WO2019245010A1 - Therapeutic agent for cystic fibrosis - Google Patents

Therapeutic agent for cystic fibrosis Download PDF

Info

Publication number
WO2019245010A1
WO2019245010A1 PCT/JP2019/024614 JP2019024614W WO2019245010A1 WO 2019245010 A1 WO2019245010 A1 WO 2019245010A1 JP 2019024614 W JP2019024614 W JP 2019024614W WO 2019245010 A1 WO2019245010 A1 WO 2019245010A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
cftr
cftr function
independently selected
salt
Prior art date
Application number
PCT/JP2019/024614
Other languages
French (fr)
Japanese (ja)
Inventor
聡 宗岡
嘉晃 冨森
Original Assignee
第一三共株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一三共株式会社 filed Critical 第一三共株式会社
Publication of WO2019245010A1 publication Critical patent/WO2019245010A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/443Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with oxygen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention has a G protein-coupled receptor 39 (G protein-coupled receptor 39, which may be abbreviated as GPR39 in the present specification) agonistic action, and activates a calcium-dependent chloride channel (GPR39) through activation of GPR39.
  • G protein-coupled receptor 39 which may be abbreviated as GPR39 in the present specification
  • CaCC calcium-dependent chloride channel
  • CFTR Regulator
  • Cystic fibrosis is a serious hereditary disease caused by a genetic mutation in CFTR, a type of chloride channel, and it is estimated that there are more than 70,000 patients worldwide. In recent years, although treatments have been developed, the average life expectancy is about 40 years, so that a satisfactory treatment has not yet been established.
  • CFTR is a major cAMP-dependent anion channel expressed on the luminal membrane of whole epithelial cells.
  • the function of this channel is reduced by gene mutation, the transport of ions and water through the epithelium / mucosa is impaired in the respiratory tract, intestinal tract, pancreatic duct, bile duct, sweat duct, etc., resulting in excessive mucus / secretion in the lumen.
  • CFTR was identified as a causative gene for cystic fibrosis, studies on cystic fibrosis have progressed, and it has been reported that about 1900 or more mutations exist at present. Of these mutations, they are classified into six classes according to the CFTR dysfunction caused by the mutations (class I; nonsense mutation, class II; protein misfolding mutation, class III; mutation in abnormal channel opening, class IV; channel conductance). Mutations, class V; mutations that decrease the amount of CFTR produced, class VI; mutations that decrease the stability of CFTR), and particularly the class I, class II, and class III mutations, since the chloride ion is hardly secreted, and the symptoms are severe. The unmet medical needs are very high.
  • VX-770 and Lumacaftor may be referred to as VX-809.
  • Kalydeco is a class III and class IV mutation in some patients
  • Orkambi is a class II.
  • Symdeko has an effect on the ⁇ F508 homozygous mutation and only on some patients with the ⁇ F508 homozygous mutation or the class III and class IV mutations.
  • Orkambi and Symdeko were confirmed to have a statistically significant respiratory function-improving effect, but their efficacy was limited, and there were many patients who did not yet have a sufficient therapeutic drug, centering on the class I and class II mutations. .
  • One of the methods for solving these problems is to open a chloride channel other than CFTR to substitute for a malfunction of CFTR. If a compound having such a profile can be obtained, it is considered that all cystic fibrosis patients can be treated theoretically without depending on the mutation of CFTR.
  • they open chloride channels other than CFTR they can be used in combination with existing CFTR agents such as Kalydeco (registered trademark), Orkambi (registered trademark), and Symdeko (registered trademark) to further enhance the efficacy of the drug. There is expected.
  • Denufosol which is a P2Y 2 (a type of G protein-coupled receptor (GPCR)) agonist
  • GPCR G protein-coupled receptor
  • CaCC Calcium-activated Chloride Channel
  • a low-molecular compound that directly acts on CaCC and activates it has been screened and reported to be promising as a therapeutic agent for cystic fibrosis (Non-Patent Document 2). It is unknown.
  • the preceding therapeutic drug for cystic fibrosis is only effective for patients with limited mutations, and the drug efficacy against Orkambi or Symdeko's ⁇ F508 homozygous mutation is not sufficient. Is eagerly awaited. Although there has been a therapeutic concept of opening a chloride channel other than CFTR and substituting a CFTR dysfunction, a compound showing a medicinal effect in clinical practice has not been obtained at present.
  • In-vitro drug efficacy evaluation is based on the point that a three-dimensional culture system using airway epithelial cells derived from a cystic fibrosis patient (Air-Liquid Interface Interfacial Assay; ALI assay) absorbs water quickly and hardly secretes water. Since it is close to the lung condition of cystic fibrosis patients, it is widely used as a drug efficacy evaluation system. In fact, Kalydeco moved water in the ALI assay (Non-patent Document 3), and was developed as a therapeutic agent for cystic fibrosis, and its clinical efficacy was confirmed (Non-patent Document 4).
  • GPR39 G protein-coupled receptor 39
  • the ligand for GPR39 has been unknown for a long time, but since it is a member of the ghrelin receptor family, the ligand was presumed to be a peptide, and there were times when obestatin was considered to be a natural ligand.
  • obestatin is not a GPR39 ligand, but zinc (Zn 2+ ) is said to be a GPR39 ligand.
  • GPR39 is expressed in mouse @ intestinal @ fibroblast-like @ cells, and it has been reported that GPR39 activation is associated with CaCC activation (Non-Patent Document 5), but cells derived from cystic fibrosis patients have been reported. Is unknown, and there is no report that a compound capable of activating GPR39 and continuously opening CaCC has been obtained.
  • Non-Patent Document 6 AZ7914, AZ4237, AZ1395
  • Non-Patent Document 7 pyridylpyrimidine compound
  • the present inventors have found that, in cystic fibrosis caused by CFTR mutation, if a chloride channel different from CFTR that causes the disease can be opened, the dysfunction of CFTR can be substituted, leading to treatment.
  • a pyrimidine derivative having a specific chemical structure opens CaCC via GPR39 agonism and is effective in treating cystic fibrosis independently of CFTR.
  • the pyrimidine derivative when the pyrimidine derivative is administered in combination with a CFTR function improving agent or an ENaC inhibitor, the pyrimidine derivative exerts an excellent effect on the treatment of cystic fibrosis, thereby completing the present invention.
  • the medicament according to [1] or [2] wherein the medicament is contained as active ingredients of different preparations, and is administered at the same time or at different times.
  • [4] (a) a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof and (b) at least one drug independently selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor; The medicament according to [1] or [2], which is contained in a single preparation.
  • [5] (a) a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof and (b) at least one drug independently selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor
  • [6] The method according to any one of [1] to [5], which is for a patient who has been treated with at least one drug independently selected from the group consisting of a CFTR function improving drug and an ENaC inhibitor. Medicine.
  • At least one drug independently selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor is a CFTR function improving agent, wherein the CFTR function improving agent is CFTR potentiator, CFTR collector, or CFTR amplifier.
  • At least one drug independently selected from the group consisting of a CFTR function improver and an ENaC inhibitor is a CFTR function improver, and the CFTR function improver is a group consisting of CFTR potentiator and CFTR collector
  • At least one drug independently selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor is a CFTR function improving agent, wherein the CFTR function improving agent is Ivacaftor, QBW251, VX-561.
  • the compound represented by the formula (I) or a pharmaceutically acceptable salt thereof is bis [5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid] magnesium salt.
  • the medicament according to any one of [1] to [11].
  • At least one drug independently selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor is a CFTR function improving agent, wherein the CFTR function improving agent is a group consisting of CFTR potentiator and CFTR collector.
  • At least one drug independently selected from the group consisting of CFTR function improvers and ENaC inhibitors is a CFTR function improver, wherein the CFTR function improver is Ivacaftor, QBW251, VX-561.
  • At least one drug independently selected from the group consisting of CFTR function improving agents and ENaC inhibitors is an ENaC inhibitor, and the ENaC inhibitor is selected from the group consisting of QBW276, SPX-101 and AZD5634.
  • the pharmaceutically acceptable salt thereof according to any one of [14] to [16].
  • the pharmaceutically acceptable salt is a magnesium salt, a calcium salt, a zinc salt, a sodium salt, a tert-butylamine salt or a diisopropylamine salt.
  • the compound represented by the formula (I) or a pharmaceutically acceptable salt thereof is magnesium bis [5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid].
  • a pharmaceutically acceptable salt thereof and (b) at least one drug independently selected from the group consisting of CFTR function improving agents and ENaC inhibitors How to treat the disease.
  • At least one drug independently selected from the group consisting of (a) the compound represented by the formula (I) or a pharmaceutically acceptable salt thereof, and (b) a CFTR function improving agent and an ENaC inhibitor The therapeutic method according to [24] or [25], which is a kit preparation containing them.
  • At least one drug independently selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor is a CFTR function improving agent, wherein the CFTR function improving agent is a group consisting of CFTR potentiator and CFTR collector.
  • At least one drug independently selected from the group consisting of CFTR function improvers and ENaC inhibitors is a CFTR function improver, wherein the CFTR function improver is Ivacaftor, QBW251, VX-561.
  • the pharmaceutically acceptable salt is a magnesium salt, a calcium salt, a zinc salt, a sodium salt, a tert-butylamine salt or a diisopropylamine salt. .
  • the compound represented by the formula (I) or a pharmaceutically acceptable salt thereof is bis [5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid] magnesium salt
  • (a) a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof, and (b) at least one drug independently selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor The therapeutic method according to any one of [24] to [36], wherein the administered subject is a warm-blooded animal.
  • a pharmaceutically acceptable salt refers to a salt that has no significant toxicity and can be used as a medicament. Since the compound represented by the formula (I) of the present invention has an acidic group, it can be converted to a salt by reacting with a base.
  • Such salts include, for example, alkali metal salts such as sodium salt, potassium salt and lithium salt, alkaline earth metal salts such as calcium salt and magnesium salt, metal salts such as aluminum salt, iron salt and zinc salt.
  • Inorganic salts such as ammonium salts, tert-butylamine salts, tert-octylamine salts, diisopropylamine salts, dibenzylamine salts, morpholine salts, glucosamine salts, phenylglycine alkyl ester salts, ethylenediamine salts, N-methylglucamine salts Guanidine salt, diethylamine salt, triethylamine salt, dicyclohexylamine salt, N, N'-dibenzylethylenediamine salt, chloroprocaine salt, procaine salt, diethanolamine salt, N-benzylphenethylamine salt, piperazine salt, tetramethylammonium And organic amine salts such as
  • Examples of preferred salts include magnesium salt, calcium salt, zinc salt, sodium salt, tert-butylamine salt and diisopropylamine salt.
  • hydrochloride includes salts that can be formed, such as monohydrochloride, dihydrochloride, trihydrochloride
  • magnesium salt includes salts that can be formed, such as monomagnesium, ⁇ ⁇ ⁇ ⁇ ⁇ magnesium.
  • “monoacid salt” and “monobasic salt” may be abbreviated as “acid salt” in which "one” is omitted.
  • “Hydrochloride” and “monomagnesium salt” may be indicated as “magnesium salt”.
  • the compound represented by the formula (I) of the present invention or a pharmaceutically acceptable salt thereof may be left in the atmosphere or recrystallized to absorb adsorbed water or take in water molecules.
  • hydrates, and such hydrates are also included in the compounds of the present invention or pharmaceutically acceptable salts.
  • the compound of the present invention represented by the formula (I) or a pharmaceutically acceptable salt thereof absorbs a certain solvent by being left in a solvent or recrystallized in the solvent, It may be possible to form a solvate, and such a solvate is also included in the compound of the present invention or a pharmaceutically acceptable salt.
  • the solvent capable of forming a solvate is not particularly limited as long as it does not have remarkable toxicity and can be used as a medicine.
  • ethanol 1-propanol, 2-propanol, 1-butanol, 2-butanol, Butanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethyl sulfoxide, ethyl formate, ethyl acetate, propyl acetate, diethyl ether, tetrahydrofuran, formic acid, acetic acid, pentane, heptane, cumene, anisole and the like.
  • each of the hydrates or solvates formed by combining the compound represented by the formula (I) of the present invention or a pharmaceutically acceptable salt thereof with water or a solvent in any ratio, or a mixture thereof Included in the invention.
  • hydrates that can be formed such as monohydrate, dihydrate, hemihydrate, 3/2 hydrate, and solvates, disolvates, and 1/2 solvents
  • Solvates that can be formed such as solvates, 3/2 solvates, are encompassed by the present invention.
  • ⁇ hydrate '' or ⁇ solvate '' is described without specifying the hydration number or solvation number, any number of hydrates or solvates is included. It is.
  • More specific preferred examples of the compound represented by the formula (I) of the present invention or a pharmaceutically acceptable salt thereof include 5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2- Examples include carboxylic acid or its magnesium salt, calcium salt, zinc salt, sodium salt, tert-butylamine salt or diisopropylamine salt. These may be in the form of hydrates.
  • More specific one embodiment of the compound of the present invention includes 5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid hydrate, magnesium salt hydrate, calcium salt hydrate, Zinc salt hydrate, sodium salt anhydride, tert-butylamine salt anhydride or diisopropylamine salt anhydride, more preferably hydrate or magnesium salt hydrate.
  • a CFTR function improving drug is a drug that directly acts on CFTR dysfunction caused by mutation of CFTR that is a causative gene of cystic fibrosis and improves the function thereof.
  • CFTR function improving drugs include CFTR @ potentiator, CFTR @ corrector, CFTR @ amplifier, RNA therapy and Gene therapy.
  • CFTR ⁇ potentiators act on and open CFTR with class III and class IV mutations, thereby improving its function.
  • Representative examples include Ivacaftor (VX-770); QBW251 (Am ⁇ J ⁇ Respir ⁇ Crit ⁇ Care ⁇ Med .; 193: A7789 (2016)); VX-561 (J ⁇ Pharmacol ⁇ Exp ⁇ Ther .; 362: 359-67 (2017)); PTI-808 (Cystic Fibrosis Foundation 2017 ANNUAL REPORT); GLPG1837 (J Med Chem .; 61: 1425-1435 (2016)); GLPG2451 or GLPG 3067 (J Cyst Fibros.); Compounds described in International Publication WO2015 / 018823; compounds described in International Publication WO2018 / 073175.
  • CFFurthermore CFTR corrector normalizes the dysfunction by expressing CFTR having class II mutation on the cell surface.
  • Representative examples include Lumacaftor (VX-809); Tezacaftor; VX-445, VX-440, VX-152 or VX-659 (J ⁇ Cyst ⁇ Fibros .; 17 (S2): S52-60 (2016)); FDL169 ( 27 (2016)); GLPG2222 (J Med Chem .; 61: 1436-1449 (2016)); GLPG2851 or GLPG2737 (JCyst Fibros .; 17 (S2): S52-60 (2018)); Compounds described in International Publication WO2015 / 018823; Compounds described in International Publication WO2018 / 073175; PTI-801 (J Cyst Fibros .; 17 (S2): S52-60 (2018), Cystic ⁇ ibrosis Foundation 2017 ANNUAL REPORT) and the like.
  • CFCFTR amplifier normalizes dysfunction by enhancing the expression of CFTR protein.
  • Representative examples include PTI-428 (J @ Cyst Fibros .; 17 (S3): S1-2 (2016), J @ Transl @ Med .; 15:84 (2017), Cystic @ Fibrosis ⁇ Foundation 2017 2017 ANNUAL REPORT, N- [trans. -3- [5-[(1R) -1-hydroxyethyl] -1,3,4-oxadiazol-2-yl] cyclobutyl] -3-phenyl-1,2-oxazole-5-carboxamide, International Publication WO2016 / 105485, and the like.
  • RNARNA therapy also restores the expression of mRNA encoding CFTR and normalizes its dysfunction by enhancing the expression of CFTR protein.
  • Representative examples include Eluforsen (QR-010, J Transl Med .; 15:84 (2017), Cyclic Fibrosis Foundation 2017 ANNUAL REPORT), the antisense oligonucleotide described in International Publication WO2014 / 011053, MRT5005FyCy 17 (S3): S16 (2016), Cyclic Fibrosis Fundation 2017 2017 ANNUAL REPORT, and the like.
  • Gene therapy functions by introducing a gene encoding CFTR using a virus or a non-viral vector, or by repairing an abnormality of the gene encoding CFTR by a genome editing technique such as CRISPR / Cas9. Normalize the abnormalities (Front Pharmacol .; 9: 396 (2016), J @ Transl Med .; 15:84 (2017)).
  • particularly preferred examples of the CFTR function improving agent are at least one kind independently selected from the group consisting of CFTR @ potentiator and CFTR @ corrector.
  • a preferred specific example is at least one independently selected from the group consisting of Ivacaftor, Lumacaftor and Tezacaftor.
  • two or more CFTR function-improving agents may be used in combination.
  • Orkambi registered trademark
  • Symdeko registered trademark
  • Tezacaftor and Ivacaftor VX -445 and Tezacaftor and Ivacaftor the mixture
  • Cystic Fibrosis Foundation 2017 ANNUAL REPORT mixture of VX-440 and Tezacaftor and Ivacaftor, VX-152 and Tezacaftor and Ivacaftor the mixture, VX-659 and Tezacaftor and Ivacaftor the mixture
  • J Cyst Fibros .; 17 (S3): S3 (2016) Cystic Fibrosis ⁇ compound, described in International Publication No.
  • WO2017 / 060880 a combination of GLPG2451, GLPG2222 and GLPG2737, a combination of PTI-428, PTI-801 and PTI-808 (Expert Rev. MediGed.Dev. 3: 107-117 (2016)) is also preferably used.
  • the ENaC inhibitor inhibits the opening of ENaC (epithelial sodium channel) expressed on the surface of epithelial cells, or inhibits the absorption of sodium ions by internalizing ENaC expressed on the surface of epithelial cells.
  • ENaC epihelial sodium channel
  • It is a drug.
  • Representative examples include QBW276 (Cystic Fibrosis Foundation 2017 ANNUAL REPORT), Bioorg Med Chem Chem Lett. 22 (2): 929-932 (2012); Bioorg ⁇ Chem ⁇ Lett.
  • CFTR function improving drugs and ENaC inhibitors can be used in combination with one or more drugs.
  • the compound of the present invention represented by the formula (I) or a pharmaceutically acceptable salt thereof has a strong chloride ion secretion action through GPR39 agonist action and transfers water. Since this compound can open a chloride channel different from CFTR which causes disease, it exhibits an excellent therapeutic effect when combined with a CFTR function improving agent or an ENaC inhibitor. Therefore, the medicament / therapeutic method for treating cystic fibrosis by the combination of the compound of the present invention or a pharmaceutically acceptable salt thereof and a CFTR function-improving agent can be performed from class I to VI regardless of the type of CFTR mutation. The therapeutic effect can be exhibited in any of the above.
  • a preferred treatment target is a patient with a class II ⁇ F50850homozygous mutation, a class III mutation, and a class IV mutation in which an existing CFTR improving drug is used.
  • FIG. 1 is a graph showing changes in the expression level of human GPR39 (mRNA expression analysis) in CuFi-1 cells, a bronchial epithelial cell line derived from a cystic fibrosis patient, by siRNA treatment.
  • FIG. 2 is a graph showing the influence of each compound on chloride secretion activity by treatment with siRNA in CuFi-1 cells. The vertical axis represents the rate of increase when comparing the average value of the five fluorescence values from 110 to 120 seconds during the measurement for 120 seconds with the average value of the fluorescence values at 17 points from 1 to 34 seconds. ing.
  • FIG. 3 is a graph showing the water transfer effect of each compound in MucilAir-CF TM cells (lot number MD048502) having ⁇ F508 homozygous, which is a Class II mutation of CFTR.
  • the vertical axis indicates the moisture remaining ratio in the upper layer.
  • N 3-20 means and standard deviation.
  • Dunnett's multiple comparison test was performed with the group to which no compound was added, and the group having a p value of 0.01 or less is indicated by **. # Indicates that the p-value by the Student's t-test was 0.032 for the group without the compound and the group with the combination of VX-809 (30 ⁇ M) / VX-770 (1 ⁇ M).
  • FIG. 3 is a graph showing the water transfer effect of each compound in MucilAir-CF TM cells (lot number MD048502) having ⁇ F508 homozygous, which is a Class II mutation of CFTR.
  • the vertical axis indicates the moisture remaining ratio in the upper layer.
  • FIG. 4 is a graph showing the water transfer effect of each compound in MucilAir-CF TM cells (lot number MD020802) having 2184 ⁇ A + W1282X, which is a Class I mutation of CFTR.
  • Dunnett's multiple comparison test was performed with the group to which no compound was added, and the group having a p value of 0.01 or less is indicated by **. ## indicates that the p-value by the Student's t-test was 0.0017 for the group of Example 1 (100 ⁇ M) and the group of VX-809 (30 ⁇ M) / VX-770 (1 ⁇ M). It indicates that there is.
  • FIG. 5 is a graph showing the water transfer effect of each compound in MucilAir-CF TM cells (Lot No. MD062011) having N1303K heterozygous, which is a Class II mutation of CFTR.
  • Dunnett's multiple comparison test was performed with the group to which no compound was added, and the group having a p value of 0.01 or less is indicated by **.
  • FIG. 6 shows a mixture of VX-809 (30 ⁇ M) / VX-770 (1 ⁇ M) alone and the compound of Example 1 in MucilAir-CF TM cells (lot No.
  • MD048502 having ⁇ F508 homozygous which is a Class II mutation of CFTR.
  • Dunnett's multiple comparison test was performed with the combination of VX-809 (30 ⁇ M) / VX-770 (1 ⁇ M) and the group with a p-value of 0.01 or less is indicated by **. # Indicates that the p-value by the Student's t-test was 0.032 for the group without the compound and the group with the combination of VX-809 (30 ⁇ M) / VX-770 (1 ⁇ M).
  • the compound of the present invention can be produced by various production methods, and the production methods shown below are examples, and the present invention should not be construed as being limited thereto.
  • the compound represented by the formula (I) and a production intermediate thereof can be produced using various known reactions described below.
  • the functional group may be protected with a suitable protecting group at the stage of the raw material or the intermediate. Examples of such a functional group include a hydroxyl group, a carboxy group, an amino group, and the like.
  • the kind of the protecting group and the conditions for introducing and removing the protecting group are, for example, Protective Groups, Organic, Synthesis, Third Edition. (TW Green @ and PGM Wuts, John Wiley & Sons, Inc., New York) can be referred to.
  • the compound represented by the formula (I) (represented as compound 1a in the following reaction formula) can be produced, for example, by the following reaction formula.
  • G is a 2-chlorophenyl group
  • R 1 is a methyl group
  • Q 1 is represents a methylene group
  • P a, P b, P c represents a protecting group
  • R 2a is a methoxy group.
  • Conversion of Compound 2a to Compound 3a can be performed by using a suitable solvent that does not adversely affect the reaction (eg, benzene, toluene, diethyl ether, dichloromethane, tetrahydrofuran, or N, N-dimethylformamide). Or a mixed solvent thereof) in a suitable base (eg, sodium hydride, sodium methoxide, potassium tert-butoxide, etc.) at ⁇ 30 ° C. to the boiling point of the solvent used in the reaction, preferably at 0 ° C. to 100 ° C. (A mixture thereof) in the presence of the ester compound 2a and the corresponding alkyl halide.
  • the reaction time is preferably from 10 minutes to 72 hours, more preferably from 8 hours to 24 hours.
  • Compound 2a which is a raw material for production can be synthesized according to a commercially available or known method.
  • (2) Conversion of Compound 3a to Compound 5a Conversion of Compound 3a to Compound 5a is performed using a suitable solvent that does not adversely influence the reaction (eg, N, N-dimethylformamide, acetone, or the like, or a mixed solvent thereof).
  • a suitable base eg, triethylamine, N, N-diisopropylethylamine, 4-dimethylaminopyridine, N-methylmorpholine, pyridine, 2,6- Compound 4 in the presence of lutidine, diazabicyclo [5.4.0] undec-7-ene, or the like, or a mixture thereof.
  • An excess amount can be used as the amount of the base.
  • the reaction time is preferably 1 hour to 72 hours, more preferably 8 hours to 24 hours.
  • Compound 4 as a raw material for production can be synthesized according to the method described in Reference Example.
  • (3) Conversion of Compound 5a to Compound 6a Conversion of Compound 5a to Compound 6a can be performed by using a suitable solvent that does not adversely affect the reaction (eg, toluene, 1,4-dioxane, 1,2-dichloroethane, tetrahydrofuran, or the like, or In a mixed solvent thereof), a chlorinating agent such as carbon tetrachloride, trichloroacetonitrile, or N-chlorosuccinimide is used in the presence of triphenylphosphine at ⁇ 30 ° C.
  • a suitable solvent that does not adversely affect the reaction eg, toluene, 1,4-dioxane, 1,2-dichloroethane, tetrahydrofuran, or the like, or In a mixed solvent thereof
  • a chlorinating agent such as
  • the reaction can be carried out.
  • the reaction time is preferably from 10 minutes to 12 hours, more preferably from 30 minutes to 2 hours.
  • Pb is a methyl group
  • the compound is dissolved in a suitable solvent (for example, chloroform, dichloromethane, tetrahydrofuran, 1,4-dioxane or the like, or a mixed solvent thereof) which does not adversely affect the reaction, at a temperature of -30 ° C to 100 ° C.
  • the reaction can be carried out by treating a suitable chlorinating agent (eg, oxalyl chloride, thionyl chloride, phosphorus oxychloride, etc.) at a temperature up to the boiling point of the solvent used in the reaction, preferably from room temperature to 100 ° C.
  • a suitable chlorinating agent eg, oxalyl chloride, thionyl chloride, phosphorus oxychloride, etc.
  • the reaction time is preferably from 10 minutes to 24 hours, more preferably from 30 minutes to 12 hours.
  • a base such as triethylamine, N, N-dimethylaniline, N, N-diethylaniline can be added. Further, N, N-dimethylformamide or the like can be added as a reaction accelerator.
  • the reaction conditions for deprotection varies depending on the type of P b.
  • Pb is a methyl group
  • it is added in a suitable solvent that does not adversely influence the reaction (eg, dichloromethane, chloroform, etc., or a mixed solvent thereof) from ⁇ 78 ° C. to the boiling point of the solvent used in the reaction, preferably ⁇ 40.
  • a deprotecting agent such as boron tribromide at a temperature from °C to room temperature.
  • the reaction time is preferably from 1 hour to 72 hours, more preferably from 2 hours to 24 hours.
  • the reaction can be carried out by treating with trifluoroacetic acid, hydrochloric acid, formic acid or the like at -30 ° C to the boiling point of the solvent used in the reaction, preferably at -20 ° C to room temperature.
  • the reaction time is preferably from 10 minutes to 72 hours, more preferably from 30 minutes to 24 hours.
  • Conversion of Compound 7a to Compound 8a Conversion of Compound 7a to Compound 8a can be carried out by a general oxidation reaction for converting a primary alcohol to a carboxylic acid.
  • Typical oxidizing agents include potassium permanganate, chromium trioxide and dilute sulfuric acid (Jones oxidation), or (2,2,6,6-tetramethyl-1-piperidinyl) oxyl (TEMPO) and a co-oxidizing agent ( Hypochlorite, bromite, N-chlorosuccinimide, etc.).
  • the solvent used in the reaction include acetone, acetonitrile, water and the like, or a mixed solvent thereof.
  • the reaction temperature is from ⁇ 78 ° C. to 100 ° C. or the boiling point of the solvent, preferably from room temperature to 80 ° C.
  • the time can be from 1 hour to 48 hours, preferably from 1 hour to 24 hours.
  • the aldehyde compound obtained by oxidizing the compound 7a can be oxidized again to obtain the compound 8a.
  • the oxidation reaction for obtaining an aldehyde compound include chromic acid [pyridinium chlorochromate (PCC), pyridinium dichromate (PDC), etc.], dimethylsulfoxide and oxalyl chloride (Swern oxidation), dimethylsulfoxide and acetic anhydride, dimethylsulfoxide and trioxide.
  • PCC pyridinium chlorochromate
  • PDC pyridinium dichromate
  • Swern oxidation dimethylsulfoxide and oxalyl chloride
  • dimethylsulfoxide and acetic anhydride dimethylsulfoxide and trioxide.
  • Conversion from Compound 8a to Compound 9a can be carried out by a general carboxy group protection reaction.
  • a suitable acid catalyst eg, hydrogen chloride, sulfuric acid, or thionyl chloride
  • the reaction time is preferably from 10 minutes to 72 hours, more preferably from 30 minutes to 24 hours.
  • a suitable esterifying agent for example, from room temperature to the boiling point of the solvent used in the reaction, preferably from room temperature to 100 ° C.
  • a tert-butyl ester can be obtained by treating N, N-dimethylformamide di-tert-butyl acetal, O-tert-butyl-N, N′-diisopropylisourea, or the like.
  • the reaction time is preferably from 10 minutes to 72 hours, more preferably from 30 minutes to 24 hours.
  • Conversion of Compound 9a to Compound 10a is performed by a nucleophilic substitution reaction of Compound 9a with an alcohol, amine, or thiol.
  • a nucleophilic substitution reaction of Compound 9a with an alcohol, amine, or thiol.
  • the substitution reaction is performed in an appropriate solvent (tetrahydrofuran, acetone, acetonitrile, 1,4-dioxane, dimethyl sulfoxide, or the like, or a mixed solvent thereof) that does not adversely affect the reaction.
  • the reaction can be carried out by treating an appropriate base (eg, sodium hydride, potassium carbonate, cesium carbonate, etc.) at a temperature from room temperature to the boiling point of the solvent used in the reaction, preferably from room temperature to 100 ° C.
  • the reaction time is preferably from 6 hours to 72 hours, more preferably from 12 hours to 24 hours.
  • the amount of the base to be used may be 1 to excess molar equivalent relative to compound 9a, and more preferably 1 to 5 molar equivalents.
  • the amount of the alcohol to be used may be 1 to an excess molar equivalent based on compound 10a, and the reaction may be carried out using alcohol as a solvent. It is also possible to carry out the reaction using a metal alkoxide. Further, a catalytic amount of crown ether may be added.
  • the solvent used in the reaction may be heated from room temperature in a suitable solvent (tetrahydrofuran, 1,4-dioxane, or the like, or a mixed solvent thereof) which does not adversely influence the reaction.
  • a suitable solvent tetrahydrofuran, 1,4-dioxane, or the like, or a mixed solvent thereof
  • a suitable base eg, an inorganic base such as potassium carbonate or cesium carbonate, an organic base such as triethylamine, N, N-diisopropylethylamine
  • the reaction time is preferably from 6 hours to 72 hours, more preferably from 12 hours to 24 hours.
  • the amount of the base to be used may be 1 to excess molar equivalent relative to compound 9a, and more preferably 1 to 2 molar equivalents.
  • the use amount of the amine may be 1 to 2 molar equivalents when a base is used, and preferably 2 to 30 molar equivalents to compound 9a when a base is not used.
  • the above reaction can also be performed by treating in a sealed tube or under microwave irradiation.
  • the reaction time is preferably from 10 minutes to 72 hours, more preferably from 30 minutes to 24 hours.
  • P c is a tert-butyl group
  • it is treated with trifluoroacetic acid, hydrochloric acid, formic acid or the like at ⁇ 30 ° C. to the boiling point of the solvent used in the reaction, preferably at ⁇ 20 ° C. to room temperature, in addition to the above deprotection reaction. This can also be implemented.
  • the reaction time is preferably from 10 minutes to 72 hours, more preferably from 30 minutes to 24 hours.
  • Conversion of compound 8a to compound 1a can be carried out by the same substitution reaction as described in the above-mentioned [Production method 1] (7).
  • the compound represented by the formula (I) (represented as compound 1c in the following reaction formula) can be produced, for example, by the following reaction formula using 6c that can be produced by the above [Production method 1] as a starting material.
  • G, R 1 and P b have the same meaning as described above, but P b is preferably a tert-butyl group.
  • Q 2 represents a methylene group.
  • M 1c represents a methyl group.
  • Conversion of Compound 6c to Compound 11c The conversion of Compound 6c to Compound 11c can be carried out by the same substitution reaction as in the case of using the alcohol described in (7) of [Production Method 1].
  • Conversion of Compound 11c to Compound 12c Conversion of Compound 11c to Compound 12c can be carried out by the same general deprotection reaction as described in the above-mentioned [Production Method 1] (4).
  • Conversion of compound 12c to compound 1c Conversion of compound 12c to compound 1c can be carried out by the same general oxidation reaction as described in the above-mentioned [Production method 1] (5).
  • the “medicament characterized by being administered in combination (preferably, a medicament for treating cystic fibrosis) / therapeutic method (preferably, a method for treating cystic fibrosis)” includes the formula (a) Or a pharmaceutically acceptable salt thereof, and (b) at least one drug selected from the group consisting of CFTR function improving agents and ENaC inhibitors, preferably for the treatment of cystic fibrosis.
  • At least one drug selected from the group consisting of (a) a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof, and (b) a CFTR function-improving agent and an ENaC inhibitor is used.
  • administered in combination means that, during a certain period of time, the administered subject is (a) a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof, (b) a CFTR function improving agent and It means that at least one drug selected from the group consisting of ENaC inhibitors is taken into the body.
  • the included formulations may be administered, or each may be separately formulated and administered separately. When formulated separately, the timing of administration is not particularly limited, and they may be administered simultaneously, or may be administered at different times at different times or on different days.
  • each preparation is administered according to each administration method, so that the administration may be the same or different.
  • the administration method (administration route) of each formulation may be the same or may be administered by different administration methods (administration routes).
  • (a) a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof and (b) at least one drug selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor are simultaneously administered in the body. It is not necessary to be present in the body for a certain period of time (for example, one month, preferably one week, more preferably several days, even more preferably one day). Sometimes the other active ingredient may have disappeared from the body.
  • Examples of the dosage form of the medicament of the present invention include, for example, 1) (a) a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof, and (b) a CFTR function improving agent and an ENaC inhibitor.
  • Administration of a single preparation containing at least one drug selected from the group 2) (a) a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof, and (b) a CFTR function improving agent and Simultaneous administration by the same administration route of two formulations obtained by separately formulating at least one drug selected from the group consisting of ENaC inhibitors, 3) (a) a compound represented by the formula (I) or Time difference in the same administration route between two formulations obtained by separately formulating the pharmaceutically acceptable salt thereof and (b) at least one drug selected from the group consisting of CFTR function improving agents and ENaC inhibitors Administration in the ) (A) separately formulating a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof and (b) at least one drug selected
  • Administration of the two preparations obtained by different administration routes 5) (a) a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof, and (b) a CFTR function-improving agent and ENaC inhibition Examples include administration of two formulations obtained by separately formulating at least one drug selected from the group consisting of drugs with different administration routes at different times.
  • kits containing them when two different preparations are used, a kit containing them may be used.
  • administer the drug means that the gene encoding the antisense oligonucleotide or CFTR is introduced directly or by using a viral or non-viral vector. Or repairing the abnormality of the gene encoding CFTR by a genome editing technique such as CRISPR / Cas9.
  • one embodiment of the present invention provides (a) a compound represented by the formula (I) which is administered in combination with at least one drug independently selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor.
  • the compound or a pharmaceutically acceptable salt thereof means (b) CFTR function improving agents and ENaC inhibitors.
  • administering to a patient who has been treated with at least one drug selected from the group consisting of:
  • the medicament according to the present invention is (a) at least one selected from the group consisting of a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof and / or (b) a CFTR function improving agent and an ENaC inhibitor.
  • carriers When used as tablets, carriers include excipients such as lactose, sucrose, sodium chloride, glucose, urea, starch, calcium carbonate, kaolin, crystalline cellulose, silicic acid, etc .; water, ethanol, propanol, simple syrup, glucose Liquid, starch liquid, gelatin solution, carboxymethylcellulose, shellac, methylcellulose, potassium phosphate, polyvinylpyrrolidone, and other binders; dried starch, sodium alginate, agar powder, laminaran powder, sodium hydrogen carbonate, calcium carbonate, polyoxyethylene sorbitan fatty acid Disintegrators such as esters, sodium lauryl sulfate, stearic acid monoglyceride, starch, lactose; disintegration inhibitors such as sucrose, stearin, cocoa butter, hydrogenated oil; quaternary ammonium salts, sodium lauryl sulfate Absorbents such as glycerin and starch; Adsorbents
  • excipients such as glucose, lactose, cocoa butter, starch, hydrogenated vegetable oil, kaolin, talc; binders such as gum arabic powder, tragacanth powder, gelatin, ethanol; laminaran; Disintegrators such as agar can be used.
  • those conventionally known in the art can be widely used as the carrier, and examples thereof include polyethylene glycol, cocoa butter, higher alcohols, higher alcohol esters, gelatin, and semi-synthetic glycerides.
  • When used as an injection, it can be used as a liquid, emulsion or suspension. These solutions, emulsions or suspensions are preferably sterilized and isotonic with blood.
  • the solvent used in the production of these liquid preparations, emulsions or suspensions is not particularly limited as long as it can be used as a diluent for medical use.
  • the preparation may contain a sufficient amount of salt, glucose or glycerin to prepare an isotonic solution, and may also contain ordinary solubilizing agents, buffers, soothing agents and the like. You may go out.
  • the above-mentioned preparations may contain a coloring agent, a preservative, a flavor, a flavoring agent, a sweetening agent, and the like, if necessary, and may further contain other pharmaceuticals.
  • the amount of the active ingredient compound contained in the above preparation is not particularly limited and may be appropriately selected in a wide range, but usually contains 0.5 to 70% by weight, preferably 1 to 30% by weight of the whole composition.
  • the amount used depends on the symptoms, age, etc. of the patient (warm-blooded animal, especially human), but in the case of oral administration, the lower limit is 0.01 mg / kg body weight (preferably 0.1 mg / kg) per dose. / Kg body weight), 500 mg / kg body weight (preferably 100 mg / kg body weight) as an upper limit, and 0.001 mg / kg body weight (preferably, once per intravenous administration) 0.01 mg / kg body weight), and, as an upper limit, 50 mg / kg body weight (preferably 10 mg / kg body weight) is desirably administered once or several times a day depending on the symptoms.
  • Kalydeco registered trademark
  • Ivacaftor usually 150 mg for children and adults aged 6 years or older, 75 mg for children aged 2 to 6 years older than 14 kg, and 2 to 6 years for a body weight of 14 kg or less.
  • a preferred example is oral administration of a child of less than 50 mg every 12 hours, but it may be adjusted as appropriate according to the patient's condition.
  • Orkambi registered trademark
  • adult Ivacaftor125 mg and Lumacaftor200 mg for 12-year-old and older
  • the type of cystic fibrosis to be treated is not limited, but is particularly suitable for patients with class III and class IV mutations of CFTR when used in combination with CFTR potentiator, and has class II mutation when used in combination with CFTR corrector. Particularly suitable for patients.
  • Mg milligram
  • g gram
  • ⁇ l microliter
  • ml milliliter
  • L liter
  • M molarity
  • MHz megahertz
  • nuclear magnetic resonance (hereinafter, 1 H-NMR: 400 MHz) spectra were described using chemical values of ⁇ (ppm) with tetramethylsilane as a standard substance.
  • the fission pattern was indicated by s for singlet, d for doublet, t for triplet, q for quadruple, spt for sevenfold, m for multiplet, and br for broad.
  • RVIII reflection type powder X-ray diffractometer
  • CuK ⁇ CuK ⁇
  • 1.54 angstroms
  • the sample was measured using a non-reflective sample holder (tube).
  • the moisture was measured using a Karl Fischer moisture meter (coulometric titration method MKC-610) manufactured by Kyoto Electronics Industry Co., Ltd. (Anolyte: Hydranal Coulomat AG (Sigma Aldrich), Catholyte: Hydranal Coulomat CG (Sigma Aldrich) )).
  • TG / DTA6200 manufactured by Hitachi High-Tech Science Corp. was used (heating rate: 10 ° C / min, atmosphere gas: nitrogen, nitrogen gas flow rate: 200 ml / min).
  • Step 2 2- (tert-butoxymethyl) -5- (2-chlorobenzyl) -6-methylpyrimidin-4 (3H) -one N, N-dimethylformamide of the compound (5.6 g) obtained in the above step 1
  • To the (30 ml) solution were added the compound obtained in Step 1 of Reference Example 1 (5.8 g) and 1,8-diazabicyclo [5.4.0] undec-7-ene (10.5 ml). The mixture was stirred at 75 ° C. for 26 hours. After cooling, a saturated aqueous solution of sodium hydrogen carbonate was added to the reaction solution, and the mixture was extracted with ethyl acetate.
  • Step 3 2- (tert-butoxymethyl) -4-chloro-5- (2-chlorobenzyl) -6-methylpyrimidine
  • Triphenylphosphine (6.9 g) and trichloroacetonitrile (0.88 ml) were added and the mixture was stirred at 120 ° C. for 1 hour. After cooling, a saturated aqueous sodium hydrogen carbonate solution was added to the reaction solution, and the mixture was extracted with chloroform. The extract was washed with saturated saline and dried over anhydrous sodium sulfate.
  • Step 4 2- (tert-butoxymethyl) -5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine
  • methanol 4 ml
  • Cesium (1.44 g) was added and the mixture was stirred at room temperature for 2 days.
  • Water was added to the reaction solution, which was extracted with ethyl acetate. The extract was washed with saturated saline and dried over anhydrous sodium sulfate.
  • Step 5 (5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidin-2-yl) methanol
  • trifluoroacetic acid (2 ml)
  • a mixture was obtained.
  • Water was added to the reaction solution, which was extracted with ethyl acetate.
  • the extract was washed successively with a saturated aqueous solution of sodium hydrogen carbonate and a saturated saline solution, and then dried over anhydrous sodium sulfate.
  • Step 6 5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid
  • acetonitrile 6 ml
  • sodium phosphate buffer (0.67 M, pH 6.7, 4 ml)
  • (2,2,6,6-tetramethylpiperidin-1-yl) oxyl 31 mg
  • Step 1 5- (2-Chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid 3/2 hydrate
  • 2-propanol (1. 8 ml) and water (0.2 ml) were added and the mixture was stirred at 95 ° C. for 15 minutes. After cooling to room temperature, the mixture was stirred at room temperature overnight. The precipitate was collected by filtration, washed with water, and dried to give the title compound (188 mg).
  • Example 7 5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid sodium salt
  • ethanol 5042 ⁇ l
  • a 1.0 mol / l sodium hydroxide ethanol solution 982 ⁇ l was added.
  • the mixture was stirred at 40 ° C. for about 24 hours, then left at room temperature for about 0.5 hour.
  • the solid was collected by filtration and dried at room temperature overnight to give the title compound (289.98 mg, recovery 97%).
  • Example 8 5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid tert-butylamine salt To a compound (300.90 mg) obtained in the same manner as in Example 2 was added acetone (5913 ⁇ l). In addition, tert-butylamine (105 ⁇ l) was added. The mixture was stirred at 40 ° C. for about 24 hours, then left at room temperature for about 0.5 hour. The solid was collected by filtration and dried overnight at room temperature to give the title compound (332.74 mg, 97% recovery).
  • Example 9 5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid diisopropylamine salt To a compound (300.05 mg) obtained in the same manner as in Example 2 was added acetone (5863 ⁇ l). , Diisopropylamine (138 ⁇ l). The mixture was stirred at 40 ° C. for about 24 hours, then left at room temperature for about 0.5 hour. The solid was collected by filtration and dried overnight at room temperature to give the title compound (353.95 mg, 96% recovery).
  • the chloride ion secretion ability was calculated by dividing the average of the RFU values for 10 seconds from 110 seconds to 120 seconds from the start of measurement by the average value from 0 seconds to 34 seconds (basal value).
  • the chloride ion secretion activity (EC 50 value) of the test compound was calculated from the chloride ion secretion ability at each concentration of the serially diluted test compound at each concentration. The concentration was calculated as the concentration of the test compound giving a% secretory ability.
  • the chloride ion secretion activity (EC 50 value) of the compound of Example 1 was 10.0 nM.
  • Test Example 2 Effect of GPR39 knockdown on chloride secretion by test compound It was confirmed by gene knockdown that chloride secretion by the test compound observed in Test Example 1 was a GPR39-mediated reaction. That is, CuFi-1 cells cultured in Pneumacult-EX (STEMCELL Technologies) were seeded on a 96-well plate at 3 ⁇ 10 4 cells / 100 ⁇ l / well, and Lipofectamine RNAiMAX (ThermoFisherFisherFisherFisherFisherFisherFisherFisherFisherFisherFisher.com) using Lipofectamine RNAiMAX (MISSION siRNA SASI_Hs02_00332000, SASI_Hs02_00332001, Sigma-Aldrich) or control siRNA (Ambion Silencer Select, Thermo Fisher Scientific) was added at 1 pmol / 10 ⁇ l / w, followed by 1 pmol / 10 l culture.
  • N- (Ethoxycarbonylmethyl) -6-methoxyquinolinium bromide (MQAE) diluted with the medium was added at 10 ⁇ l / well to a final concentration of 5 mM. After adding MQAE, the cells were cultured overnight and passively loaded. Thereafter, washing and measurement of chloride ion secretion ability were performed in the same manner as in Test Example 1.
  • GPR39 gene expression was analyzed using RNA extracted from the well in which the same operation was performed. That is, total RNA is extracted from the cells using RNAiso Plus (Takara Bio Inc.), purified using RNeasy Micro Kit (Qiagen), and then purified using High Capacity cDNA Reverse Transcription Kit (Thermo Fisher cDNA Inc.).
  • a medium in which a test compound and zinc (final concentration: 10 ⁇ M) were dissolved was added to the upper layer at a volume of 100 ⁇ l / well, and a medium in which a test compound and zinc (final concentration: 10 ⁇ M) were dissolved was added to the lower layer at a volume of 500 ⁇ l / well.
  • the weight of the upper layer medium 72 hours after the addition of the test compound was measured with an electronic balance to confirm the water transfer effect of the test compound.
  • the effects of VX-809 (lumacaftor) alone (Selleck Chemicals) and VX-809 (lumacaftor) / VX-770 (ivacaftor) combination were also examined.
  • the results for the above three types of cells using the compound of Example 1 as the test compound are shown in FIGS.
  • the compound of Example 1 moved water in a concentration-dependent manner. The effect was similar to that of VX-809 alone or the combination of VX-809 / VX-770.
  • the compound of Example 1 also exhibited an activity equivalent to that of the ⁇ F508zhomozygus mutation in mutations other than the ⁇ F508 homozygus mutation (2184 ⁇ A + W1282X (class I mutation)) and N1303K heterozygos, and could be effective without depending on the mutation.
  • the ⁇ F508zhomozygus mutation in mutations other than the ⁇ F508 homozygus mutation (2184 ⁇ A + W1282X (class I mutation)) and N1303K heterozygos, and could be effective without depending on the mutation.
  • VX-809 / VX-770 had a weak effect on 2184 ⁇ A + W1282X (class I mutation), and it was considered that the effect was dependent on the mutation.
  • the effect of the compound of Example 1 on 2184 ⁇ A + W1282X (class I mutation) was significant as compared with the combination of VX-809 / VX-770.
  • Test Example 4 Effect of Combination of Test Compound with VX-809 / VX-770 Combination in ALI Assay Using Water Movement as Index ⁇ F508 homozygous Mutant ALI culture system using the compound of Example 1 and VX- The effect of the combination of 809 (lumacaftor) / VX-770 (ivacaftor) with the combination was examined. The combined effect was examined in the same manner as in Test Example 3. That is, cells obtained by ALI-cultured primary bronchial epithelial cells derived from a cystic fibrosis patient having a ⁇ F508 homozygous mutation (MucilAir-CF TM ) were purchased from Epithelix.
  • FIG. 6 shows the results of using the compound of Example 1 as a test compound.
  • the mixture of VX-809 / VX-770 significantly moved water, similarly to the result of Test Example 3.
  • the compound of Example 1 was concentration-dependent on the water transfer amount of the mixture of VX-809 / VX-770, and Moisture was added additively. Therefore, the combined effect of the test compound with the combination of VX-809 / VX-770 was confirmed.
  • Example 3 the compound of Example 1 was not dependent on mutation in the ALI culture system. Because of the possibility of being effective, it is not limited to the combination of VX-809 / VX-770, but a drug having an action mechanism different from that of a GPR39 agonist, for example, other than the combination of VX-809 / VX-770 It is thought that a combination effect can be expected even in combination with a CFTR function improving drug or an ENaC inhibitor.
  • the compound represented by the formula (I) of the present invention or a pharmaceutically acceptable salt thereof has a strong chloride ion secretion action through GPR39 agonist action and transfers water. Since this compound can open a chloride channel different from CFTR which causes disease, it exhibits an excellent therapeutic effect when combined with a CFTR function improving agent or an ENaC inhibitor. Therefore, the medicament / therapeutic method using the compound of the present invention or a pharmaceutically acceptable salt thereof in combination with a CFTR function improving agent or an ENaC inhibitor can be carried out by any of class I to VI irrespective of the type of CFTR mutation. It is useful because it can also exert a therapeutic effect on fibrosis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Pulmonology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention addresses the problem of providing a medication which is for cystic fibroses that develop through the mutation of a cystic fibrosis transmembrane conductance regulator (CFTR) that is a type of chloride channel, and which is capable of expressing a therapeutic effect for any cystic fibrosis from Class I to VI, regardless of the mutation type of CFTR. The present invention provides a medication/treatment method characterized by administering a combination of: (a) a compound represented by formula (I) or a pharmaceutically acceptable salt thereof; and (b) one or more drugs individually selected from the group consisting of a CFTR function improving medicine and an ENaC inhibitor.

Description

嚢胞性線維症治療薬Cystic fibrosis drug
 本発明は、G蛋白質共役型受容体39(G protein-coupled receptor 39、本明細書中ではGPR39と略すことがある)アゴニスト作用を有し、GPR39の活性化を介してカルシウム依存性クロライドチャネル(Calcium-activated Chloride Channel、本明細書中ではCaCCと略すことがある)を開口させる作用を持つ化合物と、Cystic Fibrosis Transmembrane conductance Regulator(本明細書中ではCFTRと略すことがある)の機能を改善する薬剤、又はepithelial sodium channel(本明細書中ではENaCと略すことがある)を阻害する薬剤とを組み合わせてなる医薬(好ましくは嚢胞性線維症の治療のための医薬)または治療方法に関する。 The present invention has a G protein-coupled receptor 39 (G protein-coupled receptor 39, which may be abbreviated as GPR39 in the present specification) agonistic action, and activates a calcium-dependent chloride channel (GPR39) through activation of GPR39. Calcium-activated {Chloride} Channel, which may be abbreviated as CaCC in the present specification) and a compound having an effect of improving the function of Cyclic, Fibrosis, Transmembrane, conductance, and Regulator (which may be abbreviated as CFTR in this specification). A drug (preferably a drug) which is combined with a drug or a drug which inhibits epithelial sodium @ channel (may be abbreviated as ENaC in this specification). The pharmaceutical) or therapeutic methods for the treatment of cystic fibrosis.
 嚢胞性線維症は、クロライドチャネルの一種であるCFTRの遺伝子変異により発症する重篤な遺伝性疾患で、全世界で7万人以上の患者がいるとされる。近年、治療法の開発が進んでいるものの、平均寿命はおよそ40歳であることから、十分に満足のいく治療法が確立されていないのが現状である。 Cystic fibrosis is a serious hereditary disease caused by a genetic mutation in CFTR, a type of chloride channel, and it is estimated that there are more than 70,000 patients worldwide. In recent years, although treatments have been developed, the average life expectancy is about 40 years, so that a satisfactory treatment has not yet been established.
 CFTRは、全身の上皮膜細胞の管腔膜に発現する主要なcAMP依存性陰イオンチャネルである。遺伝子変異により本チャネルの機能が低下すると、気道、腸管、膵管、胆管、汗管等において、上皮膜/粘膜を介したイオンと水の輸送が障害され、管腔内の粘液/分泌液が過度に粘稠となるため、管腔閉塞や易感染が起こる。特に肺での障害が重篤で、ほとんどの嚢胞性線維症患者は、気管閉塞や呼吸器官の感染による呼吸不全により死亡する。CFTRが嚢胞性線維症の原因遺伝子であることが同定されて以降、嚢胞性線維症に関する研究が進み、現在ではおよそ1900以上の変異が存在することが報告されている。これらの変異のうち、変異により生じるCFTRの機能異常により6つのclassに分類されるが(classI;ナンセンス突然変異、classII;タンパク質のミスフォールディング変異、classIII;チャネル開口が異常な変異、classIV;チャネルコンダクタンスが低下した変異、classV;CFTRの産生量が低下した変異、classVI;CFTRの安定性が低下した変異)、特にclassI、classII、およびclassIII変異ではクロライドイオンがほとんど分泌されないことから、症状が重篤であり、アンメット・メディカルニーズが非常に高い。 CFTR is a major cAMP-dependent anion channel expressed on the luminal membrane of whole epithelial cells. When the function of this channel is reduced by gene mutation, the transport of ions and water through the epithelium / mucosa is impaired in the respiratory tract, intestinal tract, pancreatic duct, bile duct, sweat duct, etc., resulting in excessive mucus / secretion in the lumen. , Causing luminal obstruction and susceptibility to infection. Particularly severe pulmonary damage, most cystic fibrosis patients die from respiratory failure due to tracheal obstruction and respiratory infections. Since CFTR was identified as a causative gene for cystic fibrosis, studies on cystic fibrosis have progressed, and it has been reported that about 1900 or more mutations exist at present. Of these mutations, they are classified into six classes according to the CFTR dysfunction caused by the mutations (class I; nonsense mutation, class II; protein misfolding mutation, class III; mutation in abnormal channel opening, class IV; channel conductance). Mutations, class V; mutations that decrease the amount of CFTR produced, class VI; mutations that decrease the stability of CFTR), and particularly the class I, class II, and class III mutations, since the chloride ion is hardly secreted, and the symptoms are severe. The unmet medical needs are very high.
 従来の嚢胞性線維症治療は、イブプロフェンや抗菌剤などの対症療法が中心であったが、近年、Kalydeco(登録商標)(Ivacaftor(CFTR potentiaor))、Orkambi(登録商標)(Ivacaftor(CFTR potentiator)とLumacaftor(CFTR corrector)の合剤)およびSymdeko(登録商標)(Ivacaftor(CFTR potentiator)とTezacaftor(CFTR corrector)の合剤)といったCFTRに直接作用し、CFTRの機能を改善させる薬剤が上市された。(なお、本明細書中でIvacaftorをVX-770と表記することがあり、LumacaftorをVX-809と表記することがある。)しかし、KalydecoはclassIII及びclassIV変異の一部の患者、OrkambiはclassII変異のうち、ΔF508 homozygous変異に、SymdekoはΔF508 homozygous変異またはclassIII及びclassIV変異の一部の患者にしか効果がない。またOrkambiおよびSymdekoについては統計学的に有意な呼吸機能改善作用が確認されたものの、その薬効は限定的であり、classIおよびclassII変異を中心に、未だ十分な治療薬がない患者が多数存在する。これらの問題を解決する方法の一つとして、CFTR以外のクロライドチャネルを開口させ、CFTRの機能異常を代替させることが挙げられる。このようなプロファイルの化合物を取得出来れば、理論上はCFTRの変異に依存せず全ての嚢胞性線維症患者の治療が可能になると考えられる。また、CFTR以外のクロライドチャネルを開口させることから、Kalydeco(登録商標)、Orkambi(登録商標)およびSymdeko(登録商標)といった既存のCFTRの機能を改善させる薬剤と併用することで、薬効のさらなる上乗せが期待される。このような考えは、これまでにP2Y(G protein-coupled receptor(GPCR)の一種)アゴニストであるDenufosolがCFTRとは異なるクロライドチャネルであるCalcium-activated Chloride Channel(CaCC)を開口させるというコンセプトで開発されていたが、患者の肺においてDenufosolが不安定であったことなどの理由から開発は中断されている(非特許文献1)。またCaCCに直接作用し、活性化する低分子化合物がスクリーニングされ、嚢胞性線維症治療薬として有望であるということが報告されているが(非特許文献2)、臨床において十分な薬効を示すかどうかは不明である。以上のように、先行する嚢胞性線維症治療薬は、限られた変異を有する患者にしか効果がないこと、またOrkambiやSymdekoのΔF508 homozygous変異に対する薬効は十分でないことから、さらに有効な治療薬が待ち望まれている。またCFTR以外のクロライドチャネルを開口させ、CFTRの機能異常を代替させるという治療コンセプトはこれまでにもあったものの、臨床において薬効を示す化合物は取得出来ていないのが現状である。 Conventional cystic fibrosis treatment has mainly been symptomatic treatments such as ibuprofen and antibacterial agents, but in recent years, Kalydeco (registered trademark) (Ivacaftor (CFTR potentiaor)), Orkambi (registered trademark) (Ivacaftor (CFTR potentiator)) Drugs that directly act on CFTR, such as a combination of Lumacaftor (CFTR collector) and Symdeko (registered trademark) (a combination of Ivacaftor (CFTR potentator) and Tezacaftor (CFTR collector)), have been launched to improve the function of CFTR. . (Note that, in this specification, Ivacaftor may be referred to as VX-770 and Lumacaftor may be referred to as VX-809.) However, Kalydeco is a class III and class IV mutation in some patients, and Orkambi is a class II. Among the mutations, Symdeko has an effect on the ΔF508 homozygous mutation and only on some patients with the ΔF508 homozygous mutation or the class III and class IV mutations. Orkambi and Symdeko were confirmed to have a statistically significant respiratory function-improving effect, but their efficacy was limited, and there were many patients who did not yet have a sufficient therapeutic drug, centering on the class I and class II mutations. . One of the methods for solving these problems is to open a chloride channel other than CFTR to substitute for a malfunction of CFTR. If a compound having such a profile can be obtained, it is considered that all cystic fibrosis patients can be treated theoretically without depending on the mutation of CFTR. In addition, since they open chloride channels other than CFTR, they can be used in combination with existing CFTR agents such as Kalydeco (registered trademark), Orkambi (registered trademark), and Symdeko (registered trademark) to further enhance the efficacy of the drug. There is expected. This idea is based on the concept that Denufosol, which is a P2Y 2 (a type of G protein-coupled receptor (GPCR)) agonist, opens a chloride channel, Calcium-activated Chloride Channel (CaCC), which is different from CFTR. Although it was being developed, its development has been suspended for reasons such as Denfofosol being unstable in the lungs of patients (Non-Patent Document 1). In addition, a low-molecular compound that directly acts on CaCC and activates it has been screened and reported to be promising as a therapeutic agent for cystic fibrosis (Non-Patent Document 2). It is unknown. As described above, the preceding therapeutic drug for cystic fibrosis is only effective for patients with limited mutations, and the drug efficacy against Orkambi or Symdeko's ΔF508 homozygous mutation is not sufficient. Is eagerly awaited. Although there has been a therapeutic concept of opening a chloride channel other than CFTR and substituting a CFTR dysfunction, a compound showing a medicinal effect in clinical practice has not been obtained at present.
 ほとんどの嚢胞性線維症患者は、気管閉塞や呼吸器官の感染による呼吸不全により死亡することから、呼吸機能を改善出来る可能性を示すことが嚢胞性線維症治療薬の非臨床薬効評価において重要になる。一方、嚢胞性線維症の肺機能不全を反映した動物モデルはないことから、in vitroの薬効評価が中心となっている。In vitro薬効評価としては、嚢胞性線維症患者由来気道上皮細胞を用いた三次元培養系(Air-Liquid Interface assay;ALIアッセイ)が水分の吸収が速く、かつ、水分が分泌されにくいという点で嚢胞性線維症患者の肺の状態に近いことから、薬効評価系として広く用いられている。実際にKalydecoはALIアッセイにおいて水分を移動させ(非特許文献3)、嚢胞性線維症治療薬として開発された結果、臨床における有効性が確認された(非特許文献4)。 Most cystic fibrosis patients die from respiratory failure due to tracheal obstruction or infection of the respiratory tract, indicating that respiratory function may be improved. Become. On the other hand, since there is no animal model that reflects pulmonary dysfunction of cystic fibrosis, in-vitro drug efficacy evaluation is mainly performed. In-vitro drug efficacy evaluation is based on the point that a three-dimensional culture system using airway epithelial cells derived from a cystic fibrosis patient (Air-Liquid Interface Interfacial Assay; ALI assay) absorbs water quickly and hardly secretes water. Since it is close to the lung condition of cystic fibrosis patients, it is widely used as a drug efficacy evaluation system. In fact, Kalydeco moved water in the ALI assay (Non-patent Document 3), and was developed as a therapeutic agent for cystic fibrosis, and its clinical efficacy was confirmed (Non-patent Document 4).
 一方、GPR39(G protein-coupled receptor 39)はグレリン受容体ファミリーの一つで、消化管、膵臓、肝臓、腎臓、脂肪組織、甲状腺、心臓、肺などに発現していることが報告されている。GPR39のリガンドは長らく不明であったが、グレリン受容体ファミリーの一つであることから、そのリガンドはペプチドであると推測され、オベスタチンが天然リガンドであると考えられていた時期がある。しかし、近年の報告では、オベスタチンはGPR39のリガンドではなく、亜鉛(Zn2+)がGPR39のリガンドであると言われている。 On the other hand, GPR39 (G protein-coupled receptor 39) is a member of the ghrelin receptor family and has been reported to be expressed in the digestive tract, pancreas, liver, kidney, adipose tissue, thyroid, heart, lung, and the like. . The ligand for GPR39 has been unknown for a long time, but since it is a member of the ghrelin receptor family, the ligand was presumed to be a peptide, and there were times when obestatin was considered to be a natural ligand. However, in recent reports, obestatin is not a GPR39 ligand, but zinc (Zn 2+ ) is said to be a GPR39 ligand.
 GPR39はmouse intestinal fibroblast-like cellsに発現しており、GPR39の活性化がCaCCの活性化と関連していることが報告されているが(非特許文献5)、嚢胞性線維症患者由来の細胞におけるGPR39の機能については不明であり、またGPR39を活性化し、CaCCを持続的に開口させられる化合物が取得されたという報告はない。 GPR39 is expressed in mouse @ intestinal @ fibroblast-like @ cells, and it has been reported that GPR39 activation is associated with CaCC activation (Non-Patent Document 5), but cells derived from cystic fibrosis patients have been reported. Is unknown, and there is no report that a compound capable of activating GPR39 and continuously opening CaCC has been obtained.
 これまでに、GPR39アゴニストとして、AZ7914、AZ4237、AZ1395(非特許文献6)、ピリジルピリミジン化合物(非特許文献7)等が報告されている。 AZ7914, AZ4237, AZ1395 (Non-Patent Document 6), pyridylpyrimidine compound (Non-Patent Document 7) and the like have been reported as GPR39 agonists.
 本発明者らは、CFTR変異によって発症する嚢胞性線維症において、病気の原因となるCFTRとは異なるクロライドチャネルを開口させることが出来れば、CFTRの機能異常を代替させられ、治療に繋がることに着目し、鋭意研究した結果、特定の化学構造を持つピリミジン誘導体がGPR39アゴニスト作用を介してCaCCを開口させ、CFTRに依存せず、嚢胞性線維症の治療に有効であることを見出した。そして、このピリミジン誘導体を、CFTRの機能改善薬又はENaC阻害薬と組み合わせて投与することにより、嚢胞性線維症の治療に優れた効果を発揮することを見出して、本発明を完成した。 The present inventors have found that, in cystic fibrosis caused by CFTR mutation, if a chloride channel different from CFTR that causes the disease can be opened, the dysfunction of CFTR can be substituted, leading to treatment. As a result of intensive studies, they have found that a pyrimidine derivative having a specific chemical structure opens CaCC via GPR39 agonism and is effective in treating cystic fibrosis independently of CFTR. Then, they have found that when the pyrimidine derivative is administered in combination with a CFTR function improving agent or an ENaC inhibitor, the pyrimidine derivative exerts an excellent effect on the treatment of cystic fibrosis, thereby completing the present invention.
 本発明は、以下のものに関する。
[1](a)式(I):
The present invention relates to the following.
[1] (a) Formula (I):
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
で表される化合物またはその薬学上許容される塩と(b)CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤が、組み合わせて投与されることを特徴とする医薬。
[2]嚢胞性線維症の治療のための[1]に記載の医薬。
[3](a)式(I)で表される化合物またはその薬学上許容される塩と(b)CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がそれぞれ異なる製剤の有効成分として含有され、同時に、又は、異なる時間に投与されることを特徴とする[1]または[2]に記載の医薬。
[4](a)式(I)で表される化合物またはその薬学上許容される塩と(b)CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤が単一製剤中に含有されていることを特徴とする[1]または[2]に記載の医薬。
[5](a)式(I)で表される化合物またはその薬学上許容される塩と(b)CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤を含むキット製剤であることを特徴とする[1]または[2]に記載の医薬。
[6]CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤による治療を受けている患者を対象とする[1]から[5]のいずれか1項に記載の医薬。
Or a pharmaceutically acceptable salt thereof and (b) at least one drug independently selected from the group consisting of CFTR function improving agents and ENaC inhibitors. Medicine.
[2] The medicament according to [1], for treating cystic fibrosis.
[3] at least one drug independently selected from the group consisting of (a) a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof, and (b) a CFTR function improving agent and an ENaC inhibitor. The medicament according to [1] or [2], wherein the medicament is contained as active ingredients of different preparations, and is administered at the same time or at different times.
[4] (a) a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof and (b) at least one drug independently selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor; The medicament according to [1] or [2], which is contained in a single preparation.
[5] (a) a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof and (b) at least one drug independently selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor The medicament according to [1] or [2], which is a kit preparation containing the medicament.
[6] The method according to any one of [1] to [5], which is for a patient who has been treated with at least one drug independently selected from the group consisting of a CFTR function improving drug and an ENaC inhibitor. Medicine.
[7]CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がCFTRの機能改善薬であって、CFTRの機能改善薬が、CFTR potentiator、CFTR corrector、CFTR amplifier、RNAセラピー及びGeneセラピーからなる群から独立に選ばれる少なくとも1種である、[1]から[6]のいずれか1項に記載の医薬。
[8]CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がCFTRの機能改善薬であって、CFTRの機能改善薬が、CFTR potentiator及びCFTR correctorからなる群から独立に選ばれる少なくとも1種である、[1]から[6]のいずれか1項に記載の医薬。
[9]CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がCFTRの機能改善薬であって、CFTRの機能改善薬が、Ivacaftor、QBW251、VX-561,PTI-808、GLPG1837、GLPG2451、GLPG3067、Lumacaftor、Tezacaftor、VX-445、VX-440、VX-152、VX-659、FDL169、GLPG2222、GLPG2851、GLPG2737、PTI-801、PTI-428、Eluforsen及びMRT5005からなる群から独立に選ばれる少なくとも1種である、[1]から[6]のいずれか1項に記載の医薬。
[10]CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がCFTRの機能改善薬であって、CFTRの機能改善薬が、Ivacaftor、Lumacaftor及びTezacaftorからなる群から独立に選ばれる少なくとも1種である、[1]から[6]のいずれか1項に記載の医薬。
[11]CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がENaC阻害薬であって、ENaC阻害薬が、QBW276、SPX-101及びAZD5634からなる群から選ばれる少なくとも1種である、[1]から[6]のいずれか1項に記載の医薬。
[12]薬学上許容される塩が、マグネシウム塩、カルシウム塩、亜鉛塩、ナトリウム塩、tert-ブチルアミン塩またはジイソプロピルアミン塩である[1]から[11]のいずれか1項に記載の医薬。
[13]式(I)で表される化合物またはその薬学上許容される塩が、ビス[5-(2-クロロベンジル)-4-メトキシ-6-メチルピリミジン-2-カルボン酸]マグネシウム塩である[1]から[11]のいずれか1項に記載の医薬。
[14](b)CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤と組み合わせて投与されるための(a)式(I):
[7] At least one drug independently selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor is a CFTR function improving agent, wherein the CFTR function improving agent is CFTR potentiator, CFTR collector, or CFTR amplifier. The medicament according to any one of [1] to [6], which is at least one kind independently selected from the group consisting of RNA therapy and Gene therapy.
[8] At least one drug independently selected from the group consisting of a CFTR function improver and an ENaC inhibitor is a CFTR function improver, and the CFTR function improver is a group consisting of CFTR potentiator and CFTR collector The medicament according to any one of [1] to [6], which is at least one kind independently selected from:
[9] At least one drug independently selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor is a CFTR function improving agent, wherein the CFTR function improving agent is Ivacaftor, QBW251, VX-561. PTI-808, GLPG1837, GLPG2451, GLPG3067, Lumacaftor, Tezacaftor, VX-445, VX-440, VX-152, VX-659, FDL169, GLPG2222, GLPG2851, GLPG2737, PTI-801, PTI-801, PTI-801, PTI-801, PTI-801 The medicament according to any one of [1] to [6], which is at least one independently selected from the group consisting of:
[10] At least one drug independently selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor is a CFTR function improving agent, and the CFTR function improving agent is a group consisting of Ivacaftor, Lumacaftor and Tezacaftor. The medicament according to any one of [1] to [6], which is at least one kind independently selected from:
[11] At least one drug independently selected from the group consisting of CFTR function improving agents and ENaC inhibitors is an ENaC inhibitor, and the ENaC inhibitor is selected from the group consisting of QBW276, SPX-101 and AZD5634 The medicament according to any one of [1] to [6], which is at least one selected from the group consisting of:
[12] The medicament according to any one of [1] to [11], wherein the pharmaceutically acceptable salt is a magnesium salt, a calcium salt, a zinc salt, a sodium salt, a tert-butylamine salt or a diisopropylamine salt.
[13] The compound represented by the formula (I) or a pharmaceutically acceptable salt thereof is bis [5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid] magnesium salt. The medicament according to any one of [1] to [11].
[14] (b) Formula (I) for administration in combination with at least one drug independently selected from the group consisting of CFTR function improving agents and ENaC inhibitors:
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
で表される化合物またはその薬学上許容される塩。
[15]嚢胞性線維症の治療のための[14]に記載の化合物またはその薬学上許容される塩。
[16]CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤による治療を受けている患者を対象とする[14]または[15]に記載の化合物またはその薬学上許容される塩。
[17]CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がCFTRの機能改善薬であって、CFTRの機能改善薬が、CFTR potentiator、CFTR corrector、CFTR amplifier、RNAセラピー及びGeneセラピーからなる群から独立に選ばれる少なくとも1種である、[14]から[16]のいずれか1項に記載の化合物またはその薬学上許容される塩。
[18]CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がCFTRの機能改善薬であって、CFTRの機能改善薬が、CFTR potentiator及びCFTR correctorからなる群から独立に選ばれる少なくとも1種である、[14]から[16]のいずれか1項に記載の化合物またはその薬学上許容される塩。
[19]CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がCFTRの機能改善薬であって、CFTRの機能改善薬が、Ivacaftor、QBW251、VX-561,PTI-808、GLPG1837、GLPG2451、GLPG3067、Lumacaftor、Tezacaftor、VX-445、VX-440、VX-152、VX-659、FDL169、GLPG2222、GLPG2851、GLPG2737、PTI-801、PTI-428、Eluforsen及びMRT5005からなる群から独立に選ばれる少なくとも1種である、[14]から[16]のいずれか1項に記載の化合物またはその薬学上許容される塩。
[20]CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がCFTRの機能改善薬であって、CFTRの機能改善薬が、Ivacaftor、Lumacaftor及びTezacaftorからなる群から独立に選ばれる少なくとも1種である、[14]から[16]のいずれか1項に記載の化合物またはその薬学上許容される塩。
Or a pharmaceutically acceptable salt thereof.
[15] The compound of [14] or a pharmaceutically acceptable salt thereof for the treatment of cystic fibrosis.
[16] The compound of [14] or [15] or a pharmaceutical thereof according to [14], which is intended for a patient who has been treated with at least one drug independently selected from the group consisting of a CFTR function improving drug and an ENaC inhibitor. Above acceptable salts.
[17] At least one drug independently selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor is a CFTR function improving agent, wherein the CFTR function improving agent is CFTR potentiator, CFTR collector, or CFTR amplifier. The compound according to any one of [14] to [16], which is at least one kind independently selected from the group consisting of RNA therapy and Gene therapy, or a pharmaceutically acceptable salt thereof.
[18] At least one drug independently selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor is a CFTR function improving agent, wherein the CFTR function improving agent is a group consisting of CFTR potentiator and CFTR collector. Or the pharmaceutically acceptable salt thereof according to any one of [14] to [16], which is at least one member independently selected from the group consisting of:
[19] At least one drug independently selected from the group consisting of CFTR function improvers and ENaC inhibitors is a CFTR function improver, wherein the CFTR function improver is Ivacaftor, QBW251, VX-561. PTI-808, GLPG1837, GLPG2451, GLPG3067, Lumacaftor, Tezacaftor, VX-445, VX-440, VX-152, VX-659, FDL169, GLPG2222, GLPG2851, GLPG2737, PTI-801, PTI-801, PTI-801, PTI-801, PTI-801 The compound or the pharmaceutically acceptable salt thereof according to any one of [14] to [16], which is at least one kind independently selected from the group consisting of:
[20] At least one drug independently selected from the group consisting of a CFTR function-improving agent and an ENaC inhibitor is a CFTR function-improving agent, wherein the CFTR function-improving agent is a group consisting of Ivacaftor, Lumacaftor, and Tezacaftor. Or the pharmaceutically acceptable salt thereof according to any one of [14] to [16], which is at least one member independently selected from the group consisting of:
[21]CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がENaC阻害薬であって、ENaC阻害薬が、QBW276、SPX-101及びAZD5634からなる群から選ばれる少なくとも1種である[14]から[16]のいずれか1項に記載の化合物またはその薬学上許容される塩。
[22]薬学上許容される塩が、マグネシウム塩、カルシウム塩、亜鉛塩、ナトリウム塩、tert-ブチルアミン塩またはジイソプロピルアミン塩である[14]から[21]のいずれか1項に記載の化合物またはその薬学上許容される塩。
[23]式(I)で表される化合物またはその薬学上許容される塩が、ビス[5-(2-クロロベンジル)-4-メトキシ-6-メチルピリミジン-2-カルボン酸]マグネシウム塩である[14]から[21]のいずれか1項に記載の化合物またはその薬学上許容される塩。
[24](a)式(I):
[21] At least one drug independently selected from the group consisting of CFTR function improving agents and ENaC inhibitors is an ENaC inhibitor, and the ENaC inhibitor is selected from the group consisting of QBW276, SPX-101 and AZD5634. Or the pharmaceutically acceptable salt thereof according to any one of [14] to [16].
[22] The compound according to any one of [14] to [21], wherein the pharmaceutically acceptable salt is a magnesium salt, a calcium salt, a zinc salt, a sodium salt, a tert-butylamine salt or a diisopropylamine salt. A pharmaceutically acceptable salt thereof.
[23] The compound represented by the formula (I) or a pharmaceutically acceptable salt thereof is magnesium bis [5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid]. The compound according to any one of [14] to [21] or a pharmaceutically acceptable salt thereof.
[24] (a) Formula (I):
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
で表される化合物またはその薬学上許容される塩と(b)CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤が組み合わせて投与されることを特徴とする疾患の治療方法。
[25]疾患が嚢胞性線維症である[24]に記載の治療方法。
[26](a)式(I)で表される化合物またはその薬学上許容される塩と(b)CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がそれぞれ異なる製剤の有効成分として含有され、同時に、又は、異なる時間に投与されることを特徴とする[24]または[25]に記載の治療方法。
[27](a)式(I)で表される化合物またはその薬学上許容される塩と(b)CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤が単一製剤中に含有されていることを特徴とする[24]または[25]に記載の治療方法。
[28](a)式(I)で表される化合物またはその薬学上許容される塩と(b)CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がそれらを含むキット製剤であることを特徴とする[24]または[25]に記載の治療方法。
[29]CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤による治療を受けている患者を対象とする[24]から[28]のいずれか1項に記載の治療方法。
[30]CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がCFTRの機能改善薬であって、CFTRの機能改善薬が、CFTR potentiator、CFTR corrector、CFTR amplifier、RNAセラピー及びGeneセラピーからなる群から独立に選ばれる少なくとも1種である、[24]から[29]のいずれか1項に記載の治療方法。
[31]CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がCFTRの機能改善薬であって、CFTRの機能改善薬が、CFTR potentiator及びCFTR correctorからなる群から独立に選ばれる少なくとも1種である、[24]から[29]のいずれか1項に記載の治療方法。
Or a pharmaceutically acceptable salt thereof and (b) at least one drug independently selected from the group consisting of CFTR function improving agents and ENaC inhibitors. How to treat the disease.
[25] The treatment method according to [24], wherein the disease is cystic fibrosis.
[26] A compound represented by the formula (I) or a pharmaceutically acceptable salt thereof, and (b) at least one drug independently selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor: The therapeutic method according to [24] or [25], wherein the therapeutic agents are contained as active ingredients of different preparations, and are administered at the same time or at different times.
[27] at least one drug independently selected from the group consisting of (a) a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof, and (b) a CFTR function improving agent and an ENaC inhibitor The therapeutic method according to [24] or [25], which is contained in a single preparation.
[28] At least one drug independently selected from the group consisting of (a) the compound represented by the formula (I) or a pharmaceutically acceptable salt thereof, and (b) a CFTR function improving agent and an ENaC inhibitor The therapeutic method according to [24] or [25], which is a kit preparation containing them.
[29] The method according to any one of [24] to [28], which is intended for a patient who has been treated with at least one drug independently selected from the group consisting of a CFTR function improving drug and an ENaC inhibitor. Treatment method.
[30] At least one drug independently selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor is a CFTR function improving agent, wherein the CFTR function improving agent is CFTR potentiator, CFTR collector, or CFTR amplifier. The treatment method according to any one of [24] to [29], which is at least one kind independently selected from the group consisting of RNA therapy and Gene therapy.
[31] At least one drug independently selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor is a CFTR function improving agent, wherein the CFTR function improving agent is a group consisting of CFTR potentiator and CFTR collector. The therapeutic method according to any one of [24] to [29], which is at least one kind independently selected from:
[32]CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がCFTRの機能改善薬であって、CFTRの機能改善薬が、Ivacaftor、QBW251、VX-561,PTI-808、GLPG1837、GLPG2451、GLPG3067、Lumacaftor、Tezacaftor、VX-445、VX-440、VX-152、VX-659、FDL169、GLPG2222、GLPG2851、GLPG2737、PTI-801、PTI-428、Eluforsen及びMRT5005からなる群から独立に選ばれる少なくとも1種である、[24]から[29]のいずれか1項に記載の治療方法。
[33]CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がCFTRの機能改善薬であって、CFTRの機能改善薬が、Ivacaftor、Lumacaftor及びTezacaftorからなる群から独立に選ばれる少なくとも1種である、[24]から[29]のいずれか1項に記載の治療方法。
[34]CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がENaC阻害薬であって、ENaC阻害薬が、QBW276、SPX-101及びAZD5634からなる群から選ばれる少なくとも1種である、[24]から[29]のいずれか1項に記載の治療方法。
[35]薬学上許容される塩が、マグネシウム塩、カルシウム塩、亜鉛塩、ナトリウム塩、tert-ブチルアミン塩またはジイソプロピルアミン塩である[24]から[34]のいずれか1項に記載の治療方法。
[36]式(I)で表される化合物またはその薬学上許容される塩が、ビス[5-(2-クロロベンジル)-4-メトキシ-6-メチルピリミジン-2-カルボン酸]マグネシウム塩である[24]から[34]のいずれか1項に記載の治療方法。
[37](a)式(I)で表される化合物またはその薬学上許容される塩と(b)CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤が投与される対象が温血動物である[24]から[36]のいずれか1項に記載の治療方法。
[38]温血動物がヒトである[37]に記載の治療方法。
[32] At least one drug independently selected from the group consisting of CFTR function improvers and ENaC inhibitors is a CFTR function improver, wherein the CFTR function improver is Ivacaftor, QBW251, VX-561. PTI-808, GLPG1837, GLPG2451, GLPG3067, Lumacaftor, Tezacaftor, VX-445, VX-440, VX-152, VX-659, FDL169, GLPG2222, GLPG2851, GLPG2737, PTI-801, PTI-801, PTI-801, PTI-801, PTI-801 The treatment method according to any one of [24] to [29], which is at least one kind independently selected from the group consisting of:
[33] At least one drug independently selected from the group consisting of CFTR function improvers and ENaC inhibitors is a CFTR function improver, and the CFTR function improver is a group consisting of Ivacaftor, Lumacaftor and Tezacaftor. The therapeutic method according to any one of [24] to [29], which is at least one kind independently selected from:
[34] At least one drug independently selected from the group consisting of CFTR function improving agents and ENaC inhibitors is an ENaC inhibitor, and the ENaC inhibitor is selected from the group consisting of QBW276, SPX-101 and AZD5634 The therapeutic method according to any one of [24] to [29], which is at least one selected from the group consisting of:
[35] The method according to any one of [24] to [34], wherein the pharmaceutically acceptable salt is a magnesium salt, a calcium salt, a zinc salt, a sodium salt, a tert-butylamine salt or a diisopropylamine salt. .
[36] The compound represented by the formula (I) or a pharmaceutically acceptable salt thereof is bis [5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid] magnesium salt The therapeutic method according to any one of [24] to [34].
[37] (a) a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof, and (b) at least one drug independently selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor The therapeutic method according to any one of [24] to [36], wherein the administered subject is a warm-blooded animal.
[38] The treatment method according to [37], wherein the warm-blooded animal is a human.
 本発明の上記式(I)の化合物の化学名は、5-(2-クロロベンジル)-4-メトキシ-6-メチルピリミジン-2-カルボン酸である。 化学 The chemical name of the compound of the above formula (I) of the present invention is 5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid.
 本発明において「その薬学上許容される塩」とは、著しい毒性を有さず、医薬として使用され得る塩をいう。本発明の式(I)で表される化合物は、酸性基を有するため塩基と反応させることにより、塩にすることができる。 に お い て In the present invention, “a pharmaceutically acceptable salt” refers to a salt that has no significant toxicity and can be used as a medicament. Since the compound represented by the formula (I) of the present invention has an acidic group, it can be converted to a salt by reacting with a base.
 このような塩としては、例えば、ナトリウム塩、カリウム塩、リチウム塩のようなアルカリ金属塩、カルシウム塩、マグネシウム塩のようなアルカリ土類金属塩、アルミニウム塩、鉄塩、亜鉛塩等の金属塩;アンモニウム塩のような無機塩、tert-ブチルアミン塩、tert-オクチルアミン塩、ジイソプロピルアミン塩、ジベンジルアミン塩、モルホリン塩、グルコサミン塩、フェニルグリシンアルキルエステル塩、エチレンジアミン塩、N-メチルグルカミン塩、グアニジン塩、ジエチルアミン塩、トリエチルアミン塩、ジシクロヘキシルアミン塩、N,N’-ジベンジルエチレンジアミン塩、クロロプロカイン塩、プロカイン塩、ジエタノールアミン塩、N-ベンジルフェネチルアミン塩、ピペラジン塩、テトラメチルアンモニウム塩、トリス(ヒドロキシメチル)アミノメタン塩のような有機アミン塩;及び、グリシン塩、リジン塩、アルギニン塩、オルニチン塩、グルタミン酸塩、アスパラギン酸塩のようなアミノ酸塩を挙げることができるが、これらに限定されない 。 Such salts include, for example, alkali metal salts such as sodium salt, potassium salt and lithium salt, alkaline earth metal salts such as calcium salt and magnesium salt, metal salts such as aluminum salt, iron salt and zinc salt. Inorganic salts such as ammonium salts, tert-butylamine salts, tert-octylamine salts, diisopropylamine salts, dibenzylamine salts, morpholine salts, glucosamine salts, phenylglycine alkyl ester salts, ethylenediamine salts, N-methylglucamine salts Guanidine salt, diethylamine salt, triethylamine salt, dicyclohexylamine salt, N, N'-dibenzylethylenediamine salt, chloroprocaine salt, procaine salt, diethanolamine salt, N-benzylphenethylamine salt, piperazine salt, tetramethylammonium And organic amine salts such as tris (hydroxymethyl) aminomethane salt; and amino acid salts such as glycine salt, lysine salt, arginine salt, ornithine salt, glutamate and aspartate. It is not limited to these.
 好ましい塩の例示としては、マグネシウム塩、カルシウム塩、亜鉛塩、ナトリウム塩、tert-ブチルアミン塩またはジイソプロピルアミン塩が挙げられる。 Examples of preferred salts include magnesium salt, calcium salt, zinc salt, sodium salt, tert-butylamine salt and diisopropylamine salt.
 本発明の式(I)で表される化合物は、上記の酸または塩基と任意の割合で組み合わされて塩を形成しうる。例えば、塩酸塩は、一塩酸塩、二塩酸塩、三塩酸塩等の形成されうる塩を包含し、マグネシウム塩は、一マグネシウム塩、1/2マグネシウム塩等の形成されうる塩を包含する。本発明の化合物名において、「一酸塩」「一塩基塩」は、その名称中の「一」が省略されて「酸塩」と表示されることがあり、例えば「一塩酸塩」は「塩酸塩」、「一マグネシウム塩」は「マグネシウム塩」と表示されることがある。 化合物 The compound represented by the formula (I) of the present invention can be combined with the above-mentioned acid or base in any ratio to form a salt. For example, hydrochloride includes salts that can be formed, such as monohydrochloride, dihydrochloride, trihydrochloride, and magnesium salt includes salts that can be formed, such as monomagnesium, マ グ ネ シ ウ ム magnesium. In the compound names of the present invention, "monoacid salt" and "monobasic salt" may be abbreviated as "acid salt" in which "one" is omitted. “Hydrochloride” and “monomagnesium salt” may be indicated as “magnesium salt”.
 本発明の式(I)で表される化合物又はその薬学上許容される塩は、大気中に放置したり、または、再結晶したりすることにより、吸着水が付いたり、水分子を取り込んで、水和物となる場合があり、そのような水和物も本発明の化合物または薬学上許容される塩に包含される。 The compound represented by the formula (I) of the present invention or a pharmaceutically acceptable salt thereof may be left in the atmosphere or recrystallized to absorb adsorbed water or take in water molecules. , And hydrates, and such hydrates are also included in the compounds of the present invention or pharmaceutically acceptable salts.
 本発明の式(I)で表される化合物又はその薬学上許容される塩は、溶媒中に放置したり、または、溶媒中で再結晶したりすることにより、ある種の溶媒を吸収し、溶媒和物とすることができる場合があり、そのような溶媒和物も本発明の化合物または薬学上許容される塩に包含される。溶媒和物を形成しうる溶媒としては、著しい毒性を有さず、医薬として使用され得るものであれば特に限定されないが、例えば、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルスルホキシド、ギ酸エチル、酢酸エチル、酢酸プロピル、ジエチルエーテル、テトラヒドロフラン、ギ酸、酢酸、ペンタン、ヘプタン、クメン、アニソール等が挙げられる。 The compound of the present invention represented by the formula (I) or a pharmaceutically acceptable salt thereof absorbs a certain solvent by being left in a solvent or recrystallized in the solvent, It may be possible to form a solvate, and such a solvate is also included in the compound of the present invention or a pharmaceutically acceptable salt. The solvent capable of forming a solvate is not particularly limited as long as it does not have remarkable toxicity and can be used as a medicine. For example, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, Butanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethyl sulfoxide, ethyl formate, ethyl acetate, propyl acetate, diethyl ether, tetrahydrofuran, formic acid, acetic acid, pentane, heptane, cumene, anisole and the like.
 本発明の式(I)で表される化合物又はその薬学上許容される塩が水または溶媒と任意の割合で組み合わされて形成される水和物または溶媒和物の各々またはそれらの混合物は本発明に包含される。例えば、一水和物、二水和物、1/2水和物、3/2水和物等の形成されうる水和物、および、一溶媒和物、二溶媒和物、1/2溶媒和物、3/2溶媒和物等の形成されうる溶媒和物は、本発明に包含される。本発明の化合物名において、水和数または溶媒和数を明示せずに「水和物」「溶媒和物」と記されている場合は、いずれの数の水和物または溶媒和物も含まれる。 Each of the hydrates or solvates formed by combining the compound represented by the formula (I) of the present invention or a pharmaceutically acceptable salt thereof with water or a solvent in any ratio, or a mixture thereof, Included in the invention. For example, hydrates that can be formed, such as monohydrate, dihydrate, hemihydrate, 3/2 hydrate, and solvates, disolvates, and 1/2 solvents Solvates that can be formed, such as solvates, 3/2 solvates, are encompassed by the present invention. In the compound name of the present invention, when `` hydrate '' or `` solvate '' is described without specifying the hydration number or solvation number, any number of hydrates or solvates is included. It is.
 本発明の式(I)で表される化合物又はその薬学上許容される塩のより具体的な好ましい例としては、5-(2-クロロベンジル)-4-メトキシ-6-メチルピリミジン-2-カルボン酸またはそのマグネシウム塩、カルシウム塩、亜鉛塩、ナトリウム塩、tert-ブチルアミン塩もしくはジイソプロピルアミン塩が挙げられる。これらは水和物の形態であってもよい。 More specific preferred examples of the compound represented by the formula (I) of the present invention or a pharmaceutically acceptable salt thereof include 5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2- Examples include carboxylic acid or its magnesium salt, calcium salt, zinc salt, sodium salt, tert-butylamine salt or diisopropylamine salt. These may be in the form of hydrates.
 より具体的な本発明の化合物の一態様は、5-(2-クロロベンジル)-4-メトキシ-6-メチルピリミジン-2-カルボン酸の水和物、マグネシウム塩水和物、カルシウム塩水和物、亜鉛塩水和物、ナトリウム塩無水物、tert-ブチルアミン塩無水物またはジイソプロピルアミン塩無水物であり、より好ましくは水和物またはマグネシウム塩水和物である。 More specific one embodiment of the compound of the present invention includes 5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid hydrate, magnesium salt hydrate, calcium salt hydrate, Zinc salt hydrate, sodium salt anhydride, tert-butylamine salt anhydride or diisopropylamine salt anhydride, more preferably hydrate or magnesium salt hydrate.
 さらに好ましくは、ビス[5-(2-クロロベンジル)-4-メトキシ-6-メチルピリミジン-2-カルボン酸]一マグネシウム塩二水和物、または、5-(2-クロロベンジル)-4-メトキシ-6-メチルピリミジン-2-カルボン酸 3/2水和物が挙げられる。 More preferably, bis [5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid] monomagnesium salt dihydrate or 5- (2-chlorobenzyl) -4- Methoxy-6-methylpyrimidine-2-carboxylic acid 3/2 hydrate.
 本明細書において、CFTRの機能改善薬とは、嚢胞性線維症の原因遺伝子であるCFTRの変異により生じるCFTRの機能異常に直接作用し、その機能を改善する薬剤である。CFTRの機能改善薬には、CFTR potentiator、CFTR corrector、CFTR amplifier、RNAセラピー及びGeneセラピーが含まれる。 に お い て In the present specification, a CFTR function improving drug is a drug that directly acts on CFTR dysfunction caused by mutation of CFTR that is a causative gene of cystic fibrosis and improves the function thereof. CFTR function improving drugs include CFTR @ potentiator, CFTR @ corrector, CFTR @ amplifier, RNA therapy and Gene therapy.
 例えば、CFTR potentiatorは、classIIIおよびclassIV変異を有するCFTRに作用しCFTRを開口させることでその機能を改善する。代表例としては、Ivacaftor(VX-770);QBW251(Am J Respir Crit Care Med.;193:A7789(2016));VX-561(J Pharmacol Exp Ther.;362:359-367(2017));PTI-808(Cystic Fibrosis Foundation 2017 ANNUAL REPORT);GLPG1837(J Med Chem.;61:1425-1435(2018));GLPG2451またはGLPG3067(J Cyst Fibros.;17(S2):S52-60(2018));国際公開公報WO2015/018823に記載の化合物;国際公開公報WO2018/073175に記載の化合物などが挙げられる。 {For example, CFTR} potentiators act on and open CFTR with class III and class IV mutations, thereby improving its function. Representative examples include Ivacaftor (VX-770); QBW251 (Am \ J \ Respir \ Crit \ Care \ Med .; 193: A7789 (2016)); VX-561 (J \ Pharmacol \ Exp \ Ther .; 362: 359-67 (2017)); PTI-808 (Cystic Fibrosis Foundation 2017 ANNUAL REPORT); GLPG1837 (J Med Chem .; 61: 1425-1435 (2018)); GLPG2451 or GLPG 3067 (J Cyst Fibros.); Compounds described in International Publication WO2015 / 018823; compounds described in International Publication WO2018 / 073175.
 また、CFTR correctorは、classII変異を有するCFTRを細胞表面に発現させることによりその機能異常を正常化する。代表例としては、Lumacaftor(VX-809);Tezacaftor;VX-445、VX-440、VX-152またはVX-659(J Cyst Fibros.;17(S2):S52-60(2018));FDL169(Eur Respir Rev.;27(2018));GLPG2222(J Med Chem.;61:1436-1449(2018));GLPG2851またはGLPG2737(J Cyst Fibros.;17(S2):S52-60(2018));国際公開公報WO2015/018823に記載の化合物;国際公開公報WO2018/073175に記載の化合物;PTI-801(J Cyst Fibros.;17(S2):S52-60(2018)、Cystic Fibrosis Foundation 2017 ANNUAL REPORT)などが挙げられる。 CFFurthermore, CFTR corrector normalizes the dysfunction by expressing CFTR having class II mutation on the cell surface. Representative examples include Lumacaftor (VX-809); Tezacaftor; VX-445, VX-440, VX-152 or VX-659 (J \ Cyst \ Fibros .; 17 (S2): S52-60 (2018)); FDL169 ( 27 (2018)); GLPG2222 (J Med Chem .; 61: 1436-1449 (2018)); GLPG2851 or GLPG2737 (JCyst Fibros .; 17 (S2): S52-60 (2018)); Compounds described in International Publication WO2015 / 018823; Compounds described in International Publication WO2018 / 073175; PTI-801 (J Cyst Fibros .; 17 (S2): S52-60 (2018), Cystic} ibrosis Foundation 2017 ANNUAL REPORT) and the like.
 また、CFTR amplifierは、CFTRタンパク質の発現を増強させることによりその機能異常を正常化する。代表例としては、PTI-428(J Cyst Fibros.;17(S3):S1-2(2018)、J Transl Med.;15:84(2017),Cystic Fibrosis Foundation 2017 ANNUAL REPORT)、N-[trans-3-[5-[(1R)-1-Hydroxyethyl]-1,3,4-oxadiazol-2-yl]cyclobutyl]-3-phenyl-1,2-oxazole-5-carboxamide、国際公開公報WO2016/105485に記載の化合物などが挙げられる。 CFCFTR amplifier normalizes dysfunction by enhancing the expression of CFTR protein. Representative examples include PTI-428 (J @ Cyst Fibros .; 17 (S3): S1-2 (2018), J @ Transl @ Med .; 15:84 (2017), Cystic @ Fibrosis \ Foundation 2017 2017 ANNUAL REPORT, N- [trans. -3- [5-[(1R) -1-hydroxyethyl] -1,3,4-oxadiazol-2-yl] cyclobutyl] -3-phenyl-1,2-oxazole-5-carboxamide, International Publication WO2016 / 105485, and the like.
 また、RNAセラピーは、CFTRをコードするmRNAの発現を修復、CFTRタンパク質の発現を増強させることによりその機能異常を正常化する。代表例としては、Eluforsen(QR-010、J Transl Med.;15:84(2017),Cystic Fibrosis Foundation 2017 ANNUAL REPORT)、国際公開公報WO2014/011053に記載のアンチセンスオリゴヌクレオチド、MRT5005(J Cyst Fibros.;17(S3):S16(2018)、Cystic Fibrosis Foundation 2017 ANNUAL REPORT)などが挙げられる。 RNARNA therapy also restores the expression of mRNA encoding CFTR and normalizes its dysfunction by enhancing the expression of CFTR protein. Representative examples include Eluforsen (QR-010, J Transl Med .; 15:84 (2017), Cyclic Fibrosis Foundation 2017 ANNUAL REPORT), the antisense oligonucleotide described in International Publication WO2014 / 011053, MRT5005FyCy 17 (S3): S16 (2018), Cyclic Fibrosis Fundation 2017 2017 ANNUAL REPORT, and the like.
 また、Geneセラピーは、CFTRをコードする遺伝子をウイルスもしくは非ウイルス性のベクターなどを用いて導入する、またはCFTRをコードする遺伝子の異常をCRISPR/Cas9などによるゲノム編集技術により修復させることによりその機能異常を正常化する(Front Pharmacol.;9:396(2018)、J Transl Med.;15:84(2017))。 In addition, Gene therapy functions by introducing a gene encoding CFTR using a virus or a non-viral vector, or by repairing an abnormality of the gene encoding CFTR by a genome editing technique such as CRISPR / Cas9. Normalize the abnormalities (Front Pharmacol .; 9: 396 (2018), J @ Transl Med .; 15:84 (2017)).
 本発明において、CFTRの機能改善薬の特に好ましい例は、CFTR potentiator及びCFTR correctorからなる群から独立に選ばれる少なくとも1種である。好ましい具体例としてはIvacaftor、Lumacaftor及びTezacaftorからなる群から独立に選ばれる少なくとも1種である。 In the present invention, particularly preferred examples of the CFTR function improving agent are at least one kind independently selected from the group consisting of CFTR @ potentiator and CFTR @ corrector. A preferred specific example is at least one independently selected from the group consisting of Ivacaftor, Lumacaftor and Tezacaftor.
 更に、CFTRの機能改善薬は2種類以上を組み合わせて用いてもよく、例えば、IvacaftorとLumacaftorの合剤であるOrkambi(登録商標)、TezacaftorとIvacaftorの合剤であるSymdeko(登録商標)、VX-445とTezacaftorとIvacaftorの合剤(Cystic Fibrosis Foundation 2017 ANNUAL REPORT)、VX-440とTezacaftorとIvacaftorの合剤、VX-152とTezacaftorとIvacaftorの合剤、VX-659とTezacaftorとIvacaftorの合剤(J Cyst Fibros.;17(S3):S3(2018)、Cystic Fibrosis Foundation 2017 ANNUAL REPORT)、国際公開公報WO2017/060880に記載の化合物群、GLPG2451とGLPG2222とGLPG2737の合剤、PTI-428とPTI-801とPTI-808の合剤(Expert Rev Precis Med Drug Dev.:3:107-117(2018))も好適に用いられる。 Furthermore, two or more CFTR function-improving agents may be used in combination. For example, Orkambi (registered trademark) which is a combination of Ivacaftor and Lumacaftor, Symdeko (registered trademark) which is a combination of Tezacaftor and Ivacaftor, VX -445 and Tezacaftor and Ivacaftor the mixture (Cystic Fibrosis Foundation 2017 ANNUAL REPORT), mixture of VX-440 and Tezacaftor and Ivacaftor, VX-152 and Tezacaftor and Ivacaftor the mixture, VX-659 and Tezacaftor and Ivacaftor the mixture (J Cyst Fibros .; 17 (S3): S3 (2018), Cystic Fibrosis} compound, described in International Publication No. WO2017 / 060880, a combination of GLPG2451, GLPG2222 and GLPG2737, a combination of PTI-428, PTI-801 and PTI-808 (Expert Rev. MediGed.Dev. 3: 107-117 (2018)) is also preferably used.
 本明細書において、ENaC阻害薬とは、上皮細胞表面に発現するENaC(epithelial sodium channel)の開口を阻害する、あるいは上皮細胞表面に発現するENaCを内在化させることでナトリウムイオンの吸収を阻害する薬剤である。代表例としては、QBW276(Cystic Fibrosis Foundation 2017 ANNUAL REPORT)、Bioorg Med Chem Lett.;22(2):929-932(2012)に記載の化合物、Bioorg Med Chem Lett.;22(8):2877-2879(2012)に記載の化合物、SPX-101(Am J Respir Crit Care Med.;196:671-672(2017))、国際公開公報WO2016/057795に記載のペプチド、AZD5634(J Transl Med.;15:84(2017),Cystic Fibrosis Foundation 2017 ANNUAL REPORT)、国際公開公報WO2015/140527に記載の化合物などが挙げられる。 In the present specification, the ENaC inhibitor inhibits the opening of ENaC (epithelial sodium channel) expressed on the surface of epithelial cells, or inhibits the absorption of sodium ions by internalizing ENaC expressed on the surface of epithelial cells. It is a drug. Representative examples include QBW276 (Cystic Fibrosis Foundation 2017 ANNUAL REPORT), Bioorg Med Chem Chem Lett. 22 (2): 929-932 (2012); Bioorg {Chem} Lett. 22 (8): 2877-2879 (2012), the compound described in SPX-101 (Am J Respir Crit Care Med .; 196: 671-672 (2017)), the peptide described in International Publication WO2016 / 057795, AZD5634 (J Transl Med .; 15:84 (2017), Cyclic Fibrosis Foundation 2017 ANNUAL REPORT), and the compounds described in International Publication No. WO 2015/140527.
 また、CFTRの機能改善薬およびENaC阻害薬のそれぞれ一種以上の薬剤を組み合わせて用いることもできる。 Furthermore, CFTR function improving drugs and ENaC inhibitors can be used in combination with one or more drugs.
 本発明の式(I)で表される化合物又はその薬学上許容される塩は、GPR39アゴニスト作用を介して強力なクロライドイオン分泌作用を有し、水分を移動させる。そして、この化合物は、病気の原因となるCFTRとは異なるクロライドチャネルを開口させることが出来るため、CFTRの機能改善薬またはENaC阻害薬と組み合わせることによって、優れた治療効果を発揮する。従って、本発明の化合物又はその薬学上許容される塩とCFTRの機能改善薬との組み合わせによる嚢胞性線維症の治療のための医薬/治療方法は、CFTRの変異の種類によらずclassIからVIのいずれにおいても治療効果を発揮することができる。好ましい治療対象は、既存のCFTR改善薬が用いられているclassIIのΔF508 homozygous変異、classIII変異及びclassIV変異の患者である。 The compound of the present invention represented by the formula (I) or a pharmaceutically acceptable salt thereof has a strong chloride ion secretion action through GPR39 agonist action and transfers water. Since this compound can open a chloride channel different from CFTR which causes disease, it exhibits an excellent therapeutic effect when combined with a CFTR function improving agent or an ENaC inhibitor. Therefore, the medicament / therapeutic method for treating cystic fibrosis by the combination of the compound of the present invention or a pharmaceutically acceptable salt thereof and a CFTR function-improving agent can be performed from class I to VI regardless of the type of CFTR mutation. The therapeutic effect can be exhibited in any of the above. A preferred treatment target is a patient with a class II ΔF50850homozygous mutation, a class III mutation, and a class IV mutation in which an existing CFTR improving drug is used.
図1は、嚢胞性線維症患者由来気管支上皮細胞株であるCuFi-1細胞におけるsiRNA処置によるヒトGPR39の発現量変化(mRNA発現解析)を示すグラフである。縦軸はcontrol siRNA処置群に対する相対発現量で表している。N=3の平均値および標準偏差で示している。FIG. 1 is a graph showing changes in the expression level of human GPR39 (mRNA expression analysis) in CuFi-1 cells, a bronchial epithelial cell line derived from a cystic fibrosis patient, by siRNA treatment. The vertical axis represents the relative expression level relative to the control @ siRNA treatment group. The average value and standard deviation of N = 3 are shown. 図2は、CuFi-1細胞におけるsiRNA処置による各化合物のクロライド分泌活性への影響を示すグラフである。縦軸は120秒間測定するうちの110から120秒目までの5点の蛍光値の平均値の、1から34秒目までの17点の蛍光値の平均値と比較した際の増加割合を表している。N=8の平均値および標準偏差で示している。FIG. 2 is a graph showing the influence of each compound on chloride secretion activity by treatment with siRNA in CuFi-1 cells. The vertical axis represents the rate of increase when comparing the average value of the five fluorescence values from 110 to 120 seconds during the measurement for 120 seconds with the average value of the fluorescence values at 17 points from 1 to 34 seconds. ing. The average value and standard deviation of N = 8 are shown. 図3は、CFTRのClassII変異であるΔF508 homozygousを持つMucilAir-CFTM細胞(ロット番号MD048502)における各化合物の水分移動作用を示すグラフである。縦軸は上層の水分残存割合を表している。N=3-20の平均値および標準偏差で示している。化合物非添加群とのDunnettの多重比較検定を行い、p値が0.01以下の群を**で示している。#は、化合物非添加群とVX-809(30 μM)/VX-770(1 μM)の合剤添加群についてのStudentのt検定によるp値が0.032であることを示している。FIG. 3 is a graph showing the water transfer effect of each compound in MucilAir-CF TM cells (lot number MD048502) having ΔF508 homozygous, which is a Class II mutation of CFTR. The vertical axis indicates the moisture remaining ratio in the upper layer. N = 3-20 means and standard deviation. Dunnett's multiple comparison test was performed with the group to which no compound was added, and the group having a p value of 0.01 or less is indicated by **. # Indicates that the p-value by the Student's t-test was 0.032 for the group without the compound and the group with the combination of VX-809 (30 μM) / VX-770 (1 μM). 図4は、CFTRのClassI変異である2184ΔA+W1282Xを持つMucilAir-CFTM細胞(ロット番号MD020802)における各化合物の水分移動作用を示すグラフである。縦軸は上層の水分残存割合を表している。N=4の平均値および標準偏差で示している。化合物非添加群とのDunnettの多重比較検定を行い、p値が0.01以下の群を**で示している。##は、実施例1の化合物(100 μM)添加群とVX-809(30 μM)/VX-770(1 μM)の合剤添加群についてのStudentのt検定によるp値が0.0017であることを示している。FIG. 4 is a graph showing the water transfer effect of each compound in MucilAir-CF cells (lot number MD020802) having 2184ΔA + W1282X, which is a Class I mutation of CFTR. The vertical axis indicates the moisture remaining ratio in the upper layer. It is shown by the average value and the standard deviation of N = 4. Dunnett's multiple comparison test was performed with the group to which no compound was added, and the group having a p value of 0.01 or less is indicated by **. ## indicates that the p-value by the Student's t-test was 0.0017 for the group of Example 1 (100 μM) and the group of VX-809 (30 μM) / VX-770 (1 μM). It indicates that there is. 図5は、CFTRのClassII変異であるN1303K heterozygousを持つMucilAir-CFTM細胞(ロット番号MD062201)における各化合物の水分移動作用を示すグラフである。縦軸は上層の水分残存割合を表している。N=4の平均値および標準偏差で示している。化合物非添加群とのDunnettの多重比較検定を行い、p値が0.01以下の群を**で示している。FIG. 5 is a graph showing the water transfer effect of each compound in MucilAir-CF TM cells (Lot No. MD062011) having N1303K heterozygous, which is a Class II mutation of CFTR. The vertical axis indicates the moisture remaining ratio in the upper layer. It is shown by the average value and the standard deviation of N = 4. Dunnett's multiple comparison test was performed with the group to which no compound was added, and the group having a p value of 0.01 or less is indicated by **. 図6は、CFTRのClassII変異であるΔF508 homozygousを持つMucilAir-CFTM細胞(ロット番号MD048502)におけるVX-809(30 μM)/VX-770(1 μM)の合剤単独および実施例1の化合物との併用による水分移動作用を示すグラフである。縦軸は上層の水分残存割合を表している。N=4-20の平均値および標準偏差で示している。VX-809(30 μM)/VX-770(1 μM)の合剤添加群とのDunnettの多重比較検定を行い、p値が0.01以下の群を**で示している。#は、化合物非添加群とVX-809(30 μM)/VX-770(1 μM)の合剤添加群についてのStudentのt検定によるp値が0.032であることを示している。FIG. 6 shows a mixture of VX-809 (30 μM) / VX-770 (1 μM) alone and the compound of Example 1 in MucilAir-CF cells (lot No. MD048502) having ΔF508 homozygous which is a Class II mutation of CFTR. 4 is a graph showing a water transfer effect in combination with the above. The vertical axis indicates the moisture remaining ratio in the upper layer. N = 4-20 means and standard deviation. Dunnett's multiple comparison test was performed with the combination of VX-809 (30 μM) / VX-770 (1 μM) and the group with a p-value of 0.01 or less is indicated by **. # Indicates that the p-value by the Student's t-test was 0.032 for the group without the compound and the group with the combination of VX-809 (30 μM) / VX-770 (1 μM).
 次に、式(I)で表される化合物の代表的な製造法について説明する。本発明の化合物は種々の製造法により製造することができ、以下に示す製造法は一例であり、本発明はこれらに限定して解釈されるべきではない。式(I)で表される化合物及びその製造中間体は、以下に述べる種々の公知の反応を利用して製造することができる。その際、原料又は中間体の段階で官能基を適当な保護基で保護する場合がある。このような官能基としては、例えば水酸基、カルボキシ基、アミノ基等を挙げることができ、保護基の種類、並びにそれらの保護基の導入と除去の条件は、例えばProtective Groups in Organic Synthesis,Third Edition(T.W.Green and P.G.M.Wuts,John Wiley & Sons,Inc.,New York)に記載のものを参考にすることができる。 Next, a typical method for producing the compound represented by the formula (I) will be described. The compound of the present invention can be produced by various production methods, and the production methods shown below are examples, and the present invention should not be construed as being limited thereto. The compound represented by the formula (I) and a production intermediate thereof can be produced using various known reactions described below. At that time, the functional group may be protected with a suitable protecting group at the stage of the raw material or the intermediate. Examples of such a functional group include a hydroxyl group, a carboxy group, an amino group, and the like. The kind of the protecting group and the conditions for introducing and removing the protecting group are, for example, Protective Groups, Organic, Synthesis, Third Edition. (TW Green @ and PGM Wuts, John Wiley & Sons, Inc., New York) can be referred to.
[製造法1]
 式(I)で表される化合物(下記反応式中では化合物1aと表す)は、例えば下記反応式によって製造することが出来る。
[式中、Gは2-クロロフェニル基であり、Rはメチル基である。Qはメチレン基を示し、P、P、Pは保護基を示す。R2aは、メトキシ基である。]
[Production method 1]
The compound represented by the formula (I) (represented as compound 1a in the following reaction formula) can be produced, for example, by the following reaction formula.
[Wherein, G is a 2-chlorophenyl group, and R 1 is a methyl group. Q 1 is represents a methylene group, P a, P b, P c represents a protecting group. R 2a is a methoxy group. ]
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(1)化合物2aから化合物3aへの変換
 化合物2aから化合物3aへの変換は、反応に悪影響を及ぼさない適当な溶媒(例えばベンゼン、トルエン、ジエチルエーテル、ジクロロメタン、テトラヒドロフラン、又はN,N-ジメチルホルムアミド等、又はそれらの混合溶媒)中で、-30℃から反応に用いる溶媒の沸点まで、好ましくは0℃から100℃において適当な塩基(例えば水素化ナトリウム、ナトリウム メトキシド、カリウム tert-ブトキシド等、又はそれらの混合物)の存在下、エステル化合物2aと対応するハロゲン化アルキルを反応させることにより実施できる。反応時間は10分から72時間が好ましく、8時間から24時間がより好ましい。
(1) Conversion of Compound 2a to Compound 3a Conversion of Compound 2a to Compound 3a can be performed by using a suitable solvent that does not adversely affect the reaction (eg, benzene, toluene, diethyl ether, dichloromethane, tetrahydrofuran, or N, N-dimethylformamide). Or a mixed solvent thereof) in a suitable base (eg, sodium hydride, sodium methoxide, potassium tert-butoxide, etc.) at −30 ° C. to the boiling point of the solvent used in the reaction, preferably at 0 ° C. to 100 ° C. (A mixture thereof) in the presence of the ester compound 2a and the corresponding alkyl halide. The reaction time is preferably from 10 minutes to 72 hours, more preferably from 8 hours to 24 hours.
 製造原料である化合物2aに関しては、市販もしくは公知の方法に従って合成できる。
(2)化合物3aから化合物5aへの変換
 化合物3aから化合物5aへの変換は、反応に悪影響を及ぼさない適当な溶媒(例えばN,N-ジメチルホルムアミド、アセトン等、又はそれらの混合溶媒中)で、室温から反応に用いる溶媒の沸点まで、好ましくは50℃から100℃において適当な塩基(例えばトリエチルアミン、N,N-ジイソプロピルエチルアミン、4-ジメチルアミノピリジン、N-メチルモルホリン、ピリジン、2,6-ルチジン、ジアザビシクロ[5.4.0]ウンデカ-7-エン等、又はそれらの混合物)の存在下、化合物4を反応させることにより実施できる。塩基の量としては過剰量を用いることができる。反応時間は1時間から72時間が好ましく、8時間から24時間がより好ましい。
Compound 2a which is a raw material for production can be synthesized according to a commercially available or known method.
(2) Conversion of Compound 3a to Compound 5a Conversion of Compound 3a to Compound 5a is performed using a suitable solvent that does not adversely influence the reaction (eg, N, N-dimethylformamide, acetone, or the like, or a mixed solvent thereof). A suitable base (eg, triethylamine, N, N-diisopropylethylamine, 4-dimethylaminopyridine, N-methylmorpholine, pyridine, 2,6- Compound 4 in the presence of lutidine, diazabicyclo [5.4.0] undec-7-ene, or the like, or a mixture thereof). An excess amount can be used as the amount of the base. The reaction time is preferably 1 hour to 72 hours, more preferably 8 hours to 24 hours.
 製造原料である化合物4は、参考例記載の方法に従って合成できる。
(3)化合物5aから化合物6aへの変換
 化合物5aから化合物6aへの変換は、反応に悪影響を及ぼさない適当な溶媒(例えばトルエン、1,4-ジオキサン、1,2-ジクロロエタン、テトラヒドロフラン等、又はそれらの混合溶媒)中で、-30℃から反応に用いる溶媒の沸点まで、好ましくは室温から120℃においてトリフェニルホスフィン存在下、四塩化炭素、トリクロロアセトニトリル、N-クロロスクシンイミド等のクロロ化剤を反応させることにより実施できる。反応時間は10分から12時間が好ましく、30分から2時間がより好ましい。また、Pが、メチル基の場合、反応に悪影響を及ぼさない適当な溶媒(例えばクロロホルム、ジクロロメタン、テトラヒドロフラン、1,4-ジオキサン等、又はそれらの混合溶媒)中で、-30℃から100℃もしくは反応に用いる溶媒の沸点まで、好ましくは室温から100℃において適当なクロロ化剤(例えば塩化オキザリル、塩化チオニル、オキシ塩化リン等)を処理することによって実施することもできる。反応時間は10分から24時間が好ましく、30分から12時間がより好ましい。また、必要に応じてトリエチルアミン、N,N-ジメチルアニリン、N,N-ジエチルアニリン等の塩基を添加することができる。さらに、N,N-ジメチルホルムアミド等を反応促進剤として添加することも可能である。
(4)化合物6aから化合物7aへの変換
 化合物6aから化合物7aへの変換は、Pの種類によって脱保護の反応条件が異なる。Pが、メチル基の場合、反応に悪影響を及ぼさない適当な溶媒(例えばジクロロメタン、クロロホルム等、又はそれらの混合溶媒)中で、-78℃から反応に用いる溶媒の沸点まで、好ましくは-40℃から室温において三臭化ホウ素などの脱保護剤を処理することによって実施することができる。反応時間は1時間から72時間が好ましく、2時間から24時間がより好ましい。Pがtert-ブチル基の場合、-30℃から反応に用いる溶媒の沸点まで、好ましくは-20℃から室温においてトリフルオロ酢酸、塩酸、またはギ酸等と処理することによって実施することができる。反応時間は10分から72時間が好ましく、30分から24時間がより好ましい。
(5)化合物7aから化合物8aへの変換
 化合物7aから化合物8aへの変換は、一級アルコールをカルボン酸へと変換する一般的な酸化反応により実施することができる。代表的な酸化剤としては、過マンガン酸カリウム、三酸化クロムと希硫酸(Jones酸化)、または(2,2,6,6-テトラメチル-1-ピペリジニル)オキシル(TEMPO)と共酸化剤(次亜塩素酸塩、亜臭素酸塩、N-クロロスクシンイミド等)を挙げることができる。反応に用いられる溶媒としては、アセトン、アセトニトリル、水等、または、これらの混合溶媒が挙げられ、反応温度は、-78℃から100℃もしくは溶媒の沸点まで、好ましくは室温から80℃において、反応時間は1時間から48時間、好ましくは1時間から24時間において実施することができる。
Compound 4 as a raw material for production can be synthesized according to the method described in Reference Example.
(3) Conversion of Compound 5a to Compound 6a Conversion of Compound 5a to Compound 6a can be performed by using a suitable solvent that does not adversely affect the reaction (eg, toluene, 1,4-dioxane, 1,2-dichloroethane, tetrahydrofuran, or the like, or In a mixed solvent thereof), a chlorinating agent such as carbon tetrachloride, trichloroacetonitrile, or N-chlorosuccinimide is used in the presence of triphenylphosphine at −30 ° C. to the boiling point of the solvent used in the reaction, preferably at room temperature to 120 ° C. The reaction can be carried out. The reaction time is preferably from 10 minutes to 12 hours, more preferably from 30 minutes to 2 hours. Further, when Pb is a methyl group, the compound is dissolved in a suitable solvent (for example, chloroform, dichloromethane, tetrahydrofuran, 1,4-dioxane or the like, or a mixed solvent thereof) which does not adversely affect the reaction, at a temperature of -30 ° C to 100 ° C. Alternatively, the reaction can be carried out by treating a suitable chlorinating agent (eg, oxalyl chloride, thionyl chloride, phosphorus oxychloride, etc.) at a temperature up to the boiling point of the solvent used in the reaction, preferably from room temperature to 100 ° C. The reaction time is preferably from 10 minutes to 24 hours, more preferably from 30 minutes to 12 hours. If necessary, a base such as triethylamine, N, N-dimethylaniline, N, N-diethylaniline can be added. Further, N, N-dimethylformamide or the like can be added as a reaction accelerator.
(4) conversion of converting compound 6a from compound 6a into compounds 7a into compounds 7a, the reaction conditions for deprotection varies depending on the type of P b. When Pb is a methyl group, it is added in a suitable solvent that does not adversely influence the reaction (eg, dichloromethane, chloroform, etc., or a mixed solvent thereof) from −78 ° C. to the boiling point of the solvent used in the reaction, preferably −40. It can be carried out by treating a deprotecting agent such as boron tribromide at a temperature from ℃ to room temperature. The reaction time is preferably from 1 hour to 72 hours, more preferably from 2 hours to 24 hours. When Pb is a tert-butyl group, the reaction can be carried out by treating with trifluoroacetic acid, hydrochloric acid, formic acid or the like at -30 ° C to the boiling point of the solvent used in the reaction, preferably at -20 ° C to room temperature. The reaction time is preferably from 10 minutes to 72 hours, more preferably from 30 minutes to 24 hours.
(5) Conversion of Compound 7a to Compound 8a Conversion of Compound 7a to Compound 8a can be carried out by a general oxidation reaction for converting a primary alcohol to a carboxylic acid. Typical oxidizing agents include potassium permanganate, chromium trioxide and dilute sulfuric acid (Jones oxidation), or (2,2,6,6-tetramethyl-1-piperidinyl) oxyl (TEMPO) and a co-oxidizing agent ( Hypochlorite, bromite, N-chlorosuccinimide, etc.). Examples of the solvent used in the reaction include acetone, acetonitrile, water and the like, or a mixed solvent thereof. The reaction temperature is from −78 ° C. to 100 ° C. or the boiling point of the solvent, preferably from room temperature to 80 ° C. The time can be from 1 hour to 48 hours, preferably from 1 hour to 24 hours.
 また、化合物7aを酸化して得られたアルデヒド体を再び酸化して化合物8aを得ることも可能である。アルデヒド体を得る酸化反応としては、クロム酸[クロロクロム酸ピリジニウム(PCC),ニクロム酸ピリジニウム(PDC)等]、ジメチルスルホキシドと塩化オキサリル(Swern酸化)、ジメチルスルホキシドと無水酢酸、ジメチルスルホキシドと三酸化硫黄ピリジン錯体、1,1,1-トリアセトキシ-1,1-ジヒドロ-1,2-ベンズヨードキソル-3(1H)-オン(Dess-Martin試薬)等を用いる反応が知られている。アルデヒド体からカルボン酸を得る酸化反応としては、2-メチル-2-ブテン共存下に亜塩素酸ナトリウムを用いるPinnick酸化が知られている。
(6)化合物8aから化合物9aへの変換
 化合物8aから化合物9aへの変換は、一般的なカルボキシ基の保護反応により実施することができる。たとえば、メタノールまたはエタノール等のPに対応する低級アルコール中で、室温から反応に用いる溶媒の沸点まで、好ましくは室温から100℃において適当な酸触媒(たとえば塩化水素、硫酸、または塩化チオニル等)を処理することによって実施できる。反応時間は10分から72時間が好ましく、30分から24時間がより好ましい。
Further, the aldehyde compound obtained by oxidizing the compound 7a can be oxidized again to obtain the compound 8a. Examples of the oxidation reaction for obtaining an aldehyde compound include chromic acid [pyridinium chlorochromate (PCC), pyridinium dichromate (PDC), etc.], dimethylsulfoxide and oxalyl chloride (Swern oxidation), dimethylsulfoxide and acetic anhydride, dimethylsulfoxide and trioxide. A reaction using a sulfur pyridine complex, 1,1,1-triacetoxy-1,1-dihydro-1,2-benziodoxol-3 (1H) -one (Dess-Martin reagent) or the like is known. As an oxidation reaction for obtaining a carboxylic acid from an aldehyde compound, Pinnick oxidation using sodium chlorite in the presence of 2-methyl-2-butene is known.
(6) Conversion from Compound 8a to Compound 9a Conversion from Compound 8a to Compound 9a can be carried out by a general carboxy group protection reaction. For example, in a lower alcohol corresponding to Pc such as methanol or ethanol, at room temperature to the boiling point of the solvent used for the reaction, preferably at room temperature to 100 ° C., a suitable acid catalyst (eg, hydrogen chloride, sulfuric acid, or thionyl chloride) Can be implemented. The reaction time is preferably from 10 minutes to 72 hours, more preferably from 30 minutes to 24 hours.
 また、反応に悪影響を及ぼさない適当な溶媒(トルエン、ジクロロメタン等、又はそれらの混合溶媒)中で、室温から反応に用いる溶媒の沸点まで、好ましくは室温から100℃において適当なエステル化剤(例えばN,N-ジメチルホルムアミド ジ-tert-ブチルアセタール、O-tert-ブチル-N,N’-ジイソプロピルイソ尿素等)を処理することによってtert-ブチルエステルを得ることができる。反応時間は10分から72時間が好ましく、30分から24時間がより好ましい。
(7)化合物9aから化合物10aへの変換
 化合物9aから化合物10aへの変換は、化合物9aとアルコール、アミン、またはチオールとの求核置換反応により行われる。たとえば、アルコールを使用して上記置換反応を行う場合には、反応に悪影響を及ぼさない適当な溶媒(テトラヒドロフラン、アセトン、アセトニトリル、1,4-ジオキサン、ジメチルスルホキシド等、又はそれらの混合溶媒)中で、室温から反応に用いる溶媒の沸点まで、好ましくは室温から100℃において適当な塩基(たとえば水素化ナトリウム、炭酸カリウム、炭酸セシウム等)を処理することによって実施することができる。反応時間は6時間から72時間が好ましく、12時間から24時間がより好ましい。塩基の使用量は、化合物9aに対して1から過剰モル当量使用することができ、1から5モル当量を用いることがより好ましい。アルコールの使用量は、化合物10aに対して1から過剰モル当量使用することができ、アルコールを溶媒として反応を実施することも可能である。また、金属アルコキシドを用いて反応を行うことも可能である。さらに、触媒量のクラウンエーテルを加えてもよい。
In a suitable solvent that does not adversely influence the reaction (toluene, dichloromethane, or the like, or a mixed solvent thereof), a suitable esterifying agent (for example, from room temperature to the boiling point of the solvent used in the reaction, preferably from room temperature to 100 ° C.) A tert-butyl ester can be obtained by treating N, N-dimethylformamide di-tert-butyl acetal, O-tert-butyl-N, N′-diisopropylisourea, or the like. The reaction time is preferably from 10 minutes to 72 hours, more preferably from 30 minutes to 24 hours.
(7) Conversion of Compound 9a to Compound 10a Conversion of Compound 9a to Compound 10a is performed by a nucleophilic substitution reaction of Compound 9a with an alcohol, amine, or thiol. For example, when the above substitution reaction is performed using an alcohol, the substitution reaction is performed in an appropriate solvent (tetrahydrofuran, acetone, acetonitrile, 1,4-dioxane, dimethyl sulfoxide, or the like, or a mixed solvent thereof) that does not adversely affect the reaction. The reaction can be carried out by treating an appropriate base (eg, sodium hydride, potassium carbonate, cesium carbonate, etc.) at a temperature from room temperature to the boiling point of the solvent used in the reaction, preferably from room temperature to 100 ° C. The reaction time is preferably from 6 hours to 72 hours, more preferably from 12 hours to 24 hours. The amount of the base to be used may be 1 to excess molar equivalent relative to compound 9a, and more preferably 1 to 5 molar equivalents. The amount of the alcohol to be used may be 1 to an excess molar equivalent based on compound 10a, and the reaction may be carried out using alcohol as a solvent. It is also possible to carry out the reaction using a metal alkoxide. Further, a catalytic amount of crown ether may be added.
 たとえば、アミンを使用して上記反応を行う場合には、反応に悪影響を及ぼさない適当な溶媒(テトラヒドロフラン、1,4-ジオキサン等、又はそれらの混合溶媒)中で、室温から反応に用いる溶媒の沸点まで、好ましくは室温から100℃において適当な塩基(例えば炭酸カリウム、炭酸セシウム等の無機塩基、トリエチルアミン、N,N-ジイソプロピルエチルアミン等の有機塩基)を処理することによって、もしくは塩基を使用せずアミンを過剰量用いることで実施することができる。反応時間は6時間から72時間が好ましく、12時間から24時間がより好ましい。塩基の使用量は、化合物9aに対して1から過剰モル当量使用することができ、1から2モル当量を用いることがより好ましい。アミンの使用量は、塩基を使用する場合は1から2モル当量でよく、塩基を使用しない場合は化合物9aに対して2から30モル当量の範囲が好ましい。上記反応は封管中又はマイクロウェーブ照射下で処理することによっても行うことができる。 For example, when the above-mentioned reaction is carried out using an amine, the solvent used in the reaction may be heated from room temperature in a suitable solvent (tetrahydrofuran, 1,4-dioxane, or the like, or a mixed solvent thereof) which does not adversely influence the reaction. By treating with a suitable base (eg, an inorganic base such as potassium carbonate or cesium carbonate, an organic base such as triethylamine, N, N-diisopropylethylamine) at the boiling point, preferably at room temperature to 100 ° C., or without using a base It can be carried out by using an excess amount of the amine. The reaction time is preferably from 6 hours to 72 hours, more preferably from 12 hours to 24 hours. The amount of the base to be used may be 1 to excess molar equivalent relative to compound 9a, and more preferably 1 to 2 molar equivalents. The use amount of the amine may be 1 to 2 molar equivalents when a base is used, and preferably 2 to 30 molar equivalents to compound 9a when a base is not used. The above reaction can also be performed by treating in a sealed tube or under microwave irradiation.
 また、チオールを用いて上記置換反応を行う場合は、基本的にはアルコールを用いる場合と同様の操作を行うことにより実施できる。
(8)化合物10aから化合物1aへの変換
 化合物10aから化合物1aへの変換は、Pの種類によって脱保護の反応条件が異なる。Pが、メチル基の場合、反応に悪影響を及ぼさない適当な溶媒(例えばメタノール、エタノール、水、テトラヒドロフラン、1,4-ジオキサン等、又はそれらの混合溶媒が挙げられるが、水と任意の比率で混合可能な有機溶媒が好ましい)中で、-30℃から反応に用いる溶媒の沸点まで、好ましくは室温から100℃において適当な塩基(例えば水酸化ナトリウム、水酸化カリウム、水酸化リチウム、または、カリウム tert-ブトキシド等)を処理することによって実施することができる。反応時間は10分から72時間が好ましく、30分から24時間がより好ましい。Pがtert-ブチル基の場合、上記脱保護反応に加えて、-30℃から反応に用いる溶媒の沸点まで、好ましくは-20℃から室温においてトリフルオロ酢酸、塩酸、またはギ酸等と処理することによっても実施することができる。反応時間は10分から72時間が好ましく、30分から24時間がより好ましい。
When the above substitution reaction is carried out using thiol, it can be carried out by basically performing the same operation as in the case of using alcohol.
(8) Conversion of Compound 10a to Compound 1a In the conversion of Compound 10a to Compound 1a, the deprotection reaction conditions differ depending on the type of Pc . When P c is a methyl group, a suitable solvent that does not adversely affect the reaction (eg, methanol, ethanol, water, tetrahydrofuran, 1,4-dioxane, etc., or a mixture thereof; A suitable base (eg, sodium hydroxide, potassium hydroxide, lithium hydroxide, or the like) at −30 ° C. to the boiling point of the solvent used in the reaction, preferably at room temperature to 100 ° C. Potassium tert-butoxide). The reaction time is preferably from 10 minutes to 72 hours, more preferably from 30 minutes to 24 hours. When P c is a tert-butyl group, it is treated with trifluoroacetic acid, hydrochloric acid, formic acid or the like at −30 ° C. to the boiling point of the solvent used in the reaction, preferably at −20 ° C. to room temperature, in addition to the above deprotection reaction. This can also be implemented. The reaction time is preferably from 10 minutes to 72 hours, more preferably from 30 minutes to 24 hours.
[製造法2]
 上記[製造法1]の化合物8aに対し、上記[製造法1]の(7)に記載の置換反応を実施することによっても化合物1aを得ることができる。
[Production method 2]
Compound 1a can also be obtained by subjecting compound 8a of [Production Method 1] to the substitution reaction described in (7) of [Production Method 1].
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(1)化合物8aから化合物1aへの変換
 化合物8aから化合物1aへの変換は、上記[製造法1]の(7)で記載した方法と同様の置換反応により行うことができる。
(1) Conversion of compound 8a to compound 1a Conversion of compound 8a to compound 1a can be carried out by the same substitution reaction as described in the above-mentioned [Production method 1] (7).
[製造法3]
 式(I)で表される化合物(下記反応式中では化合物1cと表す)は、上記[製造法1]で製造できる6cを出発原料として、例えば下記反応式によって製造することが出来る。
[式中、G、R、Pは前記と同義であるが、Pはtert-ブチル基であることが望ましい。Qはメチレン基を示す。M1cは、メチル基を示す。]
[Production method 3]
The compound represented by the formula (I) (represented as compound 1c in the following reaction formula) can be produced, for example, by the following reaction formula using 6c that can be produced by the above [Production method 1] as a starting material.
[In the formula, G, R 1 and P b have the same meaning as described above, but P b is preferably a tert-butyl group. Q 2 represents a methylene group. M 1c represents a methyl group. ]
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(1)化合物6cから化合物11cへの変換
 化合物6cから化合物11cへの変換は、上記[製造法1]の(7)に記載したアルコールを用いる場合と同様の置換反応により行うことができる。
(2)化合物11cから化合物12cへの変換
 化合物11cから化合物12cへの変換は、上記[製造法1]の(4)で記載した方法と同様の一般的な脱保護反応により行うことができる。
(3)化合物12cから化合物1cへの変換
 化合物12cから化合物1cへの変換は、上記[製造法1]の(5)で記載した方法と同様の一般的な酸化反応により行うことができる。
(1) Conversion of Compound 6c to Compound 11c The conversion of Compound 6c to Compound 11c can be carried out by the same substitution reaction as in the case of using the alcohol described in (7) of [Production Method 1].
(2) Conversion of Compound 11c to Compound 12c Conversion of Compound 11c to Compound 12c can be carried out by the same general deprotection reaction as described in the above-mentioned [Production Method 1] (4).
(3) Conversion of compound 12c to compound 1c Conversion of compound 12c to compound 1c can be carried out by the same general oxidation reaction as described in the above-mentioned [Production method 1] (5).
 本発明において、(a)式(I)で表される化合物またはその薬学上許容される塩と(b)CFTRの機能改善薬およびENaC阻害薬からなる群から選ばれる少なくとも1種の薬剤が、「組み合わせて投与されることを特徴とする医薬(好ましくは嚢胞性線維症の治療のための医薬)/治療方法(好ましくは嚢胞性線維症の治療方法)」とは、(a)式(I)で表される化合物またはその薬学上許容される塩と(b)CFTRの機能改善薬およびENaC阻害薬からなる群から選ばれる少なくとも1種の薬剤が、好ましくは嚢胞性線維症の治療のために、組み合わせて投与されることを想定された医薬/治療方法である。 In the present invention, at least one drug selected from the group consisting of (a) a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof, and (b) a CFTR function improving agent and an ENaC inhibitor, The “medicament characterized by being administered in combination (preferably, a medicament for treating cystic fibrosis) / therapeutic method (preferably, a method for treating cystic fibrosis)” includes the formula (a) Or a pharmaceutically acceptable salt thereof, and (b) at least one drug selected from the group consisting of CFTR function improving agents and ENaC inhibitors, preferably for the treatment of cystic fibrosis. And pharmaceutical / therapeutic methods intended to be administered in combination.
 本発明において、(a)式(I)で表される化合物またはその薬学上許容される塩と(b)CFTRの機能改善薬およびENaC阻害薬からなる群から選ばれる少なくとも1種の薬剤が「組み合わせて投与される」とは、ある一定期間において、被投与対象が、(a)式(I)で表される化合物またはその薬学上許容される塩と、(b)CFTRの機能改善薬およびENaC阻害薬からなる群から選ばれる少なくとも1種の薬剤をその体内に取り込むことを意味する。(a)式(I)で表される化合物またはその薬学上許容される塩と(b)CFTRの機能改善薬およびENaC阻害薬からなる群から選ばれる少なくとも1種の薬剤が単一製剤中に含まれた製剤が投与されてもよく、またそれぞれが別々に製剤化され、別々に投与されても良い。別々に製剤化される場合、その投与の時期は特に限定されず、同時に投与されてもよく、時間を置いて異なる時間に、又は、異なる日に、投与されても良い。(a)式(I)で表される化合物またはその薬学上許容される塩と(b)CFTRの機能改善薬およびENaC阻害薬からなる群から選ばれる少なくとも1種の薬剤が、それぞれ異なる時間又は日に投与される場合、その投与の順番は特に限定されない。通常、それぞれの製剤は、それぞれの投与方法に従って投与されるため、それらの投与は、同一回数となる場合もあり、異なる回数となる場合もある。また、それぞれが別々に製剤化される場合、各製剤の投与方法(投与経路)は同じであってもよく、異なる投与方法(投与経路)で投与されてもよい。また、(a)式(I)で表される化合物またはその薬学上許容される塩と(b)CFTRの機能改善薬およびENaC阻害薬からなる群から選ばれる少なくとも1種の薬剤が、同時に体内に存在する必要は無く、ある一定期間(例えば一ヶ月間、好ましくは一週間、より好ましくは数日間、更により好ましくは一日間)の間に体内に取り込まれていればよく、いずれかの投与時にもう一方の有効成分が体内から消失していてもよい。 In the present invention, at least one drug selected from the group consisting of (a) a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof, and (b) a CFTR function-improving agent and an ENaC inhibitor is used. The term "administered in combination" means that, during a certain period of time, the administered subject is (a) a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof, (b) a CFTR function improving agent and It means that at least one drug selected from the group consisting of ENaC inhibitors is taken into the body. (A) a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof and (b) at least one drug selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor in a single preparation The included formulations may be administered, or each may be separately formulated and administered separately. When formulated separately, the timing of administration is not particularly limited, and they may be administered simultaneously, or may be administered at different times at different times or on different days. (A) a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof, and (b) at least one drug selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor, at different times or When administered daily, the order of administration is not particularly limited. Usually, each preparation is administered according to each administration method, so that the administration may be the same or different. Further, when each is formulated separately, the administration method (administration route) of each formulation may be the same or may be administered by different administration methods (administration routes). Further, (a) a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof and (b) at least one drug selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor are simultaneously administered in the body. It is not necessary to be present in the body for a certain period of time (for example, one month, preferably one week, more preferably several days, even more preferably one day). Sometimes the other active ingredient may have disappeared from the body.
 本発明の医薬の投与形態を例示すると、例えば、1)(a)式(I)で表される化合物またはその薬学上許容される塩と(b)CFTRの機能改善薬およびENaC阻害薬からなる群から選ばれる少なくとも1種の薬剤を含む単一の製剤の投与、2)(a)式(I)で表される化合物またはその薬学上許容される塩と(b)CFTRの機能改善薬およびENaC阻害薬からなる群から選ばれる少なくとも1種の薬剤を別々に製剤化して得られる2種の製剤の同一投与経路での同時投与、3)(a)式(I)で表される化合物またはその薬学上許容される塩と(b)CFTRの機能改善薬およびENaC阻害薬からなる群から選ばれる少なくとも1種の薬剤を別々に製剤化して得られる2種の製剤の同一投与経路での時間差をおいての投与、4)(a)式(I)で表される化合物またはその薬学上許容される塩と(b)CFTRの機能改善薬およびENaC阻害薬からなる群から選ばれる少なくとも1種の薬剤を別々に製剤化して得られる2種の製剤の異なる投与経路での同時投与、5)(a)式(I)で表される化合物またはその薬学上許容される塩と(b)CFTRの機能改善薬およびENaC阻害薬からなる群から選ばれる少なくとも1種の薬剤を別々に製剤化して得られる2種の製剤の異なる投与経路での時間差をおいての投与などが挙げられる。 Examples of the dosage form of the medicament of the present invention include, for example, 1) (a) a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof, and (b) a CFTR function improving agent and an ENaC inhibitor. Administration of a single preparation containing at least one drug selected from the group, 2) (a) a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof, and (b) a CFTR function improving agent and Simultaneous administration by the same administration route of two formulations obtained by separately formulating at least one drug selected from the group consisting of ENaC inhibitors, 3) (a) a compound represented by the formula (I) or Time difference in the same administration route between two formulations obtained by separately formulating the pharmaceutically acceptable salt thereof and (b) at least one drug selected from the group consisting of CFTR function improving agents and ENaC inhibitors Administration in the ) (A) separately formulating a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof and (b) at least one drug selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor. Administration of the two preparations obtained by different administration routes, 5) (a) a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof, and (b) a CFTR function-improving agent and ENaC inhibition Examples include administration of two formulations obtained by separately formulating at least one drug selected from the group consisting of drugs with different administration routes at different times.
 本発明においては、2種の異なる製剤とした場合、それらを含むキットとすることもできる。 に お い て In the present invention, when two different preparations are used, a kit containing them may be used.
 なお、CFTRの機能改善薬がRNAセラピーまたはGeneセラピーの場合、「薬剤を投与する」とは、アンチセンスオリゴヌクレオチドやCFTRをコードする遺伝子を直接またはウイルスもしくは非ウイルス性のベクターなどを用いて導入する、またはCRISPR/Cas9などによるゲノム編集技術などによりCFTRをコードする遺伝子の異常を修復することを意味する。 When the CFTR function-improving drug is RNA therapy or Gene therapy, “administer the drug” means that the gene encoding the antisense oligonucleotide or CFTR is introduced directly or by using a viral or non-viral vector. Or repairing the abnormality of the gene encoding CFTR by a genome editing technique such as CRISPR / Cas9.
 また、本発明の一態様は、(b)CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤と組み合わせて投与されるための(a)式(I)で表される化合物またはその薬学上許容される塩である。ここで「(b)CFTRの機能改善薬およびENaC阻害薬からなる群から選ばれる少なくとも1種の薬剤と組み合わせて投与される」の意味には、(b)CFTRの機能改善薬およびENaC阻害薬からなる群から選ばれる少なくとも1種の薬剤による治療を受けている患者に対して投与されることも含まれる。 Further, one embodiment of the present invention provides (a) a compound represented by the formula (I) which is administered in combination with at least one drug independently selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor. The compound or a pharmaceutically acceptable salt thereof. Here, “(b) administered in combination with at least one drug selected from the group consisting of CFTR function improving agents and ENaC inhibitors” means (b) CFTR function improving agents and ENaC inhibitors. And administering to a patient who has been treated with at least one drug selected from the group consisting of:
 本発明にかかる医薬は(a)式(I)で表される化合物またはその薬学上許容される塩及び/又は(b)CFTRの機能改善薬およびENaC阻害薬からなる群から選ばれる少なくとも1種の薬剤を有効成分として含有し、種々の形態で投与することができる。その投与形態としては、例えば、錠剤、カプセル剤、顆粒剤、乳剤、丸剤、散剤、シロップ剤(液剤)等による経口投与、または注射剤(静脈内、筋肉内、皮下または腹腔内投与)、点滴剤、坐剤(直腸投与)等による非経口投与を挙げることができる。これらの各種製剤は、常法に従って主薬に賦形剤、結合剤、崩壊剤、滑沢剤、矯味矯臭剤、溶解補助剤、懸濁剤、コーティング剤等の医薬の製剤技術分野において通常使用し得る補助剤を用いて製剤化することができる。 The medicament according to the present invention is (a) at least one selected from the group consisting of a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof and / or (b) a CFTR function improving agent and an ENaC inhibitor. Can be administered in various forms. Examples of the administration form include oral administration by tablets, capsules, granules, emulsions, pills, powders, syrups (solutions) and the like, or injections (intravenous, intramuscular, subcutaneous or intraperitoneal administration), Parenteral administration by drops, suppositories (rectal administration) and the like can be mentioned. These various preparations are commonly used in the pharmaceutical preparation technical field such as excipients, binders, disintegrants, lubricants, flavoring agents, solubilizing agents, suspending agents, coating agents, and the like, in accordance with the conventional method. It can be formulated with the aid obtained.
 錠剤として使用する場合、担体として、例えば、乳糖、白糖、塩化ナトリウム、グルコース、尿素、デンプン、炭酸カルシウム、カオリン、結晶セルロース、ケイ酸等の賦形剤;水、エタノール、プロパノール、単シロップ、グルコース液、デンプン液、ゼラチン溶液、カルボキシメチルセルロース、セラック、メチルセルロース、リン酸カリウム、ポリビニルピロリドン等の結合剤;乾燥デンプン、アルギン酸ナトリウム、寒天末、ラミナラン末、炭酸水素ナトリウム、炭酸カルシウム、ポリオキシエチレンソルビタン脂肪酸エステル、ラウリル硫酸ナトリウム、ステアリン酸モノグリセリド、デンプン、乳糖等の崩壊剤;白糖、ステアリン、カカオバター、水素添加油等の崩壊抑制剤;第4級アンモニウム塩類、ラウリル硫酸ナトリウム等の吸収促進剤;グリセリン、デンプン等の保湿剤;デンプン、乳糖、カオリン、ベントナイト、コロイド状ケイ酸等の吸着剤;精製タルク、ステアリン酸塩、硼酸末、ポリエチレングリコール等の潤沢剤等を使用することができる。また、必要に応じ通常の剤皮を施した錠剤、例えば糖衣錠、ゼラチン被包錠、腸溶被錠、フィルムコーティング錠あるいは二重錠、多層錠とすることができる。 When used as tablets, carriers include excipients such as lactose, sucrose, sodium chloride, glucose, urea, starch, calcium carbonate, kaolin, crystalline cellulose, silicic acid, etc .; water, ethanol, propanol, simple syrup, glucose Liquid, starch liquid, gelatin solution, carboxymethylcellulose, shellac, methylcellulose, potassium phosphate, polyvinylpyrrolidone, and other binders; dried starch, sodium alginate, agar powder, laminaran powder, sodium hydrogen carbonate, calcium carbonate, polyoxyethylene sorbitan fatty acid Disintegrators such as esters, sodium lauryl sulfate, stearic acid monoglyceride, starch, lactose; disintegration inhibitors such as sucrose, stearin, cocoa butter, hydrogenated oil; quaternary ammonium salts, sodium lauryl sulfate Absorbents such as glycerin and starch; Adsorbents such as starch, lactose, kaolin, bentonite and colloidal silicic acid; Lubricants such as purified talc, stearate, boric acid powder, polyethylene glycol, etc. can do. If necessary, tablets coated with a conventional coating, such as sugar-coated tablets, gelatin-coated tablets, enteric-coated tablets, film-coated tablets or double tablets or multilayer tablets, can be prepared.
 丸剤として使用する場合、担体として、例えば、グルコース、乳糖、カカオバター、デンプン、硬化植物油、カオリン、タルク等の賦形剤;アラビアゴム末、トラガント末、ゼラチン、エタノール等の結合剤;ラミナラン、寒天等の崩壊剤等を使用することができる。 When used as a pill, as a carrier, for example, excipients such as glucose, lactose, cocoa butter, starch, hydrogenated vegetable oil, kaolin, talc; binders such as gum arabic powder, tragacanth powder, gelatin, ethanol; laminaran; Disintegrators such as agar can be used.
 坐剤として使用する場合、担体としてこの分野で従来公知のものを広く使用でき、例えばポリエチレングリコール、カカオバター、高級アルコール、高級アルコールのエステル類、ゼラチン、半合成グリセリド等を挙げることができる。 (4) When used as a suppository, those conventionally known in the art can be widely used as the carrier, and examples thereof include polyethylene glycol, cocoa butter, higher alcohols, higher alcohol esters, gelatin, and semi-synthetic glycerides.
 注射剤として使用する場合、液剤、乳剤または懸濁剤として使用することができる。これらの液剤、乳剤または懸濁剤は、殺菌され、血液と等張であることが好ましい。これら液剤、乳剤または懸濁剤の製造に用いる溶媒は、医療用の希釈剤として使用できるものであれば特に限定はなく、例えば、水、エタノール、プロピレングリコール、エトキシ化イソステアリルアルコール、ポリオキシ化イソステアリルアルコール、ポリオキシエチレンソルビタン脂肪酸エステル類等を挙げることができる。なお、この場合、等張性の溶液を調製するのに充分な量の食塩、グルコースまたはグリセリンを製剤中に含んでいてもよく、また通常の溶解補助剤、緩衝剤、無痛化剤等を含んでいてもよい。 場合 When used as an injection, it can be used as a liquid, emulsion or suspension. These solutions, emulsions or suspensions are preferably sterilized and isotonic with blood. The solvent used in the production of these liquid preparations, emulsions or suspensions is not particularly limited as long as it can be used as a diluent for medical use. For example, water, ethanol, propylene glycol, ethoxylated isostearyl alcohol, polyoxylated isostearyl alcohol Examples thereof include stearyl alcohol and polyoxyethylene sorbitan fatty acid esters. In this case, the preparation may contain a sufficient amount of salt, glucose or glycerin to prepare an isotonic solution, and may also contain ordinary solubilizing agents, buffers, soothing agents and the like. You may go out.
 また、上記の製剤には、必要に応じて、着色剤、保存剤、香料、風味剤、甘味剤等を含めることもでき、更に、他の医薬品を含めることもできる。 製 剤 In addition, the above-mentioned preparations may contain a coloring agent, a preservative, a flavor, a flavoring agent, a sweetening agent, and the like, if necessary, and may further contain other pharmaceuticals.
 上記製剤に含まれる有効成分化合物の量は、特に限定されず広範囲に適宜選択されるが、通常、全組成物中0.5乃至70重量%、好ましくは1乃至30重量%含む。 量 The amount of the active ingredient compound contained in the above preparation is not particularly limited and may be appropriately selected in a wide range, but usually contains 0.5 to 70% by weight, preferably 1 to 30% by weight of the whole composition.
 その使用量は患者(温血動物、特に人間)の症状、年齢等により異なるが、経口投与の場合には、1回当り、下限として0.01 mg/kg体重(好ましくは、0.1 mg/kg体重)、上限として、500 mg/kg体重(好ましくは、100 mg/kg体重)を、静脈内投与の場合には、1回当り、下限として0.001 mg/kg体重(好ましくは、0.01 mg/kg体重)、上限として、50 mg/kg体重(好ましくは、10 mg/kg体重)を1日当り1乃至数回症状に応じて投与することが望ましい。 The amount used depends on the symptoms, age, etc. of the patient (warm-blooded animal, especially human), but in the case of oral administration, the lower limit is 0.01 mg / kg body weight (preferably 0.1 mg / kg) per dose. / Kg body weight), 500 mg / kg body weight (preferably 100 mg / kg body weight) as an upper limit, and 0.001 mg / kg body weight (preferably, once per intravenous administration) 0.01 mg / kg body weight), and, as an upper limit, 50 mg / kg body weight (preferably 10 mg / kg body weight) is desirably administered once or several times a day depending on the symptoms.
 Kalydeco(登録商標)(Ivacaftor)の場合は、通常、6歳以上の小児および成人150 mg、体重14 kg超の2歳以上6歳未満の小児75 mg、体重14 kg以下の2歳以上6歳未満の小児50 mgを12時間ごとの経口摂取が好ましい例として挙げられるが、患者の状態により適宜増減されてもよい。 In the case of Kalydeco (registered trademark) (Ivacaftor), usually 150 mg for children and adults aged 6 years or older, 75 mg for children aged 2 to 6 years older than 14 kg, and 2 to 6 years for a body weight of 14 kg or less. A preferred example is oral administration of a child of less than 50 mg every 12 hours, but it may be adjusted as appropriate according to the patient's condition.
 Orkambi(登録商標)(IvacaftorとLumacaftorの合剤)の場合は、通常、12歳以上の成人Ivacaftor125 mgとLumacaftor200 mg、6歳以上12歳未満の小児Ivacaftor125 mgとLumacaftor100 mgを12時間ごとの経口摂取が好ましい例として挙げられるが、患者の状態により適宜増減されてもよい。 In the case of Orkambi (registered trademark) (a combination of Ivacaftor and Lumacaftor), adult Ivacaftor125 mg and Lumacaftor200 mg for 12-year-old and older, and child Ivacaftor125 mg and Lumacaftor100 小 児 mg for 60-year-old and 12-year-old for every 12 hours. Is a preferable example, but may be appropriately increased or decreased depending on the condition of the patient.
 Symdeko(登録商標)(TezacaftorとIvacaftorの合剤)の場合は、通常、12歳以上の成人に朝Ivacaftor150 mgとTezacaftor100 mg、12時間後の夜にIvacaftor150 mgを経口摂取が好ましい例として挙げられるが、患者の状態により適宜増減されてもよい。 In the case of Symdeko (registered trademark) (a combination of Tezacaftor and Ivacaftor), oral intake of Ivacaftor 150 mg and Tezafactor 100 mg in the morning for adults 12 years of age and older, and Ivacaftor 150 mg in the evening 12 hours later may be mentioned as preferred examples. It may be appropriately increased or decreased according to the condition of the patient.
 治療の対象となる嚢胞性線維症の種類は限定されないが、CFTR potentiatorと併用する場合はCFTRのclassIIIおよびclassIV変異を有する患者に特に適しており、CFTR correctorと併用する場合は、classII変異を有する患者に特に適している。 The type of cystic fibrosis to be treated is not limited, but is particularly suitable for patients with class III and class IV mutations of CFTR when used in combination with CFTR potentiator, and has class II mutation when used in combination with CFTR corrector. Particularly suitable for patients.
 以下、参考例、実施例および試験例を挙げて、本発明をさらに詳細に説明するが、本発明の範囲はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Reference Examples, Examples, and Test Examples, but the scope of the present invention is not limited thereto.
 参考例および実施例のカラムクロマトグラフィーにおける溶出はTLC(Thin Layer Chromatography,薄層クロマトグラフィー)による観察下に行われた。TLC観察においては、TLCプレートとしてメルク(Merck)社製のシリカゲル60F254を、展開溶媒としてはカラムクロマトグラフィーで溶出溶媒として用いられた溶媒を、検出法としてUV検出器を採用した。カラムクロマトグラフィーには、山善社の自動精製装置もしくは昭光社の自動精製装置を適宜使用した。溶出溶媒は各参考例および実施例で指定した溶媒を用いた。なお、参考例および実施例で用いる略号は、次のような意義を有する。 Elution in column chromatography in Reference Examples and Examples was performed under observation by TLC (Thin Layer Chromatography, thin-layer chromatography). In the TLC observation, silica gel 60F254 manufactured by Merck was used as a TLC plate, a solvent used as an elution solvent in column chromatography was used as a developing solvent, and a UV detector was used as a detection method. For column chromatography, an automatic purifying device of Yamazen Corporation or an automatic purifying device of Shokosha was used as appropriate. As the elution solvent, the solvent specified in each Reference Example and Example was used. The abbreviations used in Reference Examples and Examples have the following meanings.
 mg:ミリグラム,g:グラム,μl:マイクロリットル,ml:ミリリットル,L:リットル,M:モル濃度,MHz:メガヘルツ。 Mg: milligram, g: gram, μl: microliter, ml: milliliter, L: liter, M: molarity, MHz: megahertz.
 以下の実施例において、核磁気共鳴(以下、H-NMR:400 MHz)スペクトルは、テトラメチルシランを標準物質として、ケミカルシフト値をδ値(ppm)にて記載した。分裂パターンは一重線をs、二重線をd、三重線をt、四重線をq、七重線をspt、多重線をm、ブロードをbrで示した。 In the following Examples, nuclear magnetic resonance (hereinafter, 1 H-NMR: 400 MHz) spectra were described using chemical values of δ (ppm) with tetramethylsilane as a standard substance. The fission pattern was indicated by s for singlet, d for doublet, t for triplet, q for quadruple, spt for sevenfold, m for multiplet, and br for broad.
 粉末X線回折測定は、株式会社リガク社製反射型粉末X線回折装置(RINT-TTRIII)により、波長:CuKα、λ=1.54オングストローム、検体は無反射サンプルホルダーを用いて測定した(管電圧50 kV、管電流300 mA、走査範囲2~40°、走査速度20°/min、サンプリング幅0.02°、回転速度120 rpm)。 The powder X-ray diffraction measurement was performed using a reflection type powder X-ray diffractometer (RINT-TTRIII) manufactured by Rigaku Corporation, wavelength: CuKα, λ = 1.54 angstroms, and the sample was measured using a non-reflective sample holder (tube). (Voltage: 50 kV, tube current: 300 mA, scanning range: 2 to 40 °, scanning speed: 20 ° / min, sampling width: 0.02 °, rotation speed: 120 rpm).
 水分測定は、京都電子工業株式会社製カールフィッシャー水分計(電量滴定方式MKC-610)を用いた(陽極液:ハイドラナールクーロマットAG(シグマアルドリッチ)、陰極液:ハイドラナールクーロマットCG(シグマアルドリッチ))。 The moisture was measured using a Karl Fischer moisture meter (coulometric titration method MKC-610) manufactured by Kyoto Electronics Industry Co., Ltd. (Anolyte: Hydranal Coulomat AG (Sigma Aldrich), Catholyte: Hydranal Coulomat CG (Sigma Aldrich) )).
 熱分析(示差熱-熱質量同時測定 TG-DTA)は、株式会社日立ハイテクサイエンス製TG/DTA6200を用いた(昇温速度:10℃/min、雰囲気ガス:窒素、窒素ガス流量:200 ml/min)。 For thermal analysis (simultaneous measurement of differential heat and thermal mass @ TG-DTA), TG / DTA6200 manufactured by Hitachi High-Tech Science Corp. was used (heating rate: 10 ° C / min, atmosphere gas: nitrogen, nitrogen gas flow rate: 200 ml / min).
 [実施例1]
5-(2-クロロベンジル)-4-メトキシ-6-メチルピリミジン-2-カルボン酸
[Example 1]
5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 [工程1]
メチル 2-(2-クロロベンジル)-3-オキソブタノエート
 水素化ナトリウム(60%油性,0.68 g)のテトラヒドロフラン(25 ml)懸濁液に氷冷下、メチル 3-オキソブタノエート(3.0 g)のテトラヒドロフラン(5 ml)溶液を加え、混合物を室温で30分間攪拌した。反応液に2-クロロベンジル ブロミド(5.3 g)のテトラヒドロフラン(5 ml)溶液を加え、混合物を室温で2日間攪拌した。反応液に氷水、1 M塩酸を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去し、得られた残分をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することにより、標記化合物(5.6 g)を得た。
1H-NMR (CDCl3) δ: 2.22 (3H, s), 3.24 (1H, dd, J = 14.1, 8.0 Hz), 3.30 (1H, dd, J = 14.1, 6.8 Hz), 3.69 (3H, s), 3.97 (1H, dd, J = 8.2, 6.7 Hz), 7.14-7.19 (2H, m), 7.22-7.25 (1H, m), 7.33-7.36 (1H, m).
 [工程2]
2-(tert-ブトキシメチル)-5-(2-クロロベンジル)-6-メチルピリミジン-4(3H)-オン
 上記工程1で得られた化合物(5.6 g)のN,N-ジメチルホルムアミド(30 ml)溶液に、参考例1の工程1で得られた化合物(5.8 g)および1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(10.5 ml)を加え、混合物を75℃で26時間攪拌した。冷却後、反応液に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。抽出液を水、飽和食塩水で順次洗浄後、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去し、得られた残分にジエチルエーテルを加え、濾取することにより、標記化合物(2.8 g)を得た。
1H-NMR (CDCl3) δ: 1.29 (9H, s), 2.20 (3H, s), 4.01 (2H, s), 4.40 (2H, s), 6.98-7.02 (1H, m), 7.09-7.14 (2H, m), 7.34-7.38 (1H, m).
 [工程3]
2-(tert-ブトキシメチル)-4-クロロ-5-(2-クロロベンジル)-6-メチルピリミジン
 上記工程2で得られた化合物(2.8 g)のトルエン(10 ml)懸濁液にトリフェニルホスフィン(6.9 g)およびトリクロロアセトニトリル(0.88 ml)を加え、混合物を120℃で1時間攪拌した。冷却後、反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。抽出液を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去し、得られた残分をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することにより、標記化合物(2.7 g)を得た。
1H-NMR (CDCl3) δ: 1.33 (9H, s), 2.44 (3H, s), 4.24 (2H, s), 4.63 (2H, s), 6.65 (1H, dd, J = 7.5, 1.8 Hz), 7.12 (1H, td, J = 7.5, 1.4 Hz), 7.19 (1H, td, J = 7.7, 1.7 Hz), 7.43 (1H, dd, J = 7.9, 1.4 Hz).
[Step 1]
Methyl 2- (2-chlorobenzyl) -3-oxobutanoate Methyl 3-oxobutanoate was added to a suspension of sodium hydride (60% oil, 0.68 g) in tetrahydrofuran (25 ml) under ice-cooling. A solution of (3.0 g) in tetrahydrofuran (5 ml) was added and the mixture was stirred at room temperature for 30 minutes. A solution of 2-chlorobenzyl bromide (5.3 g) in tetrahydrofuran (5 ml) was added to the reaction solution, and the mixture was stirred at room temperature for 2 days. Ice water and 1 M hydrochloric acid were added to the reaction solution, and the mixture was extracted with ethyl acetate. The extract was washed with saturated saline and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the obtained residue was purified by silica gel column chromatography (n-hexane / ethyl acetate) to obtain the title compound (5.6 g).
1 H-NMR (CDCl 3 ) δ: 2.22 (3H, s), 3.24 (1H, dd, J = 14.1, 8.0 Hz), 3.30 (1H, dd, J = 14.1, 6.8 Hz), 3.69 (3H, s ), 3.97 (1H, dd, J = 8.2, 6.7 Hz), 7.14-7.19 (2H, m), 7.22-7.25 (1H, m), 7.33-7.36 (1H, m).
[Step 2]
2- (tert-butoxymethyl) -5- (2-chlorobenzyl) -6-methylpyrimidin-4 (3H) -one N, N-dimethylformamide of the compound (5.6 g) obtained in the above step 1 To the (30 ml) solution were added the compound obtained in Step 1 of Reference Example 1 (5.8 g) and 1,8-diazabicyclo [5.4.0] undec-7-ene (10.5 ml). The mixture was stirred at 75 ° C. for 26 hours. After cooling, a saturated aqueous solution of sodium hydrogen carbonate was added to the reaction solution, and the mixture was extracted with ethyl acetate. The extract was washed sequentially with water and saturated saline, and then dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and diethyl ether was added to the obtained residue, followed by filtration to obtain the title compound (2.8 g).
1 H-NMR (CDCl 3 ) δ: 1.29 (9H, s), 2.20 (3H, s), 4.01 (2H, s), 4.40 (2H, s), 6.98-7.02 (1H, m), 7.09-7.14 (2H, m), 7.34-7.38 (1H, m).
[Step 3]
2- (tert-butoxymethyl) -4-chloro-5- (2-chlorobenzyl) -6-methylpyrimidine A suspension of the compound (2.8 g) obtained in Step 2 above in toluene (10 ml) was added. Triphenylphosphine (6.9 g) and trichloroacetonitrile (0.88 ml) were added and the mixture was stirred at 120 ° C. for 1 hour. After cooling, a saturated aqueous sodium hydrogen carbonate solution was added to the reaction solution, and the mixture was extracted with chloroform. The extract was washed with saturated saline and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the obtained residue was purified by silica gel column chromatography (n-hexane / ethyl acetate) to obtain the title compound (2.7 g).
1 H-NMR (CDCl 3 ) δ: 1.33 (9H, s), 2.44 (3H, s), 4.24 (2H, s), 4.63 (2H, s), 6.65 (1H, dd, J = 7.5, 1.8 Hz ), 7.12 (1H, td, J = 7.5, 1.4 Hz), 7.19 (1H, td, J = 7.7, 1.7 Hz), 7.43 (1H, dd, J = 7.9, 1.4 Hz).
 [工程4]
2-(tert-ブトキシメチル)-5-(2-クロロベンジル)-4-メトキシ-6-メチルピリミジン
 上記工程3で得られた化合物(1.5 g)のメタノール(4 ml)溶液に、炭酸セシウム(1.44 g)を加え、混合物を室温で2日間攪拌した。反応液に水を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去し、得られた残分をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することにより、標記化合物(1.15 g)を得た。
1H-NMR (CDCl3) δ: 1.33 (9H, s), 2.34 (3H, s), 3.95 (3H, s), 4.03 (2H, s), 4.55 (2H, s), 6.68-6.71 (1H, m), 7.07 (1H, td, J = 7.5, 1.4 Hz), 7.14 (1H, td, J = 7.7, 1.8 Hz), 7.38 (1H, dd, J = 7.9, 1.4 Hz).
 [工程5]
(5-(2-クロロベンジル)-4-メトキシ-6-メチルピリミジン-2-イル)メタノール
 上記工程4で得られた化合物(1.15 g)にトリフルオロ酢酸(2 ml)を加え、混合物を室温で24時間半攪拌した。反応液に水を加え、酢酸エチルで抽出した。抽出液を飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄後、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去し、得られた残分をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製することにより、標記化合物(0.81 g)を得た。
1H-NMR (CDCl3) δ: 2.36 (3H, s), 3.76 (1H, t, J = 4.9 Hz), 3.95 (3H, s), 4.05 (2H, s), 4.69 (2H, d, J = 4.8 Hz), 6.70 (1H, dd, J = 7.3, 1.5 Hz), 7.10 (1H, td, J = 7.5, 1.4 Hz), 7.15 (1H, td, J = 7.5, 1.8 Hz), 7.40 (1H, dd, J = 7.8, 1.5 Hz).
[工程6]
5-(2-クロロベンジル)-4-メトキシ-6-メチルピリミジン-2-カルボン酸
 上記工程5で得られた化合物(0.8 g)のアセトニトリル(6 ml)溶液に、リン酸ナトリウム緩衝液(0.67 M,pH 6.7,4 ml)、(2,2,6,6-テトラメチルピペリジン-1-イル)オキシル(31 mg)を加え、混合物を35℃で攪拌した。混合物に亜塩素酸ナトリウム水溶液(2.0 M,3.3 ml)、次亜塩素酸ナトリウム水溶液(0.26%,2.9 ml)を同時に滴下し、混合物を35℃で23時間半攪拌した。冷却後、反応液を2 M水酸化ナトリウム水溶液(4 ml)で希釈し、氷冷下、10%チオ硫酸ナトリウム水溶液(6 ml)を加え、混合物を同温で30分間攪拌した。反応液に酢酸エチルを加え、二層を分離後、水層に2 M塩酸(10 ml)を加え、酢酸エチルで抽出した。抽出液を水、飽和食塩水で順次洗浄後、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去し、得られた残分にn-ヘキサン/酢酸エチルを加え、濾取することにより、標記化合物(0.71 g)を得た。
1H-NMR (CDCl3) δ: 2.45 (3H, s), 4.08 (3H, s), 4.13 (2H, s), 6.67 (1H, dd, J = 7.3, 2.0 Hz), 7.11 (1H, td, J = 7.5, 1.3 Hz), 7.18 (1H, td, J = 7.7, 1.7 Hz), 7.41 (1H, dd, J = 7.9, 1.4 Hz).
MS (m/z) : 293 (M+H)+.
[Step 4]
2- (tert-butoxymethyl) -5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine A solution of the compound (1.5 g) obtained in Step 3 above in methanol (4 ml) was added with carbonic acid. Cesium (1.44 g) was added and the mixture was stirred at room temperature for 2 days. Water was added to the reaction solution, which was extracted with ethyl acetate. The extract was washed with saturated saline and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the obtained residue was purified by silica gel column chromatography (n-hexane / ethyl acetate) to obtain the title compound (1.15 g).
1 H-NMR (CDCl 3 ) δ: 1.33 (9H, s), 2.34 (3H, s), 3.95 (3H, s), 4.03 (2H, s), 4.55 (2H, s), 6.68-6.71 (1H , m), 7.07 (1H, td, J = 7.5, 1.4 Hz), 7.14 (1H, td, J = 7.7, 1.8 Hz), 7.38 (1H, dd, J = 7.9, 1.4 Hz).
[Step 5]
(5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidin-2-yl) methanol To the compound (1.15 g) obtained in the above step 4 was added trifluoroacetic acid (2 ml), and a mixture was obtained. Was stirred at room temperature for 24 hours and a half. Water was added to the reaction solution, which was extracted with ethyl acetate. The extract was washed successively with a saturated aqueous solution of sodium hydrogen carbonate and a saturated saline solution, and then dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the obtained residue was purified by silica gel column chromatography (n-hexane / ethyl acetate) to obtain the title compound (0.81 g).
1 H-NMR (CDCl 3 ) δ: 2.36 (3H, s), 3.76 (1H, t, J = 4.9 Hz), 3.95 (3H, s), 4.05 (2H, s), 4.69 (2H, d, J = 4.8 Hz), 6.70 (1H, dd, J = 7.3, 1.5 Hz), 7.10 (1H, td, J = 7.5, 1.4 Hz), 7.15 (1H, td, J = 7.5, 1.8 Hz), 7.40 (1H , dd, J = 7.8, 1.5 Hz).
[Step 6]
5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid To a solution of the compound obtained in the above step 5 (0.8 g) in acetonitrile (6 ml) was added sodium phosphate buffer. (0.67 M, pH 6.7, 4 ml) and (2,2,6,6-tetramethylpiperidin-1-yl) oxyl (31 mg) were added, and the mixture was stirred at 35 ° C. An aqueous solution of sodium chlorite (2.0 M, 3.3 ml) and an aqueous solution of sodium hypochlorite (0.26%, 2.9 ml) were simultaneously added dropwise to the mixture, and the mixture was stirred at 35 ° C. for 23 hours and a half. did. After cooling, the reaction solution was diluted with a 2 M aqueous sodium hydroxide solution (4 ml), a 10% aqueous sodium thiosulfate solution (6 ml) was added under ice cooling, and the mixture was stirred at the same temperature for 30 minutes. Ethyl acetate was added to the reaction solution, and after separating two layers, 2M hydrochloric acid (10 ml) was added to the aqueous layer, and the mixture was extracted with ethyl acetate. The extract was washed sequentially with water and saturated saline, and then dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and n-hexane / ethyl acetate was added to the obtained residue, followed by filtration to obtain the title compound (0.71 g).
1 H-NMR (CDCl 3 ) δ: 2.45 (3H, s), 4.08 (3H, s), 4.13 (2H, s), 6.67 (1H, dd, J = 7.3, 2.0 Hz), 7.11 (1H, td , J = 7.5, 1.3 Hz), 7.18 (1H, td, J = 7.7, 1.7 Hz), 7.41 (1H, dd, J = 7.9, 1.4 Hz).
MS (m / z): 293 (M + H) + .
 [実施例2]
5-(2-クロロベンジル)-4-メトキシ-6-メチルピリミジン-2-カルボン酸 3/2水和物
[Example 2]
5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid 3/2 hydrate
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[工程1]
5-(2-クロロベンジル)-4-メトキシ-6-メチルピリミジン-2-カルボン酸 3/2水和物
 実施例1の工程6で得られた化合物(200 mg)に2-プロパノール(1.8 ml)および水(0.2 ml)を加え、混合物を95℃で15分間攪拌した。室温まで冷却後、混合物を室温で一晩攪拌した。析出物を濾取し、水洗い後、乾燥することにより、標記化合物(188 mg)を得た。
1H-NMR (CDCl3) δ: 2.46 (3H, s), 4.09 (3H, s), 4.14 (2H, s), 6.66-6.69 (1H, m), 7.12 (1H, td, J = 7.5, 1.5 Hz), 7.19 (1H, td, J = 7.7, 1.8 Hz), 7.42 (1H, dd, J = 7.9, 1.4 Hz).
Anal. Calcd for C14H13ClN2O3・3/2H2O : C, 52.59 ; H, 5.04 ; Cl, 11.09 ; N, 8.76.
Found: C, 52.40 ; H, 5.07 ; Cl, 11.17 ; N, 8.70.
[Step 1]
5- (2-Chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid 3/2 hydrate To the compound (200 mg) obtained in Step 6 of Example 1 was added 2-propanol (1. 8 ml) and water (0.2 ml) were added and the mixture was stirred at 95 ° C. for 15 minutes. After cooling to room temperature, the mixture was stirred at room temperature overnight. The precipitate was collected by filtration, washed with water, and dried to give the title compound (188 mg).
1 H-NMR (CDCl 3 ) δ: 2.46 (3H, s), 4.09 (3H, s), 4.14 (2H, s), 6.66-6.69 (1H, m), 7.12 (1H, td, J = 7.5, 1.5 Hz), 7.19 (1H, td, J = 7.7, 1.8 Hz), 7.42 (1H, dd, J = 7.9, 1.4 Hz).
Anal.Calcd for C 14 H 13 ClN 2 O 3・ 3 / 2H 2 O: C, 52.59; H, 5.04; Cl, 11.09; N, 8.76.
Found: C, 52.40; H, 5.07; Cl, 11.17; N, 8.70.
 [参考例1]
2-(tert-ブトキシ)アセトイミダミド 塩酸塩
[Reference Example 1]
2- (tert-butoxy) acetimidamide hydrochloride
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 [工程1]
2-(tert-ブトキシ)アセトイミダミド 塩酸塩
 2-(tert-ブトキシ)アセトニトリル(Nature Chemistry、2010、937-943)(69.89 g)のメタノール(400 ml)溶液に、ナトリウム メトキシド(3.08 g)を加え、混合物を室温で8時間攪拌した。反応液に塩化アンモニウム(34.69 g)を加え、混合物を40℃で一晩攪拌後、室温で一晩攪拌した。析出物を濾過して除き、濾液を減圧下濃縮した。得られた残分にエタノール(400 ml)を加え、80℃で30分間攪拌した。析出物を濾過して除き、濾液を減圧下濃縮した。得られた残分に酢酸エチル(300 ml)を加え、40℃で攪拌下にn-ヘキサン(300 ml)を滴下し、混合物を室温で一晩攪拌した。懸濁液を濾過することにより、標記化合物(68.57 g)を得た。
1H-NMR (DMSO-d6) δ: 1.19 (9H, s), 4.21 (2H, s), 8.61 (4H, br s).
[Step 1]
2- (tert-butoxy) acetimidamide hydrochloride To a solution of 2- (tert-butoxy) acetonitrile (Nature Chemistry, 2010, 937-943) (69.89 g) in methanol (400 ml) was added sodium methoxide (3.08 g). ) Was added and the mixture was stirred at room temperature for 8 hours. Ammonium chloride (34.69 g) was added to the reaction solution, and the mixture was stirred at 40 ° C. overnight, and then at room temperature overnight. The precipitate was removed by filtration, and the filtrate was concentrated under reduced pressure. Ethanol (400 ml) was added to the obtained residue, and the mixture was stirred at 80 ° C for 30 minutes. The precipitate was removed by filtration, and the filtrate was concentrated under reduced pressure. Ethyl acetate (300 ml) was added to the obtained residue, n-hexane (300 ml) was added dropwise at 40 ° C. with stirring, and the mixture was stirred at room temperature overnight. The suspension was filtered to give the title compound (68.57 g).
1 H-NMR (DMSO-d 6 ) δ: 1.19 (9H, s), 4.21 (2H, s), 8.61 (4H, br s).
[実施例3]
ビス[5-(2-クロロベンジル)-4-メトキシ-6-メチルピリミジン-2-カルボン酸] マグネシウム塩
 実施例2と同様の方法で得た化合物(301.89 mg)に2-プロパノール(1208 μl)、水(3302 μl)を加えた。この液に1.0 mol/l水酸化カリウム水溶液(989 μl)を加えた後、1.0 mol/l塩化マグネシウム水溶液(539 μl)を加えた。この混合液を40℃で約24時間攪拌し、次いで、室温で約0.5時間放置した。固体をろ取し、室温で一晩乾燥した後、水(6.0 ml)を加え、室温で約2時間攪拌した。固体をろ取し、室温で一晩乾燥し、標記化合物(274.93 mg、回収率88%)を得た。
[Example 3]
Bis [5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid] magnesium salt To a compound (301.89 mg) obtained in the same manner as in Example 2 was added 2-propanol (1208). μl) and water (3302 μl). To this solution was added a 1.0 mol / l aqueous solution of potassium hydroxide (989 μl), and then a 1.0 mol / l aqueous solution of magnesium chloride (539 μl) was added. The mixture was stirred at 40 ° C. for about 24 hours, then left at room temperature for about 0.5 hour. The solid was collected by filtration, dried overnight at room temperature, added with water (6.0 ml), and stirred at room temperature for about 2 hours. The solid was collected by filtration and dried overnight at room temperature to give the title compound (274.93 mg, 88% recovery).
 元素分析値C28H24Cl2MgN4O6・3.0H2Oとして
計算値: C, 50.82; H, 4.57; N, 8.47; Cl, 10.71; Mg, 3.67.
実測値: C, 50.63; H, 4.69; N, 8.41; Cl, 10.88; Mg, 3.63.
 上述の結果から、ビス[5-(2-クロロベンジル)-4-メトキシ-6-メチルピリミジン-2-カルボン酸]マグネシウム塩水和物であると推定された。
Elemental analysis C 28 H 24 Cl 2 MgN 4 O 6 · 3.0H 2 O Calculated: C, 50.82; H, 4.57 ; N, 8.47; Cl, 10.71; Mg, 3.67.
Found: C, 50.63; H, 4.69; N, 8.41; Cl, 10.88; Mg, 3.63.
From the above results, it was estimated to be bis [5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid] magnesium salt hydrate.
[実施例4]
ビス[5-(2-クロロベンジル)-4-メトキシ-6-メチルピリミジン-2-カルボン酸] マグネシウム塩
  実施例2と同様の方法で得た化合物(1501 mg)に2-プロパノール(6005μl)、水(16.42 ml)を加えた。この液に1.0 mol/l水酸化カリウム水溶液(4920 μl)を加えた後、1.0 mol/l塩化マグネシウム水溶液(2679 μl)を加えた。この混合液を40℃で約2日間攪拌後、下記に示す方法と同様の方法で取得した種晶を少量添加し、さらに40℃で約1日間、次いで室温で約0.5時間放置した。固体をろ取し、水(30.0 ml)を加え、室温で約2時間攪拌した。固体をろ取し、室温で一晩乾燥し、標記化合物(1416 mg、回収率93%)を得た。
[Example 4]
Bis [5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid] magnesium salt To a compound (1501 mg) obtained in the same manner as in Example 2 were added 2-propanol (6005 μl), Water (16.42 ml) was added. To this solution was added a 1.0 mol / l aqueous potassium hydroxide solution (4920 μl), and then a 1.0 mol / l aqueous magnesium chloride solution (2679 μl). After stirring the mixture at 40 ° C. for about 2 days, a small amount of a seed crystal obtained by the same method as described below was added, and the mixture was allowed to stand at 40 ° C. for about 1 day and then at room temperature for about 0.5 hour. The solid was collected by filtration, water (30.0 ml) was added, and the mixture was stirred at room temperature for about 2 hours. The solid was collected by filtration and dried overnight at room temperature to give the title compound (1416 mg, 93% recovery).
 種晶の取得方法
実施例3と同様の方法で得た化合物(701.13 mg)に1,4-ジオキサン/ジメチルスルホキシド(1/1)溶液(30 ml)を加えて溶解した。この液428 μlを分注し、凍結乾燥により溶媒を留去した。得られた凍結乾燥品に20%含水2-プロパノール(100 μl)を加え、40℃で約24時間攪拌後、固体をろ取し、室温で一晩乾燥し、種晶を得た。
Method for Obtaining Seed Crystal To a compound (701.13 mg) obtained in the same manner as in Example 3, a 1,4-dioxane / dimethylsulfoxide (1/1) solution (30 ml) was added and dissolved. 428 μl of this solution was dispensed, and the solvent was distilled off by freeze-drying. To the obtained freeze-dried product was added 20% aqueous 2-propanol (100 μl), and the mixture was stirred at 40 ° C. for about 24 hours. The solid was collected by filtration and dried at room temperature overnight to obtain a seed crystal.
 元素分析値C28H24Cl2MgN4O6・2H2Oとして
計算値: C, 52.24; H, 4.38; N, 8.70; Cl, 11.01; Mg, 3.78.
実測値: C, 51.82; H, 4.52; N, 8.64; Cl, 10.90; Mg, 3.70. 
 水分値(カールフィッシャー法)C28H24Cl2MgN4O6・2H2Oとして
計算値: 5.58%
実測値: 6.10%
 質量減少率(熱分析TG-DTA)C28H24Cl2MgN4O6・2H2Oとして
計算値: 5.58%
実測値: 5.61%
 上述の測定結果より、ビス[5-(2-クロロベンジル)-4-メトキシ-6-メチルピリミジン-2-カルボン酸] 一マグネシウム塩 二水和物であると特定された。
Elemental analysis C 28 H 24 Cl 2 MgN 4 O 6 · 2H 2 O Calculated: C, 52.24; H, 4.38 ; N, 8.70; Cl, 11.01; Mg, 3.78.
Found: C, 51.82; H, 4.52; N, 8.64; Cl, 10.90; Mg, 3.70.
Water content (Karl Fischer method) C 28 H 24 Cl 2 MgN 4 O 6 · 2H 2 O Calculated: 5.58%
Measured: 6.10%
Weight reduction rate (thermal analysis TG-DTA) C 28 H 24 Cl 2 MgN 4 O 6 · 2H 2 O Calculated: 5.58%
Measured: 5.61%
From the above measurement results, the product was identified to be bis [5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid] monomagnesium salt dihydrate.
[実施例5]
ビス[5-(2-クロロベンジル)-4-メトキシ-6-メチルピリミジン-2-カルボン酸] カルシウム塩
 実施例2と同様の方法で得た化合物(300.93 mg)に2-プロパノール(1202 μl)、水(3284 μl)を加えた。この液に1.0 mol/l水酸化カリウム水溶液(985 μl)を加えた後、1.0 mol/l塩化カルシウム水溶液(538 μl)を加えた。この混合液を40℃で約24時間攪拌し、次いで、室温で約0.5時間放置した。固体をろ取し、室温で一晩乾燥した後、水(6.0 ml)を加え、室温で約2時間攪拌した。固体をろ取し、室温で一晩乾燥し、標記化合物(301.22 mg、回収率92%)を得た。
[Example 5]
Bis [5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid] calcium salt To a compound (300.93 mg) obtained in the same manner as in Example 2 was added 2-propanol (1202). μl) and water (3284 μl). A 1.0 mol / l aqueous solution of potassium hydroxide (985 μl) was added to this solution, and then a 1.0 mol / l aqueous solution of calcium chloride (538 μl) was added. The mixture was stirred at 40 ° C. for about 24 hours, then left at room temperature for about 0.5 hour. The solid was collected by filtration, dried overnight at room temperature, added with water (6.0 ml), and stirred at room temperature for about 2 hours. The solid was collected by filtration and dried overnight at room temperature to give the title compound (301.22 mg, 92% recovery).
 元素分析値C28H24Cl2CaN4O6・4.0H2Oとして
計算値: C, 48.35; H, 4.64; N, 8.05; Cl, 10.19; Ca, 5.76.
実測値: C, 48.10; H, 4.74; N, 7.98; Cl, 10.26; Ca, 4.28. 
 上述の結果から、ビス[5-(2-クロロベンジル)-4-メトキシ-6-メチルピリミジン-2-カルボン酸]カルシウム塩水和物であると推定された。
Elemental analysis calculated for C 28 H 24 Cl 2 CaN 4 O 6・ 4.0 H 2 O: C, 48.35; H, 4.64; N, 8.05; Cl, 10.19; Ca, 5.76.
Found: C, 48.10; H, 4.74; N, 7.98; Cl, 10.26; Ca, 4.28.
From the above results, it was presumed to be bis [5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid] calcium salt hydrate.
[実施例6]
ビス[5-(2-クロロベンジル)-4-メトキシ-6-メチルピリミジン-2-カルボン酸] 亜鉛塩
 実施例2と同様の方法で得た化合物(300.10 mg)に2-プロパノール(1200 μl)、水(3280 μl)を加えた。この液に1.0 mol/l水酸化カリウム水溶液(984 μl)を加えた後、1.0 mol/l臭化亜鉛水溶液(538 μl)を加えた。この混合液を40℃で約24時間攪拌し、次いで、室温で約0.5時間放置した。固体をろ取し、室温で一晩乾燥した後、水(6.0 ml)を加え、室温で約2時間攪拌した。固体をろ取し、室温で一晩乾燥し、標記化合物(293.65 mg、回収率92%)を得た。
[Example 6]
Bis [5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid] zinc salt To a compound (300.10 mg) obtained in the same manner as in Example 2 was added 2-propanol (1200 μl) and water (3280 μl). A 1.0 mol / l aqueous solution of potassium hydroxide (984 μl) was added to this solution, and then a 1.0 mol / l aqueous solution of zinc bromide (538 μl) was added. The mixture was stirred at 40 ° C. for about 24 hours, then left at room temperature for about 0.5 hour. The solid was collected by filtration, dried overnight at room temperature, added with water (6.0 ml), and stirred at room temperature for about 2 hours. The solid was collected by filtration and dried overnight at room temperature to give the title compound (293.65 mg, 92% recovery).
 元素分析値C28H24Cl2ZnN4O6・1.5H2Oとして
計算値: C, 49.76; H, 4.03; N, 8.29; Cl, 10.49.
実測値: C, 49.94; H, 4.12; N, 8.28; Cl, 10.61.
 上述の結果から、ビス[5-(2-クロロベンジル)-4-メトキシ-6-メチルピリミジン-2-カルボン酸]亜鉛塩 水和物であると推定された。
Elemental analysis C 28 H 24 Cl 2 ZnN 4 O 6 · 1.5H 2 O Calculated: C, 49.76; H, 4.03 ; N, 8.29; Cl, 10.49.
Found: C, 49.94; H, 4.12; N, 8.28; Cl, 10.61.
From the above results, it was presumed to be bis [5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid] zinc salt hydrate.
[実施例7]
5-(2-クロロベンジル)-4-メトキシ-6-メチルピリミジン-2-カルボン酸 ナトリウム塩
 実施例2と同様の方法で得た化合物(301.24 mg)にエタノール(5042 μl)を加え、1.0 mol/l水酸化ナトリウムエタノール溶液(982 μl)を加えた。この混合液を40℃で約24時間攪拌し、次いで、室温で約0.5時間放置した。固体をろ取し、室温で一晩乾燥し、標記化合物(289.98 mg、回収率97%)を得た。
[Example 7]
5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid sodium salt To a compound (301.24 mg) obtained in the same manner as in Example 2, ethanol (5042 μl) was added. A 1.0 mol / l sodium hydroxide ethanol solution (982 μl) was added. The mixture was stirred at 40 ° C. for about 24 hours, then left at room temperature for about 0.5 hour. The solid was collected by filtration and dried at room temperature overnight to give the title compound (289.98 mg, recovery 97%).
[実施例8]
5-(2-クロロベンジル)-4-メトキシ-6-メチルピリミジン-2-カルボン酸 tert-ブチルアミン塩
 実施例2と同様の方法で得た化合物(300.90 mg)にアセトン(5913 μl)を加え、tert-ブチルアミン(105 μl)を加えた。この混合液を40℃で約24時間攪拌し、次いで、室温で約0.5時間放置した。固体をろ取し、室温で一晩乾燥し、標記化合物(332.74 mg、回収率97%)を得た。
Example 8
5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid tert-butylamine salt To a compound (300.90 mg) obtained in the same manner as in Example 2 was added acetone (5913 μl). In addition, tert-butylamine (105 μl) was added. The mixture was stirred at 40 ° C. for about 24 hours, then left at room temperature for about 0.5 hour. The solid was collected by filtration and dried overnight at room temperature to give the title compound (332.74 mg, 97% recovery).
 元素分析値C14H13ClN2O3・1.0C4H11Nとして
計算値: C, 59.09; H, 6.61; N, 11.49; Cl, 9.69.
実測値: C, 58.69; H, 6.53; N, 11.34; Cl, 9.74.
Elemental analysis C 14 H 13 ClN 2 O 3 · 1.0C 4 H 11 N Calculated: C, 59.09; H, 6.61 ; N, 11.49; Cl, 9.69.
Found: C, 58.69; H, 6.53; N, 11.34; Cl, 9.74.
[実施例9]
5-(2-クロロベンジル)-4-メトキシ-6-メチルピリミジン-2-カルボン酸 ジイソプロピルアミン塩
 実施例2と同様の方法で得た化合物(300.05 mg)にアセトン(5863 μl)を加え、ジイソプロピルアミン(138 μl)を加えた。この混合液を40℃で約24時間攪拌し、次いで、室温で約0.5時間放置した。固体をろ取し、室温で一晩乾燥し、標記化合物(353.95 mg、回収率96%)を得た。
[Example 9]
5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid diisopropylamine salt To a compound (300.05 mg) obtained in the same manner as in Example 2 was added acetone (5863 μl). , Diisopropylamine (138 μl). The mixture was stirred at 40 ° C. for about 24 hours, then left at room temperature for about 0.5 hour. The solid was collected by filtration and dried overnight at room temperature to give the title compound (353.95 mg, 96% recovery).
 元素分析値C14H13ClN2O3・1.0C6H15Nとして
計算値: C, 60.98; H, 7.16; N, 10.67; Cl, 9.00.
実測値: C, 60.89; H, 7.17; N, 10.65; Cl, 9.05.
Elemental analysis C 14 H 13 ClN 2 O 3 · 1.0C 6 H calcd 15 N: C, 60.98; H , 7.16; N, 10.67; Cl, 9.00.
Found: C, 60.89; H, 7.17; N, 10.65; Cl, 9.05.
 [試験例1] 被験化合物のクロライドイオン分泌活性の検討
 クロライドイオン分泌活性の測定は既報(West and Molloy,1996)に従い実施した。すなわち、嚢胞性線維症患者由来気管支上皮細胞株であるCuFi-1細胞を96 well plateに3×104 cells/wellで播種し、二晩培養した。培地を除去した後、培地で希釈し5 mMの濃度に調製したN-(Ethoxycarbonylmethyl)-6-Methoxyquinolinium Bromide(MQAE)を100 μl/well添加した。MQAE添加後、一晩培養し受動的にローディングさせた。ローディング後、Assay bufferで2回洗浄し、Assay bufferを100 μl/well添加した。クロライドイオン分泌能は、Flexstation1を用いて(Ex:355 nm/Em:460 nmの蛍光波長)測定した。すなわち、基礎値を測定するため、測定開始直後の34秒間は何も添加せず、 34秒目にクロライドイオンフリーAssay bufferで希釈した被験化合物および亜鉛(終濃度10 μM)を100 μl/well添加、その後86秒間測定した(合計120秒間測定)。クロライドイオン分泌能は、測定開始110秒から120秒までの10秒間のRFU値の平均を0秒から34秒まで(基礎値)の平均値で割ることで算出した。被験化合物のクロライドイオン分泌活性(EC50値)は、系列希釈された被験化合物の各濃度におけるクロライドイオン分泌能を求め、各化合物の最大反応の50%を挟む2点の分泌能と濃度から50%の分泌能を与える被験化合物の濃度として算出した。
[Test Example 1] Examination of chloride ion secretion activity of test compound Measurement of chloride ion secretion activity was carried out according to a previously reported report (West and Molloy, 1996). That is, CuFi-1 cells, a bronchial epithelial cell line derived from a cystic fibrosis patient, were seeded on a 96-well plate at 3 × 10 4 cells / well and cultured overnight. After removing the medium, 100 μl / well of N- (Ethoxycarbonylmethyl) -6-Methoxyquinolinium Bromide (MQAE) diluted with the medium and adjusted to a concentration of 5 mM was added. After adding MQAE, the cells were cultured overnight and passively loaded. After loading, the plate was washed twice with Assay buffer, and 100 μl / well of Assay buffer was added. The chloride ion secretion ability was measured using Flexstation 1 (Ex: 355 nm / Em: 460 nm fluorescence wavelength). That is, in order to measure a basal value, nothing is added for 34 seconds immediately after the start of the measurement, and a test compound diluted with a chloride ion-free assay buffer and zinc (final concentration: 10 μM) are added at 100 μl / well at 34 seconds. And then for 86 seconds (total of 120 seconds). The chloride ion secretion ability was calculated by dividing the average of the RFU values for 10 seconds from 110 seconds to 120 seconds from the start of measurement by the average value from 0 seconds to 34 seconds (basal value). The chloride ion secretion activity (EC 50 value) of the test compound was calculated from the chloride ion secretion ability at each concentration of the serially diluted test compound at each concentration. The concentration was calculated as the concentration of the test compound giving a% secretory ability.
 実施例1の化合物のクロライドイオン分泌活性(EC50値)は、10.0 nMであった。 The chloride ion secretion activity (EC 50 value) of the compound of Example 1 was 10.0 nM.
[試験例2] 被験化合物によるクロライド分泌に対するGPR39ノックダウンの効果
 試験例1で観察された被験化合物によるクロライド分泌がGPR39を介した反応であることを遺伝子ノックダウンにより確認した。すなわち、Pneumacult-EX (STEMCELL Technologies社)中で培養したCuFi-1細胞を96 well plateに3×104 cells/100 μl/wellで播種、Lipofectamine RNAiMAX(Thermo Fisher Scientific社)を用いてヒトGPR39 siRNA(MISSION siRNA SASI_Hs02_00332000, SASI_Hs02_00332001、シグマアルドリッチ社)またはcontrol siRNA(Ambion Silencer Select、Thermo Fisher Scientific社)を1 pmol/10 μl/well添加し、2晩培養した。培地で希釈したN-(Ethoxycarbonylmethyl)-6-Methoxyquinolinium Bromide(MQAE)を終濃度5 mMとなるように10 μl/well添加した。MQAE添加後、一晩培養し受動的にローディングさせた。以下、試験例1と同様に洗浄、クロライドイオン分泌能の測定を行った。また、同様の操作を行ったwellから抽出したRNAを用いてGPR39の遺伝子発現を解析した。すなわち、RNAiso Plus(タカラバイオ社)を用いて細胞からtotal RNAを抽出し、RNeasy Micro Kit(Qiagen社)を用いて精製した後、High Capacity cDNA Reverse Transcription Kit(Thermo Fisher Scientific社)を用いてcDNA合成を行い、TaqMan Gene Expression Assays(ヒトGPR39:Hs00230762_m1、ヒトGAPDH:Hs02758991_g1、Thermo Fisher Scientific社)およびTHUNDERBIRD Probe qPCR Mix(東洋紡社)を用いて定量PCRを行った。検量線法により、GAPDHで補正したGPR39の相対発現量を算出した。その結果を図1及び図2に示した。
[Test Example 2] Effect of GPR39 knockdown on chloride secretion by test compound It was confirmed by gene knockdown that chloride secretion by the test compound observed in Test Example 1 was a GPR39-mediated reaction. That is, CuFi-1 cells cultured in Pneumacult-EX (STEMCELL Technologies) were seeded on a 96-well plate at 3 × 10 4 cells / 100 μl / well, and Lipofectamine RNAiMAX (ThermoFisherFisherFisherFisherFisherFisherFisherFisherFisherFisher.com) using Lipofectamine RNAiMAX (MISSION siRNA SASI_Hs02_00332000, SASI_Hs02_00332001, Sigma-Aldrich) or control siRNA (Ambion Silencer Select, Thermo Fisher Scientific) was added at 1 pmol / 10 μl / w, followed by 1 pmol / 10 l culture. N- (Ethoxycarbonylmethyl) -6-methoxyquinolinium bromide (MQAE) diluted with the medium was added at 10 μl / well to a final concentration of 5 mM. After adding MQAE, the cells were cultured overnight and passively loaded. Thereafter, washing and measurement of chloride ion secretion ability were performed in the same manner as in Test Example 1. GPR39 gene expression was analyzed using RNA extracted from the well in which the same operation was performed. That is, total RNA is extracted from the cells using RNAiso Plus (Takara Bio Inc.), purified using RNeasy Micro Kit (Qiagen), and then purified using High Capacity cDNA Reverse Transcription Kit (Thermo Fisher cDNA Inc.). The synthesis was performed, and TaqMan Gene Expression Assays (human GPR39: Hs00230762_m1, human GAPDH: Hs02758891_g1, Thermo Fisher Scientific) and THUNDERBIRD Probe were used for quantitative PCR (Tokyo, Inc.). The relative expression level of GPR39 corrected by GAPDH was calculated by the standard curve method. The results are shown in FIGS.
 siRNA処置により、GPR39がノックダウンされていることが確認出来た(図1参照。siGPR39-1:17%、siGPR39-2:15% vs control siRNA)。このGPR39がノックダウンされている条件において、被験化合物(実施例2の化合物)によるCuFi-1細胞におけるクロライドイオン分泌が、コントロールsiRNA処置群に比べて顕著に抑制された(図2参照。siGPR39-1:17%、siGPR39-2:37% vs control siRNA)。UTPによるクロライドイオン分泌はGPR39ノックダウンの影響を受けなかった(図2参照。siGPR39-1:111%、siGPR39-2:89% vs control siRNA)。したがって、CuFi-1細胞における被験化合物によるクロライド分泌はGPR39を介して惹起されていることが示された。 It was confirmed that GPR39 was knocked down by siRNA treatment (see FIG. 1. siGPR39-1: 17%, siGPR39-2: 15% vs control siRNA). Under the conditions where GPR39 was knocked down, chloride ion secretion in CuFi-1 cells by the test compound (the compound of Example 2) was significantly suppressed as compared with the control siRNA-treated group (see FIG. 2. siGPR39-). 1: 17%, siGPR39-2: 37% {vs \ control \ siRNA). Chloride ion secretion by UTP was not affected by GPR39 knockdown (see FIG. 2. siGPR39-1: 111%, siGPR39-2: 89% {vs @ control} siRNA). Therefore, it was shown that chloride secretion by the test compound in CuFi-1 cells was induced through GPR39.
 [試験例3] 水分移動を指標としたALIアッセイにおける被験化合物の効果
 ΔF508 homozygous(classII変異)、2184ΔA+W1282X (classI変異)およびN1303K heterozygous(classII変異)を有する嚢胞性線維症患者由来プライマリ気管支上皮細胞をAir-Liquid Interface(ALI)培養した細胞(MucilAir-CFTM)をEpithelix社から購入した。入手後、抵抗値、ムチン産生、線毛運動を確認した後、上層にHBSS(+) を200 μl添加し、ムチンを洗浄した。上層に培地を100 μl/wellの容量で、下層に被験化合物および亜鉛(終濃度10 μM)を溶解させた培地を500 μl/wellの容量で添加した。被験化合物を添加した72時間後の上層培地重量を電子天秤で測定し、被験化合物の水移動作用を確認した。対照薬として、VX-809(lumacaftor)単剤(Selleck Chemicals社)及びVX-809(lumacaftor)/VX-770(ivacaftor)の合剤(Selleck Chemicals社)の効果も合わせて検討した。被験化合物として実施例1の化合物を用いた上記3種類の細胞についてのそれぞれの結果を図3、4及び5に示す。
[Test Example 3] Effect of test compound in ALI assay using water transfer as an index ΔF508 homozygous (class II mutation), 2184ΔA + W1282X (class I mutation) and N1303K heterozygous primary bronchial epithelial cells having heterozygous (class II mutation). Air-Liquid Interface (ALI) cultured cells (MucilAir-CF ) were purchased from Epithelix. After obtaining, after confirming the resistance value, mucin production, and ciliary movement, 200 μl of HBSS (+) was added to the upper layer, and the mucin was washed. A medium in which a test compound and zinc (final concentration: 10 μM) were dissolved was added to the upper layer at a volume of 100 μl / well, and a medium in which a test compound and zinc (final concentration: 10 μM) were dissolved was added to the lower layer at a volume of 500 μl / well. The weight of the upper layer medium 72 hours after the addition of the test compound was measured with an electronic balance to confirm the water transfer effect of the test compound. As controls, the effects of VX-809 (lumacaftor) alone (Selleck Chemicals) and VX-809 (lumacaftor) / VX-770 (ivacaftor) combination (Selleck Chemicals) were also examined. The results for the above three types of cells using the compound of Example 1 as the test compound are shown in FIGS.
 ΔF508 homozygous変異を用いたALI培養系において、実施例1の化合物は濃度依存的に水分を移動させた。その効果は、VX-809単剤およびVX-809/VX-770の合剤と同程度であった。また、実施例1の化合物は、ΔF508 homozygous変異以外の変異(2184ΔA+W1282X (classI変異))およびN1303K heterozygousにおいても、ΔF508 homozygous変異と同等の活性を示し、変異に依存せず有効である可能性が示された。しかし、VX-809/VX-770の合剤は、2184ΔA+W1282X (classI変異)における効果が弱く、その効果は変異に依存していると考えられた。特に2184ΔA+W1282X (classI変異)における実施例1の化合物の効果は、VX-809/VX-770の合剤に比べて有意であった。 In the ALI culture system using the ΔF508 homozygous mutation, the compound of Example 1 moved water in a concentration-dependent manner. The effect was similar to that of VX-809 alone or the combination of VX-809 / VX-770. In addition, the compound of Example 1 also exhibited an activity equivalent to that of the ΔF508zhomozygus mutation in mutations other than the ΔF508 homozygus mutation (2184ΔA + W1282X (class I mutation)) and N1303K heterozygos, and could be effective without depending on the mutation. Was done. However, the combination of VX-809 / VX-770 had a weak effect on 2184ΔA + W1282X (class I mutation), and it was considered that the effect was dependent on the mutation. In particular, the effect of the compound of Example 1 on 2184ΔA + W1282X (class I mutation) was significant as compared with the combination of VX-809 / VX-770.
 [試験例4] 水分移動を指標としたALIアッセイにおける被験化合物のVX-809/VX-770の合剤との併用効果
ΔF508 homozygous変異を用いたALI培養系において、実施例1の化合物とVX-809(lumacaftor)/VX-770(ivacaftor)の合剤との併用効果を検討した。併用効果は試験例3と同様の方法で検討した。すなわち、ΔF508 homozygous変異を有する嚢胞性線維症患者由来プライマリ気管支上皮細胞をALI培養した細胞(MucilAir-CFTM)をEpithelix社から購入した。入手後、抵抗値、ムチン産生、線毛運動を確認した後、上層にHBSS(+) を200 μl添加し、ムチンを洗浄した。上層に培地を100 μl/wellの容量で、下層にVX-809/VX-770の合剤、被験化合物および亜鉛(終濃度10 μM)を溶解させた培地を500 μl/wellの容量で添加した。VX-809/VX-770の合剤のみを添加、あるいはVX-809/VX-770の合剤と被験化合物を添加した72時間後の上層培地重量を電子天秤で測定し、被験化合物の水移動作用を確認した。被験化合物として実施例1の化合物を用いた結果を図6に示す。
[Test Example 4] Effect of Combination of Test Compound with VX-809 / VX-770 Combination in ALI Assay Using Water Movement as Index ΔF508 homozygous Mutant ALI culture system using the compound of Example 1 and VX- The effect of the combination of 809 (lumacaftor) / VX-770 (ivacaftor) with the combination was examined. The combined effect was examined in the same manner as in Test Example 3. That is, cells obtained by ALI-cultured primary bronchial epithelial cells derived from a cystic fibrosis patient having a ΔF508 homozygous mutation (MucilAir-CF ) were purchased from Epithelix. After obtaining, after confirming the resistance value, mucin production, and ciliary movement, 200 μl of HBSS (+) was added to the upper layer, and the mucin was washed. The medium was added to the upper layer at a volume of 100 μl / well, and the medium containing a mixture of VX-809 / VX-770, a test compound and zinc (final concentration: 10 μM) was added to the lower layer at a volume of 500 μl / well. . 72 hours after the addition of the VX-809 / VX-770 mixture alone or the addition of the VX-809 / VX-770 mixture and the test compound, the weight of the upper medium was measured with an electronic balance, and the water transfer of the test compound was measured. The effect was confirmed. FIG. 6 shows the results of using the compound of Example 1 as a test compound.
 ΔF508 homozygous変異を用いたALI培養系において、VX-809/VX-770の合剤は試験例3の結果と同様に、水分を有意に移動させた。VX-809/VX-770の合剤に実施例1の化合物を添加した結果、実施例1の化合物はVX-809/VX-770の合剤の水分移動量に対して、濃度依存的、かつ、相加的に水分を移動させた。したがって、被験化合物のVX-809/VX-770の合剤との併用効果が確認された。 In the ALI culture system using the ΔF508 homozygous mutation, the mixture of VX-809 / VX-770 significantly moved water, similarly to the result of Test Example 3. As a result of adding the compound of Example 1 to the mixture of VX-809 / VX-770, the compound of Example 1 was concentration-dependent on the water transfer amount of the mixture of VX-809 / VX-770, and Moisture was added additively. Therefore, the combined effect of the test compound with the combination of VX-809 / VX-770 was confirmed.
 本試験では代表例としてVX-809/VX-770の合剤との併用効果を検討したが、試験例3で示したように、ALI培養系において、実施例1の化合物は変異に依存せず有効である可能性が示されたことから、VX-809/VX-770の合剤に限らず、GPR39アゴニストと異なる作用機序を有する薬剤、例えば、VX-809/VX-770の合剤以外のCFTRの機能改善薬やENaC阻害薬との組み合わせでも併用効果が期待出来ると考えられる。 In this test, the combined effect of VX-809 / VX-770 with the combination drug was examined as a representative example. As shown in Test Example 3, the compound of Example 1 was not dependent on mutation in the ALI culture system. Because of the possibility of being effective, it is not limited to the combination of VX-809 / VX-770, but a drug having an action mechanism different from that of a GPR39 agonist, for example, other than the combination of VX-809 / VX-770 It is thought that a combination effect can be expected even in combination with a CFTR function improving drug or an ENaC inhibitor.
 本発明の式(I)で表される化合物又はその薬学上許容される塩は、GPR39アゴニスト作用を介して強力なクロライドイオン分泌作用を有し、水分を移動させる。そして、この化合物は、病気の原因となるCFTRとは異なるクロライドチャネルを開口させることが出来るため、CFTRの機能改善薬またはENaC阻害薬と組み合わせることによって、優れた治療効果を発揮する。従って、本発明の化合物又はその薬学上許容される塩とCFTRの機能改善薬またはENaC阻害薬との組み合わせによる医薬/治療方法は、CFTRの変異の種類によらずclassIからVIのいずれの嚢胞性線維症においても治療効果を発揮することができるため有用である。
 
The compound represented by the formula (I) of the present invention or a pharmaceutically acceptable salt thereof has a strong chloride ion secretion action through GPR39 agonist action and transfers water. Since this compound can open a chloride channel different from CFTR which causes disease, it exhibits an excellent therapeutic effect when combined with a CFTR function improving agent or an ENaC inhibitor. Therefore, the medicament / therapeutic method using the compound of the present invention or a pharmaceutically acceptable salt thereof in combination with a CFTR function improving agent or an ENaC inhibitor can be carried out by any of class I to VI irrespective of the type of CFTR mutation. It is useful because it can also exert a therapeutic effect on fibrosis.

Claims (36)

  1. (a)式(I):
    Figure JPOXMLDOC01-appb-C000001

    で表される化合物またはその薬学上許容される塩と(b)CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤が、組み合わせて投与されることを特徴とする医薬。
    (A) Formula (I):
    Figure JPOXMLDOC01-appb-C000001

    Or a pharmaceutically acceptable salt thereof and (b) at least one drug independently selected from the group consisting of CFTR function improving agents and ENaC inhibitors. Medicine.
  2. 嚢胞性線維症の治療のための請求項1に記載の医薬。 The medicament according to claim 1, for treating cystic fibrosis.
  3. (a)式(I)で表される化合物またはその薬学上許容される塩と(b)CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がそれぞれ異なる製剤の有効成分として含有され、同時に、又は、異なる時間に投与されることを特徴とする請求項1または2に記載の医薬。 Formulations in which (a) the compound represented by the formula (I) or a pharmaceutically acceptable salt thereof and (b) at least one drug independently selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor are different from each other. The medicament according to claim 1, wherein the medicament is contained as an active ingredient and is administered simultaneously or at different times.
  4. (a)式(I)で表される化合物またはその薬学上許容される塩と(b)CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤が単一製剤中に含有されていることを特徴とする請求項1または2に記載の医薬。 A single preparation comprising at least one drug independently selected from the group consisting of (a) the compound represented by the formula (I) or a pharmaceutically acceptable salt thereof, and (b) a CFTR function improving agent and an ENaC inhibitor. The medicament according to claim 1, wherein the medicament is contained therein.
  5. (a)式(I)で表される化合物またはその薬学上許容される塩と(b)CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤を含むキット製剤であることを特徴とする請求項1または2に記載の医薬。 A kit preparation comprising (a) the compound represented by the formula (I) or a pharmaceutically acceptable salt thereof, and (b) at least one drug independently selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor. The medicament according to claim 1 or 2, wherein
  6. CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤による治療を受けている患者を対象とする請求項1から5のいずれか1項に記載の医薬。 The medicament according to any one of claims 1 to 5, wherein the medicament is for a patient who has been treated with at least one drug independently selected from the group consisting of a CFTR function improving drug and an ENaC inhibitor.
  7. CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がCFTRの機能改善薬であって、CFTRの機能改善薬が、CFTR potentiator、CFTR corrector、CFTR amplifier、RNAセラピー及びGeneセラピーからなる群から独立に選ばれる少なくとも1種である、請求項1から6のいずれか1項に記載の医薬。 At least one drug independently selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor is a CFTR function improving agent, wherein the CFTR function improving agent is CFTR @ potentiator, CFTR @ corrector, CFTR @ amplifier, RNA therapy 7. The medicament according to any one of claims 1 to 6, wherein the medicament is at least one kind independently selected from the group consisting of Gene therapy and Gene therapy.
  8. CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がCFTRの機能改善薬であって、CFTRの機能改善薬が、CFTR potentiator及びCFTR correctorからなる群から独立に選ばれる少なくとも1種である、請求項1から6のいずれか1項に記載の医薬。 At least one drug independently selected from the group consisting of a CFTR function improver and an ENaC inhibitor is a CFTR function improver, wherein the CFTR function improver is independently a group consisting of CFTR 薬 potentiator and CFTR collector. The medicament according to any one of claims 1 to 6, which is at least one selected from the group consisting of:
  9. CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がCFTRの機能改善薬であって、CFTRの機能改善薬が、Ivacaftor、QBW251、VX-561,PTI-808、GLPG1837、GLPG2451、GLPG3067、Lumacaftor、Tezacaftor、VX-445、VX-440、VX-152、VX-659、FDL169、GLPG2222、GLPG2851、GLPG2737、PTI-801、PTI-428、Eluforsen及びMRT5005からなる群から独立に選ばれる少なくとも1種である、請求項1から6のいずれか1項に記載の医薬。 At least one drug independently selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor is a CFTR function improving agent, wherein the CFTR function improving agent is Ivacaftor, QBW251, VX-561, or PTI-808. GLPG1837, GLPG2451, GLPG3067, Lumacaftor, Tezacaftor, VX-445, VX-440, VX-152, VX-659, FDL169, GLPG2222, GLPG2851, GLPG2737, PTI-801, PTI-801, PTI-801, PTI-801, PTI-801, MTI The medicament according to any one of claims 1 to 6, which is at least one independently selected.
  10. CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がCFTRの機能改善薬であって、CFTRの機能改善薬が、Ivacaftor、Lumacaftor及びTezacaftorからなる群から独立に選ばれる少なくとも1種である、請求項1から6のいずれか1項に記載の医薬。 At least one drug independently selected from the group consisting of a CFTR function improver and an ENaC inhibitor is a CFTR function improver, wherein the CFTR function improver is independently from the group consisting of Ivacaftor, Lumacaftor and Tezacaftor. The medicament according to any one of claims 1 to 6, which is at least one selected from the group consisting of:
  11. CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がENaC阻害薬であって、ENaC阻害薬が、QBW276、SPX-101及びAZD5634からなる群から選ばれる少なくとも1種である、請求項1から6のいずれか1項に記載の医薬。 At least one drug independently selected from the group consisting of CFTR function improving agents and ENaC inhibitors is an ENaC inhibitor, and the ENaC inhibitor is at least one selected from the group consisting of QBW276, SPX-101 and AZD5634. The medicament according to any one of claims 1 to 6, which is a species.
  12. 薬学上許容される塩が、マグネシウム塩、カルシウム塩、亜鉛塩、ナトリウム塩、tert-ブチルアミン塩またはジイソプロピルアミン塩である請求項1から11のいずれか1項に記載の医薬。 The medicament according to any one of claims 1 to 11, wherein the pharmaceutically acceptable salt is a magnesium salt, a calcium salt, a zinc salt, a sodium salt, a tert-butylamine salt or a diisopropylamine salt.
  13. 式(I)で表される化合物またはその薬学上許容される塩が、ビス[5-(2-クロロベンジル)-4-メトキシ-6-メチルピリミジン-2-カルボン酸]マグネシウム塩である請求項1から11のいずれか1項に記載の医薬。 The compound represented by the formula (I) or a pharmaceutically acceptable salt thereof is bis [5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid] magnesium salt. 12. The medicament according to any one of 1 to 11.
  14. (b)CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤と組み合わせて投与されるための(a)式(I):
    Figure JPOXMLDOC01-appb-C000002

    で表される化合物またはその薬学上許容される塩。
    (B) Formula (I) for administration in combination with at least one drug independently selected from the group consisting of CFTR function improving agents and ENaC inhibitors:
    Figure JPOXMLDOC01-appb-C000002

    Or a pharmaceutically acceptable salt thereof.
  15. 嚢胞性線維症の治療のための請求項14に記載の化合物またはその薬学上許容される塩。 15. The compound according to claim 14, or a pharmaceutically acceptable salt thereof, for the treatment of cystic fibrosis.
  16. CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤による治療を受けている患者を対象とする請求項14または15に記載の化合物またはその薬学上許容される塩。 The compound according to claim 14 or 15, or a pharmaceutically acceptable salt thereof, which is intended for a patient who has been treated with at least one drug independently selected from the group consisting of a CFTR function improving drug and an ENaC inhibitor. .
  17. CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がCFTRの機能改善薬であって、CFTRの機能改善薬が、CFTR potentiator、CFTR corrector、CFTR amplifier、RNAセラピー及びGeneセラピーからなる群から独立に選ばれる少なくとも1種である、請求項14から16のいずれか1項に記載の化合物またはその薬学上許容される塩。 At least one drug independently selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor is a CFTR function improving agent, wherein the CFTR function improving agent is CFTR @ potentiator, CFTR @ corrector, CFTR @ amplifier, RNA therapy 17. The compound or a pharmaceutically acceptable salt thereof according to any one of claims 14 to 16, which is at least one member independently selected from the group consisting of Gene therapy and Gene therapy.
  18. CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がCFTRの機能改善薬であって、CFTRの機能改善薬が、CFTR potentiator及びCFTR correctorからなる群から独立に選ばれる少なくとも1種である、請求項14から16のいずれか1項に記載の化合物またはその薬学上許容される塩。 At least one drug independently selected from the group consisting of a CFTR function improver and an ENaC inhibitor is a CFTR function improver, wherein the CFTR function improver is independently a group consisting of CFTR 薬 potentiator and CFTR collector. The compound according to any one of claims 14 to 16, or a pharmaceutically acceptable salt thereof, which is at least one member selected from the group consisting of:
  19. CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がCFTRの機能改善薬であって、CFTRの機能改善薬が、Ivacaftor、QBW251、VX-561,PTI-808、GLPG1837、GLPG2451、GLPG3067、Lumacaftor、Tezacaftor、VX-445、VX-440、VX-152、VX-659、FDL169、GLPG2222、GLPG2851、GLPG2737、PTI-801、PTI-428、Eluforsen及びMRT5005からなる群から独立に選ばれる少なくとも1種である、請求項14から16のいずれか1項に記載の化合物またはその薬学上許容される塩。 At least one drug independently selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor is a CFTR function improving agent, wherein the CFTR function improving agent is Ivacaftor, QBW251, VX-561, or PTI-808. GLPG1837, GLPG2451, GLPG3067, Lumacaftor, Tezacaftor, VX-445, VX-440, VX-152, VX-659, FDL169, GLPG2222, GLPG2851, GLPG2737, PTI-801, PTI-801, PTI-801, PTI-801, PTI-801, MTI The compound according to any one of claims 14 to 16, or a pharmaceutically acceptable salt thereof, which is at least one independently selected.
  20. CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がCFTRの機能改善薬であって、CFTRの機能改善薬が、Ivacaftor、Lumacaftor及びTezacaftorからなる群から独立に選ばれる少なくとも1種である、請求項14から16のいずれか1項に記載の化合物またはその薬学上許容される塩。 At least one drug independently selected from the group consisting of a CFTR function improver and an ENaC inhibitor is a CFTR function improver, wherein the CFTR function improver is independently from the group consisting of Ivacaftor, Lumacaftor, and Tezacaftor. The compound or a pharmaceutically acceptable salt thereof according to any one of claims 14 to 16, which is at least one member selected from the group consisting of:
  21. CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がENaC阻害薬であって、ENaC阻害薬が、QBW276、SPX-101及びAZD5634からなる群から選ばれる少なくとも1種である、請求項14から16のいずれか1項に記載の化合物またはその薬学上許容される塩。 At least one drug independently selected from the group consisting of CFTR function improving agents and ENaC inhibitors is an ENaC inhibitor, and the ENaC inhibitor is at least one selected from the group consisting of QBW276, SPX-101 and AZD5634. 17. The compound according to any one of claims 14 to 16, or a pharmaceutically acceptable salt thereof, which is a species.
  22. 薬学上許容される塩が、マグネシウム塩、カルシウム塩、亜鉛塩、ナトリウム塩、tert-ブチルアミン塩またはジイソプロピルアミン塩である請求項14から21のいずれか1項に記載の化合物またはその薬学上許容される塩。 The compound according to any one of claims 14 to 21, or a pharmaceutically acceptable salt thereof, wherein the pharmaceutically acceptable salt is a magnesium salt, a calcium salt, a zinc salt, a sodium salt, a tert-butylamine salt or a diisopropylamine salt. Salt.
  23. 式(I)で表される化合物またはその薬学上許容される塩が、ビス[5-(2-クロロベンジル)-4-メトキシ-6-メチルピリミジン-2-カルボン酸]マグネシウム塩である請求項14から21のいずれか1項に記載の化合物またはその薬学上許容される塩。 The compound represented by the formula (I) or a pharmaceutically acceptable salt thereof is bis [5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid] magnesium salt. 22. The compound according to any one of 14 to 21 or a pharmaceutically acceptable salt thereof.
  24. (a)式(I):
    Figure JPOXMLDOC01-appb-C000003

    で表される化合物またはその薬学上許容される塩と(b)CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤が組み合わせて投与されることを特徴とする疾患の治療方法。
    (A) Formula (I):
    Figure JPOXMLDOC01-appb-C000003

    Or a pharmaceutically acceptable salt thereof and (b) at least one drug independently selected from the group consisting of CFTR function improving agents and ENaC inhibitors. How to treat the disease.
  25. 疾患が嚢胞性線維症である請求項24に記載の治療方法。 The method according to claim 24, wherein the disease is cystic fibrosis.
  26. (a)式(I)で表される化合物またはその薬学上許容される塩と(b)CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がそれぞれ異なる製剤の有効成分として含有され、同時に、又は、異なる時間に投与されることを特徴とする請求項24または25に記載の治療方法。 Formulations in which (a) the compound represented by the formula (I) or a pharmaceutically acceptable salt thereof and (b) at least one drug independently selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor are different from each other. The method according to claim 24 or 25, wherein the therapeutic agent is contained as an active ingredient and is administered simultaneously or at different times.
  27. (a)式(I)で表される化合物またはその薬学上許容される塩と(b)CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤が単一製剤中に含有されていることを特徴とする請求項24または25に記載の治療方法。 A single preparation comprising at least one drug independently selected from the group consisting of (a) the compound represented by the formula (I) or a pharmaceutically acceptable salt thereof, and (b) a CFTR function improving agent and an ENaC inhibitor. The treatment method according to claim 24 or 25, wherein the method is contained therein.
  28. (a)式(I)で表される化合物またはその薬学上許容される塩と(b)CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がそれらを含むキット製剤であることを特徴とする請求項24または25に記載の治療方法。 At least one drug independently selected from the group consisting of (a) the compound represented by the formula (I) or a pharmaceutically acceptable salt thereof, and (b) a CFTR function improving agent and an ENaC inhibitor includes them. The therapeutic method according to claim 24 or 25, which is a kit preparation.
  29. CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤による治療を受けている患者を対象とする請求項24から28のいずれか1項に記載の治療方法。 29. The treatment method according to any one of claims 24 to 28, wherein the method is for a patient who has been treated with at least one drug independently selected from the group consisting of a CFTR function improving drug and an ENaC inhibitor.
  30. CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がCFTRの機能改善薬であって、CFTRの機能改善薬が、CFTR potentiator、CFTR corrector、CFTR amplifier、RNAセラピー及びGeneセラピーからなる群から独立に選ばれる少なくとも1種である、請求項24から29のいずれか1項に記載の治療方法。 At least one drug independently selected from the group consisting of a CFTR function improving agent and an ENaC inhibitor is a CFTR function improving agent, wherein the CFTR function improving agent is CFTR @ potentiator, CFTR @ corrector, CFTR @ amplifier, RNA therapy 30. The treatment method according to any one of claims 24 to 29, wherein the treatment method is at least one kind independently selected from the group consisting of Gene therapy and Gene therapy.
  31. CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がCFTRの機能改善薬であって、CFTRの機能改善薬が、CFTR potentiator及びCFTR correctorからなる群から独立に選ばれる少なくとも1種である、請求項24から29のいずれか1項に記載の治療方法。 At least one drug independently selected from the group consisting of a CFTR function improver and an ENaC inhibitor is a CFTR function improver, wherein the CFTR function improver is independently a group consisting of CFTR @ potentiator and CFTR @ corrector. 30. The method according to any one of claims 24 to 29, wherein the method is at least one selected from the group consisting of:
  32. CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がCFTRの機能改善薬であって、CFTRの機能改善薬が、Ivacaftor、QBW251、VX-561,PTI-808、GLPG1837、GLPG2451、GLPG3067、Lumacaftor、Tezacaftor、VX-445、VX-440、VX-152、VX-659、FDL169、GLPG2222、GLPG2851、GLPG2737、PTI-801、PTI-428、Eluforsen及びMRT5005からなる群から独立に選ばれる少なくとも1種である、請求項24から29のいずれか1項に記載の治療方法。 At least one drug independently selected from the group consisting of CFTR function improving agents and ENaC inhibitors is a CFTR function improving agent, wherein the CFTR function improving agent is Ivacaftor, QBW251, VX-561, PTI-808. GLPG1837, GLPG2451, GLPG3067, Lumacaftor, Tezacaftor, VX-445, VX-440, VX-152, VX-659, FDL169, GLPG2222, GLPG2851, GLPG2737, PTI-801, PTI-801, PTI-801, PTI-801, PTI-801, MTI 30. The method according to any one of claims 24 to 29, wherein the method is at least one independently selected.
  33. CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がCFTRの機能改善薬であって、CFTRの機能改善薬が、Ivacaftor、Lumacaftor及びTezacaftorからなる群から独立に選ばれる少なくとも1種である、請求項24から29のいずれか1項に記載の治療方法。 At least one drug independently selected from the group consisting of a CFTR function improver and an ENaC inhibitor is a CFTR function improver, wherein the CFTR function improver is independently from the group consisting of Ivacaftor, Lumacaftor, and Tezacaftor. 30. The method according to any one of claims 24 to 29, wherein the method is at least one selected from the group consisting of:
  34. CFTRの機能改善薬及びENaC阻害薬からなる群から独立に選ばれる少なくとも1種の薬剤がENaC阻害薬であって、ENaC阻害薬が、QBW276、SPX-101及びAZD5634からなる群から選ばれる少なくとも1種である、請求項24から29のいずれか1項に記載の治療方法。 At least one drug independently selected from the group consisting of CFTR function improving agents and ENaC inhibitors is an ENaC inhibitor, wherein the ENaC inhibitor is at least one selected from the group consisting of QBW276, SPX-101 and AZD5634. 30. The method of any one of claims 24 to 29, wherein the method is a species.
  35. 薬学上許容される塩が、マグネシウム塩、カルシウム塩、亜鉛塩、ナトリウム塩、tert-ブチルアミン塩またはジイソプロピルアミン塩である請求項24から34のいずれか1項に記載の治療方法。 35. The method according to claim 24, wherein the pharmaceutically acceptable salt is a magnesium salt, a calcium salt, a zinc salt, a sodium salt, a tert-butylamine salt or a diisopropylamine salt.
  36. 式(I)で表される化合物またはその薬学上許容される塩が、ビス[5-(2-クロロベンジル)-4-メトキシ-6-メチルピリミジン-2-カルボン酸]マグネシウム塩である請求項24から34のいずれか1項に記載の治療方法。 The compound represented by the formula (I) or a pharmaceutically acceptable salt thereof is bis [5- (2-chlorobenzyl) -4-methoxy-6-methylpyrimidine-2-carboxylic acid] magnesium salt. 35. The treatment method according to any one of 24 to 34.
PCT/JP2019/024614 2018-06-22 2019-06-21 Therapeutic agent for cystic fibrosis WO2019245010A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-118416 2018-06-22
JP2018118416 2018-06-22

Publications (1)

Publication Number Publication Date
WO2019245010A1 true WO2019245010A1 (en) 2019-12-26

Family

ID=68982997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024614 WO2019245010A1 (en) 2018-06-22 2019-06-21 Therapeutic agent for cystic fibrosis

Country Status (1)

Country Link
WO (1) WO2019245010A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018124000A1 (en) * 2016-12-27 2018-07-05 第一三共株式会社 Pyrimidine derivative

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018124000A1 (en) * 2016-12-27 2018-07-05 第一三共株式会社 Pyrimidine derivative

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FJELLSTRÖM, O. ET AL: "Novel Zn2+ Modulated GPR39 Receptor Agonists Do Not Drive Acute Insulin Secretion in Rodents", PLOS ONE, vol. 10, no. 12, 31 December 2015 (2015-12-31), pages 1 - 25, XP055515444 *
HANRAHAN, J. W. ET AL.: "Corrector combination therapies for F508del-CFTR", CURR. OPIN. PHARMACOL., vol. 34, June 2017 (2017-06-01), pages 105 - 111, XP085291009, DOI: 10.1016/j.coph.2017.09.016 *
LENNOX, A. ET AL.: "SPX-101 Is a Promising and Novel Nebulized ENaC Inhibitor", AM. J. RESPIR. CRIT. CARE MED., vol. 196, no. 6, 2017, pages 671 - 672, XP009503563, DOI: 10.1164/rccm.201705-0928ED *
PEUKERT, S. ET AL.: "Discovery of 2-Pyridylpyrimidines as the First Orally Bioavailable GPR39 Agonists", ACS MED. CHEM. LETT., vol. 5, no. 10, August 2014 (2014-08-01), pages 1114 - 1118, XP055515436, DOI: 10.1021/ml500240d *

Similar Documents

Publication Publication Date Title
WO2018124000A1 (en) Pyrimidine derivative
BR112018005048B1 (en) uses of kinase inhibitors useful for the preparation of pharmaceutical compositions usable in the treatment of proliferative diseases
EP2268604B1 (en) Therapies for cancer using isotopically substituted lysine
CA2477422A1 (en) Combination therapies for treating methylthioadenosine phosphorylase deficient cells
KR20150091389A (en) Treatment of cancer with heterocyclic inhibitors of glutaminase
US20210403415A1 (en) Compounds and methods to attenuate tumor progression and metastasis
AU2017367086A1 (en) Compounds containing a sulfonic group as KAT inhibitors
BR112018004863B1 (en) COMPOUNDS USED FOR THE PREVENTION OR THERAPEUTIC APPLICATION OF HYPERURICEMIA OR GOUT
WO2013044596A1 (en) Kidney-type glutaminase inhibitor and preparation method and use thereof
US20240092764A1 (en) Kinase inhibitors
EP3388428B1 (en) Five-membered heterocyclic amides wnt pathway inhibitor
EP3837256B1 (en) Urea compounds and compositions as smarca2/brm-atpase inhibitors
CN111249283A (en) Pyrimidine derivatives having anticancer effect
JP3996658B2 (en) Use of isoxazole and crotonamide derivatives in the treatment of cancer diseases
EP2475367A1 (en) NOVEL INHIBITORS OF STEAROYL-CoA-DESATURASE-1 AND THEIR USES
WO2019245010A1 (en) Therapeutic agent for cystic fibrosis
CN112601734A (en) Oximido naphthoquinone compound and preparation method and application thereof
US20240197678A1 (en) Inhibitors of the peptidyl-prolyl cis/trans isomerase (pin1) and uses thereof
US20210238151A1 (en) Oxazolidinone hydroxamic acid derivatives
EP4378931A1 (en) Triazolone compound and medicinal use thereof
JP2024504632A (en) Compounds, compositions and methods for treating or ameliorating non-alcoholic fatty liver disease and related diseases or disorders
WO2019151439A1 (en) Creation of peptide-based anti-tumor agent
NZ755660A (en) Pyrimidine derivative
CN117843657A (en) BRD4/NAMPT double-targeting inhibitor and application thereof as anti-liver cancer drug
ZA200406934B (en) Combination therapies for treating methylthioadenosine phosphorylase deficient cells.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19821862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19821862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP