WO2019244866A1 - Lens system and imaging device - Google Patents

Lens system and imaging device Download PDF

Info

Publication number
WO2019244866A1
WO2019244866A1 PCT/JP2019/024030 JP2019024030W WO2019244866A1 WO 2019244866 A1 WO2019244866 A1 WO 2019244866A1 JP 2019024030 W JP2019024030 W JP 2019024030W WO 2019244866 A1 WO2019244866 A1 WO 2019244866A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
cemented
object side
refractive power
Prior art date
Application number
PCT/JP2019/024030
Other languages
French (fr)
Japanese (ja)
Inventor
悠哉 宮下
Original Assignee
株式会社nittoh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社nittoh filed Critical 株式会社nittoh
Publication of WO2019244866A1 publication Critical patent/WO2019244866A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to a lens system and an imaging device having the same.
  • Japanese Patent Application Laid-Open No. 2012-53260 discloses a bright macro lens with little aberration variation from an infinity object in-focus state to a close-distance object in-focus state in which the magnification is the same as that of an object at positive magnification.
  • a macro lens is disclosed in which during focusing, the first unit and the fourth unit do not move, the second unit moves to the image side, and the third unit moves to the object side together with the stop.
  • One embodiment of the present invention is a lens system for imaging, which includes a first lens unit having a negative refractive power, a second lens unit having a positive refractive power, and a positive lens unit arranged in order from the object side. And a fourth lens group having a positive refractive power, and a first lens group along the optical axis and a second lens group along the optical axis when focusing from infinity to the nearest. The distance between the second lens group and the third lens group is reduced, and the distance between the second lens group and the third lens group is reduced. The fourth lens group is located on the object side of the fourth lens group together with the stop. Fixed lens system.
  • the distance between the first lens group in the negative group and the second lens group in the positive group is increased, so that the front side (object side) is focused.
  • the position can be moved to a short distance.
  • the distance between the first lens group and the second lens group is reduced.
  • the combined power of the second lens unit and the fourth lens unit becomes stronger than the combined power of the above, and the principal point position is shifted to the image plane side.
  • the focal length of the entire system of the lens system fluctuates to the short focal length side, and the ray height of the axial ray among the rays incident on the second lens group of the positive lens group increases.
  • the third lens group of the positive group toward the object side so as to approach the second lens group, it is possible to correct the fluctuation of the focal length of the entire system due to the movement of the second lens group.
  • the positive power of the entire lens system is moved to the front side and the principal point position is returned to the original position, the light beam having a higher ray height is bent so as to be converged by the third lens group and is incident on the fourth lens group. Can be done.
  • the stop provided on the object side of the fourth lens group is fixed together with the fourth lens group, it is possible to prevent light from being kicked by the stop. Therefore, it is possible to fix the aperture during focusing, and it is possible to suppress a change in the F value due to focusing.
  • the lens group that moves during focusing can be centrally arranged on the object side of the aperture, it is possible to prevent the aperture from being caught in the lens movement mechanism, and with a simple structure, good focus from the nearest point to infinity A lens system with high performance can be provided.
  • the focal length f2 of the second lens group and the focal length f3 of the third lens group may satisfy the following condition. 1.0 ⁇ f2 / f3 ⁇ 1.5
  • the first lens group is fixed with respect to the image plane
  • the second lens group moves toward the image plane
  • the third lens group moves toward the object side. Is also good.
  • the movement amount FL1 of the second lens group and the movement amount FL2 of the third lens group may satisfy the following conditions. 2.5 ⁇ FL1 / FL2 ⁇ 4.5
  • the second lens group may include a first cemented lens
  • the third lens group may include a second cemented lens.
  • the third lens group may include at least one object-side convex meniscus lens having a positive refractive power and disposed on the object side of the second cemented lens.
  • the first cemented lens may be a meniscus lens convex on the image side
  • the second cemented lens may be a meniscus lens convex on the object side.
  • the fourth lens group may include a third cemented lens arranged on the object side and a fourth cemented lens arranged on the image plane side.
  • the effective diameter B1D of the first cemented lens, the effective diameter B2D of the second cemented lens, the effective diameter B3D of the third cemented lens, and the effective diameter B4D of the fourth cemented lens satisfy the following conditions. Is also good. B1D> B2D B3D ⁇ B4D
  • the difference between the Abbe number B1p of the lens having the positive refractive power of the first cemented lens and the Abbe number B1m of the lens having the negative refractive power, and the Abbe number B2p of the lens having the positive refractive power of the second cemented lens are negative.
  • the difference between the Abbe number B4p of the lens having a positive refractive power and the Abbe number B4m of the lens having a negative refractive power may satisfy the following condition.
  • the focal length f1 of the first lens group and the focal length f2 of the second lens group may satisfy the following condition. 1.0 ⁇
  • the first lens group may include a first lens having a positive refractive power meniscus convex to the object side closest to the object side.
  • the first lens group includes a second lens having a negative refractive power disposed adjacent to the positive meniscus lens.
  • the first lens group has a thickness Ld1 on the optical axis of the first lens, the first lens and the second lens.
  • the distance Ld12 on the optical axis from the lens may satisfy the following condition. 0.35 ⁇ Ld12 / Ld1 ⁇ 0.70
  • Another aspect of the present invention is an imaging apparatus including the above-described lens system and an imaging element arranged on an image plane side of the lens system.
  • FIG. 1 is a diagram illustrating a schematic configuration of a lens system and an imaging device of the present example.
  • FIG. 4 is a diagram showing various aberrations when the focal length is at infinity.
  • FIG. 4 is a diagram illustrating various aberrations when a focal length is standard (intermediate distance).
  • FIG. 4 is a diagram illustrating various aberrations when the focal length is closest.
  • FIG. 9 is a diagram showing lens data of the lens system in FIG. 8.
  • FIG. 4 is a diagram showing various aberrations when the focal length is at infinity.
  • FIG. 4 is a diagram illustrating various aberrations when a focal length is standard (intermediate distance).
  • FIG. 4 is a diagram illustrating various aberrations when the focal length is closest.
  • FIG. 1 shows an example of an imaging device (camera, camera device) provided with an optical system for imaging.
  • FIG. 1A shows an arrangement of each lens having a focus at infinity
  • FIG. 1B shows an arrangement of each lens having a closest focus.
  • the camera 1 includes an optical system (imaging optical system, imaging optical system, lens system) 10 and an imaging device (imaging system) arranged on the image plane side (image side, imaging side, imaging side) 12 of the optical system 10.
  • Device, image plane) 5 The optical system 10 is a lens system 10 for imaging, and is a lens system having four groups and 16 elements.
  • the lens system 10 includes a first lens group G1 having a negative refractive power, which is arranged in order from the object side 11 and has a fixed position with respect to the image plane 5, and an optical axis 15 during focusing.
  • the second lens group G2 and the third lens group G3 having a positive refractive power and moving along the second lens group G3 and the third lens group G3 are fixed in position with respect to the image plane 5, and a stop (aperture stop) St is disposed on the object side 11;
  • a fourth lens group G4 having a positive refractive power, and an image is formed on the image plane 5 by the four lens groups G1 to G4.
  • the high-performance lens system 10 with high aberration correction capability generally has a large number of lenses and a large aperture. For this reason, it is heavy and difficult to handle, and it is not easy to obtain a stable image.
  • a lens system for photographing a high-quality image such as a movie has a large number of lenses, which is close to 10 to 20, and is difficult to handle in a handy manner.
  • the F-number fluctuates due to the movement of the aperture during focusing, it is a task that requires the skill and experience of the photographer to obtain an image with little fluctuation in brightness while focusing.
  • the lens system 10 of the present invention is a lens system in which the aperture St does not move during focusing (focusing), and the fluctuation of the F value is small.
  • the first lens group G1 having the negative refractive power disposed closest to the object side 11 of the lens system 10 includes a meniscus lens L11 having a positive refractive power convex toward the object side 11 and disposed in order from the object side 11.
  • the second lens group G2 having a positive refracting power has a two-element configuration including a biconcave negative lens L21 and a biconvex positive lens L22 from the object side 11, and the entire image is formed by the negative lens L21 and the positive lens L22.
  • a first cemented lens B1 having a positive refractive power and convex on the surface side 12 is formed. That is, the second lens group G2 has a negative-positive power arrangement arranged in order from the object side 11, and these are lens groups that constitute a cemented lens.
  • the third lens group G3 having a positive refractive power as a whole includes a meniscus lens L31 having a positive refractive power convex on the object side 11 and a positive refractive power convex on the object side 11, which are arranged in order from the object side 11. , A meniscus lens L33 having a positive refractive power convex on the object side 11, and a meniscus lens L34 having a negative refractive power concave on the image plane side 12.
  • the positive meniscus lens L33 and the negative meniscus lens L34 constitute a second cemented lens B2 having a negative refractive power that is convex on the object side 11 (concave on the image plane side 12) as a whole.
  • the third lens group G3 has a positive-positive-positive-negative power arrangement arranged in order from the object side 11, and the positive-negative lens on the image plane side 12 (the side facing the stop St). Is a lens group composed of a cemented lens by
  • a fourth lens group G4 having a positive refractive power and disposed closest to the image plane 12 includes a biconcave negative lens L41, a biconvex positive lens L42 and an image plane
  • a meniscus lens L43 having a positive refractive power convex on the side 12 a biconcave negative lens L44, a biconvex positive lens L45, a negative meniscus lens L46 convex on the image plane side 12, and a biconvex positive lens
  • the negative lens L41 and the positive lens L42 constitute a third cemented lens B3 having a negative refractive power that is concave on the object side 11 (convex on the image plane side 12) as a whole.
  • the biconcave negative lens L44 and the biconvex positive lens L45 form a fourth cemented lens B4 having a concave refractive power on the object side 11 (convex on the image plane side 12) and a negative refractive power as a whole.
  • the fourth lens group G4 has a negative-positive-positive-negative-positive-negative-positive power arrangement arranged in order from the object side 11, and the fourth lens group G4 has the object side 11 (the side facing the stop St).
  • This is a lens group in which a cemented lens is constituted by a negative-positive lens, and a cemented lens is constituted by a negative-positive lens sandwiched between lenses having a positive power.
  • a stop St is disposed on the object side 11 of the fourth lens group G4.
  • the stop St is such that the second cemented lens B2 is disposed on the object side 11 without interposing any other lens, and the stop St is on the image side 12
  • the third cemented lens B3 is arranged without interposing another lens.
  • FIG. 2 shows data of each lens constituting the lens system 10 shown in FIG.
  • a surface Si (i is a number, the same applies hereinafter) indicates a surface of each lens arranged in order from the object side 11, and a curvature ri indicates a radius of curvature (mm) of each surface of each lens arranged in order from the object side 11.
  • the distance di indicates the distance (mm) between the lens surfaces
  • the refractive index ni indicates the refractive index (d line) of each lens
  • the Abbe number ⁇ i indicates the Abbe number (d line) of each lens
  • the diameter Di indicates an effective diameter (mm) of each surface of each lens. The same applies to the following embodiments.
  • FIG. 3 shows the combined focal length of the lens system 10 at infinity, standard (object distance 2280 mm), and closest (object distance 630 mm) focusing positions (focus positions) of the lens system 10 shown in FIG. F value (Fno), angle of view (degree), distance d6 between first lens group G1 and second lens group G2, distance d9 between second lens group G2 and third lens group G3, And a distance d16 between the third lens group G3 and the fourth lens group G4 (specifically, a distance to the stop St).
  • the lens system 10 is an imaging lens system, and includes a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, arranged in order from the object side 11, and A lens system suitable for a middle-telephoto lens of a retrofocus type having a total of four groups, including a third lens group G3 having a positive refractive power and a fourth lens group G4 having a positive refractive power. It is.
  • the lens system 10 increases the distance d6 between the first lens group G1 and the second lens group G2 along the optical axis 15 and increases the distance between the second lens group G2 and the third lens group G2.
  • the distance d9 between the third lens group G3 and the fourth lens group G4 decreases (d16 + d17 if the stop St is not included). That is, at the time of focusing, the second lens group G2 and the third lens group G3 move independently along the optical axis 15, and the fourth lens group G4 moves toward the object side of the fourth lens group G4. 11 does not move together with the stop St, and is fixed to the image plane 5.
  • this lens system 10 during focusing from infinity to the closest distance, the first lens group G1 is fixed with respect to the image plane 5, and the second lens group G2 is fixed with respect to the image plane. 12, the third lens group G3 moves to the object side 11. Therefore, during focusing, the first lens group G1 closest to the object side 11 and the fourth lens group G4 closest to the image plane 12 do not move during focusing, and the total length of the lens system 10 is constant.
  • An inner focus type lens system in which a second lens group G2 and a third lens group G3 move.
  • the distance between the first lens group G1 in the negative group and the second lens group G2 in the positive group is increased at the time of focusing from infinity to the closest distance, so that )
  • the focus position of 11 can be moved to a short distance.
  • the distance between the first lens group G1 and the second lens group G2 is increased, and the distance between the second lens group G2 and the fourth lens group G4 is reduced.
  • the combined power of the second lens group G2 and the fourth lens group G4 becomes stronger, and the principal point position shifts to the image plane side 12.
  • the focal length of the entire system of the lens system 10 fluctuates to the short focal length side, and among the rays incident on the second lens group G2 in the positive group, the ray height of the on-axis ray (light from the on-axis marginal ray) (The height up to the axis 15 in the direction orthogonal to the optical axis 15).
  • the third lens group G3 of the positive group toward the object side 11 so as to approach the second lens group G2
  • the positive power of the entire lens system 10 is moved to the front side to return the principal point position to the original position, and the light beam having a higher light height is bent so as to be converged by the third lens group G3. 4 lens group G4.
  • the on-axis ray here is a ray that is emitted from a light spot disposed on the optical axis and passes through the stop St, and the principal ray of the on-axis ray is the on-axis principal ray.
  • a marginal ray of an on-axis ray is a ray that is the most distant from the on-axis principal ray among rays emitted from light spots arranged on the optical axis (the end of the entrance pupil of the optical system).
  • And is defined as a light beam that defines a light beam width that is the width of a light beam of an on-axis light beam.
  • the stop St is fixed together with the fourth lens group G4, it is possible to prevent light from being kicked by the stop St. Therefore, by fixing the aperture St during focusing, fluctuations in the F value can be suppressed. Further, since the lens group that moves during focusing can be concentratedly arranged on the object side 11 of the stop St, it is possible to prevent the stop St from being caught in the lens moving mechanism, and with a simple structure, from the closest point to infinity. It is possible to provide the lens system 10 that can obtain good focus performance. Further, it is possible to provide the lens system 10 in which the fluctuation of the F value due to the focusing is small and the image having the small fluctuation of the brightness can be easily obtained.
  • the entire length of the lens system 10 does not change during focusing, and the lens groups that move during focusing can be limited to the adjacent second lens group G2 and third lens group G3.
  • the mechanism can be simplified. Further, since the moving directions of the second lens group G2 and the third lens group G3 that move during focusing are reversed, the change in the center of gravity of the lens system 10 as a whole is small. Therefore, it is possible to provide the lens system 10 that is easy to handle and can be used in a handy type.
  • the focal length f2 of the second lens group G2 and the focal length f3 of the third lens group G3 may satisfy the following condition (1).
  • the refractive powers of the respective lens groups G2 and G3 are substantially equal.
  • the refractive power of the third lens group G3 becomes too small, so that it is difficult to satisfactorily correct spherical aberration and axial chromatic aberration.
  • the refractive power of the second lens group G2 becomes too small, and it becomes difficult to satisfactorily correct spherical aberration.
  • the movement amount FL1 of the second lens group G2 and the movement amount FL2 of the third lens group G3 may satisfy the following condition (2). 2.5 ⁇ FL1 / FL2 ⁇ 4.5 (2)
  • the second lens group G2 needs to secure a movement amount FL1 for obtaining focusing performance from infinity to the closest distance. That is, the lens system 10 moves the principal point position by a retrofocus configuration by increasing the distance between the first lens group G1 in the negative group and the second lens group G2 in the positive group, thereby changing the focal length. Is shortened and the image forming position on the object side 11 is brought closer to the image plane side (camera side) 12.
  • the third lens group G3 of the positive group disposed on the image plane side 12 of the second lens group G2 is brought closer to the object side 11 so that the lens system 10
  • the positive power in the vicinity of the center is increased to reduce the height of the on-axis light beam spread by the first lens unit G1 in the negative lens unit, and at the same time, the positive power on the rear side of the optical system (image side rather than the stop). The position of the principal point is restored by weakening.
  • condition (2) if the value goes below the lower limit, the movement amount FL2 of the third lens group G3 becomes too large, so that the movement amount FL1 of the second lens group G2 cannot be relatively secured, and the second lens group The group G2 cannot be separated from the first lens group G1, which makes it difficult to sufficiently adjust the imaging position and correct each aberration. For this reason, it becomes difficult to correct spherical aberration, curvature of field, and chromatic aberration of magnification.
  • the value exceeds the upper limit of the condition (2) the moving amount FL1 of the second lens group G2 is too large, so that the moving amount FL2 of the third lens group G3 becomes too small, and the second lens group G3 becomes too small.
  • the correction of the movement of the focal length due to the movement of the group G2 cannot be completely corrected, the field angle greatly changes, and the correction of the curvature of field becomes difficult.
  • the second lens group G2 includes a first cemented lens B1
  • the third lens group G3 includes a second cemented lens B2
  • the fourth lens group G4 includes a third cemented lens.
  • the cemented lens B1 of the second lens group G2 and the second cemented lens B2 of the third lens group G3 move independently during focusing. For this reason, the fluctuation of the axial chromatic aberration and the chromatic aberration of magnification due to focusing can be shared and corrected by the respective cemented lenses B1 and B2.
  • the cemented lens B1 into which a ray having a high ray height of the off-axis ray (the height in a direction orthogonal to the optical axis 15 from the off-axis marginal ray most distant from the optical axis 15 to the optical axis 15) is incident the chromatic aberration of magnification is reduced.
  • the cemented lens B2 having a high correction capability and a low-off-axis light beam incident thereon has a high correction capability for axial chromatic aberration.
  • off-axis light beam refers to the main light beam that is incident on the lens surface closest to the object side 11 among the main light beams that are emitted from a light spot disposed off the optical axis and pass through the stop St. This is a light ray having the largest angle with the axis 15.
  • the principal ray of the off-axis ray is defined as an off-axis principal ray.
  • a marginal ray of an off-axis ray (off-axis marginal ray) is a ray that is the most distant from the off-axis principal ray among the off-axis rays, and is a ray that defines a ray width that is the width of the luminous flux of the off-axis ray. .
  • the off-axis marginal ray has a different distance from the optical axis 15 depending on the position on the light beam cross section orthogonal to the off-axis principal ray. Therefore, of the off-axis marginal rays incident on the lens surface closest to the object side 11, the ray whose distance to the optical axis 15 is the largest (the distance from the optical axis 15) is defined as the lower marginal ray. The light ray with the shortest distance (closest) is defined as an upper marginal light ray.
  • the third lens group G3 includes at least one meniscus lens having a positive refractive power convex on the object side 11 disposed on the object side 11 of the second cemented lens B2.
  • the third lens group G3 includes two positive meniscus lenses L31 and L32 that are convex on the object side 11 on the object side 11 of the cemented lens B2.
  • the positive meniscus lenses L31 and L32 bend the axial marginal ray so as to strongly converge on the axial principal ray side, and act in a direction to reduce the ray height of the axial ray. Therefore, it is possible to reduce the size of the second cemented lens B2 disposed on the image plane side 12 of the positive meniscus lenses L31 and L32, and the aperture St subsequent thereto.
  • the positive meniscus lenses L31 and L32 generate aberrations related to axial rays.
  • the positive meniscus lenses L31 and L32 are arranged with the convex surface facing the object side 11 to suppress the occurrence of spherical aberration and to reduce the curvature of the surface of each lens because it is divided into two pieces. Can be.
  • the generation of aberrations including spherical aberration by the positive meniscus lenses L31 and L32 is suppressed.
  • the off-axis rays the rays incident on the peripheral side of the convex surface of the positive meniscus lenses L31 and L32 on the object side 11 are bent toward the optical axis 15 side, but are bent to the opposite side by the concave surface on the image side 12. .
  • the positive meniscus lenses L31 and L32 that are convex on the object side 11 are arranged to effectively reduce the height of axial rays, and are arranged on the image plane side 12 thereof.
  • the lens diameter of the cemented lens B2 can be reduced.
  • the positive meniscus lenses L31 and L32 converge the beam width (the distance from the upper marginal ray to the lower marginal ray in a cross section orthogonal to the off-axis principal ray) due to the upper marginal ray and the lower marginal ray of the off-axis ray.
  • the number of the positive meniscus lens disposed on the object side 11 of the third lens group G3 may be one, but by dividing the positive meniscus lens into two lenses, the power is distributed to the lenses L31 and L32, and It is possible to weaken the power of the lens and to loosen the radius of curvature, thereby further suppressing the occurrence of each aberration.
  • the first cemented lens B1 may be a meniscus lens convex on the image side 12, and the second cemented lens B2 may be a meniscus lens convex on the object side 11.
  • the stop St By arranging a meniscus lens-type cemented lens B2 convex on the object side 11 (concave on the image plane side 12) on the object side 11 of the stop St, the stop St can be miniaturized.
  • a meniscus-type cemented lens B1 facing the opposite direction on the object side 11 of the cemented lens B2
  • spherical aberration generated by these cemented lenses B1 and B2 can be effectively corrected.
  • cemented lens B1 is a combination of negative and positive from the object side 11
  • cemented lens B2 is a combination of positive and negative from the object side 11
  • the power arrangement is also an object in addition to the surface shape. Spherical aberration can be suppressed more effectively.
  • the fourth lens group G4 includes the third cemented lens B3 arranged on the object side 11 and the fourth cemented lens B4 arranged on the image plane side 12. including. Accordingly, in the lens system 10, the first cemented lens B1 and the second cemented lens B2, and the third cemented lens B3 and the fourth cemented lens B4 are symmetrically arranged with the stop St interposed therebetween. And aberration can be independently shared and corrected in each optical system divided by the stop St. Therefore, the lens system 10 has a high chromatic aberration correction capability as a whole.
  • the effective diameter B1D of the first cemented lens B1, the effective diameter B2D of the second cemented lens B2, the effective diameter B3D of the third cemented lens B3, and the effective diameter B4D of the fourth cemented lens B4 may be satisfied.
  • the effective diameter Di of the surface closest to the object side 11 can be adopted as a typical effective diameter of each cemented lens.
  • the following condition (3a) can be satisfied.
  • the difference between the Abbe number B1p ( ⁇ 8) of the lens L22 having the positive refractive power of the first cemented lens B1 and the Abbe number B1m ( ⁇ 7) of the lens L21 having the negative refractive power, and the difference of the second cemented lens B2 The difference between the Abbe number B2p ( ⁇ 14) of the lens L33 having a positive refractive power and the Abbe number B2m ( ⁇ 15) of the lens L34 having a negative refractive power, and the Abbe number of the lens having a positive refractive power L42 of the third cemented lens B3.
  • the difference between the force and the Abbe number B4m ( ⁇ 23) of the lens L45 may satisfy the following condition (4).
  • This lens system 10 includes a total of four cemented lenses B1 to B4.
  • these four cemented lenses B1 to B4 are arranged in the order of “high-low-low-high” when viewing the ray height of the off-axis ray from the object side 11.
  • the difference between the Abbe numbers of the positive lens and the negative lens forming the four cemented lenses B1 to B4 is arranged in the order of "small-large-large-small". For this reason, as a whole of the lens system 10, the two cemented lenses B1 and B2 and B3 and B4 can be arranged symmetrically with respect to the difference between the ray height and the Abbe number across the stop St. . Therefore, the lens system 10 has a high chromatic aberration correction ability.
  • the third lens group G3 is the cemented lens B2 disposed closest to the image side 12 and the object side 11 of the stop St, and Includes a cemented lens B2 including a concave surface on the object side 11.
  • the fourth lens group G4 is a cemented lens B3 disposed on the image plane side 12 of the stop St, which is closest to the object side 11, and the surface S18 on the object side 11 has a concave surface on the image plane side 12.
  • the cemented lens B2 is a combination of a lens L33 having a positive power and a lens L34 having a negative power from the object side 11
  • the cemented lens B3 is a lens L41 having a negative power and a lens L42 having a positive power from the object side 11. It is a combination of Therefore, the cemented lenses B2 and B3 allow the lenses to be arranged symmetrically with respect to the positive / negative-negative / positive direction with the stop St interposed therebetween, thereby effectively correcting axial aberrations such as spherical aberration, axial chromatic aberration, and coma. it can.
  • the lens L34 having the concave surface S16 on the object side 11 of the stop St is a negative meniscus lens having a negative power convex on the object side 11 and a positive meniscus lens having a positive power on the object side 11 having a positive power.
  • a lens L41 having a concave surface S18 on the image plane side 12 of the stop St is a biconcave negative lens, and forms a cemented lens B3 with a biconvex positive lens L42.
  • the radius of curvature g3er (r16) of the concave surface S16 on the object side 11 facing the stop St of the cemented lenses B2 and B3 and the radius of curvature g4fr (r18) of the concave surface S18 on the image side 12 are as follows.
  • Condition (5) may be satisfied. 2.5 ⁇
  • the retro-focus type aperture St It is possible to relax the sensitivity of the fourth lens group G4, which has a higher tolerance sensitivity after the above. Therefore, it is possible to provide a lens system in which aberration is satisfactorily corrected, performance is stable, and handling is easy.
  • the angle of incidence of off-axis rays on the surface S18 on the image plane side 12 of the stop St can be reduced. For this reason, an effect that the occurrence of underframes (inward frames) can be suppressed can be obtained. Therefore, when the value goes below the lower limit of the condition (5), it becomes difficult to correct spherical aberration and curvature of field. When the value exceeds the upper limit of the condition (5), it becomes difficult to correct spherical aberration and axial chromatic aberration.
  • the second cemented lens B2 arranged on the object side 11 of the stop St of the lens system 10 and the third cemented lens B3 arranged on the image plane side 12 of the stop St have a negative refractive power, and
  • the focal length B2f of the cemented lens B2 and the focal length B3f of the third cemented lens B3 may satisfy the following condition (6). 1.7 ⁇ B3f / B2f ⁇ 3.0 (6)
  • the cemented lenses B2 and B3 are disposed symmetrically before and after the stop St to improve the aberration correction performance and improve the object side.
  • the power of the cemented lens B2 of the lens unit 11 By making the power of the cemented lens B2 of the lens unit 11 stronger than that of the cemented lens B3 of the image plane side 12, the light beam is more strongly focused on the object side 11 of the stop St, and the image plane side 12 including the stop St is stopped. Can be made compact.
  • the value exceeds the upper limit of the condition (6) the power of the cemented lens B3 with respect to the cemented lens B2 becomes too weak, so that it is difficult to cancel spherical aberration generated in the cemented lens B2, and the balance with the cemented lens B2 is lost. It becomes difficult to sufficiently correct axial chromatic aberration.
  • the fourth lens group G4 further includes a meniscus lens L43 having a positive refractive power concave on the object side 11 disposed on the image plane side 12 of the cemented lens B3 disposed on the image plane side 12 of the stop St.
  • a concave positive meniscus lens L43 on the object side 11 close to the image side 12 of the fourth lens G4 convex on the image side 12 the beam width of the off-axis ray can be reduced.
  • By adjusting the balance between the width of the upper marginal light beam and the width of the lower marginal light beam it is possible to correct each aberration generated in the off-axis light beam.
  • the curvature radius Lbfr (r21) of the surface S21 may satisfy the following condition (7). 1.35 ⁇
  • the curvature r20 (B3er) of the convex surface S20 on the image surface side 12 of the cemented lens B3 is made larger (loose) than the curvature r21 (Lbfr) of the concave surface S21 on the object side 11 of the positive meniscus lens L43.
  • the emitted off-axis light rays converge in the direction of reducing the light beam width, and the convergent off-axis light rays can be made almost parallel by the concave surface S21.
  • the off-axis ray emitted from the convex surface S20 is refracted as a whole away from the optical axis, but the ray is more strongly bent from the upper marginal ray to the lower marginal ray.
  • off-axis rays converge as a result. That is, when the off-axis light beam that crosses the optical axis 15 enters the concave surface S21, all the light beams enter the curved surface on one side of the optical axis 15 of the concave surface S21.
  • the fourth lens group G4 includes a cemented lens (fourth cemented lens) B4 disposed on the image plane side 12 of the meniscus lens L43 having a positive refractive power.
  • the radius of curvature B4fr (r23) may satisfy the following condition (8). 1.03 ⁇
  • An air lens (air lens portion) is formed between the positive meniscus lens L43 and the fourth cemented lens B4 adjacent to the image plane side 12, and the surface S22 of the meniscus lens L43 on the image plane side 12 and the fourth cemented lens.
  • the distance of the peripheral portion can be made substantially zero.
  • the upper and lower marginal rays of the off-axis rays emitted from the convex surface S22 on the image plane side 12 of the positive meniscus lens L43 are bent so as to converge to the off-axis principal ray side.
  • the lens thickness of the air lens increases from the upper marginal ray to the lower marginal ray.
  • the lower marginal ray converges to the off-axis principal ray side more than the upper marginal ray, and the off-axis principal ray enters substantially perpendicularly and does not bend.
  • the beam width is reduced such that the lower marginal beam mainly converges.
  • the curvature of the concave surface S23 becomes too small (stiff) as compared with the convex surface S22, so that the light rays emitted from the air lens portion are excessively diverged. For this reason, the balance between the off-axis marginal ray and the off-axis chief ray is lost, and it becomes difficult to correct spherical aberration and curvature of field.
  • the curvature of the convex surface S22 approaches the absolute value of the curvature of the concave surface S23.
  • the distance Ld43 (d22) on the optical axis 15 between the object side 11 of the fourth cemented lens B4 disposed on the image side 12 of the force meniscus lens L43 and the concave surface S23 on the object side 11 is as follows. Condition (9) may be satisfied. 7 ⁇ Ld41 / Ld43 ⁇ 23 (9)
  • the surface S20 of the third cemented lens B3 disposed on the image plane side 12 of the stop St, the surface S20 convex to the image plane side 12, and the object side 11 of the meniscus lens L43 having a positive refractive power satisfy the following condition (10). ) May be satisfied.
  • the width between the off-axis chief ray and the off-axis marginal ray is excessively converged while being out of balance, so that spherical aberration and lateral chromatic aberration are excessively corrected.
  • the distance Ld41 (d20) becomes too thin as compared with the thickness Ld42 (d21), so that the off-axis ray enters the positive meniscus lens L43 without being sufficiently converged. For this reason, it becomes difficult to correct spherical aberration and lateral chromatic aberration.
  • the lens system 10 is a retrofocus type in which negative power precedes, and the focal length f1 of the first lens group G1 and the focal length f2 of the second lens group G2 satisfy the following condition (11). May be satisfied.
  • condition (11) when the value exceeds the upper limit, the focal length f2 of the second lens group G2 as the positive group is too large with respect to the focal length f1 of the first lens group G1 as the negative group.
  • the power of the second lens group G2 is insufficient for the lens group G1. For this reason, even if the distance between the second lens group G2 and the first lens group G1 is changed by moving the second lens group G2, the power arrangement when the respective groups are combined within the lens system 10 is sufficiently increased. It cannot be changed, making it difficult to adjust the focus position. Further, since the power of the second lens group G2 of the positive group becomes weaker than that of the first lens group G1 of the negative group, the balance between the negative power and the positive power is lost, and it is difficult to correct axial chromatic aberration. Become.
  • the focal length of the positive second lens unit G2 is too small with respect to the negative first lens unit G1, and the power of the first lens unit G1 is too small.
  • the power of the second lens group G2 is too strong. This is advantageous in that the amount of movement of the second lens group G2 of the positive group during focusing is reduced, but the power of the positive second lens group G2 becomes too strong and the negative first lens group G2 becomes too strong.
  • the positive power balance with respect to G1 is lost, and the axial chromatic aberration is excessively corrected, making correction difficult.
  • the balance between the on-axis principal ray and the on-axis marginal ray emitted from the positive second lens group G2 and the balance between the off-axis principal ray and the off-axis marginal ray of the off-axis ray are lost, and the focus is lost.
  • the fluctuation of aberration before and after becomes large.
  • the first lens group G1 may include the first lens L11 having a positive refractive power and a meniscus convex to the object side 11 closest to the object side 11.
  • the convex lens L11 By arranging the convex lens L11 on the most object side 11 where the ray height becomes large, it becomes possible to effectively correct aberrations such as distortion generated by the negative power configuration arranged on the image plane side 12. .
  • the convex lens L11 as a meniscus lens having a convex surface facing the object side 11 in particular, it is possible to effectively reduce the ray height without increasing the power while suppressing the spherical aberration generated in the convex lens L11. For this reason, it is possible to suppress an increase in the rear lens diameter while suppressing the occurrence of chromatic aberration and the like.
  • the first lens group G1 includes a second lens L12 having a negative refractive power disposed adjacent to the positive meniscus lens L11, and has a thickness Ld1 (d1) on the optical axis of the first lens L11.
  • the distance Ld12 (d2) on the optical axis 15 between the first lens L11 and the second lens L12 may satisfy the following condition (12). 0.35 ⁇ Ld12 / Ld1 ⁇ 0.70 (12)
  • the distance Ld12 (d2) between the lenses becomes too large, so that the off-axis rays and the on-axis rays emitted from the positive meniscus lens L11 converge too much and the ray height becomes too small. I will.
  • the correction capability of the positive meniscus lens L11 for the aberration caused by the negative lens group including the second lens L12 disposed on the image plane side 12 of the positive meniscus lens L11 of the first lens group G1 becomes excessive, Spherical aberration and field curvature are strongly generated.
  • the distance Ld12 (d2) between the lenses becomes too small, so that off-axis rays and on-axis rays emitted from the positive meniscus lens L11 cannot be converged and the ray height is high.
  • a light ray enters the negative meniscus lens L12 on the image plane side 12 of the first lens group G1.
  • the divergence ability of the negative meniscus lens L12 acts strongly, and the ability of the positive meniscus lens L11 to correct aberration generated by the negative lens group of the first lens group G1 is insufficient. Therefore, it is difficult to correct spherical aberration and axial chromatic aberration.
  • the lens system 10 shown in FIG. 1 is a middle-telephoto lens having a focus range from infinity to a closest distance of 630 mm and a focal length at infinity of 95 mm.
  • the lens system 10 has a total of 16 lenses, and has a total length (distance from the lens surface closest to the object side 11 to the lens surface closest to the image plane side) LA of 169.72 mm and a distance to the imaging surface 5 of 219.96 mm.
  • This is a relatively compact lens system, and is an inner focus type lens system in which the second lens group G2 and the third lens group G3 move during focusing.
  • the F-number at each focal length is a constant and small value of 1.68, and the lens system does not move and the F-number does not fluctuate during focusing (focusing).
  • the surface 27 of the fourth lens group G4 on the image plane side 12 of the negative meniscus lens L46 that is convex on the image plane side 12 is aspheric.
  • X is the coordinates in the optical axis direction
  • Y is the coordinates in the direction perpendicular to the optical axis
  • the traveling direction of light is positive
  • R is the paraxial radius of curvature
  • the coefficients K, A, B, and A shown in FIG. It is represented by the following equation (X) using C, D, E and F.
  • En means "10 to the power of n".
  • FIGS. 5 to 7 show various aberrations when the lens system 10 is focused on infinity, a standard distance, and the closest distance.
  • 5 (a), 6 (a) and 7 (a) show spherical aberration, astigmatism and distortion
  • FIGS. 5 (b), 6 (b) and 7 (b) Aberration is shown.
  • the spherical aberrations are wavelength 435.8 nm (two-dot chain line), wavelength 486.1 nm (single-dot chain line), wavelength 546.1 nm (dashed line), wavelength 587.6 nm (solid line), and 656.3 nm (long broken line).
  • Astigmatism indicates a tangential ray T and a sagittal ray S.
  • the transverse aberration is shown for each of the tangential ray and the sagittal ray for the same wavelength as described above.
  • the values of the lens system 10 of the present example and the values of each condition are as follows.
  • Focal length f1: of the first lens group G1 is ⁇ 131.56 mm
  • Focal length f2 of the second lens group G2 135.28 mm
  • Focal length f3 of third lens group G3 113.40 mm
  • Focal length f4 of fourth lens group G4 66.61 mm
  • Moving distance FL2 of third lens group G3 5.51 mm
  • Focal length B2f of the second cemented lens B2 -85.57 mm
  • Focal length B3f of the third cemented lens B3 -168.27 mm
  • the lens system 10 shown in FIG. 1 is a compact lens system having a fixed length, and is a lens system having four groups and sixteen lenses. It is a lens system that is small and easy to handle (manage). Further, in the lens system 10, the FNo is fixed at the time of focusing, so that focusing is easy, and a clear or desired focusing and an image with a small fluctuation in brightness can be obtained. Further, the lens system 10 satisfies the conditions (1) to (12). Further, as shown in FIGS. 5 to 7, it is possible to obtain an image in which various aberrations are satisfactorily corrected in the entire focusing area.
  • the focusing is performed by the second lens group G2 and the third lens group G3 arranged on the object side 11 of the stop St, and is separated from the stop St to adjust the focal length ( Mechanism) can be concentrated in front of the stop St. Therefore, these mechanisms can also be simplified, and a lightweight, high-performance, compact lens system 10 and imaging apparatus 1 can be provided.
  • FIG. 8 shows a different example of the image pickup apparatus 1.
  • This imaging device (camera) 1 is also disposed on an optical system (imaging optical system, imaging optical system, lens system) 10 and on an image plane side (image side, imaging side, imaging side) 12 of the lens system 10.
  • the lens system 10 is an optical system for imaging, and is a lens system having four groups and 15 elements.
  • FIG. 8A shows a lens arrangement where the focus position is at infinity
  • FIG. 8B shows a lens arrangement where the focus position is closest (close distance, 630 mm).
  • This lens system 10 also has a four-group configuration, with the first lens group G1 having the most negative combined refractive power (power) on the object side 11 and the fourth lens group G1 having the most positive combined refractive power (power) on the image plane side 12. Is a fixed lens group that does not move during focusing and does not change the distance to the image plane 5. Also, the stop (aperture stop) St arranged on the object side 11 of the fourth lens group G4 is fixed without changing the distance to the image plane 5.
  • the second lens group G2 having a positive refractive power and disposed on the image plane side 12 of the first lens group G1 monotonously moves to the image plane side 12 when the focus position moves from infinity to the closest.
  • the third lens group G3 having a positive refractive power and disposed on the image plane side 12 of the second lens group G2 monotonously moves to the object side 11 when the focus position moves from infinity to the closest.
  • FIG. 9 shows data of each lens constituting the lens system 10.
  • FIG. 10 shows the focal length, the F value, and the values of the variable intervals d6, d9, and d16 when the focal length is infinity, standard (2280 mm), and closest (630 mm).
  • FIG. 11 shows aspherical coefficients included in the lens system 10.
  • the surface S25 of the image surface side 12 of the negative meniscus lens L46 on the image surface side 12 of the fourth lens group G4 is aspheric.
  • FIGS. 12 to 14 show the spherical aberration, astigmatism, distortion, and lateral aberration of the lens system 10 when the focal length is infinity, standard, and closest.
  • FIGS. 12 (a), 13 (a) and 14 (a) show spherical aberration, astigmatism and distortion, and
  • FIGS. 12 (b), 13 (b) and 14 (b) Aberration is shown.
  • the basic configuration of the lens system 10 is common to the lens system 10 shown in FIG.
  • the first lens group G1 is a lens group of negative power which is fixed to the object side 11 most (does not move at the time of focusing), and is arranged in order from the object side 11 and is a positive lens convex to the object side 11. It has a meniscus lens L11 having a refractive power, a meniscus lens L12 having a negative refractive power convex on the object side 11, and a negative lens L13 having a biconcave shape, and has a positive-negative-negative power arrangement.
  • the second lens group G2 having a positive refractive power which moves to the image plane side 12 so as to increase the distance d6 from the first lens G1 along the optical axis 15 during focusing from infinity to the closest, 11, a biconcave negative lens L21 and a biconvex positive lens L22 are provided.
  • the negative lens L21 and the positive lens L22 have a negative-positive power arrangement.
  • a first cemented lens B1 having a positive refractive power is formed.
  • the lens group G3 includes, in order from the object side 11, a meniscus lens L31 having a positive refractive power convex on the object side 11, a meniscus lens L32 having a positive refractive power convex on the object side 11, and
  • the positive lens has a positive refractive power meniscus lens L33 and a concave negative refractive power meniscus lens L34 on the image side 12, and has a positive-positive-positive-negative power arrangement.
  • the positive meniscus lens L33 and the negative meniscus lens L34 constitute a second cemented lens B2 having a negative refractive power that is convex on the object side 11 (concave on the image plane side 12) as a whole.
  • the fourth lens group G4 having a positive refractive power and disposed closest to the image plane 12 includes a biconcave negative lens L41, a biconvex positive lens L42, and a biconcave , A biconvex positive lens L44, a negative meniscus lens L45 convex on the image side 12, and a biconvex positive lens L46. It has a negative-positive power arrangement.
  • the negative lens L41 and the positive lens L42 constitute a third cemented lens B3 having a negative refractive power that is concave on the object side 11 (convex on the image plane side 12) as a whole.
  • the biconcave negative lens L43 and the biconvex positive lens L44 are generally concave to the object side 11 (convex to the image plane side 12).
  • a fourth cemented lens B4 having a negative refractive power is configured. Therefore, in the lens system 10, a positive meniscus lens having a convex surface on the image plane side 12 disposed between the third cemented lens B3 and the fourth cemented lens B4 is different from the lens system shown in FIG. This is omitted, and the fourth cemented lens B4 is a cemented lens having a positive refractive power as a whole.
  • a stop St is disposed on the object side 11 of the fourth lens group G4.
  • the stop St is such that the second cemented lens B2 is disposed on the object side 11 without interposing another lens, and the stop St is disposed on the image plane side 12.
  • the third cemented lens B3 is arranged without interposing another lens.
  • the lens system 10 of this embodiment is also a medium telephoto lens having a focus range from infinity to the closest distance of 630 mm and a focal length at infinity of 95 mm.
  • the lens system 10 has a total of 15 lenses, and has a total length (distance from the lens surface closest to the object side 11 to the lens surface closest to the image side 12) LA of 129.9 mm and a distance to the imaging surface 5 of 176.68 mm.
  • This is a more compact lens system, and is an inner focus type lens system in which the second lens group G2 and the third lens group G3 move during focusing.
  • the F-number at each focal length is a constant and small value of 1.68, and the lens system does not move and the F-number does not fluctuate during focusing (focusing).
  • the numerical values of the lens system 10 and the values of each condition are as follows.
  • the condition (7) is satisfied.
  • To (10) are not subject to evaluation.
  • the lens system 10 shown in FIG. 8 is a compact lens system having a fixed length, and is a lens system having four groups and 15 elements. It is a lens system that is small and easy to handle (manage). Further, also in the lens system 10, the FNo is fixed at the time of focusing, so that focusing can be easily performed, and a clear or desired focusing and an image with little fluctuation in brightness can be obtained. Further, the lens system 10 satisfied the conditions (1) to (6), (11) and (12), and various aberrations were satisfactorily corrected in the entire focusing region as shown in FIGS. Images can be obtained.
  • focusing is performed by the second lens group G2 and the third lens group G3 arranged on the object side 11 of the stop St, and is separated from the stop St to adjust the focal length ( Mechanism) can be concentrated in front of the stop St. Therefore, these mechanisms can also be simplified, and a lightweight, high-performance, compact lens system 10 and imaging apparatus 1 can be provided.

Abstract

This imaging lens system (10) is configured from a negative refractive power first lens group (G1), a positive refractive power second lens group (G2), a positive refractive power third lens group (G3) and a positive refractive power fourth lens group (G4), arranged in order from the object side (11). When focusing from infinity to very close, the distance (d6) along the optical axis (15) between the first lens group (G1) and the second lens group (G2) increases, the distance (d9) between the second lens group (G2) and the third lens group (G3) decreases, and the fourth lens group (G4) is fixed relative to the image plane (5) as well as to an aperture (St) arranged on the object side (11) of the fourth lens group.

Description

レンズシステムおよび撮像装置Lens system and imaging device
本発明は、レンズシステムおよびそれを有する撮像装置に関するものである。 The present invention relates to a lens system and an imaging device having the same.
 日本国特開2012-53260号公報には、無限遠物体合焦状態から撮影倍率等倍となる近距離物体合焦状態に至るまで収差変動の少ない、明るいマクロレンズとして、物体側より順に、正の第1群と、負の第2群と、正の第3群と、負の第4群とからなり、無限遠物体合焦状態から撮影倍率等倍となる近距離物体合焦状態へのフォーカシング時に、前記第1群及び前記第4群が移動せず、前記第2群が像側へ移動し、前記第3群が絞りとともに物体側へ移動するマクロレンズが開示されている。 Japanese Patent Application Laid-Open No. 2012-53260 discloses a bright macro lens with little aberration variation from an infinity object in-focus state to a close-distance object in-focus state in which the magnification is the same as that of an object at positive magnification. A first lens unit, a negative second lens unit, a positive third lens unit, and a negative fourth lens unit. A macro lens is disclosed in which during focusing, the first unit and the fourth unit do not move, the second unit moves to the image side, and the third unit moves to the object side together with the stop.
 さらに取り扱いが容易であり、収差が良好に補正された画像を取得できるレンズシステムおよびそれを備えた撮像装置が求められている。 レ ン ズ There is a need for a lens system that is easier to handle and that can obtain an image in which aberrations have been well corrected, and an imaging device including the same.
 本発明の一態様は、撮像用のレンズシステムであって、物体側から順番に配置された、負の屈折力の第1のレンズ群と、正の屈折力の第2のレンズ群と、正の屈折力の第3のレンズ群と、正の屈折力の第4のレンズ群とから構成され、無限遠から最至近へフォーカシングの際に、光軸に沿った第1のレンズ群と第2のレンズ群との距離が広がり、第2のレンズ群と第3のレンズ群との距離が縮まり、第4のレンズ群は、第4のレンズ群の物体側に配置された絞りとともに像面に対して固定されたレンズシステムである。 One embodiment of the present invention is a lens system for imaging, which includes a first lens unit having a negative refractive power, a second lens unit having a positive refractive power, and a positive lens unit arranged in order from the object side. And a fourth lens group having a positive refractive power, and a first lens group along the optical axis and a second lens group along the optical axis when focusing from infinity to the nearest. The distance between the second lens group and the third lens group is reduced, and the distance between the second lens group and the third lens group is reduced. The fourth lens group is located on the object side of the fourth lens group together with the stop. Fixed lens system.
 このレンズシステムにおいては、無限遠から最至近へのフォーカスの際に、負群の第1のレンズ群と、正群の第2のレンズ群とが距離を広げることで、前側(物体側)のピント位置を近距離へと移動させることができる。一方、第1のレンズ群と第2のレンズ群との距離が開き、第2のレンズ群と第4のレンズ群との距離が近付くことにより、第1のレンズ群と第2のレンズ群との合成したパワーと比較して、第2のレンズ群と第4のレンズ群との合成したパワーは強くなり、主点位置が像面側にずれる。このためレンズシステムの全系の焦点距離が短焦点側へ変動し、かつ、正群の第2のレンズ群へ入射する光線のうち、軸上光線の光線高が高くなる。しかしながら、正群の第3のレンズ群を第2のレンズ群に接近するように物体側へ移動することにより、第2のレンズ群の移動による全系の焦点距離の変動を補正することができ、レンズシステム全体の正のパワーを前側へ移動して主点位置を元に戻しつつ、光線高が高くなった光線を第3のレンズ群により収束するように折り曲げて第4のレンズ群に入射させることができる。 In this lens system, when focusing from infinity to the closest distance, the distance between the first lens group in the negative group and the second lens group in the positive group is increased, so that the front side (object side) is focused. The position can be moved to a short distance. On the other hand, by increasing the distance between the first lens group and the second lens group and decreasing the distance between the second lens group and the fourth lens group, the distance between the first lens group and the second lens group is reduced. The combined power of the second lens unit and the fourth lens unit becomes stronger than the combined power of the above, and the principal point position is shifted to the image plane side. For this reason, the focal length of the entire system of the lens system fluctuates to the short focal length side, and the ray height of the axial ray among the rays incident on the second lens group of the positive lens group increases. However, by moving the third lens group of the positive group toward the object side so as to approach the second lens group, it is possible to correct the fluctuation of the focal length of the entire system due to the movement of the second lens group. While the positive power of the entire lens system is moved to the front side and the principal point position is returned to the original position, the light beam having a higher ray height is bent so as to be converged by the third lens group and is incident on the fourth lens group. Can be done.
 このため、第4のレンズ群とともに、第4のレンズ群の物体側に備える絞りを固定しても、絞りで光線を蹴られないようすることができる。したがって、フォーカシングの際に絞りを固定することが可能となり、フォーカシングによるF値の変動を抑制できる。さらに、絞りの物体側に、フォーカシングの際に移動するレンズ群を集中配置できるので、レンズの移動機構に絞りが巻き込まれることを防止でき、簡易な構造で、最至近から無限遠まで良好なフォーカス性能が得られるレンズシステムを提供できる。 Therefore, even if the stop provided on the object side of the fourth lens group is fixed together with the fourth lens group, it is possible to prevent light from being kicked by the stop. Therefore, it is possible to fix the aperture during focusing, and it is possible to suppress a change in the F value due to focusing. In addition, since the lens group that moves during focusing can be centrally arranged on the object side of the aperture, it is possible to prevent the aperture from being caught in the lens movement mechanism, and with a simple structure, good focus from the nearest point to infinity A lens system with high performance can be provided.
 第2のレンズ群の焦点距離f2と、第3のレンズ群の焦点距離f3とは以下の条件を満たしてもよい。
1.0 ≦ f2/f3 ≦ 1.5
無限遠から最至近へフォーカシングの際に、第1のレンズ群は、像面に対して固定され、第2のレンズ群は像面側に移動し、第3のレンズ群は物体側に移動してもよい。
The focal length f2 of the second lens group and the focal length f3 of the third lens group may satisfy the following condition.
1.0 ≦ f2 / f3 ≦ 1.5
During focusing from infinity to the nearest, the first lens group is fixed with respect to the image plane, the second lens group moves toward the image plane, and the third lens group moves toward the object side. Is also good.
 第2のレンズ群の移動量FL1と、第3のレンズ群の移動量FL2とは以下の条件を満たしてもよい。
2.5 ≦ FL1/FL2 ≦ 4.5
The movement amount FL1 of the second lens group and the movement amount FL2 of the third lens group may satisfy the following conditions.
2.5 ≦ FL1 / FL2 ≦ 4.5
 第2のレンズ群は、第1の接合レンズを含み、第3のレンズ群は、第2の接合レンズを含んでもよい。第3のレンズ群は、第2の接合レンズの物体側に配置された少なくとも1枚の物体側に凸の正の屈折力のメニスカスレンズを含んでもよい。第1の接合レンズは像面側に凸のメニスカスレンズであり、第2の接合レンズは物体側に凸のメニスカスレンズであってもよい。 The second lens group may include a first cemented lens, and the third lens group may include a second cemented lens. The third lens group may include at least one object-side convex meniscus lens having a positive refractive power and disposed on the object side of the second cemented lens. The first cemented lens may be a meniscus lens convex on the image side, and the second cemented lens may be a meniscus lens convex on the object side.
 さらに、第4のレンズ群は、物体側に配置された第3の接合レンズと、像面側に配置された第4の接合レンズとを含んでもよい。第1の接合レンズの有効径B1Dと、第2の接合レンズの有効径B2Dと、第3の接合レンズの有効径B3Dと、第4の接合レンズの有効径B4Dとが以下の条件を満たしてもよい。
B1D > B2D
B3D < B4D
Furthermore, the fourth lens group may include a third cemented lens arranged on the object side and a fourth cemented lens arranged on the image plane side. The effective diameter B1D of the first cemented lens, the effective diameter B2D of the second cemented lens, the effective diameter B3D of the third cemented lens, and the effective diameter B4D of the fourth cemented lens satisfy the following conditions. Is also good.
B1D> B2D
B3D <B4D
 第1の接合レンズの正の屈折力のレンズのアッベ数B1pと負の屈折力のレンズのアッベ数B1mとの差と、第2の接合レンズの正の屈折力のレンズのアッベ数B2pと負の屈折力のレンズのアッベ数B2mとの差と、第3の接合レンズの正の屈折力のレンズのアッベ数B3pと負の屈折力のレンズのアッベ数B3mとの差と、第4の接合レンズの正の屈折力のレンズのアッベ数B4pと負の屈折力のレンズのアッベ数B4mとの差とが以下の条件を満たしてもよい。
|B1p-B1m| < |B2p-B2m|
|B3p-B3m| > |B4p-B4m|
The difference between the Abbe number B1p of the lens having the positive refractive power of the first cemented lens and the Abbe number B1m of the lens having the negative refractive power, and the Abbe number B2p of the lens having the positive refractive power of the second cemented lens are negative. The difference between the Abbe number B2m of the lens having a positive refractive power, the difference between the Abbe number B3p of the lens having a positive refractive power of the third cemented lens, and the Abbe number B3m of the lens having a negative refractive power, and the fourth joint The difference between the Abbe number B4p of the lens having a positive refractive power and the Abbe number B4m of the lens having a negative refractive power may satisfy the following condition.
| B1p-B1m | <| B2p-B2m |
| B3p-B3m |> | B4p-B4m |
 第1のレンズ群の焦点距離f1と、第2のレンズ群の焦点距離f2とが以下の条件を満してもよい。
1.0 ≦ |f2/f1| ≦ 1.15
The focal length f1 of the first lens group and the focal length f2 of the second lens group may satisfy the following condition.
1.0 ≦ | f2 / f1 | ≦ 1.15
 第1のレンズ群は、最も物体側に、物体側に凸の正の屈折力のメニスカスの第1のレンズを含んでもよい。第1のレンズ群は、正メニスカスレンズに隣接して配置された負の屈折力の第2のレンズを含み、第1のレンズの光軸上の厚みLd1と、第1のレンズと第2のレンズとの光軸上の距離Ld12とは以下の条件を満たしてもよい。
0.35 ≦ Ld12/Ld1 ≦ 0.70
The first lens group may include a first lens having a positive refractive power meniscus convex to the object side closest to the object side. The first lens group includes a second lens having a negative refractive power disposed adjacent to the positive meniscus lens. The first lens group has a thickness Ld1 on the optical axis of the first lens, the first lens and the second lens. The distance Ld12 on the optical axis from the lens may satisfy the following condition.
0.35 ≦ Ld12 / Ld1 ≦ 0.70
 本発明の他の態様の1つは、上記に記載のレンズシステムと、レンズシステムの像面側に配置された撮像素子とを有する撮像装置である。 Another aspect of the present invention is an imaging apparatus including the above-described lens system and an imaging element arranged on an image plane side of the lens system.
本例のレンズシステムおよび撮像装置の概略構成を示す図。FIG. 1 is a diagram illustrating a schematic configuration of a lens system and an imaging device of the present example. レンズデータを示す図。The figure which shows lens data. フォーカシングの際に変動する数値を示す図。The figure which shows the numerical value which fluctuates at the time of focusing. 非球面係数を示す図。The figure which shows an aspherical surface coefficient. 焦点距離が無限遠における諸収差を示す図。FIG. 4 is a diagram showing various aberrations when the focal length is at infinity. 焦点距離が標準(中間距離)における諸収差を示す図。FIG. 4 is a diagram illustrating various aberrations when a focal length is standard (intermediate distance). 焦点距離が最至近における諸収差を示す図。FIG. 4 is a diagram illustrating various aberrations when the focal length is closest. レンズシステムおよび撮像装置の他の例の概略構成を示す図。The figure which shows the schematic structure of another example of a lens system and an imaging device. 図8のレンズシステムのレンズデータを示す図。FIG. 9 is a diagram showing lens data of the lens system in FIG. 8. フォーカシングの際に変動する数値を示す図。The figure which shows the numerical value which fluctuates at the time of focusing. 非球面係数を示す図。The figure which shows an aspherical surface coefficient. 焦点距離が無限遠における諸収差を示す図。FIG. 4 is a diagram showing various aberrations when the focal length is at infinity. 焦点距離が標準(中間距離)における諸収差を示す図。FIG. 4 is a diagram illustrating various aberrations when a focal length is standard (intermediate distance). 焦点距離が最至近における諸収差を示す図。FIG. 4 is a diagram illustrating various aberrations when the focal length is closest.
発明の実施の形態Embodiment of the Invention
 図1に、撮像用の光学系を備えた撮像装置(カメラ、カメラ装置)の一例を示している。図1(a)はフォーカスが無限遠の各レンズの配置を示し、図1(b)はフォーカスが最至近の各レンズの配置を示している。このカメラ1は、光学系(撮像光学系、結像光学系、レンズシステム)10と、光学系10の像面側(画像側、撮像側、結像側)12に配置された撮像素子(撮像デバイス、像面)5とを有する。光学系10は、撮像用のレンズシステム10であって、4群16枚構成のレンズシステムである。具体的にはレンズシステム10は、物体側11から順番に配置された、像面5に対して位置が固定された負の屈折力の第1のレンズ群G1と、フォーカシングの際に光軸15に沿って移動する正の屈折力の第2のレンズ群G2および第3のレンズ群G3と、像面5に対して位置が固定され、物体側11に絞り(開口絞り)Stが配置され、屈折力が正の第4のレンズ群G4とを有し、これら4つのレンズ群G1~G4により像面5に像が結像される。 FIG. 1 shows an example of an imaging device (camera, camera device) provided with an optical system for imaging. FIG. 1A shows an arrangement of each lens having a focus at infinity, and FIG. 1B shows an arrangement of each lens having a closest focus. The camera 1 includes an optical system (imaging optical system, imaging optical system, lens system) 10 and an imaging device (imaging system) arranged on the image plane side (image side, imaging side, imaging side) 12 of the optical system 10. Device, image plane) 5. The optical system 10 is a lens system 10 for imaging, and is a lens system having four groups and 16 elements. Specifically, the lens system 10 includes a first lens group G1 having a negative refractive power, which is arranged in order from the object side 11 and has a fixed position with respect to the image plane 5, and an optical axis 15 during focusing. The second lens group G2 and the third lens group G3 having a positive refractive power and moving along the second lens group G3 and the third lens group G3 are fixed in position with respect to the image plane 5, and a stop (aperture stop) St is disposed on the object side 11; A fourth lens group G4 having a positive refractive power, and an image is formed on the image plane 5 by the four lens groups G1 to G4.
 収差補正能力が高く、高性能のレンズシステム10は一般的にレンズの構成枚数が多く、口径も大きい。このために重く、取り回しが大変で、安定した画像を取得することは容易ではない。特に、映画などの高画質の画像を撮影するためのレンズシステムは、レンズの構成枚数が10~20枚近くと多く、ハンディーでの取り回しは難しい。さらに、フォーカシングの際に絞りが動くことでF値も変動するため、焦点を合わせながら、明るさの変動の少ない画像を取得するためには撮影者の技能と経験とを要する作業となっている。これに対し、本願発明のレンズシステム10は、フォーカシング(合焦)の際に絞りStが移動せず、F値の変動が小さいレンズシステムとなっている。 レ ン ズ The high-performance lens system 10 with high aberration correction capability generally has a large number of lenses and a large aperture. For this reason, it is heavy and difficult to handle, and it is not easy to obtain a stable image. In particular, a lens system for photographing a high-quality image such as a movie has a large number of lenses, which is close to 10 to 20, and is difficult to handle in a handy manner. Further, since the F-number fluctuates due to the movement of the aperture during focusing, it is a task that requires the skill and experience of the photographer to obtain an image with little fluctuation in brightness while focusing. . On the other hand, the lens system 10 of the present invention is a lens system in which the aperture St does not move during focusing (focusing), and the fluctuation of the F value is small.
 レンズシステム10の、最も物体側11に配置された負の屈折力の第1のレンズ群G1は、物体側11から順に配置された、物体側11に凸の正の屈折力のメニスカスレンズL11と、物体側11に凸の負の屈折力のメニスカスレンズL12と、両凹の負レンズL13の3枚構成である。すなわち、第1のレンズ群G1は、物体側11から順に配置された、正-負-負のパワー配置を備えたレンズ群である。正の屈折力の第2のレンズ群G2は、物体側11から両凹の負レンズL21と両凸の正レンズL22との2枚構成であり、負レンズL21および正レンズL22により、全体として像面側12に凸の正の屈折力の第1の接合レンズB1が構成されている。すなわち、第2のレンズ群G2は、物体側11から順に配置された、負-正のパワー配置を備え、これらが接合レンズを構成したレンズ群である。 The first lens group G1 having the negative refractive power disposed closest to the object side 11 of the lens system 10 includes a meniscus lens L11 having a positive refractive power convex toward the object side 11 and disposed in order from the object side 11. , A meniscus lens L12 having a negative refractive power convex on the object side 11 and a biconcave negative lens L13. That is, the first lens group G1 is a lens group having a positive-negative-negative power arrangement arranged in order from the object side 11. The second lens group G2 having a positive refracting power has a two-element configuration including a biconcave negative lens L21 and a biconvex positive lens L22 from the object side 11, and the entire image is formed by the negative lens L21 and the positive lens L22. A first cemented lens B1 having a positive refractive power and convex on the surface side 12 is formed. That is, the second lens group G2 has a negative-positive power arrangement arranged in order from the object side 11, and these are lens groups that constitute a cemented lens.
 全体として正の屈折力の第3のレンズ群G3は、物体側11から順に配置された、物体側11に凸の正の屈折力のメニスカスレンズL31と、物体側11に凸の正の屈折力のメニスカスレンズL32と、物体側11に凸の正の屈折力のメニスカスレンズL33と、像面側12に凹の負の屈折力のメニスカスレンズL34との4枚構成である。正のメニスカスレンズL33および負のメニスカスレンズL34により、全体として物体側11に凸(像面側12に凹)の負の屈折力の第2の接合レンズB2が構成されている。すなわち、第3のレンズ群G3は、物体側11から順に配置された、正-正-正-負のパワー配置を備え、像面側12(絞りStに面した側)の正-負のレンズにより接合レンズが構成されたレンズ群である。 The third lens group G3 having a positive refractive power as a whole includes a meniscus lens L31 having a positive refractive power convex on the object side 11 and a positive refractive power convex on the object side 11, which are arranged in order from the object side 11. , A meniscus lens L33 having a positive refractive power convex on the object side 11, and a meniscus lens L34 having a negative refractive power concave on the image plane side 12. The positive meniscus lens L33 and the negative meniscus lens L34 constitute a second cemented lens B2 having a negative refractive power that is convex on the object side 11 (concave on the image plane side 12) as a whole. That is, the third lens group G3 has a positive-positive-positive-negative power arrangement arranged in order from the object side 11, and the positive-negative lens on the image plane side 12 (the side facing the stop St). Is a lens group composed of a cemented lens by
 最も像面側12に配置された、正の屈折力の第4のレンズ群G4は、物体側11から順に配置された、両凹の負レンズL41と、両凸の正レンズL42と、像面側12に凸の正の屈折力のメニスカスレンズL43と、両凹の負レンズL44と、両凸の正レンズL45と、像面側12に凸の負のメニスカスレンズL46と、両凸の正レンズL47との7枚構成である。負レンズL41と正レンズL42とにより、全体として物体側11に凹(像面側12に凸)の負の屈折力の第3の接合レンズB3が構成されている。また、両凹の負レンズL44と両凸の正レンズL45とにより、全体として物体側11に凹(像面側12に凸)の負の屈折力の第4の接合レンズB4が構成されている。すなわち、第4のレンズ群G4は、物体側11から順に配置された、負-正-正-負-正-負-正のパワー配置を備え、物体側11(絞りStに面した側)の負-正のレンズにより接合レンズが構成され、正のパワーのレンズ挟んだ、負-正のレンズにより接合レンズが構成されているレンズ群である。 A fourth lens group G4 having a positive refractive power and disposed closest to the image plane 12 includes a biconcave negative lens L41, a biconvex positive lens L42 and an image plane A meniscus lens L43 having a positive refractive power convex on the side 12, a biconcave negative lens L44, a biconvex positive lens L45, a negative meniscus lens L46 convex on the image plane side 12, and a biconvex positive lens This is a seven-sheet configuration with L47. The negative lens L41 and the positive lens L42 constitute a third cemented lens B3 having a negative refractive power that is concave on the object side 11 (convex on the image plane side 12) as a whole. The biconcave negative lens L44 and the biconvex positive lens L45 form a fourth cemented lens B4 having a concave refractive power on the object side 11 (convex on the image plane side 12) and a negative refractive power as a whole. . In other words, the fourth lens group G4 has a negative-positive-positive-negative-positive-negative-positive power arrangement arranged in order from the object side 11, and the fourth lens group G4 has the object side 11 (the side facing the stop St). This is a lens group in which a cemented lens is constituted by a negative-positive lens, and a cemented lens is constituted by a negative-positive lens sandwiched between lenses having a positive power.
 また、第4のレンズ群G4の物体側11に絞りStが配置されており、絞りStは、物体側11に第2の接合レンズB2が他のレンズを挟まずに配置され、像面側12に第3の接合レンズB3が他のレンズを挟まずに配置されている。 A stop St is disposed on the object side 11 of the fourth lens group G4. The stop St is such that the second cemented lens B2 is disposed on the object side 11 without interposing any other lens, and the stop St is on the image side 12 The third cemented lens B3 is arranged without interposing another lens.
 図2に、図1に示したレンズシステム10を構成する各レンズのデータを示している。面Si(iは番号、以下においても同様)は物体側11から順に並んだ各レンズの面を示し、曲率riは物体側11から順に並んだ各レンズの各面の曲率半径(mm)を示し、間隔diは各レンズ面の間の距離(mm)を示し、屈折率niは各レンズの屈折率(d線)を示し、アッベ数νiは各レンズのアッベ数(d線)を示し、有効径Diは各レンズの各面の有効な直径(mm)を示している。以下の各実施例においても同様である。 FIG. 2 shows data of each lens constituting the lens system 10 shown in FIG. A surface Si (i is a number, the same applies hereinafter) indicates a surface of each lens arranged in order from the object side 11, and a curvature ri indicates a radius of curvature (mm) of each surface of each lens arranged in order from the object side 11. , The distance di indicates the distance (mm) between the lens surfaces, the refractive index ni indicates the refractive index (d line) of each lens, the Abbe number νi indicates the Abbe number (d line) of each lens, and The diameter Di indicates an effective diameter (mm) of each surface of each lens. The same applies to the following embodiments.
 図3に、図1に示したレンズシステム10の無限遠、標準(物体距離2280mm)、および最至近(物体距離630mm)の各フォーカシング位置(合焦位置)における、レンズシステム10の合成焦点距離、F値(Fno)、画角(度)、第1のレンズ群G1および第2のレンズ群G2の間の距離d6、第2のレンズ群G2および第3のレンズ群G3の間の距離d9、および第3のレンズ群G3と第4のレンズ群G4との距離(具体的には絞りStまでの距離)d16を示している。 FIG. 3 shows the combined focal length of the lens system 10 at infinity, standard (object distance 2280 mm), and closest (object distance 630 mm) focusing positions (focus positions) of the lens system 10 shown in FIG. F value (Fno), angle of view (degree), distance d6 between first lens group G1 and second lens group G2, distance d9 between second lens group G2 and third lens group G3, And a distance d16 between the third lens group G3 and the fourth lens group G4 (specifically, a distance to the stop St).
 図1に記載されたレンズシステム10に基づき本発明のレンズシステムをさらに説明する。レンズシステム10は、撮像用のレンズシステムであって、物体側11から順番に配置された、負の屈折力の第1のレンズ群G1と、正の屈折力の第2のレンズ群G2と、正の屈折力の第3のレンズ群G3と、正の屈折力の第4のレンズ群G4とから構成された、全体として4群構成でレトロフォーカスタイプの、中望遠のレンズに適したレンズシステムである。レンズシステム10は、無限遠から最至近へフォーカシングの際に、光軸15に沿った第1のレンズ群G1と第2のレンズ群G2との距離d6が広がり、第2のレンズ群G2と第3のレンズ群G3との距離d9が縮まり、第3のレンズ群G3と第4のレンズ群G4との距離d16(絞りStを含まなければ、d16+d17)が広がる。すなわち、フォーカシングの際に、第2のレンズ群G2および第3のレンズ群G3が光軸15に沿って独立して移動し、第4のレンズ群G4は、第4のレンズ群G4の物体側11に配置された絞りStとともに動かず、像面5に対して固定されている。 レ ン ズ The lens system of the present invention will be further described based on the lens system 10 shown in FIG. The lens system 10 is an imaging lens system, and includes a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, arranged in order from the object side 11, and A lens system suitable for a middle-telephoto lens of a retrofocus type having a total of four groups, including a third lens group G3 having a positive refractive power and a fourth lens group G4 having a positive refractive power. It is. During focusing from infinity to the closest distance, the lens system 10 increases the distance d6 between the first lens group G1 and the second lens group G2 along the optical axis 15 and increases the distance between the second lens group G2 and the third lens group G2. The distance d9 between the third lens group G3 and the fourth lens group G4 decreases (d16 + d17 if the stop St is not included). That is, at the time of focusing, the second lens group G2 and the third lens group G3 move independently along the optical axis 15, and the fourth lens group G4 moves toward the object side of the fourth lens group G4. 11 does not move together with the stop St, and is fixed to the image plane 5.
 さらに具体的には、このレンズシステム10においては、無限遠から最至近へフォーカシングの際に、第1のレンズ群G1は、像面5に対して固定され、第2のレンズ群G2は像面側12に移動し、第3のレンズ群G3は物体側11に移動する。したがって、このレンズシステム10は、フォーカシングの際に、最も物体側11の第1のレンズ群G1と、最も像面側12の第4のレンズ群G4が動かず、レンズシステム10の全長が一定で、第2のレンズ群G2と第3のレンズ群G3とが移動するインナーフォーカスタイプのレンズシステムである。 More specifically, in this lens system 10, during focusing from infinity to the closest distance, the first lens group G1 is fixed with respect to the image plane 5, and the second lens group G2 is fixed with respect to the image plane. 12, the third lens group G3 moves to the object side 11. Therefore, during focusing, the first lens group G1 closest to the object side 11 and the fourth lens group G4 closest to the image plane 12 do not move during focusing, and the total length of the lens system 10 is constant. , An inner focus type lens system in which a second lens group G2 and a third lens group G3 move.
 このレンズシステム10においては、無限遠から最至近へのフォーカスの際に、負群の第1のレンズ群G1と、正群の第2のレンズ群G2との距離が離れることで、前側(物体側)11のピント位置を近距離へと移動させることができる。一方、第1のレンズ群G1と第2のレンズ群G2との距離が開き、第2のレンズ群G2と第4のレンズ群G4との距離が近付くことにより、第1のレンズ群G1と第2のレンズ群G2との合成したパワーと比較して、第2のレンズ群G2と第4のレンズ群G4との合成したパワーは強くなり、主点位置が像面側12にずれる。それによりレンズシステム10の全系の焦点距離が短焦点側へ変動し、かつ、正群の第2のレンズ群G2へ入射する光線のうち、軸上光線の光線高(軸上マージナル光線から光軸15までの光軸15と直交する方向の高さ)が高くなる。しかしながら、正群の第3のレンズ群G3を第2のレンズ群G2に接近するように物体側11へ移動することにより、第2のレンズ群G2の移動による全系の焦点距離の変動を補正することができ、レンズシステム10全体の正のパワーを前側へ移動して主点位置を元に戻しつつ、光線高が高くなった光線を第3のレンズ群G3により収束するように折り曲げて第4のレンズ群G4に入射させることができる。 In this lens system 10, the distance between the first lens group G1 in the negative group and the second lens group G2 in the positive group is increased at the time of focusing from infinity to the closest distance, so that ) The focus position of 11 can be moved to a short distance. On the other hand, the distance between the first lens group G1 and the second lens group G2 is increased, and the distance between the second lens group G2 and the fourth lens group G4 is reduced. Compared with the power combined with the second lens group G2, the combined power of the second lens group G2 and the fourth lens group G4 becomes stronger, and the principal point position shifts to the image plane side 12. As a result, the focal length of the entire system of the lens system 10 fluctuates to the short focal length side, and among the rays incident on the second lens group G2 in the positive group, the ray height of the on-axis ray (light from the on-axis marginal ray) (The height up to the axis 15 in the direction orthogonal to the optical axis 15). However, by moving the third lens group G3 of the positive group toward the object side 11 so as to approach the second lens group G2, the fluctuation of the focal length of the entire system due to the movement of the second lens group G2 is corrected. The positive power of the entire lens system 10 is moved to the front side to return the principal point position to the original position, and the light beam having a higher light height is bent so as to be converged by the third lens group G3. 4 lens group G4.
 なお、ここでいう軸上光線とは、光軸上に配置される光点から出射されて絞りStを通過する光線であり、軸上光線の主光線を軸上主光線とする。また、軸上光線のマージナル光線(軸上マージナル光線)とは、光軸上に配置される光点から出射した光線の内、最も軸上主光線から離れた光線(光学系の入射瞳の端を通過する光線)で有り、軸上光線の光束の幅である光線幅を規定する光線と規定する。 上 Note that the on-axis ray here is a ray that is emitted from a light spot disposed on the optical axis and passes through the stop St, and the principal ray of the on-axis ray is the on-axis principal ray. Further, a marginal ray of an on-axis ray (on-axis marginal ray) is a ray that is the most distant from the on-axis principal ray among rays emitted from light spots arranged on the optical axis (the end of the entrance pupil of the optical system). ), And is defined as a light beam that defines a light beam width that is the width of a light beam of an on-axis light beam.
 このため、第4のレンズ群G4とともに絞りStを固定しても、絞りStで光線を蹴られないようすることができる。したがって、フォーカシングの際に絞りStを固定することにより、F値の変動を抑制できる。さらに、絞りStの物体側11に、フォーカシングの際に移動するレンズ群を集中配置できるので、レンズの移動機構に絞りStが巻き込まれることを防止でき、簡易な構造で、最至近から無限遠まで良好なフォーカス性能が得られるレンズシステム10を提供できる。さらに、フォーカシングによるF値の変動が少なく、明るさの変動の少ない画像を容易に取得できるレンズシステム10を提供できる。 Therefore, even if the stop St is fixed together with the fourth lens group G4, it is possible to prevent light from being kicked by the stop St. Therefore, by fixing the aperture St during focusing, fluctuations in the F value can be suppressed. Further, since the lens group that moves during focusing can be concentratedly arranged on the object side 11 of the stop St, it is possible to prevent the stop St from being caught in the lens moving mechanism, and with a simple structure, from the closest point to infinity. It is possible to provide the lens system 10 that can obtain good focus performance. Further, it is possible to provide the lens system 10 in which the fluctuation of the F value due to the focusing is small and the image having the small fluctuation of the brightness can be easily obtained.
 さらに、フォーカシングの際に、レンズシステム10の全長は不変で、フォーカシングの際に移動するレンズ群は隣接している第2のレンズ群G2および第3のレンズ群G3に限定することができるので駆動機構を簡素化できる。また、フォーカシングの際に移動する第2のレンズ群G2および第3のレンズ群G3の移動方向は逆になるので、レンズシステム10の全体としては重心の変化は小さい。したがって、取り回しが容易で、ハンディータイプも可能なレンズシステム10を提供できる。 In addition, the entire length of the lens system 10 does not change during focusing, and the lens groups that move during focusing can be limited to the adjacent second lens group G2 and third lens group G3. The mechanism can be simplified. Further, since the moving directions of the second lens group G2 and the third lens group G3 that move during focusing are reversed, the change in the center of gravity of the lens system 10 as a whole is small. Therefore, it is possible to provide the lens system 10 that is easy to handle and can be used in a handy type.
 このレンズシステム10においては、第2のレンズ群G2の焦点距離f2と、第3のレンズ群G3の焦点距離f3とは以下の条件(1)を満たしてもよい。
1.0 ≦ f2/f3 ≦ 1.5・・・(1)
第2のレンズ群G2の移動の影響を第3のレンズ群G3の移動により補償するために、それぞれのレンズ群G2およびG3の屈折力はほぼ等しいことが望ましい。このため、条件(1)の下限を超えると、第3のレンズ群G3の屈折力が小さくなりすぎて球面収差および軸上色収差を良好に補正しにくくなる。条件(1)の上限を超えると、第2のレンズ群G2の屈折力が小さくなりすぎて球面収差を良好に補正しにくくなる。
In the lens system 10, the focal length f2 of the second lens group G2 and the focal length f3 of the third lens group G3 may satisfy the following condition (1).
1.0 ≦ f2 / f3 ≦ 1.5 (1)
In order to compensate for the influence of the movement of the second lens group G2 by the movement of the third lens group G3, it is desirable that the refractive powers of the respective lens groups G2 and G3 are substantially equal. For this reason, when the value goes below the lower limit of the condition (1), the refractive power of the third lens group G3 becomes too small, so that it is difficult to satisfactorily correct spherical aberration and axial chromatic aberration. When the value exceeds the upper limit of the condition (1), the refractive power of the second lens group G2 becomes too small, and it becomes difficult to satisfactorily correct spherical aberration.
 また、第2のレンズ群G2の移動量FL1と、第3のレンズ群G3の移動量FL2とは以下の条件(2)を満たしてもよい。
2.5 ≦ FL1/FL2 ≦ 4.5・・・(2)
第2のレンズ群G2は、無限遠から最至近までのフォーカシング性能を得るための移動量FL1を確保する必要がある。すなわち、レンズシステム10は、負群の第1のレンズ群G1と正群の第2のレンズ群G2との距離を、より離すことにより、レトロフォーカス的構成により主点位置が移動して焦点距離を短くするとともに、物体側11の結像位置を像面側(カメラ側)12に近付ける作用を発揮する。また、この際の焦点距離の変動を抑制するために、第2のレンズ群G2の像面側12に配置される正群の第3のレンズ群G3を物体側11に近付けることでレンズシステム10の中間付近の正のパワーを強めて負群の第1のレンズ群G1により広がった軸上光線の光線高を狭めつつ、それとともに光学系の後方側(絞りよりも像側)の正のパワーを弱めることで主点位置を元に戻している。
The movement amount FL1 of the second lens group G2 and the movement amount FL2 of the third lens group G3 may satisfy the following condition (2).
2.5 ≦ FL1 / FL2 ≦ 4.5 (2)
The second lens group G2 needs to secure a movement amount FL1 for obtaining focusing performance from infinity to the closest distance. That is, the lens system 10 moves the principal point position by a retrofocus configuration by increasing the distance between the first lens group G1 in the negative group and the second lens group G2 in the positive group, thereby changing the focal length. Is shortened and the image forming position on the object side 11 is brought closer to the image plane side (camera side) 12. In addition, in order to suppress the fluctuation of the focal length at this time, the third lens group G3 of the positive group disposed on the image plane side 12 of the second lens group G2 is brought closer to the object side 11 so that the lens system 10 The positive power in the vicinity of the center is increased to reduce the height of the on-axis light beam spread by the first lens unit G1 in the negative lens unit, and at the same time, the positive power on the rear side of the optical system (image side rather than the stop). The position of the principal point is restored by weakening.
 したがって、条件(2)において、下限を下回ると第3のレンズ群G3の移動量FL2が大きくなりすぎるため、相対的に第2のレンズ群G2の移動量FL1を確保できなくなり、第2のレンズ群G2を第1のレンズ群G1から引き離すことができず、十分な結像位置の調整および各収差の補正を行うことが難しくなる。このため、球面収差、像面湾曲および倍率色収差の補正が難しくなる。また、逆に、条件(2)の上限を超えると、第2のレンズ群G2の移動量FL1が大き過ぎるため、第3のレンズ群G3の移動量FL2が少なくなり過ぎて、第2のレンズ群G2の移動による焦点距離の移動の補正をしきれずに画角が大きく変化して、かつ、像面湾曲の補正が難しくなる。 Therefore, in condition (2), if the value goes below the lower limit, the movement amount FL2 of the third lens group G3 becomes too large, so that the movement amount FL1 of the second lens group G2 cannot be relatively secured, and the second lens group The group G2 cannot be separated from the first lens group G1, which makes it difficult to sufficiently adjust the imaging position and correct each aberration. For this reason, it becomes difficult to correct spherical aberration, curvature of field, and chromatic aberration of magnification. On the other hand, when the value exceeds the upper limit of the condition (2), the moving amount FL1 of the second lens group G2 is too large, so that the moving amount FL2 of the third lens group G3 becomes too small, and the second lens group G3 becomes too small. The correction of the movement of the focal length due to the movement of the group G2 cannot be completely corrected, the field angle greatly changes, and the correction of the curvature of field becomes difficult.
 このレンズシステム10は、第2のレンズ群G2が第1の接合レンズB1で構成され、第3のレンズ群G3が第2の接合レンズB2を含み、第4のレンズ群G4が第3の接合レンズB3および第4の接合レンズB4を含む。第2のレンズ群G2の接合レンズB1と、第3のレンズ群G3の第2の接合レンズB2とは、それぞれフォーカシングの際に独立して移動する。このため、それぞれの接合レンズB1およびB2によりフォーカスによる軸上色収差および倍率色収差の変動を、分担して補正できる。特に、軸外光線の光線高(最も光軸15から離間した軸外マージナル光線から光軸15までの光軸15と直交する方向の高さ)の高い光線が入射する接合レンズB1は倍率色収差に対する補正能力が高く、軸外光線の光線高の低い光線が入射する接合レンズB2は軸上色収差に対する補正能力が高い。 In the lens system 10, the second lens group G2 includes a first cemented lens B1, the third lens group G3 includes a second cemented lens B2, and the fourth lens group G4 includes a third cemented lens. Includes a lens B3 and a fourth cemented lens B4. The cemented lens B1 of the second lens group G2 and the second cemented lens B2 of the third lens group G3 move independently during focusing. For this reason, the fluctuation of the axial chromatic aberration and the chromatic aberration of magnification due to focusing can be shared and corrected by the respective cemented lenses B1 and B2. In particular, the cemented lens B1 into which a ray having a high ray height of the off-axis ray (the height in a direction orthogonal to the optical axis 15 from the off-axis marginal ray most distant from the optical axis 15 to the optical axis 15) is incident, the chromatic aberration of magnification is reduced. The cemented lens B2 having a high correction capability and a low-off-axis light beam incident thereon has a high correction capability for axial chromatic aberration.
 なお、ここでいう軸外光線とは、光軸外に配置される光点から出射されて絞りStを通過する光線の主光線の内、最も物体側11のレンズ面に入射する主光線と光軸15との成す角が最も大きくなる光線である。また、軸外光線の主光線を軸外主光線と規定する。軸外光線のマージナル光線(軸外マージナル光線)とは、軸外光線の内、最も軸外主光線から離れた光線であり、軸外光線の光束の幅である光線幅を規定する光線である。ちなみに、軸外マージナル光線は、軸外主光線と直交する光束断面上において、位置により光軸15との距離が異なる。そのため、最も物体側11に配置されたレンズ面に入射する軸外マージナル光線の内、光軸15との距離が最も大きい(離間した)光線を下側マージナル光線と規定し、光軸15との距離が最も小さい(近接した)光線を上側マージナル光線とする。 The term “off-axis light beam” used herein refers to the main light beam that is incident on the lens surface closest to the object side 11 among the main light beams that are emitted from a light spot disposed off the optical axis and pass through the stop St. This is a light ray having the largest angle with the axis 15. The principal ray of the off-axis ray is defined as an off-axis principal ray. A marginal ray of an off-axis ray (off-axis marginal ray) is a ray that is the most distant from the off-axis principal ray among the off-axis rays, and is a ray that defines a ray width that is the width of the luminous flux of the off-axis ray. . Incidentally, the off-axis marginal ray has a different distance from the optical axis 15 depending on the position on the light beam cross section orthogonal to the off-axis principal ray. Therefore, of the off-axis marginal rays incident on the lens surface closest to the object side 11, the ray whose distance to the optical axis 15 is the largest (the distance from the optical axis 15) is defined as the lower marginal ray. The light ray with the shortest distance (closest) is defined as an upper marginal light ray.
 さらに、第3のレンズ群G3は、第2の接合レンズB2の物体側11に配置された少なくとも1枚の物体側11に凸の正の屈折力のメニスカスレンズを含む。本例においては、第3のレンズ群G3は、接合レンズB2の物体側11に、2枚の物体側11に凸の正メニスカスレンズL31およびL32を含む。 Furthermore, the third lens group G3 includes at least one meniscus lens having a positive refractive power convex on the object side 11 disposed on the object side 11 of the second cemented lens B2. In this example, the third lens group G3 includes two positive meniscus lenses L31 and L32 that are convex on the object side 11 on the object side 11 of the cemented lens B2.
 正メニスカスレンズL31およびL32は、軸上のマージナル光線を強く軸上主光線側に収束するように折り曲げて軸上光線の光線高を狭める方向に作用する。したがって、正メニスカスレンズL31およびL32の像面側12に配置された第2の接合レンズB2、およびそれに続く絞りStを小型化できる。一方、正メニスカスレンズL31およびL32は、軸上光線に関係する収差を発生させる。しかしながら、正メニスカスレンズL31およびL32は、物体側11に凸面を向けて配置されており、球面収差の発生を抑制され、かつ、2枚に分割されているので個々のレンズの面の曲率を緩やかにできる。このため、正メニスカスレンズL31およびL32による球面収差を含む収差の発生が抑制される。また、軸外光線においては、正メニスカスレンズL31およびL32の物体側11の凸面の周辺側へ入射する光線程、光軸15側に折り曲げられるが、像面側12の凹面により逆側へ曲げられる。このため、結果として軸外主光線及び軸外マージナル光線の入射角および出射角のバランスが崩れないまま収束させることが可能となる。したがって、バランスの崩れによって生じる収差を抑制することが可能となる。 The positive meniscus lenses L31 and L32 bend the axial marginal ray so as to strongly converge on the axial principal ray side, and act in a direction to reduce the ray height of the axial ray. Therefore, it is possible to reduce the size of the second cemented lens B2 disposed on the image plane side 12 of the positive meniscus lenses L31 and L32, and the aperture St subsequent thereto. On the other hand, the positive meniscus lenses L31 and L32 generate aberrations related to axial rays. However, the positive meniscus lenses L31 and L32 are arranged with the convex surface facing the object side 11 to suppress the occurrence of spherical aberration and to reduce the curvature of the surface of each lens because it is divided into two pieces. Can be. For this reason, the generation of aberrations including spherical aberration by the positive meniscus lenses L31 and L32 is suppressed. As for the off-axis rays, the rays incident on the peripheral side of the convex surface of the positive meniscus lenses L31 and L32 on the object side 11 are bent toward the optical axis 15 side, but are bent to the opposite side by the concave surface on the image side 12. . For this reason, as a result, it is possible to converge the incident angle and the outgoing angle of the off-axis principal ray and the off-axis marginal ray without breaking. Therefore, it is possible to suppress the aberration caused by the imbalance.
 この第3のレンズ群G3においては、物体側11に凸の正メニスカスレンズL31およびL32を配置することで、軸上光線の光線高を効果的に小さくして、その像面側12に配置された接合レンズB2のレンズ径を小型化できる。また、正メニスカスレンズL31およびL32により軸外光線の上側マージナル光線および下側マージナル光線による光線幅(軸外主光線と直交する断面における上側マージナル光線から下側マージナル光線までの距離)を収束し、その像面側12に配置された負のパワーを有する接合レンズB2により発生するコマ収差と逆側のコマ収差を発生させることで、全体としてコマ収差を抑制できる。また、第3のレンズ群G3の物体側11に配置される正メニスカスレンズは1枚でもよいが、正メニスカスレンズを2枚に分割することで、各レンズL31およびL32にパワーを分散し、個々のレンズのパワーを弱めたり、曲率半径を緩めることが可能となり、各収差の発生をさらに抑制している。 In the third lens group G3, the positive meniscus lenses L31 and L32 that are convex on the object side 11 are arranged to effectively reduce the height of axial rays, and are arranged on the image plane side 12 thereof. The lens diameter of the cemented lens B2 can be reduced. The positive meniscus lenses L31 and L32 converge the beam width (the distance from the upper marginal ray to the lower marginal ray in a cross section orthogonal to the off-axis principal ray) due to the upper marginal ray and the lower marginal ray of the off-axis ray. By generating coma aberration on the opposite side to the coma aberration generated by the cemented lens B2 having negative power disposed on the image plane side 12, coma aberration can be suppressed as a whole. The number of the positive meniscus lens disposed on the object side 11 of the third lens group G3 may be one, but by dividing the positive meniscus lens into two lenses, the power is distributed to the lenses L31 and L32, and It is possible to weaken the power of the lens and to loosen the radius of curvature, thereby further suppressing the occurrence of each aberration.
 第1の接合レンズB1を、像面側12に凸のメニスカスレンズとし、第2の接合レンズB2を、物体側11に凸のメニスカスレンズとしてもよい。絞りStの物体側11に、物体側11に凸(像面側12に凹)のメニスカスレンズ型の接合レンズB2を配置することにより絞りStを小型化できる。また、接合レンズB2の物体側11に、反対方向を向いたメニスカス型の接合レンズB1を配置することにより、これらの接合レンズB1およびB2で発生する球面収差を効果的に補正できる。また、接合レンズB1は、物体側11から負-正の組み合わせであり、接合レンズB2は、物体側11から正-負の組み合わせであり、面形状に加えてパワー配置も対象になっており、球面収差をより効果的に抑制できる。 The first cemented lens B1 may be a meniscus lens convex on the image side 12, and the second cemented lens B2 may be a meniscus lens convex on the object side 11. By arranging a meniscus lens-type cemented lens B2 convex on the object side 11 (concave on the image plane side 12) on the object side 11 of the stop St, the stop St can be miniaturized. In addition, by disposing a meniscus-type cemented lens B1 facing the opposite direction on the object side 11 of the cemented lens B2, spherical aberration generated by these cemented lenses B1 and B2 can be effectively corrected. In addition, the cemented lens B1 is a combination of negative and positive from the object side 11, and the cemented lens B2 is a combination of positive and negative from the object side 11, and the power arrangement is also an object in addition to the surface shape. Spherical aberration can be suppressed more effectively.
 さらに、レンズシステム10は、上述したように、第4のレンズ群G4は、物体側11に配置された第3の接合レンズB3と、像面側12に配置された第4の接合レンズB4とを含む。したがって、レンズシステム10は、絞りStを挟んで、第1の接合レンズB1および第2の接合レンズB2と、第3の接合レンズB3および第4の接合レンズB4とが対称的に配置されており、絞りStで分けたそれぞれの光学系の中で独立して収差を分担して補正できる。このため、レンズシステム10の全体として高い色収差補正能力を備えている。 Further, as described above, in the lens system 10, the fourth lens group G4 includes the third cemented lens B3 arranged on the object side 11 and the fourth cemented lens B4 arranged on the image plane side 12. including. Accordingly, in the lens system 10, the first cemented lens B1 and the second cemented lens B2, and the third cemented lens B3 and the fourth cemented lens B4 are symmetrically arranged with the stop St interposed therebetween. And aberration can be independently shared and corrected in each optical system divided by the stop St. Therefore, the lens system 10 has a high chromatic aberration correction capability as a whole.
 さらに、第1の接合レンズB1の有効径B1Dと、第2の接合レンズB2の有効径B2Dと、第3の接合レンズB3の有効径B3Dと、第4の接合レンズB4の有効径B4Dとが以下の条件(3)を満たしてもよい。
B1D > B2D
B3D < B4D・・・(3)
各接合レンズの代表的な有効径としては、最も物体側11の面の有効径Diを採用でき、本レンズシステム10においては、以下の条件(3a)とすることができる。
D7  > D14
D18 < D23・・・(3a)
Further, the effective diameter B1D of the first cemented lens B1, the effective diameter B2D of the second cemented lens B2, the effective diameter B3D of the third cemented lens B3, and the effective diameter B4D of the fourth cemented lens B4 The following condition (3) may be satisfied.
B1D> B2D
B3D <B4D (3)
The effective diameter Di of the surface closest to the object side 11 can be adopted as a typical effective diameter of each cemented lens. In the present lens system 10, the following condition (3a) can be satisfied.
D7> D14
D18 <D23 (3a)
 また、第1の接合レンズB1の正の屈折力のレンズL22のアッベ数B1p(ν8)と負の屈折力のレンズL21のアッベ数B1m(ν7)との差と、第2の接合レンズB2の正の屈折力のレンズL33のアッベ数B2p(ν14)と負の屈折力のレンズL34のアッベ数B2m(ν15)との差と、第3の接合レンズB3の正の屈折力L42のレンズのアッベ数B3p(ν19)と負の屈折力のレンズL41のアッベ数B3m(ν18)との差と、第4の接合レンズB4の正の屈折力のレンズL45のアッベ数B4p(ν24)と負の屈折力のレンズL45のアッベ数B4m(ν23)との差とが以下の条件(4)を満たしてもよい。
|B1p-B1m| < |B2p-B2m|
|B3p-B3m| > |B4p-B4m|・・・(4)
Further, the difference between the Abbe number B1p (ν8) of the lens L22 having the positive refractive power of the first cemented lens B1 and the Abbe number B1m (ν7) of the lens L21 having the negative refractive power, and the difference of the second cemented lens B2 The difference between the Abbe number B2p (ν14) of the lens L33 having a positive refractive power and the Abbe number B2m (ν15) of the lens L34 having a negative refractive power, and the Abbe number of the lens having a positive refractive power L42 of the third cemented lens B3. The difference between the number B3p (ν19) and the Abbe number B3m (ν18) of the lens L41 having a negative refractive power, and the Abbe number B4p (ν24) of the lens L45 having a positive refractive power of the fourth cemented lens B4 and the negative refraction. The difference between the force and the Abbe number B4m (ν23) of the lens L45 may satisfy the following condition (4).
| B1p-B1m | <| B2p-B2m |
| B3p-B3m |> | B4p-B4m | ... (4)
 このレンズシステム10は合計4つの接合レンズB1~B4を含む。条件(3)または(3a)を満足すると、これら4つの接合レンズB1~B4は、物体側11から軸外光線の光線高を見て、「高い-低い-低い-高い」の順で並ぶ。また、条件(4)を満足すると、4つの接合レンズB1~B4を形成する正レンズと負レンズのアッべ数の差が、「小さい-大きい-大きい-小さい」の順で並ぶ。このため、レンズシステム10の全体としてみると、絞りStを挟んで、光線高およびアッベ数の差について、2つの接合レンズB1およびB2と、B3およびB4とを対称的な配置で並べることができる。したがって、レンズシステム10は、高い色収差補正能力を有する。 レ ン ズ This lens system 10 includes a total of four cemented lenses B1 to B4. When the condition (3) or (3a) is satisfied, these four cemented lenses B1 to B4 are arranged in the order of “high-low-low-high” when viewing the ray height of the off-axis ray from the object side 11. When the condition (4) is satisfied, the difference between the Abbe numbers of the positive lens and the negative lens forming the four cemented lenses B1 to B4 is arranged in the order of "small-large-large-small". For this reason, as a whole of the lens system 10, the two cemented lenses B1 and B2 and B3 and B4 can be arranged symmetrically with respect to the difference between the ray height and the Abbe number across the stop St. . Therefore, the lens system 10 has a high chromatic aberration correction ability.
 また、このレンズシステム10は、絞りStの前後で、第3のレンズ群G3は、最も像面側12の、絞りStの物体側11に配置された接合レンズB2であって、像面側12の面S16が物体側11に凹の面を含む接合レンズB2を含む。また、第4のレンズ群G4は、最も物体側11の、絞りStの像面側12に配置された接合レンズB3であって、物体側11の面S18が像面側12に凹の面を含む接合レンズB3を含む。軸外光線の光線高が低くなる絞りStの前後に接合レンズB2およびB3を配置することで、軸上色収差を重点的に補正することができる。また、接合レンズB2およびB3の凹面同士を向かい合わせることで、反対方向のコマ収差及び歪曲収差をそれぞれで発生させることで相殺し、効率よく収差補正を行うことができる。 In the lens system 10, before and after the stop St, the third lens group G3 is the cemented lens B2 disposed closest to the image side 12 and the object side 11 of the stop St, and Includes a cemented lens B2 including a concave surface on the object side 11. The fourth lens group G4 is a cemented lens B3 disposed on the image plane side 12 of the stop St, which is closest to the object side 11, and the surface S18 on the object side 11 has a concave surface on the image plane side 12. Including the cemented lens B3. By arranging the cemented lenses B2 and B3 before and after the stop St at which the height of off-axis rays becomes low, axial chromatic aberration can be mainly corrected. In addition, when the concave surfaces of the cemented lenses B2 and B3 face each other, coma aberration and distortion in the opposite directions are generated, thereby canceling each other, and aberration correction can be performed efficiently.
 さらに、接合レンズB2は、物体側11から正のパワーのレンズL33および負のパワーのレンズL34の組み合わせとなり、接合レンズB3は、物体側11から負のパワーのレンズL41および正のパワーのレンズL42の組み合わせとなっている。このため、接合レンズB2およびB3により、絞りStを挟んで正負-負正と対称形にレンズを配置でき、球面収差や軸上色収差、コマ収差等の軸上収差を効果的に補正することができる。具体的には、絞りStの物体側11の凹面S16を有するレンズL34は、物体側11に凸の負のパワーを有する負のメニスカスレンズであり、正のパワーを有する物体側11に凸の正のメニスカスレンズL33と接合レンズB2を構成する。絞りStの像面側12の凹面S18を有するレンズL41は、両凹の負レンズであり、両凸の正レンズL42と接合レンズB3を構成する。 Further, the cemented lens B2 is a combination of a lens L33 having a positive power and a lens L34 having a negative power from the object side 11, and the cemented lens B3 is a lens L41 having a negative power and a lens L42 having a positive power from the object side 11. It is a combination of Therefore, the cemented lenses B2 and B3 allow the lenses to be arranged symmetrically with respect to the positive / negative-negative / positive direction with the stop St interposed therebetween, thereby effectively correcting axial aberrations such as spherical aberration, axial chromatic aberration, and coma. it can. Specifically, the lens L34 having the concave surface S16 on the object side 11 of the stop St is a negative meniscus lens having a negative power convex on the object side 11 and a positive meniscus lens having a positive power on the object side 11 having a positive power. And the cemented lens B2. A lens L41 having a concave surface S18 on the image plane side 12 of the stop St is a biconcave negative lens, and forms a cemented lens B3 with a biconvex positive lens L42.
 さらに、接合レンズB2およびB3の絞りStに面した、物体側11に凹の面S16の曲率半径g3er(r16)と、像面側12に凹の面S18の曲率半径g4fr(r18)とが以下の条件(5)を満たしてもよい。
2.5 ≦ |g4fr/g3er| ≦ 4.0・・・(5)
絞りStの両側に配置された接合レンズB2およびB3により、絞りStを中心とした対称的なアレンジを構成することにより上記のように収差補正を良好に行うことができる。その一方、絞りStの物体側11の凹面S16の曲率半径r16よりも、像面側12の凹面S18の曲率半径r18を緩やかにする、非対称な構成を加えることにより、レトロフォーカス型で、絞りStの後の公差感度が敏感な第4のレンズ群G4の感度を緩めることが可能となる。したがって、収差が良好に補正され、性能が安定した、取扱いが容易なレンズシステムを提供できる。
Further, the radius of curvature g3er (r16) of the concave surface S16 on the object side 11 facing the stop St of the cemented lenses B2 and B3 and the radius of curvature g4fr (r18) of the concave surface S18 on the image side 12 are as follows. Condition (5) may be satisfied.
2.5 ≦ | g4fr / g3er | ≦ 4.0 (5)
By forming a symmetric arrangement with the stop St as a center by the cemented lenses B2 and B3 arranged on both sides of the stop St, aberration correction can be favorably performed as described above. On the other hand, by adding an asymmetric configuration in which the radius of curvature r18 of the concave surface S18 on the image surface side 12 is made smaller than the radius of curvature r16 of the concave surface S16 on the object side 11 of the aperture St, the retro-focus type aperture St It is possible to relax the sensitivity of the fourth lens group G4, which has a higher tolerance sensitivity after the above. Therefore, it is possible to provide a lens system in which aberration is satisfactorily corrected, performance is stable, and handling is easy.
 また、絞りStの像面側12の面S18に対する軸外光線の入射角を小さくすることができる。このため、アンダーのコマ(内向コマ)の発生を抑制できるという効果も得られる。したがって、条件(5)の下限を下回ると、球面収差および像面湾曲の補正が難しくなり、条件(5)の上限を上回ると、球面収差および軸上色収差の補正が難しくなる。 Further, the angle of incidence of off-axis rays on the surface S18 on the image plane side 12 of the stop St can be reduced. For this reason, an effect that the occurrence of underframes (inward frames) can be suppressed can be obtained. Therefore, when the value goes below the lower limit of the condition (5), it becomes difficult to correct spherical aberration and curvature of field. When the value exceeds the upper limit of the condition (5), it becomes difficult to correct spherical aberration and axial chromatic aberration.
 また、レンズシステム10の絞りStの物体側11に配置された第2の接合レンズB2および絞りStの像面側12に配置された第3の接合レンズB3は負の屈折力を含み、第2の接合レンズB2の焦点距離B2fおよび第3の接合レンズB3の焦点距離B3fは以下の条件(6)を満たしてもよい。
1.7 ≦ B3f/B2f ≦ 3.0・・・(6)
負のパワーの第1のレンズ群G1が先行するレトロファーカスタイプのレンズシステム10において、絞りStの前後に対称的に接合レンズB2およびB3を配置して収差の補正性能を向上するとともに、物体側11の接合レンズB2のパワーを像面側12の接合レンズB3よりも強くする非対称な構成とすることにより、絞りStの物体側11でより強く光線を絞り、絞りStを含めて像面側12の構成をコンパクトにすることができる。条件(6)の上限を超えると、接合レンズB2に対する接合レンズB3のパワーが弱くなり過ぎるため、接合レンズB2で発生する球面収差の相殺が難しくなり、また、接合レンズB2とのバランスが崩れ、十分な軸上色収差の補正が難しくなる。逆に、条件(6)の下限を下回ると、接合レンズB2に対する接合レンズB3のパワーが強くなりすぎるため、接合レンズB2とのバランスが崩れ軸上色収差の補正が難しくなり、さらに、接合レンズB3の軸外光線を発散させる能力が強くなるため、接合レンズB3から出射される軸外光線の主光線に対する軸外光線の上側及び下側マージナル光線の出射角度が発散してしまう。このため、軸外光線の軸外主光線及び軸外マージナル光線のバランスが崩れ、倍率色収差の補正が難しくなる。したがって、条件(6)の下限を下回ると、軸上色収差および倍率色収差の補正が難しくなり、条件(6)の上限を上回ると、球面収差および軸上色収差の補正が難しくなる。
The second cemented lens B2 arranged on the object side 11 of the stop St of the lens system 10 and the third cemented lens B3 arranged on the image plane side 12 of the stop St have a negative refractive power, and The focal length B2f of the cemented lens B2 and the focal length B3f of the third cemented lens B3 may satisfy the following condition (6).
1.7 ≦ B3f / B2f ≦ 3.0 (6)
In the retro-farcus type lens system 10 preceded by the first lens group G1 having a negative power, the cemented lenses B2 and B3 are disposed symmetrically before and after the stop St to improve the aberration correction performance and improve the object side. By making the power of the cemented lens B2 of the lens unit 11 stronger than that of the cemented lens B3 of the image plane side 12, the light beam is more strongly focused on the object side 11 of the stop St, and the image plane side 12 including the stop St is stopped. Can be made compact. When the value exceeds the upper limit of the condition (6), the power of the cemented lens B3 with respect to the cemented lens B2 becomes too weak, so that it is difficult to cancel spherical aberration generated in the cemented lens B2, and the balance with the cemented lens B2 is lost. It becomes difficult to sufficiently correct axial chromatic aberration. Conversely, when the value goes below the lower limit of the condition (6), the power of the cemented lens B3 with respect to the cemented lens B2 becomes too strong, so that the balance with the cemented lens B2 is lost and it becomes difficult to correct axial chromatic aberration. Since the ability to diverge the off-axis ray becomes stronger, the emission angles of the upper and lower marginal rays of the off-axis ray with respect to the principal ray of the off-axis ray emitted from the cemented lens B3 diverge. For this reason, the balance between the off-axis principal ray and the off-axis marginal ray of the off-axis ray is lost, and it becomes difficult to correct lateral chromatic aberration. Therefore, when the value goes below the lower limit of the condition (6), it becomes difficult to correct axial chromatic aberration and lateral chromatic aberration. When the value goes above the upper limit of the condition (6), correction of spherical aberration and axial chromatic aberration becomes difficult.
 第4のレンズ群G4は、さらに、絞りStの像面側12に配置された接合レンズB3の像面側12に配置された物体側11に凹の正の屈折力のメニスカスレンズL43を含む。像面側12に凸の第4のレンズG4の像面側12に近接して、物体側11に凹の正のメニスカスレンズL43を配置することにより、軸外光線の光線幅を軸外主光線に対する上側マージナル光線との幅と、下側マージナル光線との幅とのバランスを調整することで軸外光線に発生する各収差を補正することが可能となる。 The fourth lens group G4 further includes a meniscus lens L43 having a positive refractive power concave on the object side 11 disposed on the image plane side 12 of the cemented lens B3 disposed on the image plane side 12 of the stop St. By arranging a concave positive meniscus lens L43 on the object side 11 close to the image side 12 of the fourth lens G4 convex on the image side 12, the beam width of the off-axis ray can be reduced. By adjusting the balance between the width of the upper marginal light beam and the width of the lower marginal light beam, it is possible to correct each aberration generated in the off-axis light beam.
 さらに、接合レンズB3の像面側12の、像面側12に凸の面S20の曲率半径B3er(r20)と、正の屈折力のメニスカスレンズL43の物体側11の、物体側11に凹の面S21の曲率半径Lbfr(r21)とは以下の条件(7)を満たしてもよい。
1.35 ≦ |B3er/Lbfr| ≦ 1.55・・・(7)
接合レンズB3の像面側12の凸面S20の曲率r20(B3er)を、正のメニスカスレンズL43の物体側11の凹面S21の曲率r21(Lbfr)よりも大きく(緩く)することで、凸面S20から出射した軸外光線は光線幅を縮小する方向に収束し、凹面S21により収束気味の軸外光線を略平行に直すことができる。その際に、凸面S20から出射された軸外光線は、全体として光軸から離れる方向へ屈折するが、上側マージナル光線から下側マージナル光線へ向かうにつれて、より強く光線が曲げられる。このため、結果として軸外光線は収束する。すなわち、光軸15と交差した軸外光線は、凹面S21へ入射する際に、凹面S21の光軸15に対して一方側の曲面へ、全ての光線が入射する。そのため、凸面S20に対する入射角が光軸15に近い光線程大きくなり、より大きく曲がる。これにより、軸外光線の光線幅を主光線に対する上側マージナル光線との幅と、下側マージナル光線との幅とのバランスを調整でき、軸外光線に発生する各収差を補正することが可能となる。
Further, the radius of curvature B3er (r20) of the surface S20 convex on the image surface side 12 of the cemented lens B3 and the concave radius on the object side 11 of the object side 11 of the meniscus lens L43 having a positive refractive power. The curvature radius Lbfr (r21) of the surface S21 may satisfy the following condition (7).
1.35 ≦ | B3er / Lbfr | ≦ 1.55 (7)
The curvature r20 (B3er) of the convex surface S20 on the image surface side 12 of the cemented lens B3 is made larger (loose) than the curvature r21 (Lbfr) of the concave surface S21 on the object side 11 of the positive meniscus lens L43. The emitted off-axis light rays converge in the direction of reducing the light beam width, and the convergent off-axis light rays can be made almost parallel by the concave surface S21. At this time, the off-axis ray emitted from the convex surface S20 is refracted as a whole away from the optical axis, but the ray is more strongly bent from the upper marginal ray to the lower marginal ray. As a result, off-axis rays converge as a result. That is, when the off-axis light beam that crosses the optical axis 15 enters the concave surface S21, all the light beams enter the curved surface on one side of the optical axis 15 of the concave surface S21. Therefore, the closer the light ray is to the optical axis 15, the greater the angle of incidence on the convex surface S20 is, and the more the light beam is bent. Thereby, it is possible to adjust the balance between the width of the off-axis ray and the width of the upper marginal ray with respect to the principal ray and the width of the lower marginal ray with respect to the principal ray, and it is possible to correct each aberration generated in the off-axis ray. Become.
 条件(7)の上限を超えると、凹面S21のパワーが強くなり、凹面S21に入射した軸外光線の軸外主光線に対する軸外マージナル光線が発散してしまい、軸外光線の光線幅や角度のバランスが崩れ、球面収差および倍率色収差の補正が難しくなる。逆に、条件(7)の下限を下回ると、凹面S21のパワーが弱くなり、凹面S21に入射した収束気味の軸外光線を略平行に戻すことができず、軸外光線の光線幅や角度のバランスが崩れ、球面収差および軸上色収差の補正が難しくなる。 When the value exceeds the upper limit of the condition (7), the power of the concave surface S21 increases, and the off-axis marginal ray of the off-axis ray incident on the concave face S21 with respect to the off-axis principal ray diverges. And the correction of spherical aberration and chromatic aberration of magnification becomes difficult. Conversely, when the value goes below the lower limit of the condition (7), the power of the concave surface S21 becomes weak, and the convergent off-axis light beam incident on the concave surface S21 cannot be returned to almost parallel. And the correction of spherical aberration and axial chromatic aberration becomes difficult.
 第4のレンズ群G4は、正の屈折力のメニスカスレンズL43の像面側12に配置された接合レンズ(第4の接合レンズ)B4を含む。正メニスカスレンズL43の像面側12の、像面側12に凸の面S22の曲率半径Lber(r22)と、第4の接合レンズB4の物体側11の、物体側11に凹の面S23の曲率半径B4fr(r23)とは以下の条件(8)を満たしてもよい。
1.03 ≦ |Lber/B4fr| ≦ 1.07・・・(8)
The fourth lens group G4 includes a cemented lens (fourth cemented lens) B4 disposed on the image plane side 12 of the meniscus lens L43 having a positive refractive power. The radius of curvature Lber (r22) of the surface S22 convex on the image surface side 12 of the image surface side 12 of the positive meniscus lens L43 and the curvature of the object surface 11 of the fourth cemented lens B4 and the concave surface S23 on the object side 11 of the fourth cemented lens B4. The radius of curvature B4fr (r23) may satisfy the following condition (8).
1.03 ≦ | Lber / B4fr | ≦ 1.07 (8)
 正メニスカスレンズL43と、その像面側12に隣接した第4の接合レンズB4の間に空気レンズ(空気レンズ部)を作り、メニスカスレンズL43の像面側12の面S22と第4の接合レンズB4の物体側11の面s23とを近接させ、条件(8)を満足することにより周辺部の距離をほぼ0にするができる。この空気レンズにおいては、正メニスカスレンズL43の像面側12の凸面S22から出射した軸外光線の上側および下側マージナル光線を、軸外主光線側へ収束するように曲げる。その際に、空気レンズのレンズ厚は上側マージナル光線から下側マージナル光線へ向かうにつれて厚くなる。このため、上側マージナル光線よりも下側マージナル光線のほうが軸外主光線側へ収束し、また、軸外主光線は略垂直で入射するため曲がらない。結果として、空気レンズでは、下側マージナル光線が主に収束するように光線幅が縮小する。 An air lens (air lens portion) is formed between the positive meniscus lens L43 and the fourth cemented lens B4 adjacent to the image plane side 12, and the surface S22 of the meniscus lens L43 on the image plane side 12 and the fourth cemented lens. By bringing the surface s23 of the object side 11 of B4 close to and satisfying the condition (8), the distance of the peripheral portion can be made substantially zero. In this air lens, the upper and lower marginal rays of the off-axis rays emitted from the convex surface S22 on the image plane side 12 of the positive meniscus lens L43 are bent so as to converge to the off-axis principal ray side. At this time, the lens thickness of the air lens increases from the upper marginal ray to the lower marginal ray. For this reason, the lower marginal ray converges to the off-axis principal ray side more than the upper marginal ray, and the off-axis principal ray enters substantially perpendicularly and does not bend. As a result, in the air lens, the beam width is reduced such that the lower marginal beam mainly converges.
 その後、収束気味の軸外光線が、第4の接合レンズB4の物体側11の凹面S23に入射する。その際、軸外主光線は略垂直に入射して曲がらないが、上側及び下側マージナル光線は軸外主光線から離れる方向に発散する。さらに、上側マージナル光線の方が下側マージナル光線よりも発散する方向に曲げられる。結果として、空気レンズの存在により、上側マージナル光線と主光線との間の幅に比べ、下側マージナル光線と軸外主光線との間の幅が優先的に狭められるように収束する。このため、より軸外光線のバランスを調整することが可能となり、各収差を良好に補正する。 (4) Thereafter, a slightly convergent off-axis ray is incident on the concave surface S23 on the object side 11 of the fourth cemented lens B4. At this time, the off-axis chief ray is incident substantially perpendicularly and does not bend, but the upper and lower marginal rays diverge in a direction away from the off-axis chief ray. Furthermore, the upper marginal ray is bent in a direction that is more divergent than the lower marginal ray. As a result, the presence of the air lens converges so that the width between the lower marginal ray and the off-axis principal ray is preferentially narrower than the width between the upper marginal ray and the principal ray. For this reason, it becomes possible to further adjust the balance of off-axis rays, and to correct each aberration favorably.
 条件(8)の上限を超えると、凸面S22と比較して凹面S23の曲率が小さく(きつく)なりすぎるため、空気レンズ部からの出射光線が強く発散され過ぎてしまう。このため、軸外マージナル光線と軸外主光線とのバランスが崩れ、球面収差および像面湾曲の補正が難しくなる。また、条件(8)の下限を下回ると、逆に凸面S22の曲率が凹面S23の曲率の絶対値に近づく。このため、空気レンズからの出射光線の発散が弱くなり過ぎてしまい、やはり軸外マージナル光線と軸外主光線とのバランスが崩れ、球面収差および軸上色収差の補正が難しくなる。 If the upper limit of the condition (8) is exceeded, the curvature of the concave surface S23 becomes too small (stiff) as compared with the convex surface S22, so that the light rays emitted from the air lens portion are excessively diverged. For this reason, the balance between the off-axis marginal ray and the off-axis chief ray is lost, and it becomes difficult to correct spherical aberration and curvature of field. When the value goes below the lower limit of the condition (8), on the contrary, the curvature of the convex surface S22 approaches the absolute value of the curvature of the concave surface S23. For this reason, the divergence of the light beam emitted from the air lens becomes too weak, the balance between the off-axis marginal light beam and the off-axis chief ray is lost, and it becomes difficult to correct spherical aberration and axial chromatic aberration.
 絞りStの像面側12に配置された第3の接合レンズB3の像面側12の、像面側12に凸の面S20と、正の屈折力のメニスカスレンズL43の物体側11の、物体側11に凹の面S21との光軸15上の距離Ld41(d20)と、正の屈折力のメニスカスレンズL43の像面側12の、像面側12に凸の面S22と、正の屈折力のメニスカスレンズL43の像面側12に配置された第4の接合レンズB4の物体側11の、物体側11に凹の面S23との光軸15上の距離Ld43(d22)とは以下の条件(9)を満たしてもよい。
7 ≦ Ld41/Ld43 ≦ 23・・・(9)
The object S on the image side 12 of the third cemented lens B3 disposed on the image side 12 of the stop St, the surface S20 convex on the image side 12, and the object 11 on the object side 11 of the meniscus lens L43 having a positive refractive power. The distance Ld41 (d20) on the optical axis 15 from the concave surface S21 on the side 11 and the surface S22 convex on the image surface side 12 of the image surface side 12 of the meniscus lens L43 having a positive refractive power, and positive refraction The distance Ld43 (d22) on the optical axis 15 between the object side 11 of the fourth cemented lens B4 disposed on the image side 12 of the force meniscus lens L43 and the concave surface S23 on the object side 11 is as follows. Condition (9) may be satisfied.
7 ≦ Ld41 / Ld43 ≦ 23 (9)
 条件(9)の下限を下回ると、正メニスカスレンズL43と第4の接合レンズB4との間の空気レンズが厚くなりすぎて球面収差および像面湾曲の補正が難しくなる。条件(9)の上限を超えることは、メカ的にレンズ間隔を調整できる限界を超えてしまうため難しい。 When the value goes below the lower limit of the condition (9), the air lens between the positive meniscus lens L43 and the fourth cemented lens B4 becomes too thick, and it becomes difficult to correct spherical aberration and curvature of field. Exceeding the upper limit of condition (9) is difficult because it exceeds the limit at which the lens interval can be mechanically adjusted.
 また、絞りStの像面側12に配置された第3の接合レンズB3の像面側12の、像面側12に凸の面S20と、正の屈折力のメニスカスレンズL43の物体側11の、物体側11に凹の面S21との光軸15上の距離Ld41(d20)と、正の屈折力のメニスカスレンズL43の光軸15上の厚さLd42(d21)とは以下の条件(10)を満たしてもよい。
0.6 ≦ Ld41/Ld42 ≦ 1.0・・・(10)
条件(10)の上限を超えると、第3の接合レンズB3と正メニスカスレンズL43との間の間隔Ld41(d20)が、正メニスカスレンズL43の厚みLd42(d21)よりも厚くなる。このため、間隔Ld41へ入射した光線の内、軸外主光線および軸外マージナル光線が収束し過ぎてしまい、特に、上側マージナル光線と比較して軸外主光線及び下側マージナル光線の収束方向に対する曲がり方は強い。結果として、軸外主光線と軸外マージナル光線との間の幅のバランスが崩れたまま収束し過ぎるため、球面収差および倍率色収差を過剰に補正してしまう。逆に、条件(10)の下限を下回ると、間隔Ld41(d20)が厚みLd42(d21)に比べて薄くなりすぎるため、軸外光線が十分に収束できないまま正メニスカスレンズL43へ入射する。このため、球面収差および倍率色収差の補正が難しくなる。
In addition, the surface S20 of the third cemented lens B3 disposed on the image plane side 12 of the stop St, the surface S20 convex to the image plane side 12, and the object side 11 of the meniscus lens L43 having a positive refractive power. The distance Ld41 (d20) on the optical axis 15 from the concave surface S21 on the object side 11 on the optical axis 15 and the thickness Ld42 (d21) on the optical axis 15 of the meniscus lens L43 having a positive refractive power satisfy the following condition (10). ) May be satisfied.
0.6 ≦ Ld41 / Ld42 ≦ 1.0 (10)
When the value exceeds the upper limit of the condition (10), the distance Ld41 (d20) between the third cemented lens B3 and the positive meniscus lens L43 becomes larger than the thickness Ld42 (d21) of the positive meniscus lens L43. For this reason, of the rays incident on the interval Ld41, the off-axis chief ray and the off-axis marginal ray are excessively converged, and in particular, the convergence direction of the off-axis chief ray and the lower marginal ray as compared with the upper marginal ray. The way of turning is strong. As a result, the width between the off-axis chief ray and the off-axis marginal ray is excessively converged while being out of balance, so that spherical aberration and lateral chromatic aberration are excessively corrected. Conversely, when the value goes below the lower limit of the condition (10), the distance Ld41 (d20) becomes too thin as compared with the thickness Ld42 (d21), so that the off-axis ray enters the positive meniscus lens L43 without being sufficiently converged. For this reason, it becomes difficult to correct spherical aberration and lateral chromatic aberration.
 上記のように、正のパワーの第2のレンズ群G2、第3のレンズ群G3および第4のレンズ群G4を構成することにより、良好に収差が補正されたレンズシステム10を提供できる。さらに、このレンズシステム10は、負のパワーが先行するレトロフォーカスタイプであり、第1のレンズ群G1の焦点距離f1と、第2のレンズ群G2の焦点距離f2とが以下の条件(11)を満たしてもよい。
1.0 ≦ |f2/f1| ≦ 1.15・・・(11)
条件(11)において、上限を上回ると、負群である第1のレンズ群G1の焦点距離f1に対して、正群である第2のレンズ群G2の焦点距離f2が大き過ぎ、第1のレンズ群G1に対して第2のレンズ群G2のパワーが不足する。このため、第2のレンズ群G2を移動させて第1のレンズ群G1との間の距離を変化させたとしても、レンズシステム10の内部における各群同士の合成した際のパワー配置を十分に変化させることができず、フォーカス位置の調整が難しくなる。さらに、負群の第1のレンズ群G1に対して正群の第2のレンズ群G2のパワーが弱くなることにより、負のパワーに対する正のパワーのバランスが崩れて軸上色収差の補正が難しくなる。
As described above, by configuring the second lens group G2, the third lens group G3, and the fourth lens group G4 having a positive power, it is possible to provide the lens system 10 in which the aberration is satisfactorily corrected. Further, the lens system 10 is a retrofocus type in which negative power precedes, and the focal length f1 of the first lens group G1 and the focal length f2 of the second lens group G2 satisfy the following condition (11). May be satisfied.
1.0 ≦ | f2 / f1 | ≦ 1.15 (11)
In condition (11), when the value exceeds the upper limit, the focal length f2 of the second lens group G2 as the positive group is too large with respect to the focal length f1 of the first lens group G1 as the negative group. The power of the second lens group G2 is insufficient for the lens group G1. For this reason, even if the distance between the second lens group G2 and the first lens group G1 is changed by moving the second lens group G2, the power arrangement when the respective groups are combined within the lens system 10 is sufficiently increased. It cannot be changed, making it difficult to adjust the focus position. Further, since the power of the second lens group G2 of the positive group becomes weaker than that of the first lens group G1 of the negative group, the balance between the negative power and the positive power is lost, and it is difficult to correct axial chromatic aberration. Become.
 逆に、条件(11)の下限を下回ると、負の第1のレンズ群G1に対して正の第2のレンズ群G2の焦点距離が小さ過ぎ、第1のレンズ群G1のパワーに対して第2のレンズ群G2のパワーが強くなりすぎる。このため、フォーカス時の正群の第2のレンズ群G2の移動量を減らすという点では有利ではあるが、正の第2のレンズ群G2のパワーが強くなり過ぎ、負の第1のレンズ群G1に対する正のパワーバランスが崩れて軸上色収差の補正が過剰となり、補正が難しくなる。また、正の第2のレンズ群G2から出射される軸上の軸上主光線と軸上マージナル光線とのバランスおよび軸外光線の軸外主光線と軸外マージナル光線とのバランスが崩れてフォーカス前後における収差の変動が大きくなる。 Conversely, when the value goes below the lower limit of the condition (11), the focal length of the positive second lens unit G2 is too small with respect to the negative first lens unit G1, and the power of the first lens unit G1 is too small. The power of the second lens group G2 is too strong. This is advantageous in that the amount of movement of the second lens group G2 of the positive group during focusing is reduced, but the power of the positive second lens group G2 becomes too strong and the negative first lens group G2 becomes too strong. The positive power balance with respect to G1 is lost, and the axial chromatic aberration is excessively corrected, making correction difficult. Further, the balance between the on-axis principal ray and the on-axis marginal ray emitted from the positive second lens group G2 and the balance between the off-axis principal ray and the off-axis marginal ray of the off-axis ray are lost, and the focus is lost. The fluctuation of aberration before and after becomes large.
 また、第1のレンズ群G1は、最も物体側11に、物体側11に凸の正の屈折力のメニスカスの第1のレンズL11を含んでもよい。光線高が大きくなる最も物体側11に凸レンズL11を配置することで、その像面側12に配置される負のパワー構成により発生する歪曲収差等の収差を効果的に補正することが可能となる。また、凸レンズL11を、特に物体側11に凸面を向けたメニスカスレンズにすることで、凸レンズL11で発生する球面収差を抑制しながら、パワーを強くせずに光線高を効果的に小さくできる。このため、色収差等の発生も抑制しながら後方のレンズ径の増大を抑制することが可能となる。 The first lens group G1 may include the first lens L11 having a positive refractive power and a meniscus convex to the object side 11 closest to the object side 11. By arranging the convex lens L11 on the most object side 11 where the ray height becomes large, it becomes possible to effectively correct aberrations such as distortion generated by the negative power configuration arranged on the image plane side 12. . Further, by forming the convex lens L11 as a meniscus lens having a convex surface facing the object side 11 in particular, it is possible to effectively reduce the ray height without increasing the power while suppressing the spherical aberration generated in the convex lens L11. For this reason, it is possible to suppress an increase in the rear lens diameter while suppressing the occurrence of chromatic aberration and the like.
 さらに、第1のレンズ群G1は、正メニスカスレンズL11に隣接して配置された負の屈折力の第2のレンズL12を含み、第1のレンズL11の光軸上の厚みLd1(d1)と、第1のレンズL11と第2のレンズL12との光軸15上の距離Ld12(d2)とは以下の条件(12)を満たしてもよい。
0.35 ≦ Ld12/Ld1 ≦ 0.70・・・(12)
条件(12)において、上限を超えると、レンズの間隔Ld12(d2)が大きくなりすぎるため、正メニスカスレンズL11から出射した軸外光線及び軸上光線が収束し過ぎて光線高が小さくなり過ぎてしまう。このため、第1のレンズ群G1の正メニスカスレンズL11の像面側12に配置される第2のレンズL12を含む負レンズ群により発生する収差に対する、正メニスカスレンズL11の補正能力が過剰となり、球面収差および像面湾曲が強く発生してしまう。
Further, the first lens group G1 includes a second lens L12 having a negative refractive power disposed adjacent to the positive meniscus lens L11, and has a thickness Ld1 (d1) on the optical axis of the first lens L11. The distance Ld12 (d2) on the optical axis 15 between the first lens L11 and the second lens L12 may satisfy the following condition (12).
0.35 ≦ Ld12 / Ld1 ≦ 0.70 (12)
In the condition (12), when the value exceeds the upper limit, the distance Ld12 (d2) between the lenses becomes too large, so that the off-axis rays and the on-axis rays emitted from the positive meniscus lens L11 converge too much and the ray height becomes too small. I will. For this reason, the correction capability of the positive meniscus lens L11 for the aberration caused by the negative lens group including the second lens L12 disposed on the image plane side 12 of the positive meniscus lens L11 of the first lens group G1 becomes excessive, Spherical aberration and field curvature are strongly generated.
 逆に、条件(12)の下限を下回ると、レンズの間隔Ld12(d2)が小さくなりすぎるため、正メニスカスレンズL11から出射した軸外光線および軸上光線が収束しきれず光線高が高い状態で第1のレンズ群G1の像面側12の負のメニスカスレンズL12へ光線が入射してしまう。このため、負のメニスカスレンズL12による発散能力が強く作用し、正メニスカスレンズL11による、第1のレンズ群G1の負レンズ群により発生する収差の補正能力が不足する。したがって、球面収差および軸上色収差の補正が難しくなる。 Conversely, when the value goes below the lower limit of the condition (12), the distance Ld12 (d2) between the lenses becomes too small, so that off-axis rays and on-axis rays emitted from the positive meniscus lens L11 cannot be converged and the ray height is high. A light ray enters the negative meniscus lens L12 on the image plane side 12 of the first lens group G1. For this reason, the divergence ability of the negative meniscus lens L12 acts strongly, and the ability of the positive meniscus lens L11 to correct aberration generated by the negative lens group of the first lens group G1 is insufficient. Therefore, it is difficult to correct spherical aberration and axial chromatic aberration.
 図1に示したレンズシステム10は、図3にまとめて示すように、無限遠から最至近距離630mmまでのフォーカスレンジを備えた、無限遠における焦点距離が95mmの中望遠タイプのレンズである。レンズシステム10は、全16枚構成で、全長(最も物体側11のレンズ面から最も像面側12のレンズ面までの距離)LAが169.72mm、撮像面5までの距離が219.96mmの比較的コンパクトなレンズシステムであり、第2のレンズ群G2および第3のレンズ群G3がフォーカシングの際に移動するインナーフォーカスタイプのレンズシステムである。各焦点距離におけるF値は1.68と一定で小さい値であり、フォーカシング(合焦)の際に絞りStが移動せず、F値が変動しないレンズシステムとなっている。 As shown in FIG. 3, the lens system 10 shown in FIG. 1 is a middle-telephoto lens having a focus range from infinity to a closest distance of 630 mm and a focal length at infinity of 95 mm. The lens system 10 has a total of 16 lenses, and has a total length (distance from the lens surface closest to the object side 11 to the lens surface closest to the image plane side) LA of 169.72 mm and a distance to the imaging surface 5 of 219.96 mm. This is a relatively compact lens system, and is an inner focus type lens system in which the second lens group G2 and the third lens group G3 move during focusing. The F-number at each focal length is a constant and small value of 1.68, and the lens system does not move and the F-number does not fluctuate during focusing (focusing).
 図4に示すように、第4のレンズ群G4の像面側12に凸の負メニスカスレンズL46の像面側12の面27が非球面となっている。非球面は、Xを光軸方向の座標、Yを光軸と垂直方向の座標、光の進行方向を正、Rを近軸曲率半径とすると、図4に示した係数K、A、B、C、D、EおよびFを用いて次式(X)で表わされる。以降の実施形態においても同様である。なお、「En」は、「10のn乗」を意味する。
X=(1/R)Y/[1+{1-(1+K)(1/R)1/2
  +AY+BY+CY+DY10+EY12+FY14・・・(X)
As shown in FIG. 4, the surface 27 of the fourth lens group G4 on the image plane side 12 of the negative meniscus lens L46 that is convex on the image plane side 12 is aspheric. Assuming that X is the coordinates in the optical axis direction, Y is the coordinates in the direction perpendicular to the optical axis, the traveling direction of light is positive, and R is the paraxial radius of curvature, the coefficients K, A, B, and A shown in FIG. It is represented by the following equation (X) using C, D, E and F. The same applies to the following embodiments. Note that "En" means "10 to the power of n".
X = (1 / R) Y 2 / [1+ {1- (1 + K) (1 / R) 2 Y 2} 1/2]
+ AY 4 + BY 6 + CY 8 + DY 10 + EY 12 + FY 14 ... (X)
 図5から図7に、レンズシステム10の無限遠、標準距離および最至近にフォーカスしたときの諸収差を示している。図5(a)、図6(a)および図7(a)は、球面収差、非点収差、歪曲収差を示し、図5(b)、図6(b)および図7(b)は横収差を示している。球面収差は、波長435.8nm(二点鎖線)と、波長486.1nm(一点鎖線)と、波長546.1nm(破線)と、波長587.6nm(実線)と、656.3nm(長破線)とを示している。非点収差はタンジェンシャル光線Tとサジタル光線Sとを示している。また、横収差をタンジェンシャル光線およびサジタル光線のそれぞれについて、上記と同じ波長について示している。 FIGS. 5 to 7 show various aberrations when the lens system 10 is focused on infinity, a standard distance, and the closest distance. 5 (a), 6 (a) and 7 (a) show spherical aberration, astigmatism and distortion, and FIGS. 5 (b), 6 (b) and 7 (b) Aberration is shown. The spherical aberrations are wavelength 435.8 nm (two-dot chain line), wavelength 486.1 nm (single-dot chain line), wavelength 546.1 nm (dashed line), wavelength 587.6 nm (solid line), and 656.3 nm (long broken line). Are shown. Astigmatism indicates a tangential ray T and a sagittal ray S. Further, the transverse aberration is shown for each of the tangential ray and the sagittal ray for the same wavelength as described above.
 本例のレンズシステム10の諸数値および各条件の値は以下の通りである。
第1のレンズ群G1の焦点距離f1: -131.56mm
第2のレンズ群G2の焦点距離f2: 135.28mm
第3のレンズ群G3の焦点距離f3: 113.40mm
第4のレンズ群G4の焦点距離f4: 66.61mm
第2のレンズ群G2の移動距離FL1: 17.02mm
第3のレンズ群G3の移動距離FL2:  5.51mm
第1の接合レンズB1の焦点距離B1f: 135.28mm
第2の接合レンズB2の焦点距離B2f: -85.57mm
第3の接合レンズB3の焦点距離B3f: -168.27mm
第4の接合レンズB4の焦点距離B4f: -21148.18mm
条件(1)(f2/f3): 1.19
条件(2)(FL1/FL2): 3.09
条件(3)(B1D>B2D、B3D<B4D
     (D7>D14、D18<D23)):
    (53.18>45.56、31.60<31.72)
条件(4)(|B1p-B1m|<|B2p-B2m|、
      |B3p-B3m|>|B4p-B4m|):
    (|44.20-25.43|<|94.66-34.71|、
     |81.55-31.08|>|40.77-34.71|)
条件(5)(|g4fr/g3er|(|r18/r16|)): 3.08
条件(6)(B3f/B2f): 1.97
条件(7)(|B3er/Lbfr|(|r20/r21|)): 1.51
条件(8)(|Lber/B4fr|(|r22/r23)): 1.04
条件(9)(Ld41/Ld43(d20/d22)): 11.29
条件(10)(Ld41/Ld42(d20/d21)): 0.70
条件(11)(|f2/f1|): 1.03
条件(12)(Ld12/Ld1(d2/d1)): 0.45
The values of the lens system 10 of the present example and the values of each condition are as follows.
Focal length f1: of the first lens group G1 is −131.56 mm
Focal length f2 of the second lens group G2: 135.28 mm
Focal length f3 of third lens group G3: 113.40 mm
Focal length f4 of fourth lens group G4: 66.61 mm
Moving distance FL of second lens group G2: 17.02 mm
Moving distance FL2 of third lens group G3: 5.51 mm
Focal length B1f of the first cemented lens B1: 135.28 mm
Focal length B2f of the second cemented lens B2: -85.57 mm
Focal length B3f of the third cemented lens B3: -168.27 mm
Focal length B4f of the fourth cemented lens B4: -21148.18 mm
Condition (1) (f2 / f3): 1.19
Condition (2) (FL1 / FL2): 3.09
Condition (3) (B1D> B2D, B3D <B4D
(D7> D14, D18 <D23)):
(53.18> 45.56, 31.60 <31.72)
Condition (4) (| B1p-B1m | <| B2p-B2m |,
| B3p-B3m |> | B4p-B4m |):
(| 44.20-25.43 | <| 94.66-34.71 |,
| 81.55-31.08 |> | 40.77-34.71 |)
Condition (5) (| g4fr / g3er | (| r18 / r16 |)): 3.08
Condition (6) (B3f / B2f): 1.97
Condition (7) (| B3er / Lbfr | (| r20 / r21 |)): 1.51
Condition (8) (| Lber / B4fr | (| r22 / r23)): 1.04
Condition (9) (Ld41 / Ld43 (d20 / d22)): 11.29
Condition (10) (Ld41 / Ld42 (d20 / d21)): 0.70
Condition (11) (| f2 / f1 |): 1.03
Condition (12) (Ld12 / Ld1 (d2 / d1)): 0.45
 以上に示したように、図1に示したレンズシステム10は、長さが固定されたコンパクトなレンズシステムであり、4群16枚構成のレンズシステムであるが、フォーカシングの際の重心の移動が少なく、取り扱い(取り回し)が容易なレンズシステムである。さらに、このレンズシステム10においては、フォーカシングの際にFNoは固定され、フォーカシングが容易で、鮮明で、あるいは所望のフォーカシングで、明るさの変動が少ない画像を取得できる。また、レンズシステム10は、条件(1)~(12)を満足する。また、図5~図7に示したように、フォーカシングの全域において諸収差が良好に補正された画像を取得できる。 As described above, the lens system 10 shown in FIG. 1 is a compact lens system having a fixed length, and is a lens system having four groups and sixteen lenses. It is a lens system that is small and easy to handle (manage). Further, in the lens system 10, the FNo is fixed at the time of focusing, so that focusing is easy, and a clear or desired focusing and an image with a small fluctuation in brightness can be obtained. Further, the lens system 10 satisfies the conditions (1) to (12). Further, as shown in FIGS. 5 to 7, it is possible to obtain an image in which various aberrations are satisfactorily corrected in the entire focusing area.
 また、このレンズシステム10においては、フォーカシングは絞りStの物体側11に配置された第2のレンズ群G2および第3のレンズ群G3で行われ、絞りStから離して、焦点距離の調整機能(機構)を絞りStの前方に集中できる。したがって、これらの機構も簡易化でき、さらに軽量、高性能でコンパクトなレンズシステム10および撮像装置1を提供できる。 In the lens system 10, the focusing is performed by the second lens group G2 and the third lens group G3 arranged on the object side 11 of the stop St, and is separated from the stop St to adjust the focal length ( Mechanism) can be concentrated in front of the stop St. Therefore, these mechanisms can also be simplified, and a lightweight, high-performance, compact lens system 10 and imaging apparatus 1 can be provided.
 図8に、撮像装置1の異なる例を示している。この撮像装置(カメラ)1も、光学系(撮像光学系、結像光学系、レンズシステム)10と、レンズシステム10の像面側(画像側、撮像側、結像側)12に配置された撮像素子(撮像デバイス、像面)5とを有する。レンズシステム10は、撮像用の光学系であって、4群15枚構成のレンズシステムである。図8(a)は、フォーカス位置が無限遠のレンズ配置を示し、図8(b)は、フォーカス位置が最近接(近距離、630mm)におけるレンズ配置を示している。 FIG. 8 shows a different example of the image pickup apparatus 1. This imaging device (camera) 1 is also disposed on an optical system (imaging optical system, imaging optical system, lens system) 10 and on an image plane side (image side, imaging side, imaging side) 12 of the lens system 10. An image pickup device (image pickup device, image plane) 5. The lens system 10 is an optical system for imaging, and is a lens system having four groups and 15 elements. FIG. 8A shows a lens arrangement where the focus position is at infinity, and FIG. 8B shows a lens arrangement where the focus position is closest (close distance, 630 mm).
 このレンズシステム10も4群構成であり、最も物体側11の合成屈折力(パワー)が負の第1のレンズ群G1、および最も像面側12の合成屈折力(パワー)が正の第4のレンズ群G4は、フォーカシングに際して移動せず、像面5に対する距離が変わらない固定されたレンズ群である。また、第4のレンズ群G4の物体側11に配置された絞り(開口絞り)Stも、像面5に対する距離は変わらず、固定されている。第1のレンズ群G1の像面側12に配置された正の屈折力の第2のレンズ群G2は、無限遠から最至近にフォーカス位置が移動すると、像面側12に単調に移動する。第2のレンズ群G2の像面側12に配置された正の屈折力の第3のレンズ群G3は、無限遠から最至近にフォーカス位置が移動すると、物体側11に単調に移動する。 This lens system 10 also has a four-group configuration, with the first lens group G1 having the most negative combined refractive power (power) on the object side 11 and the fourth lens group G1 having the most positive combined refractive power (power) on the image plane side 12. Is a fixed lens group that does not move during focusing and does not change the distance to the image plane 5. Also, the stop (aperture stop) St arranged on the object side 11 of the fourth lens group G4 is fixed without changing the distance to the image plane 5. The second lens group G2 having a positive refractive power and disposed on the image plane side 12 of the first lens group G1 monotonously moves to the image plane side 12 when the focus position moves from infinity to the closest. The third lens group G3 having a positive refractive power and disposed on the image plane side 12 of the second lens group G2 monotonously moves to the object side 11 when the focus position moves from infinity to the closest.
 図9に、レンズシステム10を構成する各レンズのデータを示している。図10に、焦点距離が無限遠、標準(2280mm)および最至近(630mm)のときの、焦点距離、F値および可変間隔d6、d9、およびd16の値を示している。図11に、レンズシステム10に含まれる非球面の係数を示している。この例では、第4のレンズ群G4の像面側12の負メニスカスレンズL46の像面側12の面S25が非球面となっている。 FIG. 9 shows data of each lens constituting the lens system 10. FIG. 10 shows the focal length, the F value, and the values of the variable intervals d6, d9, and d16 when the focal length is infinity, standard (2280 mm), and closest (630 mm). FIG. 11 shows aspherical coefficients included in the lens system 10. In this example, the surface S25 of the image surface side 12 of the negative meniscus lens L46 on the image surface side 12 of the fourth lens group G4 is aspheric.
 図12~図14に、レンズシステム10の焦点距離が無限遠、標準、最至近のそれぞれの球面収差、非点収差、歪曲収差および横収差を示している。図12(a)、図13(a)および図14(a)は、球面収差、非点収差、歪曲収差を示し、図12(b)、図13(b)および図14(b)は横収差を示している。 FIGS. 12 to 14 show the spherical aberration, astigmatism, distortion, and lateral aberration of the lens system 10 when the focal length is infinity, standard, and closest. FIGS. 12 (a), 13 (a) and 14 (a) show spherical aberration, astigmatism and distortion, and FIGS. 12 (b), 13 (b) and 14 (b) Aberration is shown.
 このレンズシステム10の基本的な構成は図1に示したレンズシステム10と共通する。第1のレンズ群G1は、最も物体側11に固定された(フォーカシングの際に移動しない)負のパワーのレンズ群であり、物体側11から順に配置された、物体側11に凸の正の屈折力のメニスカスレンズL11と、物体側11に凸の負の屈折力のメニスカスレンズL12と、両凹の負レンズL13の3枚構成であり、正-負-負のパワー配置を備える。無限遠から最至近へフォーカシングの際に光軸15に沿って第1のレンズG1との距離d6が広がるように像面側12に移動する正の屈折力の第2のレンズ群G2は、物体側11から両凹の負レンズL21と両凸の正レンズL22との2枚構成であり、負-正のパワー配置を備え、負レンズL21および正レンズL22により、全体として像面側12に凸の正の屈折力の第1の接合レンズB1が構成されている。 The basic configuration of the lens system 10 is common to the lens system 10 shown in FIG. The first lens group G1 is a lens group of negative power which is fixed to the object side 11 most (does not move at the time of focusing), and is arranged in order from the object side 11 and is a positive lens convex to the object side 11. It has a meniscus lens L11 having a refractive power, a meniscus lens L12 having a negative refractive power convex on the object side 11, and a negative lens L13 having a biconcave shape, and has a positive-negative-negative power arrangement. The second lens group G2 having a positive refractive power, which moves to the image plane side 12 so as to increase the distance d6 from the first lens G1 along the optical axis 15 during focusing from infinity to the closest, 11, a biconcave negative lens L21 and a biconvex positive lens L22 are provided. The negative lens L21 and the positive lens L22 have a negative-positive power arrangement. A first cemented lens B1 having a positive refractive power is formed.
 無限遠から最至近へフォーカシングの際に光軸15に沿って第1のレンズG1および第2のレンズ群G2との距離が縮まるように物体側11に移動する、全体として正の屈折力の第3のレンズ群G3は、物体側11から順に配置された、物体側11に凸の正の屈折力のメニスカスレンズL31と、物体側11に凸の正の屈折力のメニスカスレンズL32と、物体側11に凸の正の屈折力のメニスカスレンズL33と、像面側12に凹の負の屈折力のメニスカスレンズL34との4枚構成であり、正-正-正-負のパワー配置を備える。正のメニスカスレンズL33および負のメニスカスレンズL34により、全体として物体側11に凸(像面側12に凹)の負の屈折力の第2の接合レンズB2が構成されている。 At the time of focusing from infinity to the closest distance, the lens moves to the object side 11 along the optical axis 15 so as to reduce the distance between the first lens G1 and the second lens group G2. The lens group G3 includes, in order from the object side 11, a meniscus lens L31 having a positive refractive power convex on the object side 11, a meniscus lens L32 having a positive refractive power convex on the object side 11, and The positive lens has a positive refractive power meniscus lens L33 and a concave negative refractive power meniscus lens L34 on the image side 12, and has a positive-positive-positive-negative power arrangement. The positive meniscus lens L33 and the negative meniscus lens L34 constitute a second cemented lens B2 having a negative refractive power that is convex on the object side 11 (concave on the image plane side 12) as a whole.
 最も像面側12に配置された、正の屈折力の第4のレンズ群G4は、物体側11から順に配置された、両凹の負レンズL41と、両凸の正レンズL42と、両凹の負レンズL43と、両凸の正レンズL44と、像面側12に凸の負のメニスカスレンズL45と、両凸の正レンズL46との6枚構成であり、負-正-負-正-負-正のパワー配置を備える。負レンズL41と正レンズL42とにより、全体として物体側11に凹(像面側12に凸)の負の屈折力の第3の接合レンズB3が構成されている。また、第3の接合レンズB3の像面側12に隣接して、両凹の負レンズL43と両凸の正レンズL44とにより、全体として物体側11に凹(像面側12に凸)の負の屈折力の第4の接合レンズB4が構成されている。したがって、このレンズシステム10においては、図1に示したレンズシステムに対し、第3の接合レンズB3と第4の接合レンズB4との間に配置された像面側12に凸の正メニスカスレンズが省かれており、第4の接合レンズB4が全体として正の屈折力の接合レンズとなっている。 The fourth lens group G4 having a positive refractive power and disposed closest to the image plane 12 includes a biconcave negative lens L41, a biconvex positive lens L42, and a biconcave , A biconvex positive lens L44, a negative meniscus lens L45 convex on the image side 12, and a biconvex positive lens L46. It has a negative-positive power arrangement. The negative lens L41 and the positive lens L42 constitute a third cemented lens B3 having a negative refractive power that is concave on the object side 11 (convex on the image plane side 12) as a whole. Further, adjacent to the image plane side 12 of the third cemented lens B3, the biconcave negative lens L43 and the biconvex positive lens L44 are generally concave to the object side 11 (convex to the image plane side 12). A fourth cemented lens B4 having a negative refractive power is configured. Therefore, in the lens system 10, a positive meniscus lens having a convex surface on the image plane side 12 disposed between the third cemented lens B3 and the fourth cemented lens B4 is different from the lens system shown in FIG. This is omitted, and the fourth cemented lens B4 is a cemented lens having a positive refractive power as a whole.
 第4のレンズ群G4の物体側11に絞りStが配置されており、絞りStは、物体側11に第2の接合レンズB2が他のレンズを挟まずに配置され、像面側12に第3の接合レンズB3が他のレンズを挟まずに配置されている。 A stop St is disposed on the object side 11 of the fourth lens group G4. The stop St is such that the second cemented lens B2 is disposed on the object side 11 without interposing another lens, and the stop St is disposed on the image plane side 12. The third cemented lens B3 is arranged without interposing another lens.
 図10にまとめて示すように、本例のレンズシステム10も、無限遠から最至近距離630mmまでのフォーカスレンジを備えた、無限遠における焦点距離が95mmの中望遠タイプのレンズである。レンズシステム10は、全15枚構成で、全長(最も物体側11のレンズ面から最も像面側12のレンズ面までの距離)LAが129.9mm、撮像面5までの距離が176.68mmのさらにコンパクトなレンズシステムであり、第2のレンズ群G2および第3のレンズ群G3がフォーカシングの際に移動するインナーフォーカスタイプのレンズシステムである。各焦点距離におけるF値は1.68と一定で小さい値であり、フォーカシング(合焦)の際に絞りStが移動せず、F値が変動しないレンズシステムとなっている。 As shown in FIG. 10, the lens system 10 of this embodiment is also a medium telephoto lens having a focus range from infinity to the closest distance of 630 mm and a focal length at infinity of 95 mm. The lens system 10 has a total of 15 lenses, and has a total length (distance from the lens surface closest to the object side 11 to the lens surface closest to the image side 12) LA of 129.9 mm and a distance to the imaging surface 5 of 176.68 mm. This is a more compact lens system, and is an inner focus type lens system in which the second lens group G2 and the third lens group G3 move during focusing. The F-number at each focal length is a constant and small value of 1.68, and the lens system does not move and the F-number does not fluctuate during focusing (focusing).
 このレンズシステム10の諸数値および各条件の値は以下の通りである。なお、本例のレンズシステム10においては、第4のレンズ群G4は第3の接合レンズB3および第4の接合レンズB4が隣接しており、正メニスカスレンズが省略されているので、条件(7)~(10)は評価の対象とならない。
第1のレンズ群G1の焦点距離f1: -132.25mm
第2のレンズ群G2の焦点距離f2: 139.90mm
第3のレンズ群G3の焦点距離f3: 110.39mm
第4のレンズ群G4の焦点距離f4: 65.94mm
第2のレンズ群G2の移動距離FL1: 17.40mm
第3のレンズ群G3の移動距離FL2:  5.39mm
第1の接合レンズB1の焦点距離B1f: 139.90mm
第2の接合レンズB2の焦点距離B2f: -87.21mm
第3の接合レンズB3の焦点距離B3f: -252.93mm
第4の接合レンズB4の焦点距離B4f: 247.56mm
条件(1)(f2/f3): 1.27
条件(2)(FL1/FL2): 3.23
条件(3)(B1D>B2D、B3D<B4D
     (D7>D14、D18<D21)):
    (53.16>45.66、31.36<31.80)
条件(4)(|B1p-B1m|<|B2p-B2m|、
      |B3p-B3m|>|B4p-B4m|):
    (|44.20-25.43|<|94.66-34.71|、
     |81.55-31.08|>|40.77-34.71|)
条件(5)(|g4fr/g3er|(|r18/r16|)): 2.71
条件(6)(B3f/B2f): 2.90
条件(11)(|f2/f1|): 1.06
条件(12)(Ld12/Ld1(d2/d1)): 0.52
The numerical values of the lens system 10 and the values of each condition are as follows. In the lens system 10 of the present example, since the fourth cemented lens B3 and the fourth cemented lens B4 are adjacent to each other in the fourth lens group G4 and the positive meniscus lens is omitted, the condition (7) is satisfied. ) To (10) are not subject to evaluation.
Focal length f1 of first lens group G1: -132.25 mm
Focal length f2 of the second lens group G2: 139.90 mm
Focal length f3 of third lens group G3: 110.39 mm
Focal length f4 of fourth lens group G4: 65.94 mm
Moving distance FL of second lens group G2: 17.40 mm
Moving distance FL2 of third lens group G3: 5.39 mm
Focal length B1f of the first cemented lens B1: 139.90 mm
Focal length B2f of the second cemented lens B2: -87.21 mm
Focal length B3f of the third cemented lens B3: -252.93 mm
Focal length B4f of the fourth cemented lens B4: 247.56 mm
Condition (1) (f2 / f3): 1.27
Condition (2) (FL1 / FL2): 3.23
Condition (3) (B1D> B2D, B3D <B4D
(D7> D14, D18 <D21)):
(53.16> 45.66, 31.36 <31.80)
Condition (4) (| B1p-B1m | <| B2p-B2m |,
| B3p-B3m |> | B4p-B4m |):
(| 44.20-25.43 | <| 94.66-34.71 |,
| 81.55-31.08 |> | 40.77-34.71 |)
Condition (5) (| g4fr / g3er | (| r18 / r16 |)): 2.71
Condition (6) (B3f / B2f): 2.90
Condition (11) (| f2 / f1 |): 1.06
Condition (12) (Ld12 / Ld1 (d2 / d1)): 0.52
 以上に示したように、図8に示したレンズシステム10は、長さが固定されたコンパクトなレンズシステムであり、4群15枚構成のレンズシステムであるが、フォーカシングの際の重心の移動が少なく、取り扱い(取り回し)が容易なレンズシステムである。さらに、このレンズシステム10においても、フォーカシングの際にFNoは固定され、フォーカシングが容易で、鮮明で、あるいは所望のフォーカシングで、明るさの変動が少ない画像を取得できる。また、レンズシステム10は、条件(1)~(6)、(11)および(12)を満足し、図12~図14に示したように、フォーカシングの全域において諸収差が良好に補正された画像を取得できる。 As described above, the lens system 10 shown in FIG. 8 is a compact lens system having a fixed length, and is a lens system having four groups and 15 elements. It is a lens system that is small and easy to handle (manage). Further, also in the lens system 10, the FNo is fixed at the time of focusing, so that focusing can be easily performed, and a clear or desired focusing and an image with little fluctuation in brightness can be obtained. Further, the lens system 10 satisfied the conditions (1) to (6), (11) and (12), and various aberrations were satisfactorily corrected in the entire focusing region as shown in FIGS. Images can be obtained.
 また、このレンズシステム10においても、フォーカシングは絞りStの物体側11に配置された第2のレンズ群G2および第3のレンズ群G3で行われ、絞りStから離して、焦点距離の調整機能(機構)を絞りStの前方に集中できる。したがって、これらの機構も簡易化でき、さらに軽量、高性能でコンパクトなレンズシステム10および撮像装置1を提供できる。 Also in this lens system 10, focusing is performed by the second lens group G2 and the third lens group G3 arranged on the object side 11 of the stop St, and is separated from the stop St to adjust the focal length ( Mechanism) can be concentrated in front of the stop St. Therefore, these mechanisms can also be simplified, and a lightweight, high-performance, compact lens system 10 and imaging apparatus 1 can be provided.

Claims (15)

  1.  撮像用のレンズシステムであって、
     物体側から順番に配置された、負の屈折力の第1のレンズ群と、正の屈折力の第2のレンズ群と、正の屈折力の第3のレンズ群と、正の屈折力の第4のレンズ群とから構成され、
     無限遠から最至近へフォーカシングの際に、光軸に沿った前記第1のレンズ群と前記第2のレンズ群との距離が広がり、前記第2のレンズ群と前記第3のレンズ群との距離が縮まり、前記第4のレンズ群は、前記第4のレンズ群の物体側に配置された絞りとともに像面に対して固定された、レンズシステム。
    An imaging lens system,
    A first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a positive refractive power, and a positive lens having a positive refractive power arranged in order from the object side. And a fourth lens group.
    During focusing from infinity to the nearest, the distance between the first lens group and the second lens group along the optical axis increases, and the distance between the second lens group and the third lens group Wherein the fourth lens group is fixed to an image plane together with a stop arranged on the object side of the fourth lens group.
  2.  請求項1において、前記第2のレンズ群の焦点距離f2と、前記第3のレンズ群の焦点距離f3とは以下の条件を満たす、レンズシステム。
     1.0 ≦ f2/f3 ≦ 1.5
    2. The lens system according to claim 1, wherein a focal length f2 of the second lens group and a focal length f3 of the third lens group satisfy the following condition.
    1.0 ≦ f2 / f3 ≦ 1.5
  3.  請求項1または2において、
     無限遠から最至近へフォーカシングの際に、前記第1のレンズ群は、前記像面に対して固定され、前記第2のレンズ群は像面側に移動し、前記第3のレンズ群は物体側に移動する、レンズシステム。
    In claim 1 or 2,
    During focusing from infinity to the closest, the first lens group is fixed with respect to the image plane, the second lens group moves toward the image plane, and the third lens group moves toward the object side. Go to the lens system.
  4.  請求項3において、
     前記第2のレンズ群の移動量FL1と、前記第3のレンズ群の移動量FL2とは以下の条件を満たす、レンズシステム。
     2.5 ≦ FL1/FL2 ≦ 4.5
    In claim 3,
    A lens system, wherein the movement amount FL1 of the second lens group and the movement amount FL2 of the third lens group satisfy the following conditions.
    2.5 ≦ FL1 / FL2 ≦ 4.5
  5.  請求項1ないし4のいずれかにおいて、
     前記第2のレンズ群は、第1の接合レンズを含み、前記第3のレンズ群は、第2の接合レンズを含む、レンズシステム。
    In any one of claims 1 to 4,
    A lens system, wherein the second lens group includes a first cemented lens, and the third lens group includes a second cemented lens.
  6.  請求項5において、
     前記第3のレンズ群は、前記第2の接合レンズの物体側に配置された少なくとも1枚の物体側に凸の正の屈折力のメニスカスレンズを含む、レンズシステム。
    In claim 5,
    The lens system, wherein the third lens group includes at least one meniscus lens having a positive refractive power that is convex on the object side and disposed on the object side of the second cemented lens.
  7.  請求項6において、前記第1の接合レンズは像面側に凸のメニスカスレンズであり、前記第2の接合レンズは物体側に凸のメニスカスレンズである、レンズシステム。 The lens system according to claim 6, wherein the first cemented lens is a meniscus lens convex on the image side, and the second cemented lens is a meniscus lens convex on the object side.
  8.  請求項5ないし7のいずれかにおいて、
     前記第4のレンズ群は、物体側に配置された第3の接合レンズと、像面側に配置された第4の接合レンズとを含む、レンズシステム。
    In any one of claims 5 to 7,
    The lens system, wherein the fourth lens group includes a third cemented lens arranged on the object side and a fourth cemented lens arranged on the image plane side.
  9.  請求項8において、
     前記第1の接合レンズの有効径B1Dと、前記第2の接合レンズの有効径B2Dと、前記第3の接合レンズの有効径B3Dと、前記第4の接合レンズの有効径B4Dとが以下の条件を満たす、レンズシステム。
     B1D > B2D
     B3D < B4D
    In claim 8,
    The effective diameter B1D of the first cemented lens, the effective diameter B2D of the second cemented lens, the effective diameter B3D of the third cemented lens, and the effective diameter B4D of the fourth cemented lens are as follows: A lens system that meets the requirements.
    B1D> B2D
    B3D <B4D
  10.  請求項8または9において、
     前記第1の接合レンズの正の屈折力のレンズのアッベ数B1pと負の屈折力のレンズのアッベ数B1mとの差と、前記第2の接合レンズの正の屈折力のレンズのアッベ数B2pと負の屈折力のレンズのアッベ数B2mとの差と、前記第3の接合レンズの正の屈折力のレンズのアッベ数B3pと負の屈折力のレンズのアッベ数B3mとの差と、前記第4の接合レンズの正の屈折力のレンズのアッベ数B4pと負の屈折力のレンズのアッベ数B4mとの差とが以下の条件を満たす、レンズシステム。
     |B1p-B1m| < |B2p-B2m|
     |B3p-B3m| > |B4p-B4m|
    In claim 8 or 9,
    The difference between the Abbe number B1p of the lens having a positive refractive power of the first cemented lens and the Abbe number B1m of the lens having a negative refractive power, and the Abbe number B2p of the lens having a positive refractive power of the second cemented lens And the difference between the Abbe number B3m of the lens having a positive refractive power of the third cemented lens and the Abbe number B3m of the lens having a negative refractive power. A lens system wherein the difference between the Abbe number B4p of the positive refractive power lens and the Abbe number B4m of the negative refractive power lens of the fourth cemented lens satisfies the following condition.
    | B1p-B1m | <| B2p-B2m |
    | B3p-B3m |> | B4p-B4m |
  11.  請求項1ないし4のいずれかにおいて、
     前記第3のレンズ群は、最も像面側の、前記絞りの物体側に配置された接合レンズであって、像面側の面が物体側に凹の面を含む接合レンズを含み、
     前記第4のレンズ群は、最も物体側の、前記絞りの像面側に配置された接合レンズであって、物体側の面が像面側に凹の面を含む接合レンズを含む、レンズシステム。
    In any one of claims 1 to 4,
    The third lens group is a cemented lens disposed on the object side of the diaphragm closest to the image plane, and includes a cemented lens whose surface on the image plane side includes a concave surface on the object side.
    A fourth lens group including a cemented lens disposed closest to the image plane side of the diaphragm on the object side, wherein the object-side surface includes a cemented lens including a concave surface on the image plane side; .
  12.  請求項1ないし11のいずれかにおいて、
     前記第1のレンズ群の焦点距離f1と、前記第2のレンズ群の焦点距離f2とが以下の条件を満たす、レンズシステム。
     1.0 ≦ |f2/f1| ≦ 1.15
    In any one of claims 1 to 11,
    A lens system, wherein a focal length f1 of the first lens group and a focal length f2 of the second lens group satisfy the following condition.
    1.0 ≦ | f2 / f1 | ≦ 1.15
  13.  請求項1ないし12のいずれかにおいて、
     前記第1のレンズ群は、最も物体側に、物体側に凸の正の屈折力のメニスカスの第1のレンズを含む、レンズシステム。
    In any one of claims 1 to 12,
    The lens system according to claim 1, wherein the first lens group includes a first lens having a meniscus having a positive refractive power convex to the object side and closest to the object side.
  14.  請求項13において、
     前記第1のレンズ群は、前記正メニスカスレンズに隣接して配置された負の屈折力の第2のレンズを含み、前記第1のレンズの光軸上の厚みLd1と、前記第1のレンズと前記第2のレンズとの光軸上の距離Ld12とは以下の条件を満たす、レンズシステム。
     0.35 ≦ Ld12/Ld1 ≦ 0.70
    In claim 13,
    The first lens group includes a second lens having a negative refractive power disposed adjacent to the positive meniscus lens. The first lens group has a thickness Ld1 on the optical axis of the first lens and the first lens. A lens system, wherein a distance Ld12 on the optical axis between the lens and the second lens satisfies the following condition.
    0.35 ≦ Ld12 / Ld1 ≦ 0.70
  15.  請求項1ないし14のいずれかに記載のレンズシステムと、
     前記レンズシステムの像面側に配置された撮像素子とを有する撮像装置。
    A lens system according to any one of claims 1 to 14,
    An imaging device comprising: an imaging element arranged on an image plane side of the lens system.
PCT/JP2019/024030 2018-06-19 2019-06-18 Lens system and imaging device WO2019244866A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-115755 2018-06-19
JP2018115755A JP2021152559A (en) 2018-06-19 2018-06-19 Lens system and image capturing device

Publications (1)

Publication Number Publication Date
WO2019244866A1 true WO2019244866A1 (en) 2019-12-26

Family

ID=68983744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024030 WO2019244866A1 (en) 2018-06-19 2019-06-18 Lens system and imaging device

Country Status (2)

Country Link
JP (1) JP2021152559A (en)
WO (1) WO2019244866A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208966A (en) * 2000-01-28 2001-08-03 Fuji Photo Optical Co Ltd Wide-angle lens
JP2004061679A (en) * 2002-07-26 2004-02-26 Canon Inc Vibration-proof zoom lens
JP2011186269A (en) * 2010-03-10 2011-09-22 Fujifilm Corp Wide-angle lens for projection, and projection type display device
US20140002910A1 (en) * 2012-06-28 2014-01-02 Leica Camera Ag Modified retrofocus-type wide-angle lens
WO2015072245A1 (en) * 2013-11-18 2015-05-21 オリンパス株式会社 Imaging device and imaging system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208966A (en) * 2000-01-28 2001-08-03 Fuji Photo Optical Co Ltd Wide-angle lens
JP2004061679A (en) * 2002-07-26 2004-02-26 Canon Inc Vibration-proof zoom lens
JP2011186269A (en) * 2010-03-10 2011-09-22 Fujifilm Corp Wide-angle lens for projection, and projection type display device
US20140002910A1 (en) * 2012-06-28 2014-01-02 Leica Camera Ag Modified retrofocus-type wide-angle lens
WO2015072245A1 (en) * 2013-11-18 2015-05-21 オリンパス株式会社 Imaging device and imaging system

Also Published As

Publication number Publication date
JP2021152559A (en) 2021-09-30

Similar Documents

Publication Publication Date Title
JP5893487B2 (en) Zoom lens and imaging apparatus having the same
JPH09325274A (en) Zoom lens
US11378788B2 (en) Zoom lens system and imaging apparatus
JP7218920B2 (en) Lens system and imaging device
JPH07140388A (en) Zoom lens
JP2006139187A (en) Zoom lens
JP6830645B2 (en) Optical system and imaging device for imaging
JP7148154B2 (en) Lens system and imaging device
JPH07318804A (en) Zoom lens
JP4876460B2 (en) Zoom lens with image shift
WO2019244867A1 (en) Lens system and imaging device
JPH116958A (en) Zoom lens
JPH085907A (en) Telephoto lens optical system
JP4011786B2 (en) Rear focus zoom lens
WO2019244866A1 (en) Lens system and imaging device
JP2004004932A (en) Zoom lens
JPH11211978A (en) Retro-focus type lens
JP7000138B2 (en) Optical system and an image pickup device having it
JP6919812B2 (en) Variable magnification optical system and optical equipment
JP2017211496A (en) Large-aperture zoom lens with anti-shake feature
WO2019131750A1 (en) Lens system and imaging device
JP3538265B2 (en) High zoom lens system
JP3799006B2 (en) Zoom lens
JPS63294506A (en) High variable power zoom lens including wide angle range
JP2019028172A (en) Zoom lens system and imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19822013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP