述单片机芯片的第二片选信号输出端作为所述主控模块的第二片选信号输出端,所述单片机芯片的超声波电源输出端作为所述主控模块的超声波电源输出端,所述单片机芯片的声波检测信号输出端作为所述主控模块的声波检测信号输出端,所述单片机芯片的声波检测信号输入端作为所述主控模块的声波检测信号输入端,所述单片机芯片的第一脉宽调制信号输出端作为所述主控模块的第一脉宽调制信号输出端,所述单片机芯片的第二脉宽调制信号输出端作为所述主控模块的第二脉宽调制信号输出端,所述单片机芯片的接地端接地,所述单片机芯片的第一振荡信号端与所述第二十一电阻的第一端连接,所述单片机芯片的第二振荡信号端与所述第二十二电阻的第一端连接,所述第二十一电阻的第二端、所述第二晶振的第一端以及所述二十三电容的第一端共接,所述第二十二电阻的第二端、所述第二晶振的第二端以及所述第二十四电容的第一端共接,所述第二十三电容的第二端以及所述二十四电容的第二端共接于地。
  8. 如权利要求7所述的无线通信显示电路,其特征在于,所述储能单元包括:储能电池以及第三开关管;
    所述储能电池的正极作为所述储能单元的第一端,所述储能电池的负极与所述第三开关管的电流输入端连接,所述第三开关管的控制端作为所述储能单元的控制输入端,所述第三开关管的电流输出端接地。
  9. 如权利要求2所述的无线通信显示电路,其特征在于,所述显示模块包括:显示屏,以及
    与所述主控模块连接,用于根据所述第二控制信号驱动所述显示屏显示对应的信息的驱动单元。
  10. 一种无源显示牌,其特征在于,所述无源显示牌包括如权利要求1-9任一项所述的无线通信显示电路以及用于封装所述无线通信显示电路的外壳。
PCT/CN2018/093324 2018-06-28 2018-06-28 一种无线通信显示电路及无源显示牌 WO2020000300A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/093324 WO2020000300A1 (zh) 2018-06-28 2018-06-28 一种无线通信显示电路及无源显示牌

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/093324 WO2020000300A1 (zh) 2018-06-28 2018-06-28 一种无线通信显示电路及无源显示牌

Publications (1)

Publication Number Publication Date
WO2020000300A1 true WO2020000300A1 (zh) 2020-01-02

Family

ID=68985647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093324 WO2020000300A1 (zh) 2018-06-28 2018-06-28 一种无线通信显示电路及无源显示牌

Country Status (1)

Country Link
WO (1) WO2020000300A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113411138A (zh) * 2021-06-07 2021-09-17 苏州特拉芯光电技术有限公司 一种基于共振隧穿二极管的即插即用型太赫兹通信系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101169529A (zh) * 2006-10-23 2008-04-30 北京锐科天智科技有限责任公司 自供电屏幕
CN101191917A (zh) * 2006-11-29 2008-06-04 群康科技(深圳)有限公司 液晶显示装置
CN102097037A (zh) * 2010-11-26 2011-06-15 无锡爱迪信光电科技有限公司 太阳能led显示屏
CN205539838U (zh) * 2015-12-25 2016-08-31 钟贵洪 一种led液晶显示屏用背光源

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101169529A (zh) * 2006-10-23 2008-04-30 北京锐科天智科技有限责任公司 自供电屏幕
CN101191917A (zh) * 2006-11-29 2008-06-04 群康科技(深圳)有限公司 液晶显示装置
CN102097037A (zh) * 2010-11-26 2011-06-15 无锡爱迪信光电科技有限公司 太阳能led显示屏
CN205539838U (zh) * 2015-12-25 2016-08-31 钟贵洪 一种led液晶显示屏用背光源

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113411138A (zh) * 2021-06-07 2021-09-17 苏州特拉芯光电技术有限公司 一种基于共振隧穿二极管的即插即用型太赫兹通信系统

Similar Documents

Publication Publication Date Title
CN203340336U (zh) 一种led驱动电源及调光系统
CN102663456A (zh) 一种近距离有源射频识别系统
CN108682315B (zh) 一种无线通信显示电路及无源显示牌
CN102800182B (zh) 一种无线收发模组及其逆变系统
KR101228785B1 (ko) 웨이크 업 기능을 갖는 무선 장치
WO2020000300A1 (zh) 一种无线通信显示电路及无源显示牌
CN105976520A (zh) 智能控制无人值守售货广告终端
CN112949809B (zh) Rfid电子标签及标签上电通信方法
CN111553451B (zh) 一种基于携能通信的无源墨水屏电子价签
CN209231972U (zh) 一种便于管理的低功耗电子价签
CN111950674B (zh) 一种简化电子价签控制系统
CN203858472U (zh) 一种用于防烟帘的控制系统
CN201081786Y (zh) 具备信息供应能力的标签及使用其的系统
CN208655163U (zh) 一种无线通信显示电路及无源显示牌
CN210776773U (zh) 单总线双界面多功能射频卡电子标签芯片及电子标签
CN207398888U (zh) 一种自供电的物联网识别装置
CN202736272U (zh) 一种无线收发模组及其逆变系统
CN203812263U (zh) 一种无线电子标签
CN109211402B (zh) 传感电路及快递柜
CN111953060A (zh) 一种基于微弱能量收集的大电容储能方法及电子价签
CN212809736U (zh) 一种用于框架断路器的背光显示控制电路
CN216871225U (zh) 一种轨行区施工物品的身份识别系统
CN202696963U (zh) 电源控制电路、背光模组及液晶显示器件
CN215576650U (zh) 一种可视卡
CN113334367B (zh) 一种模组机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 18/02/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18924460

Country of ref document: EP

Kind code of ref document: A1