WO2019245050A1 - Hollow fiber cell culture device, cell culture method, and method for producing culture supernatant - Google Patents

Hollow fiber cell culture device, cell culture method, and method for producing culture supernatant Download PDF

Info

Publication number
WO2019245050A1
WO2019245050A1 PCT/JP2019/024872 JP2019024872W WO2019245050A1 WO 2019245050 A1 WO2019245050 A1 WO 2019245050A1 JP 2019024872 W JP2019024872 W JP 2019024872W WO 2019245050 A1 WO2019245050 A1 WO 2019245050A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
culture
culture solution
cell
filter housing
Prior art date
Application number
PCT/JP2019/024872
Other languages
French (fr)
Japanese (ja)
Inventor
漆畑 直樹
勝幸 隠岐
Original Assignee
株式会社バイオミメティクスシンパシーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社バイオミメティクスシンパシーズ filed Critical 株式会社バイオミメティクスシンパシーズ
Priority to CN201980006288.4A priority Critical patent/CN111448305B/en
Publication of WO2019245050A1 publication Critical patent/WO2019245050A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • C12M3/06Tissue, human, animal or plant cell, or virus culture apparatus with filtration, ultrafiltration, inverse osmosis or dialysis means

Definitions

  • the solution described in the present specification is capable of culturing cells stably by culturing the cells inside the hollow fiber and circulating the culture solution outside the hollow fiber. Based on the knowledge that high-quality cells and culture supernatants can be obtained inexpensively and in large quantities.
  • This device further has a cell introduction part 5,
  • the cell introduction part 5 is a cylindrical volume part having a space volume provided at a part corresponding to the hollow fiber filter connecting the first end cap 6a, and one end of the cylindrical volume part has: A pusher with a gasket is inserted, and the other end of the cylindrical volume is connected to a hollow fiber filter. By pushing the pusher in the direction of the hollow fiber filter, cells are inserted into the lumen of the hollow fiber filter.
  • the device is introduced.
  • This manufacturing method A cell introduction step of introducing cells into the hollow fiber 3 via the cell introduction part 5; A culture solution supply step of supplying a culture solution into the filter housing via the culture solution introduction unit 7; A culture solution discharging step of discharging the culture solution inside the filter housing from the culture solution discharge section 9, and a step of culturing cells inside the hollow fiber 3; A culture supernatant collecting step of collecting a culture supernatant from the discharged liquid obtained in the culture liquid discharging step; And a method for producing a culture supernatant.
  • FIG. 1 is a conceptual diagram showing a configuration example of a culture device.
  • the apparatus comprises: a filter housing 1, a hollow fiber 3 existing inside the filter housing, a first end cap 6 a, a culture solution introduction unit 7, and a culture solution discharge unit 9. Having.
  • Tissues from which mesenchymal stem cells are separated include umbilical cord, cord blood, bone marrow, amniotic membrane, placenta, dental pulp, fat, cartilage, menstrual blood, breast milk, etc., and the source tissues and animal species are particularly limited Not something.
  • mesenchymal stem cells must have been transduced or modified to establish immortalized cell lines, to provide cell characteristics that can withstand long-term culture, or to improve the effectiveness of culture supernatants. May be used.
  • the cellulosic water-soluble polymer methylcellulose (MC) or carboxymethylcellulose (CMC) to the culture medium.
  • Other cellulose derivatives, or other water-soluble polymers such as polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), or sodium alginate and their gelling agents, using a technique to increase the viscosity of the culture solution. May be.
  • the concentration of the water-soluble polymer can be set with reference to the previous report. As a result, it is possible to form spheroids of uniform size in the cell culture space in the hollow fiber and to arrange them uniformly in space.
  • the cell introduction section 5 is at least composed of an outer cylinder, a gasket, a pusher, and a lock mechanism.
  • the cell introduction section 5 is at least composed of an outer cylinder, a gasket, a pusher, and a lock mechanism.
  • connection mode of the device can be selected according to the purpose of the practitioner. For example, when connecting tubes and the like that form the culture medium flow path, when using existing aseptic connection technology often used in the bioindustry, or when incorporating a stainless steel container as a culture medium storage container, such a connection is required.
  • the connection mode of the device according to the above can be taken.
  • this technology is used in the production of general biotechnology-based drugs, etc. The technology may be designed by adopters.
  • a cell-based water-soluble polymer such as methylcellulose MC and carboxymethylcellulose CMC, other cellulose derivatives, or other water-soluble polymers such as polyethylene glycol PEG and polyvinylpyrrolidone are used to suppress cell aggregate formation.
  • a method of increasing the viscosity of the culture solution by adding PVP or sodium alginate or a gelling agent thereof may be used.
  • the cell introduction part 5 is removed, and the inside of the hollow fiber 3 and the inside of the filter housing 1 are hermetically sealed by attaching an end cap 6a to the end 1a of the filter housing and the end 4a of the hollow fiber if there is a gasket or a sealing material.
  • This is designated as component 2.
  • the hollow fiber filter module should be kept horizontal to avoid bias of cells inside the hollow fiber.
  • the entire apparatus of the present invention may be installed in a chamber of a constant temperature apparatus, or may be controlled by a jacket type heating apparatus for heating.
  • heating is performed in the vicinity of the culture solution supply path 8 and the culture solution introduction unit 7 on the side where the culture medium is sent to the hollow fiber filter module, and the temperature is adjusted to the optimum temperature immediately before the culture solution is sent to the hollow fiber filter module.
  • the hollow fiber filter module also has a mechanism for maintaining the optimum temperature, and further includes a culture medium discharge section 9 and a culture medium discharge path 10 on the side where the culture medium is discharged from the hollow fiber filter module. May be cooled to 4 to 10 ° C., and the culture solution storage container may be cooled to 4 to 10 ° C. to prevent denaturation and degradation of the medium components and cell secretion components in long-term culture.
  • a substantially feasible method for recovering a culture supernatant containing secretions of cells is as follows.
  • a culture solution on the side where cells are present is circulated through a hollow fiber membrane to collect the culture solution on the same side as a culture supernatant (Patent Document 1).
  • the culture supernatant is collected from the outside of the hollow fiber by diffusion from the hollow fiber lumen through which the cells are closed and there is no active circulation to the outside of the hollow fiber through the hollow fiber membrane.
  • the culture supernatant may be obtained by continuous culture such as fed-batch culture or perfusion culture.
  • the filter housing ends 1a and 1b have a sanitary connection port shape, and a hollow fiber filter module (PES MidiKros TC module / 0.2 ⁇ m fractionation size, filter membrane area) with a Luer lock connect at the culture solution introduction and culture solution discharge portions. 290 cm 2 , total length 44 cm; T04-P20U-05-N; Spectrum Laboratories) was used.
  • An end cap 6b having a ferrule sanitary connection port and including a silicon gasket and a silicone sealant was closed tightly by clamping so as to close the filter housing end 1b and the hollow fiber end 4b.
  • the collected culture supernatant is filtered through a 0.2 ⁇ m PES syringe filter (25 mm GD / X syringe filter (PES 0.2 ⁇ m sterilized); 6896-2502; GE Healthcare Japan) and used for analysis. Stored frozen at -28 ° C.
  • the culture medium was completely exchanged once every 3 to 4 days, and the culture medium was exchanged at 7 days after the start of culture (Day 7), 11 days after the start of culture (Day 11), and 14 days after the start of culture.
  • the culture supernatant was collected before replacing the medium.
  • These culture supernatants were filtered through a 0.2 ⁇ m PES syringe filter (25 mm GD / X syringe filter (PES 0.2 ⁇ m sterilized); 6896-2502; GE Healthcare Japan) until they were used for analysis. Stored frozen at °C.
  • the concentration of HGF protein which was another index, decreased at the upper limit of 5,794 pg / mL on Day 7, suggesting that the quality of the recovered culture supernatant deteriorated in long-term culture exceeding 1 week.
  • the maximum secreted amount on Day 35 reaches 7,391 pg / mL, and 5,000 The period of recovery at pg / mL or higher was very long, from Day 21 to Day 50.
  • Glucose the main energy source of the cells, was quantified to evaluate changes in the concentration of the medium during long-term culture.
  • a commercially available kit was used for glucose determination according to the manual (Glucose Colorimetric Assay Kit 2; BioVision). The results are shown in Table 4 and FIG.

Abstract

[Problem] To provide a culture device. [Solution] A hollow fiber cell culture device for producing a culture supernatant, said culture device comprising: a filter housing 1; hollow fibers 3 existing in the filter housing and having a pore size of from 5 nm to 1 μm inclusive, into which cells are introduced via a cell introduction part 5; a first end cap 6a for sealing a first end 4a of the hollow fibers 3 and the filter housing 1; a culture liquid introduction part 7 for introducing a culture liquid into the filter housing; and a culture liquid discharge part 9 for discharging the culture liquid having passed through the inside of the filter housing.

Description

中空糸細胞培養装置,細胞培養方法,培養上清の製造方法Hollow fiber cell culture device, cell culture method, method for producing culture supernatant
本発明は, 中空糸細胞培養装置及びその装置を用いた細胞培養方法,培養上清の製造方法に関する。 The present invention relates to a hollow fiber cell culture device, a cell culture method using the device, and a method for producing a culture supernatant.
特開2017-176043号公報には,中空糸を用いた細胞培養方法が記載されている。この出願では,中空糸の中に間葉系幹細胞を播種した上で,中空糸の中に細胞及び培養液を循環させ,細胞から分泌される生理活性を有する有用成分を,中空糸内に高濃度に留めて,中空糸内から培養上清を回収する。この文献において,中空糸の外側を流れる培養液中に,中空糸内における細胞からの分泌物が流出することを可能なかぎり制限することが意図されている。 Japanese Patent Application Laid-Open Publication No. 2017-176043 describes a cell culture method using hollow fibers. In this application, a mesenchymal stem cell is seeded in a hollow fiber, cells and a culture solution are circulated in the hollow fiber, and a useful component having a physiological activity secreted from the cell is added to the hollow fiber. Keep the concentration, and collect the culture supernatant from the hollow fiber. In this document, it is intended to restrict as much as possible the secretion from cells in the hollow fiber into the culture flowing outside the hollow fiber.
特開2017-176043号公報JP 2017-176043 A
 本発明は,培養上清が医薬品となることを想定した際の高い頑健性を有し,効率的で生産コストを下げた大量製造に活用可能な技術を提供することを目的とする。 (4) An object of the present invention is to provide a technique that has high robustness assuming that a culture supernatant is used as a drug, and that can be used for mass production with efficiency and reduced production cost.
 本明細書に記載される解決手段は,基本的には,中空糸内で細胞を培養し,中空糸の外側に培養液を循環させることで,安定的に細胞を培養でき,しかも培養上済を容易に回収でき,これにより高い品質の細胞や培養上清を安価かつ大量に得ることができるという知見に基づく。 Basically, the solution described in the present specification is capable of culturing cells stably by culturing the cells inside the hollow fiber and circulating the culture solution outside the hollow fiber. Based on the knowledge that high-quality cells and culture supernatants can be obtained inexpensively and in large quantities.
 本明細書において開示される装置は,培養上清を製造するための中空糸細胞培養装置である。そして,この装置は,
 フィルターハウジング1と,
 フィルターハウジングの内部に存在する中空糸3であって,ポアサイズが5nm以上1μm以下であり,中空糸3の第1及び第2の末端4a,4bはフィルターハウジング1の第1及び第2の端部1a,1bと接続されたものであり,中空糸3は細胞導入部5により内部に細胞が導入されるものと,
中空糸3の第1の末端4aと,フィルターハウジング1を密閉するための第1のエンドキャップ6aと,
 フィルターハウジング1と接続され,フィルターハウジングの内部に培養液を導入するための培養液導入部7であって,フィルターハウジングの内部に培養液を供給するための培養液供給路8と接続されるものと,
 フィルターハウジング1と接続され,フィルターハウジングの内部を経た培養液を排出するための培養液排出部9であって,フィルターハウジングの内部の培養液を排出するための培養排出路10と接続されるものと,を有する,中空糸細胞培養装置である。
The apparatus disclosed in the present specification is a hollow fiber cell culture apparatus for producing a culture supernatant. And this device is
Filter housing 1,
The hollow fiber 3 present inside the filter housing, having a pore size of 5 nm or more and 1 μm or less, and the first and second ends 4 a and 4 b of the hollow fiber 3 are the first and second ends of the filter housing 1. 1a and 1b, the hollow fiber 3 having a cell introduced therein by a cell introduction unit 5;
A first end 4a of the hollow fiber 3, a first end cap 6a for sealing the filter housing 1,
A culture solution introduction unit 7 connected to the filter housing 1 for introducing a culture solution into the filter housing, and connected to a culture solution supply passage 8 for supplying a culture solution into the filter housing; When,
A culture medium discharge section 9 connected to the filter housing 1 for discharging the culture medium passing through the inside of the filter housing, and connected to a culture discharge path 10 for discharging the culture medium inside the filter housing. And a hollow fiber cell culture device comprising:
 この装置は,培養液供給路(8)と,
培養液供給路(8)に設けられ,培養液導入部(7)を介してフィルターハウジング(1)内に培養液を送るための送液装置(11)をさらに有する,装置であることが好ましい。
This device comprises a culture solution supply channel (8),
The device is preferably provided in the culture solution supply passage (8) and further having a liquid sending device (11) for sending the culture solution into the filter housing (1) through the culture solution introduction section (7). .
 この装置は,中空糸(3)が,内腔を円形にした際の直径が,0.1mm以上1.6mm以下であるものが好ましい。 装置 In this device, the hollow fiber (3) preferably has a diameter of 0.1 mm or more and 1.6 mm or less when the inner lumen is made circular.
 この装置は,細胞導入部(5)をさらに有し,
細胞導入部(5)は,第1のエンドキャップ(6a)を連結する中空糸(3)に対応した部位に接続され,細胞が中空糸フィルターの内腔に導入される,装置であることが好ましい。
This device further has a cell introduction part (5),
The cell introduction part (5) is connected to a site corresponding to the hollow fiber (3) connecting the first end cap (6a), and the cell is introduced into the lumen of the hollow fiber filter. preferable.
この装置は,細胞導入部5をさらに有し,
細胞導入部5は,第1のエンドキャップ6aを連結する中空糸フィルターに対応した部位に設けられた空間体積を持つ円筒状の容積部であり,円筒状の容積部の一方の末端には,ガスケットを有した押し子が挿入され,円筒状の容積部のもう一方の末端は中空糸フィルターに連結され,押し子を中空糸フィルターの方向に押し込むことにより,細胞が中空糸フィルターの内腔に導入される,装置であることが好ましい。
This device further has a cell introduction part 5,
The cell introduction part 5 is a cylindrical volume part having a space volume provided at a part corresponding to the hollow fiber filter connecting the first end cap 6a, and one end of the cylindrical volume part has: A pusher with a gasket is inserted, and the other end of the cylindrical volume is connected to a hollow fiber filter. By pushing the pusher in the direction of the hollow fiber filter, cells are inserted into the lumen of the hollow fiber filter. Preferably, the device is introduced.
 この装置は,中空糸3の第2の末端4bと,フィルターハウジング1を密閉するための第2のエンドキャップ6bをさらに有する,装置であることが好ましい。 This device is preferably a device further comprising a second end 4b of the hollow fiber 3 and a second end cap 6b for sealing the filter housing 1.
 この装置を用いて培養上清を製造できる。この製造方法は,
 中空糸3の内部に,細胞導入部5を介して細胞を導入する細胞導入工程と,
 培養液導入部7を介してフィルターハウジング内部に,培養液を供給する培養液供給工程と,
 培養液排出部9から,フィルターハウジング内部の培養液を,排出する培養液排出工程と,中空糸3の内部で細胞を培養する工程と,
 培養液排出工程により得られた排出液から培養上清を回収する培養上清回収工程と,
 を含む,培養上清の製造方法である。
Using this apparatus, a culture supernatant can be produced. This manufacturing method
A cell introduction step of introducing cells into the hollow fiber 3 via the cell introduction part 5;
A culture solution supply step of supplying a culture solution into the filter housing via the culture solution introduction unit 7;
A culture solution discharging step of discharging the culture solution inside the filter housing from the culture solution discharge section 9, and a step of culturing cells inside the hollow fiber 3;
A culture supernatant collecting step of collecting a culture supernatant from the discharged liquid obtained in the culture liquid discharging step;
And a method for producing a culture supernatant.
 本発明によれば, 培養上清が医薬品となることを想定した際の高い頑健性を有し,効率的で生産コストを下げた大量製造に活用可能な技術を提供できる。 According to the present invention, it is possible to provide a technique which has high robustness assuming that a culture supernatant is used as a drug, and which can be used for mass production with an efficient and reduced production cost.
 中空糸の内腔に細胞を密閉し,その内腔の培養液の移動は,中空糸フィルターを介した,中空糸外部との拡散によるものが主であることを特徴とする本発明は,間葉系幹細胞のように,お互いの細胞が強固に凝集する細胞において,大きな効果を生じる。これまでの中空糸培養法により,長期間にわたり間葉系幹細胞を培養することを考えた場合,中空糸の内腔に播種された間葉系幹細胞は,容易に凝集体を構成し,そこで増殖が可能な培養条件を提供されると,中空糸の内腔を塞ぐ形で循環する培養液を遮断してしまう。たとえ複数本ある中空糸のうちの全体が細胞で閉塞しない場合においても,塞栓した中空糸とそうでない中空糸とでは,培養条件や細胞の性状,品質は同等であるとすることは難しく,均一で頑健な製造方法として,医薬品開発等に採用することは,リスクが予想される。また,中空糸内腔を細胞で遮蔽されないほどの太い中空糸を使用した場合には,細胞増殖後には,細胞凝集塊の深層部で栄養枯渇により細胞死が生じる恐れがある。 The present invention is characterized in that cells are sealed in the lumen of the hollow fiber, and the movement of the culture solution in the lumen is mainly caused by diffusion to the outside of the hollow fiber through the hollow fiber filter. It has a great effect on cells where each other cells are tightly aggregated, such as leaf stem cells. Considering the long-term culture of mesenchymal stem cells by the conventional hollow fiber culture method, the mesenchymal stem cells seeded in the hollow fiber lumen easily form aggregates and proliferate there. If the culture conditions are provided, the circulating culture solution is blocked while closing the hollow fiber lumen. Even if the whole of the multiple hollow fibers is not occluded by cells, it is difficult to achieve the same culture conditions, cell properties, and quality between the plugged and non-embedded hollow fibers. The risk is expected to be adopted as a robust and robust manufacturing method for drug development. In addition, when a hollow fiber is used that is so thick that the inner cavity of the hollow fiber is not shielded by cells, cell death may occur due to nutrient depletion in the deep part of the cell aggregate after cell proliferation.
 また,業界としてこれまで,中空糸フィルターを用いた細胞培養において,細胞が存在する側の培養液を循環させる方式しか存在しなかった理由は,中空糸の内腔で細胞からの産生物の効率的な回収には,フィルターを介して反対側の空間の培養液ではなく,細胞が存在する側の空間の培養液として回収する必要があり,細胞が中空糸の内腔に存在する場合には,中空糸の外側には効率的な分泌成分の回収が困難であると考えられていたためである。 In addition, the only reason in the industry that cell culture using a hollow fiber filter has so far been to circulate the culture medium on the side where cells are present is due to the efficiency of products from cells in the lumen of the hollow fiber. In order to recover the cells, it is necessary to collect the cells through the filter not as the culture medium in the opposite space but as the culture medium in the space where the cells exist. It was thought that it was difficult to efficiently collect secretory components outside the hollow fiber.
 本発明者は,既法にとらわれない柔軟な発想により,適切な内径の中空糸の内腔を細胞で閉塞させ,中空糸内腔における培養液の積極的な送液を行わない方式を開発した。それに代わって,中空糸外部の培養液を適切に交換・循環させることにより,中空糸内部の細胞を,長期間健全に維持することに成功し,かつ,十分な生物活性を有する培養上清を,その期間持続的に,中空糸外部で回収可能であることを見出した。 The present inventor has developed a method in which the lumen of a hollow fiber having an appropriate inner diameter is closed with cells and a culture medium is not actively sent in the lumen of the hollow fiber, based on a flexible idea that is not restricted to the conventional method. . Instead, by appropriately exchanging and circulating the culture medium outside the hollow fiber, the cells inside the hollow fiber can be maintained healthy for a long time, and the culture supernatant having sufficient biological activity can be obtained. , It was found that it can be recovered outside the hollow fiber for the duration.
 これにより,高い頑健性を有し,製造コストの低減が可能な培養上清製造方法を完成させ,且つその製造方法は,数百から数千リットルの培養スケールにスケールアップ可能な技術として提供可能となった。 As a result, a method for producing a culture supernatant that has high robustness and can reduce production costs has been completed, and the production method can be provided as a technology that can be scaled up to a culture scale of several hundred to several thousand liters. It became.
図1は,培養装置の構成例を示す概念図である。FIG. 1 is a conceptual diagram showing a configuration example of a culture device. 図2は,ヘルールの例を示す概念図である。FIG. 2 is a conceptual diagram illustrating an example of a ferrule. 図3は,細胞導入部の例を示す概念図である。FIG. 3 is a conceptual diagram illustrating an example of a cell introduction unit. 図4は,中空糸内腔から取り出した細胞を示す図面に代わる写真である。FIG. 4 is a photograph instead of a drawing showing cells taken out from the hollow fiber lumen. 図5は,ELISA法を用いて測定されたTIMP2タンパク質(図5(a)及びHGFタンパク質(図5(b)の定量分析の結果を示す図面に代わるグラフである。FIG. 5 is a graph instead of a drawing showing the results of quantitative analysis of TIMP2 protein (FIG. 5 (a) and HGF protein (FIG. 5 (b)) measured using ELISA. 図6は,dsDNAの定量分析の結果を示す図面に代わるグラフである。FIG. 6 is a graph instead of a drawing showing the results of quantitative analysis of dsDNA. 図7は,グルコースの定量分析の結果を示す図面に代わるグラフである。FIG. 7 is a graph instead of a drawing showing the result of quantitative analysis of glucose. 図8は,フィルターハウジング末端の様子を示す概念図である。FIG. 8 is a conceptual diagram showing the appearance of the end of the filter housing.
 本明細書に開示される第1の側面は, 培養上清を製造するための中空糸細胞培養装置に関する。この装置は,基本的には,中空糸内で細胞(例えば幹細胞)を培養し,中空糸の外側に培養液を循環させることで,安定的に細胞を培養でき,しかも培養上清を容易に回収できるというものである。この装置を,中空糸フィルターモジュールともよぶ。 The first aspect disclosed herein relates to a hollow fiber cell culture device for producing a culture supernatant. Basically, this device cultivates cells (for example, stem cells) in a hollow fiber and circulates a culture solution outside the hollow fiber, so that cells can be cultured stably and the culture supernatant is easily removed. It can be collected. This device is also called a hollow fiber filter module.
 図1は,培養装置の構成例を示す概念図である。図1に示されるように,この装置は, フィルターハウジング1と,フィルターハウジングの内部に存在する中空糸3と,第1のエンドキャップ6aと,培養液導入部7と,培養液排出部9とを有する。 (1) FIG. 1 is a conceptual diagram showing a configuration example of a culture device. As shown in FIG. 1, the apparatus comprises: a filter housing 1, a hollow fiber 3 existing inside the filter housing, a first end cap 6 a, a culture solution introduction unit 7, and a culture solution discharge unit 9. Having.
 フィルターハウジング1は,中空糸を収容し,内部に培養液を循環させるための筐体である。公知の中空糸フィルタにおけるハウジングを,フィルターハウジングとして用いることができる。フィルターハウジングの大きさは,得ようとする上清の量に応じて適宜調整すればよい。 The filter housing 1 is a housing for housing the hollow fiber and circulating the culture therein. A housing of a known hollow fiber filter can be used as a filter housing. The size of the filter housing may be appropriately adjusted according to the amount of the supernatant to be obtained.
 中空糸(3)は,フィルターハウジングの内部に存在する中空糸(内部に空隙を有するフィルター)である。中空糸のポアサイズ(公称ポアサイズ)の例は5nm以上1μm以下,好ましくは0.1μm以上0.65μm以下である。中空糸3は,例えば,内腔を円形にした際の直径の例が,0.1mm以上1.6mm以下である。中空糸フィルターモジュールを構成する中空糸について,中空糸内腔の直径の例は0.02mmから1 .6mmの範囲で選択され,0.1mm以上1.6mm以下でもよいし,0.1mm以上0.5mm以下でもよい。中空糸素材としては,ポリエーテルスルホン(PES),セルロースアセテート(CE),ポリスルフォン(PS),ポリビニルピロリドン(PVDF)ポリアクリルニトリル(PAN)など,親水性を有し,タンパク質吸着が少ない素材から選択されることが好適であるが,フィルターとしての特性を有し,かつ,ガンマ線滅菌,オートクレーブ滅菌,酸化エチレンガス滅菌等のいずれかの滅菌工程において,フィルターとしての実質的性能を損なうことなく耐性を示すものであれば,素材が限定されることはない。また,中空糸膜の公称孔径の例は,5nm(3kDaに相当)から1μmまでの限外濾過膜または精密濾過膜であり,好適には0.1μmから0.65μmの範囲の精密濾過膜であり,目的とする培養上清中の回収成分の分子量や立体構造,疎水的,イオン的相互作用等の結果としての,実際の透過率に応じて,任意に選択され得る。また,中空糸の長径側の管長は,20cmから100cmが扱いやすく好適であるが,その他の本発明を構成する中空糸細胞培養装置を設計する上で許容される範囲において,限定されるものではない。 The hollow fiber (3) is a hollow fiber (a filter having a void inside) existing inside the filter housing. An example of the pore size (nominal pore size) of the hollow fiber is 5 nm or more and 1 μm or less, preferably 0.1 μm or more and 0.65 μm or less. The hollow fiber 3 has, for example, an example of a diameter of 0.1 mm or more and 1.6 mm or less when the inner cavity is circular. With respect to the hollow fiber constituting the hollow fiber filter module, an example of the diameter of the hollow fiber lumen is selected in the range of 0.02 mm to 1.6 mm, and may be 0.1 mm or more and 1.6 mm or less, or 0.1 mm or more and 0 mm or less. 0.5 mm or less. Hollow fiber materials include materials with low hydrophilicity and low protein adsorption, such as polyethersulfone (PES), cellulose acetate (CE), polysulfone (PS), polyvinylpyrrolidone (PVDF) and polyacrylonitrile (PAN). It is preferable to select it, but it has the characteristics of a filter and is resistant in any sterilization process such as gamma sterilization, autoclave sterilization, ethylene oxide gas sterilization, etc. without impairing the substantial performance of the filter. , The material is not limited. An example of the nominal pore size of the hollow fiber membrane is an ultrafiltration membrane or microfiltration membrane of 5 nm (corresponding to 3 kDa) to 1 μm, preferably a microfiltration membrane of 0.1 μm to 0.65 μm. Yes, it can be arbitrarily selected according to the actual transmittance as a result of the molecular weight and tertiary structure of the target recovered supernatant in the culture supernatant, hydrophobicity, ionic interaction, and the like. Further, the length of the tube on the long diameter side of the hollow fiber is preferably 20 cm to 100 cm, which is easy to handle and suitable, but is not limited as long as it is allowable in designing the hollow fiber cell culture apparatus constituting the present invention. Absent.
 中空糸3の第1及び第2の末端4a,4bはフィルターハウジング1の第1及び第2の端部1a,1bと接続されたものであることが好ましい。ただし,それぞれ同側の中空糸3の第1及び第2の末端4a,4bとフィルターハウジング1の第1及び第2の端部1a,1bを,エンドキャップ6a,bで閉塞させた後は,中空糸3の内腔とフィルターハウジング1の内部空間は,空間的つながりをもたないように構成されることが好ましい。図8は,中空糸を収容した後のフィルターハウジングの末端の例を示す概念図である。図8に示される例では,フィルターハウジングの筐体21内部には,中空糸が収容され,中空糸の内腔につながる開口部23がフィルターハウジングの末端においてそろえられている。この状態で,エンドキャップがフィルターハウジングに取り付けられると,開口部23がエンドキャップにより密閉され,中空糸の内腔が閉鎖系を形成し,中空糸3の内腔とフィルターハウジング1の内部空間は,空間的つながりをもたないようになる。もっとも,中空糸本体自体に微小な孔が複数存在するので,その微小な孔を通過できる物質の授受を行えることとなる。図8に示される例のように,フィルターハウジングの末端領域は,中空糸の穴以外の部分が集合したもの25により密閉されていてもよい。このようにすることで,細胞導入部5により中空糸1の内部に幹細胞が導入された後に,前空糸フィルターモジュールに装着されるための第1のエンドキャップ6aをとりつけると,幹細胞や培養液の移動が中空糸3の第1の末端4aの開口部を通じて生じないようにされる。つまり,中空糸3の第1の末端4aからは培養液が流入されない状態とされる。また,第2のエンドキャップ6bが取り付けられた場合,幹細胞や培養液の移動が中空糸3の第2の末端4bの開口部を通じて生じないように,中空糸3の第2の末端4bが密閉される。すると,中空糸3の第2の末端4bからは培養液が流入されない状態とされる。 The first and second ends 4a, 4b of the hollow fiber 3 are preferably connected to the first and second ends 1a, 1b of the filter housing 1. However, after closing the first and second ends 4a and 4b of the hollow fiber 3 and the first and second ends 1a and 1b of the filter housing 1 with the end caps 6a and 6b, respectively, It is preferable that the inner space of the hollow fiber 3 and the internal space of the filter housing 1 are configured to have no spatial connection. FIG. 8 is a conceptual diagram showing an example of the end of the filter housing after housing the hollow fiber. In the example shown in FIG. 8, a hollow fiber is accommodated in the housing 21 of the filter housing, and the openings 23 leading to the hollow fiber lumen are aligned at the end of the filter housing. In this state, when the end cap is attached to the filter housing, the opening 23 is closed by the end cap, the lumen of the hollow fiber forms a closed system, and the lumen of the hollow fiber 3 and the internal space of the filter housing 1 are separated. , To have no spatial connection. However, since there are a plurality of micro holes in the hollow fiber main body itself, it is possible to exchange substances capable of passing through the micro holes. As in the example shown in FIG. 8, the terminal region of the filter housing may be sealed by an assembly 25 other than the holes of the hollow fibers. In this way, after the stem cells have been introduced into the hollow fiber 1 by the cell introduction unit 5 and the first end cap 6a to be attached to the front empty fiber filter module is attached, the stem cells and the culture solution Is prevented from occurring through the opening at the first end 4a of the hollow fiber 3. That is, the state is such that the culture solution does not flow from the first end 4a of the hollow fiber 3. Further, when the second end cap 6b is attached, the second end 4b of the hollow fiber 3 is sealed so that the movement of the stem cells and the culture solution does not occur through the opening of the second end 4b of the hollow fiber 3. Is done. Then, the culture solution does not flow from the second end 4 b of the hollow fiber 3.
 中空糸3は細胞導入部5によりその内部に細胞が導入されるものである。細胞の例は幹細胞である。幹細胞の例は,間葉系幹細胞である。細胞の種類は特に限定されるものではない。細胞外に目的成分を分泌または産生する細胞種であり,その目的成分の回収を目的とする用途であれば良い。とりわけ本発明の効果を享受できる好適な細胞は接着性の細胞であり,さらに好適には,間葉系幹細胞が選択される。間葉系幹細胞は,ヒト,イヌ,ウマ,ネコ,ブタ,マウス,ラット,などから分離・培養されたものが使用される。間葉系幹細胞が分離される組織としては,臍帯,臍帯血,骨髄,羊膜,胎盤,歯髄,脂肪,軟骨,月経血,母乳,などが挙げられ,その由来組織や動物種は特に限定されるものではない。また,間葉系幹細胞は,不死化細胞株樹立のためや,長期培養に耐えうる細胞特性の付与,または培養上清の効果性向上のために,遺伝子導入や遺伝子改変が行われたものを用いても良い。 The hollow fiber 3 is a cell into which a cell is introduced by the cell introduction part 5. An example of a cell is a stem cell. An example of a stem cell is a mesenchymal stem cell. The type of cell is not particularly limited. It is a cell type that secretes or produces a target component outside the cell, and may be used for the purpose of recovering the target component. Particularly preferred cells that can enjoy the effects of the present invention are adherent cells, and more preferably, mesenchymal stem cells are selected. Mesenchymal stem cells used are those isolated and cultured from humans, dogs, horses, cats, pigs, mice, rats, and the like. Tissues from which mesenchymal stem cells are separated include umbilical cord, cord blood, bone marrow, amniotic membrane, placenta, dental pulp, fat, cartilage, menstrual blood, breast milk, etc., and the source tissues and animal species are particularly limited Not something. In addition, mesenchymal stem cells must have been transduced or modified to establish immortalized cell lines, to provide cell characteristics that can withstand long-term culture, or to improve the effectiveness of culture supernatants. May be used.
 培養液について,その組成や種類には特に限定を受けない。従前のフラスコ等による接着培養法と同様の培養液を使用してもよい。間葉系幹細胞を例とした場合,10%血清含有αMEM培地で増殖されることが一般的である。さらに優れた細胞増殖と工程短縮のため,各社から販売される培地や,独自処方の培地を用いても良い。また,培養上清の産業的な価値が,治療用途や化粧品原料といった生体に用いる剤であることを鑑みた際に,培養液の組成が,ヒトや動物由来成分を使用しないものであることが望ましい(例:細胞培養キットProcul AD(登録商標);ロート製薬)。また,間葉系幹細胞は種々の刺激によってその作用を増強する技術が報告されており,より効果的な治療効果を有する細胞と培養上清を調製する上で,それらの技術を活用した培養液を使用することもできる。このように,間葉系幹細胞を増殖するための培地は,様々な選択肢が存在し,組織の由来と生物種に適合した性能の培地を選定し,実施者が求める機能を有する細胞および培養上清を調製可能な,任意の培養液を使用すれば良い。 The composition and type of the culture are not particularly limited. A culture solution similar to that used in the conventional adhesion culture method using a flask or the like may be used. When mesenchymal stem cells are taken as an example, they are generally grown in an αMEM medium containing 10% serum. In order to further improve cell growth and shorten the process, a medium sold by each company or a medium with a unique formulation may be used. Also, considering that the industrial value of the culture supernatant is an agent used in living organisms such as therapeutic applications and cosmetic raw materials, the composition of the culture solution may not use human or animal-derived components. Desirable (eg, cell culture kit Procul キ ッ ト AD®; Rohto Pharmaceutical). In addition, a technique has been reported to enhance the action of mesenchymal stem cells by various stimuli. In order to prepare cells having a more effective therapeutic effect and a culture supernatant, a culture solution utilizing these techniques has been reported. Can also be used. As described above, there are various options for a medium for growing mesenchymal stem cells, and a medium having a performance suitable for the origin of the tissue and the species of the organism is selected. Any culture solution that can be used to prepare the sera may be used.
 また,培養上清の製造方法によっては,培養上清の回収段階で,細胞増殖を目的としない,基本培地に近い培養液で維持する方法が報告されている。この理由としては,細胞増殖を血清含有培地で行った場合において,血清等の持ち込みを可能な限り排除する目的が挙げられる。 方法 In addition, depending on the method of producing the culture supernatant, there has been reported a method of maintaining a culture solution close to the basal medium, which is not intended for cell growth, at the stage of collecting the culture supernatant. This is for the purpose of eliminating as much serum as possible as possible when cell growth is performed in a serum-containing medium.
 中空糸内に播種した細胞が,中空糸の内部で不均等な凝集体を形成する可能性を回避したい場合には,培養液にセルロース系水溶性高分子のメチルセルロース(MC)やカルボキシメチルセルロース(CMC),その他セルロース誘導体,またはその他の水溶性高分子のポリエチレングリコール(PEG),ポリビニルピロリドン(PVP),またはアルギン酸ナトリウム等及びそのゲル化剤を使用して,培養液の粘度を上昇させる手法を用いても良い。その場合のそれら水溶性高分子の濃度は,既報を参考に設定することができる。これにより,中空糸内の細胞培養空間において,均一サイズのスフェロイド形成と,それらの均一な空間配置が可能となる。 If you want to avoid the possibility that cells seeded in the hollow fiber form uneven aggregates inside the hollow fiber, add the cellulosic water-soluble polymer methylcellulose (MC) or carboxymethylcellulose (CMC) to the culture medium. ), Other cellulose derivatives, or other water-soluble polymers such as polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), or sodium alginate and their gelling agents, using a technique to increase the viscosity of the culture solution. May be. In such a case, the concentration of the water-soluble polymer can be set with reference to the previous report. As a result, it is possible to form spheroids of uniform size in the cell culture space in the hollow fiber and to arrange them uniformly in space.
 第1のエンドキャップ6aは,中空糸3の第1の末端4aと,フィルターハウジング末端1aを密閉するためのものである。エンドキャップは,中空糸フィルターモジュールの両末端を密閉するために使用される。細胞や培養液の移動が,中空糸の両末端の開口部を通じて生じないように,中空糸末端4a,bを密閉することが好ましい。そのために,中空糸末端4a,bに接触するエンドキャップとして,円板状のシリコンガスケットが最も好適であり,その外側に,ヘルール接続用クランプ等で,中空糸フィルターモジュールに固定するための樹脂製パーツが付属しても良い。エンドキャップは中空糸フィルターモジュール1本あたり2つ用意され,1つは中空糸内腔への細胞導入前に装着されることが好ましい。もう1つは,細胞を導入した後に,細胞導入側の密閉のために装着される。細胞を導入した後に装着するエンドキャップは4a,エンドキャップとしての機能も併せ持つよう構成された,細胞導入部5で代替しても良い。いずれの側のエンドキャップについても,細胞導入後の培養上清回収のための培養期間中に,開封されないことが好ましい。 The first end cap 6a is for sealing the first end 4a of the hollow fiber 3 and the end 1a of the filter housing. End caps are used to seal both ends of the hollow fiber filter module. The ends of the hollow fibers 4a and b are preferably sealed so that movement of cells and culture medium does not occur through the openings at both ends of the hollow fiber. For this purpose, a disc-shaped silicon gasket is most suitable as an end cap that comes into contact with the ends 4a and 4b of the hollow fibers, and a resin cap for fixing the hollow fiber filter module to the outside with a ferrule connection clamp or the like. Parts may be attached. Two end caps are prepared for each hollow fiber filter module, and one is preferably attached before introducing cells into the hollow fiber lumen. The other is mounted to seal the cell introduction side after the cells are introduced. The end cap to be attached after the cells are introduced may be replaced with the cell introduction unit 5 configured to also have a function as the end cap 4a. It is preferable that the end caps on either side are not opened during the culture period for collecting the culture supernatant after cell introduction.
 細胞導入部5の例は,第1のエンドキャップ6aの中空糸3に対応した部位に設けられたヘルール接続ポートを有しており,ヘルール接続ポートを介して,細胞が中空糸フィルターの内腔に導入されるものである。細胞導入部5の別の例は,第1のエンドキャップ6aが連結されるフィルターハウジング末端1a及び中空糸末端4aに対応した部位に設けられた,空間体積を持つ円筒状の容積部であり,円筒状の容積部の一方の末端には,ガスケットを有した押し子が挿入され,円筒状の容積部のもう一方の末端は中空糸3に連結され,押し子を中空糸3の方向に押し込むことにより,細胞が中空糸3の内腔に導入される,装置であることが好ましい。 The example of the cell introduction part 5 has a ferrule connection port provided at a portion corresponding to the hollow fiber 3 of the first end cap 6a, and the cell is connected to the lumen of the hollow fiber filter through the ferrule connection port. It is introduced to. Another example of the cell introduction part 5 is a cylindrical volume part having a spatial volume provided at a position corresponding to the filter housing end 1a and the hollow fiber end 4a to which the first end cap 6a is connected, A pusher having a gasket is inserted into one end of the cylindrical volume, and the other end of the cylindrical volume is connected to the hollow fiber 3 and pushes the pusher in the direction of the hollow fiber 3. Thus, the device is preferably one in which cells are introduced into the lumen of the hollow fiber 3.
 細胞導入部5は,中空糸内腔に細胞を均一に導入するための要素として使用される。その形態は,用いる中空糸フィルターモジュールのサイズや導入細胞懸濁液量によって適宣選択される。 The cell introduction part 5 is used as an element for uniformly introducing cells into the hollow fiber lumen. The form is appropriately selected depending on the size of the hollow fiber filter module used and the amount of the cell suspension to be introduced.
 例えば,医薬品製造などの産業化段階等においては,中空糸フィルターモジュール1本あたり,数リットル以上の細胞懸濁液が導入されることが想定される。その場合,中空糸フィルターモジュール末端のヘルール接続ポート形状に対応した,ヘルール接続ポートを有するチュービングを別途用意し,その反対側に,細胞懸濁液を含むプロセスバックや容器を接続し,ペリスタティックポンプの駆動送液により,細胞をヘルール接続ポート側へ送液できる。図2は,ヘルールの例を示す概念図である。図2は日東金属工業株式会社のウェブサイトより引用したものである。ヘルールを介して,細胞導入部5とフィルターハウジング末端1a及び中空糸末端4aは連結され,中空糸フィルター内部に無菌的に細胞を導入できる。そして,細胞を中空糸内に導入した後には,中空糸フィルターを密封できる。ヘルール接続は,サニタリー配管やサニタリー継手ともよばれる。ヘルール接続は,例えばヘルール,ガスケット,及びクランプバンドを用いて達成できる。ヘルールは接続部に溝があり、十字形状(又はOリング形状)のガスケットを間に挟んでクランプバンドで締め付けて固定する。 For example, in the industrialization stage of pharmaceutical production, etc., it is assumed that a cell suspension of several liters or more is introduced per hollow fiber filter module. In this case, a tubing having a ferrule connection port corresponding to the shape of the ferrule connection port at the end of the hollow fiber filter module is prepared separately, and a process bag or container containing a cell suspension is connected to the other side, and a peristatic pump is connected. The cells can be sent to the ferrule connection port side by the driving liquid sending. FIG. 2 is a conceptual diagram illustrating an example of a ferrule. FIG. 2 is quoted from the website of Nitto Metal Industry Co., Ltd. The cell introduction part 5, the filter housing end 1a and the hollow fiber end 4a are connected via a ferrule, and cells can be aseptically introduced into the hollow fiber filter. After the cells are introduced into the hollow fiber, the hollow fiber filter can be sealed. Ferrule connections are also known as sanitary piping and sanitary fittings. Ferrule connections can be achieved, for example, using ferrules, gaskets, and clamp bands. The ferrule has a groove in a connection portion, and is fixed by clamping with a clamp band with a cross-shaped (or O-ring shaped) gasket interposed therebetween.
また,小スケール培養段階においては,フィルターハウジング末端1a,1bをオスまたはメス型のルアーロック形状のポートとし,ルアーロック形状の先端を有する市販の注射等(例:ニプロシリンジロックタイプ,医療機器届出番号27B1X00045000033:ニプロ)などを,細胞導入部として使用することもできる。 In the small-scale culture stage, the filter housing ends 1a and 1b are male or female luer-lock shaped ports, and commercially available injections or the like with luer-lock shaped tips (eg, Nipro syringe lock type, medical device notification) No. 27B1X00045000033: Nipro) and the like can also be used as a cell introduction part.
 さらには,細胞導入部と前述のエンドキャップの目的を1つにした部品としても選択することが可能である。図3は,細胞導入部の例を示す概念図である。注射等のような構造を有する細胞導入部5は,フィルターハウジング末端1a,1bの接続形式に合わせた接続ポートを有しても良く,より好適には,両方にヘルール接続ポートが選択される。また別の方式によっては,中空糸フィルターモジュールと細胞導入部5が,それらの製造時にあらかじめ連結されていても良い。図3の例では,細胞導入部5の内部に細胞懸濁液を封入しておく。そして,ヘルール接続などを用いて,フィルターハウジング末端1aと接続する。そして,ピストン押子を押すことで,中空糸3内部に細胞の懸濁液を注入する。このようにして,細胞を中空糸内に導入できる。細胞を中空糸内に注入した後は,ガスケットが中空糸末端4aを密封する。この細胞導入部5はその他,外筒,ガスケット,押子,ロック機構から少なくとも構成される。これを用いると,ガスケットにより中空糸内腔に細胞が押し出された時点で,細胞導入側の中空糸末端4aはガスケットで密閉され,ロック機構により,ガスケットはその位置で固定することとなる。これにより,細胞導入後に細胞導入側のフィルターハウジング末端1aを開封する必要がないため,汚染リスクを低減できる。また,細胞導入側のフィルターハウジング末端1aと中空糸末端4aの閉塞のため,専用のエンドキャップ6aを用いても良い。 Furthermore, it is also possible to select a part that combines the purpose of the cell introduction part and the end cap described above. FIG. 3 is a conceptual diagram illustrating an example of a cell introduction unit. The cell introduction part 5 having a structure such as injection may have a connection port corresponding to the connection type of the filter housing ends 1a and 1b, and more preferably a ferrule connection port is selected for both. Depending on another method, the hollow fiber filter module and the cell introduction part 5 may be connected in advance at the time of their manufacture. In the example of FIG. 3, a cell suspension is sealed inside the cell introduction unit 5. Then, it is connected to the filter housing end 1a using a ferrule connection or the like. Then, by pressing the piston pusher, the cell suspension is injected into the hollow fiber 3. In this way, cells can be introduced into the hollow fiber. After the cells are injected into the hollow fiber, a gasket seals the hollow fiber end 4a. The cell introduction section 5 is at least composed of an outer cylinder, a gasket, a pusher, and a lock mechanism. When this is used, when the cells are pushed into the hollow fiber lumen by the gasket, the end 4a of the hollow fiber on the cell introduction side is sealed with the gasket, and the gasket is fixed at that position by the lock mechanism. This eliminates the need to open the filter housing end 1a on the cell introduction side after the cell introduction, thereby reducing the risk of contamination. Further, a dedicated end cap 6a may be used for closing the filter housing end 1a and the hollow fiber end 4a on the cell introduction side.
 培養液導入部7は,フィルターハウジング1と接続されている。培養液導入部7は,フィルターハウジング1と一体に成形されたものであってもよい。そして,培養液導入部7は,フィルターハウジング1の内部に培養液を導入するための要素である。一方,培養液導入部7は,中空糸3の内部に接続されているものではなく,中空糸の周囲に存在するフィルターハウジング内部の領域に,培養液を導入するためのものである。そして,培養液導入部7は,フィルターハウジングの内部に培養液を供給するための培養液供給路8と接続される。培養液供給路8は,フィルターハウジング1の外に存在する。これにより培養液がフィルターハウジング1の外からフィルターハウジング内に導入される。培養液供給路8は,例えば,培養液を収容した培養液タンクと接続されており,培養液が供給される。 The culture solution introduction unit 7 is connected to the filter housing 1. The culture solution introduction part 7 may be formed integrally with the filter housing 1. The culture solution introduction unit 7 is an element for introducing a culture solution into the inside of the filter housing 1. On the other hand, the culture solution introducing section 7 is not connected to the inside of the hollow fiber 3 but is for introducing the culture solution into a region inside the filter housing existing around the hollow fiber. Then, the culture solution introduction unit 7 is connected to a culture solution supply passage 8 for supplying a culture solution into the filter housing. The culture solution supply path 8 exists outside the filter housing 1. As a result, the culture solution is introduced from outside the filter housing 1 into the filter housing. The culture solution supply path 8 is connected to, for example, a culture solution tank containing a culture solution, and is supplied with the culture solution.
 すなわち,この装置は,フィルターハウジング1内に培養液を導入するための流路培養液供給路8と,中空糸フィルターハウジング外に培養液を排出するための流路培養液排出路10を含むことが好ましい。これらは,中空糸フィルターモジュールの培養液導入部7及び培養液排出部9に接続される。チューブの素材としては,シリコン系,熱可塑性エストラマー系,ポリ塩化ビニル系などが好適な素材として選択される。しかしながら,必ずしもこれらに限定されるものではなく,細胞培養の結果に悪影響を与えず,素材の滅菌処理が可能であり,目的物や成分の変性や意図しない吸着がなく,それらの溶出物に細胞毒性・刺激性・発がん性・発熱性等の毒性が無ければ,任意に選択可能である。 That is, the apparatus includes a flow channel culture solution supply passage 8 for introducing a culture solution into the filter housing 1 and a flow channel culture solution discharge passage 10 for discharging the culture solution outside the hollow fiber filter housing. Is preferred. These are connected to the culture solution introduction unit 7 and the culture solution discharge unit 9 of the hollow fiber filter module. As a material for the tube, a silicon-based material, a thermoplastic elastomer-based material, a polyvinyl chloride-based material, or the like is selected as a suitable material. However, the present invention is not necessarily limited to these, and does not adversely affect the results of cell culture, can sterilize materials, does not denature or unintentionally adsorb target substances and components, and removes cells from these eluates. If there is no toxicity, irritation, carcinogenicity, pyrogenicity, etc., it can be arbitrarily selected.
 なお, 送液装置11をさらに有するものが好ましい。送液装置11は,培養液供給路8に設けられても良いし,培養液排出路10に設けられても良い。送液装置11は,培養液導入部7を介してフィルターハウジング1内に培養液を送り,培養液排出部9を介して培養液を排出するための要素である。送液装置11の例は,ポンプである。フィルターハウジング1内への培養液の供給または循環方法は,いかなる製造スケールにおいても活用可能な方法として,ペリスタティックポンプによる駆動が好適であるが,培養スケールが大きい場合には,シングルユースポンプヘッドとポンプドライバ部から構成される,浮遊型マグネットポンプ(例:PuraLev:LEVITRONIX社)も理想的な送液方法として採用されうる。しかしながら,送液の駆動方式としては,これらに限定されることなく,選択することができる。  It is preferable that the liquid supply device 11 is further provided. The liquid feeding device 11 may be provided in the culture solution supply path 8 or may be provided in the culture solution discharge path 10. The liquid sending device 11 is an element for sending a culture solution into the filter housing 1 through the culture solution introduction unit 7 and discharging the culture solution through the culture solution discharge unit 9. An example of the liquid sending device 11 is a pump. As a method for supplying or circulating the culture solution into the filter housing 1, a method using a peristatic pump is suitable as a method that can be used in any production scale. However, when the culture scale is large, a single-use pump head is required. A floating magnet pump (eg, PuraLev: LEVITRONIX) composed of a pump driver can also be adopted as an ideal liquid sending method. However, the driving method of the liquid sending can be selected without being limited to these.
 培養液貯液容器は,例えば,フィルターハウジング1内に培養液を導入するための培養液供給路8と接続される。培養液貯液容器の形状の例は,円筒型のボトル形状であっても良いし,スピナーフラスコ形状であっても良いし,2Dプロセスバック形状であっても良いし,3Dプロセスバック形状であっても良いし,大規模培養スケールの場合には,ステンレスタンク容器であっても良いフィルターハウジング1内を通して培養液を還流させる場合には,フィルターハウジング1内の培養液を排出するための培養液排出路10も接続されることが好ましい。この装置は,培養状態をモニタリングするための,培養液のサンプリングポートを有しており,また,温度,pH,溶存酸素濃度,溶存二酸化炭素濃度などの各種センターを有しているものが好ましい。また,還流しない培養方式の場合は,フィルターハウジング1内に導入するための培養液を入れる培養液貯液容器の他に,フィルターハウジング1内から培養液を排出された培養液を入れるための,もう1つの培養液貯液容器を有するものが好ましい。 The culture solution storage container is connected to, for example, a culture solution supply passage 8 for introducing a culture solution into the filter housing 1. Examples of the shape of the culture solution storage container may be a cylindrical bottle shape, a spinner flask shape, a 2D process bag shape, or a 3D process bag shape. Alternatively, in the case of a large-scale culture scale, a stainless steel container may be used. In the case where the culture solution is refluxed through the filter housing 1, a culture solution for discharging the culture solution in the filter housing 1 is used. Preferably, the discharge path 10 is also connected. This apparatus preferably has a culture solution sampling port for monitoring the state of culture, and preferably has various centers for temperature, pH, dissolved oxygen concentration, dissolved carbon dioxide concentration and the like. In addition, in the case of a culture system that does not reflux, in addition to a culture solution storage container for storing a culture solution to be introduced into the filter housing 1, a culture solution for discharging the culture solution from the filter housing 1 is also provided. Those having another culture solution storage container are preferred.
 培養液排出部9は,フィルターハウジング1と接続されている。培養液排出部9は,フィルターハウジング1と一体に成形されたものでもよい。培養液排出部9は,フィルターハウジングの内部を経た培養液を排出するための要素である。培養液排出部9は,中空糸の内部と接続されているものではなく,中空糸の周囲に存在するフィルターハウジング内部の領域から培養液を排出するためのものである。培養液排出部9は,フィルターハウジングの内部の培養液を排出するための培養排出路10と接続される。培養排出路10は,フィルターハウジング1の外に存在する。これにより培養液がフィルターハウジング1の外に排出される。 (4) The culture solution discharge section 9 is connected to the filter housing 1. The culture solution discharge section 9 may be formed integrally with the filter housing 1. The culture solution discharge section 9 is an element for discharging the culture solution that has passed through the inside of the filter housing. The culture solution discharge section 9 is not connected to the inside of the hollow fiber, but is for discharging the culture solution from a region inside the filter housing existing around the hollow fiber. The culture solution discharge section 9 is connected to a culture discharge path 10 for discharging the culture solution inside the filter housing. The culture discharge path 10 exists outside the filter housing 1. Thereby, the culture solution is discharged out of the filter housing 1.
 フィルターハウジング,ハウジグ端末接続部,中空糸固定材料,シール材,流路形成ポートといった各要素については,既存の技術や製品を参考に設計することができる。例えば,ハウジング末端接続部については,汎用性の高いヘルールサニタリー接続に対応した設計が好適である。これらについては,その形状や設計は自由に選択することができる。また,それらの素材についてであるが,バイオテクノロジー関連分野で従来使用される,一般的な素材から選択することが好適であるが,必ずしもこれらに限定されるものではなく,細胞培養の結果に悪影響を与えず,素材の滅菌処理が可能であり,目的物や成分の変性や意図しない吸着がなく,それらの溶出物に細胞毒性・刺激性・発がん性・発熱性等の毒性ければ,任意に選択可能である。例えば中空糸をフィルターハウジング末端で束ねて固定するための中空糸固定材料としては,ウレタン樹脂やエポキシ樹脂が許容される。また,各部品を接合し完全な密閉を形成するために使用するシール材には,シリコン素材が好適である。フィルターハウジングには,強靭で剛性が高く,透明であり,様々な薬品への耐性に優れるポリサルフォンなどを選択することが推奨される。流路形成ポートについても,同様にポリサルフォンや,ポリプロピレンなどから選択することができる。 要素 The components such as the filter housing, housing terminal connection, hollow fiber fixing material, sealant, and flow path forming port can be designed with reference to existing technologies and products. For example, as for the housing terminal connection portion, a design corresponding to a highly versatile ferrule sanitary connection is preferable. The shape and design of these can be freely selected. In addition, regarding these materials, it is preferable to select from general materials that are conventionally used in the biotechnology-related field, but it is not necessarily limited to these, and adversely affect the results of cell culture. It is possible to sterilize the material without imparting it, and if there is no denaturation or unintended adsorption of the target substance or component, and if the eluate is toxic such as cytotoxicity, irritation, carcinogenicity, pyrogenicity, etc. Can be selected. For example, as a hollow fiber fixing material for fixing and fixing the hollow fibers at the end of the filter housing, urethane resin or epoxy resin is acceptable. Further, a silicon material is suitable for a sealing material used for joining each component to form a complete seal. It is recommended that the filter housing be made of polysulfone, which is tough, rigid, transparent, and resistant to various chemicals. The channel forming port can be similarly selected from polysulfone, polypropylene, and the like.
  細胞を増殖または維持するために,30℃から42℃の範囲で培養液を制御するための装置が好ましい。より好適には,多くの場合37℃が選択される。細胞が存在する中空糸フィルターモジュールが目的温度に制御されていれば,その温度制御様式は問わない。具体的には,本発明の装置全体を恒温装置のチャンバー内に設置することでも良いし,加温の為に,ジャケットタイプの加温装置で制御しても良い。または,フィルターモジュール1へ培地を送液する側の流路および流路形成ポート付近で加温し,フィルターモジュール1に培養液が送液される直前で,至適温度に到達するように制御することに加え,フィルターモジュール1も至適温度に保つ機構を有し,さらにフィルターモジュール1から培養液が排出される側の流路形成ポートと流路は4から10℃に冷却し,培養液貯液容器も4から10℃に冷却し,長期培養における培地成分や細胞分泌成分の変性や分解を抑制する手法を講じても良い。 装置 In order to proliferate or maintain the cells, an apparatus for controlling the culture solution in the range of 30 ° C. to 42 ° C. is preferable. More preferably, 37 ° C. is often chosen. As long as the hollow fiber filter module in which the cells are present is controlled to the target temperature, the mode of temperature control does not matter. Specifically, the entire apparatus of the present invention may be installed in a chamber of a constant temperature apparatus, or may be controlled by a jacket type heating apparatus for heating. Alternatively, heating is performed in the vicinity of the flow path on the side where the medium is sent to the filter module 1 and the flow path forming port, and control is performed so that the optimum temperature is reached immediately before the culture solution is sent to the filter module 1. In addition, the filter module 1 also has a mechanism for maintaining the optimum temperature, and the flow path forming port and the flow path on the side where the culture solution is discharged from the filter module 1 are cooled to 4 to 10 ° C. to store the culture solution. The liquid container may also be cooled to 4 to 10 ° C. to take measures to suppress denaturation and decomposition of the medium components and cell secretion components in long-term culture.
 この装置を用いて培養上清を製造できる。この製造方法は,
 中空糸3の内部に,細胞導入部5を介して細胞を導入する細胞導入工程と,
 培養液導入部7を介してフィルターハウジング1内部に,培養液を供給する培養液供給工程と,
 培養液排出部9から,フィルターハウジング1内部の培養液を,排出する培養液排出工程と,
 中空糸3内部で細胞を培養する工程と,
 培養液排出工程により得られた排出液から培養上清を回収する培養上清回収工程と,
 を含む,培養上清の製造方法である。
Using this apparatus, a culture supernatant can be produced. This manufacturing method
A cell introduction step of introducing cells into the hollow fiber 3 via the cell introduction part 5;
A culture solution supply step of supplying a culture solution to the inside of the filter housing 1 through the culture solution introduction unit 7;
A culture solution discharging step of discharging the culture solution inside the filter housing 1 from the culture solution discharge section 9;
Culturing cells inside the hollow fiber 3;
A culture supernatant collecting step of collecting a culture supernatant from the discharged liquid obtained in the culture liquid discharging step;
And a method for producing a culture supernatant.
 <播種細胞の調製>
 中空糸3内への播種に必要となる細胞の調製において,上述の培養液と細胞を用いる。播種する細胞は,通常の接着平面培養で調製された,剥離剤で容易に分散可能な細胞が好適であるが,その他にも,マイクロキャリアーを用いた培養や,スフェロイド培養で調製された細胞を用いても良く,中空糸フィルターの内孔に入るサイズの大きさであれば,細胞を剥離せず接着したままのマイクロキャリアーを含んでも良いし,または細胞が凝集体を形成していても良い。
<Preparation of seeded cells>
In the preparation of cells required for seeding into the hollow fiber 3, the above-described culture solution and cells are used. The cells to be seeded are preferably cells prepared by ordinary adherent plate culture and easily dispersible with a peeling agent. Alternatively, cells prepared by microcarrier culture or spheroid culture may be used. It may be used, as long as it is large enough to fit into the inner hole of the hollow fiber filter, and may contain microcarriers that are not adhered to the cells but may be attached, or cells may form aggregates .
 <装置の組立>
少なくとも,フィルターハウジング1,その内部に配置される中空糸3,フィルターハウジング末端4a,4b,培養液導入部7,培養液排出部9,から構成される中空糸フィルターモジュールに,エンドキャップ6a,6bガスケットやシール材を含む場合有りを中空糸フィルターハウジング末端4a,4bに装着し,さらに培養液供給路8,培養液排出路10をそれぞれ培養液導入部7,培養液排出部9と接続する。ここでこれらの構成品を構成品1とする。構成品1の素材が許容する方法の滅菌方法によって,滅菌処理を施すことが好ましい。
<Assembly of device>
A hollow fiber filter module including at least a filter housing 1, a hollow fiber 3 disposed inside the filter housing 3, filter housing ends 4a and 4b, a culture solution introduction unit 7, and a culture solution discharge unit 9, is provided with end caps 6a and 6b. A gasket or a sealing material is attached to the ends 4a and 4b of the hollow fiber filter housing, and the culture solution supply passage 8 and the culture solution discharge passage 10 are connected to the culture solution introduction unit 7 and the culture solution discharge unit 9, respectively. Here, these components are referred to as component 1. It is preferable to perform a sterilization process by a sterilization method that is allowed by the material of the component 1.
 また,上述した中空糸に細胞を導入するための細胞導入部5についても,これが滅菌済み製品ではなく,滅菌処理が必要である場合には,素材が許容する方法の滅菌原理によって,滅菌処理を施すことが好ましい。 Also, when the cell introduction section 5 for introducing cells into the hollow fiber is not a sterilized product and needs to be sterilized, sterilization is performed according to the sterilization principle of a method permitted by the material. Preferably, it is applied.
 ただし,本発明は,ここに示される代表例に限定されるものではなく,既存のバイオプロセス技術を用いることで,実施者の目的に応じた最適な装置の接続様式を選択することができる。例えば,培養液の流路を形成するチューブ等の接続については,バイオ産業で多用される既存の無菌接続技術を利用する場合や,培養液貯液容器としてステンレス容器を組込む場合等においては,それらに応じた装置の接続様式を取り得る。また,本技術を実施する際の,製造スケール,施設要件,無菌操作に関する全体プラン,使用する容器や送液ライン等の要件に応じて,一般的なバイオテクノロジー応用医薬品等の製造で使用される技術等を,実施者が採用することで設計すれば良い。 However, the present invention is not limited to the representative examples shown here, and by using the existing bioprocess technology, the most appropriate connection mode of the device can be selected according to the purpose of the practitioner. For example, when connecting tubes and the like that form the culture medium flow path, when using existing aseptic connection technology often used in the bioindustry, or when incorporating a stainless steel container as a culture medium storage container, such a connection is required. The connection mode of the device according to the above can be taken. In addition, depending on the production scale, facility requirements, overall plan for aseptic operation, requirements for containers and liquid transfer lines used, etc., this technology is used in the production of general biotechnology-based drugs, etc. The technology may be designed by adopters.
 <細胞の導入>
 次に,『構成品1』を,無菌操作区域ISO class 5,または実質的に無菌的な操作が可能である管理区域において,エンドキャップ6aガスケットやシール材を含む場合有りを外し,そこに細胞導入部5を接続する。その後,播種用に調製した細胞懸濁液を細胞導入部に入れる。細胞懸濁液は,培養液であることが望ましいが,培養に悪影響を与えない範囲において許容される溶液または増粘剤,ゲル化剤であれば特に限定されない。培養が小スケールで細胞導入部5がシリンジである場合は,プランジャーを外して外筒に細胞懸濁液を入れ,その後プランジャーを装着し,プランジャーを押し込むことで,細胞懸濁液を中空糸内へと導入する。この時,中空糸の反対側のフィルターハウジング末端1bと中空糸末端4bはエンドキャップ6bガスケットやシール材を含む場合有りで密閉されているが,中空糸3内部の体積を超える細胞懸濁液の溶液部分は,中空糸3の膜を通じて,中空糸内腔からフィルターハウジング1の内部へと排出される。中空糸の膜は細胞を通過させない孔径であるため,細胞は培養液循環流路に排出されることなく,完全に中空糸内腔に保持される。なお,中空糸内腔での細胞分布の偏りが生じることを避けるために,中空糸内部に気体を注入することは極力避けることが望ましい。さらに,細胞の凝集体形成を抑制する目的において,細胞懸濁液にセルロース系水溶性高分子のメチルセルロースMCやカルボキシメチルセルロースCMC,その他セルロース誘導体,またはその他の水溶性高分子のポリエチレングリコールPEG,ポリビニルピロリドンPVP,またはアルギン酸ナトリウム等やそのゲル化剤を添加して,培養液の粘度を上昇させる手法を用いても良い。
<Introduction of cells>
Next, in the aseptic operation area ISO class 5 or the control area where practically aseptic operation is possible, remove “Component 1” from the case where the end cap 6a includes a gasket or a sealing material and remove the cells. Connect the introduction unit 5. Thereafter, the cell suspension prepared for seeding is put into the cell introduction part. The cell suspension is preferably a culture solution, but is not particularly limited as long as it is a solution, a thickener, or a gelling agent that is acceptable within a range that does not adversely affect the culture. If the culture is a small scale and the cell introduction part 5 is a syringe, remove the plunger and put the cell suspension in the outer cylinder, then attach the plunger and push the plunger to remove the cell suspension. Introduce into the hollow fiber. At this time, the end 1b of the filter housing and the end 4b of the hollow fiber on the opposite side of the hollow fiber are sealed with an end cap 6b, which may include a gasket or a sealing material. The solution portion is discharged from the hollow fiber lumen into the filter housing 1 through the membrane of the hollow fiber 3. Since the hollow fiber membrane has a pore size that does not allow cells to pass through, the cells are completely retained in the hollow fiber lumen without being discharged into the culture solution circulation channel. In addition, it is desirable to avoid injecting gas into the hollow fiber as much as possible in order to avoid the uneven distribution of cells in the hollow fiber lumen. Furthermore, in order to suppress the formation of cell aggregates, a cell-based water-soluble polymer such as methylcellulose MC and carboxymethylcellulose CMC, other cellulose derivatives, or other water-soluble polymers such as polyethylene glycol PEG and polyvinylpyrrolidone are used to suppress cell aggregate formation. A method of increasing the viscosity of the culture solution by adding PVP or sodium alginate or a gelling agent thereof may be used.
 また,中空糸内腔に導入する細胞数の範囲について,代表例として間葉系幹細胞の場合を例示すると,中空糸フィルターモジュールを構成する中空糸の合計内腔体積1 cm3当たり, 1×104個から5×107個の範囲で選択可能であり,より好ましくは1×105個から5×106個の範囲が選択され,さらに好ましくは5×105個から1×106個の範囲が選択される。 Also, for the range of cell number to be introduced into the hollow fiber lumen, To illustrate the case of mesenchymal stem cells as a representative example, the total in luminal body volume 1 cm 3 per hollow fiber constituting the hollow fiber filter module, 1 × 10 It can be selected from the range of 4 to 5 × 10 7 , more preferably the range of 1 × 10 5 to 5 × 10 6 , even more preferably the range of 5 × 10 5 to 1 × 10 6 Is selected.
 次に,細胞導入部5を取り外し,フィルターハウジング末端1aと中空糸末端4aにエンドキャップ6aガスケットやシール材を含む場合有りを装着することにより,中空糸3内部およびフィルターハウジング1内部を密閉する。これを構成品2とする。密閉した後は,中空糸フィルターモジュールを水平に維持し,中空糸内部の細胞の偏りを避けることを基本とする。   Next, the cell introduction part 5 is removed, and the inside of the hollow fiber 3 and the inside of the filter housing 1 are hermetically sealed by attaching an end cap 6a to the end 1a of the filter housing and the end 4a of the hollow fiber if there is a gasket or a sealing material. This is designated as component 2. After sealing, the hollow fiber filter module should be kept horizontal to avoid bias of cells inside the hollow fiber.
 <培養の開始>
 培養液を無菌的に注入した培養液貯液容器に,培養液供給路8を接続する。培養液を循環式とする場合,培養液排出路10も同じ培養液貯液容器に接続する。循環式としない場合には,培養液供給路8が接続された培養液貯液容器とは別の培養液貯液容器に培養液排出路10を接続する。これを構成品3とする。
<Start of culture>
The culture solution supply path 8 is connected to a culture solution storage container into which the culture solution has been aseptically injected. When the culture solution is circulated, the culture solution discharge passage 10 is also connected to the same culture solution storage container. When not using the circulation type, the culture solution discharge passage 10 is connected to a culture solution storage container different from the culture solution storage container to which the culture solution supply passage 8 is connected. This is designated as component 3.
 細胞を増殖または維持するためには,細胞の種類や目的の違いによって,30℃から42℃の範囲で中空糸フィルターモジュールを制御するための装置が必要となり,より好適には,多くの場合37℃が選択される。また,培養液のpH制御を炭酸水素ナトリウムと二酸化炭素系で行う場合には,二酸化炭素濃度の制御も必要となる。代表的な例としては,培養液注入後の構成品3を,用いる細胞に至適な温度と二酸化炭素濃度に維持された二酸化炭素インキュベーターに入れる。この場合,二酸化炭素がシリコン素材の培養液流路8,10から培養液に浸透し,pHが制御される。しかしながら,細胞が存在する中空糸フィルターモジュール部が,目的温度と目的pHに制御されていれば,その制御様式は問わない。具体的には,本発明の装置全体を恒温装置のチャンバー内に設置することでも良いし,加温の為に,ジャケットタイプの加温装置で制御しても良い。または,中空糸フィルターモジュールへ培地を送液する側の培養液供給路8および培養液導入部7付近で加温し,中空糸フィルターモジュールに培養液が送液される直前で,至適温度に到達するように制御することに加え,中空糸フィルターモジュールも至適温度に保つ機構を有し,さらに中空糸フィルターモジュールから培養液が排出される側の培養液排出部9と培養液排出路10は4から10℃に冷却し,培養液貯液容器も4から10℃に冷却し,長期培養における培地成分や細胞分泌成分の変性や分解を抑制する手法を講じても良い。 In order to grow or maintain cells, a device for controlling the hollow fiber filter module in the range of 30 ° C. to 42 ° C. is required depending on the type and purpose of the cells. ° C is selected. In addition, when the pH of the culture solution is controlled using sodium hydrogen carbonate and carbon dioxide, it is necessary to control the carbon dioxide concentration. As a typical example, the component 3 after the injection of the culture solution is placed in a carbon dioxide incubator maintained at an optimum temperature and carbon dioxide concentration for the cells to be used. In this case, carbon dioxide permeates the culture solution from the culture solution channels 8 and 10 made of silicon material, and the pH is controlled. However, as long as the hollow fiber filter module in which the cells are present is controlled to the target temperature and the target pH, the control mode is not limited. Specifically, the entire apparatus of the present invention may be installed in a chamber of a constant temperature apparatus, or may be controlled by a jacket type heating apparatus for heating. Alternatively, heating is performed in the vicinity of the culture solution supply path 8 and the culture solution introduction unit 7 on the side where the culture medium is sent to the hollow fiber filter module, and the temperature is adjusted to the optimum temperature immediately before the culture solution is sent to the hollow fiber filter module. In addition to controlling the medium to reach the temperature, the hollow fiber filter module also has a mechanism for maintaining the optimum temperature, and further includes a culture medium discharge section 9 and a culture medium discharge path 10 on the side where the culture medium is discharged from the hollow fiber filter module. May be cooled to 4 to 10 ° C., and the culture solution storage container may be cooled to 4 to 10 ° C. to prevent denaturation and degradation of the medium components and cell secretion components in long-term culture.
  その後,培養液流路8,10のいずれかまたはその両方の培養液流路に,ペリスタティックポンプ等を装着し,それを駆動することで培養液の循環を開始する。しかしながら上述の通り,培養液の循環形式は,既存の技術を選択することで特に限定されるものではない。また,培養液の送液条件は,間欠的でも良いし,連続的でも良い。また,間欠的である場合,そのオンとオフのインターバルの間隔は,一連の培養期間中に任意に変更しても良いし,一定でも良い。また,単位時間あたりの送液量については,用いる細胞,培養液,中空糸フィルターの種類,中空糸フィルターモジュールのスケール,培養上清に回収する目的成分,などの様々な変動要素に応じて,至適な送液速度を決定することができる。 Thereafter, a peristatic pump or the like is attached to one or both of the culture solution flow paths 8 and 10, and the culture medium circulation is started by driving it. However, as described above, the circulation type of the culture solution is not particularly limited by selecting an existing technique. The conditions for feeding the culture solution may be intermittent or continuous. In the case of intermittent operation, the interval between the ON and OFF intervals may be arbitrarily changed during a series of culture periods, or may be constant. In addition, the amount of liquid delivered per unit time depends on various variables such as the cell used, the culture solution, the type of hollow fiber filter, the scale of the hollow fiber filter module, and the target component collected in the culture supernatant. It is possible to determine the optimal liquid sending speed.
  間葉系幹細胞を例にすると,中空糸フィルターモジュールを構成する中空糸の合計内腔体積1 cm3当たり,1時間あたりの送液量は,1 mLから10,000 mLの範囲で選択可能であり,より好ましくは10 mLから1,000 mLの範囲が選択され,さらに好ましくは50 mLから500 mLの範囲が選択される。なお,培養装置に充填される培養液の液量は,間葉系幹細胞を例にすると,中空糸の合計内腔体積1 cm3当たり,0.01 mLから300 mLの範囲で選択可能であり,より好ましくは0.2 mLから30 mLの範囲が選択され,さらに好ましくは1 mLから5 mLの範囲が選択される。培養初期の細胞数が少ない段階では培養液量を少なくし,増殖後の細胞数が多い段階では培養液量を多くすることも,培養液の節約につながり任意に選択すれば良い。 When the mesenchymal stem cells as an example, a total of the luminal body volume 1 cm 3 per hollow fiber constituting the hollow fiber filter module, feed volume per hour is selectable in the range from 1 mL of 10,000 mL, More preferably, a range of 10 mL to 1,000 mL is selected, and even more preferably, a range of 50 mL to 500 mL is selected. The liquid volume of the culture liquid to be filled in the culture apparatus, when the mesenchymal stem cells as an example, a total of the luminal body volume 1 cm 3 per hollow fiber, may be selected in the range of 0.01 mL of 300 mL, and more Preferably, a range of 0.2 mL to 30 mL is selected, and more preferably, a range of 1 mL to 5 mL is selected. It is also possible to reduce the amount of the culture solution at a stage where the number of cells is small in the initial stage of the culture, and to increase the amount of the culture solution at a stage where the number of cells after the proliferation is large.
 <培地交換>
 中空糸内腔に細胞を導入し,細胞が増殖期にある培地交換については,用いる細胞と培養液の種類等によって決定することになる。間葉系幹細胞で例示すると,約4日に1回の培地全交換回分培養を基本とすることが望ましい。しかしながら,本発明を実施するにおいてはこれに限定されるものではなく,細胞数が増加するまでは,培養液貯液容器の半交換で対応することも可能な範囲である。また,培養液のコントロールとして,流加培養や連続培養の技術を用いることによっても,本発明は良好に実施できる。細胞が死滅することなく維持できる任意の範囲において,実施者が設定すれば良い。
<Medium exchange>
The cells are introduced into the lumen of the hollow fiber, and the medium is exchanged when the cells are in the growth phase, which is determined depending on the type of the cells and the culture solution to be used. In the case of mesenchymal stem cells, for example, it is preferable that the culture be performed on a batch basis with a total medium exchange about once every four days. However, the present invention is not limited to this, and it is within a range that can be dealt with by half replacement of the culture solution storage container until the number of cells increases. The present invention can also be satisfactorily carried out by using a fed-batch culture or a continuous culture technique as a control of the culture solution. The practitioner may set the value within an arbitrary range in which cells can be maintained without dying.
 <培養環境のモニタリング>
 非破壊的に細胞の増殖度合いを評価する方法としては,培養装置の培養液循環流路等に設けた無菌的サンプリングポートから分取した培養上清を測定することで実施できる。測定項目の例として,培養上清中の目的産生物質の単位時間当たりの産生量,グルコース消費量,pH,溶存酸素濃度,溶存二酸化炭素濃度,または乳酸濃度などがその指標となる。あらかじめ中空糸内腔における細胞増殖度合いとこれらの数値の相関性を評価しておくことで,中空糸内腔の細胞増殖度合いを評価することができる。測定項目によっては,培養上清の流路に設置した非接触型センサーによる連続的な測定を行っても良い。
<Monitoring of culture environment>
As a method of non-destructively evaluating the degree of cell proliferation, it can be carried out by measuring a culture supernatant collected from a sterile sampling port provided in a culture solution circulation channel or the like of a culture device. As an example of the measurement item, the production amount of the target product in the culture supernatant per unit time, glucose consumption amount, pH, dissolved oxygen concentration, dissolved carbon dioxide concentration, or lactic acid concentration is an index. By previously evaluating the correlation between the cell growth degree in the hollow fiber lumen and these values, the cell growth degree in the hollow fiber lumen can be evaluated. Depending on the measurement items, continuous measurement may be performed by a non-contact type sensor installed in the flow path of the culture supernatant.
 また,細胞の死滅度合いをモニタリングする方法としては,同培養上清中の二本鎖DNA(dsDNA)濃度,乳酸デヒドロゲナーゼ(LDH)濃度等を定量することなどで評価可能である。あらかじめ中空糸内腔における細胞の死滅度合いと,これらの数値の相関性を評価しておくことにより,中空糸内腔の細胞増殖度合いを評価することができる。
 これらの方法により,目的産生物を高濃度で含有する培養上清回収の開始の時期や,細胞の健全性および同質性に限界を迎える回収中止までの期間を知ることができる。
In addition, as a method of monitoring the degree of cell death, it can be evaluated by quantifying the concentration of double-stranded DNA (dsDNA), lactate dehydrogenase (LDH), and the like in the culture supernatant. The degree of cell proliferation in the hollow fiber lumen can be evaluated by previously evaluating the degree of cell death in the hollow fiber lumen and the correlation between these values.
By these methods, it is possible to know the start time of the collection of the culture supernatant containing the target product at a high concentration and the period until the stop of the collection at which the soundness and homogeneity of the cells are limited.
 <培養上清の調製と回収>
 細胞が増殖し,期待する量の目的成分の分泌を確認できる時期に,培養上清の調製と回収を開始する。例えば培養液が循環式の場合において,中空糸ハウジング内を循環していた培養上清を回収するタイミングとして,間葉系幹細胞を例にすると,培養上清の調製に回分培養を採用する場合,培養上清回収直前の培地交換から1日から10日後の回収が好ましく,さらに好ましくは2日から8日後であり,最も至適には3日から5日目が好適である。また,本発明の絶大な効果として強調される点として,中空糸内腔に細胞を導入した後,非常に長期間に渡って培養上清の回収を継続できる点であり,その期間において,任意に必要分の培養上清を回収すれば良い。間葉系幹細胞の場合,フラスコによる平面接着培養においては,コンフルエントに到達した後,健全な状態での細胞の維持は数日間が限界であることと対象的に,本発明によると,中空糸の中で通常50日間以上,健全に維持することができる。
<Preparation and recovery of culture supernatant>
Preparation and recovery of the culture supernatant is started when the cells can proliferate and the expected amount of the target component can be confirmed. For example, when the culture medium is circulating, the timing of collecting the culture supernatant circulating in the hollow fiber housing is, for example, mesenchymal stem cells. If batch culture is used to prepare the culture supernatant, The collection is preferably 1 to 10 days after the medium exchange immediately before the collection of the culture supernatant, more preferably 2 to 8 days, most preferably 3 to 5 days. Also, a point that is emphasized as an enormous effect of the present invention is that the collection of the culture supernatant can be continued for a very long time after the cells are introduced into the hollow fiber lumen. The required amount of culture supernatant may be collected. In the case of mesenchymal stem cells, in flat adherent culture using a flask, the maintenance of cells in a healthy state after reaching confluence is limited to several days. It can be kept healthy for more than 50 days.
 また,細胞は中空糸内腔にのみ存在しており,本発明以前の当分野の技術的常識としては,細胞の分泌物を含む培養上清を回収するための実質的に取り得る方法としては,中空糸膜で隔てて細胞が存在する側の培養液を循環させるなどして,同側の培養液を培養上清として回収する方法であった(特許文献1)。一方,本発明においては,細胞が密閉され積極的な循環の無い中空糸内腔から,中空糸膜を介した中空糸外部への拡散により,中空糸外部から培養上清を回収する。なお,回分培養以外にも,流加培養またはパーフュージョン培養等による連続培養で培養上清を得ても良い。 In addition, cells exist only in the hollow fiber lumen, and the technical common knowledge in the field prior to the present invention is that a substantially feasible method for recovering a culture supernatant containing secretions of cells is as follows. In this method, a culture solution on the side where cells are present is circulated through a hollow fiber membrane to collect the culture solution on the same side as a culture supernatant (Patent Document 1). On the other hand, in the present invention, the culture supernatant is collected from the outside of the hollow fiber by diffusion from the hollow fiber lumen through which the cells are closed and there is no active circulation to the outside of the hollow fiber through the hollow fiber membrane. In addition to the batch culture, the culture supernatant may be obtained by continuous culture such as fed-batch culture or perfusion culture.
 [実施例1]
1.脂肪組織由来間葉系幹細胞(AD-MSC)の中空糸培養と培養上清の調製
1.1.細胞調製方法
(1)初代培養(P0)
AD-MSCを用いた再生医療を受ける患者より,投与用細胞の調製に必要な原料となる皮下脂肪組織を分取した後の余剰組織について,研究用利用用途の同意取得の後に皮下脂肪の提供を受け,初代培養に供した。皮下脂肪組織は遠心分離(400×gで5分間)に供し,上から順に脂質画分,脂肪組織画分,および水性画分の3層に分離した。中層の脂肪組織画分を残して,上層と下層を破棄した。残した脂肪組織画分に対して,組織重量当たり4倍量の0.15%コラゲナーゼ酵素溶液を添加し,37℃で1時間浸透させ,酵素処理を行った。脂肪組織が分散された後, 遠心分離(400×gで5分間)に供し,間葉系幹細胞を含む間質血管細胞画分として,沈殿画分を30 mLのPBS(-)溶液で懸濁した。その後,セルストレーナー(70μm径)に懸濁液を通液し,通液画分を再度遠心分離(400×gで5分間)に供し,セルストレーナーに捕捉された組織残渣等は破棄した。沈殿画分を6 mLの無血清培養液(Procul AD; ロート製薬)で懸濁し,T-25フラスコ(CellBIND(登録商標); Corning)に全量を播種し,インキュベーター内(37℃,5% CO2)に静置して初代培養を開始した。
[Example 1]
1. Hollow fiber culture of adipose tissue-derived mesenchymal stem cells (AD-MSC) and preparation of culture supernatant 1.1. Cell preparation method (1) Primary culture (P0)
Provision of subcutaneous fat after obtaining consent for research use of surplus tissue from subcutaneous adipose tissue as a raw material necessary for preparation of cells for administration from patients undergoing regenerative medicine using AD-MSC And subjected to primary culture. The subcutaneous adipose tissue was subjected to centrifugation (400 × g for 5 minutes), and separated into three layers of a lipid fraction, an adipose tissue fraction, and an aqueous fraction in order from the top. The upper and lower layers were discarded, leaving the middle adipose tissue fraction. To the remaining adipose tissue fraction, a 0.15% collagenase enzyme solution in an amount of 4 times the tissue weight was added, and the mixture was permeated at 37 ° C. for 1 hour to perform enzyme treatment. After the adipose tissue is dispersed, centrifuge (400 xg for 5 minutes) and suspend as a stromal vascular cell fraction containing mesenchymal stem cells in 30 mL of PBS (-) solution. did. Thereafter, the suspension was passed through a cell strainer (70 μm diameter), and the flow-through fraction was subjected to centrifugation again (400 × g for 5 minutes), and the tissue residue and the like captured by the cell strainer were discarded. The precipitate fraction was suspended in 6 mL of a serum-free culture solution (Procul AD; Rohto Pharmaceutical), and the whole volume was inoculated into a T-25 flask (CellBIND (registered trademark); Corning), and then in an incubator (37 ° C, 5% CO 2). The primary culture was started by standing still in 2 ).
 (2)継代培養(P0→P1)
 3日に1回の頻度で培地全交換を実施し,上澄みは破棄して,フラスコ底面上で増殖する細胞を選択的に増殖した。播種から11日目に,T-25フラスコでセミコンフルエントまで増殖した細胞に対して,2 mLの酵素溶液(TrypLE Select(登録商標);Thermo Fisher Scientific)を添加し剥離した(37℃,5分間静置)。細胞をPBS(-)で希釈し,遠心分離(400×gで5分間)に供した。沈殿した細胞を培養液で懸濁し,トリパンブルー染色法による細胞数計測を行った結果,1.2×106個の生細胞が回収できたため,その全量をT-150フラスコ(CellBIND(登録商標); Corning)2枚に24mLの無血清培養液で全量を播種し(4,000個/cm2),インキュベーター内(37℃,5% CO2)に静置して継代培養を行った。
(2) Subculture (P0 → P1)
The medium was completely exchanged once every three days, the supernatant was discarded, and the cells growing on the bottom of the flask were selectively grown. On the eleventh day from the seeding, 2 mL of an enzyme solution (TrypLE Select (registered trademark); Thermo Fisher Scientific) was added to the cells that had grown to semi-confluence in a T-25 flask, and detached (37 ° C., 5 minutes) Stationary). The cells were diluted with PBS (-) and subjected to centrifugation (400 xg for 5 minutes). The precipitated cells were suspended in a culture solution, and the number of cells was measured by trypan blue staining. As a result, 1.2 × 10 6 viable cells could be recovered, and the entire amount was collected in a T-150 flask (CellBIND (registered trademark); Corning) were seeded in total with 24 mL of serum-free culture solution (4,000 cells / cm 2 ), and allowed to stand in an incubator (37 ° C., 5% CO 2 ) for subculture.
 3日に1回の頻度で培地全交換を実施し,上澄みは破棄して,フラスコ底面上で増殖する細胞を選択的に増殖した。播種から4日目にセミコンフルエントまで増殖した細胞に対して,6 mLの酵素溶液(TrypLE Select(登録商標);Thermo Fisher Scientific)を添加して剥離した(37℃,5分間静置)。細胞をPBS(-)で希釈し,遠心分離(400×gで5分間)に供した。沈殿した細胞を無血清培養液で懸濁し,トリパンブルー染色法による細胞数計測を行った結果,生存率が98.7%であり,生細胞数を9.8×106個回収したことを確認し,培養開始まで4℃で保管した。 The medium was completely exchanged once every three days, the supernatant was discarded, and the cells growing on the bottom of the flask were selectively grown. On the fourth day after seeding, 6 mL of an enzyme solution (TrypLE Select (registered trademark); Thermo Fisher Scientific) was added to the cells that had grown to semi-confluence, and the cells were detached (rest at 37 ° C. for 5 minutes). The cells were diluted with PBS (-) and subjected to centrifugation (400 xg for 5 minutes). The precipitated cells were suspended in a serum-free culture medium, and the number of cells was counted by trypan blue staining. As a result, it was confirmed that the viability was 98.7% and the number of viable cells recovered was 9.8 × 10 6. And stored at 4 ° C. until the start of culture.
 1.2.中空糸培養(P2)
(1)装置の組立    
 フィルターハウジング末端1a,1bがサニタリー接続ポート形状であり,培養液導入部と培養液排出部にはルアーロックコネクトを有する中空糸フィルターモジュール(PES MidiKros TCモジュール/0.2μm分画サイズ,フィルター膜面積290 cm2,全長44cm;T04-P20U-05-N;スペクトラムラボラトリーズ)を使用した。ヘルールサニタリー接続ポートを有し,かつシリコンガスケットとシリコンシール材を含むエンドキャップ6bを,フィルターハウジング末端1bと中空糸末端4bを閉塞するように,クランプを締めて密閉した。
1.2. Hollow fiber culture (P2)
(1) Assembly of equipment
The filter housing ends 1a and 1b have a sanitary connection port shape, and a hollow fiber filter module (PES MidiKros TC module / 0.2μm fractionation size, filter membrane area) with a Luer lock connect at the culture solution introduction and culture solution discharge portions. 290 cm 2 , total length 44 cm; T04-P20U-05-N; Spectrum Laboratories) was used. An end cap 6b having a ferrule sanitary connection port and including a silicon gasket and a silicone sealant was closed tightly by clamping so as to close the filter housing end 1b and the hollow fiber end 4b.
 さらに,ヘルールサニタリー接続とホース口を有する細胞導入部の一部(Pro-Connex 3/4”サニタリーフィッティング;ACPX-SM4-06N;スペクトラムラボラトリーズ)のホース口には,3cmのシリコンチューブを装着し,ホース口の反対側にはルアーロックポートを装着し,これらを結束バンドで固定した。さらに,ルアーロックにはルアーロックコネクト用の密閉栓を装着し,細胞導入部(5)とした。
 次に,フィルターハウジング末端1aに,上述の細胞導入部5を,シリコンガスケット装着したヘルールサニタリー接続ポートでクランプを締めて装着した。
In addition, a 3 cm silicon tube was attached to the hose port of a part of the cell introduction part (Pro-Connex 3/4 "sanitary fitting; ACPX-SM4-06N; Spectrum Laboratories) having a ferrule sanitary connection and a hose port. A luer lock port was attached to the opposite side of the hose port, these were fixed with a binding band, and a luer lock connect stopper was attached to the luer lock to provide a cell introduction part (5).
Next, the above-mentioned cell introduction part 5 was attached to the filter housing end 1a by tightening a clamp with a ferrule sanitary connection port equipped with a silicon gasket.
 さらに,中空糸フィルターモジュールの培養液導入部7と培養液排出部9に,ルアーロックコネクトを介して,それぞれ50cmシリコンチューブの培養液導入部8と培養液排出路10を装着した。培養液導入部8と培養液排出路10の解放側末端には,メス型CPCカップリングとそのキャップ(オス型)を装着して密封した。これらを高温加圧蒸気滅菌(121℃/20分間)にて滅菌処理を行い,構成品1を用意した。 {Circle around (5)} The culture medium introduction part 8 and the culture medium discharge path 10 of 50 cm silicon tube were attached to the culture medium introduction part 7 and the culture medium discharge part 9 of the hollow fiber filter module, respectively, via a Luer lock connect. A female CPC coupling and its cap (male type) were attached to the open-side end of the culture solution introduction part 8 and the culture solution discharge passage 10 and sealed. These were sterilized by high-temperature and high-pressure steam sterilization (121 ° C./20 minutes) to prepare Component 1.
 (2)培養液と細胞の導入    
 安全キャビネット内において,2Dプロセスバック(FLEXBOY BAG 500 mL MPC MALE COUPLERS;ザルトリウスス・テディムジャパン)に培養液(Procul AD; ロート製薬)を350mL充填し,同プロセスバックの2箇所のCPC接続ポートに,滅菌処理を行った上記の構成品1の培養液供給路8と培養液排出路10のCPCカップリングを接続し,中空糸フィルターモジュールと培養液貯液容器の密閉型循環経路を形成した。
(2) Introduction of culture solution and cells
In a safety cabinet, a 2D process bag (FLEXBOY BAG 500 mL MPC MALE COUPLERS; Sartorius Tedim Japan) is filled with 350 mL of the culture solution (Procul AD; Rohto Pharmaceutical), and the two CPC connection ports of the process bag are filled. Then, the CPC coupling of the culture solution supply channel 8 and the culture solution discharge channel 10 of the component 1 which had been sterilized was connected to form a closed circulation path for the hollow fiber filter module and the culture solution storage container.
 次に,細胞導入部5のルアーロックコネクトの栓を外し,プランジャーを外した20mL容量の注射筒(ニプロシリンジロックタイプ,医療機器届出番号27B1X00045000033:ニプロ)を,ルアーロックコネクトでフィルターハウジング末端(1a)に接続し,15mLに調製した細胞懸濁液を注射筒に全量導入した(9.0×106個)。プランジャーを注射筒に装着して,細胞導入側を上向きに中空糸フィルターモジュールを縦にして,約10秒かけてプランジャーを押し込み,中空糸内腔を満たすように細胞懸濁液の導入を完了した。この時,中空糸内腔へ空気が入らないように操作した。計算により導き出される中空糸フィルター内腔の総体積が約15cmであるため,細胞播種密度は約6.0×105個/cmであった。次に,クランプを外して細胞導入装置を取り外し,むき出しになったフィルターハウジング末端1aに,ヘルールサニタリー接続ポートを有し,かつシリコンガスケットとシリコンシール材を含むエンドキャップ6aを,フィルターハウジング末端1aと中空糸末端4aを閉塞するように,クランプを締めて密閉した。直ちに中空糸フィルターモジュールの長軸方向を水平に置き,これにより,中空糸3内腔への細胞の導入と封入を完了し,構成品2を完成した。 Next, the stopper of the Luer lock connect of the cell introduction part 5 was removed, and the 20 mL capacity syringe (Nipro syringe lock type, medical device notification number 27B1X00045000033: Nipro) from which the plunger was removed was attached to the end of the filter housing (Luer lock connect). The cell suspension was connected to 1a), and the whole amount of the cell suspension prepared to 15 mL was introduced into a syringe (9.0 × 10 6 cells). Attach the plunger to the syringe, turn the hollow fiber filter module vertically with the cell introduction side upward, and push the plunger in about 10 seconds to introduce the cell suspension so as to fill the hollow fiber lumen. Completed. At this time, operation was performed so that air did not enter the hollow fiber lumen. Since the total volume of the hollow fiber filter lumen derived by calculation was about 15 cm 3 , the cell seeding density was about 6.0 × 10 5 cells / cm 3 . Next, the clamp is removed and the cell introduction device is removed, and an end cap 6a having a ferrule sanitary connection port and including a silicon gasket and a silicone sealing material is attached to the exposed filter housing end 1a. The clamp was tightened and sealed so as to close the hollow fiber end 4a. Immediately, the long axis direction of the hollow fiber filter module was placed horizontally, thereby completing the introduction and encapsulation of cells into the lumen of the hollow fiber 3, thereby completing the component 2.
 (3)培養液の循環開始    
 構成品2を,二酸化炭素インキュベーターに入れた(37℃,5%二酸化炭素濃度)。培養液(Procul AD; ロート製薬)は重炭酸緩衝系であるため,ガス交換は培養液供給路及び培養液排出路のシリコンチューブを介して行った。培養液供給路8の1カ所にペリスタティックポンプを装着し,それを駆動することで,中空糸フィルターハウジング内に通じる流路の培養液の循環を開始した。送液速度は約30mL/時間とし,ポンプの駆動は連続駆動とした。これは,中空糸内腔の体積1cmあたり2mL/時間となるように設定したものである。
(3) Start circulation of culture solution
Component 2 was placed in a carbon dioxide incubator (37 ° C., 5% carbon dioxide concentration). Since the culture solution (Procul AD; Rohto Pharmaceutical Co., Ltd.) was a bicarbonate buffer system, gas exchange was performed through the silicon tubes in the culture solution supply channel and the culture solution discharge channel. A peristatic pump was attached to one position of the culture solution supply path 8, and by driving it, the circulation of the culture solution in the flow path leading into the hollow fiber filter housing was started. The liquid sending speed was about 30 mL / hour, and the pump was driven continuously. This was set so that the volume of the hollow fiber lumen was 2 mL / hour per 1 cm 3 .
 (4)培養液の交換と培養上清    
 中空糸培養の開始から12日目まで,3日から4日に1回の培養液の半交換を実施した。その後は3日から4日に1回の全交換とした。また,培養上清の評価のために,培養開始日(Day0),培養開始後4日(Day4),培養開始後7日(Day7),培養開始後11日(Day11),培養開始後14日(Day14),培養開始後18日(Day18),培養開始後21日(Day21),培養開始後25日(Day25),培養開始後28日(Day28),培養開始後32日(Day32),培養開始後35日(Day35),培養開始後39日(Day39),培養開始後42日(Day42),培養開始後46日(Day46),培養開始後50日(Day50),時点の培養上清を3mLずつ,培養液が入るプロセスバックのサンプリングポートからシリンジを用いて分取し,Day50の時点で,培養を終了した。分取した培養上清は,0.2μmのPESシリンジフィルター(25 mm GD/Xシリンジフィルター(PES 0.2 μm 滅菌済);6896-2502;GEヘルスケア・ジャパン)でろ過し,解析に使用するまで-28℃で冷凍保管とした。
(4) Culture medium exchange and culture supernatant
From the start of the hollow fiber culture to the twelfth day, half-replacement of the culture solution was performed once every three to four days. Thereafter, the entire exchange was performed once every three to four days. In addition, in order to evaluate the culture supernatant, the culture start date (Day 0), the culture start 4 days (Day 4), the culture start 7 days (Day 7), the culture start 11 days (Day 11), the culture start 14 days (Day 14), 18 days after the start of culture (Day 18), 21 days after the start of culture (Day 21), 25 days after the start of culture (Day 25), 28 days after the start of culture (Day 28), 32 days after the start of culture (Day 32), culture 35 days after the start (Day 35), 39 days after the start of culture (Day 39), 42 days after the start of culture (Day 42), 46 days after the start of culture (Day 46), 50 days after the start of culture (Day 50), the culture supernatant at the time A 3 mL portion was collected using a syringe from the sampling port of the process bag into which the culture solution was placed, and the culture was terminated at the time of Day 50. The collected culture supernatant is filtered through a 0.2 μm PES syringe filter (25 mm GD / X syringe filter (PES 0.2 μm sterilized); 6896-2502; GE Healthcare Japan) and used for analysis. Stored frozen at -28 ° C.
 (5)細胞の確認    
 培養終了後,装置を分解し,中空糸フィルターモジュールのハウジング内部に,細胞剥離酵素溶液TrypLE Select(Thermo Fisher Scientific)を充填した。37℃で30分間酵素処理を行ない,中空糸膜と細胞の接着を緩めた後,中空糸内腔の細胞塊を取り出し,位相差顕微鏡でその細胞塊の観察を行った。図4は,中空糸内腔から取り出した細胞を示す図面に代わる写真である。
(5) Confirmation of cells
After completion of the culture, the device was disassembled, and the inside of the housing of the hollow fiber filter module was filled with a cell detachment enzyme solution TrypLE Select (Thermo Fisher Scientific). After performing an enzyme treatment at 37 ° C. for 30 minutes to loosen the adhesion between the hollow fiber membrane and the cells, the cell mass in the hollow fiber lumen was taken out, and the cell mass was observed with a phase contrast microscope. FIG. 4 is a photograph instead of a drawing showing cells taken out from the hollow fiber lumen.
 [実施例2]
1.脂肪組織由来間葉系幹細胞(AD-MSC)の平面接着培養と培養上清の調製
1.1.細胞調製方法
(1)初代培養(P0)
 上記実施例1で調製し,中空糸フィルターに播種したAD-MSC(P1継代細胞)の残余分について,8×10個をT-150フラスコ1枚(CellBIND;コーニングインターナショナル)に播種した。この時,培養液(Procul AD;ロート製薬)の液量は24mLとした。播種から4日後,セミコンフルエントに到達した段階で培養上清を回収した。その後も,3日から4日に1回の培養液の全交換を行い,培養液の交換時点である培養開始後7日(Day7),培養開始後11日(Day11),培養開始後14日(Day14)に,培地交換前に培養上清を回収した。これらの培養上清を0.2μmのPESシリンジフィルター(25 mm GD/Xシリンジフィルター(PES 0.2 μm 滅菌済);6896-2502;GEヘルスケア・ジャパン)でろ過し,解析に使用するまで-28℃で冷凍保管とした。
[Example 2]
1. Planar adhesion culture of adipose tissue-derived mesenchymal stem cells (AD-MSC) and preparation of culture supernatant 1.1. Cell preparation method (1) Primary culture (P0)
Regarding the remaining AD-MSC (P1 passage cell) prepared in Example 1 and seeded on the hollow fiber filter, 8 × 10 5 were seeded on one T-150 flask (CellBIND; Corning International). At this time, the volume of the culture solution (Procul AD; Rohto Pharmaceutical) was 24 mL. Four days after the seeding, the culture supernatant was recovered when it reached semi-confluence. After that, the culture medium was completely exchanged once every 3 to 4 days, and the culture medium was exchanged at 7 days after the start of culture (Day 7), 11 days after the start of culture (Day 11), and 14 days after the start of culture. On (Day 14), the culture supernatant was collected before replacing the medium. These culture supernatants were filtered through a 0.2 μm PES syringe filter (25 mm GD / X syringe filter (PES 0.2 μm sterilized); 6896-2502; GE Healthcare Japan) until they were used for analysis. Stored frozen at ℃.
  [実施例3]
1.培養上清の解析
1.1.ELISA法による定量(TIMP2)    
 間葉系幹細胞由来の培養上清には多様なタンパク質が含有され,少なくともそれらの一部が薬理作用を発揮すると考えられている。中でも,Metalloproteinase(MMP)の内因性阻害剤であるTissue Inhibitor of Metalloproteinase(TIMP)ファミリーと,成長因子であるHepatocyte Growth Factor(HGF)については,間葉系幹細胞の培養上清中に高濃度で含有することが知られる因子である。
[Example 3]
1. Analysis of culture supernatant 1.1. ELISA method (TIMP2)
Culture supernatants derived from mesenchymal stem cells contain various proteins, and it is thought that at least some of them exert pharmacological actions. In particular, the Tissue Inhibitor of Metalloproteinase (TIMP) family, which is an endogenous inhibitor of Metalloproteinase (MMP), and the Hepatocyte Growth Factor (HGF), a growth factor, are contained at high concentrations in the culture supernatant of mesenchymal stem cells. Is a factor that is known to
間葉系幹細胞の培養上清には,鎮痛作用の存在が報告されているが(Sci. Rep. 2017 Aug 29;7(1):9904.Therapeutic effect of human adipose-derived stem cells and their secretome in experimental diabetic pain)。 TIMP2もまた,同様の治療効果性が報告されている(Nat. Med.2008 Mar;14(3): 331-6. Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain.)。また,間葉系幹細胞由来の培養上清は,多発性硬化症に対して治療効果が報告されているが,その有効性因子としてHGFが同定されている(Nat. Neurosci.2012 Jun;15(6):862-70. Hepatocyte growth factor mediates mesenchymal stem cell induced recovery in multiple sclerosis models.)。そのため,培養上清の有効性指標となる代表的な分泌因子としてTIMP2とHGFを選択し,それらの含有量の評価として,市販のELISAキット(Human TIMP2 ELISA Kit;ab188395;abcam,及び,Human HGF ELISA Kit;ab100534)を用いて,プロトコール記載の方法により,実施例1及び実施例2で調製した上清のTIMP2及びHGFの定量試験を行った。 The presence of an analgesic effect in the culture supernatant of mesenchymal stem cells has been reported (Sci. Rep. 2017 Aug 29; 7 (1): 9904.Therapeutic effect of human adipose-derived stem cells and their secretome in experimental diabetic pain). TIMP2 has also been reported to have a similar therapeutic effect (Nat. Med. 2008 Mar; 14 (3): 331-6. Distinct roles of matrices metalloproteases in the the early-and-late-phase development of of neuropathic pain). . In addition, culture supernatants derived from mesenchymal stem cells have been reported to have a therapeutic effect on multiple sclerosis, but HGF has been identified as an effective factor (Nat. {Neurosci. 2012} Jun; 15 ( 6): 862-70. Hepatocyte growth factor mediates mesenchymal stem cell induced recovery in multiple sclerosis models.). Therefore, TIMP2 and HGF were selected as typical secretion factors that serve as an index of the efficacy of the culture supernatant, and their contents were evaluated using commercially available ELISA kits (Human \ TIMP2 \ ELISA \ Kit; ab188395; abcam and Human \ HGF Using ELISA Kit; ab100534), the supernatants prepared in Examples 1 and 2 were subjected to TIMP2 and HGF quantitative tests by the method described in the protocol.
平面接着培養で調製された従来法の培養上清と,本発明により調製した培養上清に含まれるTIMP2タンパク質及びHGFタンパク質の定量結果を表1,表2及び図5に示す。図5は,ELISA法を用いて測定されたTIMP2タンパク質(図5(a)及びHGFタンパク質(図5(b)の定量分析の結果を示す図面に代わるグラフである。Dayは培養日数を示す。 Tables 1 and 2 and FIG. 5 show the results of quantification of the TIMP2 protein and the HGF protein contained in the culture supernatant prepared by the conventional method and the culture supernatant prepared according to the present invention, which were prepared by the planar adhesion culture. FIG. 5 is a graph instead of a drawing showing the results of quantitative analysis of TIMP2 protein (FIG. 5 (a) and HGF protein (FIG. 5 (b)) measured by ELISA. Day indicates the number of days of culture.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
平面接着培養においては,過剰増殖に伴う細胞劣化により,TIMP2の分泌量はDay7の159.5 ng/mLを上限に濃度低下を示し,1週間を超える長期培養においては,回収される培養上清の品質低下が示唆された。一方,本発明による中空糸内腔に細胞を密閉し,培養液は中空糸外を流す新規な方式の中空糸培養においては,Day32に最大の分泌量である201.5 ng/mLに到達し,150 ng/mL以上の濃度で回収された期間は,Day21からDay50と非常に長期間となった。同様に,もう1つの指標としたHGFタンパク質に関しては,Day7の5,794 pg/mLを上限に濃度低下を示し,1週間を超える長期培養においては,回収される培養上清の品質低下が示唆された。一方,本発明による中空糸内腔に細胞を密閉し,培養液は中空糸外を流す新規な方式の中空糸培養においては,Day35に最大の分泌量である7,391 pg/mLに到達し,5,000 pg/mL以上の濃度で回収された期間は,Day21からDay50と非常に長期間となった。
 このように,本発明によって,有効性因子を高濃度に含有する培養上清を,長期間継続回収可能とすることにより,培養上清の生産効率を産業化レベルに引き上げることを初めて実現した。
In flat adherent culture, the amount of TIMP2 secretion decreases due to cell deterioration due to overgrowth up to 159.5 ng / mL on Day 7, and in long-term culture exceeding one week, the quality of the recovered culture supernatant A decrease was suggested. On the other hand, in the novel method of hollow fiber culture in which the cells are sealed in the hollow fiber lumen according to the present invention and the culture solution flows outside the hollow fiber, the maximum secretion amount reached 201.5 ng / mL on Day 32, The period of recovery at concentrations of ng / mL or more was very long, from Day 21 to Day 50. Similarly, the concentration of HGF protein, which was another index, decreased at the upper limit of 5,794 pg / mL on Day 7, suggesting that the quality of the recovered culture supernatant deteriorated in long-term culture exceeding 1 week. . On the other hand, in the novel method of hollow fiber culture in which cells are sealed in the hollow fiber lumen according to the present invention and the culture solution flows outside the hollow fiber, the maximum secreted amount on Day 35 reaches 7,391 pg / mL, and 5,000 The period of recovery at pg / mL or higher was very long, from Day 21 to Day 50.
As described above, according to the present invention, it has been realized for the first time that the production efficiency of a culture supernatant can be raised to an industrial level by making it possible to continuously recover a culture supernatant containing a high concentration of an effective factor for a long period of time.
1.2.二本鎖DNA(dsDNA)定量    
  長期間の培養過程における細胞の健全性と細胞障害性を評価するために,細胞死により細胞外の培養液中に分泌されるdsDNA濃度を定量した。dsDNA定量には市販のキットをマニュアルに準じて使用した(QuantiFluor(登録商標) dsDNA System;Promega)。その結果を表3及び図6に示す。
1.2. Double-stranded DNA (dsDNA) quantification
To evaluate cell integrity and cytotoxicity during long-term culture, we measured the concentration of dsDNA secreted into the extracellular culture by cell death. A commercially available kit was used for dsDNA quantification according to the manual (QuantiFluor (registered trademark) dsDNA System; Promega). The results are shown in Table 3 and FIG.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 図6は,dsDNAの定量分析の結果を示す図面に代わるグラフである。T-150フラスコの平面接着培養においては,Day7以降顕著なdsDNA濃度の上昇を認め,細胞が過増殖により細胞死に至ることが示唆された。一方,本発明の中空糸培養による培養上清においては,Day50までの培養期間中に顕著なdsDNA濃度の上昇を認めなかったことにより,中空糸内の密閉空間で凝集体として増殖した間葉系幹細胞は,長期間の培養においても細胞の健全性を維持していることが確認された。 Fig. 6 is a graph instead of a drawing showing the results of quantitative analysis of dsDNA. In the flat adherent culture of T-150 flasks, a remarkable increase in dsDNA concentration was observed after Day 7, suggesting that the cells would die due to overgrowth. On the other hand, in the culture supernatant obtained by the hollow fiber culture of the present invention, a remarkable increase in the dsDNA concentration was not observed during the culture period up to Day 50, so that the mesenchymal system that grew as an aggregate in the closed space in the hollow fiber was not observed. It was confirmed that the stem cells maintained their soundness even in long-term culture.
1.3.グルコース定量    
 細胞の主要なエネルギー源であるグルコースを,長期間の培養過程における培養液中の濃度変化を評価するために定量した。グルコース定量には市販のキットをマニュアルに準じて使用した(Glucose Colorimetric Assay Kit2;BioVision)。その結果を表4及び図7に示す。
1.3. Glucose determination
Glucose, the main energy source of the cells, was quantified to evaluate changes in the concentration of the medium during long-term culture. A commercially available kit was used for glucose determination according to the manual (Glucose Colorimetric Assay Kit 2; BioVision). The results are shown in Table 4 and FIG.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 図7は,グルコースの定量分析の結果を示す図面に代わるグラフである。本発明の中空糸培養による培養上清において,Day50までの培養期間中,グルコースが完全に枯渇することはないものの,Day18以降は1 nmol/μL以下と低濃度で維持された。 FIG. 7 is a graph instead of a drawing showing the results of quantitative analysis of glucose. In the culture supernatant of the hollow fiber culture of the present invention, glucose was not completely depleted during the culture period up to Day 50, but was maintained at a low concentration of 1 nmol / μL or less after Day 18.
本発明の産業上の利用用途は,医薬品や化粧品原料としての,培養上清の製造である。本発明の技術を活用することで,従来の接着培養方法による培養上清の製造と比較して,製造区域床面積の削減,製造要員の削減,製造単位あたりの製造規模の増大などが達成できる。これらにより,培養上清の製造原価の低減と製品価格の抑制,そして,最適で有効な製法開発の手段を与えるものである。 An industrial application of the present invention is the production of culture supernatants as raw materials for pharmaceuticals and cosmetics. By utilizing the technology of the present invention, it is possible to achieve a reduction in the floor area of the manufacturing area, a reduction in the number of manufacturing personnel, an increase in the manufacturing scale per manufacturing unit, and the like, as compared with the production of the culture supernatant by the conventional adhesion culture method. . By these means, it is possible to reduce the production cost of the culture supernatant, suppress the product price, and provide an optimal and effective means of developing a production method.

Claims (7)

  1.  培養上清を製造するための中空糸細胞培養装置用の中空糸フィルターモジュールであって,
     フィルターハウジング(1)と,
     前記フィルターハウジングの内部に存在する中空糸(3)であって,ポアサイズが5nm以上1μm以下であり,内腔を円形にした際の直径が,0.1mm以上1.6mm以下であり,前記中空糸(3)の第1及び第2の末端(4a,4b)は前記フィルターハウジング(1)の第1及び第2の端部(1a,1b)と接続されたものであり,前記中空糸(3)は細胞導入部(5)により内部に幹細胞が導入されるものと,
    前記細胞導入部(5)により前記中空糸(1)の内部に前記幹細胞が導入された後に,前記中空糸フィルターモジュールに装着されるための第1のエンドキャップ(6a)であって,前記幹細胞や培養液の移動が前記中空糸(3)の第1の末端(4a)の開口部を通じて生じないように,前記中空糸(3)の第1の末端(4a)と,前記フィルターハウジング(1)を密閉するための第1のエンドキャップ(6a)と,
     前記フィルターハウジング(1)と接続され,前記フィルターハウジングの内部に培養液を導入するための培養液導入部(7)であって,前記フィルターハウジングの内部に培養液を供給するための培養液供給路(8)と接続されるものと,
     前記フィルターハウジング(1)と接続され,前記フィルターハウジングの内部を経た培養上清を含む培養液を排出するための培養液排出部(9)であって,前記フィルターハウジングの内部の培養上清を含む培養液を排出するための培養排出路(10)と接続されるものと,
     前記幹細胞や培養液の移動が前記中空糸(3)の第2の末端(4b)の開口部を通じて生じないように,前記中空糸(3)の第2の末端(4b)と,前記フィルターハウジング(1)を密閉した第2のエンドキャップ(6b)を有し,
     前記中空糸(3)の第1の末端(4a)及び前記中空糸(3)の第2の末端(4b)からは前記培養液が流入されず,
     前記中空糸細胞培養装置は,前記中空糸(3)の内腔を前記幹細胞で閉塞させ,前記中空糸(3)外部に循環する培養液を前記中空糸(3)内部と交換させ,前記幹細胞により生じる培養上清を前記中空糸(3)外部へ移動させ,これにより,前記培養液排出部(9)から培養上清を含む培養液を排出させることができる,
    中空糸フィルターモジュール。
    A hollow fiber filter module for a hollow fiber cell culture device for producing a culture supernatant,
    Filter housing (1),
    A hollow fiber (3) present inside the filter housing, having a pore size of 5 nm or more and 1 μm or less, and having a circular inner diameter of 0.1 mm or more and 1.6 mm or less; The first and second ends (4a, 4b) of the yarn (3) are connected to the first and second ends (1a, 1b) of the filter housing (1), and are connected to the hollow fiber (1). 3) is that the stem cell is introduced inside by the cell introduction part (5),
    A first end cap (6a) for being mounted on the hollow fiber filter module after the stem cells are introduced into the hollow fiber (1) by the cell introduction part (5), wherein the stem cells are The first end (4a) of the hollow fiber (3) and the filter housing (1) so that the transfer of the culture medium and the culture solution does not occur through the opening of the first end (4a) of the hollow fiber (3). A) a first end cap (6a) for sealing
    A culture solution introduction unit (7) connected to the filter housing (1) for introducing a culture solution into the filter housing, and supplying a culture solution to the inside of the filter housing; Connected to road (8),
    A culture solution discharge portion (9) connected to the filter housing (1) for discharging a culture solution containing a culture supernatant having passed through the inside of the filter housing; One connected to a culture discharge passage (10) for discharging the culture medium containing
    The second end (4b) of the hollow fiber (3) and the filter housing so that the movement of the stem cells and the culture solution does not occur through the opening of the second end (4b) of the hollow fiber (3). A second end cap (6b) enclosing (1),
    The culture solution does not flow from the first end (4a) of the hollow fiber (3) and the second end (4b) of the hollow fiber (3),
    The hollow fiber cell culture device closes the lumen of the hollow fiber (3) with the stem cell, exchanges a culture solution circulating outside the hollow fiber (3) with the inside of the hollow fiber (3), and The culture supernatant generated by the above is moved to the outside of the hollow fiber (3), whereby the culture solution containing the culture supernatant can be discharged from the culture solution discharge portion (9).
    Hollow fiber filter module.
  2.  請求項1に記載の中空糸細胞培養装置用の中空糸フィルターモジュールであって, 前記ポアサイズが0.1μm以上0.65μm以下である,中空糸フィルターモジュール。 The hollow fiber filter module for a hollow fiber cell culture device according to claim 1, wherein the pore size is 0.1 μm or more and 0.65 μm or less.
  3.  請求項1に記載の中空糸細胞培養装置用の中空糸フィルターモジュールであって,
     前記幹細胞は,間葉系幹細胞である,中空糸フィルターモジュール。
    A hollow fiber filter module for a hollow fiber cell culture device according to claim 1,
    The hollow fiber filter module, wherein the stem cells are mesenchymal stem cells.
  4.  請求項1に記載の中空糸細胞培養装置用の中空糸フィルターモジュールであって,
    前記細胞導入部(5)をさらに有し,
    前記細胞導入部(5)は,第1のエンドキャップ(6a)を連結する中空糸フィルターに対応した部位に設けられた空間体積を持つ円筒状の容積部であり,円筒状の容積部の一方の末端には,ガスケットを有した押し子が挿入され,円筒状の容積部のもう一方の末端は中空糸フィルターに連結され,押し子を中空糸フィルターの方向に押し込むことにより,細胞が中空糸フィルターの内腔に導入される,中空糸フィルターモジュール。
    A hollow fiber filter module for a hollow fiber cell culture device according to claim 1,
    Further comprising the cell introduction part (5);
    The cell introduction part (5) is a cylindrical volume part having a spatial volume provided at a site corresponding to the hollow fiber filter connecting the first end cap (6a), and one of the cylindrical volume parts. A pusher having a gasket is inserted into the end of the hollow fiber filter, and the other end of the cylindrical volume is connected to the hollow fiber filter. A hollow fiber filter module that is introduced into the lumen of the filter.
  5. 請求項1に記載の中空糸細胞培養装置用の中空糸フィルターモジュールを含む培養上清を製造するための中空糸細胞培養装置であって,
    前記培養液導入部(7)に接続され,前記培養液導入部(7)に培養液を導入するための培養液供給路(8)と,
    前記培養液排出部(9)と接続され,前記培養液排出部(9)から排出される前記養上清を含む培養液を回収するための培養排出路(10)と,
     を含み,
    前記中空糸(3)の内腔を前記幹細胞で閉塞させ,前記中空糸(3)外部に循環する培養液を前記中空糸(3)内部と交換させ,前記幹細胞により生じる培養上清を前記中空糸(3)外部へ移動させ,これにより,前記培養液排出部(9)から培養上清を含む培養液を排出させ,前記培養上清を回収する,
    中空糸細胞培養装置。
    A hollow fiber cell culture device for producing a culture supernatant comprising the hollow fiber filter module for a hollow fiber cell culture device according to claim 1,
    A culture solution supply passage (8) connected to the culture solution introduction unit (7) for introducing a culture solution into the culture solution introduction unit (7);
    A culture discharge path (10) connected to the culture liquid discharge section (9) for collecting a culture liquid containing the nutrient supernatant discharged from the culture liquid discharge section (9);
    Including
    The lumen of the hollow fiber (3) is closed with the stem cells, the culture solution circulating outside the hollow fiber (3) is exchanged for the inside of the hollow fiber (3), and the culture supernatant generated by the stem cells is removed from the hollow fiber (3). The yarn (3) is moved outside, whereby the culture solution containing the culture supernatant is discharged from the culture solution discharge section (9), and the culture supernatant is collected.
    Hollow fiber cell culture device.
  6.  請求項5に記載の中空糸細胞培養装置であって,前記培養液供給路(8)に設けられ,前記培養液導入部(7)を介して前記フィルターハウジング(1)内に培養液を送るための送液装置(11)をさらに有する,装置。 The apparatus for culturing hollow fiber cells according to claim 5, wherein the culture solution is provided in the culture solution supply passage (8), and sends the culture solution into the filter housing (1) via the culture solution introduction section (7). Further comprising a liquid sending device (11).
  7.  請求項5の装置を用いた培養上清の製造方法であって,
     前記中空糸(3)の内部に,前記細胞導入部(5)を介して間葉系幹細胞を導入する細胞導入工程と,
     前記細胞導入工程の後に,前記間葉系幹細胞や培養液の移動が前記中空糸(3)の第1の末端(4a)の開口部を通じて生じないように,第1のエンドキャップ(6a)を用いて前記中空糸(3)の第1の末端(4a)と,前記フィルターハウジング(1)を密閉する工程と,
     前記培養液導入部(7)を介して前記フィルターハウジング内部に,前記培養液を供給する培養液供給工程と,
     前記培養液排出部(9)から,前記フィルターハウジング内部の培養液を,排出する培養液排出工程と,
     前記培養液供給工程及び前記培養液排出工程を継続し,前記培養液導入部(7)を介して前記フィルターハウジング内部に前記培養液を供給し,前記フィルターハウジング内部の培養液を,排出しつつ,前記中空糸(3)の第1の末端(4a)及び前記中空糸(3)の第2の末端(4b)からは前記培養液が流入されない状態で,前記中空糸(3)の内部で前記間葉系幹細胞を培養する工程と,
     前記培養液排出工程により得られた排出液から培養上清を回収する培養上清回収工程と,
     を含む,間葉系幹細胞の培養上清の製造方法。
    A method for producing a culture supernatant using the apparatus according to claim 5,
    A cell introduction step of introducing mesenchymal stem cells into the hollow fiber (3) via the cell introduction part (5);
    After the cell introduction step, the first end cap (6a) is moved so that the mesenchymal stem cells and the culture solution do not move through the opening of the first end (4a) of the hollow fiber (3). Sealing the first end (4a) of the hollow fiber (3) and the filter housing (1) using
    A culture solution supply step of supplying the culture solution into the filter housing through the culture solution introduction section (7);
    A culture solution discharging step of discharging the culture solution inside the filter housing from the culture solution discharge section (9);
    The culture solution supply step and the culture medium discharge step are continued to supply the culture medium inside the filter housing via the culture medium introduction section (7), and to discharge the culture medium inside the filter housing. , Inside the hollow fiber (3) in a state where the culture solution does not flow from the first end (4a) of the hollow fiber (3) and the second end (4b) of the hollow fiber (3). Culturing the mesenchymal stem cells;
    A culture supernatant collecting step of collecting a culture supernatant from the discharged liquid obtained in the culture liquid discharging step,
    A method for producing a culture supernatant of mesenchymal stem cells, comprising:
PCT/JP2019/024872 2018-06-22 2019-06-24 Hollow fiber cell culture device, cell culture method, and method for producing culture supernatant WO2019245050A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980006288.4A CN111448305B (en) 2018-06-22 2019-06-24 Hollow fiber cell culture apparatus, cell culture method, and method for producing culture supernatant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-119267 2018-06-22
JP2018119267A JP6469287B1 (en) 2018-06-22 2018-06-22 Hollow fiber cell culture device, cell culture method, culture supernatant production method

Publications (1)

Publication Number Publication Date
WO2019245050A1 true WO2019245050A1 (en) 2019-12-26

Family

ID=65356101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024872 WO2019245050A1 (en) 2018-06-22 2019-06-24 Hollow fiber cell culture device, cell culture method, and method for producing culture supernatant

Country Status (3)

Country Link
JP (1) JP6469287B1 (en)
CN (1) CN111448305B (en)
WO (1) WO2019245050A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200744A1 (en) * 2020-03-31 2021-10-07 Cell Exosome Therapeutics株式会社 Method for producing proliferating cells, method for producing cell product, mesenchymal stem cell population and method for producing same, culture supernatant of stem cells and method for producing same, and therapeutic agent

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11911553B2 (en) * 2018-07-06 2024-02-27 Fenwal, Inc. Systems and methods for concentrating cells with a syringe and a centrifuge
TWI780616B (en) * 2021-03-04 2022-10-11 國立清華大學 Perfusion cell culture device and perfusion cell culture system
WO2023190448A1 (en) * 2022-03-29 2023-10-05 国立大学法人東海国立大学機構 Method for cultivating mesenchymal stem cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333945A (en) * 2004-05-31 2005-12-08 Toray Ind Inc Hollow fiber module for culture, culture apparatus and method for producing cell preparation
WO2016148230A1 (en) * 2015-03-17 2016-09-22 東洋紡株式会社 Method for producing stem cell culture supernatant
WO2017104558A1 (en) * 2015-12-15 2017-06-22 東洋紡株式会社 Hollow-fiber membrane and hollow-fiber module for cell culture

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62500356A (en) * 1984-10-09 1987-02-19 エンドトロニツクス インコ−ポレ−テツド Hollow fiber culture device and operating method with improved nutrient perfusion and product concentration
CN1118563C (en) * 2000-12-08 2003-08-20 中国医学科学院血液学研究所 Hematopoietic device using hollow fibre to simulate bone marrow
JP3726188B2 (en) * 2002-05-28 2005-12-14 東洋紡績株式会社 Apparatus with hollow fiber and method of using the same
JP2004283010A (en) * 2003-03-19 2004-10-14 Toyobo Co Ltd Method for culturing cell, cell cultured product and medical biomaterial
JP2007202430A (en) * 2006-01-31 2007-08-16 Scimedia Ltd Hollow yarn bundle module for cell culture
EP2335814B1 (en) * 2008-09-26 2016-12-28 Asahi Kasei Kabushiki Kaisha Use of porous hollow-fiber membrane for producing clarified biomedical culture medium
JP2014060991A (en) * 2012-08-30 2014-04-10 Asahi Kasei Corp Method of culturing stem cells using inner lumen of porous hollow fiber
JP2017158488A (en) * 2016-03-10 2017-09-14 東洋紡株式会社 Cell recovery method
JP2018014947A (en) * 2016-07-29 2018-02-01 東洋紡株式会社 Cell culture method using hollow fiber membrane module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333945A (en) * 2004-05-31 2005-12-08 Toray Ind Inc Hollow fiber module for culture, culture apparatus and method for producing cell preparation
WO2016148230A1 (en) * 2015-03-17 2016-09-22 東洋紡株式会社 Method for producing stem cell culture supernatant
WO2017104558A1 (en) * 2015-12-15 2017-06-22 東洋紡株式会社 Hollow-fiber membrane and hollow-fiber module for cell culture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200744A1 (en) * 2020-03-31 2021-10-07 Cell Exosome Therapeutics株式会社 Method for producing proliferating cells, method for producing cell product, mesenchymal stem cell population and method for producing same, culture supernatant of stem cells and method for producing same, and therapeutic agent
EP4155389A3 (en) * 2020-03-31 2023-07-12 Cell Exosome Therapeutics Inc. Method of producing proliferated cells, method of producing cell product, mesenchymal stem cell population and method of producing same, culture supernatant of stem cells and method of producing same, and therapeutic agent

Also Published As

Publication number Publication date
JP2019216694A (en) 2019-12-26
JP6469287B1 (en) 2019-02-13
CN111448305A (en) 2020-07-24
CN111448305B (en) 2023-09-29

Similar Documents

Publication Publication Date Title
WO2019245050A1 (en) Hollow fiber cell culture device, cell culture method, and method for producing culture supernatant
US20230383237A1 (en) Automated cell culturing and harvesting device
JP6928598B2 (en) Human and large mammalian lung bioreactors
EP1548099A1 (en) Automatic culture apparatus for cell or tisse with biological origin
US20110212493A1 (en) Perfusion bioreactors, cell culture systems, and methods for production of cells and cell-derived products
CN111542350B (en) Systems and methods for preparing adipose-derived stem cells
CN110157666A (en) Umbilical cord mesenchymal stem cells MSCs and its cultural method and application
CN103451151B (en) A kind of method of cultivator umbilical cord mesenchymal stem cells
EP2130905A1 (en) Method for culturing eukaryotic cells
JP5185470B2 (en) Autologous serum-added bone marrow cell culture system, autoserum-added bone marrow cell culture method, and method for producing a pharmaceutical composition comprising autologous serum-added bone marrow cells as an active ingredient
WO2016140213A1 (en) Cell culture method using hollow fiber module
CN207193305U (en) Doughnut exchanger and doughnut switch type culture systems
CN1118563C (en) Hematopoietic device using hollow fibre to simulate bone marrow
CN115074320B (en) Preparation system and preparation method of high-concentration mesenchymal stem cell exosome in 3D culture environment
CN204455135U (en) External dynamic, three-dimensional, three-dimensional cell and tissue structrue device
JP2008505650A (en) Apparatus and method for growing human cells
CN112843338B (en) Method for preparing collagen-containing mesenchymal stem cell injection
US11535822B2 (en) Device for isolating stem cells from fetal tissues
Veronesi et al. cGMP-compliant transportation conditions for a prompt therapeutic use of marrow mesenchymal stromal/stem cells
Basok et al. A Perfusion Bioreactor for Long-Term Studies of the Dynamics of the Formation of a Tissue Equivalent
JP2022121302A (en) Cell culture bag and set
CN103555664A (en) Method for cultivating human placenta mesenchymal stem cells
JP2011062216A (en) Hollow fiber module for cell culture and method for cell culture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19822714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP