WO2020000165A1 - Process for the amination of alcohols - Google Patents

Process for the amination of alcohols Download PDF

Info

Publication number
WO2020000165A1
WO2020000165A1 PCT/CN2018/092761 CN2018092761W WO2020000165A1 WO 2020000165 A1 WO2020000165 A1 WO 2020000165A1 CN 2018092761 W CN2018092761 W CN 2018092761W WO 2020000165 A1 WO2020000165 A1 WO 2020000165A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
catalyst
range
ammonia
molecular sieve
Prior art date
Application number
PCT/CN2018/092761
Other languages
French (fr)
Inventor
Lin FANG
Peng Wu
Original Assignee
Rhodia Operations
East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Operations, East China Normal University filed Critical Rhodia Operations
Priority to PCT/CN2018/092761 priority Critical patent/WO2020000165A1/en
Publication of WO2020000165A1 publication Critical patent/WO2020000165A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/061Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/088Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/166Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/185Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • B01J29/24Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/26Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789
    • B01J29/605Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789
    • B01J29/61Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789 containing iron group metals, noble metals or copper
    • B01J29/63Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789
    • B01J29/64Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7057Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7061MAZ-type, e.g. Mazzite, Omega, ZSM-4 or LZ-202
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7065CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7623MAZ-type, e.g. Mazzite, Omega, ZSM-4 or LZ-202
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/763CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/7815Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/7823MAZ-type, e.g. Mazzite, Omega, ZSM-4 or LZ-202
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/783CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/04Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups
    • C07C209/14Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups
    • C07C209/16Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups with formation of amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions

Definitions

  • the present invention relates to a catalytic process for the amination of alcohols in the presence of metal containing catalysts.
  • amino acids and nucleotides constitute essential biological building blocks and numerous bioactive compounds such as vitamins, hormones, alkaloids, neurotransmitters, or natural toxics contain amino groups.
  • Amines are frequently used as solvents, agrochemicals, pharmaceuticals, detergents, fabric softeners, flotation agents, corrosion inhibitors, antistatic additives, lubricants, polymers, varnishes, and dyes to mention only some applications.
  • ammonia and alcohols are readily available chemical materials with relatively low cost, and are obtainable from renewable resources.
  • ammonia for the chemistry of amines arises from the fact that almost every nitrogen atom in synthetic compounds either directly or indirectly comes from ammonia.
  • One advantage of the amination of alcohols is that the said process affords water as the only by-product which is less problematic than the salt waste generated in the amination of e.g. alkyl or aryl halides.
  • reaction temperature and pressure for the industrial processes using ammonia vary significantly, depending on the substrates and the catalysts.
  • Suitable heterogenous catalysts for the amination of alcohols are usually based on metal compounds or metal complexes.
  • Shimizu et al., ACS Catal. 2013, 3, 112-117 relates to heterogenous Ni-catalysts for the direct synthesis of primary amines from alcohols and ammonia.
  • 2-Octanol was converted to the primary amine 2-aminooctane with 83%conversion and a selectivity towards the primary amine of 81%with a Ni/ ⁇ -Al 2 O 3 catalyst with 10 wt%Ni-loading.
  • Chinese patent application 106475134 discloses core shell catalysts with a core based on a molecular sieve as a core and a petal-like hydrotalcite as a shell, obtained by in-situ growth method. The use for the amination of alcohols is not disclosed or suggested.
  • the present invention thus provides a process for the amination of alcohols by reacting the alcohol with ammonia or an ammonia precursor in the presence of hydrogen, wherein a core shell catalyst is used comprising at least one metal selected from the group consisting of magnesium, zinc, nickel, copper, cobalt or manganese and obtained from a layered double hydroxide of these metals as a shell, and a molecular sieve as a core, wherein the reaction temperature is in the range from 20 to 250°C and the molar ratio of ammonia to hydroxyl groups in the alcohol is at least 5.
  • a core shell catalyst comprising at least one metal selected from the group consisting of magnesium, zinc, nickel, copper, cobalt or manganese and obtained from a layered double hydroxide of these metals as a shell, and a molecular sieve as a core, wherein the reaction temperature is in the range from 20 to 250°C and the molar ratio of ammonia to hydroxyl groups in the alcohol is at least 5.
  • the process in accordance with the present invention is principally suiutable for the amination of any type of alcohol having at least one hydroxyl functional group connected to a carbon atom, i.e. there is no specific limitation as to the type of alcohol. In certain cases the process of the present invention has been found particularly useful for the amination of aliphatic alcohols. Selectivities and yields may differ, however, between different alcohols.
  • Suitable alcohols include practically all alcohols which satisfy the prerequisites specified above, and the alcohols may be straight-chain, branched or cyclic.
  • the alcohols can carry substituents which exhibit inert behaviour under the amination reaction conditions, for example alkoxy, alkenyloxy, alkenyloxy, alkylamino, dialkylamino and halogens (F, CI, Br, I) .
  • suitable alcohols are preferably selected from aliphatic alcohols and notably include primary, secondary and tertiary alcohols.
  • aliphatic alcohol is intended to mean any alcohol in which the hydroxyl functional group (s) is not attached directly to an aromatic ring, and includes within its scope alcohols which contain an aromatic structure, for example a phenyl ring, provided that the hydroxyl group is not phenolic.
  • a "primary alcohol” refers to an organic compound having at least one primary hydroxyl group of the formula (-CH 2 -OH)
  • a "secondary alcohol” refers to an organic compound having at least one secondary hydroxyl group of the formula R 1 R 2 CH (OH)
  • a "tertiary alcohol” refers to an organic compound having at least one tertiary hydroxyl group of the formula R 1 R 2 R 3 C (OH) , where none of R 1 , R 2 and R 3 is hydrogen.
  • Suitable alcohols are, for example, those of the general formula (1) :
  • R a is selected from the group of hydrogen, unsubstituted or substituted C 1 -C 30 -alkyl, C 3 -C 10 -cycloalkyl, C 3 -C 10 -heterocyclyl comprising at least one heteroatom selected from N, O and S, C 5 -C 14 -aryl and C 5 -C 14 -heteroaryl comprising at least one heteroatom selected from N, O and S, and wherein the substitution is selected from the group consisting of: F, Cl, Br, OH, OR 4 , CN, NH 2 , NHR 4 or N (R 4 ) 2 , C 1 -C 10 -alkyl, C 3 -C 10 -cycloalkyl, C 3 -C 10 -heterocyclyl comprising at least one heteroatom selected from N, O and S, C 5 -C 14 -aryl and C 5 -C 14 -heteroaryl comprising at least one heteroatom selected from N, O and
  • Preferred example alcohols include: methanol, ethanol, n-propanol, n-butanol, isobutanol, n-pentanol, n-hexanol, n-heptanol, n-octanol, n-nonanol, 2-ethylhexanol, tridecanol, stearyl alcohol, palmityl alcohol, benzyl alcohol, 2-phenylethanol, 2- (p-methoxyphenyl) ethanol, 2- (3, 4-dimethoxyphenyl) ethanol, allyl alcohol, propargyl alcohol, 2-hydroxymethyl-furan, lactic acid, serine, 1, 2-ethanediol (ethylene glycol) , 1, 2-propanediol (1, 2-propylene glycol) , 1, 3-propanediol (1, 3-propylene glycol) , 1, 4-butanediol (1, 4-butylene glycol) , 1,
  • the prcess of the present invention yieldedparticularly good results with 1-octanol as alcohol.
  • alkanolamines having at least one primary hydroxyl group (-CH 2 -OH) .
  • alkanolamines which can be used as compounds (H) are monoaminoethanol, 3-aminopropan-1-ol, 2-aminopropan-1-ol, 4-aminobutan-1-ol, 2-aminobutan-1-ol, 3-aminobutan-1-ol, 5-aminopentan-1-ol, 2-aminopentan-1-ol, 6-aminohexan-1-ol, 2-aminohexan-1-ol, 7-aminoheptan-1-ol, 2-aminoheptan-1-ol, 8-aminooctan-1-ol, 2-aminooctan-1-ol, N- (2-hydroxyethyl) aniline, N- (2-aminoethyl) ethanolamine, 1- (2-hydroxyethyl) piperazine, 2- (2-aminoethyl
  • alkanolamines which have at least one primary hydroxyl group (-CH 2 -OH) and at least primary amino group of the formula (-CH 2- NH 2 ) could be used with good results in the process of the present invention.
  • One example is 2- [2- (dimethylamino) ethoxy] ethanol, hereinafter referred to as DMEE.
  • ammonia precursor for the purpose of the present invention, denotes any starting material, which, under the conditions of the reaction generates ammonia which can then particpate in the reaction.
  • Suitable ammonia precursors are known to the skilled person and he will select the suitable starting material based on his professional experience and the specific application case so that no further details need to be given here.
  • ammonia itself has proved to work very satisfactorily and thus the use of ammonia is preferred for economic reasons as ammonia is readily available from a variety of sources.
  • the catalyst system used in the process of the present invention is a core shell catalyst comprising at least one divalent metal selected from the group consisting of magnesium, iron, zinc, nickel, copper, cobalt or manganese and obtained from a layered double hydroxide of these metals, as a shell, and a molecular sieve as a core.
  • LDHs Layered double hydroxide compounds
  • LDHs have a basic layer structure based on the brucite structure (Mg (OH) 2 ) associated with small polarizing cations and polarizable anions. Octahedral units form infinite layers by edge sharing. The layers then stack on top of one another to form the three-dimensional structure.
  • Mg (OH) 2 brucite structure
  • the basic structure may be derived by substition of a fraction of the divalent cations in the brucite lattice by trivalent cations such that the layers acquire a positive charge which is balanced by the intercalation of anions (and, usually, water) between the layers.
  • LDHs may be characterized by the formula
  • M II and M III denote di-respectively trivalent metals
  • A is the anion in the interlayer and y defines the amount of water.
  • the interlayer galleries contain both interlayer anions and water molecules and there is a complex network of hydrogen bonds between layer hydroxyl groups, anions and water molecules.
  • the interlayers are substantially disordered and hydrogen bonds are in a continuous state of flux so that the precise nature of the interlayer is complex.
  • the bonding between the octahedral layers and the interlayers involves a combination of electrostatic effects and hydrogen bonding. Hydroxyl groups, particularly those bound to trivalent cations are strongly polarized and interact with the interlayer anions.
  • the anions located in the interlayer regions can be replaced easily, in general.
  • a wide variety of anions may be incorporated, ranging from simple inorganic anions (e.g. CO 3 2-) through organic anions (e.g. benzoate, succinate) to complex biomolecules, including DNA.
  • the brucite-like layers in LDHs may be stacked in different ways, which gives rise to a variety of polytype structures.
  • LDHs synthesized by conventional methods are hydrophilic, possessing a high water content, and exhibit low surface area and porosity, which impose a limiting scope for their applications.
  • a molecular sieve is a material with pores (very small holes) of uniform size. These pore diameters are similar in size to small molecules.
  • Molecular sieves can be microporous, mesoporous, or macroporous material.
  • zeolites microporous aluminosilicate materials are used for a wide scale of catalytic applications and are the best known molecular sieves.
  • Zeolites are the aluminosilicate members of the family of microporous solids known as "molecular sieves" mainly consisting of Si, Al, O, and metals including Ti, Sn, Zn, or others.
  • molecular sieve refers to a particular property of these materials, i.e., the ability to selectively sort molecules based primarily on a size exclusion process. This is due to a very regular pore structure of molecular dimensions. The maximum size of the molecular or ionic species that can enter the pores of a zeolite is controlled by the dimensions of the channels.
  • the term "8-ring” refers to a closed loop that is built from eight tetrahedrally coordinated silicon (or aluminium) atoms and 8 oxygen atoms.
  • These rings are not always perfectly symmetrical due to a variety of effects, including strain induced by the bonding between units that are needed to produce the overall structure, or coordination of some of the oxygen atoms of the rings to cations within the structure. Therefore, the pores in many zeolites are not strictly cylindrical.
  • Zeolites occur naturally but are also produced industrially on a large scale. Every new zeolite structure that is obtained has to be approved by the International Zeolite Association Structure Commission and receives a three letter designation.
  • sol-gel processing One of the important processes used to carry out zeolite synthesis is sol-gel processing.
  • the product properties depend on reaction mixture composition, pH of the system, operating temperature, pre-reaction 'seeding' time, reaction time as well as the templates used.
  • sol-gel process other elements (metals, metal oxides) can be easily incorporated.
  • the silicalite sol formed by the hydrothermal method is very stable. The ease of scaling up this process makes it a favorite route for zeolite synthesis. The skilled person knows how to best obtain a given zeolite structure based on his professional expertise and he will select an appropriate method based on the specific application needs. A large variety of zeolites is also commercially available from a variety of suppliers.
  • molecular sieves have a high specific surface area and a strong hydrothermal activity
  • metal ions supported on molecular sieves can show an improved dispersibility. Size and dispersion of metal ions in supported heterogenous catalysts are related to the activity of the metal and precisely and uniformly distributed metal particles in the nanoscale show a better catalytic perfomance than the bulk counterparts.
  • Impregnation methods are commonly used for the preparation of supported metal catalysts with molecular sieves as carrier. Since the interaction between the metal and the molecular sieve is comparatively weak in products obtianed by impregnation, larger metal particles can be formed which have a detrimental influence on the catalytic activity.
  • Ion-exchange and gel methods have also been described for the manufacture of metal catalysts supported on molecular sieves, but ion-exhange again leads to comparatively large metal particles while the gel methods leads to a more homogenous size distribution but the size of the metal particles is difficult to control.
  • catalysts derived from layered double hydroxide/molecular sieve (zeolite) hybrid structures can be advantageously used in the catalytic amination of alcohols.
  • Catalysts of this type comprise a core of a molecular sieve, preferably a zeolite, and a shell derived from layered double hydroxides of di-and trivalent metals.
  • Core shell structured LDH-based materials used as catalyst in the process of the present invention provide a combination of features from the different materials and the possible synergistic effects between them.
  • the di-and trivalent metals in the LDH are distributed uniformly on the atomic scale within the layers. These cations serve as precursors for supported metal catalysts once the LDHs are immobilized on the molecular sieve support (the zeolite) which forms the core of the catalyst.
  • the catalysts used in the process of the invention containing a microporous molecular sieve (zeolite) core with layered double hydroxide (LDH) can advantageously obtained by an in-situ growthprocess as described in or Wu et al., ChemCatChem 2017, 9, 4552-4561 (2017) and in CN 106475134 to which reference is made here.
  • surface trivalent metal sites aluminum sites in the case of zeolites
  • a source of the divalent metal is dissolved in water and the pH is adjusted to a value in the range from 6 to 11, the molecular sieve is added in the form of an aqueous dispersion or as a powder and thereafter the mixture is heated at a temperature in the range from 25 to 150°C for a period of time of from 2 to 60 hours, thereafter the material is collected by filtration, washed to neutrality and dried
  • the LDHs supported on the molecular sieve obtained by the in-situ coprecipitation method do not suffer from aggregation upon calcination or reduction.
  • the LDH derived shell provides an adjustable charge density and metal ion distribution and variation. After reduction or calcination, highly dispersed nanoparticles are formed, The preparation of the LDH layer is simple and easy to control.
  • a source of a divalent metal selected from the group consisting of magnesium, zinc, nickel, copper, cobalt or manganese and an aluminum source from the zeolite undergo a reaction while growing in-situ on the surface of the zeolite.
  • a molecular sieve is used not containing a suitable trivalent metal, a trivalent metal source can be added separately. It is preferred, however, to use molecular sieves with an aluminum content, preferably molecular sieves which have a relatively high aluminum content. The result is the desired core/shell structure with a hydrotalcite (LDH) like shell and the moleular sieve as core.
  • LDH hydrotalcite
  • the hydrotalcite-type compounds constitute molecular sieves with a characteristic diffraction peak of hydrotalcite and a molecular sieve having a core and a usually petal-like hydrotalcite as shell.
  • the source of the divalent metal is preferably a salt of the respective metal.
  • the salt there is no specific limitation as to the salt, but nitrates have shown advantages in certain cases. However, carbonates or sulfates are also generally suitable.
  • the source of the divalent metal e.g. the metal salt
  • the pH is adjusted to a value in the range from 6 to 11, preferably in the range from 6.5 to 10 and even more preferably in the range from 7 to 9.5.
  • ammonium salts and/or ammonia such as ammonium nitrate, ammonium carbonate, ammonium chloride or ammonium sulfate or mixtures thereof in suitable amounts.
  • the molecular sieve e.g. the zeolite
  • the molecular sieve is dispersed in water, usually with a weight content of zeolite in the range of 0.01 to 20 wt%, preferably from 0.1 to 10 wt%.
  • the soulution can be subjected to a suitable treatment to improve dispersion such as e.g. ultrasonic treatment.
  • aqueous molecular sieve dispersion and the metal salt solution are then combined and heated at a temperature in the range from 25 to 150°C for a period of time of from 2 to 60, preferably from 3 to 48 hours.
  • the resulting material is collected by filtration, washed to neutrality preferably with an alcohol (e.g. ethanol) , or water and alcohol alternatively, and dried to obtain the desired catalyst.
  • an alcohol e.g. ethanol
  • the powder of the molecular sieve may be added directly to the aqueous solution of the metal salt.
  • the disperion may be subjected to e.g. an ultrasonic treatment to homogeneously disperse the molecular sieve.
  • the amount of zeolite is usually in the range from 0.01 to 5 wt%, based on the amount of water. The work-up is the same as if the moecular sieve is added as aqueous suspension.
  • the zeolites used as molecular sieves can be selected from a wide variety of zeolites; just by way of examples, zeolites with FAU, LTL, MAZ, CHA, MOR and BEA topology have been found advantageous in certain cases. Respective zeolites are kown to the skilled person and are commercially available from a variety of suppliers.
  • zeolites having a Si/Al molar ratio in the range from 1.5 to 10, preferably in the range from 2 to 8 have been found especially suitable to obtain products with good catalytic properties in the amination of alcohols.
  • the zeolite is selected from zeolite Y or zeolite USY (ultrastable zeolite Y) .
  • Zelite USY is a zeolite with FAU (faujasite) morphology derived from zeolite Y by dealumination.
  • Zeolites with FAU topology have a high specific surface area and a narrow pore size distribution combined with high thermal stability.
  • Zeolite Y has a molar ratio of Si/Al of about 2.5; it is possible, however to replace Al atoms by Si-atoms in a dealumination process and to shift the Si/Al ratio to higher values. Si/Al ratios of up to 6 have been obtained. This can be achieved e.g. by heat treatment with vapor which leads to a certain degree of dealumination by replacement of Al in the lattice by silicon. After dealumination the zeolite contains two different types of Al atoms inside the lattice and outside the lattice. The Al atoms outside the lattice remain normally in the voids of the zeolite.
  • zeolite USY Dealumination of zeolite Y to obtain zeolite USY can be achieved e.g. with heat treatment with vapor.
  • Zeolite USY is commercially available from a variety of suppliers and processes for the manufacture of zeolite USY are known to the skilled person.
  • the molar ratio of Si/Al in zeolite USY is typically 2.8 or more, preferably 2.8 to 9 and preferably 3 to 6.
  • the product obtained in accordance with the process described above can be advantagously subjected to a reduction treatment under hydrogen atmosphere at elevated temperatures.
  • the product is heated under a hydrogen atmosphere from room temperature to a temperature in the range from 350 to 700, preferably from 400 to 600°C and kept at the elevated temperature for 1 to 10, preferably for 2 to 8 hours.
  • high loadings of the divalent metal can be achieved which usually are in the range frorm 5 to 50 wt%, based on the weight of the core shell catalyst.
  • a particularly preferred core shell catalyst for use in the process of the present invention is based on Ni as divalent metal and zeolite USY as molecular sieve. The manufacture thereof follows the route described above and a particularly preferred method of manufacture is provided in the examples hereinafter.
  • the amination reaction occurs at a temperature of from 20 to 250°C, preferably from 100 to 200°C, and more preferably from 120 to 200°C.
  • the absolute pressure of said reaction is generally controlled to be within the range of 0.1 to 10 MPa, preferably from 0.2 to 5 MPa, and more preferably from 0.2 to 3 MPa, which can be either the autogenous pressure of the solvent at the reaction temperature or the pressure of a gas such as nitrogen, argon, or hydrogen.
  • the molar ratio of ammonia or ammonia precursor to hydroxyl groups in the alcohol is at least 5 and in the range from 10 to 50, more preferably in the range from 12 to 40.
  • the ammonia used may be in an aqueous or gaseous form.
  • aqueous ammonia is understood to include dissolved ammonia, ammonium hydroxide, and ammonium ion in a water solution.
  • reaction is carried out in an autoclave under hydrogen pressure in the range from 200 kPa to 2 MPa, preferably from 300 kPa to 1 MPa.
  • reaction is carried out in liquid phase wherein the alcohol can form the solvent or an external solvent may be added.
  • the alcohol can form the solvent or an external solvent may be added.
  • no external solvent is added.
  • an external solvent can be selected from polar protic solvents such as isopropanol, methanol, ethanol, and acetic acid, apolar protic solvents such as dimethyl sulfoxide (DMSO) , acetone, and acetonitrile or apolar solvents such as tetrahydrofuran, dioxane, diethylether, diisopropyl ether, cyclohexane, toluene, benzene, xylene, octane, hexane, heptane, 1, 4-dioxane, tert-butyl methyl ether (MTBE) , mesitylene, diglyme and 1, 2-dimethoxyethane, to mention only a few examples.
  • polar protic solvents such as isopropanol, methanol, ethanol, and acetic acid
  • apolar protic solvents such as dimethyl sulfoxide (DMSO)
  • the catalyst is typically used in an amount from 0.5 to 50 wt%, preferably from 1 to 40 wt%and particularly preferred not more than 30 wt%, based on the amount of alcohol.
  • the reaction time is typically in the range from 2 to 48 h, preferably from 4 to 36 h, particularly preferred in the range from 4 to 24 h.
  • the process of the present invention yields the desired amines in good yield and in particular with a good selectivity towards primary amines, which are in many cases the desired product when isomer mixtures may be obtained as a result of the amination reaction.
  • NiAl LDHs@USY powder thus obtained (0.3 g) was placed in quartz boat in the middle of tube furnace with all interfaces tightly sealed. An H 2 atmosphere (40 ml min -1 ) was introduced as the reduction agent, and it was heated to 550°C for 5 h at a rate of 2°C min -1 . After reduction, the Ni/USY was finally obtained at room temperature.
  • the catalytic reaction in liquid phase was carried out in a sealed 30-mL autoclave.
  • 150 mg catalyst was pre-reduced by 20 mL/min H 2 at 550°C for 1 h.
  • the resulting liquid mixture contained morpholine in 0.1%yield, 2- (2- (dimethylamino) ethoxy) ethylamine in 97%yield, and bis (2-dimethylaminoethyl) ether in 2.9%yield, and the conversion of starting material was 41%.
  • 1 g of catalyst was used for 4 ml of the alcanolamine.
  • a Ni/USY catalyst having a Ni loading of 20 wt% was prepared as described in Example 1 and was used for the amination of DMEE under various reaction conditions which are given in table 1 which also provides the conversion achieved and the selectivity towards the desired primary amine, 2- (2- (dimethylamino) ethoxy) ethylamine.
  • the reaction was carried out in a 30 ml autoclave under 500 kPa hydrogen pressure at a temperature of 180°C.
  • the amination of DMEE was carried out with a Ni/USY catalyst with a Ni loading of 20 wt%which had been obtained at different crystallization temperatures of 40, 75, 100 and 120°C.
  • the amount of catalyst was 1 g of catalyst per 8 ml of alcanolamine.
  • the conversion increased with increasing crystallization temperature while the selectivity towards the desired primary amine remained very high in all experiments (83%for the catalyst crystallized at 40°C and 100%for the catalysts crystallized at higher temperatures) .
  • DMEE was aminated as in Example 3 but with different hydrogen pressures. At a reaction time of 16 h and a molar ratio NH 3 /OH of 13 the DMEE conversion was 79, 41 and 8 mol%at hydrogen pressures of 0 kPa, 500 kPa and 1 MPa. The selectivity towards the primary amine was 11 mol%at 0 kPa H 2 , 77 at 500 kPa H 2 and 100 %at 1 MPa H 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

A process for the amination of alcohols by reacting the alcohol with ammonia or an ammonia precursor in the presence of hydrogen, wherein a core-shell catalyst is used comprising at least one metal selected from the group consisting of magnesium, zinc, nickel, copper or cobalt and obtained from a layered double hydroxide of these metals as a shell, and a molecular sieve as a core, wherein the reaction temperature is in the range from 20 to 250°C and the molar ratio of ammonia to hydroxyl groups in the alcohol is at least 5.

Description

Process for the amination of alcohols
The present invention relates to a catalytic process for the amination of alcohols in the presence of metal containing catalysts.
Amines are of significant importance for the chemical industry, but also for numerous biological processes. For instance, amino acids and nucleotides constitute essential biological building blocks and numerous bioactive compounds such as vitamins, hormones, alkaloids, neurotransmitters, or natural toxics contain amino groups.
Amines are frequently used as solvents, agrochemicals, pharmaceuticals, detergents, fabric softeners, flotation agents, corrosion inhibitors, antistatic additives, lubricants, polymers, varnishes, and dyes to mention only some applications.
Among the various known processes for manufacturing amines, the reaction between ammonia and alcohols is of special industrial interest, as ammonia and various alcohol compounds are readily available chemical materials with relatively low cost, and are obtainable from renewable resources.
The impact of ammonia for the chemistry of amines arises from the fact that almost every nitrogen atom in synthetic compounds either directly or indirectly comes from ammonia.
One advantage of the amination of alcohols is that the said process affords water as the only by-product which is less problematic than the salt waste generated in the amination of e.g. alkyl or aryl halides.
The reaction temperature and pressure for the industrial processes using ammonia vary significantly, depending on the substrates and the catalysts.
Suitable heterogenous catalysts for the amination of alcohols are usually based on metal compounds or metal complexes.
Applying such catalysts to current industrial processes usually results in a mixture of primary, secondary, and tertiary amines. The ratio of products can be tuned by reaction parameters, such as residence time and excess of ammonia. In analogy to ammonia, primary or secondary amines can be employed in these transformations to obtain secondary or tertiary amines.
Park et al., Korean J. Chem. Eng. Eng. 2017, 34 (10) , 2610-2618 disclose the reductive amination of ethanol to ethylamine over Ni/Al 2O 3 catalysts with Ni loadings in the range from 5 to 25 wt%. Catalysts with a Ni loading of 10 wt%exhibited the highest metal dispersion and the smallest Ni particle size, resulting in the best catalytical performance. The reaction yielded a mixture comprising at least 85 wt%of amines, notably monoethylamine, diethylamine and triethylamine.
Shimizu et al., ACS Catal. 2013, 3, 112-117 relates to heterogenous Ni-catalysts for the direct synthesis of primary amines from alcohols and ammonia. 2-Octanol was converted to the primary amine 2-aminooctane with 83%conversion and a selectivity towards the primary amine of 81%with a Ni/γ-Al 2O 3 catalyst with 10 wt%Ni-loading.
Shimizu et al., Catal. Today 2014, 232, 134-138 report the amination of 2-octanol with a Ni/CaSiO 3 catalyst at a temperature of 160℃ and a reaction time of 20h. The yield of the primary amine was 86%at a conversion of 95%. Various other alcohols are used as substrates with good selectivities towards the primary amine. The catalyst after recycling yields only low conversion to the desired products, i.e. the re-use of recycled catalyst is not econimically feasible.
Tomer et al., J. Catal. 2017, 356, 111-124 disclose a preparation method for Ni/Al 2O 3 catalysts which show good activity in the amination of alcohols. For 1-octanol as alcohol conversions of 80%and a selectivity towards the primary amine of more than 80%are obtained.
Wu et al., ChemCatChem 2017, 9, 4552-4561 disclose Ni/USY catalysts derived from a layered double hydroxide/zeolite hybrid structure with a high hydrogenation efficiency. The use for the conversion of m-nitroaniline to m-phenylenediamine is reported.
Chinese patent application 106475134 discloses core shell catalysts with a core based on a molecular sieve as a core and a petal-like hydrotalcite as a shell, obtained by in-situ growth method. The use for the amination of alcohols is not disclosed or suggested.
The known catalyst systems for the amination of alcohols still need improvement in the selectivity towards primary amines (which in most cases are the desired products) and in terms of overall conversion.
It was thus an object of the present invention to provide an improved process for the amination of alcohols.
This object has been achieved with the process in accordance with claim 1.
Preferred embodiments of the process in accordance with the present invention are set forth in the dependent claims and the detailed description hereinafter.
The present invention thus provides a process for the amination of alcohols by reacting the alcohol with ammonia or an ammonia precursor in the presence of hydrogen, wherein a core shell catalyst is used comprising at least one metal selected from the group consisting of magnesium, zinc, nickel, copper, cobalt or manganese and obtained from a layered double hydroxide of these metals as a shell, and a molecular sieve as a core, wherein the reaction temperature is in the range from 20 to 250℃ and the molar ratio of ammonia to hydroxyl groups in the alcohol is at least 5.
The process in accordance with the present invention is principally suiutable for the amination of any type of alcohol having at least one hydroxyl functional group connected to a carbon atom, i.e. there is no specific limitation as to the type of alcohol. In certain cases the process of the present invention has been found particularly useful for the amination of aliphatic alcohols. Selectivities and yields may differ, however, between different alcohols.
Suitable alcohols include practically all alcohols which satisfy the prerequisites specified above, and the alcohols may be straight-chain, branched or cyclic. Optionally, the alcohols can carry substituents which exhibit inert behaviour under the amination reaction conditions, for example alkoxy, alkenyloxy, alkenyloxy, alkylamino, dialkylamino and halogens (F, CI, Br, I) .
According to the present invention, suitable alcohols are preferably selected from aliphatic alcohols and notably include primary, secondary and tertiary alcohols.
As used herein, the term "aliphatic alcohol" is intended to mean any alcohol in which the hydroxyl functional group (s) is not attached directly to an aromatic ring, and includes within its scope alcohols which contain an aromatic structure, for example a phenyl ring, provided that the hydroxyl group is not phenolic.
As used herein, a "primary alcohol" refers to an organic compound having at least one primary hydroxyl group of the formula (-CH 2-OH) , a "secondary alcohol" refers to an organic compound having at least one secondary hydroxyl group of the formula R 1R 2CH (OH) , and a "tertiary alcohol" refers to an organic compound having at least one tertiary hydroxyl group of the formula R 1R 2R 3C (OH) , where none of R 1, R 2 and R 3 is hydrogen.
Suitable alcohols are, for example, those of the general formula (1) :
R a-CH 2-OH  (1)
where R a is selected from the group of hydrogen, unsubstituted or substituted C 1-C 30-alkyl, C 3-C 10-cycloalkyl, C 3-C 10-heterocyclyl comprising at least one heteroatom selected from N, O and S, C 5-C 14-aryl and C 5-C 14-heteroaryl comprising at least one heteroatom selected from N, O and S, and wherein the substitution is selected from the group consisting of: F, Cl, Br, OH, OR 4, CN, NH 2, NHR 4 or N (R 42, C 1-C 10-alkyl, C 3-C 10-cycloalkyl, C 3-C 10-heterocyclyl comprising at least one heteroatom selected from N, O and S, C 5-C 14-aryl and C 5-C 14-heteroaryl comprising at least one heteroatom selected from N, O and S, wherein R 4 is selected from C 1-C 10-alkyl and C 5-C 10-aryl.
Preferred example alcohols include: methanol, ethanol, n-propanol, n-butanol, isobutanol, n-pentanol, n-hexanol, n-heptanol, n-octanol, n-nonanol, 2-ethylhexanol, tridecanol, stearyl alcohol, palmityl alcohol, benzyl alcohol, 2-phenylethanol, 2- (p-methoxyphenyl) ethanol, 2- (3, 4-dimethoxyphenyl) ethanol, allyl alcohol, propargyl alcohol, 2-hydroxymethyl-furan, lactic acid, serine, 1, 2-ethanediol (ethylene glycol) , 1, 2-propanediol (1, 2-propylene glycol) , 1, 3-propanediol (1, 3-propylene glycol) , 1, 4-butanediol (1, 4-butylene glycol) , 1, 2-butanediol (1, 2-butylene glycol) , 2, 3-butanediol, 2-methy1-1, 3-propanediol, 2, 2-dimethy1-1, 3- propanediol (neopentyl glycol) , 1, 5-pentanediol, 1, 2-pentanediol, 1, 6-hexanediol, 1, 2-hexanediol, 1, 7-heptanediol, 1, 2-heptanediol, 1, 8-octanediol, 1, 2-octanediol, 1, 9-nonanediol, 1, 2-nonanediol, 1, 10-decanediol, 2, 4-dimethyl-2, 5-hexanediol, hydroxypivalic acid neopentyl glycol ester, diethylene glycol, triethylene glycol, 2-butene-1, 4-diol, 2-butyne-1, 4-diol, polyethylene glycols, polypropylene glycols, such as 1, 2-polypropylene glycol and 1, 3-polypropylene glycol, polytetrahydrofuran, diethanolamine, 1, 4-bis (2-hydroxyethyl) piperazine, diisopropanolamine, N-butyldiethanolamine, 2, 5- (dimethanol) -furan, 1, 4-bis (hydroxymethyl) cyclohexane, N-methyldiethanolamine, glycerol, trimethylolpropane, triethanolamine, 2, 2-bis (hydroxymethyl) -1, 3-propanediol (pentaerythritol) , sorbitol, inositol, sugars and polymers with primary hydroxyl groups (-CH 2-OH) such as, for example, glucose, mannose, fructose, ribose, deoxyribose, galactose, N-acetylglucosamine, fucose, rhamnose, sucrose, lactose, cellobiose, maltose and amylose, cellulose, starch and xanthan.
In some cases the prcess of the present invention yieldedparticularly good results with 1-octanol as alcohol.
Another preferred group of alcohols are alkanolamines having at least one primary hydroxyl group (-CH 2-OH) . Examples of alkanolamines which can be used as compounds (H) are monoaminoethanol, 3-aminopropan-1-ol, 2-aminopropan-1-ol, 4-aminobutan-1-ol, 2-aminobutan-1-ol, 3-aminobutan-1-ol, 5-aminopentan-1-ol, 2-aminopentan-1-ol, 6-aminohexan-1-ol, 2-aminohexan-1-ol, 7-aminoheptan-1-ol, 2-aminoheptan-1-ol, 8-aminooctan-1-ol, 2-aminooctan-1-ol, N- (2-hydroxyethyl) aniline, N- (2-aminoethyl) ethanolamine, 1- (2-hydroxyethyl) piperazine, 2- (2-aminoethoxy) ethanol, N-butylethanolamine, N-ethylethanolamine, N-methylethanolamine, N, N-dimethylethanolamine, N- (2-hydroxyethyl) -1, 3-propanediamine, 3- (2-hydroxyethyl) amino-1-propanol, 3-dimethylamino-1-propanol, N, N-dibutylethanolamine, N, N-dimethylisopropylamine and N, N-diethylethanolamine.
In some cases alkanolamines which have at least one primary hydroxyl group (-CH 2-OH) and at least primary amino group of the  formula (-CH 2-NH 2) could be used with good results in the process of the present invention. One example is 2- [2- (dimethylamino) ethoxy] ethanol, hereinafter referred to as DMEE.
The term ammonia precursor, for the purpose of the present invention, denotes any starting material, which, under the conditions of the reaction generates ammonia which can then particpate in the reaction. Suitable ammonia precursors are known to the skilled person and he will select the suitable starting material based on his professional experience and the specific application case so that no further details need to be given here.
In many cases the use of ammonia itself has proved to work very satisfactorily and thus the use of ammonia is preferred for economic reasons as ammonia is readily available from a variety of sources.
The catalyst system used in the process of the present invention is a core shell catalyst comprising at least one divalent metal selected from the group consisting of magnesium, iron, zinc, nickel, copper, cobalt or manganese and obtained from a layered double hydroxide of these metals, as a shell, and a molecular sieve as a core.
Layered double hydroxide compounds (LDHs) are characterized by structures in which layers with a brucite-like structure carry a net positive charge, usually due to the partial substitution of trivalent octahedrally coordinated cations for divalent cations.
LDHs have a basic layer structure based on the brucite structure (Mg (OH)  2) associated with small polarizing cations and polarizable anions. Octahedral units form infinite layers by edge sharing. The layers then stack on top of one another to form the three-dimensional structure.
The basic structure may be derived by substition of a fraction of the divalent cations in the brucite lattice by trivalent cations such that the layers acquire a positive charge which is balanced by the intercalation of anions (and, usually, water) between the layers.
The possibility of varying the identity and relative proportions of the di-and trivalent cations as well as the identity of the interlayer ions gives rise to a large variety of materials included within the definition of layered double hydroxides or LDHs.
Chemically, LDHs may be characterized by the formula
[M II 1-xM III x (OH)  2x+ [A n-x/n .yH 2O
wheren M II and M III denote di-respectively trivalent metals, A is the anion in the interlayer and y defines the amount of water.
The interlayer galleries contain both interlayer anions and water molecules and there is a complex network of hydrogen bonds between layer hydroxyl groups, anions and water molecules. The interlayers are substantially disordered and hydrogen bonds are in a continuous state of flux so that the precise nature of the interlayer is complex. The bonding between the octahedral layers and the interlayers involves a combination of electrostatic effects and hydrogen bonding. Hydroxyl groups, particularly those bound to trivalent cations are strongly polarized and interact with the interlayer anions.
The anions located in the interlayer regions can be replaced easily, in general. A wide variety of anions may be incorporated, ranging from simple inorganic anions (e.g. CO 3 2-) through organic anions (e.g. benzoate, succinate) to complex biomolecules, including DNA.
The brucite-like layers in LDHs may be stacked in different ways, which gives rise to a variety of polytype structures.
Typically, LDHs synthesized by conventional methods are hydrophilic, possessing a high water content, and exhibit low surface area and porosity, which impose a limiting scope for their applications.
A molecular sieve is a material with pores (very small holes) of uniform size. These pore diameters are similar in size to small molecules.
Molecular sieves can be microporous, mesoporous, or macroporous material.
Known under the term zeolites, microporous aluminosilicate materials are used for a wide scale of catalytic applications and are the best known molecular sieves.
Zeolites are the aluminosilicate members of the family of microporous solids known as "molecular sieves" mainly consisting of Si, Al, O, and metals including Ti, Sn, Zn, or others. The term molecular sieve refers to a particular property of these materials, i.e., the ability to selectively sort  molecules based primarily on a size exclusion process. This is due to a very regular pore structure of molecular dimensions. The maximum size of the molecular or ionic species that can enter the pores of a zeolite is controlled by the dimensions of the channels. These are conventionally defined by the ring size of the aperture, where, for example, the term "8-ring" refers to a closed loop that is built from eight tetrahedrally coordinated silicon (or aluminium) atoms and 8 oxygen atoms. These rings are not always perfectly symmetrical due to a variety of effects, including strain induced by the bonding between units that are needed to produce the overall structure, or coordination of some of the oxygen atoms of the rings to cations within the structure. Therefore, the pores in many zeolites are not strictly cylindrical.
Zeolites occur naturally but are also produced industrially on a large scale. Every new zeolite structure that is obtained has to be approved by the International Zeolite Association Structure Commission and receives a three letter designation.
Over 200 synthetic zeolites are known and most of them have been synthesized by a process of slow crystallization of a silica-alumina gel in the presence of alkalis and organic templates.
One of the important processes used to carry out zeolite synthesis is sol-gel processing. The product properties depend on reaction mixture composition, pH of the system, operating temperature, pre-reaction 'seeding' time, reaction time as well as the templates used. In sol-gel process, other elements (metals, metal oxides) can be easily incorporated. The silicalite sol formed by the hydrothermal method is very stable. The ease of scaling up this process makes it a favorite route for zeolite synthesis. The skilled person knows how to best obtain a given zeolite structure based on his professional expertise and he will select an appropriate method based on the specific application needs. A large variety of zeolites is also commercially available from a variety of suppliers.
Because molecular sieves have a high specific surface area and a strong hydrothermal activity, metal ions supported on molecular sieves can show an improved dispersibility. Size and dispersion of metal ions in supported  heterogenous catalysts are related to the activity of the metal and precisely and uniformly distributed metal particles in the nanoscale show a better catalytic perfomance than the bulk counterparts.
Impregnation methods are commonly used for the preparation of supported metal catalysts with molecular sieves as carrier. Since the interaction between the metal and the molecular sieve is comparatively weak in products obtianed by impregnation, larger metal particles can be formed which have a detrimental influence on the catalytic activity.
Ion-exchange and gel methods have also been described for the manufacture of metal catalysts supported on molecular sieves, but ion-exhange again leads to comparatively large metal particles while the gel methods leads to a more homogenous size distribution but the size of the metal particles is difficult to control.
Precipitation methods have also been described but same require a large excess of metal which is economically undesired.
In the course of the present invention it has now been found that catalysts derived from layered double hydroxide/molecular sieve (zeolite) hybrid structures can be advantageously used in the catalytic amination of alcohols.
Catalysts of this type comprise a core of a molecular sieve, preferably a zeolite, and a shell derived from layered double hydroxides of di-and trivalent metals.
Core shell structured LDH-based materials used as catalyst in the process of the present invention provide a combination of features from the different materials and the possible synergistic effects between them.
The di-and trivalent metals in the LDH are distributed uniformly on the atomic scale within the layers. These cations serve as precursors for supported metal catalysts once the LDHs are immobilized on the molecular sieve support (the zeolite) which forms the core of the catalyst.
The catalysts used in the process of the invention containing a microporous molecular sieve (zeolite) core with layered double hydroxide (LDH) can advantageously obtained by an in-situ growthprocess as described in or Wu et al., ChemCatChem 2017, 9, 4552-4561 (2017) and  in CN 106475134 to which reference is made here. In this process, surface trivalent metal sites (aluminum sites in the case of zeolites) act as nucleation sites for the formation of the LDH coating and so robustly link same into the zeolite lattice.
In this in-situ co-precipitation process a source of the divalent metal is dissolved in water and the pH is adjusted to a value in the range from 6 to 11, the molecular sieve is added in the form of an aqueous dispersion or as a powder and thereafter the mixture is heated at a temperature in the range from 25 to 150℃ for a period of time of from 2 to 60 hours, thereafter the material is collected by filtration, washed to neutrality and dried
The LDHs supported on the molecular sieve obtained by the in-situ coprecipitation method do not suffer from aggregation upon calcination or reduction. The LDH derived shell provides an adjustable charge density and metal ion distribution and variation. After reduction or calcination, highly dispersed nanoparticles are formed, The preparation of the LDH layer is simple and easy to control.
The process is now described in more detail for zeolites as molecular sieves.
During the co-preciptitation, a source of a divalent metal selected from the group consisting of magnesium, zinc, nickel, copper, cobalt or manganese and an aluminum source from the zeolite undergo a reaction while growing in-situ on the surface of the zeolite. If a molecular sieve is used not containing a suitable trivalent metal, a trivalent metal source can be added separately. It is preferred, however, to use molecular sieves with an aluminum content, preferably molecular sieves which have a relatively high aluminum content. The result is the desired core/shell structure with a hydrotalcite (LDH) like shell and the moleular sieve as core.
The hydrotalcite-type compounds constitute molecular sieves with a characteristic diffraction peak of hydrotalcite and a molecular sieve having a core and a usually petal-like hydrotalcite as shell.
The source of the divalent metal is preferably a salt of the respective metal. There is no specific limitation as to the salt, but nitrates have shown  advantages in certain cases. However, carbonates or sulfates are also generally suitable.
In the co-precipitation process, the source of the divalent metal (e.g. the metal salt) is dissolved in water and the pH is adjusted to a value in the range from 6 to 11, preferably in the range from 6.5 to 10 and even more preferably in the range from 7 to 9.5. This can be most conveniently achieved by the addition of suitable amounts of ammonium salts and/or ammonia such as ammonium nitrate, ammonium carbonate, ammonium chloride or ammonium sulfate or mixtures thereof in suitable amounts.
The molecular sieve (e.g. the zeolite) is dispersed in water, usually with a weight content of zeolite in the range of 0.01 to 20 wt%, preferably from 0.1 to 10 wt%. To obtain a homogenous dispersion of the zeolite, the soulution can be subjected to a suitable treatment to improve dispersion such as e.g. ultrasonic treatment.
The aqueous molecular sieve dispersion and the metal salt solution are then combined and heated at a temperature in the range from 25 to 150℃ for a period of time of from 2 to 60, preferably from 3 to 48 hours. The resulting material is collected by filtration, washed to neutrality preferably with an alcohol (e.g. ethanol) , or water and alcohol alternatively, and dried to obtain the desired catalyst.
Instead of using a dispersion of the molecular sieve it is also possible to add the powder of the molecular sieve directly to the aqueous solution of the metal salt. After addition of the molecular sieve the disperion may be subjected to e.g. an ultrasonic treatment to homogeneously disperse the molecular sieve. In this case the amount of zeolite is usually in the range from 0.01 to 5 wt%, based on the amount of water. The work-up is the same as if the moecular sieve is added as aqueous suspension.
The zeolites used as molecular sieves can be selected from a wide variety of zeolites; just by way of examples, zeolites with FAU, LTL, MAZ, CHA, MOR and BEA topology have been found advantageous in certain cases. Respective zeolites are kown to the skilled person and are commercially available from a variety of suppliers.
Generally, zeolites having a Si/Al molar ratio in the range from 1.5 to 10, preferably in the range from 2 to 8 have been found especially suitable to obtain products with good catalytic properties in the amination of alcohols.
In accordance with a particularly preferred embodiment the zeolite is selected from zeolite Y or zeolite USY (ultrastable zeolite Y) . Zelite USY is a zeolite with FAU (faujasite) morphology derived from zeolite Y by dealumination. Zeolites with FAU topology have a high specific surface area and a narrow pore size distribution combined with high thermal stability.
Zeolite Y has a molar ratio of Si/Al of about 2.5; it is possible, however to replace Al atoms by Si-atoms in a dealumination process and to shift the Si/Al ratio to higher values. Si/Al ratios of up to 6 have been obtained. This can be achieved e.g. by heat treatment with vapor which leads to a certain degree of dealumination by replacement of Al in the lattice by silicon. After dealumination the zeolite contains two different types of Al atoms inside the lattice and outside the lattice. The Al atoms outside the lattice remain normally in the voids of the zeolite. Dealumination of zeolite Y to obtain zeolite USY can be achieved e.g. with heat treatment with vapor. Zeolite USY is commercially available from a variety of suppliers and processes for the manufacture of zeolite USY are known to the skilled person. The molar ratio of Si/Al in zeolite USY is typically 2.8 or more, preferably 2.8 to 9 and preferably 3 to 6.
The skilled person will select the best suited zeolite based on his professional experience and the targeted amination reaction.
Prior to use in the process in accordance with the present invention, the product obtained in accordance with the process described above can be advantagously subjected to a reduction treatment under hydrogen atmosphere at elevated temperatures. E. g. the product is heated under a hydrogen atmosphere from room temperature to a temperature in the range from 350 to 700, preferably from 400 to 600℃ and kept at the elevated temperature for 1 to 10, preferably for 2 to 8 hours.
By the process described above, high loadings of the divalent metal can be achieved which usually are in the range frorm 5 to 50 wt%, based on  the weight of the core shell catalyst. Metal loadings in the range from 8 to 40 and preferably in the range from 10 to 30 wt%have been found advantageous in certain amination reactions.
A particularly preferred core shell catalyst for use in the process of the the present invention is based on Ni as divalent metal and zeolite USY as molecular sieve. The manufacture thereof follows the route described above and a particularly preferred method of manufacture is provided in the examples hereinafter.
In the process of the present invention, the amination reaction occurs at a temperature of from 20 to 250℃, preferably from 100 to 200℃, and more preferably from 120 to 200℃. The absolute pressure of said reaction is generally controlled to be within the range of 0.1 to 10 MPa, preferably from 0.2 to 5 MPa, and more preferably from 0.2 to 3 MPa, which can be either the autogenous pressure of the solvent at the reaction temperature or the pressure of a gas such as nitrogen, argon, or hydrogen.
The molar ratio of ammonia or ammonia precursor to hydroxyl groups in the alcohol is at least 5 and in the range from 10 to 50, more preferably in the range from 12 to 40. The ammonia used may be in an aqueous or gaseous form. As used herein, aqueous ammonia is understood to include dissolved ammonia, ammonium hydroxide, and ammonium ion in a water solution.
In accordance with a preferred embodiment the reaction is carried out in an autoclave under hydrogen pressure in the range from 200 kPa to 2 MPa, preferably from 300 kPa to 1 MPa.
Preferably the reaction is carried out in liquid phase wherein the alcohol can form the solvent or an external solvent may be added. In accordance with a preferred embodiment no external solvent is added.
If an external solvent is used, same can be selected from polar protic solvents such as isopropanol, methanol, ethanol, and acetic acid, apolar protic solvents such as dimethyl sulfoxide (DMSO) , acetone, and acetonitrile or apolar solvents such as tetrahydrofuran, dioxane, diethylether, diisopropyl ether, cyclohexane, toluene, benzene, xylene, octane, hexane, heptane, 1, 4-dioxane, tert-butyl methyl ether (MTBE) ,  mesitylene, diglyme and 1, 2-dimethoxyethane, to mention only a few examples.
The skilled person will select an appropriate solvent for the process of the present invention based on his professional experience.
The catalyst is typically used in an amount from 0.5 to 50 wt%, preferably from 1 to 40 wt%and particularly preferred not more than 30 wt%, based on the amount of alcohol.
The reaction time is typically in the range from 2 to 48 h, preferably from 4 to 36 h, particularly preferred in the range from 4 to 24 h.
The process of the present invention yields the desired amines in good yield and in particular with a good selectivity towards primary amines, which are in many cases the desired product when isomer mixtures may be obtained as a result of the amination reaction.
Example 1 –Preparation of catalyst with Ni active metal
USY zeolite (Si/Al=3) was obtained from China Petrochemical Corporation. NiAl LDHs@USY was prepared by an in-situ growth technique as follows. Ni (NO 32 (0.1454 g) and NH 4NO 3 (0.24 g) were dissolved in 50 g of deionized water, and then 1%ammonia solution was added drop wise under continuous stirring until the pH reached 8. Afterwards, the USY powder (0.1g to 0.2 g) was placed into the above solution and subjected to ultrasonic treatment for 0.5 h to make the parent zeolite highly dispersed in a homogenized suspension. The mixture was then transferred to a thermostat water bath (30-100℃) for 36 h. The resulting material was finally collected after filtration, washed with ethanol and dried at 60℃ for 10 h.
The NiAl LDHs@USY powder thus obtained (0.3 g) was placed in quartz boat in the middle of tube furnace with all interfaces tightly sealed. An H 2 atmosphere (40 ml min -1) was introduced as the reduction agent, and it was heated to 550℃ for 5 h at a rate of 2℃ min -1. After reduction, the Ni/USY was finally obtained at room temperature.
Example 2 –Amination of 2- [2- (Dimethylamino) ethoxy] ethanol (DMEE)
The catalytic reaction in liquid phase was carried out in a sealed 30-mL autoclave. 150 mg catalyst was pre-reduced by 20 mL/min H 2 at 550℃  for 1 h. The molar ratio was 2- [2- (Dimethylamino) ethoxy] ethanol : NH 3 : H 2 = 1: 10: 2. After 16 h reaction at 180℃, the resulting liquid mixture contained morpholine in 0.1%yield, 2- (2- (dimethylamino) ethoxy) ethylamine in 97%yield, and bis (2-dimethylaminoethyl) ether in 2.9%yield, and the conversion of starting material was 41%. 1 g of catalyst was used for 4 ml of the alcanolamine.
Example 3 –Amination of 2- [2- (Dimethylamino) ethoxy] ethanol (DMEE)
A Ni/USY catalyst having a Ni loading of 20 wt%was prepared as described in Example 1 and was used for the amination of DMEE under various reaction conditions which are given in table 1 which also provides the conversion achieved and the selectivity towards the desired primary amine, 2- (2- (dimethylamino) ethoxy) ethylamine.
The reaction was carried out in a 30 ml autoclave under 500 kPa hydrogen pressure at a temperature of 180℃.
Table 1
Figure PCTCN2018092761-appb-000001
The result show that the process of the present invention leads to superior selectivities towards the desired primary amine compared to other catalysts known from the literature. To achieve the desired high selectivity a minimum ratio of ammonia to hydroxyl groups of 10 is important. The last three experiments in table 1 were performed with 1 g of catalyst per 7 ml of the alcanolamine (different from the first four examples which were carried out with 1 g of catalyst per 4 ml of alcanolamine) .
Example 4 –Amination of 2- [2- (Dimethylamino) ethoxy] ethanol (DMEE)
The amination of DMEE was carried out with a Ni/USY catalyst with a Ni loading of 20 wt%which had been obtained at different crystallization temperatures of 40, 75, 100 and 120℃. The amount of catalyst was 1 g of catalyst per 8 ml of alcanolamine. The conversion increased with increasing crystallization temperature while the selectivity towards the desired primary amine remained very high in all experiments (83%for the catalyst crystallized at 40℃ and 100%for the catalysts crystallized at higher temperatures) .
Example 5 -Amination of 2- [2- (Dimethylamino) ethoxy] ethanol (DMEE)
DMEE was aminated as in Example 3 but with different hydrogen pressures. At a reaction time of 16 h and a molar ratio NH 3/OH of 13 the DMEE conversion was 79, 41 and 8 mol%at hydrogen pressures of 0 kPa, 500 kPa and 1 MPa. The selectivity towards the primary amine was 11 mol%at 0 kPa H 2, 77 at 500 kPa H 2 and 100 %at 1 MPa H 2.
Example 6 -Amination of 2- [2- (Dimethylamino) ethoxy] ethanol (DMEE)
The amination of DMME was conducted at a temperature of 180℃, a H 2 pressure of 500 kPa, a molar ratio NH 3/OH from 13 to 18 and a reaction time of 16 h with Ni/USY catalysts obtained in accordance with the co-impregnation method described in Example 1 with different Ni loadings from 20 to 42 wt%. The results are summarized in table 2.
Table 2
Figure PCTCN2018092761-appb-000002
Example 7
The amination of 1-octanol to 1-octylamine was carried out with a catalyst obtained in accordance with Example 1 and a Ni loading of 20 wt%. The reaction was carried out at 180℃ for a reaction time of 16 h and with 150 mg of catalyst and 0.5 g of 1-octylamine. The conversion achieved  was 78%and the selectivity towards 1-octylamine was 92 mol%. Ni catalysts supported on Al 2O 3 or SiO 2 showed inferior results under the same conditions (60 %conversion/90%selectivity for catalysts supported on Al 2O 3, respectively 30%of conversion and 92 mol%selectivity for catalysts supported on silicon dioxide) . Raney Ni under the same conditions with 0.03 g of catalyst and 1 ml of 1-octanol yielded a good conversion of more than 90%but a selectivity of only 46%.
The foregoing results show the superiority of the process in accordance with the present invention over amination processes with other catalysts.

Claims (13)

  1. A process for the amination of alcohols by reacting the alcohol with ammonia or an ammonia precursor in the presence of hydrogen, wherein a core shell catalyst is used comprising at least one metal selected from the group consisting of magnesium, zinc, nickel, copper manganese or cobalt and obtained from a layered double hydroxide of these metals as a shell, and a molecular sieve as a core, wherein the reaction temperature is in the range from 20 to 250℃ and the molar ratio of ammonia to hydroxyl groups in the alcohol is at least 5.
  2. The process of claim 1 wherein the divalent metal is nickel.
  3. The process of any of claims 1 to 2 wherein the molecular sieve is a zeolite.
  4. The process of any of claims 1 to 3 wherein the zeolite has a FAU, LTL, MAZ, CHA, MOR or BEA topology.
  5. The process of claim 3 or 4 wherein the zeolite is zeolite Y.
  6. The process of claim 5 wherein the zeolite is ultrastable zeolite Y (USY) .
  7. The process of any of claims 1 to 6 wherein the molar ratio of ammonia to hydroxyl groups in the alcohol is in the range from 10 to 35.
  8. The process in accordance with any of claims 1 to 6 wherein the loading of the catalyst with the divalent metal is in the range from 5 to 60 wt%, based on the catalyst.
  9. The process of any of claims 1 to 8 wherein a catalyst is used which has been obtained by an in-situ co-precipitation process wherein a source of the divalent metal is dissolved in water and the pH is adjusted to a value in the range from 6 to 11, the molecular sieve is added in the form of an aqueous dispersion or as a powder and thereafter the resulting mixture is heated at a temperature in the range from 25 to 150℃ for a period of time of from 2 to 60 hours, thereafter the material is collected by filtration, washed to neutrality and dried.
  10. Use of a core shell catalyst comprising a divalent metal selected from the group consisting of magnesium, zinc, nickel, copper, cobalt or manganese obtained from a layered double hydroxide as a shell, and a molecular sieve as a core, in the amination of alcohols.
  11. The use in accordance with claim 11 wherein the catalyst has been obtained by an in-situ co-precipitation process wherein a source of the divalent metal is dissolved in water and the pH is adjusted to a value in the range from 7 to 11, the molecular sieve is added in the form of an aqueous dispersion or as a powder and thereafter the resulting mixture is heated at a temperature in the range from 25 to 150℃ for a period of time of from 2 to 60 hours, thereafter the material is collected by filtration, washed to neutrality and dried.
  12. The use in accordance with claims 10 or 11 wherein the core is zeolite Y or zeolite USY.
  13. The use in accordance with any of claims 10 to 12 wherein the divalent metal is Ni.
PCT/CN2018/092761 2018-06-26 2018-06-26 Process for the amination of alcohols WO2020000165A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/092761 WO2020000165A1 (en) 2018-06-26 2018-06-26 Process for the amination of alcohols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/092761 WO2020000165A1 (en) 2018-06-26 2018-06-26 Process for the amination of alcohols

Publications (1)

Publication Number Publication Date
WO2020000165A1 true WO2020000165A1 (en) 2020-01-02

Family

ID=68984458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092761 WO2020000165A1 (en) 2018-06-26 2018-06-26 Process for the amination of alcohols

Country Status (1)

Country Link
WO (1) WO2020000165A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112517051A (en) * 2021-01-18 2021-03-19 陕西延长石油(集团)有限责任公司 Catalyst for preparing ethylamine by ethanol amination and preparation method and application thereof
CN113751059A (en) * 2020-06-05 2021-12-07 中国石油化工股份有限公司 Catalyst for producing propylene and ethylene by directly converting tert-butyl alcohol and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4918234A (en) * 1987-10-13 1990-04-17 Air Products And Chemicals, Inc. Shape selective catalysts for C2 to C4 alkanol amination
CN1062677A (en) * 1992-01-05 1992-07-15 湖北省化学研究所 Be used for alcohol, ketoamine catalyst for reaction and preparation
CN1618786A (en) * 2003-11-19 2005-05-25 中国石油化工股份有限公司 Method of preparing methylamine by methanol gaseous phase amination
CN106475134A (en) * 2016-09-22 2017-03-08 华东师范大学 A kind of brucite is the nucleocapsid catalyst and its preparation and application that shell/molecular sieve is core
CN107983400A (en) * 2017-12-08 2018-05-04 西安近代化学研究所 Reduction amination catalyst and preparation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4918234A (en) * 1987-10-13 1990-04-17 Air Products And Chemicals, Inc. Shape selective catalysts for C2 to C4 alkanol amination
CN1062677A (en) * 1992-01-05 1992-07-15 湖北省化学研究所 Be used for alcohol, ketoamine catalyst for reaction and preparation
CN1618786A (en) * 2003-11-19 2005-05-25 中国石油化工股份有限公司 Method of preparing methylamine by methanol gaseous phase amination
CN106475134A (en) * 2016-09-22 2017-03-08 华东师范大学 A kind of brucite is the nucleocapsid catalyst and its preparation and application that shell/molecular sieve is core
CN107983400A (en) * 2017-12-08 2018-05-04 西安近代化学研究所 Reduction amination catalyst and preparation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG BO ET AL.: "Nickel/USY Catalyst Derived from a Layered Double Hydroxide/Zeolite Hybrid Structure with a High Hydrogenation Efficiency", CHEMCATCHEM, vol. 9, no. 24, 9 November 2017 (2017-11-09), XP055576274, ISSN: 1867-3880, DOI: 10.1002/cctc.201701054 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113751059A (en) * 2020-06-05 2021-12-07 中国石油化工股份有限公司 Catalyst for producing propylene and ethylene by directly converting tert-butyl alcohol and application thereof
CN113751059B (en) * 2020-06-05 2023-08-04 中国石油化工股份有限公司 Catalyst for producing propylene and ethylene by direct conversion of tertiary butanol and application thereof
CN112517051A (en) * 2021-01-18 2021-03-19 陕西延长石油(集团)有限责任公司 Catalyst for preparing ethylamine by ethanol amination and preparation method and application thereof
CN112517051B (en) * 2021-01-18 2022-11-01 陕西延长石油(集团)有限责任公司 Catalyst for preparing ethylamine by ethanol amination and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US7704487B2 (en) Method for the synthesis of zeolite beta with diethylenetriamine
DE60036508T2 (en) Non-binder zeolite molding, process for its preparation and its use
Li et al. Direct carbonylation of glycerol with CO2 to glycerol carbonate over Zn/Al/La/X (X= F, Cl, Br) catalysts: The influence of the interlayer anion
JP6626103B2 (en) Method for producing a mesoporous microporous crystalline material containing a recoverable and recyclable mesopore-template agent
EP1512667B1 (en) Crystalline silicoaluminophosphate salt molecular sieve having octaoxygen-membered ring pore, process for producing the same and process for producing methylamine with the molecular sieve as catalyst
WO2020000165A1 (en) Process for the amination of alcohols
WO2009124902A1 (en) Catalyst for the dehydroaromatisation of aliphatic hydrocarbons with a binding agent containing silicon
KR20170135912A (en) ZSM-5 catalyst
JP4682157B2 (en) Improved synthesis of highly sterically hindered amino-ether alcohols and diamino polyalkenyl ethers using highly active powder catalysts
CN109641194A (en) Catalyst comprising small 10- ring zeolite crystallite and the method for preparing hydrocarbon by making oxygenatedchemicals via the catalyst reaction
Park et al. Selective alkylation of aniline with methanol over metallosilicates
US11104637B2 (en) Process for the conversion of monoethanolamine to ethylenediamine employing a copper-modified zeolite of the MOR framework structure
KR910002942B1 (en) Process for the preparation of dimethyl amine
JP3442348B2 (en) Binderless crystalline aluminosilicate molded body, method for producing the same and use thereof
CN108786910B (en) C8Aromatic hydrocarbon isomerization catalyst and preparation method thereof
KR101938278B1 (en) Manufafcturing method of zeolite with mesopore and micropore for metal absorption
JP4827289B2 (en) MEL-type binderless zeolite molding, its production method and its use
CN113039158A (en) Method for producing zeolitic materials having an AEI-type framework structure by solvent-free inter-zeolitic conversion
DE4135946A1 (en) METHOD FOR PRODUCING ALKANOLAMINES AND USE OF THE REACTION PRODUCT AS A FUEL OR LUBRICANT ADDITIVE
JPH0733718A (en) Production of alkanolamine by amination of alkylene oxide
US11045792B1 (en) Highly efficient nanosized mesoporous CuMgAl ternary oxide catalyst
CN104556134B (en) A kind of synthetic method of the molecular sieve for preparing propylene from methanol reaction
Minwei et al. A dynamic organic structuring-directing agent for pure-silica-zeolite AST and LTA syntheses
KR101812598B1 (en) Manufafcturing method of fau zeolite with mesopore and micropore
JP2019202929A (en) Manufacturing method of zeolite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924760

Country of ref document: EP

Kind code of ref document: A1