WO2020000258A1 - 一种基于共振遂穿二极管的太赫兹振荡电路及振荡器 - Google Patents

一种基于共振遂穿二极管的太赫兹振荡电路及振荡器 Download PDF

Info

Publication number
WO2020000258A1
WO2020000258A1 PCT/CN2018/093137 CN2018093137W WO2020000258A1 WO 2020000258 A1 WO2020000258 A1 WO 2020000258A1 CN 2018093137 W CN2018093137 W CN 2018093137W WO 2020000258 A1 WO2020000258 A1 WO 2020000258A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
terahertz
tunneling diode
resonant tunneling
terminal
Prior art date
Application number
PCT/CN2018/093137
Other languages
English (en)
French (fr)
Inventor
张翠
丁庆
杨旻蔚
Original Assignee
深圳市太赫兹科技创新研究院
深圳市太赫兹科技创新研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市太赫兹科技创新研究院, 深圳市太赫兹科技创新研究院有限公司 filed Critical 深圳市太赫兹科技创新研究院
Priority to PCT/CN2018/093137 priority Critical patent/WO2020000258A1/zh
Publication of WO2020000258A1 publication Critical patent/WO2020000258A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/88Tunnel-effect diodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits

Definitions

  • This solution belongs to the technical field of terahertz, and particularly relates to a terahertz oscillation circuit and an oscillator based on a resonant tunneling diode.
  • a terahertz wave is an electromagnetic wave with a frequency in the range of 0.1 to 10 THz. Its wavelength is between 30 micrometers and 3 millimeters, and this wavelength range is between the microwave and the optical spectrum (far infrared). Because of its narrow pulse width, high bandwidth, low photon energy, terahertz waves can penetrate most non-metals, non-polar materials and dielectric materials, and are widely used in aerospace, marine equipment, security, medical and other fields.
  • the existing terahertz radiation source has a large volume, requires low-temperature cooling during use, and has a short device life, which greatly limits the development and application range of the terahertz radiation source.
  • the purpose of this solution is to provide a resonant tunneling diode and an oscillator based on the resonant tunneling diode.
  • the purpose is to solve the problem that the existing terahertz radiation source has a large volume, requires low-temperature cooling during use, and has a short device life and great This has limited the development and application of terahertz radiation sources.
  • the terahertz oscillation circuit includes a first resistor, a first capacitor, a first inductor, and a resonance for providing negative resistance.
  • the first terminal of the first resistor, the first terminal of the first capacitor, and the first terminal of the first inductor are commonly connected to the positive terminal of the working voltage source, and the second terminal of the first resistor And the second terminal of the first capacitor is connected in common to the negative terminal of the working voltage source, the first terminal of the resonant tunneling diode is connected to the second terminal of the first inductor, and the resonant tunneling diode The second terminal is connected to the negative terminal of the working voltage source.
  • the oscillator includes the terahertz oscillating circuit as described above.
  • the terahertz oscillating circuit is formed on a dielectric substrate.
  • the oscillator further includes a An antenna connected to the terahertz oscillating circuit.
  • the resonant tunneling diode is used to provide negative resistance
  • the first resistor is used to provide bypass shunting
  • the first capacitor is used for the terahertz oscillation circuit.
  • the parasitic low-frequency oscillation signal generated by the parasitic resistance and parasitic capacitance in the filter is filtered.
  • the resonant tunneling diode works in the negative resistance region, so that the terahertz oscillation circuit continuously oscillates to generate oscillation Signals, and drive the load to radiate oscillating signals to the outside to achieve terahertz radiation at room temperature, and has the characteristics of low power consumption and high stability, which solves the existing terahertz radiation source because of its large size. Low temperature cooling is required during use, and the life of the device is short, which greatly limits the development and application of terahertz radiation sources.
  • An oscillator based on a resonant tunneling diode provided in this solution includes the terahertz oscillating circuit as described above, the terahertz oscillating circuit is formed on a dielectric substrate, and the oscillator further includes a terahertz oscillating circuit. Connected antenna. It can work at room temperature.
  • the oscillator in this embodiment is prepared by micro-nano processing technology, has the characteristics of high integration, and simultaneously meets high frequency and high power.
  • FIG. 1 is a schematic circuit structure diagram of a terahertz oscillation circuit based on a resonant tunneling diode in an embodiment of the present solution
  • FIG. 2 is a schematic structural diagram of a resonant tunneling diode in a terahertz oscillation circuit based on a resonant tunneling diode proposed in an embodiment of the present solution;
  • FIG. 3 is a schematic structural diagram of a resonant tunneling diode in a terahertz oscillation circuit based on a resonant tunneling diode proposed in an embodiment of the present invention.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of this solution, the meaning of "multiple” is two or more, unless it is specifically and specifically defined otherwise.
  • FIG. 1 is a terahertz oscillation circuit based on a resonant tunneling diode provided in an embodiment of the solution.
  • the terahertz oscillation circuit 200 in this embodiment is connected to an operating voltage source 100, where the terahertz oscillation
  • the circuit 200 includes: a first resistor Re, a first capacitor Ce, a first inductor L, and a resonant tunneling diode RTD for providing negative resistance, a first terminal of the first resistor Re, a first terminal of the first capacitor Ce, and a first
  • the first terminal of an inductor L is connected to the positive terminal of the working voltage source 100 in common
  • the second terminal of the first resistor Re and the second terminal of the first capacitor Ce are connected to the negative terminal of the working voltage source 100 in common
  • the resonance passes through the diode.
  • the first terminal of the RTD is connected to the second terminal of the first inductor L
  • the second terminal of the resonant tunneling diode RTD is connected to
  • the terahertz oscillation circuit utilizes the characteristics of the negative differential resistance of the resonant tunneling diode RTD to achieve oscillation in the terahertz band.
  • the resonant tunneling diode in this embodiment is an InP-based wafer layer structure.
  • the resonant tunneling diode RTD is also connected in parallel with the load 300. Specifically, the first end of the resonant tunneling diode RTD is connected to the first end of the load 300, and the second end of the resonant tunneling diode RTD is connected to The second end of the load 300 is connected.
  • the first end of the resonant tunneling diode RTD is an emission region of the resonant tunneling diode RTD
  • the second end of the resonant tunneling diode RTD is a current collecting region of the resonant tunneling diode RTD.
  • the emission area and the current collection area of the resonant tunneling diode RTD can be interchanged according to user needs.
  • the first resistor Re is used as a shunt bypass resistor to shunt current
  • the first capacitor Ce is used as a bypass capacitor to filter out parasitic low-frequency oscillation signals caused by parasitic resistance and capacitance in the circuit.
  • the working voltage source 100 After reaching a certain bias voltage, the resonance then passes through the negative resistance area of the diode RTD.
  • the corresponding equivalent circuit is the self-capacitance Cn in parallel with the negative resistance -Gn. At this time, the circuit will oscillate and generate terahertz wave radiation.
  • the radiation frequency and power can be set according to the parameters of the components in the adjustment circuit.
  • the self-capacitance Cn of the resonant tunneling diode RTD has a negative correlation with the device size of the resonant tunneling diode RTD, the double barrier quantum well structure, and the thickness of the spacer layer.
  • the impedance of the load terminal connected in the terahertz oscillating circuit is G L.
  • G L the impedance of the load terminal connected in the terahertz oscillating circuit
  • ⁇ V is the peak-to-valley voltage difference of the resonant tunneling diode RTD under the working bias voltage
  • ⁇ I is the current difference of the resonant tunneling diode RTD under the working bias voltage
  • P output max is the maximum output power of the terahertz oscillation circuit.
  • the oscillating frequency f 0 of the terahertz oscillating circuit is determined by Cn (the self-capacitance value of the resonant tunneling diode RTD) and the first inductance L in the terahertz oscillating circuit.
  • the calculation formula for the oscillation frequency of the oscillation circuit is:
  • a shunt bypass resistor Re is usually added to the circuit as a circuit stabilization resistor.
  • the shunt bypass resistor Re ensures that the total resistance of the circuit is positive, which effectively cancels the negative resistance impedance of the negative resistance state of the RTD device.
  • FIG. 2 is a schematic structural diagram of a resonant tunneling diode in a terahertz oscillation circuit based on a resonant tunneling diode proposed in an embodiment of the solution.
  • the resonant tunneling diode RTD in this embodiment includes a stack
  • the first electrode layer 10, the collection layer 20, the double-barrier quantum well structure 40, the emission layer 60, and the second electrode layer 70 are provided.
  • the double-barrier quantum well structure 40 includes a first AlAs barrier layer that is sequentially stacked. 41.
  • the first InGaAs potential well layer 42 and the second AlAs barrier layer 43 In this embodiment, the first AlAs barrier layer 41 is close to the collection layer 20, and the second AlAs barrier layer 43 is close to the emission layer 60.
  • the thickness of the first AlAs barrier layer 41 is 10-25 ⁇ ; the thickness of the second AlAs barrier layer 43 is 10-25 ⁇ .
  • the thickness of the barrier layer is too thick, the peak current The density will be reduced, and it is more beneficial to keep the peak current density of the resonant tunneling diode RTD at a higher level within the thickness range of the embodiment of this solution.
  • the collection layer 20 includes a first InGaAs doped layer 21 having a Si doping concentration of 2-3 ⁇ 10 19 cm -1 and a first InGaAs doped layer having a Si doping concentration of 2-3 ⁇ 10 18 cm -1
  • the emission layer 60 includes a third InGaAs doped layer 63 having a Si doping concentration of 2-3 ⁇ 10 19 cm -1 and a third InGaAs doped layer having a Si doping concentration of 2-3 ⁇ 10 18 cm -1
  • the double-barrier quantum well structure 40 is shown indium gallium ars doped.
  • the thickness of the second InGaAs doped layer is 800 to 1000. ⁇ , the thickness of the fourth InGaAs doped layer is 800 ⁇ 1000 ⁇ , the thickness of the first InGaAs doped layer is 2000 ⁇ 4000 ⁇ , the thickness of the third InGaAs doped layer is 350 ⁇ 450 ⁇ , the selection range of the thickness of the above four layers can meet the requirement of high doping concentration in the collection / emission region, which is conducive to the tunneling of electrons and the conduction of current.
  • the collection layer 20 and the emission layer 60 in the above embodiment can be interchanged according to user needs, that is, the position of the collection layer 20 in the above embodiment is set as the emission layer 60.
  • the position of the emission layer 60 is set as the collection layer 20.
  • FIG. 3 is a schematic structural diagram of a resonant tunneling diode in a terahertz oscillating circuit based on a resonant tunneling diode proposed in an embodiment of the solution.
  • the collection layer 20 and the double barrier quantum well structure 40 A first spacer layer 31 is provided therebetween, and a second spacer layer 51 is provided between the emission layer 60 and the double barrier quantum well structure 40.
  • the first spacer layer 31 and the second spacer layer 51 mainly isolate the transmitting / receiving layer from the undoped double barrier region.
  • the first spacer layer 31 and the second spacer layer 51 are both undoped InGaAs layers.
  • each of the first electrode layer 10 and the second electrode layer 70 includes a metal titanium layer, a metal palladium layer, and a metal gold layer that are stacked.
  • the first electrode layer 10 includes a first metal titanium layer 13, a first metal palladium layer 12, and a first metal gold layer 11
  • the second electrode layer 70 includes a second electrode layer 70.
  • the collection layer 20 and the emission layer 60 in the above embodiment can be interchanged according to user needs, that is, the position of the collection layer 20 in the above embodiment is set as the emission layer 60.
  • the position of the emission layer 60 is set as the collection layer 20.
  • An embodiment of this solution also provides an oscillator based on a resonant tunneling diode.
  • the oscillator in this embodiment includes a terahertz oscillation circuit as described in any of the above embodiments, wherein the terahertz oscillation in this embodiment
  • the circuit is formed on a dielectric substrate.
  • the oscillator in this embodiment further includes an antenna connected to the terahertz oscillation circuit.
  • the antenna connected to the terahertz oscillation circuit may be an integrated on-chip antenna formed on a dielectric substrate or an external horn antenna. Specifically, the antenna is used to transmit the generated terahertz radiation wave into free space.
  • the oscillator in this embodiment further includes a coplanar waveguide formed on a dielectric substrate.
  • a central conductor band is formed on the first surface of the dielectric substrate, and a conductor plane is formed on both sides of the dielectric conductor sheet to form a coplanar waveguide. Since the central conductor band and the conductor plane are formed in the same plane, it is more convenient. Install components as needed.
  • the coplanar waveguide includes a metal titanium layer and a metal gold layer. Specifically, a metal titanium layer and a metal gold layer are stacked, the metal titanium layer is formed on a dielectric substrate, and the metal gold layer is formed on the metal titanium layer.
  • the first inductor in this embodiment is formed by a short-circuited coplanar waveguide in the coplanar waveguide.
  • the first resistor in this embodiment is formed by depositing a nickel-chromium alloy on a coplanar waveguide.
  • the first capacitor in this embodiment is formed by sequentially depositing a first metal layer, a first insulator layer, and a second metal layer on the dielectric substrate.
  • an oscillator based on a resonant tunneling diode RTD is realized, which can work at room temperature.
  • the oscillator in this embodiment is prepared by micro-nano processing technology, which has the characteristics of high integration and meets both high frequency and high frequency. power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

一种基于共振遂穿二极管的太赫兹振荡电路及振荡器,太赫兹振荡电路包括:第一电阻、第一电容、第一电感以及用于提供负阻的共振遂穿二极管,第一电阻用于提供旁路分流,第一电容用于对太赫兹振荡电路中的寄生电阻和寄生电容产生的寄生低频振荡信号进行过滤,在共振遂穿二极管两端加入工作偏压后使共振遂穿二极管工作在负阻区域,使得太赫兹振荡电路发生持续振荡以产生振荡信号,并驱动负载向外辐射振荡信号,实现了在室温下工作产生太赫兹辐射,并且具有功耗较小以及稳定性较高的特点,解决了现有的太赫兹辐射源因为体积较大,使用过程中需要低温冷却,器件寿命较短,极大的限制了太赫兹辐射源的发展和应用范围的问题。

Description

一种基于共振遂穿二极管的太赫兹振荡电路及振荡器 技术领域
本方案属于太赫兹技术领域,尤其涉及一种基于共振遂穿二极管的太赫兹振荡电路及振荡器。
背景技术
太赫兹波是指频率在0.1到10THz范围的电磁波,其波长在30微米至3毫米之间,该波长范围介于微波和光学光谱(远红外线)之间。太赫兹波因其具有脉宽窄、高带宽、低光子能量、能穿透大部分非金属、非极性物质以及电介质材料,广泛应用于航空航天、海工装备、安防、医疗等领域。
然而,现有的太赫兹辐射源体积较大,使用过程中需要低温冷却,器件寿命较短,极大的限制了太赫兹辐射源的发展和应用范围。
技术问题
本方案的目的在于提供一种共振遂穿二极管及基于共振遂穿二极管的振荡器,旨在解决现有的太赫兹辐射源体积较大,使用过程中需要低温冷却,器件寿命较短,极大的限制了太赫兹辐射源的发展和应用范围的问题。
技术解决方案
为实现上述方案目的,本方案采用的技术方案如下:
本方案提供了一种基于共振遂穿二极管的太赫兹振荡电路,与工作电压源连接,所述太赫兹振荡电路包括:第一电阻、第一电容、第一电感以及用于提供负阻的共振遂穿二极管;
所述第一电阻的第一端、所述第一电容的第一端以及所述第一电感的第一端共接于所述工作电压源的正极端,所述第一电阻的第二端以及所述第一电容的第二端共接于所述工作电压源的负极端,所述共振遂穿二极管的第一端与所述第一电感的第二端连接,所述共振遂穿二极管的第二端与所述工作电压源的负极端连接。
本方案还提供了一种基于共振遂穿二极管的振荡器,所述振荡器包括如上述所述的太赫兹振荡电路,所述太赫兹振荡电路形成于介质基片上,所述振荡器还包括与所述太赫兹振荡电路连接的天线。
有益效果
本方案提供的一种基于共振遂穿二极管的太赫兹振荡电路中,其中,共振遂穿二极管用于提供负阻,第一电阻用于提供旁路分流,第一电容用于对太赫兹振荡电路中的寄生电阻和寄生电容产生的寄生低频振荡信号进行过滤,在共振遂穿二极管两端加入工作偏压后使共振遂穿二极管工作在负阻区域,使得太赫兹振荡电路发生持续振荡以产生振荡信号,并驱动负载向外辐射振荡信号,实现了在室温下工作产生太赫兹辐射,并且具有功耗较小以及稳定性较高的特点,解决了现有的太赫兹辐射源因为体积较大,使用过程中需要低温冷却,器件寿命较短,极大的限制了太赫兹辐射源的发展和应用范围的问题。
本方案提供的一种基于共振遂穿二极管的振荡器中,包括如上述的太赫兹振荡电路,所述太赫兹振荡电路形成于介质基片上,所述振荡器还包括与所述太赫兹振荡电路连接的天线。能够在室温下工作,本实施例中的振荡器通过微纳加工工艺制备,具有高度集成的特点,并且同时满足高频率和高功率。
附图说明
图1为本方案实施例中的一种基于共振遂穿二极管的太赫兹振荡电路的电路结构示意图;
图2为本方案实施例中提出的一种基于共振遂穿二极管的太赫兹振荡电路中的共振遂穿二极管的结构示意图;
图3为本方案实施例中提出的一种基于共振遂穿二极管的太赫兹振荡电路中的共振遂穿二极管的结构示意图。
本发明的实施方式
为了使本方案的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本方案进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本方案,并不用于限定本方案。
在本方案的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本方案的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
实施例1
图1为本方案实施例提供的一种基于共振遂穿二极管的太赫兹振荡电路,如图1所示,本实施例中的太赫兹振荡电路200与工作电压源100连接,其中,太赫兹振荡电路200包括:第一电阻Re、第一电容Ce、第一电感L以及用于提供负阻的共振遂穿二极管RTD,第一电阻Re的第一端、第一电容Ce的第一端以及第一电感L的第一端共接与工作电压源100的正极端,第一电阻Re的第二端以及第一电容Ce的第二端共接于工作电压源100的负极端,共振遂穿二极管RTD的第一端与第一电感L的第二端连接,共振遂穿二极管RTD的第二端与工作电压源100的负极端连接。
在本实施例中,太赫兹振荡电路利用共振遂穿二极管RTD的负微分电阻的特性,可实现太赫兹频段的振荡。作为本方案一实施例,在本实施例中的共振遂穿二极管为InP基的晶圆层结构。
实施例2
作为本方案一实施例,共振遂穿二极管RTD还与负载300并联连接,具体的,共振遂穿二极管RTD的第一端与负载300的第一端连接,共振遂穿二极管RTD的第二端与负载300的第二端连接。
作为本方案一实施例,共振遂穿二极管RTD的第一端为共振遂穿二极管RTD的发射区,共振遂穿二极管RTD的第二端为共振遂穿二极管RTD的集电区。
作为本方案一实施例,共振遂穿二极管RTD的发射区和集电区可以根据用户需要进行互换。
在本实施例中,第一电阻Re作为分流旁路电阻对电流进行分流,第一电容Ce作为旁路电容以过滤掉电路中由寄生电阻和电容引起的寄生低频振荡信号,当工作电压源100达到一定的偏压后,共振遂穿二极管RTD工作的负阻区域,其相应的等效电路为自身电容Cn并联负阻-Gn,此时电路会发生振荡而产生太赫兹波辐射,具体的,辐射的频率以及功率可以根据调节电路中元器件的参数进行设置。
在本实施例中,共振遂穿二极管RTD的自身电容Cn与共振遂穿二极管RTD的器件大小、双势垒量子阱结构以及间隔层的厚度成负相关性。
在本实施例中,太赫兹振荡电路中接入的负载端的阻抗为G L,在基于共振遂穿二极管的太赫兹振荡电路中,当整个太赫兹振荡电路的电导为负的时候,振荡才会发生并且持续振荡,如果整个太赫兹振荡电路的电导为正,则电路会发生能量衰减,振荡幅度会持续减小直至能量耗尽导致振荡消失。
具体的,当整个太赫兹振荡电路的电导为负的时候,必须满足:
G Load - G Source<0
G L - G n<0
G L<G n
其中,G Load为负载端的阻抗,G Source为共振遂穿二极管RTD的等效负阻,因此,为使太赫兹振荡电路得到最大输出功率, Gn的值通常选为G n=2G L
根据基尔霍夫电流定律分析太赫兹振荡电路可得:
G n=(3ΔI)/(2ΔV)
P output max=(3/16)*(ΔI)*(ΔV)
其中,ΔV为共振遂穿二极管RTD在工作偏压下的峰谷电压差,ΔI为共振遂穿二极管RTD在工作偏压下的电流差,P output max为太赫兹振荡电路的最大输出功率,根据上述公式可知,太赫兹振荡电路最大输出功率与共振遂穿二极管RTD在工作偏压下的峰谷电压差和电流差的绝对值大小有关,因此峰谷电压差和电流差越大,电路输出功率P output max也越大。
太赫兹振荡电路的振荡频率f 0是由Cn(共振遂穿二极管RTD的自身电容值)和太赫兹振荡电路中的第一电感L所决定。振荡电路的振荡频率的计算公式为:
f 0=1/(2π*(L*C) 1/2
当电感值增大,振荡频率就会减小。这些振荡会扭曲共振遂穿二极管RTD负阻区域的DC测试结果。当电路中出现偏置振荡时,在设计振荡频率点的RF射频出射功率就会减小。为了抑制偏置振荡,通常在电路里添加一个分流旁路电阻Re作为电路稳定电阻。分流旁路电阻Re保证电路的总电阻为正,有效地抵消RTD器件负阻状态的负电阻阻抗。
因此为了保证电路在直流状态的稳定性(低频振荡受抑制),需要电路的电导实部Y real为正:
Y real=(1/R e)- Gn>0
因此,得到:
R e<(1/G n
实施例2
图2为本方案实施例中提出的一种基于共振遂穿二极管的太赫兹振荡电路中的共振遂穿二极管的结构示意图,如图2所示,本实施例中的共振遂穿二极管RTD包括层叠设置的第一电极层10、收集层20、双势垒量子阱结构40、发射层60以及第二电极层70,其中,双势垒量子阱结构40包括依次层叠设置的第一AlAs势垒层41、第一InGaAs势阱层42和第二AlAs势垒层43。在本实施例中,第一AlAs势垒层41靠近收集层20,第二AlAs势垒层43靠近发射层60。
作为本方案一实施例,第一AlAs势垒层41的厚度为10-25 Å;所述第二AlAs势垒层43的厚度为10-25 Å,当势垒层厚度太厚时,峰电流密度会减少,而在本方案实施例的所述厚度范围内更有益于将共振遂穿二极管RTD的峰电流密度保持在较高水平。
作为本方案一实施例,收集层20包括Si掺杂浓度为2-3×10 19cm -1的第一InGaAs掺杂层21和Si掺杂浓度为2-3×10 18cm -1的第二InGaAs掺杂层22;发射层60包括Si掺杂浓度为2-3×10 19cm -1的第三InGaAs掺杂层63、Si掺杂浓度为2-3×10 18cm -1的第四InGaAs掺杂层61以及设置于第三InGaAs掺杂层63以及第四InGaAs掺杂层61之间的第一InAlAs层,其中,第二InGaAs掺杂层22以及第四InGaAs掺杂层61靠近所述双势垒量子阱结构40。
作为本方案一实施例,第二InGaAs掺杂层的厚度为800~1000 Å,第四InGaAs掺杂层的厚度为800~1000 Å,第一InGaAs掺杂层的厚度为2000~4000 Å,第三InGaAs掺杂层的厚度为350~450 Å,以上四层厚度的选取范围可满足收集区/发射区高掺杂浓度的需求,有利于电子的遂穿与电流的导通。
作为本方案一实施例,上述实施例中的收集层20和发射层60可以根据用户需要互换,即在上述实施例中的收集层20的位置设置为发射层60,在上述实施例中的发射层60的位置设置为收集层20。
实施例4
图3为本方案实施例中提出的一种基于共振遂穿二极管的太赫兹振荡电路中的共振遂穿二极管的结构示意图,如图3所示,收集层20与双势垒量子阱结构40之间设置有第一间隔层31,发射层60与双势垒量子阱结构40之间设置有第二间隔层51。
具体的,第一间隔层31以及第二间隔层51主要是隔离发射层/接收层与未掺杂的双势垒区。
作为本方案一实施例,第一间隔层31以及第二间隔层51均为未掺杂的InGaAs层。
作为本方案一实施例,第一电极层10和第二电极层70均包括层叠设置的金属钛层、金属钯层以及金属金层。具体的,如图3所示,第一电极层10包括层叠设置的第一金属钛层13、第一金属钯层12以及第一金属金层11,第二电极层70包括层叠设置的第二金属钛层73、第二金属钯层72以及第二金属金层71。
作为本方案一实施例,上述实施例中的收集层20和发射层60可以根据用户需要互换,即在上述实施例中的收集层20的位置设置为发射层60,在上述实施例中的发射层60的位置设置为收集层20。
实施例5
本方案实施例还提供了一种基于共振遂穿二极管的振荡器,本实施例中的振荡器包括如上述任一实施例所述的太赫兹振荡电路,其中,本实施例中的太赫兹振荡电路形成于介质基片上,本实施例中的振荡器还包括与太赫兹振荡电路连接的天线。
在本实施例中,与太赫兹振荡电路连接的天线可以为介质基片上形成的集成片上天线或者外接的喇叭天线。具体的,天线用于将产生的太赫兹辐射波传输到自由空间中。
作为本方案一实施例,本实施例中的振荡器还包括形成于介质基片上的共面波导。具体的,在介质基片上的第一面形成中心导体带,并在紧邻中心导体带的两侧形成导体平面形成共面波导,由于中心导体带与导体平面形成在同一平面内,因此更方便于根据需要安装元器件。
作为本方案一实施例,所述共面波导包括金属钛层以及金属金层。具体的,金属钛层以及金属金层层叠形成,金属钛层形成于介质基片上,金属金层形成于金属钛层上。
作为本方案一实施例,本实施例中的第一电感由共面波导中的短路共面波导形成。
作为本方案一实施例,本实施例中的第一电阻由在共面波导上沉积镍铬合金形成。
作为本方案一实施例,本实施例中的的第一电容由在所述介质基片上依次沉积第一金属层、第一绝缘体层以及第二金属层形成。
在本实施例中,实现基于共振遂穿二极管RTD的振荡器,能够在室温下工作,本实施例中的振荡器通过微纳加工工艺制备,具有高度集成的特点,并且同时满足高频率和高功率。
以上仅为本方案的较佳实施例而已,并不用以限制本方案,凡在本方案的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本方案的保护范围之内。

Claims (10)

  1. 一种基于共振遂穿二极管的太赫兹振荡电路,与工作电压源连接,其特征在于,所述太赫兹振荡电路包括:第一电阻、第一电容、第一电感以及用于提供负阻的共振遂穿二极管;
    所述第一电阻的第一端、所述第一电容的第一端以及所述第一电感的第一端共接于所述工作电压源的正极端,所述第一电阻的第二端以及所述第一电容的第二端共接于所述工作电压源的负极端,所述共振遂穿二极管的第一端与所述第一电感的第二端连接,所述共振遂穿二极管的第二端与所述工作电压源的负极端连接。
  2. 如权利要求1所述的太赫兹振荡电路,其特征在于,所述共振遂穿二极管为InP基的晶圆层结构。
  3. 如权利要求2所述的太赫兹振荡电路,其特征在于,所述共振遂穿二极管包括层叠设置的第一电极层、收集层、双势垒量子阱结构、发射层以及第二电极层,其特征在于,所述双势垒量子阱结构包括依次层叠设置的第一AlAs势垒层、第一InGaAs势阱层;
    所述第一AlAs势垒层靠近所述收集层,所述第二AlAs势垒层靠近所述发射层。
  4. 如权利要求3所述的太赫兹振荡电路,其特征在于,所述收集层与所述双势垒量子阱结构之间设置有第一间隔层,所述发射层与所述双势垒量子阱结构之间设置有第二间隔层。
  5. 如权利要求3所述的太赫兹振荡电路,其特征在于,所述第一电极层和所述第二电极层均包括层叠设置的金属钛层、金属钯层以及金属金层。
  6. 一种基于共振遂穿二极管的振荡器,其特征在于,所述振荡器包括如权利要求2-5任一项所述的太赫兹振荡电路,所述太赫兹振荡电路形成于介质基片上,所述振荡器还包括与所述太赫兹振荡电路连接的天线。
  7. 如权利要求5所述的振荡器,其特征在于,所述振荡器还包括形成于所述介质基片上的共面波导。
  8. 如权利要求6所述的振荡器,其特征在于,所述第一电感由所述共面波导中的短路共面波导形成。
  9. 如权利要求6所述的振荡器,其特征在于,所述第一电阻由在所述共面波导上沉积镍铬合金形成。
  10. 如权利要求6所述的振荡器,其特征在于,所述第一电容由在所述介质基片上依次沉积第一金属层、第一绝缘体层以及第二金属层形成。
PCT/CN2018/093137 2018-06-27 2018-06-27 一种基于共振遂穿二极管的太赫兹振荡电路及振荡器 WO2020000258A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/093137 WO2020000258A1 (zh) 2018-06-27 2018-06-27 一种基于共振遂穿二极管的太赫兹振荡电路及振荡器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/093137 WO2020000258A1 (zh) 2018-06-27 2018-06-27 一种基于共振遂穿二极管的太赫兹振荡电路及振荡器

Publications (1)

Publication Number Publication Date
WO2020000258A1 true WO2020000258A1 (zh) 2020-01-02

Family

ID=68985550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093137 WO2020000258A1 (zh) 2018-06-27 2018-06-27 一种基于共振遂穿二极管的太赫兹振荡电路及振荡器

Country Status (1)

Country Link
WO (1) WO2020000258A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113746428A (zh) * 2021-09-06 2021-12-03 芯灵通(天津)科技有限公司 一种基于负阻增强的太赫兹振荡器
CN115314067A (zh) * 2022-08-01 2022-11-08 中国电子科技集团公司第五十四研究所 一种适用于通感一体化的小型化射频前端电路结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6993315B1 (en) * 2000-11-21 2006-01-31 Raytheon Company Super-regenerative microwave detector
US20120068778A1 (en) * 2010-09-22 2012-03-22 Canon Kabushiki Kaisha Oscillator
CN102714485A (zh) * 2009-09-07 2012-10-03 佳能株式会社 具有负微分电阻元件的振荡电路和使用振荡电路的振荡器
CN104752524A (zh) * 2015-02-17 2015-07-01 天津大学 一种超窄双阱的共振隧穿二极管器件
CN104854789A (zh) * 2012-07-18 2015-08-19 国际商业机器公司 高频振荡电路及其操作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6993315B1 (en) * 2000-11-21 2006-01-31 Raytheon Company Super-regenerative microwave detector
CN102714485A (zh) * 2009-09-07 2012-10-03 佳能株式会社 具有负微分电阻元件的振荡电路和使用振荡电路的振荡器
US20120068778A1 (en) * 2010-09-22 2012-03-22 Canon Kabushiki Kaisha Oscillator
CN104854789A (zh) * 2012-07-18 2015-08-19 国际商业机器公司 高频振荡电路及其操作方法
CN104752524A (zh) * 2015-02-17 2015-07-01 天津大学 一种超窄双阱的共振隧穿二极管器件

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113746428A (zh) * 2021-09-06 2021-12-03 芯灵通(天津)科技有限公司 一种基于负阻增强的太赫兹振荡器
CN113746428B (zh) * 2021-09-06 2024-03-19 芯灵通(天津)科技有限公司 一种基于负阻增强的太赫兹振荡器
CN115314067A (zh) * 2022-08-01 2022-11-08 中国电子科技集团公司第五十四研究所 一种适用于通感一体化的小型化射频前端电路结构
CN115314067B (zh) * 2022-08-01 2023-12-29 中国电子科技集团公司第五十四研究所 一种适用于通感一体化的小型化射频前端电路结构

Similar Documents

Publication Publication Date Title
Ishigaki et al. Direct intensity modulation and wireless data transmission characteristics of terahertz-oscillating resonant tunnelling diodes
KR101343388B1 (ko) 발진기
US8779864B2 (en) Oscillator having negative resistance element
WO2015170425A1 (ja) 周波数可変テラへルツ発振器及びその製造方法
US8816785B2 (en) Oscillator
CN208285281U (zh) 一种基于共振遂穿二极管的太赫兹振荡电路及振荡器
Okada et al. Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation
WO2020000258A1 (zh) 一种基于共振遂穿二极管的太赫兹振荡电路及振荡器
WO2005122393A2 (en) Left-handed nonlinear transmission line media
JP5808560B2 (ja) テラヘルツ発振検出素子
US20210328550A1 (en) High-power terahertz oscillator
WO2024087873A1 (zh) 一种振荡波发生电路及构建方法
CN108566164B (zh) 一种基于共振遂穿二极管的太赫兹振荡电路及振荡器
JP2012191520A (ja) テラヘルツ無線通信方式
CN214068903U (zh) 一种高性能共振遂穿二极管发射器
CN110537261A (zh) 集成式整流器
CN108233551B (zh) 一种基于负电阻的混合无线电能传输系统
JP2012215530A (ja) 透過型テラヘルツ波検査装置
CN110311628A (zh) 基于直流偏置下的石墨烯偶次谐波倍频器及设计方法
JP4665176B2 (ja) 超伝導トンネル型ミキサ
RU2787544C1 (ru) Пролетный диод с распределенной индуктивной компенсацией емкости для генерации излучения в терагерцовом диапазоне
Minoguchi et al. Proposal and fabrication of resonant-tunneling-diode terahertz oscillator with structure for high frequency modulation
Sato et al. Limit of oscillation frequency in two-element slot-ring type RTD oscillator array
Han et al. Impedance matching method in high-power RTD THz oscillator integrated with rectangular-cavity resonator
Pate et al. Electrostatic tuning of mechanical and microwave resonances in 3D superconducting radio frequency cavities

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923799

Country of ref document: EP

Kind code of ref document: A1