WO2019244686A1 - Imaging device, control method for imaging device, and program - Google Patents

Imaging device, control method for imaging device, and program Download PDF

Info

Publication number
WO2019244686A1
WO2019244686A1 PCT/JP2019/022851 JP2019022851W WO2019244686A1 WO 2019244686 A1 WO2019244686 A1 WO 2019244686A1 JP 2019022851 W JP2019022851 W JP 2019022851W WO 2019244686 A1 WO2019244686 A1 WO 2019244686A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminance
amplification factor
image
amplification
signal
Prior art date
Application number
PCT/JP2019/022851
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 入江
寿人 関根
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019077034A external-priority patent/JP7378951B2/en
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2019244686A1 publication Critical patent/WO2019244686A1/en
Priority to US17/123,938 priority Critical patent/US11563900B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/76Circuitry for compensating brightness variation in the scene by influencing the image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise

Definitions

  • the present invention relates to a technique for controlling an imaging device.
  • a general imaging device has one amplifying means for one photoelectric conversion element, and amplifies an electric signal generated by the photoelectric conversion element.
  • an imaging device that amplifies an electric signal generated by a photoelectric conversion element by two amplifying units is known (see Patent Literature 1, Patent Literature 2, Non-Patent Literature 1). .
  • one image is generated by appropriately selecting two amplified electric signals or a digital value obtained by AD (analog-digital) conversion of the two amplified electric signals according to luminance. Can improve the S / N.
  • Patent Literature 1 Patent Literature 2, Non-Patent Literature 1
  • an amplification factor for an electric signal is determined before photographing. For this reason, for example, in a case where areas having different brightness in a shooting scene change rapidly, such as in outdoor shooting, there is a problem that if a preset amplification factor is used, a sufficient S / N improvement effect cannot be obtained. is there.
  • an object of the present invention is to obtain a sufficient S / N improvement effect.
  • the image pickup apparatus of the present invention is an image pickup apparatus that performs digital conversion after amplifying a signal voltage obtained by voltage-converting a signal charge obtained by photoelectrically converting an optical image of a subject, wherein the signal voltage is set to two or more set respectively.
  • An amplification circuit that amplifies the amplification factor according to the amplification factor; weight determination means that determines a weight for each of the digitally converted signals after amplification based on the two or more amplification factors; and the digital after the two or more amplification factors.
  • FIG. 2 is a diagram illustrating a configuration of an imaging device according to the first embodiment.
  • 5 is a flowchart illustrating a flow of processing of the imaging device according to the first embodiment.
  • 5 is a flowchart of an amplification factor determination process according to the first embodiment.
  • FIG. 4 is an explanatory diagram of an amplification factor determination method according to the first embodiment. It is a flowchart of the amplification factor determination processing of 2nd Embodiment. It is explanatory drawing of the amplification factor determination method of 2nd Embodiment. It is explanatory drawing of the amplification factor determination method of 2nd Embodiment. It is a figure showing the composition of the imaging device of a 3rd embodiment.
  • 13 is a flowchart illustrating a flow of processing of the imaging device according to the third embodiment. It is a figure showing the composition of the imaging device of a 4th embodiment.
  • 15 is a flowchart illustrating a flow of a process of the imaging device according to the fourth embodiment. It is a flowchart of the amplification factor determination process of 4th Embodiment. It is explanatory drawing of the amplification factor determination method of 4th Embodiment. It is a flowchart of the amplification factor determination process of 5th Embodiment. It is explanatory drawing of the amplification factor determination method of 5th Embodiment. It is a figure showing the composition of the imaging device of a 6th embodiment.
  • FIG. 11 is a diagram illustrating a configuration of an imaging device according to another embodiment.
  • FIG. 1 is a diagram illustrating a schematic configuration example of the imaging apparatus according to the first embodiment.
  • the imaging unit 100 includes an optical system 101, a photoelectric conversion element 102, an FD 103, and an analog processing circuit 106, and converts an optical image of a subject into image data.
  • the optical system 101 includes a lens and an aperture, and forms an optical image from a subject or the like on an imaging surface of the photoelectric conversion element 102.
  • the photoelectric conversion element 102 captures an optical image of a subject or the like by photoelectric conversion and converts it into a signal charge.
  • the FD 103 is a floating diffusion amplifier that converts a signal charge output from the photoelectric conversion element 102 into a signal voltage by voltage conversion and outputs the signal voltage.
  • the signal voltage output from the FD 103 is input to the analog processing circuit 106.
  • the analog processing circuit 106 includes the PGA 104 and the AD conversion circuit 105, and performs analog signal processing on the signal voltage input from the FD 103.
  • the PGA 104 is a programmable gain amplifier, and is an amplifier circuit that amplifies the signal voltage input from the FD 103.
  • the AD conversion circuit 105 performs analog-to-digital conversion for converting the signal voltage amplified by the PGA 104 into a digital value.
  • the analog processing circuit 106 includes a PGA 104 and an AD conversion circuit 105 that are divided into at least two systems. The two or more systems of the AD conversion circuit 105 output two or more systems of images based on digital values. , To the digital processing circuit 107.
  • the digital processing circuit 107 includes an image processing circuit 108, a luminance obtaining unit 109, and an amplification factor determining circuit 110, and performs digital signal processing on a captured image. The details of the digital processing circuit 107 will be described later.
  • the buffer 111 is a data buffer that stores a processing result in the luminance acquisition unit 109 and data being processed.
  • the recording medium 113 is, for example, an SD card, a CF card (Compact Flash (registered trademark)), an HDD (hard disk drive), or the like that stores captured image data.
  • SD card Secure Digital (SD)
  • CF card Compact Flash (registered trademark)
  • HDD hard disk drive
  • the recording circuit 112 records the image data subjected to the digital signal processing by the digital processing circuit 107 on the recording medium 113, and reads out the image data from the recording medium 113 as necessary.
  • the system control unit 117 controls the entire imaging device.
  • the ROM 118 is a non-volatile memory that stores control data such as programs and various control parameters for the system control unit 117 to execute various controls as described below.
  • the RAM 116 is a volatile memory used when the system control unit 117 controls the imaging device.
  • the imaging control unit 114 is an imaging operation control unit that controls the operation of the imaging unit 100 in accordance with a control command from the system control unit 117.
  • the gain control circuit 115 controls the gain of the signal voltage by changing the setting of the capacitance of the FD 103 and the setting of the gain of the PGA 104.
  • the operation unit 119 inputs an instruction from the outside of the imaging device (a connected device such as a user or a release) to the imaging device.
  • the analog processing circuit 106 includes two systems of the PGA 104 and the AD conversion circuit 105 is taken as an example, and the amplification factor is determined based on the average value and the standard deviation of the pixels. The processing will be described.
  • the imaging control unit 114 sets the imaging conditions (for example, shutter speed, aperture, ISO sensitivity) of the imaging device in accordance with an instruction input from the outside via the operation unit 119.
  • the imaging control unit 114 changes the setting of the aperture of the optical system 101 of the imaging unit 100 and the setting of the exposure time of the photoelectric conversion element 102.
  • the gain control circuit 115 sets the gain of the PGA 104 and the capacitance of the FD 103. This step is a pre-process performed only in the first frame of the moving image.
  • a value corresponding to the shooting condition or a setting value stored in the ROM 118 is used. Used.
  • the imaging control unit 114 starts the imaging operation of the imaging unit 100 in response to an imaging instruction input from the outside via the operation unit 119.
  • the imaging control unit 114 first drives the lens and aperture of the optical system 101 to form an optical image of the subject on the photoelectric conversion element 102.
  • the exposure time of the photoelectric conversion element 102 is controlled by a control signal from the imaging control unit 114, and the photoelectric conversion element 102 converts an optical image into a signal charge and outputs the signal charge to the FD 103.
  • the signal charge output from the photoelectric conversion element 102 is converted into a signal voltage in the FD 103, and is then distributed to two paths (two systems) and sent to the analog processing circuit 106.
  • the signal voltages input to the analog processing circuit 106 are respectively amplified by the two systems of PGAs 104, then converted into digital values by the two systems of AD conversion circuits 105, and output to the digital processing circuit 107.
  • the PGA 104 and the AD conversion circuit 105 are provided for two systems, two images based on the two digital values from the AD conversion circuit 105 are output to the digital processing circuit 107. You.
  • the image processing circuit 108 performs an acquisition process of the two images output in S203 and an image synthesis process of outputting an image generated by synthesizing the two images.
  • the image processing circuit 108 performs general image processing such as digital gain, white balance, and gamma correction on the acquired two images, and synthesizes the two images after the image processing. Perform processing.
  • the processing method of the image synthesizing process differs depending on the amplification factors set for the two systems of images to be processed.
  • the image processing circuit 108 determines the image quality in an area where the luminance ranges of the two images overlap. A selection process is performed to selectively use good pixels. A pixel with good image quality is, for example, a pixel of an image for which a higher amplification factor is set. On the other hand, for example, when the amplification factors are the same for the two images to be processed, the image processing circuit 108 averages the pixel values of the pixels at the same position in the two images and uses the averaged pixel value. Perform processing.
  • images generated by the image synthesis processing by the image processing circuit 108 are sequentially stored as frames constituting a moving image.
  • the moving image is converted into data of a predetermined recording format by the recording circuit 112, and then recorded and stored on the recording medium 113.
  • the luminance acquisition unit 109 acquires a representative value of the luminance of the image as luminance information.
  • the acquisition of the luminance information is performed using any one of the two types of images processed by the image processing circuit 108.
  • the luminance acquisition unit 109 acquires luminance information from an image processed at a relatively low amplification rate among the two systems of images after the image processing. More specifically, the luminance obtaining unit 109 obtains a luminance value by performing a conversion process from a pixel value to a luminance value on a pixel value (sRGB value) obtainable from an image, and further obtains the luminance values. The average value, the standard deviation, and the maximum value are obtained as representative values, and they are used as luminance information. Then, the luminance acquiring unit 109 stores the acquired luminance information in the buffer 111.
  • the conversion process from the pixel value to the luminance value can be realized by applying a general conversion matrix from the sRGB value to the luminance value for each pixel.
  • the amplification factor determination circuit 110 reads the average value, the standard deviation, and the maximum value of the luminance values acquired as the luminance information in S205 from the buffer 111, and based on the information, the amplification factor corresponding to the luminance of the subject. To determine. The details of the process of determining the amplification factor according to the luminance of the subject will be described later.
  • the gain control circuit 115 resets the gain in the imaging unit 100 based on the gain determined in S206. That is, the amplification factor control circuit 115 resets the capacitance of the FD 103 and the amplification factors of the two PGAs 104 based on the amplification factor determined in S206.
  • the system control unit 117 determines the end of the shooting. In other words, if a shooting end instruction is input from the outside via the operation unit 119 while the processing from S203 to S208 is being performed, the system control unit 117 sends a shooting end instruction to the imaging control unit 114. Thus, the imaging control unit 114 ends the operation of the imaging unit 100. On the other hand, if the shooting is not to be ended because the shooting end instruction has not been input, the system control unit 117 returns the process to S203 and executes the processes from S203 to S207 again.
  • the process of determining the amplification factor in S206 will be described with reference to the flowchart in FIG. 3 and FIG.
  • the gain with a relatively lower gain is referred to as a low gain
  • the gain with a relatively higher gain is referred to as a high gain.
  • a case will be described as an example where two values of a low gain having a relatively low amplification factor and a high gain having a relatively high amplification factor are determined.
  • an image obtained in the imaging unit 100 (FD 103 and PGA 104) with the low gain set is referred to as a low gain image
  • an image obtained with the high gain set is referred to as a high gain. Called an image.
  • step S301 the amplification factor determination circuit 110 acquires, from the buffer 111, the average value, the standard deviation, and the maximum value of the luminance values acquired as the luminance information in step S205.
  • the amplification factor determining circuit 110 determines a low gain based on the value obtained in S301.
  • FIG. 4 is a graph in which the horizontal axis represents the luminance value of the image, the vertical axis represents the frequency of appearance of the luminance value, and the distribution of the luminance value of the subject is represented by a normal distribution using the average value and the standard deviation calculated in S301. .
  • the Low gain is set for the purpose of photographing the entire subject without overexposure. Therefore, the amplification factor determination circuit 110 sets the Low gain so that the entire normal distribution can be photographed as shown in the luminance range L of FIG.
  • the amplification factor at this time can be expressed by equation (1).
  • G Low is a low gain
  • G pre is an amplification factor already set for an image used for acquiring luminance information
  • is an average value of image luminance
  • is a standard value of image luminance.
  • the deviation, I Max represents the maximum possible luminance value of the image.
  • the amplification factor determination circuit 110 acquires the state of the “setting mode” of the priority luminance of the imaging device.
  • the “setting mode” includes, for example, a low luminance priority setting mode, a medium luminance priority setting mode, and a high luminance priority setting mode, and can be set by a user or the like. Then, any one of the setting modes is selected at the time of setting the imaging conditions in S201.
  • the amplification factor determination circuit 110 determines a High gain based on the average value, the standard deviation, and the maximum value of the luminance values acquired in S301.
  • the amplification factor determination circuit 110 sets the High gain so that a luminance range indicated by a range H1 in FIG. 4 can be captured, for example. Further, when the mode is set to the medium luminance priority setting mode, the amplification factor determining circuit 110 sets the High gain so that a luminance range indicated by a range H2 in FIG. 4 can be photographed, for example.
  • the High gains when photographing the respective luminance ranges of the ranges H1 and H2 can be expressed by Expressions (2) and (3), respectively.
  • G High1 in Expression (2) represents a High gain when capturing the luminance range of the range H1
  • G High2 in Expression (3) represents a High gain when capturing the luminance range in the range H2.
  • the amplification factor determination circuit 110 determines, from among the amplification factors that can be set by the imaging device, a value closest to G High. Is the amplification value of the High gain that is actually set. For example, when the imaging device can set the amplification factors of 1, 2, and 4 times, and the G High calculated by the expression (2) or (3) is 2.5, the amplification factor determination circuit 110 Selects twice as the amplification value of the High gain that is actually set. If the luminance distribution of the subject is not wider than, for example, a predetermined luminance distribution, the same amplification factor is set for G Low and G High among the amplification factors that can be set by the imaging device.
  • a low gain image has a relatively wide range of luminance that can be photographed, but has a low S / N (SN ratio) with respect to luminance, as compared with a high gain image.
  • a high-gain image has a relatively narrower luminance range than a low-gain image, but has a higher S / N with respect to luminance.
  • the S / N improvement effect is lower than in the low luminance priority setting mode, but the S / N in a wider luminance region can be improved.
  • the imaging apparatus has, for example, three or more systems of the PGA 104 and the AD conversion circuit 105 and at least three or more gains.
  • This embodiment is also applicable to the case of determining In this case, the amplification factor determination circuit 110 sets the same amplification factor as the above-mentioned High gain for the third and subsequent amplification factors.
  • the image processing circuit 108 performs the process of averaging the above-described pixel values at the same position between the images having the same amplification factor, and synthesizes the image with the Low gain image.
  • the S / N is improved irrespective of the luminance of the subject by determining the amplification factor using the luminance information such as the average value and the standard deviation of the luminance of the subject. The effect can be obtained.
  • the amplification factor is determined based on the average value and the standard deviation of the luminance values of the image.
  • the skewness and kurtosis of the luminance value are calculated as representative values of the luminance of the image, and the amplification factor is determined using these as luminance information.
  • the configuration of the imaging apparatus according to the second embodiment is the same as the configuration shown in FIG.
  • the flow of processing in the second embodiment differs from that of the first embodiment in S205 and S206 in FIG.
  • S205 an average value, a standard deviation, and a maximum value of luminance values are obtained, and these are stored in the buffer 111 as luminance information.
  • the skewness and kurtosis of the luminance value are obtained, and these are stored in the buffer 111 as luminance information.
  • FIG. 5 illustrates a process corresponding to S206 in FIG.
  • S206 in the second embodiment of the two systems, two values of a low gain of a relatively lower amplification factor and a High gain of a relatively higher amplification factor are determined. The case will be described as an example.
  • the amplification factor determination circuit 110 obtains, from the buffer 111, the skewness and kurtosis of the brightness value obtained as the brightness information in S205 of the second embodiment.
  • the skewness and the kurtosis are indices representing characteristics of the distribution of data.
  • the skewness is a value indicating how asymmetric the distribution of the data is
  • the kurtosis is a value indicating how sharp the distribution of the data is compared to the normal distribution.
  • the brightness acquisition unit 109 in the case of the second embodiment calculates the skewness S by the following equation (4), and calculates the kurtosis K by the equation (5).
  • Equations (4) and (5) S is skewness
  • K is kurtosis
  • n is the total number of image luminance data
  • x is the i-th luminance value
  • is the image luminance standard deviation.
  • are the average values of the luminance of the image.
  • the skewness and kurtosis of these luminance values are held in the buffer 111 as luminance information.
  • the amplification factor determination circuit 110 calculates a coefficient using a table described later based on the skewness and kurtosis of the luminance value acquired as the luminance information in S501.
  • the table here is called a coefficient table, the details of which will be described later.
  • the coefficient table is held in the ROM 118, and the calculation of the coefficient in the coefficient table is performed in the digital processing circuit 107, for example.
  • the amplification factor determination circuit 110 determines the values of the low gain and the high gain.
  • the amplification factor determination circuit 110 determines the amplification factor set for the image used for calculating the skewness and kurtosis as the luminance information in S205 and the coefficient calculated based on the skewness and kurtosis from the coefficient table in S502. Is obtained, and this value is used as the amplification factor.
  • FIG. 6A shows an example of a coefficient table for calculating a coefficient for a low gain
  • FIG. 6B shows an example of a coefficient table for calculating a coefficient for a high gain
  • the horizontal axis represents the skewness
  • the vertical axis represents the kurtosis.
  • the value of the skewness is an index of the bias of the brightness of the subject
  • the value of the kurtosis is the bias of the brightness. It is an index of how to sharpen.
  • the coefficient table used for determining the amplification factor is not limited to the two coefficient tables of the low gain and the high gain, and may be created according to the number of amplification factors to be determined. Further, the coefficients described in the coefficient table are not limited to the values shown in FIGS. 6A and 6B.
  • the imaging apparatus has three or more PGAs 104 and AD conversion circuits 105, and has at least three or more gains. It may be decided.
  • the third and subsequent amplification factors are set to the same amplification factors as the High gain described above.
  • the image processing circuit 108 performs the process of averaging the pixel values at the same position described above between the images having the same amplification factor, and performs the image synthesizing with the Low gain image. .
  • the S / N is improved irrespective of the luminance of the subject by determining the amplification factor using the skewness and the kurtosis luminance information of the luminance value of the subject. The effect can be obtained.
  • FIG. 7 is a configuration diagram illustrating an example of a configuration of an imaging device according to the third embodiment.
  • FIG. 7 is different from the imaging apparatus in FIG. 1 in the configuration of the imaging unit 100.
  • the imaging unit 100 is divided into, for example, two systems after the photoelectric conversion element 102, and a charge memory 700 is provided in front of each FD 103 divided into two systems. Is provided.
  • the charge memory 700 has a function of holding signal charges generated in the photoelectric conversion element 102.
  • the imaging device in FIG. 7 has a configuration in which the charge memory 700 is provided for only two systems. However, when the FD 103, the PGA 104, and the AD conversion circuit 105 are divided into three or more systems, only the number corresponding to the number of systems is provided. May be provided. In the configuration diagram of FIG. 7, the components corresponding to those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
  • the imaging control unit 114 sets the imaging conditions (shutter speed, aperture, and ISO sensitivity) of the imaging device according to an instruction input from the outside via the operation unit 119.
  • the imaging control unit 114 sets the aperture of the optical system 101 of the imaging unit 100, the exposure time of the photoelectric conversion element 102, and the set values of the capacitance of the FD 103 and the amplification factor of the PGA 104 in each system. change.
  • the gain control circuit 115 sets the capacitance of the FD 103 and the gain of the PGA 104 in each system.
  • the set value a value corresponding to the photographing condition or a value described in the ROM 118 is used.
  • the imaging control unit 114 starts the imaging operation of the imaging unit 100 in response to an imaging instruction input from the outside via the operation unit 119.
  • the imaging control unit 114 first drives the lens and the aperture of the optical system 101 to form an optical image of the subject on the photoelectric conversion element 102.
  • the signal charges transferred from the photoelectric conversion element 102 are distributed to two systems, sent to the charge memory 700, and held.
  • the imaging control unit 114 causes the signal charge held in the charge memory 700 on the path side for setting the low gain, which is the relatively lower amplification rate, of the two systems to be transferred to the FD 103.
  • the FD 103 converts the transferred signal charge into a signal voltage and outputs the signal voltage to the analog processing circuit 106.
  • the output signal voltage is amplified by the PGA 104 in the analog processing circuit 106, converted into a digital value by the AD conversion circuit 105, and output to the digital processing circuit 107.
  • the image processing circuit 108 acquires a low gain image. Specifically, the image processing circuit 108 performs general image processing such as digital gain, white balance, and gamma correction on the digital value acquired in step S803 as necessary, and acquires a low gain image. .
  • the luminance acquisition unit 109 acquires the luminance information of the Low gain image. Specifically, similarly to S205 described above, a conversion process from a pixel value to a luminance value is performed on the pixel value (sRGB value). Further, the luminance acquisition unit 109 calculates a representative value of the luminance value and stores the representative value in the buffer 111 as luminance information. As the representative value of the luminance value, the average value, the standard deviation, and the maximum value of the luminance value described in the first embodiment, and the skewness and kurtosis described in the second embodiment can be exemplified.
  • the amplification factor determination circuit 110 acquires the representative value (luminance information) of the luminance value calculated in step S805 from the buffer 111, and determines the amplification factor according to the luminance of the subject based on the acquired representative value. I do.
  • a method of determining the amplification factor suitable for the luminance of the subject one of the methods described in the first embodiment and the second embodiment is used. For example, when the average value, the standard deviation, and the maximum value of the luminance values described in the first embodiment are used as the representative values of the luminance values, the amplification factor determination method described in the first embodiment is used. .
  • the method for determining the amplification factor described in the second embodiment is used. Note that the method of determining these two amplification factors is the same as described above, and a description thereof will be omitted.
  • step S807 the amplification factor control circuit 115 resets the amplification factor (the capacitance of the FD 103 and the amplification factor of the PGA 104) in the path for setting the High gain of the two systems based on the amplification factor determined in S806. Reset).
  • the image processing circuit 108 acquires a High gain image.
  • the gain control circuit 115 transfers the signal charge held by the charge memory 700 connected to the path for setting the High gain to the FD 103 and converts it into a signal voltage, and the gain is reset.
  • the PGA 104 amplifies the signal voltage. Thereafter, the signal voltage amplified by the PGA 104 is converted to a digital value by the AD conversion circuit 105.
  • the image processing circuit 108 performs general image processing such as digital gain, white balance, and gamma correction on the input digital values as necessary. As a result, a High gain image amplified at the reset amplification factor is obtained.
  • the image processing circuit 108 performs a synthesis process of the Low gain image acquired in S804 and the High gain image acquired in S808. For example, when the amplification factors set in the imaging unit 100 are different between the two systems, the image processing circuit 108 selectively selects pixels of an image having a high S / N in a region where the luminance ranges of the two systems overlap. A selection process such as that used for is performed. On the other hand, when the amplification factors are the same in the two systems, the image processing circuit 108 performs an averaging process in which pixels at the same position in the two systems of images are averaged and used. After that, the combined image after the image combining processing by the image processing circuit 108 is converted into data of a predetermined recording format by the recording circuit 112, and then recorded and stored in the recording medium 113.
  • the charge memory for holding the signal charge is provided, and for example, the luminance of the subject can be obtained even if the amplification factor is not determined in advance using the image one frame before.
  • the amplification factor can be determined based on the information.
  • an S / N improvement effect can be obtained regardless of the luminance of the subject.
  • an average value, a standard deviation, and a maximum value of luminance values of an image or representative values such as skewness and kurtosis are acquired as luminance information to determine an amplification factor.
  • An imaging apparatus includes an image memory 900 having a role of storing an image, obtains a luminance histogram from the image stored in the image memory 900, and uses the histogram having a low frequency in the image based on the histogram. Determine the area. Then, in the imaging device of the fourth embodiment, the amplification factor is determined according to the determination result of the luminance region.
  • a luminance distribution of a shooting scene is obtained in detail, a luminance region having a low frequency in an image is determined based on the luminance distribution, and an amplification factor is determined based on the determination result of the luminance region. I do. For this reason, in the imaging apparatus of the fourth embodiment, a more appropriate setting of the amplification factor for the shooting scene is performed, compared to the method of determining the amplification factor based on the representative values described in the first embodiment to the third embodiment. It can be carried out.
  • FIG. 9 is a configuration diagram illustrating an example of a configuration of an imaging device according to the fourth embodiment.
  • the imaging device according to the fourth embodiment shown in FIG. 9 is different from the imaging device shown in FIG. 1 in that an image memory 900 is provided.
  • the image memory 900 has a function of holding an image.
  • the image memory 900 can hold an image acquired by the imaging unit 100, a luminance image acquired as luminance information in S1006 in FIG.
  • the components corresponding to those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
  • the imaging control unit 114 sets the imaging conditions of the imaging device according to an instruction input from the outside via the operation unit 119.
  • step S1002 similarly to step S202, the amplification factor control circuit 115 sets the amplification factor of the PGA 104 and the capacitance of the FD 103.
  • the imaging control unit 114 starts the imaging operation of the imaging unit 100 in response to an imaging instruction input from outside via the operation unit 119.
  • the signal charge transferred from the photoelectric conversion element 102 is converted into a signal voltage in the FD 103, then divided into two systems, and sent to the analog processing circuit 106.
  • the analog processing circuit 106 the input signal voltage is amplified by the PGA 104, converted into a digital value by the AD conversion circuit 105, and output to the digital processing circuit 107.
  • the image processing circuit 108 performs two-system image acquisition processing and image synthesis processing. Then, the composite image after the processing by the image processing circuit 108 is converted into data of a predetermined recording format by the recording circuit 112 and then recorded on the recording medium 113.
  • step S ⁇ b> 1005 the digital processing circuit 107 causes the image memory 900 to store the image with the lowest amplification factor set among the images acquired from the imaging unit 100.
  • the brightness acquisition unit 109 acquires the brightness information of the image stored in the image memory 900.
  • the luminance obtaining unit 109 performs a conversion process from a pixel value to a luminance value on a pixel value (sRGB value) obtainable from an image stored in the image memory 900.
  • the luminance acquisition unit 109 stores the image (hereinafter, referred to as a luminance image) obtained by performing the conversion process into the luminance value in the image memory 900 as luminance information.
  • the conversion process from the pixel value to the luminance value is the same as described above, and is performed by applying a general conversion matrix from the sRGB value to the luminance value to each pixel.
  • the amplification factor determination circuit 110 reads the luminance image acquired as the luminance information in S1006 from the image memory 900, and determines an amplification factor according to the luminance of the subject based on the luminance image. The details of the process of determining the amplification factor according to the luminance of the subject in the fourth embodiment will be described later.
  • the gain control circuit 115 resets the gain in the imaging unit 100 based on the gain determined in S1007. That is, the amplification factor control circuit 115 resets the capacitance of the FD 103 and the amplification factors of the two PGAs 104 based on the amplification factor determined in S1007.
  • the system control unit 117 determines the end of the shooting. If a shooting end instruction is input from the outside via the operation unit 119 while the processing from S1003 to S1008 is being performed, the system control unit 117 sends a shooting end instruction to the imaging control unit 114 and The operation of is ended. On the other hand, if the shooting end instruction has not been input and the shooting is not to be ended, the system control unit 117 returns the process to S1003 and executes the processes from S1003 to S108 again.
  • the brightness acquisition unit 109 calculates a brightness histogram based on the brightness image stored as the brightness information in S1006, and stores the calculated histogram information in the buffer 111.
  • the amplification factor determination circuit 110 calculates a value that is a candidate for an amplification factor that becomes a High gain (hereinafter, referred to as a candidate value).
  • the amplification factor determination circuit 110 performs a threshold process on the frequency of the histogram, and changes the point where the luminance exceeds the threshold in a direction of increasing luminance from a part below the threshold (hereinafter, referred to as a point below). Inflection point).
  • inflection points IP1, IP2, and IP3 are obtained.
  • the threshold value is set to a value that prevents erroneous detection of an inflection point due to an increase or decrease in the frequency of occurrence due to noise.
  • the amplification factor determination circuit 110 sets an amplification factor that can photograph each luminance range from the luminance value “0” to the respective inflection points IP1, IP2, and IP3 acquired as described above as candidate values.
  • the amplification factors that can be photographed in the ranges H1, H2, and L, which are the luminance ranges from the luminance value “0” to the inflection points IP1, IP2, and IP3, are set as candidate values.
  • An amplification factor that enables the photographing of the luminance range from the luminance value “0” to the inflection point is calculated by Expression (6).
  • I C is a luminance value at an arbitrary inflection point
  • I Max is a maximum luminance value that the image can take
  • G pre is an amplification factor set for the image used for the histogram calculation
  • G C is an arbitrary value. This is the amplification factor when capturing the luminance range up to the inflection point.
  • Amplification factor decision circuit 110 performs the calculation of the gain G C for each inflection point, and the candidate value the value of each gain G C obtained.
  • the amplification factor determining circuit 110 determines the value of the low gain.
  • the Low gain is set to a value corresponding to the inflection point having the highest luminance (inflection point IP3 in FIG. 12) among a plurality of inflection points so that the entire luminance range of the subject can be photographed.
  • the number of inflection points of the histogram is zero or the frequency of the histogram exceeds the threshold value in the luminance range after the inflection point with the highest luminance
  • the Low gain is determined by the image used for the histogram calculation (Low gain in the present embodiment).
  • Image is one step lower than the amplification factor.
  • the amplification factor for example, values of 2, 3, 4, and 5 can be set.
  • the Low gain is 1 It is set to three times the lower value. At this time, when the amplification factor of the image used for the calculation of the histogram is twice the lower limit of the set value, the Low gain is twice the lower limit.
  • the amplification factor determination circuit 110 calculates an image quality evaluation value for each amplification factor candidate value.
  • the amplification factor determination circuit 110 sets any one of the at least two candidate values calculated in S1102, which is different from the candidate value used when obtaining the Low gain, as the High gain. .
  • the High gain takes the same value as the Low gain.
  • the amplification factor determining circuit 110 proceeds to the process of S1008.
  • the amplification factor determination circuit 110 calculates the image quality of the composite image when the setting is performed in this manner.
  • S / N is used as the evaluation value of the image quality.
  • the S / N of the composite image can be expressed by equation (7).
  • S / N Mix is the S / N of the composite image
  • I is the luminance value
  • N (I) is the frequency of the luminance value I
  • I High is the maximum luminance value of the High gain.
  • G High is a high gain
  • G Low is a low gain
  • ⁇ (G High , I) is a noise amount at the luminance value I at the time of the high gain
  • ⁇ (G Low , I) is a noise amount at the time of the low gain. This is the amount of noise at the luminance value I.
  • the amplification factor determining circuit 110 similarly calculates the S / N Mix from the equation (7) when another candidate value is set to the High gain, and performs this for each candidate value.
  • S / N is used as the image quality evaluation value, but the image quality evaluation value in the present invention is not limited to this.
  • the amplification factor determination circuit 110 determines the value of the High gain. For example, the amplification factor determination circuit 110 sets a candidate value when the image quality of the combined image is the best, based on the image quality evaluation value (S / N Mix in this embodiment) for each candidate value calculated in S1104, as a High gain. .
  • the imaging unit 100 has three or more systems of the PGA 104 and the AD conversion circuit 105 and determines at least three or more gains. In some cases. In such a case, the third and subsequent amplification factors are set to the same amplification factors as the High gain described above. Further, at the time of the image synthesizing process in S1004, the image processing circuit 108 first performs the process of averaging the pixel values at the same position described above between the images for which the same amplification factor is set, and then performs the image synthesis with the Low gain image. Do.
  • the amplification factor is determined in consideration of a portion where the frequency of the histogram is low. On the other hand, it is possible to set a more appropriate amplification factor.
  • the amplification factor is determined based on the histogram of the image and the importance of the peak of the histogram.
  • the configuration of the imaging apparatus according to the fifth embodiment is the same as the configuration shown in FIG.
  • the flow of processing in the fifth embodiment differs from that of the fourth embodiment in S1007 in FIG.
  • the fifth embodiment will be described focusing on the differences from the fourth embodiment.
  • a flow of a process performed by the imaging device according to the fifth embodiment will be described with reference to a flowchart illustrated in FIG. 13 and FIG. 9.
  • a case will be described in which two values of a low gain having a relatively low amplification factor and a high gain having a relatively high amplification factor are determined as in the above-described embodiment.
  • the luminance acquisition unit 109 calculates a luminance histogram from the luminance image acquired as the luminance information in S1006, and stores the result in the buffer 111.
  • the amplification factor determination circuit 110 divides the histogram into regions in the luminance direction.
  • the amplification factor determination circuit 110 first performs threshold processing on the frequency of the histogram as shown in FIG. 14, and changes from a portion exceeding the threshold to a portion below the threshold in a direction in which the luminance increases. Get the inflection point.
  • inflection points IP1, IP2, and IP3 are obtained.
  • the threshold value is set to a value that prevents erroneous detection of an inflection point due to an increase or decrease in frequency caused by noise, as described with reference to FIG.
  • the amplification factor determination circuit 110 determines the range from the luminance value “0” to the inflection point with the lowest luminance value (region R1 in FIG. 14) and the range between two consecutive inflection points (FIG.
  • the region R2 and the region R3) are defined as one region.
  • the amplification factor determining circuit 110 determines the value of the low gain.
  • the low gain is set to the inflection point having the highest luminance (inflection point IP3 in FIG. 14) among a plurality of inflection points so that the entire luminance range of the subject can be photographed. Take the combined value.
  • the Low gain is set to the image used for calculating the histogram (Low gain image). ) Is one step lower than the amplification factor.
  • the amplification factor determination circuit 110 sets the importance for each of the regions divided in S1302.
  • the index of importance uses the maximum value.
  • the amplification factor determination circuit 110 obtains the maximum value of the frequency of the histogram for each area, and defines the importance in the descending order of the maximum value. For example, the amplification factor determining circuit 110 determines that the region having the largest maximum value has the highest importance as "1" and the region having the second largest value has the second highest importance. The importance is defined as the degree “2”.
  • the index of importance is not limited to the maximum value. For example, the total number of frequencies in the area may be used as an index of importance.
  • the amplification factor determining circuit 110 determines the value of the High gain.
  • the High gain is set to a value such that an image can be captured up to the region of the highest importance defined in S1304. Specifically, at the inflection point when the region having the importance “1” is set, the amplification factor determination circuit 110 determines the amplification factor such that the luminance range up to the inflection point with higher luminance can be captured. And The amplification factor at this time is calculated using equation (6) described in the fourth embodiment. If two or more inflection points do not exist, the High gain takes the same value as the Low gain, and the process proceeds to S1008.
  • the imaging unit 100 has three or more systems of the PGA 104 and the AD conversion circuit 105 and determines at least three or more gains. In some cases. In this case, the third and subsequent amplification factors are set to the same amplification factors as the High gain described above. Then, at the time of the image synthesizing process in S1004, the image processing circuit 108 performs an averaging process between the images having the same amplification factor, and synthesizes the image with the Low gain image.
  • the importance is calculated for each of the divided areas of the histogram, and the amplification rate is determined based on the importance. On the other hand, it is possible to set a more appropriate amplification factor.
  • FIG. 15 is a configuration diagram illustrating an example of a configuration of an imaging device according to the sixth embodiment.
  • the configuration inside the imaging unit 100 is different from the imaging device of FIG. 9, and is divided into two systems at the subsequent stage of the photoelectric conversion element 102 as in the configuration example of FIG.
  • a charge memory 700 is provided in a stage preceding the FD 103.
  • the imaging device in FIG. 15 has a configuration in which the charge memory 700 is provided for only two systems, it may be divided into three or more systems.
  • the components corresponding to those in FIGS. 1, 7, and 9 are denoted by the same reference numerals, and description thereof will be omitted.
  • step S1601 similarly to S801 described above, the imaging control unit 114 sets the imaging conditions of the imaging device according to an instruction input from outside the imaging device via the operation unit 119.
  • the gain control circuit 115 sets the capacitance of the FD 103 and the gain of the PGA 104 in each system.
  • the imaging control unit 114 starts the imaging operation of the imaging unit 100 in response to an imaging instruction input from the outside via the operation unit 119. Then, the signal charges transferred from the photoelectric conversion element 102 are distributed to two systems, sent to the charge memory 700, and held. Further, in the same manner as described above, the imaging control unit 114 causes the signal charge held in the charge memory 700 on the path side for setting a low gain, which is a relatively low amplification rate, of the two systems to be transferred to the FD 103.
  • the FD 103 converts the transferred signal charge into a signal voltage and outputs the signal voltage to the analog processing circuit 106.
  • the output signal voltage is amplified by the PGA 104 in the analog processing circuit 106, converted to a digital value by the AD conversion circuit 105, and output to the digital processing circuit 107.
  • step S1604 similarly to step S804, the image processing circuit 108 performs general image processing as necessary to obtain a low gain image.
  • the digital processing circuit 107 causes the image memory 900 to store the Low image acquired in S1604.
  • step S1606 the brightness acquisition unit 109 acquires the brightness information of the image stored in the image memory 900. That is, the luminance obtaining unit 109 performs a conversion process from a pixel value to a luminance value on a pixel value (sRGB value) obtainable from the image stored in the image memory 900. Then, the brightness acquisition unit 109 stores the brightness image obtained by performing the conversion process into the brightness value in the image memory 900 as brightness information.
  • the amplification factor determination circuit 110 reads the luminance image acquired as the luminance information in S1606 from the image memory 900, and determines an amplification factor suitable for the luminance of the subject based on the luminance image.
  • the process of determining the amplification factor suitable for the brightness of the subject uses one of the amplification factor determination processes described in the fourth and fifth embodiments. Since these two amplification factor determination processes have been described above, the description here is omitted.
  • the gain control circuit 115 resets the gain in the path for setting the High gain based on the gain determined in S1607. That is, the amplification factor control circuit 115 resets the capacitance of the two FDs 103 and the amplification factor of the PGA 104 based on the amplification factors determined in S1607.
  • the image processing circuit 108 acquires a High gain image.
  • the amplification factor control circuit 115 transfers the signal charge held by the charge memory 700 connected to the path for setting the High gain to the FD 103 to convert the signal charge into a signal voltage, and further, the PGA 104 amplifies the signal voltage. Thereafter, the data is converted into a digital value by the AD conversion circuit 105. Then, the image processing circuit 108 performs the above-described general image processing on the input digital value as necessary, and acquires a High gain image.
  • the image processing circuit 108 performs a combining process of the Low gain image acquired in S1604 and the High gain image acquired in S1609.
  • the image processing circuit 108 determines that the pixels of the high-quality image (for example, A selection process is performed to selectively use pixels (a pixel for which a high amplification factor is set).
  • the image processing circuit 108 performs an averaging process in which pixels at the same position in the two systems of images are averaged and used. Then, the combined image after the image combining processing by the image processing circuit 108 is converted into data of a predetermined recording format by the recording circuit 112, and then recorded and stored on the recording medium 113.
  • the above is the processing performed by the imaging device of the sixth embodiment.
  • the imaging apparatus according to the sixth embodiment has a charge memory for holding signal charges, and performs the amplification factor determination processing of any of the fourth embodiment and the fifth embodiment described above. Even if it is not determined, the amplification factor can be determined based on the luminance information of the subject.
  • the image processing circuit 108 selects a pixel having a high amplification factor when the amplification factor is different in an area where the luminance range overlaps, and performs amplification. If the rates are the same, they are averaged and output. On the other hand, in the seventh embodiment, the image processing circuit 108 synthesizes using the weight based on the amplification factor.
  • the high gain of the gain determined by the gain determination circuit 110 is G High
  • the low gain is G Low
  • the composite weight of the High gain image I High and the Low gain image I Low is w
  • the saturated pixel value of the low gain image is defined as Max.
  • the composite image I Mix at the (x, y) coordinates of the High gain image I High and the Low gain image I Low can be expressed by Expression (8).
  • Standard deviation sigma Mix noise of the combined image I Mix in this case can be represented by the formula (9).
  • the image processing circuit 108 performs synthesis by the synthesis method represented by Expression (8) using the synthesis weight w obtained by Expression (10).
  • the composite image I Mix is a result of averaging the High gain image I High and the Low gain image I Low .
  • the processing performed in the seventh embodiment is performed in the seventh embodiment.
  • a high gain image and a low gain image are combined using a weight in which the read noise amount is added to the amplification rates of the high gain and the low gain.
  • the amount of noise after combination can be reduced as compared with the case where the combination processing described in the first embodiment to the sixth embodiment is performed.
  • the gains of the high gain and the low gain are determined based on the gain of the previous frame.
  • the gain of the high gain and the gain of the low gain are determined at the time of the preliminary shooting, and the gain of the low gain is fixed and the gain of the high gain alone is changed at the time of the main shooting.
  • the imaging control unit 114 sets the imaging conditions of the imaging device according to an instruction input from the outside via the operation unit 119, as in S201 described above.
  • the amplification factor control circuit 115 sets the amplification factor of the PGA 104 and the capacitance of the FD 103 as in S202 described above.
  • the imaging control unit 114 starts the preliminary imaging operation of the imaging unit 100 in response to an imaging instruction input from the outside via the operation unit 119.
  • the image processing circuit 108 performs an acquisition process of the two images output in the preliminary photographing operation in S1703, and performs an image synthesis process of outputting an image generated by synthesizing the two images.
  • step S1705 the luminance acquisition unit 109 acquires a representative value of luminance as luminance information and stores it in the buffer for the preliminary captured image synthesized in step S1704, as in step S205.
  • step S1706 the amplification factor determination circuit 110 reads the average value, standard deviation, and maximum value of the luminance values acquired as the luminance information in step S1705 from the buffer 111, and, based on the information, reads out the luminance of the subject based on the information in step S206. Determine the amplification factor according to.
  • step S1707 the gain control circuit 115 resets the gain in the imaging unit 100 based on the gain determined in step S1706, as in step S207.
  • step S1708 the system control unit 117 determines the start of the main shooting.
  • the system control unit 117 proceeds to step S1709 if the actual shooting is to be started, and returns to step S1703 if the actual shooting is not to be started, and executes the processing of steps S1703 to S1708 again.
  • step S1709 the imaging control unit 114 controls the imaging unit 100 to start the main imaging operation.
  • the image processing circuit 108 performs an acquisition process of the two systems of images acquired in the main photographing operation in S1709, and an image synthesis process of outputting an image generated by combining the two systems of images. Then, the synthesized images obtained by the image synthesis processing by the image processing circuit 108 are sequentially stored as frames constituting a moving image.
  • the brightness acquisition unit 109 acquires the representative value of the brightness of the captured image synthesized in S1710 as brightness information, as in S205.
  • step S1712 the amplification factor determination circuit 110 reads the luminance information acquired and stored in step S1705 from the buffer 111, and determines an amplification factor according to the luminance of the subject based on the information. At this time, the amplification factor determination circuit 110 fixes the amplification factor of the low gain, and determines only the amplification factor of the high gain.
  • the amplification factor control circuit 115 resets the amplification factor of the High gain determined in S1712.
  • step S1715 the system control unit 117 determines whether to end shooting. If the imaging is not to be ended, the system control unit 117 returns the processing to S1709, and executes the processing from S1709 to S1715 again. On the other hand, the system control unit 117 ends the processing of the flowchart in FIG.
  • the amplification rate of the High gain is controlled during the main photographing.
  • the luminance distribution of the subject changes with time, it is possible to reduce the change in the luminance of the composite image due to the change in the amplification factor of each of the High gain and the Low gain.
  • the gains of the high gain and the low gain are determined in the preliminary photographing, and only the high gain is reset in the main photographing.
  • a single image capturing operation that is, a still image capturing operation is performed using the amplification factor determined in the preliminary image capturing operation on the assumption that the image capturing operation is a still image. Since the configuration diagram is the same as that of the first embodiment, illustration and description are omitted.
  • the imaging control unit 114 sets the imaging conditions of the imaging device according to an instruction input from the outside via the operation unit 119, as in S201.
  • the amplification factor control circuit 115 sets the amplification factor of the PGA 104 and the capacitance of the FD 103 as in S202.
  • the imaging control unit 114 in response to a shooting instruction input from the outside via the operation unit 119, the imaging control unit 114 starts the preliminary shooting operation of the imaging unit 100, as in S1703.
  • the image processing circuit 108 performs an acquisition process of the two images output in S1803 and an image synthesis process of outputting an image generated by synthesizing the two images.
  • the brightness acquisition unit 109 acquires the representative value of the brightness of the preliminary captured image synthesized in S1804 as brightness information and stores the brightness information in the buffer 111.
  • the amplification factor determination circuit 110 reads the luminance information from the buffer 111 in S1805, and determines an amplification factor according to the luminance of the subject based on the information.
  • the gain control circuit 115 resets the gain in the imaging unit 100 based on the gain determined in S1806.
  • the system control unit 117 determines whether to start the actual shooting of the still image. Then, the system control unit 117 advances the processing to S1809 when starting the main shooting, returns the processing to S1803 when not starting the main shooting, and executes the processing from S1803 to S1808 again.
  • step S1809 the imaging control unit 114 causes the imaging unit 100 to start a main imaging operation.
  • step S1810 the image processing circuit 108 performs an image combining process, and stores the combined image.
  • the gains of the high gain and the low gain are determined by the preliminary photographing, and the still image can be photographed with the determined gains.
  • the functions of the digital processing circuit 107 in each of the above-described embodiments may be realized only by a hardware configuration, or may be realized by a software configuration by a CPU or the like executing a program. Further, a part may be realized by a hardware configuration and the rest may be realized by a software configuration.
  • the program for this software configuration is not limited to the case where it is prepared in advance, but may be obtained from a recording medium such as an external memory (not shown), or may be obtained via a network (not shown).
  • a digital camera is assumed as an example of the imaging device.
  • various devices capable of capturing an image such as a monitoring camera, an industrial camera, a vehicle-mounted camera, and a medical camera, such as a smartphone and a tablet terminal, are used. Is also applicable.
  • the program for realizing one or more functions in the signal processing according to the present invention can be supplied to a system or an apparatus via a network or a storage medium, and is read and executed by one or more processors of a computer of the system or the apparatus. It can be realized by doing. Further, it can be realized by a circuit (for example, an ASIC) that realizes one or more functions.
  • a circuit for example, an ASIC

Abstract

This imaging device amplifies and thereafter digital-coverts signal voltage obtained by voltage conversion of a signal charge obtained by photoelectric conversion of an optical image of a subject, and comprises: an amplification circuit (104) that amplifies the signal voltage by two or more set amplification factors; a weight determination means (110) that determines a weight for respective signals digital-converted after being amplified on the basis of the two or more amplification factors; and a synthesis means (103) that synthesizes the two or more signals digital-converted after being amplified using the weight.

Description

撮像装置、撮像装置の制御方法、及びプログラムImaging device, imaging device control method, and program
 本発明は、撮像装置を制御する技術に関する。 The present invention relates to a technique for controlling an imaging device.
 撮像装置において、S/N(SN比)の改善は重要である。一般的な撮像装置では、一つの光電変換素子に対して一つの増幅手段を有し、光電変換素子で生じた電気信号の増幅が行われる。これに対し、S/Nの改善のため、光電変換素子で生じた電気信号を二つの増幅手段により増幅する撮像装置が知られている(特許文献1、特許文献2、非特許文献1参照)。このような撮像装置では、増幅した二つの電気信号、または増幅した二つの電気信号をAD(アナログデジタル)変換したデジタル値を、輝度に応じて適切に選択し、1枚の画像を生成することでS/Nを改善する事ができる。 改善 In an imaging device, it is important to improve the S / N (SN ratio). A general imaging device has one amplifying means for one photoelectric conversion element, and amplifies an electric signal generated by the photoelectric conversion element. On the other hand, in order to improve the S / N, an imaging device that amplifies an electric signal generated by a photoelectric conversion element by two amplifying units is known (see Patent Literature 1, Patent Literature 2, Non-Patent Literature 1). . In such an imaging apparatus, one image is generated by appropriately selecting two amplified electric signals or a digital value obtained by AD (analog-digital) conversion of the two amplified electric signals according to luminance. Can improve the S / N.
特開2016-129397号公報JP 2016-129297 A 米国特許出願公開第2010/0177225号明細書US Patent Application Publication No. 2010/0177225
 しかしながら、従来技術(特許文献1,特許文献2、非特許文献1)では、電気信号に対する増幅率は撮影前に予め決められている。そのため、例えば屋外撮影のように、撮影シーンで明るさの異なる領域などが目まぐるしく変化するような場合、予め設定した増幅率を用いると、十分なS/Nの改善効果が得られないという問題がある。 However, in the related arts (Patent Literature 1, Patent Literature 2, Non-Patent Literature 1), an amplification factor for an electric signal is determined before photographing. For this reason, for example, in a case where areas having different brightness in a shooting scene change rapidly, such as in outdoor shooting, there is a problem that if a preset amplification factor is used, a sufficient S / N improvement effect cannot be obtained. is there.
 そこで、本発明は、十分なS/Nの改善効果を得られるようにすることを目的とする。 Therefore, an object of the present invention is to obtain a sufficient S / N improvement effect.
 本発明の撮像装置は、被写体の光学像を光電変換した信号電荷が電圧変換された信号電圧を増幅した後にデジタル変換する撮像装置であって、前記信号電圧を、それぞれに設定された二つ以上の増幅率によって増幅する増幅回路と、前記二つ以上の増幅率に基づいて、増幅した後にデジタル変換された信号それぞれに対する重みを決定する重み決定手段と、前記二つ以上の増幅した後に前記デジタル変換された信号を、前記重みを用いて合成する合成手段と、を有することを特徴とする。 The image pickup apparatus of the present invention is an image pickup apparatus that performs digital conversion after amplifying a signal voltage obtained by voltage-converting a signal charge obtained by photoelectrically converting an optical image of a subject, wherein the signal voltage is set to two or more set respectively. An amplification circuit that amplifies the amplification factor according to the amplification factor; weight determination means that determines a weight for each of the digitally converted signals after amplification based on the two or more amplification factors; and the digital after the two or more amplification factors. Combining means for combining the converted signals using the weights.
 本発明によれば、十分なS/Nの改善効果を得ることができる。 According to the present invention, a sufficient S / N improvement effect can be obtained.
第1実施形態の撮像装置の構成を示す図である。FIG. 2 is a diagram illustrating a configuration of an imaging device according to the first embodiment. 第1実施形態の撮像装置の処理の流れを示すフローチャートである。5 is a flowchart illustrating a flow of processing of the imaging device according to the first embodiment. 第1実施形態の増幅率決定処理のフローチャートである。5 is a flowchart of an amplification factor determination process according to the first embodiment. 第1実施形態の増幅率決定方法の説明図である。FIG. 4 is an explanatory diagram of an amplification factor determination method according to the first embodiment. 第2実施形態の増幅率決定処理のフローチャートである。It is a flowchart of the amplification factor determination processing of 2nd Embodiment. 第2実施形態の増幅率決定方法の説明図である。It is explanatory drawing of the amplification factor determination method of 2nd Embodiment. 第2実施形態の増幅率決定方法の説明図である。It is explanatory drawing of the amplification factor determination method of 2nd Embodiment. 第3実施形態の撮像装置の構成を示す図である。It is a figure showing the composition of the imaging device of a 3rd embodiment. 第3実施形態の撮像装置の処理の流れを示すフローチャートである。13 is a flowchart illustrating a flow of processing of the imaging device according to the third embodiment. 第4実施形態の撮像装置の構成を示す図である。It is a figure showing the composition of the imaging device of a 4th embodiment. 第4実施形態の撮像装置の処理の流れを示すフローチャートである。15 is a flowchart illustrating a flow of a process of the imaging device according to the fourth embodiment. 第4実施形態の増幅率決定処理のフローチャートである。It is a flowchart of the amplification factor determination process of 4th Embodiment. 第4実施形態の増幅率決定方法の説明図である。It is explanatory drawing of the amplification factor determination method of 4th Embodiment. 第5実施形態の増幅率決定処理のフローチャートである。It is a flowchart of the amplification factor determination process of 5th Embodiment. 第5実施形態の増幅率決定方法の説明図である。It is explanatory drawing of the amplification factor determination method of 5th Embodiment. 第6実施形態の撮像装置の構成を示す図である。It is a figure showing the composition of the imaging device of a 6th embodiment. 第6実施形態の撮像装置の処理の流れを示すフローチャートである。It is a flow chart which shows a flow of processing of an imaging device of a 6th embodiment. 第8実施形態の撮像装置の処理の流れを示すフローチャートである。It is a flow chart which shows a flow of processing of an imaging device of an 8th embodiment. 第9実施形態の撮像装置の処理の流れを示すフローチャートである。It is a flow chart which shows a flow of processing of an imaging device of a 9th embodiment. その他の実施形態の撮像装置の構成を示す図である。FIG. 11 is a diagram illustrating a configuration of an imaging device according to another embodiment.
 以下、本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。なお、以下の実施形態において示す構成は一例にすぎず、本発明は図示された構成に必ずしも限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Note that the configurations shown in the following embodiments are merely examples, and the present invention is not necessarily limited to the illustrated configurations.
 <第1実施形態>
 図1は第1実施形態の撮像装置の概略的な構成例を示す図である。
<First embodiment>
FIG. 1 is a diagram illustrating a schematic configuration example of the imaging apparatus according to the first embodiment.
 撮像部100は、光学系101、光電変換素子102、FD103、アナログ処理回路106を有して構成されており、被写体の光学像を画像データに変換する。光学系101は、レンズ、絞りを含み、被写体等からの光学像を光電変換素子102の撮像面上に結像させる。光電変換素子102は、被写体等の光学像を光電変換により撮像して信号電荷に変換する。FD103は、フローティングディフュージョンアンプであり、光電変換素子102から出力された信号電荷を電圧変換により信号電圧にして出力する。FD103から出力された信号電圧はアナログ処理回路106に入力される。 The imaging unit 100 includes an optical system 101, a photoelectric conversion element 102, an FD 103, and an analog processing circuit 106, and converts an optical image of a subject into image data. The optical system 101 includes a lens and an aperture, and forms an optical image from a subject or the like on an imaging surface of the photoelectric conversion element 102. The photoelectric conversion element 102 captures an optical image of a subject or the like by photoelectric conversion and converts it into a signal charge. The FD 103 is a floating diffusion amplifier that converts a signal charge output from the photoelectric conversion element 102 into a signal voltage by voltage conversion and outputs the signal voltage. The signal voltage output from the FD 103 is input to the analog processing circuit 106.
 アナログ処理回路106は、PGA104とAD変換回路105を含み、FD103から入力された信号電圧に対してアナログ信号処理を行う。PGA104は、プログラマブルゲインアンプであり、FD103から入力された信号電圧を増幅する増幅回路である。AD変換回路105は、PGA104で増幅した信号電圧をデジタル値へ変換するアナログデジタル変換を行う。なおアナログ処理回路106は、PGA104及びAD変換回路105が少なくとも2系統以上に分けられて設けられており、それら2系統以上のAD変換回路105からはデジタル値による2系統以上の画像が出力されて、デジタル処理回路107に送られる。 The analog processing circuit 106 includes the PGA 104 and the AD conversion circuit 105, and performs analog signal processing on the signal voltage input from the FD 103. The PGA 104 is a programmable gain amplifier, and is an amplifier circuit that amplifies the signal voltage input from the FD 103. The AD conversion circuit 105 performs analog-to-digital conversion for converting the signal voltage amplified by the PGA 104 into a digital value. Note that the analog processing circuit 106 includes a PGA 104 and an AD conversion circuit 105 that are divided into at least two systems. The two or more systems of the AD conversion circuit 105 output two or more systems of images based on digital values. , To the digital processing circuit 107.
 デジタル処理回路107は、画像処理回路108、輝度取得部109、増幅率決定回路110を含み、撮影した画像のデジタル信号処理を行う。デジタル処理回路107の詳細については後述する。 The digital processing circuit 107 includes an image processing circuit 108, a luminance obtaining unit 109, and an amplification factor determining circuit 110, and performs digital signal processing on a captured image. The details of the digital processing circuit 107 will be described later.
 バッファ111は、輝度取得部109における処理結果や処理中のデータを記憶するデータバッファである。 The buffer 111 is a data buffer that stores a processing result in the luminance acquisition unit 109 and data being processed.
 記録媒体113は、撮影した画像データを保存する、例えばSDカード、CFカード(コンパクトフラッシュ(登録商標))、HDD(ハードディスクドライブ)等である。 (4) The recording medium 113 is, for example, an SD card, a CF card (Compact Flash (registered trademark)), an HDD (hard disk drive), or the like that stores captured image data.
 記録回路112は、デジタル処理回路107によってデジタル信号処理された画像データを記録媒体113に記録し、また、必要に応じて記録媒体113から画像データを読み出す。 (4) The recording circuit 112 records the image data subjected to the digital signal processing by the digital processing circuit 107 on the recording medium 113, and reads out the image data from the recording medium 113 as necessary.
 システム制御部117は、撮像装置全体を制御する。 The system control unit 117 controls the entire imaging device.
 ROM118は、システム制御部117が後述するような各種制御を実行するためのプログラムや各種制御パラメータ等の制御データを記憶した不揮発性メモリである。 The ROM 118 is a non-volatile memory that stores control data such as programs and various control parameters for the system control unit 117 to execute various controls as described below.
 RAM116は、システム制御部117が撮像装置を制御する際に使用する揮発性メモリである。 The RAM 116 is a volatile memory used when the system control unit 117 controls the imaging device.
 撮像制御部114は、システム制御部117からの制御命令に応じて、撮像部100の動作を制御する撮像動作制御部である。 The imaging control unit 114 is an imaging operation control unit that controls the operation of the imaging unit 100 in accordance with a control command from the system control unit 117.
 増幅率制御回路115は、FD103の静電容量の設定とPGA104の増幅率の設定とを変更等することにより、信号電圧の増幅率を制御する。 (4) The gain control circuit 115 controls the gain of the signal voltage by changing the setting of the capacitance of the FD 103 and the setting of the gain of the PGA 104.
 操作部119は、撮像装置の外部(ユーザ、レリーズ等の接続機器)からの指示を撮像装置に入力する。 The operation unit 119 inputs an instruction from the outside of the imaging device (a connected device such as a user or a release) to the imaging device.
 <撮像装置の撮影動作フロー>
 以下、上述のように構成された撮像装置における動画の撮影動作の流れについて、図1に示す構成図及び図2に示すフローチャートを用いて説明する。図2のフローチャートの各処理ステップは、システム制御部117による制御の下で、撮像装置の各構成によって実施される処理である。また、図2のフローチャートの説明では、各処理ステップS201~ステップS208をS201~S208と略記する。これらのことは後述する他のフローチャートにおいても同様とする。
<Shooting operation flow of imaging device>
Hereinafter, the flow of the moving image capturing operation in the imaging device configured as described above will be described with reference to the configuration diagram illustrated in FIG. 1 and the flowchart illustrated in FIG. Each processing step in the flowchart of FIG. 2 is processing performed by each component of the imaging apparatus under the control of the system control unit 117. Further, in the description of the flowchart of FIG. 2, each processing step S201 to step S208 is abbreviated as S201 to S208. The same applies to other flowcharts described later.
 本実施形態では、図1に示したように、アナログ処理回路106が2系統のPGA104とAD変換回路105を有する構成を例に挙げ、画素の平均値と標準偏差を基に増幅率を決定する処理について説明する。 In the present embodiment, as shown in FIG. 1, a configuration in which the analog processing circuit 106 includes two systems of the PGA 104 and the AD conversion circuit 105 is taken as an example, and the amplification factor is determined based on the average value and the standard deviation of the pixels. The processing will be described.
 図2のS201では、撮像制御部114が、操作部119を介して外部から入力された指示に応じて、撮像装置の撮影条件(例えばシャッタースピード、絞り、ISO感度)を設定する。なお、撮影条件の設定に際して、撮像制御部114は、撮像部100の光学系101の絞り、光電変換素子102の露光時間の設定を変更する。 In S201 of FIG. 2, the imaging control unit 114 sets the imaging conditions (for example, shutter speed, aperture, ISO sensitivity) of the imaging device in accordance with an instruction input from the outside via the operation unit 119. When setting the imaging conditions, the imaging control unit 114 changes the setting of the aperture of the optical system 101 of the imaging unit 100 and the setting of the exposure time of the photoelectric conversion element 102.
 S202では、増幅率制御回路115が、PGA104の増幅率及びFD103の静電容量を設定する。本ステップは、動画における先頭フレームにおいてのみ実施される前処理であり、S202における増幅率及び静電容量の設定の際には、撮影条件に応じた値、またはROM118に格納されている設定値が用いられる。 In S202, the gain control circuit 115 sets the gain of the PGA 104 and the capacitance of the FD 103. This step is a pre-process performed only in the first frame of the moving image. When setting the amplification factor and the capacitance in S202, a value corresponding to the shooting condition or a setting value stored in the ROM 118 is used. Used.
 S203では、操作部119を介して外部から入力された撮影指示に応じて、撮像制御部114が、撮像部100の撮影動作を開始させる。ここで、撮像制御部114は、撮影動作として、先ず、光学系101のレンズと絞りを駆動して、被写体の光学像を光電変換素子102上に結像させる。また光電変換素子102は、撮像制御部114からの制御信号により露光時間が制御され、光学像を信号電荷に変換して、FD103へ出力する。光電変換素子102から出力された信号電荷は、FD103において信号電圧に変換された後、二つの経路(2系統)に分配されて、アナログ処理回路106へ送られる。アナログ処理回路106に入力された信号電圧は、2系統のPGA104によりそれぞれ増幅された後、同じく2系統のAD変換回路105でそれぞれデジタル値に変換されて、デジタル処理回路107へ出力される。なお、図1の例では、PGA104及びAD変換回路105が2系統分設けられているため、デジタル処理回路107へは、AD変換回路105からの2系統のデジタル値による2系統の画像が出力される。 In S203, the imaging control unit 114 starts the imaging operation of the imaging unit 100 in response to an imaging instruction input from the outside via the operation unit 119. Here, as a photographing operation, the imaging control unit 114 first drives the lens and aperture of the optical system 101 to form an optical image of the subject on the photoelectric conversion element 102. Further, the exposure time of the photoelectric conversion element 102 is controlled by a control signal from the imaging control unit 114, and the photoelectric conversion element 102 converts an optical image into a signal charge and outputs the signal charge to the FD 103. The signal charge output from the photoelectric conversion element 102 is converted into a signal voltage in the FD 103, and is then distributed to two paths (two systems) and sent to the analog processing circuit 106. The signal voltages input to the analog processing circuit 106 are respectively amplified by the two systems of PGAs 104, then converted into digital values by the two systems of AD conversion circuits 105, and output to the digital processing circuit 107. In the example of FIG. 1, since the PGA 104 and the AD conversion circuit 105 are provided for two systems, two images based on the two digital values from the AD conversion circuit 105 are output to the digital processing circuit 107. You.
 S204では、画像処理回路108が、S203において出力された2系統の画像の取得処理とそれら2系統の画像を合成して生成した画像を出力する画像合成処理とを行う。このときの画像処理回路108は、取得した2系統の画像に対してデジタルゲイン、ホワイトバランス、ガンマ補正等の一般的な画像処理を行い、それら画像処理後の2系統の画像を合成する画像合成処理を行う。本実施形態において、画像合成処理は、処理対象となる2系統の画像に対して設定された増幅率によって、その処理方法が異なる。例えば撮像部100内のFD103とPGA104に設定した増幅率が、処理対象となる2系統の画像でそれぞれ異なる場合、画像処理回路108は、それら2系統の画像の輝度範囲が重複する領域では画質の良い画素を選択的に用いるような選択処理を行う。画質の良い画素は、例えば高い増幅率が設定された方の画像の画素とする。一方、例えば処理対象となる2系統の画像で増幅率が同じであった場合、画像処理回路108は、それら2系統の画像の同じ位置の画素同士で画素値を平均化して用いるような平均化処理を行う。そして、画像処理回路108による画像合成処理により生成された画像(以下、合成画像と呼ぶ。)は、動画を構成するフレームとして順次保存される。なお、動画については記録回路112によって所定の記録フォーマットのデータに変換された後、記録媒体113に記録されて保存される。 In S204, the image processing circuit 108 performs an acquisition process of the two images output in S203 and an image synthesis process of outputting an image generated by synthesizing the two images. At this time, the image processing circuit 108 performs general image processing such as digital gain, white balance, and gamma correction on the acquired two images, and synthesizes the two images after the image processing. Perform processing. In the present embodiment, the processing method of the image synthesizing process differs depending on the amplification factors set for the two systems of images to be processed. For example, when the amplification factors set for the FD 103 and the PGA 104 in the imaging unit 100 are different between the two images to be processed, the image processing circuit 108 determines the image quality in an area where the luminance ranges of the two images overlap. A selection process is performed to selectively use good pixels. A pixel with good image quality is, for example, a pixel of an image for which a higher amplification factor is set. On the other hand, for example, when the amplification factors are the same for the two images to be processed, the image processing circuit 108 averages the pixel values of the pixels at the same position in the two images and uses the averaged pixel value. Perform processing. Then, images generated by the image synthesis processing by the image processing circuit 108 (hereinafter, referred to as synthesized images) are sequentially stored as frames constituting a moving image. Note that the moving image is converted into data of a predetermined recording format by the recording circuit 112, and then recorded and stored on the recording medium 113.
 S205では、輝度取得部109が、画像の輝度の代表値を輝度情報として取得する。輝度情報の取得は、画像処理回路108にて画像処理された2系統の画像のいずれか一つの画像を用いて行われる。例えば輝度取得部109は、画像処理後の2系統の画像のうち、相対的に低い増幅率で処理された画像から輝度情報を取得する。より具体的に説明すると、輝度取得部109は、画像から取得可能な画素値(sRGB値)に対して画素値から輝度値への変換処理を行うことで輝度値を取得し、さらにそれら輝度値の平均値と標準偏差と最大値とを代表値として取得し、それらを輝度情報とする。そして輝度取得部109は、取得した輝度情報をバッファ111に保存する。なお、画素値から輝度値への変換処理は、一般的なsRGB値から輝度値への変換行列を各画素に対して適用することで実現できる。 In S205, the luminance acquisition unit 109 acquires a representative value of the luminance of the image as luminance information. The acquisition of the luminance information is performed using any one of the two types of images processed by the image processing circuit 108. For example, the luminance acquisition unit 109 acquires luminance information from an image processed at a relatively low amplification rate among the two systems of images after the image processing. More specifically, the luminance obtaining unit 109 obtains a luminance value by performing a conversion process from a pixel value to a luminance value on a pixel value (sRGB value) obtainable from an image, and further obtains the luminance values. The average value, the standard deviation, and the maximum value are obtained as representative values, and they are used as luminance information. Then, the luminance acquiring unit 109 stores the acquired luminance information in the buffer 111. The conversion process from the pixel value to the luminance value can be realized by applying a general conversion matrix from the sRGB value to the luminance value for each pixel.
 S206では、増幅率決定回路110が、S205で輝度情報として取得された輝度値の平均値、標準偏差、及び最大値をバッファ111から読み出し、それらの情報を基に被写体の輝度に応じた増幅率を決定する。被写体の輝度に応じた増幅率の決定処理の詳細については後述する。 In S206, the amplification factor determination circuit 110 reads the average value, the standard deviation, and the maximum value of the luminance values acquired as the luminance information in S205 from the buffer 111, and based on the information, the amplification factor corresponding to the luminance of the subject. To determine. The details of the process of determining the amplification factor according to the luminance of the subject will be described later.
 S207では、増幅率制御回路115が、S206で決定された増幅率を基に、撮像部100内での増幅率を再設定する。つまり、増幅率制御回路115は、S206で決定された増幅率を基に、FD103の静電容量と2系統のPGA104の増幅率の再設定を行う。 In S207, the gain control circuit 115 resets the gain in the imaging unit 100 based on the gain determined in S206. That is, the amplification factor control circuit 115 resets the capacitance of the FD 103 and the amplification factors of the two PGAs 104 based on the amplification factor determined in S206.
 その後、S208では、システム制御部117が、撮影の終了判定を行う。つまりS203からS208の処理が行われている間に、操作部119を介して外部から撮影終了指示が入力された場合、システム制御部117は、撮像制御部114に撮影終了指示を送る。これにより、撮像制御部114は、撮像部100の動作を終了させる。一方、システム制御部117は、撮影終了指示が入力されていないため、撮影を終了しない場合、S203に処理を戻し、S203からS207の処理を再度実行する。 After that, in S208, the system control unit 117 determines the end of the shooting. In other words, if a shooting end instruction is input from the outside via the operation unit 119 while the processing from S203 to S208 is being performed, the system control unit 117 sends a shooting end instruction to the imaging control unit 114. Thus, the imaging control unit 114 ends the operation of the imaging unit 100. On the other hand, if the shooting is not to be ended because the shooting end instruction has not been input, the system control unit 117 returns the process to S203 and executes the processes from S203 to S207 again.
 <増幅率の決定方法>
 以下、S206における増幅率の決定処理について、図3のフローチャート及び図4を用いて説明する。本実施形態では、2系統のうち、増幅率が相対的に低い方の増幅率をLowゲインと呼び、相対的に高い方の増幅率をHighゲインと呼ぶことにする。本実施形態では、これら相対的に低い増幅率のLowゲインと、相対的に高い増幅率のHighゲインとの、二つの値を決定する場合を例に挙げて説明する。なおこれ以降の説明では、撮像部100内部(FD103とPGA104)において、Lowゲインに設定した状態で取得した画像をLowゲイン画像と呼び、一方、Highゲインに設定した状態で取得した画像をHighゲイン画像と呼ぶ。
<How to determine the amplification factor>
Hereinafter, the process of determining the amplification factor in S206 will be described with reference to the flowchart in FIG. 3 and FIG. In the present embodiment, of the two systems, the gain with a relatively lower gain is referred to as a low gain, and the gain with a relatively higher gain is referred to as a high gain. In the present embodiment, a case will be described as an example where two values of a low gain having a relatively low amplification factor and a high gain having a relatively high amplification factor are determined. In the following description, an image obtained in the imaging unit 100 (FD 103 and PGA 104) with the low gain set is referred to as a low gain image, and an image obtained with the high gain set is referred to as a high gain. Called an image.
 S301では、増幅率決定回路110が、S205において輝度情報として取得した輝度値の平均値、標準偏差、及び最大値をバッファ111より取得する。 In step S301, the amplification factor determination circuit 110 acquires, from the buffer 111, the average value, the standard deviation, and the maximum value of the luminance values acquired as the luminance information in step S205.
 S302では、増幅率決定回路110が、S301で取得された値を基にLowゲインの決定を行う。 In S302, the amplification factor determining circuit 110 determines a low gain based on the value obtained in S301.
 以下に、Lowゲインを決定するための一例としての方法を、図4を参照しながら説明する。図4は、横軸を画像の輝度値、縦軸を輝度値の出現頻度とし、S301で算出した平均値と標準偏差を用いて、被写体の輝度値の分布を正規分布により表したグラフである。本実施形態では、Lowゲインは、被写体全体を白飛びなく撮影できることを目的として設定される。そのため、増幅率決定回路110は、Lowゲインについては図4の輝度範囲Lに示すように正規分布の全体を撮影できるように設定する。この時の増幅率は、式(1)で表す事ができる。 Hereinafter, an example method for determining the low gain will be described with reference to FIG. FIG. 4 is a graph in which the horizontal axis represents the luminance value of the image, the vertical axis represents the frequency of appearance of the luminance value, and the distribution of the luminance value of the subject is represented by a normal distribution using the average value and the standard deviation calculated in S301. . In the present embodiment, the Low gain is set for the purpose of photographing the entire subject without overexposure. Therefore, the amplification factor determination circuit 110 sets the Low gain so that the entire normal distribution can be photographed as shown in the luminance range L of FIG. The amplification factor at this time can be expressed by equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)において、GLowはLowゲイン、Gpreは輝度情報の取得に用いた画像に対して既に設定されている増幅率、μは画像の輝度の平均値、σは画像の輝度の標準偏差、IMaxは画像の取り得る最大輝度値を表す。 In the equation (1), G Low is a low gain, G pre is an amplification factor already set for an image used for acquiring luminance information, μ is an average value of image luminance, and σ is a standard value of image luminance. The deviation, I Max , represents the maximum possible luminance value of the image.
 S303では、増幅率決定回路110が、撮像装置の優先する輝度の「設定モード」の状態を取得する。「設定モード」には、例えば低輝度優先設定モード、中輝度優先設定モード、及び高輝度優先設定モード等があり、ユーザ等により設定可能となされている。そして、設定モードは、S201の撮影条件の設定時にいずれか一つが選択される。 In S303, the amplification factor determination circuit 110 acquires the state of the “setting mode” of the priority luminance of the imaging device. The “setting mode” includes, for example, a low luminance priority setting mode, a medium luminance priority setting mode, and a high luminance priority setting mode, and can be set by a user or the like. Then, any one of the setting modes is selected at the time of setting the imaging conditions in S201.
 S304では、増幅率決定回路110が、S301で取得した輝度値の平均値と標準偏差と最大値とに基づいて、Highゲインを決定する。 In S304, the amplification factor determination circuit 110 determines a High gain based on the average value, the standard deviation, and the maximum value of the luminance values acquired in S301.
 以下に、Highゲインを決定するための一例としての方法を示す。本実施形態では、低輝度優先設定モードと中輝度優先設定モードの二つが設定可能な場合を例に挙げて説明する。増幅率決定回路110は、低輝度優先設定モードに設定されている時には、Highゲインを、例えば図4において範囲H1で示す輝度範囲を撮影できるように設定する。また増幅率決定回路110は、中輝度優先設定モードに設定されている時には、Highゲインを、例えば図4において範囲H2で示す輝度範囲を撮影できるように設定する。範囲H1,H2のそれぞれの輝度範囲を撮影する際のHighゲインは、それぞれ式(2)、式(3)で表す事ができる。 The following is an example of a method for determining the High gain. In the present embodiment, a case where two modes, a low brightness priority setting mode and a middle brightness priority setting mode, can be set will be described as an example. When the low-luminance priority setting mode is set, the amplification factor determination circuit 110 sets the High gain so that a luminance range indicated by a range H1 in FIG. 4 can be captured, for example. Further, when the mode is set to the medium luminance priority setting mode, the amplification factor determining circuit 110 sets the High gain so that a luminance range indicated by a range H2 in FIG. 4 can be photographed, for example. The High gains when photographing the respective luminance ranges of the ranges H1 and H2 can be expressed by Expressions (2) and (3), respectively.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(2)のGHigh1は範囲H1の輝度範囲を撮影する際のHighゲイン、式(3)のGHigh2は範囲H2の輝度範囲を撮影する際のHighゲインを表す。式(2)または式(3)により算出されたHighゲインを区別せずにGHighとして表すと、増幅率決定回路110は、撮像装置が設定可能な増幅率のうち、GHighに最も近い値を実際に設定するHighゲインの増幅値とする。例えば撮像装置が1倍、2倍、及び4倍の増幅率を設定可能であり、式(2)または式(3)で算出したGHighが2.5であった場合、増幅率決定回路110は、実際に設定するHighゲインの増幅値として2倍を選択する。また、被写体の輝度分布が、例えば予め決めた輝度分布よりも広くない場合には、撮像装置が設定可能な増幅率のうち、同じ増幅率が、GLowとGHighに対して設定される。 G High1 in Expression (2) represents a High gain when capturing the luminance range of the range H1, and G High2 in Expression (3) represents a High gain when capturing the luminance range in the range H2. When the High gain calculated by Expression (2) or Expression (3) is expressed as G High without distinction, the amplification factor determination circuit 110 determines, from among the amplification factors that can be set by the imaging device, a value closest to G High. Is the amplification value of the High gain that is actually set. For example, when the imaging device can set the amplification factors of 1, 2, and 4 times, and the G High calculated by the expression (2) or (3) is 2.5, the amplification factor determination circuit 110 Selects twice as the amplification value of the High gain that is actually set. If the luminance distribution of the subject is not wider than, for example, a predetermined luminance distribution, the same amplification factor is set for G Low and G High among the amplification factors that can be set by the imaging device.
 また一般に、増幅率により出力画像の特性は変化する事が知られており、このため、例えばLowゲイン画像とHighゲイン画像とではそれぞれ特性が異なる。具体的には、Lowゲイン画像はHighゲイン画像に比べて、撮影できる輝度範囲は相対的に広いが、輝度に対するS/N(SN比)は低い。反対に、Highゲイン画像はLowゲイン画像に比べて、撮影できる輝度範囲は相対的に狭いが、輝度に対するS/Nは高い。このような関係は、GHigh1、GHigh2の値により増幅率を設定した画像についても同様である。つまり、低輝度優先設定モードでは、画像の低輝度領域に限定して比較的高いS/N改善効果を得ることができることになる。一方、中輝度優先設定モードでは、低輝度優先設定モードに比べてS/Nの改善効果が低くなるが、より広い輝度域のS/Nを改善することができる。 In general, it is known that the characteristics of an output image change depending on the amplification factor. For this reason, for example, characteristics are different between a low gain image and a high gain image. Specifically, a low gain image has a relatively wide range of luminance that can be photographed, but has a low S / N (SN ratio) with respect to luminance, as compared with a high gain image. Conversely, a high-gain image has a relatively narrower luminance range than a low-gain image, but has a higher S / N with respect to luminance. Such a relationship is the same for an image in which the amplification rate is set based on the values of G High1 and G High2 . That is, in the low luminance priority setting mode, a relatively high S / N improvement effect can be obtained only in the low luminance region of the image. On the other hand, in the medium luminance priority setting mode, the S / N improvement effect is lower than in the low luminance priority setting mode, but the S / N in a wider luminance region can be improved.
 なお、前述の例では、LowゲインとHighゲインの二つの増幅率を決定する方法を示したが、撮像装置がPGA104及びAD変換回路105を例えば3系統以上有し、少なくとも三つ以上の増幅率を決定する場合にも本実施形態は適用可能である。この場合、増幅率決定回路110は、三つ目以降の増幅率については前述したHighゲインと同様の増幅率を設定する。また、S203の画像合成処理の際に、画像処理回路108は、増幅率の同じ画像同士で前述した同じ位置の画素値を平均化する処理を行って、Lowゲイン画像との画像合成を行う。 In the above-described example, a method of determining two gains of a low gain and a high gain has been described. However, the imaging apparatus has, for example, three or more systems of the PGA 104 and the AD conversion circuit 105 and at least three or more gains. This embodiment is also applicable to the case of determining In this case, the amplification factor determination circuit 110 sets the same amplification factor as the above-mentioned High gain for the third and subsequent amplification factors. Further, at the time of the image synthesizing process in S203, the image processing circuit 108 performs the process of averaging the above-described pixel values at the same position between the images having the same amplification factor, and synthesizes the image with the Low gain image.
 以上が、第1実施形態の撮像装置で行われる処理である。以上に説明したように、本実施形態によれば、被写体の輝度の平均値、標準偏差等の輝度情報を利用して増幅率を決定することにより、被写体の輝度によらずS/Nの改善効果を得る事ができる。 The above is the processing performed by the imaging device of the first embodiment. As described above, according to the present embodiment, the S / N is improved irrespective of the luminance of the subject by determining the amplification factor using the luminance information such as the average value and the standard deviation of the luminance of the subject. The effect can be obtained.
 <第2実施形態>
 前述した第1実施形態では、画像の輝度値の平均値と標準偏差とに基づいて増幅率を決定している。これに対し、第2実施形態では、画像の輝度の代表値として輝度値の歪度と尖度を算出し、これらを輝度情報として用いて増幅率を決定する。なお、第2実施形態における撮像装置の構成は、図1に示した構成と同様であるため図示は省略する。また第2実施形態における処理の流れは、図2のS205とS206において第1実施形態とは異なる。第1実施形態では、S205において、輝度値の平均値、標準偏差、及び最大値を求め、これらを輝度情報として、バッファ111に保存した。これに対し、第2実施形態では、S205において、輝度値の歪度及び尖度を求め、これらを輝度情報として、バッファ111に保存する。
<Second embodiment>
In the above-described first embodiment, the amplification factor is determined based on the average value and the standard deviation of the luminance values of the image. On the other hand, in the second embodiment, the skewness and kurtosis of the luminance value are calculated as representative values of the luminance of the image, and the amplification factor is determined using these as luminance information. The configuration of the imaging apparatus according to the second embodiment is the same as the configuration shown in FIG. The flow of processing in the second embodiment differs from that of the first embodiment in S205 and S206 in FIG. In the first embodiment, in S205, an average value, a standard deviation, and a maximum value of luminance values are obtained, and these are stored in the buffer 111 as luminance information. In contrast, in the second embodiment, in S205, the skewness and kurtosis of the luminance value are obtained, and these are stored in the buffer 111 as luminance information.
 以下、第2実施形態の撮像装置で行われる処理について、第1実施形態と異なる点を中心に、図5に示すフローチャートを用いて説明する。図5のフローチャートは、図2のS206に相当する処理を表している。また、第2実施形態におけるS206の処理方法に関しては、2系統のうち、相対的に低い方の増幅率のLowゲインと、相対的に高い方の増幅率のHighゲインの二つの値を決定する場合を例に挙げて説明を行う。 Hereinafter, processing performed by the imaging apparatus according to the second embodiment will be described with reference to a flowchart illustrated in FIG. 5, focusing on differences from the first embodiment. The flowchart in FIG. 5 illustrates a process corresponding to S206 in FIG. Regarding the processing method of S206 in the second embodiment, of the two systems, two values of a low gain of a relatively lower amplification factor and a High gain of a relatively higher amplification factor are determined. The case will be described as an example.
 S501では、増幅率決定回路110が、第2実施形態のS205において輝度情報として取得した輝度値の歪度と尖度を、バッファ111より取得する。 In S501, the amplification factor determination circuit 110 obtains, from the buffer 111, the skewness and kurtosis of the brightness value obtained as the brightness information in S205 of the second embodiment.
 <歪度と尖度>
 ここで、歪度と尖度は、データの分布の特徴を表す指標である。歪度は、データの分布がどの程度非対称なのかを表す値であり、尖度は、データの分布が正規分布と比較してどの程度鋭いかを表す値である。第2実施形態の場合の輝度取得部109は、下記の式(4)により歪度Sを算出し、式(5)により尖度Kを算出する。
<Skewness and kurtosis>
Here, the skewness and the kurtosis are indices representing characteristics of the distribution of data. The skewness is a value indicating how asymmetric the distribution of the data is, and the kurtosis is a value indicating how sharp the distribution of the data is compared to the normal distribution. The brightness acquisition unit 109 in the case of the second embodiment calculates the skewness S by the following equation (4), and calculates the kurtosis K by the equation (5).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここで、式(4)及び式(5)において、Sは歪度、Kは尖度、nは画像の輝度のデータ総数、xはi番目の輝度の値、σは画像の輝度の標準偏差、μは画像の輝度の平均値である。第2実施形態の場合、バッファ111には、これら輝度値の歪度と尖度が輝度情報として保持される。 Here, in Equations (4) and (5), S is skewness, K is kurtosis, n is the total number of image luminance data, x is the i-th luminance value, and σ is the image luminance standard deviation. , Μ are the average values of the luminance of the image. In the case of the second embodiment, the skewness and kurtosis of these luminance values are held in the buffer 111 as luminance information.
 S502では、増幅率決定回路110が、S501において輝度情報として取得した輝度値の歪度と尖度に基づき、後述するテーブルを用いて係数を算出する。便宜上、ここでのテーブルを係数テーブルと呼び、その詳細は後述する。係数テーブルは、ROM118に保持されており、係数テーブルの係数の算出は例えばデジタル処理回路107において行われる。 In S502, the amplification factor determination circuit 110 calculates a coefficient using a table described later based on the skewness and kurtosis of the luminance value acquired as the luminance information in S501. For convenience, the table here is called a coefficient table, the details of which will be described later. The coefficient table is held in the ROM 118, and the calculation of the coefficient in the coefficient table is performed in the digital processing circuit 107, for example.
 S503では、増幅率決定回路110が、Lowゲイン及びHighゲインの値を決定する。増幅率決定回路110は、S205において輝度情報である歪度と尖度の算出に用いた画像について設定されている増幅率と、S502で係数テーブルから歪度と尖度を基に算出される係数とを掛けた値を求めて、この値を増幅率とする。 In S503, the amplification factor determination circuit 110 determines the values of the low gain and the high gain. The amplification factor determination circuit 110 determines the amplification factor set for the image used for calculating the skewness and kurtosis as the luminance information in S205 and the coefficient calculated based on the skewness and kurtosis from the coefficient table in S502. Is obtained, and this value is used as the amplification factor.
 <係数テーブル>
 以下、係数テーブルについて、図6A及び図6Bを参照しながら説明する。図6AにはLowゲインについて係数を算出する際の係数テーブル、図6BにはHighゲインについて係数を算出する際の係数テーブルの一例を示している。図6A及び図6Bでは、それぞれ横軸を歪度、縦軸を尖度としており、前述したように、歪度の値は被写体の輝度の偏りの指標であり、尖度の値は輝度の偏りの尖り方の指標である。例えば、歪度が負の値となると、被写体の輝度は高輝度側に偏っており、歪度の値が正の値となると、被写体の輝度は低輝度側に偏っていることになる。歪度の絶対値が大きくなると、偏り方も大きくなる。尖度は、その値が大きくなるに従いより鋭くなる。また、係数テーブル内の値は、S501において、輝度値の歪度と尖度の算出に用いた画像に設定されている増幅率に掛けられる係数である。例えば、歪度と尖度の算出に用いた画像に設定されている増幅率が2で、係数テーブルより定まる値が8となる場合、ここで決定される増幅率は、2×8=16となる。
<Coefficient table>
Hereinafter, the coefficient table will be described with reference to FIGS. 6A and 6B. FIG. 6A shows an example of a coefficient table for calculating a coefficient for a low gain, and FIG. 6B shows an example of a coefficient table for calculating a coefficient for a high gain. 6A and 6B, the horizontal axis represents the skewness and the vertical axis represents the kurtosis. As described above, the value of the skewness is an index of the bias of the brightness of the subject, and the value of the kurtosis is the bias of the brightness. It is an index of how to sharpen. For example, when the skewness is a negative value, the luminance of the subject is biased toward the high luminance side, and when the skewness value is a positive value, the luminance of the subject is biased toward the low luminance side. The greater the absolute value of the skewness, the greater the bias. The kurtosis becomes sharper as its value increases. The value in the coefficient table is a coefficient that is multiplied by the amplification factor set for the image used for calculating the skewness and kurtosis of the luminance value in S501. For example, if the amplification factor set for the image used for calculating the skewness and kurtosis is 2, and the value determined from the coefficient table is 8, the amplification factor determined here is 2 × 8 = 16. Become.
 また、増幅率決定に用いる係数テーブルは、LowゲインとHighゲインの二つの係数テーブルに限らず、決定する増幅率の数に応じて作成してもよい。また、係数テーブル内に記述した係数は、図6Aや図6Bに示した値に限らない。 The coefficient table used for determining the amplification factor is not limited to the two coefficient tables of the low gain and the high gain, and may be created according to the number of amplification factors to be determined. Further, the coefficients described in the coefficient table are not limited to the values shown in FIGS. 6A and 6B.
 なお、本実施形態では、LowゲインとHighゲインの二つの増幅率を決定する方法を示したが、撮像装置がPGA104及びAD変換回路105を3系統以上有し、少なくとも三つ以上の増幅率を決定する場合もある。このような場合には、三つ目以降の増幅率は前述したHighゲインと同様の増幅率を設定する。またこの場合、S204の画像合成処理の際に、画像処理回路108は、増幅率が同じ画像同士で前述した同じ位置の画素値を平均化する処理を行い、Lowゲイン画像との画像合成を行う。 In the present embodiment, a method of determining two gains of a low gain and a high gain has been described. However, the imaging apparatus has three or more PGAs 104 and AD conversion circuits 105, and has at least three or more gains. It may be decided. In such a case, the third and subsequent amplification factors are set to the same amplification factors as the High gain described above. In this case, at the time of the image synthesizing process in S204, the image processing circuit 108 performs the process of averaging the pixel values at the same position described above between the images having the same amplification factor, and performs the image synthesizing with the Low gain image. .
 以上が、第2実施形態の撮像装置で行われる処理である。以上に説明したように、本実施形態によれば、被写体の輝度値の歪度と尖度の輝度情報を利用して増幅率を決定することにより、被写体の輝度によらずS/Nの改善効果を得る事ができる。 The above is the processing performed by the imaging device of the second embodiment. As described above, according to the present embodiment, the S / N is improved irrespective of the luminance of the subject by determining the amplification factor using the skewness and the kurtosis luminance information of the luminance value of the subject. The effect can be obtained.
 <第3実施形態>
 第3実施形態では、第1実施形態、第2実施形態の撮像装置と異なる構成により、被写体の輝度に応じて増幅率を決定する方法について述べる。第3実施形態では、輝度値の代表値(平均と標準偏差や、歪度と尖度等)を保持するメモリ(バッファ111)の他に、信号電荷を保持する電荷メモリを有し、例えば1フレーム前の画像で事前に増幅率を決定しておく必要がない手法を説明する。図7は、第3実施形態における撮像装置の構成の一例を示す構成図である。図7は、図1の撮像装置とは撮像部100内の構成が異なり、光電変換素子102の後段で例えば2系統に分けられ、2系統に分けられた各FD103の前段にそれぞれ電荷メモリ700が設けられている。電荷メモリ700は、光電変換素子102で生じた信号電荷を保持する機能を有する。図7の撮像装置は、電荷メモリ700を2系統分だけ有する構成となっているが、FD103、PGA104、及びAD変換回路105が3系統以上に分けられる場合にはその系統数に応じた数だけ設けられてもよい。なお図7の構成図において、図1と対応した構成には同じ参照符号を付し、それらの説明は省略する。
<Third embodiment>
In the third embodiment, a method of determining an amplification factor according to the luminance of a subject with a configuration different from the imaging devices of the first embodiment and the second embodiment will be described. In the third embodiment, in addition to a memory (buffer 111) for holding a representative value of luminance values (average and standard deviation, skewness and kurtosis, etc.), a charge memory for holding signal charges is provided. A method will be described in which it is not necessary to determine an amplification factor in advance for an image before a frame. FIG. 7 is a configuration diagram illustrating an example of a configuration of an imaging device according to the third embodiment. FIG. 7 is different from the imaging apparatus in FIG. 1 in the configuration of the imaging unit 100. The imaging unit 100 is divided into, for example, two systems after the photoelectric conversion element 102, and a charge memory 700 is provided in front of each FD 103 divided into two systems. Is provided. The charge memory 700 has a function of holding signal charges generated in the photoelectric conversion element 102. The imaging device in FIG. 7 has a configuration in which the charge memory 700 is provided for only two systems. However, when the FD 103, the PGA 104, and the AD conversion circuit 105 are divided into three or more systems, only the number corresponding to the number of systems is provided. May be provided. In the configuration diagram of FIG. 7, the components corresponding to those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
 <第3実施形態の撮像装置における撮像動作の説明>
 以下、第3実施形態の撮像装置における撮影動作の流れを、図7の構成図及び図8に示すフローチャートを用いて説明する。なお、本実施形態では、2系統分の電荷メモリ700を有し、二つの増幅率を決定する場合の一例を説明する。
<Description of imaging operation in imaging apparatus of third embodiment>
Hereinafter, the flow of the photographing operation in the imaging device of the third embodiment will be described with reference to the configuration diagram of FIG. 7 and the flowchart illustrated in FIG. In this embodiment, an example will be described in which a charge memory 700 for two systems is provided and two amplification factors are determined.
 S801では、撮像制御部114が、操作部119を介して外部から入力された指示に応じて、撮像装置の撮影条件(シャッタースピード、絞り、及びISO感度)を設定する。また、撮影条件の設定に際して、撮像制御部114は、撮像部100の光学系101の絞り、光電変換素子102の露光時間、及び各系統のFD103の静電容量とPGA104の増幅率の設定値を変更する。 In S801, the imaging control unit 114 sets the imaging conditions (shutter speed, aperture, and ISO sensitivity) of the imaging device according to an instruction input from the outside via the operation unit 119. In setting the imaging conditions, the imaging control unit 114 sets the aperture of the optical system 101 of the imaging unit 100, the exposure time of the photoelectric conversion element 102, and the set values of the capacitance of the FD 103 and the amplification factor of the PGA 104 in each system. change.
 S802では、増幅率制御回路115が、各系統のFD103の静電容量とPGA104の増幅率を設定する。設定値は、撮影条件に応じた値、またはROM118に記載された値を用いる。 In S802, the gain control circuit 115 sets the capacitance of the FD 103 and the gain of the PGA 104 in each system. As the set value, a value corresponding to the photographing condition or a value described in the ROM 118 is used.
 S803では、操作部119を介して外部から入力された撮影指示に応じて、撮像制御部114が、撮像部100の撮影動作を開始させる。このときの撮像制御部114は、先ず、光学系101のレンズと絞りを駆動して、被写体の光学像を光電変換素子102上に結像させる。そして、光電変換素子102から転送された信号電荷は、2系統に分配されて電荷メモリ700へ送られて保持される。次に、撮像制御部114は、2系統のうち、相対的に低い方の増幅率であるLowゲインを設定する経路側の電荷メモリ700で保持している信号電荷を、FD103へ転送させる。このFD103は、転送された信号電荷を信号電圧に変換してアナログ処理回路106へ出力する。その出力された信号電圧は、アナログ処理回路106内のPGA104により増幅された後、AD変換回路105でデジタル値に変換され、デジタル処理回路107へ出力される。 In S803, the imaging control unit 114 starts the imaging operation of the imaging unit 100 in response to an imaging instruction input from the outside via the operation unit 119. At this time, the imaging control unit 114 first drives the lens and the aperture of the optical system 101 to form an optical image of the subject on the photoelectric conversion element 102. Then, the signal charges transferred from the photoelectric conversion element 102 are distributed to two systems, sent to the charge memory 700, and held. Next, the imaging control unit 114 causes the signal charge held in the charge memory 700 on the path side for setting the low gain, which is the relatively lower amplification rate, of the two systems to be transferred to the FD 103. The FD 103 converts the transferred signal charge into a signal voltage and outputs the signal voltage to the analog processing circuit 106. The output signal voltage is amplified by the PGA 104 in the analog processing circuit 106, converted into a digital value by the AD conversion circuit 105, and output to the digital processing circuit 107.
 S804では、画像処理回路108が、Lowゲイン画像を取得する。具体的には、画像処理回路108は、S803で取得したデジタル値に対して、デジタルゲイン、ホワイトバランス、及びガンマ補正等の一般的な画像処理を必要に応じて行い、Lowゲイン画像を取得する。 In S804, the image processing circuit 108 acquires a low gain image. Specifically, the image processing circuit 108 performs general image processing such as digital gain, white balance, and gamma correction on the digital value acquired in step S803 as necessary, and acquires a low gain image. .
 S805では、輝度取得部109が、Lowゲイン画像の輝度情報の取得を行う。具体的には、前述のS205と同様に、画素値(sRGB値)に対して、画素値から輝度値への変換処理を行う。さらに、輝度取得部109は、輝度値の代表値を算出して、輝度情報としてバッファ111に保存する。輝度値の代表値としては、前述した第1実施形態で説明した輝度値の平均値、標準偏差、及び最大値、第2実施形態で説明した歪度及び尖度を挙げることができる。 In S805, the luminance acquisition unit 109 acquires the luminance information of the Low gain image. Specifically, similarly to S205 described above, a conversion process from a pixel value to a luminance value is performed on the pixel value (sRGB value). Further, the luminance acquisition unit 109 calculates a representative value of the luminance value and stores the representative value in the buffer 111 as luminance information. As the representative value of the luminance value, the average value, the standard deviation, and the maximum value of the luminance value described in the first embodiment, and the skewness and kurtosis described in the second embodiment can be exemplified.
 S806では、増幅率決定回路110が、S805で算出された輝度値の代表値(輝度情報)をバッファ111より取得し、その取得した代表値を基に、被写体の輝度に応じた増幅率の決定を行う。被写体の輝度に適した増幅率の決定方法は、第1実施形態、第2実施形態において前述した方法のうち、どちらか一つを用いることとする。例えば、輝度値の代表値として、前述した第1実施形態で説明した輝度値の平均値、標準偏差、及び最大値を用いる場合には、第1実施形態で説明した増幅率の決定方法を用いる。また例えば、第2実施形態で説明した歪度と尖度を用いる場合には、第2実施形態で説明した増幅率の決定方法を用いる。なおこれら二つの増幅率の決定方法は前述同様であるため、ここでの説明は省略する。 In step S806, the amplification factor determination circuit 110 acquires the representative value (luminance information) of the luminance value calculated in step S805 from the buffer 111, and determines the amplification factor according to the luminance of the subject based on the acquired representative value. I do. As a method of determining the amplification factor suitable for the luminance of the subject, one of the methods described in the first embodiment and the second embodiment is used. For example, when the average value, the standard deviation, and the maximum value of the luminance values described in the first embodiment are used as the representative values of the luminance values, the amplification factor determination method described in the first embodiment is used. . For example, when the skewness and the kurtosis described in the second embodiment are used, the method for determining the amplification factor described in the second embodiment is used. Note that the method of determining these two amplification factors is the same as described above, and a description thereof will be omitted.
 S807では、増幅率制御回路115が、S806で決定された増幅率に基づいて、2系統のうちでHighゲインを設定する経路における増幅率の再設定(FD103の静電容量、PGA104の増幅率の再設定)を行う。 In step S807, the amplification factor control circuit 115 resets the amplification factor (the capacitance of the FD 103 and the amplification factor of the PGA 104) in the path for setting the High gain of the two systems based on the amplification factor determined in S806. Reset).
 S808では、画像処理回路108が、Highゲイン画像を取得する。この時、増幅率制御回路115は、Highゲインを設定する経路に接続された電荷メモリ700が保持している信号電荷を、FD103へ転送して信号電圧に変換させ、さらに増幅率が再設定されたPGA104で信号電圧を増幅させる。その後、PGA104で増幅された信号電圧が、AD変換回路105でデジタル値に変換される。そして、画像処理回路108は、入力したデジタル値に対して、デジタルゲイン、ホワイトバランス、及びガンマ補正等の一般的な画像処理を必要に応じて行う。これにより再設定された増幅率で増幅されたHighゲイン画像が取得される。 In S808, the image processing circuit 108 acquires a High gain image. At this time, the gain control circuit 115 transfers the signal charge held by the charge memory 700 connected to the path for setting the High gain to the FD 103 and converts it into a signal voltage, and the gain is reset. The PGA 104 amplifies the signal voltage. Thereafter, the signal voltage amplified by the PGA 104 is converted to a digital value by the AD conversion circuit 105. Then, the image processing circuit 108 performs general image processing such as digital gain, white balance, and gamma correction on the input digital values as necessary. As a result, a High gain image amplified at the reset amplification factor is obtained.
 S809では、画像処理回路108が、S804で取得したLowゲイン画像と、S808で取得したHighゲイン画像との合成処理を行う。例えば、撮像部100内で設定された増幅率が2系統でそれぞれ異なる場合、画像処理回路108は、それら2系統の画像の輝度範囲が重複する領域ではS/Nの高い画像の画素を選択的に用いるような選択処理を行う。一方、2系統で増幅率が同じである場合、画像処理回路108は、それら2系統の画像の同じ位置の画素同士で画素値を平均化して用いる平均化処理を行う。その後、画像処理回路108による画像合成処理後の合成画像は、記録回路112により所定の記録フォーマットのデータに変換された後、記録媒体113に記録されて保存される。 In S809, the image processing circuit 108 performs a synthesis process of the Low gain image acquired in S804 and the High gain image acquired in S808. For example, when the amplification factors set in the imaging unit 100 are different between the two systems, the image processing circuit 108 selectively selects pixels of an image having a high S / N in a region where the luminance ranges of the two systems overlap. A selection process such as that used for is performed. On the other hand, when the amplification factors are the same in the two systems, the image processing circuit 108 performs an averaging process in which pixels at the same position in the two systems of images are averaged and used. After that, the combined image after the image combining processing by the image processing circuit 108 is converted into data of a predetermined recording format by the recording circuit 112, and then recorded and stored in the recording medium 113.
 以上が、第3実施形態の撮像装置で行われる処理である。以上に説明したように、本実施形態によれば、信号電荷を保持する電荷メモリを有し、例えば1フレーム前の画像を用いて事前に増幅率を決定しておかなくても、被写体の輝度情報を基に増幅率を決定することができる。そして第3実施形態においても、前述した第1、第2実施形態と同様に、被写体の輝度によらずS/Nの改善効果を得る事ができる。 The above is the processing performed by the imaging device according to the third embodiment. As described above, according to the present embodiment, the charge memory for holding the signal charge is provided, and for example, the luminance of the subject can be obtained even if the amplification factor is not determined in advance using the image one frame before. The amplification factor can be determined based on the information. In the third embodiment as well, similar to the first and second embodiments, an S / N improvement effect can be obtained regardless of the luminance of the subject.
 <第4実施形態>
 第1実施形態から第3実施形態では、輝度情報として画像の輝度値の平均値、標準偏差、及び最大値、もしくは、歪度及び尖度といった代表値を取得して増幅率の決定を行っている。以下の第4実施形態の撮像装置は、画像を保存する役割を持つ画像メモリ900を備え、画像メモリ900に保持した画像から輝度のヒストグラムを求め、そのヒストグラムを基に画像中で頻度が少ない輝度領域を判定する。そして、第4実施形態の撮像装置では、その輝度領域の判定結果に応じて増幅率を決定する。すなわち、第4実施形態は、撮影シーンの輝度分布を詳細に取得し、その輝度分布を基に画像中で頻度が少ない輝度領域を判定し、その輝度領域の判定結果を基に増幅率を決定する。このため、第4実施形態の撮像装置では、第1実施形態から第3実施形態で説明した代表値に基づく増幅率の決定方法に比べて、撮影シーンに対してより適切な増幅率の設定を行うことができる。
<Fourth embodiment>
In the first to third embodiments, an average value, a standard deviation, and a maximum value of luminance values of an image or representative values such as skewness and kurtosis are acquired as luminance information to determine an amplification factor. I have. An imaging apparatus according to a fourth embodiment described below includes an image memory 900 having a role of storing an image, obtains a luminance histogram from the image stored in the image memory 900, and uses the histogram having a low frequency in the image based on the histogram. Determine the area. Then, in the imaging device of the fourth embodiment, the amplification factor is determined according to the determination result of the luminance region. That is, in the fourth embodiment, a luminance distribution of a shooting scene is obtained in detail, a luminance region having a low frequency in an image is determined based on the luminance distribution, and an amplification factor is determined based on the determination result of the luminance region. I do. For this reason, in the imaging apparatus of the fourth embodiment, a more appropriate setting of the amplification factor for the shooting scene is performed, compared to the method of determining the amplification factor based on the representative values described in the first embodiment to the third embodiment. It can be carried out.
 図9は、第4実施形態における撮像装置の構成の一例を示す構成図である。図9に示した第4実施形態の撮像装置は、図1に示した撮像装置の構成と比較すると、画像メモリ900が設けられている点が異なる。画像メモリ900は画像を保持する機能を有する。画像メモリ900は、撮像部100により取得した画像や、後述する図10のS1006で輝度情報として取得する輝度画像等を保持可能となされている。なお図9の構成図において、図1と対応した構成には同じ参照符号を付し、それらの説明は省略する。 FIG. 9 is a configuration diagram illustrating an example of a configuration of an imaging device according to the fourth embodiment. The imaging device according to the fourth embodiment shown in FIG. 9 is different from the imaging device shown in FIG. 1 in that an image memory 900 is provided. The image memory 900 has a function of holding an image. The image memory 900 can hold an image acquired by the imaging unit 100, a luminance image acquired as luminance information in S1006 in FIG. In the configuration diagram of FIG. 9, the components corresponding to those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
 <第4実施形態の撮像装置における撮影動作の説明>
 以下、第4実施形態の撮像装置における撮影動作の流れについて、図9の構成図及び図10に示すフローチャートを用いて説明する。なお、第4実施形態においても前述の実施形態と同様に、2系統に分けて増幅率を決定する例を挙げて説明する。
<Description of Photographing Operation in Imaging Device of Fourth Embodiment>
Hereinafter, the flow of the image capturing operation in the image capturing apparatus according to the fourth embodiment will be described with reference to the configuration diagram of FIG. 9 and the flowchart illustrated in FIG. Note that, in the fourth embodiment, as in the above-described embodiment, an example in which the amplification factor is determined for two systems will be described.
 S1001では、前述のS201と同様に、撮像制御部114が、操作部119を介して外部から入力された指示に応じて、撮像装置の撮影条件を設定する。 In S1001, similarly to S201 described above, the imaging control unit 114 sets the imaging conditions of the imaging device according to an instruction input from the outside via the operation unit 119.
 S1002では、前述のS202と同様に、増幅率制御回路115が、PGA104の増幅率及びFD103の静電容量を設定する。 In step S1002, similarly to step S202, the amplification factor control circuit 115 sets the amplification factor of the PGA 104 and the capacitance of the FD 103.
 S1003では、前述のS203と同様に、撮像制御部114が、操作部119を介して外部から入力された撮影指示に応じて、撮像部100の撮影動作を開始させる。また前述同様に、光電変換素子102から転送された信号電荷は、FD103において信号電圧に変換された後、2系統に分配されて、アナログ処理回路106へ送られる。そして、前述同様に、アナログ処理回路106では、入力された信号電圧がPGA104により増幅された後、AD変換回路105でデジタル値に変換されて、デジタル処理回路107へ出力される。 In S1003, as in S203, the imaging control unit 114 starts the imaging operation of the imaging unit 100 in response to an imaging instruction input from outside via the operation unit 119. In the same manner as described above, the signal charge transferred from the photoelectric conversion element 102 is converted into a signal voltage in the FD 103, then divided into two systems, and sent to the analog processing circuit 106. Then, as described above, in the analog processing circuit 106, the input signal voltage is amplified by the PGA 104, converted into a digital value by the AD conversion circuit 105, and output to the digital processing circuit 107.
 S1004では、前述のS204と同様に、画像処理回路108が、2系統の画像の取得処理と画像合成処理とを行う。そして、画像処理回路108による処理後の合成画像は、記録回路112により所定の記録フォーマットのデータに変換された後、記録媒体113に記録される。 In S1004, as in S204, the image processing circuit 108 performs two-system image acquisition processing and image synthesis processing. Then, the composite image after the processing by the image processing circuit 108 is converted into data of a predetermined recording format by the recording circuit 112 and then recorded on the recording medium 113.
 S1005では、デジタル処理回路107が、撮像部100より取得された画像のうち、最も低い増幅率を設定した画像を、画像メモリ900に保存させる。 In step S <b> 1005, the digital processing circuit 107 causes the image memory 900 to store the image with the lowest amplification factor set among the images acquired from the imaging unit 100.
 S1006では、輝度取得部109が、画像メモリ900に保存された画像の輝度情報を取得する。輝度取得部109は、画像メモリ900に保存された画像から取得可能な画素値(sRGB値)に対して、画素値から輝度値への変換処理を行う。そして、輝度取得部109は、輝度値への変換処理を行って得られた画像(以下、輝度画像と呼ぶ。)を、輝度情報として画像メモリ900に保存させる。なお、画素値から輝度値への変換処理は、前述同様であり、一般的なsRGB値から輝度値への変換行列を各画素に対して適用することで行われる。 In S1006, the brightness acquisition unit 109 acquires the brightness information of the image stored in the image memory 900. The luminance obtaining unit 109 performs a conversion process from a pixel value to a luminance value on a pixel value (sRGB value) obtainable from an image stored in the image memory 900. Then, the luminance acquisition unit 109 stores the image (hereinafter, referred to as a luminance image) obtained by performing the conversion process into the luminance value in the image memory 900 as luminance information. The conversion process from the pixel value to the luminance value is the same as described above, and is performed by applying a general conversion matrix from the sRGB value to the luminance value to each pixel.
 S1007では、増幅率決定回路110が、S1006で輝度情報として取得した輝度画像を、画像メモリ900から読み出し、その輝度画像を基に、被写体の輝度に応じた増幅率を決定する。第4実施形態における被写体の輝度に応じた増幅率の決定処理の詳細については後述する。 In S1007, the amplification factor determination circuit 110 reads the luminance image acquired as the luminance information in S1006 from the image memory 900, and determines an amplification factor according to the luminance of the subject based on the luminance image. The details of the process of determining the amplification factor according to the luminance of the subject in the fourth embodiment will be described later.
 S1008では、増幅率制御回路115が、S1007で決定された増幅率を基に、撮像部100内での増幅率を再設定する。つまり、増幅率制御回路115は、S1007で決定された増幅率を基に、FD103の静電容量と2系統のPGA104の増幅率の再設定を行う。 In S1008, the gain control circuit 115 resets the gain in the imaging unit 100 based on the gain determined in S1007. That is, the amplification factor control circuit 115 resets the capacitance of the FD 103 and the amplification factors of the two PGAs 104 based on the amplification factor determined in S1007.
 その後、S1009では、システム制御部117が、撮影の終了判定を行う。S1003からS1008の処理が行われている間に、操作部119を介して外部から撮影終了指示が入力された場合、システム制御部117は、撮像制御部114に撮影終了指示を送って撮像部100の動作を終了させる。一方、システム制御部117は、撮影終了指示が入力されておらず、撮影を終了しない場合、S1003に処理を戻し、S1003からS108の処理を再度実行する。 After that, in S1009, the system control unit 117 determines the end of the shooting. If a shooting end instruction is input from the outside via the operation unit 119 while the processing from S1003 to S1008 is being performed, the system control unit 117 sends a shooting end instruction to the imaging control unit 114 and The operation of is ended. On the other hand, if the shooting end instruction has not been input and the shooting is not to be ended, the system control unit 117 returns the process to S1003 and executes the processes from S1003 to S108 again.
 <第4実施形態における増幅率の決定処理>
 以下、S1007における増幅率決定処理について、図11のフローチャート及び図12を用いて説明する。本実施形態でも前述同様に、2系統のうち、相対的に低い方の増幅率のLowゲインと、相対的に高い方の増幅率のHighゲインの二つの値を決定する場合を例に挙げて説明を行う。
<Amplification Ratio Determination Process in Fourth Embodiment>
Hereinafter, the amplification factor determination processing in S1007 will be described using the flowchart of FIG. 11 and FIG. Similarly to the above, in the present embodiment, as an example, a case where two values of a low gain of a relatively lower amplification factor and a High gain of a relatively higher amplification factor of two systems are determined will be described as an example. Give an explanation.
 S1101では、輝度取得部109が、S1006において輝度情報として保存した輝度画像を基に輝度のヒストグラムを算出し、その算出したヒストグラムの情報をバッファ111に保存させる。 In S1101, the brightness acquisition unit 109 calculates a brightness histogram based on the brightness image stored as the brightness information in S1006, and stores the calculated histogram information in the buffer 111.
 S1102では、増幅率決定回路110が、Highゲインとなる増幅率の候補となる値(以下、候補値とする。)を算出する。 In S1102, the amplification factor determination circuit 110 calculates a value that is a candidate for an amplification factor that becomes a High gain (hereinafter, referred to as a candidate value).
 以下、候補値の算出方法について、図12を用いて説明を行う。 Hereinafter, a method of calculating a candidate value will be described with reference to FIG.
 増幅率決定回路110は、先ず、図12示すように、ヒストグラムの頻度に対して閾値処理を行い、輝度が大きくなる方向において閾値を超えた部分から閾値を下回る部分へと変化する点(以下、変曲点とする。)を取得する。図12の例では、変曲点IP1,IP2,IP3が得られている。閾値は、ノイズが原因で発生する頻度の増減による、変曲点の誤検出を防ぐような値に設定されている。 First, as shown in FIG. 12, the amplification factor determination circuit 110 performs a threshold process on the frequency of the histogram, and changes the point where the luminance exceeds the threshold in a direction of increasing luminance from a part below the threshold (hereinafter, referred to as a point below). Inflection point). In the example of FIG. 12, inflection points IP1, IP2, and IP3 are obtained. The threshold value is set to a value that prevents erroneous detection of an inflection point due to an increase or decrease in the frequency of occurrence due to noise.
 次に、増幅率決定回路110は、輝度値「0」から、前述のように取得したそれぞれの変曲点IP1,IP2,IP3までの各輝度範囲を撮影できるような増幅率を候補値とする。図12の例では、輝度値「0」から各変曲点IP1,IP2,IP3までの輝度範囲である範囲H1,H2,Lまで撮影できる増幅率が候補値となされる。輝度値「0」から変曲点までの輝度範囲を撮影できるような増幅率は、式(6)により算出される。 Next, the amplification factor determination circuit 110 sets an amplification factor that can photograph each luminance range from the luminance value “0” to the respective inflection points IP1, IP2, and IP3 acquired as described above as candidate values. . In the example of FIG. 12, the amplification factors that can be photographed in the ranges H1, H2, and L, which are the luminance ranges from the luminance value “0” to the inflection points IP1, IP2, and IP3, are set as candidate values. An amplification factor that enables the photographing of the luminance range from the luminance value “0” to the inflection point is calculated by Expression (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 式(6)において、Iは任意の変曲点における輝度値、IMaxは画像の取り得る最大輝度値、Gpreはヒストグラム算出に用いた画像に設定された増幅率、Gは任意の変曲点までの輝度範囲を撮影する際の増幅率である。増幅率決定回路110は、各変曲点に対して増幅率Gの算出を行い、得られた各増幅率Gの値を候補値とする。 In the equation (6), I C is a luminance value at an arbitrary inflection point, I Max is a maximum luminance value that the image can take, G pre is an amplification factor set for the image used for the histogram calculation, and G C is an arbitrary value. This is the amplification factor when capturing the luminance range up to the inflection point. Amplification factor decision circuit 110 performs the calculation of the gain G C for each inflection point, and the candidate value the value of each gain G C obtained.
 S1103では、増幅率決定回路110が、Lowゲインの値を決定する。例えば、Lowゲインは被写体の全体の輝度範囲を撮影出来るようにするために、複数の変曲点のうち輝度の最も高い変曲点(図12の変曲点IP3)に合わせた値とする。なお、ヒストグラムの変曲点が0個、または輝度の最も高い変曲点以降の輝度範囲においてヒストグラムの頻度が閾値を超える場合、Lowゲインは、ヒストグラム算出に用いた画像(本実施形態ではLowゲイン画像)の増幅率よりも1段低い値とする。増幅率として、例えば、2倍、3倍、4倍、及び5倍の各値を設定でき、ヒストグラムの算出に用いた画像に設定されている増幅率が4倍である場合、Lowゲインは1段低い値の3倍に設定される。なおこの時、ヒストグラムの算出に用いた画像の増幅率が、設定値の下限である2倍となる場合、Lowゲインは下限の値である2倍となる。 In S1103, the amplification factor determining circuit 110 determines the value of the low gain. For example, the Low gain is set to a value corresponding to the inflection point having the highest luminance (inflection point IP3 in FIG. 12) among a plurality of inflection points so that the entire luminance range of the subject can be photographed. When the number of inflection points of the histogram is zero or the frequency of the histogram exceeds the threshold value in the luminance range after the inflection point with the highest luminance, the Low gain is determined by the image used for the histogram calculation (Low gain in the present embodiment). Image) is one step lower than the amplification factor. As the amplification factor, for example, values of 2, 3, 4, and 5 can be set. When the amplification factor set to the image used for calculating the histogram is 4, the Low gain is 1 It is set to three times the lower value. At this time, when the amplification factor of the image used for the calculation of the histogram is twice the lower limit of the set value, the Low gain is twice the lower limit.
 S1104では、増幅率決定回路110が、増幅率の候補値毎に画質の評価値の算出を行う。 In S1104, the amplification factor determination circuit 110 calculates an image quality evaluation value for each amplification factor candidate value.
 以下、画質の評価値の算出処理について説明する。先ず、増幅率決定回路110は、S1102で算出した少なくとも二つ以上の候補値のうち、Lowゲインを求めた際に用いた候補値とは異なるいずれかの一つの候補値を、Highゲインとする。なお、候補値が二つ以上存在しない場合には、HighゲインはLowゲインと同じ値を取ることとする。その後、増幅率決定回路110はS1008の処理に移行する。 Hereinafter, the calculation process of the evaluation value of the image quality will be described. First, the amplification factor determination circuit 110 sets any one of the at least two candidate values calculated in S1102, which is different from the candidate value used when obtaining the Low gain, as the High gain. . When two or more candidate values do not exist, the High gain takes the same value as the Low gain. After that, the amplification factor determining circuit 110 proceeds to the process of S1008.
 次に、増幅率決定回路110は、このように設定した際の合成画像の画質を算出する。本実施形態の場合、画質の評価値はS/Nが用いられる。合成画像のS/Nは式(7)で表すことができる。 Next, the amplification factor determination circuit 110 calculates the image quality of the composite image when the setting is performed in this manner. In the case of the present embodiment, S / N is used as the evaluation value of the image quality. The S / N of the composite image can be expressed by equation (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 式(7)において、S/NMixは合成画像のS/N、Iは輝度値、N(I)は輝度値Iの頻度、IHighはHighゲインの最大輝度値である。また式(7)において、GHighはHighゲイン、GLowはLowゲイン、σ(GHigh,I)はHighゲイン時の輝度値Iにおけるノイズ量、σ(GLow,I)はLowゲイン時の輝度値Iにおけるノイズ量である。 In equation (7), S / N Mix is the S / N of the composite image, I is the luminance value, N (I) is the frequency of the luminance value I, and I High is the maximum luminance value of the High gain. In the equation (7), G High is a high gain, G Low is a low gain, σ (G High , I) is a noise amount at the luminance value I at the time of the high gain, and σ (G Low , I) is a noise amount at the time of the low gain. This is the amount of noise at the luminance value I.
 次に、増幅率決定回路110は、他の候補値をHighゲインに設定した場合における、S/NMixを同様に式(7)より算出し、これを候補値毎に行う。なお、本実施形態では、画質の評価値としてS/Nを用いたが、本発明における画質の評価値はこれに限らない。 Next, the amplification factor determining circuit 110 similarly calculates the S / N Mix from the equation (7) when another candidate value is set to the High gain, and performs this for each candidate value. In the present embodiment, S / N is used as the image quality evaluation value, but the image quality evaluation value in the present invention is not limited to this.
 S1105では、増幅率決定回路110が、Highゲインの値を決定する。例えば、増幅率決定回路110は、S1104において算出した候補値毎の画質の評価値(本実施形態ではS/NMix)より、合成画像の画質が最も良くなる場合の候補値をHighゲインとする。 In S1105, the amplification factor determination circuit 110 determines the value of the High gain. For example, the amplification factor determination circuit 110 sets a candidate value when the image quality of the combined image is the best, based on the image quality evaluation value (S / N Mix in this embodiment) for each candidate value calculated in S1104, as a High gain. .
 本実施形態では、LowゲインとHighゲインの二つの増幅率を決定する方法を示したが、撮像部100がPGA104及びAD変換回路105を3系統以上有し、少なくとも三つ以上の増幅率を決定する場合もある。このような場合は、三つ目以降の増幅率は前述したHighゲインと同様の増幅率を設定することとする。さらにS1004の画像合成処理の際、画像処理回路108は、先ず同じ増幅率を設定した画像同士で前述した同じ位置の画素値を平均化する処理を行い、次にLowゲイン画像との画像合成を行う。 In the present embodiment, a method of determining two gains of a low gain and a high gain has been described. However, the imaging unit 100 has three or more systems of the PGA 104 and the AD conversion circuit 105 and determines at least three or more gains. In some cases. In such a case, the third and subsequent amplification factors are set to the same amplification factors as the High gain described above. Further, at the time of the image synthesizing process in S1004, the image processing circuit 108 first performs the process of averaging the pixel values at the same position described above between the images for which the same amplification factor is set, and then performs the image synthesis with the Low gain image. Do.
 以上が、第4実施形態で行われる処理である。以上説明したように、第4実施形態によれば、ヒストグラムの頻度が少ない部分を考慮して増幅率を決定するため、第1実施形態から第3実施形態の場合と比較して、撮影シーンに対してより適切な増幅率の設定を行うことができる。 The above is the processing performed in the fourth embodiment. As described above, according to the fourth embodiment, the amplification factor is determined in consideration of a portion where the frequency of the histogram is low. On the other hand, it is possible to set a more appropriate amplification factor.
 <第5実施形態>
 第5実施形態では、画像のヒストグラムとヒストグラムの山の重要度とを基に増幅率を決定する。第5実施形態における撮像装置の構成は、図9に示した構成と同様であるためその図示は省略する。第5実施形態における処理の流れは、図10のS1007において第4実施形態とは異なる。ここでは、第5実施形態について、第4実施形態とは異なる点を中心に説明することとする。以下、第5実施形態の撮像装置で行われる処理の流れについて、図13に示すフローチャートと図9を用いて説明する。第5実施形態においても、前述の実施形態と同様に、相対的に低い増幅率のLowゲインと、相対的に高い増幅率のHighゲインの二つの値を決定する場合について説明を行う。
<Fifth embodiment>
In the fifth embodiment, the amplification factor is determined based on the histogram of the image and the importance of the peak of the histogram. The configuration of the imaging apparatus according to the fifth embodiment is the same as the configuration shown in FIG. The flow of processing in the fifth embodiment differs from that of the fourth embodiment in S1007 in FIG. Here, the fifth embodiment will be described focusing on the differences from the fourth embodiment. Hereinafter, a flow of a process performed by the imaging device according to the fifth embodiment will be described with reference to a flowchart illustrated in FIG. 13 and FIG. 9. Also in the fifth embodiment, a case will be described in which two values of a low gain having a relatively low amplification factor and a high gain having a relatively high amplification factor are determined as in the above-described embodiment.
 S1301では、輝度取得部109が、S1006において輝度情報として取得した輝度画像より、輝度のヒストグラムを算出し、その結果をバッファ111に保存する。 In S1301, the luminance acquisition unit 109 calculates a luminance histogram from the luminance image acquired as the luminance information in S1006, and stores the result in the buffer 111.
 S1302では、増幅率決定回路110が、輝度方向にヒストグラムの領域分割を行う。S1302において、増幅率決定回路110は、先ず、図14に示すように、ヒストグラムの頻度に対して閾値処理を行い、輝度が大きくなる方向において閾値を超えた部分から閾値を下回る部分へと変化する変曲点を取得する。図14の例では、変曲点IP1,IP2,IP3が得られている。閾値は、図12で説明したのと同様に、ノイズが原因で発生する頻度の増減による変曲点の誤検出を防ぐような値に設定されている。次に、増幅率決定回路110は、輝度値「0」から最も輝度値の低い変曲点までの範囲(図14の領域R1)、連続する二つの変曲点の間の範囲(図14の領域R2、領域R3)を一つの領域とする。 In S1302, the amplification factor determination circuit 110 divides the histogram into regions in the luminance direction. In step S1302, the amplification factor determination circuit 110 first performs threshold processing on the frequency of the histogram as shown in FIG. 14, and changes from a portion exceeding the threshold to a portion below the threshold in a direction in which the luminance increases. Get the inflection point. In the example of FIG. 14, inflection points IP1, IP2, and IP3 are obtained. The threshold value is set to a value that prevents erroneous detection of an inflection point due to an increase or decrease in frequency caused by noise, as described with reference to FIG. Next, the amplification factor determination circuit 110 determines the range from the luminance value “0” to the inflection point with the lowest luminance value (region R1 in FIG. 14) and the range between two consecutive inflection points (FIG. The region R2 and the region R3) are defined as one region.
 S1303では、増幅率決定回路110が、Lowゲインの値を決定する。前述のS1103と同様に、例えば、Lowゲインは被写体の全体の輝度範囲を撮影出来るようにするため、複数の変曲点のうち輝度の最も高い変曲点(図14の変曲点IP3)に合わせた値とする。また前述同様に、ヒストグラムの変曲点が0個、または輝度の最も高い変曲点以降の輝度範囲でヒストグラムの頻度が閾値を超える場合、Lowゲインはヒストグラムの算出に用いた画像(Lowゲイン画像)の増幅率よりも1段低い値とする。 In S1303, the amplification factor determining circuit 110 determines the value of the low gain. As in the above-described step S1103, for example, the low gain is set to the inflection point having the highest luminance (inflection point IP3 in FIG. 14) among a plurality of inflection points so that the entire luminance range of the subject can be photographed. Take the combined value. As described above, when the number of inflection points of the histogram is zero or the frequency of the histogram exceeds the threshold value in the luminance range after the inflection point having the highest luminance, the Low gain is set to the image used for calculating the histogram (Low gain image). ) Is one step lower than the amplification factor.
 S1304では、増幅率決定回路110が、S1302において分割した領域毎に重要度を設定する。本実施形態の場合、重要度の指標は最大値を用いるとする。増幅率決定回路110は、領域毎にヒストグラムの頻度の最大値を求め、最大値の大きい順に重要度を定義する。例えば、増幅率決定回路110は、最大値が最も大きい領域には重要度が最も高いものとして重要度「1」、最大値が2番目に大きい領域には重要度が2番目に高いものとして重要度「2」というように重要度を定義する。なお、重要度の指標は最大値に限らない。例えば、領域内の頻度の総数が、重要度の指標として用いられてもよい。 In S1304, the amplification factor determination circuit 110 sets the importance for each of the regions divided in S1302. In the case of the present embodiment, it is assumed that the index of importance uses the maximum value. The amplification factor determination circuit 110 obtains the maximum value of the frequency of the histogram for each area, and defines the importance in the descending order of the maximum value. For example, the amplification factor determining circuit 110 determines that the region having the largest maximum value has the highest importance as "1" and the region having the second largest value has the second highest importance. The importance is defined as the degree “2”. The index of importance is not limited to the maximum value. For example, the total number of frequencies in the area may be used as an index of importance.
 S1305では、増幅率決定回路110が、Highゲインの値を決定する。Highゲインは、S1304において定義した重要度の最も高い領域までを撮影できるような値とする。具体的には、増幅率決定回路110は、重要度「1」となる領域が設定された際の変曲点において、輝度の高い方の変曲点までの輝度範囲を撮影できるような増幅率とする。この時の増幅率は、第4実施形態で説明した式(6)を用いて算出する。なお、変曲点が二つ以上存在しない場合には、HighゲインはLowゲインと同じ値を取ることとし、その後はS1008に移行する。 In S1305, the amplification factor determining circuit 110 determines the value of the High gain. The High gain is set to a value such that an image can be captured up to the region of the highest importance defined in S1304. Specifically, at the inflection point when the region having the importance “1” is set, the amplification factor determination circuit 110 determines the amplification factor such that the luminance range up to the inflection point with higher luminance can be captured. And The amplification factor at this time is calculated using equation (6) described in the fourth embodiment. If two or more inflection points do not exist, the High gain takes the same value as the Low gain, and the process proceeds to S1008.
 本実施形態では、LowゲインとHighゲインの二つの増幅率を決定する方法を示したが、撮像部100がPGA104及びAD変換回路105を3系統以上有し、少なくとも三つ以上の増幅率を決定する場合もある。この場合は、三つ目以降の増幅率は前述したHighゲインと同様の増幅率を設定することとする。そして、S1004の画像合成処理の際、画像処理回路108は、同じ増幅率の画像同士で平均化処理を行い、Lowゲイン画像との画像合成を行う。 In the present embodiment, a method of determining two gains of a low gain and a high gain has been described. However, the imaging unit 100 has three or more systems of the PGA 104 and the AD conversion circuit 105 and determines at least three or more gains. In some cases. In this case, the third and subsequent amplification factors are set to the same amplification factors as the High gain described above. Then, at the time of the image synthesizing process in S1004, the image processing circuit 108 performs an averaging process between the images having the same amplification factor, and synthesizes the image with the Low gain image.
 以上が、第5実施形態で行われる処理である。第5実施形態では、ヒストグラムを分けた領域毎に重要度が求められ、その重要度を基に増幅率が決定されるため、第1実施形態から第3実施形態と比較して、撮影シーンに対してより適切な増幅率の設定を行うことができる。 The above is the processing performed in the fifth embodiment. In the fifth embodiment, the importance is calculated for each of the divided areas of the histogram, and the amplification rate is determined based on the importance. On the other hand, it is possible to set a more appropriate amplification factor.
 <第6実施形態>
 第6実施形態では、第4実施形態、第5実施形態の撮像装置と異なる構成により、被写体の輝度に応じて増幅率を決定する方法について述べる。
<Sixth embodiment>
In the sixth embodiment, a method of determining the amplification factor according to the luminance of the subject with a configuration different from the imaging devices of the fourth and fifth embodiments will be described.
 図15は、第6実施形態に係る撮像装置の構成の一例を示す構成図である。図15の場合、図9の撮像装置とは撮像部100内の構成が異なり、図7の構成例のように光電変換素子102の後段で2系統に分けられ、その2系統に分けられた各FD103の前段に電荷メモリ700が設けられている。図15の撮像装置は、電荷メモリ700を2系統分だけ有する構成となっているが3系統以上に分けられていてもよい。なお図15の構成図において、図1や図7、図9と対応した構成には同じ参照符号を付し、それらの説明は省略する。 FIG. 15 is a configuration diagram illustrating an example of a configuration of an imaging device according to the sixth embodiment. In the case of FIG. 15, the configuration inside the imaging unit 100 is different from the imaging device of FIG. 9, and is divided into two systems at the subsequent stage of the photoelectric conversion element 102 as in the configuration example of FIG. A charge memory 700 is provided in a stage preceding the FD 103. Although the imaging device in FIG. 15 has a configuration in which the charge memory 700 is provided for only two systems, it may be divided into three or more systems. In the configuration diagram of FIG. 15, the components corresponding to those in FIGS. 1, 7, and 9 are denoted by the same reference numerals, and description thereof will be omitted.
 <第6実施形態の撮像装置における撮影動作の説明>
 以下、第6実施形態の撮像装置における撮影動作の流れを、図15の構成図及び図16に示すフローチャートを用いて説明する。なお、本実施形態では、撮像装置が2系統分の電荷メモリ700を有し、二つの増幅率を決定する場合の一例を説明する。
<Description of Photographing Operation in Imaging Device of Sixth Embodiment>
Hereinafter, the flow of the imaging operation in the imaging device of the sixth embodiment will be described with reference to the configuration diagram of FIG. 15 and the flowchart illustrated in FIG. In the present embodiment, an example will be described in which the imaging apparatus has two sets of charge memories 700 and determines two amplification factors.
 ステップS1601では、前述したS801と同様に、撮像制御部114が、撮像装置の外部より操作部119を介して入力された指示に応じて、撮像装置の撮影条件を設定する。 In step S1601, similarly to S801 described above, the imaging control unit 114 sets the imaging conditions of the imaging device according to an instruction input from outside the imaging device via the operation unit 119.
 S1602では、前述したS802と同様に、増幅率制御回路115が、各系統のFD103の静電容量とPGA104の増幅率を設定する。 In S1602, similarly to S802 described above, the gain control circuit 115 sets the capacitance of the FD 103 and the gain of the PGA 104 in each system.
 S1603では、前述したS802と同様に、撮像制御部114が、操作部119を介して外部から入力された撮影指示に応じて、撮像部100の撮影動作を開始させる。そして、光電変換素子102から転送された信号電荷は、2系統に分配されて電荷メモリ700へ送られて保持される。さらに前述同様に、撮像制御部114は、2系統のうち、相対的に低い増幅率であるLowゲインを設定する経路側の電荷メモリ700で保持している信号電荷を、FD103へ転送させる。FD103は、転送された信号電荷を信号電圧に変換を行いアナログ処理回路106へ出力する。当該出力された信号電圧は、アナログ処理回路106内のPGA104により増幅された後、AD変換回路105でデジタル値に変換され、デジタル処理回路107へ出力される。 In S1603, similarly to S802 described above, the imaging control unit 114 starts the imaging operation of the imaging unit 100 in response to an imaging instruction input from the outside via the operation unit 119. Then, the signal charges transferred from the photoelectric conversion element 102 are distributed to two systems, sent to the charge memory 700, and held. Further, in the same manner as described above, the imaging control unit 114 causes the signal charge held in the charge memory 700 on the path side for setting a low gain, which is a relatively low amplification rate, of the two systems to be transferred to the FD 103. The FD 103 converts the transferred signal charge into a signal voltage and outputs the signal voltage to the analog processing circuit 106. The output signal voltage is amplified by the PGA 104 in the analog processing circuit 106, converted to a digital value by the AD conversion circuit 105, and output to the digital processing circuit 107.
 S1604では、前述したS804と同様に、画像処理回路108が、一般的な画像処理を必要に応じて行い、Lowゲイン画像を取得する。 In step S1604, similarly to step S804, the image processing circuit 108 performs general image processing as necessary to obtain a low gain image.
 S1605では、デジタル処理回路107が、S1604において取得したLow画像を、画像メモリ900に保存させる。 In S1605, the digital processing circuit 107 causes the image memory 900 to store the Low image acquired in S1604.
 S1606では、輝度取得部109が、画像メモリ900に保存された画像の輝度情報を取得する。すなわち、輝度取得部109は、画像メモリ900に保存された画像から取得可能な画素値(sRGB値)に対して、画素値から輝度値への変換処理を行う。そして、輝度取得部109は、輝度値への変換処理を行って得られた輝度画像を、輝度情報として画像メモリ900に保存させる。 In step S1606, the brightness acquisition unit 109 acquires the brightness information of the image stored in the image memory 900. That is, the luminance obtaining unit 109 performs a conversion process from a pixel value to a luminance value on a pixel value (sRGB value) obtainable from the image stored in the image memory 900. Then, the brightness acquisition unit 109 stores the brightness image obtained by performing the conversion process into the brightness value in the image memory 900 as brightness information.
 S1607では、増幅率決定回路110が、S1606で輝度情報として取得した輝度画像を、画像メモリ900から読み出し、その輝度画像を基に、被写体の輝度に適した増幅率を決定する。被写体の輝度に適した増幅率の決定処理は、第4実施形態、第5実施形態において前述した増幅率決定処理のうち、どちらか一つを用いることとする。なお、これら二つの増幅率決定処理は前述したため、ここでの説明は省略する。 In S1607, the amplification factor determination circuit 110 reads the luminance image acquired as the luminance information in S1606 from the image memory 900, and determines an amplification factor suitable for the luminance of the subject based on the luminance image. The process of determining the amplification factor suitable for the brightness of the subject uses one of the amplification factor determination processes described in the fourth and fifth embodiments. Since these two amplification factor determination processes have been described above, the description here is omitted.
 S1608では、増幅率制御回路115が、S1607で決定された増幅率を基に、Highゲインを設定する経路における増幅率を再設定する。つまり、増幅率制御回路115は、S1607で決定された増幅率を基に、2系統のFD103の静電容量とPGA104の増幅率の再設定を行う。 In S1608, the gain control circuit 115 resets the gain in the path for setting the High gain based on the gain determined in S1607. That is, the amplification factor control circuit 115 resets the capacitance of the two FDs 103 and the amplification factor of the PGA 104 based on the amplification factors determined in S1607.
 S1609では、画像処理回路108が、Highゲイン画像を取得する。この時、増幅率制御回路115は、Highゲインを設定する経路に接続された電荷メモリ700が保持している信号電荷を、FD103へ転送して信号電圧に変換させ、さらにPGA104で信号電圧の増幅後、AD変換回路105でデジタル値に変換させる。そして、画像処理回路108は、入力したデジタル値に対して前述した一般的な画像処理を必要に応じて行い、Highゲイン画像を取得する。 In S1609, the image processing circuit 108 acquires a High gain image. At this time, the amplification factor control circuit 115 transfers the signal charge held by the charge memory 700 connected to the path for setting the High gain to the FD 103 to convert the signal charge into a signal voltage, and further, the PGA 104 amplifies the signal voltage. Thereafter, the data is converted into a digital value by the AD conversion circuit 105. Then, the image processing circuit 108 performs the above-described general image processing on the input digital value as necessary, and acquires a High gain image.
 S1610では、画像処理回路108が、S1604取得したLowゲイン画像と、S1609で取得したHighゲイン画像との合成処理を行う。ここで、撮像部100内で設定された増幅率が2系統でそれぞれ異なる場合、画像処理回路108は、それら2系統の画像の輝度範囲が重複する領域では、画質の良い画像の画素(例えば、高い増幅率を設定した画素)を選択的に用いるような選択処理を行う。一方、2系統で増幅率が同じであった場合、画像処理回路108は、それら2系統の画像の同じ位置の画素同士で画素値を平均化して用いる平均化処理を行う。そして、画像処理回路108による画像合成処理後の合成画像は、記録回路112によって所定の記録フォーマットのデータに変換された後、記録媒体113に記録されて保存される。 In S1610, the image processing circuit 108 performs a combining process of the Low gain image acquired in S1604 and the High gain image acquired in S1609. Here, when the amplification factors set in the imaging unit 100 are different between the two systems, the image processing circuit 108 determines that the pixels of the high-quality image (for example, A selection process is performed to selectively use pixels (a pixel for which a high amplification factor is set). On the other hand, when the amplification factors are the same in the two systems, the image processing circuit 108 performs an averaging process in which pixels at the same position in the two systems of images are averaged and used. Then, the combined image after the image combining processing by the image processing circuit 108 is converted into data of a predetermined recording format by the recording circuit 112, and then recorded and stored on the recording medium 113.
 以上が、第6実施形態の撮像装置で行われる処理である。第6実施形態の撮像装置では、信号電荷を保持する電荷メモリを有し、前述した第4実施形態と第5実施形態のいずれかの増幅率決定処理が行われることにより、事前に増幅率を決定しておかなくても、被写体の輝度情報を基に増幅率を決定することができる。 The above is the processing performed by the imaging device of the sixth embodiment. The imaging apparatus according to the sixth embodiment has a charge memory for holding signal charges, and performs the amplification factor determination processing of any of the fourth embodiment and the fifth embodiment described above. Even if it is not determined, the amplification factor can be determined based on the luminance information of the subject.
 <第7実施形態>
 前述した第1実施形態から第6実施形態での合成処理において、画像処理回路108は、輝度範囲が重複している領域に関して、増幅率が異なる場合には増幅率の高い画素を選択し、増幅率が同じ場合には平均化して出力する。これに対して、第7実施形態において、画像処理回路108は、増幅率に基づく重みを用いて合成する。
<Seventh embodiment>
In the synthesizing process according to the first to sixth embodiments described above, the image processing circuit 108 selects a pixel having a high amplification factor when the amplification factor is different in an area where the luminance range overlaps, and performs amplification. If the rates are the same, they are averaged and output. On the other hand, in the seventh embodiment, the image processing circuit 108 synthesizes using the weight based on the amplification factor.
 以下に、増幅率に基づく重みを用いた合成方法について述べる。なお、構成図については第1実施形態と同様であるため、図示と説明は省略する。第7実施形態の場合は、前述したS204等のステップにおいて増幅率に基づく重みを用いた合成処理が行われる。 合成 The following describes a combining method using weights based on amplification factors. Since the configuration diagram is the same as that of the first embodiment, illustration and description are omitted. In the case of the seventh embodiment, the combining process using the weight based on the amplification factor is performed in steps such as S204 described above.
 第7実施形態では、増幅率決定回路110が決定した増幅率のHighゲインをGHighとし、LowゲインをGLowとし、さらにHighゲイン画像IHighとLowゲイン画像ILowとの合成重みをw、Lowゲイン画像の飽和画素値をMaxとする。この場合、Highゲイン画像IHighとLowゲイン画像ILowの(x,y)座標における合成画像IMixは、式(8)で表すことができる。 In the seventh embodiment, the high gain of the gain determined by the gain determination circuit 110 is G High , the low gain is G Low , and the composite weight of the High gain image I High and the Low gain image I Low is w, The saturated pixel value of the low gain image is defined as Max. In this case, the composite image I Mix at the (x, y) coordinates of the High gain image I High and the Low gain image I Low can be expressed by Expression (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 また、光ショットノイズの標準偏差をσとし、暗電流ノイズの標準偏差をσ、増幅率がHighゲインの時に発生する読出しノイズをσHigh、増幅率がLowゲインの時に発生する読出しノイズをσLowとする。この場合の合成画像IMixのノイズの標準偏差σMixは、式(9)で表すことができる。 The standard deviation of the light shot noise is σ S , the standard deviation of the dark current noise is σ d , the read noise generated when the amplification factor is High is σ High , and the read noise generated when the amplification factor is Low is Let it be σ Low . Standard deviation sigma Mix noise of the combined image I Mix in this case can be represented by the formula (9).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 そして、標準偏差σMixが最小となる合成重みwは、式(10)のように表すことができる。 Then, the composite weight w that minimizes the standard deviation σ Mix can be expressed as in Expression (10).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 画像処理回路108は、式(10)で求めた合成重みwを用いて、式(8)で表される合成方法による合成を行う。なお、式(10)において、合成重みwは、Highゲインの増幅率GHighとLowゲインの増幅GLowとの比率(GHigh/GLow)が1に近づくほど大きくなり、増幅率が等しい場合、つまり1.0の場合に最大のw=0.5となる。この時、合成画像IMixは、Highゲイン画像IHighとLowゲイン画像ILowを平均した結果となる。 The image processing circuit 108 performs synthesis by the synthesis method represented by Expression (8) using the synthesis weight w obtained by Expression (10). In Equation (10), the composite weight w increases as the ratio (G High / G Low ) between the high gain gain G High and the low gain gain G Low approaches 1, and the gains are equal. That is, in the case of 1.0, the maximum w = 0.5. At this time, the composite image I Mix is a result of averaging the High gain image I High and the Low gain image I Low .
 以上が、第7実施形態で行われる処理である。第7実施形態では、Highゲイン及びLowゲインの増幅率に読出しノイズ量をも加味した重みを用いて、Highゲイン画像とLowゲイン画像が合成される。これにより、第7実施形態によれば、第1実施形態から第6実施形態で説明した合成処理を行う場合と比較して、合成後のノイズ量を減らすことができる。 The above is the processing performed in the seventh embodiment. In the seventh embodiment, a high gain image and a low gain image are combined using a weight in which the read noise amount is added to the amplification rates of the high gain and the low gain. Thus, according to the seventh embodiment, the amount of noise after combination can be reduced as compared with the case where the combination processing described in the first embodiment to the sixth embodiment is performed.
 <第8実施形態>
 前述した第1実施形態では、前フレームの増幅率を基準にHighゲイン及びLowゲインの増幅率を決定している。これに対し、第8実施形態は、予備撮影時において、Highゲイン及びLowゲインの増幅率をそれぞれ決定し、本撮影時には、Lowゲインの増幅率を固定して、Highゲインの増幅率のみを変更する例を説明する。なお、構成図については第1実施形態と同様であるため、図示と説明は省略する。
<Eighth embodiment>
In the first embodiment described above, the gains of the high gain and the low gain are determined based on the gain of the previous frame. On the other hand, in the eighth embodiment, the gain of the high gain and the gain of the low gain are determined at the time of the preliminary shooting, and the gain of the low gain is fixed and the gain of the high gain alone is changed at the time of the main shooting. An example will be described. Since the configuration diagram is the same as that of the first embodiment, illustration and description are omitted.
 <第8実施形態の撮像装置における撮影動作の説明>
 以下、第8実施形態の撮像装置における撮影動作の流れを、図17に示すフローチャートを用いて説明する。
<Description of Photographing Operation in Imaging Device of Eighth Embodiment>
Hereinafter, the flow of the imaging operation in the imaging device of the eighth embodiment will be described with reference to the flowchart shown in FIG.
 図17のS1701では、前述のS201と同様に、撮像制御部114が、操作部119を介して外部から入力された指示に応じて、撮像装置の撮影条件を設定する。 In S1701 in FIG. 17, the imaging control unit 114 sets the imaging conditions of the imaging device according to an instruction input from the outside via the operation unit 119, as in S201 described above.
 S1702では、増幅率制御回路115が、前述のS202と同様に、PGA104の増幅率及びFD103の静電容量を設定する。 In S1702, the amplification factor control circuit 115 sets the amplification factor of the PGA 104 and the capacitance of the FD 103 as in S202 described above.
 S1703では、操作部119を介して外部から入力された撮影指示に応じて、撮像制御部114が、撮像部100の予備撮影動作を開始させる。 In S1703, the imaging control unit 114 starts the preliminary imaging operation of the imaging unit 100 in response to an imaging instruction input from the outside via the operation unit 119.
 S1704では、画像処理回路108が、S1703の予備撮影動作で出力された2系統の画像の取得処理、及びそれら2系統の画像を合成して生成した画像を出力する画像合成処理を行う。 In S1704, the image processing circuit 108 performs an acquisition process of the two images output in the preliminary photographing operation in S1703, and performs an image synthesis process of outputting an image generated by synthesizing the two images.
 S1705では、輝度取得部109が、S1704で画像合成した予備撮影画像について、S205と同様に、輝度の代表値を輝度情報として取得してバッファに保存する。 In step S1705, the luminance acquisition unit 109 acquires a representative value of luminance as luminance information and stores it in the buffer for the preliminary captured image synthesized in step S1704, as in step S205.
 S1706では、増幅率決定回路110が、S1705で輝度情報として取得された輝度値の平均値、標準偏差、最大値をバッファ111から読み出し、S206と同様にして、それらの情報を基に被写体の輝度に応じた増幅率を決定する。 In step S1706, the amplification factor determination circuit 110 reads the average value, standard deviation, and maximum value of the luminance values acquired as the luminance information in step S1705 from the buffer 111, and, based on the information, reads out the luminance of the subject based on the information in step S206. Determine the amplification factor according to.
 S1707では、増幅率制御回路115が、S1706で決定された増幅率を基に、S207と同様に、撮像部100内での増幅率を再設定する。 In step S1707, the gain control circuit 115 resets the gain in the imaging unit 100 based on the gain determined in step S1706, as in step S207.
 S1708では、システム制御部117が本撮影の開始判定を行う。システム制御部117は、本撮影を開始する場合にはS1709に進み、本撮影を開始しない場合には、S1703に処理を戻し、S1703からS1708の処理を再度実行する。 In step S1708, the system control unit 117 determines the start of the main shooting. The system control unit 117 proceeds to step S1709 if the actual shooting is to be started, and returns to step S1703 if the actual shooting is not to be started, and executes the processing of steps S1703 to S1708 again.
 S1709に進むと、撮像制御部114は、撮像部100を制御して本撮影動作を開始させる。 In step S1709, the imaging control unit 114 controls the imaging unit 100 to start the main imaging operation.
 次のS1710では、画像処理回路108は、S1709の本撮影動作で取得された2系統の画像の取得処理、及びそれら2系統の画像を合成して生成した画像を出力する画像合成処理を行う。そして、画像処理回路108による画像合成処理による合成画像は、動画を構成されるフレームとして順次保存される。 In the next step S1710, the image processing circuit 108 performs an acquisition process of the two systems of images acquired in the main photographing operation in S1709, and an image synthesis process of outputting an image generated by combining the two systems of images. Then, the synthesized images obtained by the image synthesis processing by the image processing circuit 108 are sequentially stored as frames constituting a moving image.
 S1711では、輝度取得部109が、S1710において画像合成された撮影画像の輝度の代表値を、S205と同様に、輝度情報として取得する。 In S1711, the brightness acquisition unit 109 acquires the representative value of the brightness of the captured image synthesized in S1710 as brightness information, as in S205.
 S1712では、増幅率決定回路110が、S1705で取得されて保存された輝度情報をバッファ111から読み出し、その情報を基に被写体の輝度に応じた増幅率を決定する。この時、増幅率決定回路110は、Lowゲインの増幅率については固定し、Highゲインの増幅率のみを決定する。 In step S1712, the amplification factor determination circuit 110 reads the luminance information acquired and stored in step S1705 from the buffer 111, and determines an amplification factor according to the luminance of the subject based on the information. At this time, the amplification factor determination circuit 110 fixes the amplification factor of the low gain, and determines only the amplification factor of the high gain.
 そしてS1713では、増幅率制御回路115が、S1712において決定したHighゲインの増幅率を再設定する。 Then, in S1713, the amplification factor control circuit 115 resets the amplification factor of the High gain determined in S1712.
 その後、S1715では、システム制御部117が、撮影の終了判定を行う。システム制御部117は、撮影を終了しない場合にはS1709に処理を戻し、S1709からS1715の処理を再度実行する。一方、システム制御部117は、撮影を終了する場合には図17のフローチャートの処理を終了する。 Then, in step S1715, the system control unit 117 determines whether to end shooting. If the imaging is not to be ended, the system control unit 117 returns the processing to S1709, and executes the processing from S1709 to S1715 again. On the other hand, the system control unit 117 ends the processing of the flowchart in FIG.
 以上が、第8実施形態で行われる処理である。第8実施形態において、本撮影中にはHighゲインの増幅率が制御される。これにより、第8の実施形態によれば、被写体の輝度分布が時間とともに変化する場合において、Highゲイン及びLowゲインの増幅率が各々変化することによる合成画像の輝度変化を軽減させることができる。 The above is the processing performed in the eighth embodiment. In the eighth embodiment, the amplification rate of the High gain is controlled during the main photographing. Thus, according to the eighth embodiment, when the luminance distribution of the subject changes with time, it is possible to reduce the change in the luminance of the composite image due to the change in the amplification factor of each of the High gain and the Low gain.
 <第9実施形態>
 第8実施形態では、予備撮影においてHighゲイン及びLowゲインの増幅率を決定し、本撮影時にHighゲインのみ増幅率を再設定するとした。第9実施形態では、静止画撮影を前提とし、予備撮影において決定した増幅率を用いて、1度の撮影つまり静止画撮影が行われる例を挙げる。なお、構成図については第1実施形態と同様であるため、図示と説明は省略する。
<Ninth embodiment>
In the eighth embodiment, the gains of the high gain and the low gain are determined in the preliminary photographing, and only the high gain is reset in the main photographing. In the ninth embodiment, an example is described in which a single image capturing operation, that is, a still image capturing operation is performed using the amplification factor determined in the preliminary image capturing operation on the assumption that the image capturing operation is a still image. Since the configuration diagram is the same as that of the first embodiment, illustration and description are omitted.
 <第9実施形態の撮像装置における撮影動作の説明>
 以下、第9実施形態の撮像装置における撮影動作の流れを、図18に示すフローチャートを用いて説明する。
<Description of Photographing Operation in Imaging Device of Ninth Embodiment>
Hereinafter, the flow of the imaging operation in the imaging device of the ninth embodiment will be described with reference to the flowchart shown in FIG.
 図18のS1801では、撮像制御部114が、S201と同様に、操作部119を介して外部から入力された指示に応じて、撮像装置の撮影条件を設定する。 In S1801 of FIG. 18, the imaging control unit 114 sets the imaging conditions of the imaging device according to an instruction input from the outside via the operation unit 119, as in S201.
 S1802では、増幅率制御回路115が、S202と同様に、PGA104の増幅率及びFD103の静電容量を設定する。 In S1802, the amplification factor control circuit 115 sets the amplification factor of the PGA 104 and the capacitance of the FD 103 as in S202.
 S1803では、操作部119を介して外部から入力された撮影指示に応じて、撮像制御部114が、S1703と同様に、撮像部100の予備撮影動作を開始させる。 In S1803, in response to a shooting instruction input from the outside via the operation unit 119, the imaging control unit 114 starts the preliminary shooting operation of the imaging unit 100, as in S1703.
 S1804では、S1704と同様に、画像処理回路108が、S1803において出力された2系統の画像の取得処理とそれら2系統の画像を合成して生成した画像を出力する画像合成処理を行う。 In S1804, similarly to S1704, the image processing circuit 108 performs an acquisition process of the two images output in S1803 and an image synthesis process of outputting an image generated by synthesizing the two images.
 S1805では、S1705と同様に、輝度取得部109が、S1804において画像合成した予備撮影画像の輝度の代表値を輝度情報として取得してバッファ111に保存する。 In S1805, as in S1705, the brightness acquisition unit 109 acquires the representative value of the brightness of the preliminary captured image synthesized in S1804 as brightness information and stores the brightness information in the buffer 111.
 S1806では、S1706と同様に、増幅率決定回路110が、S1805で輝度情報をバッファ111から読み出し、その情報を基に被写体の輝度に応じた増幅率を決定する。 In S1806, similarly to S1706, the amplification factor determination circuit 110 reads the luminance information from the buffer 111 in S1805, and determines an amplification factor according to the luminance of the subject based on the information.
 S1807では、S1707と同様に、増幅率制御回路115が、S1806で決定された増幅率を基に、撮像部100内での増幅率を再設定する。 In S1807, similarly to S1707, the gain control circuit 115 resets the gain in the imaging unit 100 based on the gain determined in S1806.
 S1808では、システム制御部117が、静止画の本撮影を開始するかどうかの判定を行う。そして、システム制御部117は、本撮影を開始する場合にはS1809に処理を進め、本撮影を開始しない場合にはS1803に処理を戻し、S1803からS1808の処理を再度実行する。 In S1808, the system control unit 117 determines whether to start the actual shooting of the still image. Then, the system control unit 117 advances the processing to S1809 when starting the main shooting, returns the processing to S1803 when not starting the main shooting, and executes the processing from S1803 to S1808 again.
 S1809に進むと、撮像制御部114が、撮像部100の本撮影動作を開始させる。S1810では、画像処理回路108が画像合成処理を行い、その合成画像を保存させる。 In step S1809, the imaging control unit 114 causes the imaging unit 100 to start a main imaging operation. In step S1810, the image processing circuit 108 performs an image combining process, and stores the combined image.
 以上が、第9実施形態で行われる処理である。第9実施形態では、予備撮影によって、Highゲイン及びLowゲインの増幅率を決定し、決定した増幅率により、静止画撮影を行うことが可能となる。 The above is the processing performed in the ninth embodiment. In the ninth embodiment, the gains of the high gain and the low gain are determined by the preliminary photographing, and the still image can be photographed with the determined gains.
 <その他の実施形態>
 前述した第1実施形態から第9実施形態では、アナログ処理回路106が2系統のPGA104及びAD変換回路105を持つ例を挙げたが、他の実施形態として、図19に示すように、1系統のみのPGA104及びAD変換回路105を有する構成でもよい。なお、図19において、前述した第1実施形態から第8の構成と同じ構成要素には、前述と同一の参照符号を付し、それらの説明は省略する。
<Other embodiments>
In the above-described first to ninth embodiments, an example is described in which the analog processing circuit 106 has two systems of the PGA 104 and the AD conversion circuit 105. However, as another embodiment, as shown in FIG. A configuration having only the PGA 104 and the AD conversion circuit 105 may be employed. In FIG. 19, the same components as those in the first to eighth configurations described above are denoted by the same reference numerals as those described above, and description thereof is omitted.
 図19に示した構成では、1系統のみのPGA104及びAD変換回路105を時分割して使用する。図19の構成の場合、システム制御部117は、まず第1の駆動制御として、HighゲインとLowゲインのいずれか一方の設定で、FD103、PGA104、AD変換回路105を駆動させる。次に、システム制御部117は、第2の駆動制御として、HighゲインとLowゲインのうち、第1の駆動制御で使用しなかった方の設定で、FD103、PGA104、AD変換回路105を同様に駆動させる。これにより、図19の構成においても、Highゲイン画像及びLowゲイン画像が取得される。 In the configuration shown in FIG. 19, only one PGA 104 and AD conversion circuit 105 are used in a time-division manner. In the case of the configuration in FIG. 19, the system control unit 117 drives the FD 103, the PGA 104, and the AD conversion circuit 105 by setting one of the High gain and the Low gain as the first drive control. Next, as the second drive control, the system control unit 117 similarly sets the FD 103, the PGA 104, and the AD conversion circuit 105 with the setting of the high gain and the low gain that is not used in the first drive control. Drive. Thereby, also in the configuration of FIG. 19, a High gain image and a Low gain image are obtained.
 前述した各実施形態のデジタル処理回路107の機能は、ハードウェア構成のみで実現されてもよいし、CPU等がプログラムを実行することによるソフトウェア構成により実現されてもよい。また、一部がハードウェア構成で残りがソフトウェア構成により実現されてもよい。このソフトウェア構成のためのプログラムは、予め用意されている場合だけでなく、不図示の外部メモリ等の記録媒体から取得されたり、不図示のネットワーク等を介して取得されたりしてもよい。 The functions of the digital processing circuit 107 in each of the above-described embodiments may be realized only by a hardware configuration, or may be realized by a software configuration by a CPU or the like executing a program. Further, a part may be realized by a hardware configuration and the rest may be realized by a software configuration. The program for this software configuration is not limited to the case where it is prepared in advance, but may be obtained from a recording medium such as an external memory (not shown), or may be obtained via a network (not shown).
 また前述の実施形態では、撮像装置の一例としてデジタルカメラを想定しているが、例えばスマートフォンやタブレット端末等、監視カメラ、工業用カメラ、車載カメラ、医療用カメラなど画像の撮像が可能な各種機器にも適用可能である。 In the above-described embodiment, a digital camera is assumed as an example of the imaging device. However, various devices capable of capturing an image, such as a monitoring camera, an industrial camera, a vehicle-mounted camera, and a medical camera, such as a smartphone and a tablet terminal, are used. Is also applicable.
 本発明に係る信号処理における1以上の機能を実現するプログラムは、ネットワーク又は記憶媒体を介してシステム又は装置に供給可能であり、そのシステム又は装置のコンピュータの一つ以上のプロセッサにより読また出し実行されることで実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。 The program for realizing one or more functions in the signal processing according to the present invention can be supplied to a system or an apparatus via a network or a storage medium, and is read and executed by one or more processors of a computer of the system or the apparatus. It can be realized by doing. Further, it can be realized by a circuit (for example, an ASIC) that realizes one or more functions.
 前述の実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。即ち、本発明は、その技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。 The above-described embodiments are merely examples of implementation in carrying out the present invention, and the technical scope of the present invention should not be interpreted in a limited manner. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。 The present invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, the following claims are appended to make the scope of the present invention public.
 本願は、2018年6月19日提出の日本国特許出願特願2018-115919と2019年4月15日提出の日本国特許出願特願2019-077034を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。 This application claims priority based on Japanese Patent Application No. 2018-115919 filed on Jun. 19, 2018 and Japanese Patent Application No. 2019-077034 filed on Apr. 15, 2019, The entire contents of the description are incorporated herein.

Claims (18)

  1.  被写体の光学像を光電変換した信号電荷が電圧変換された信号電圧を、増幅した後にデジタル変換する撮像装置であって、
     前記信号電圧を、二つ以上の増幅率によって増幅する増幅回路と、
     前記増幅回路における二つ以上の異なる増幅率に基づいて、増幅した後にデジタル変換された信号それぞれに対する重みを決定する重み決定手段と、
     前記二つ以上の増幅した後に前記デジタル変換された信号を、前記重みを用いて合成する合成手段と、
     を有することを特徴とする撮像装置。
    An image pickup device that converts a signal voltage obtained by voltage-converting a signal charge obtained by photoelectrically converting an optical image of a subject into a digital signal after amplifying the signal voltage,
    An amplifier circuit for amplifying the signal voltage by two or more amplification factors,
    Weight determining means for determining a weight for each of the digitally converted signals after amplification based on two or more different amplification factors in the amplifier circuit,
    Synthesizing means for synthesizing the digitally converted signal after the two or more amplifications using the weights,
    An imaging device comprising:
  2.  前記二つ以上の増幅率の少なくとも一つに対し、前記被写体の輝度情報に応じた増幅率を決定する増幅率決定手段を有することを特徴とする請求項1に記載の撮像装置。 2. The imaging apparatus according to claim 1, further comprising an amplification factor determining unit that determines an amplification factor corresponding to at least one of the two or more amplification factors in accordance with luminance information of the subject. 3.
  3.  前記増幅回路は、二つ以上の増幅回路を含むことを特徴とする請求項2に記載の撮像装置。 The imaging device according to claim 2, wherein the amplification circuit includes two or more amplification circuits.
  4.  前記二つ以上の増幅回路のうち一つの増幅回路により前記信号電圧が増幅されて前記デジタル変換された信号から、前記輝度情報を取得する輝度取得手段を有し、
     前記増幅率決定手段は、前記輝度情報の取得に用いた信号における前記信号電圧を増幅した増幅回路とは異なる増幅回路に対し、前記輝度情報に応じた増幅率を決定することを特徴とする請求項3に記載の撮像装置。
    The signal voltage is amplified by one amplifier circuit of the two or more amplifier circuits, from the digitally converted signal, comprising a luminance acquisition unit that acquires the luminance information,
    The amplification factor determination unit determines an amplification factor according to the luminance information for an amplification circuit different from an amplification circuit that amplifies the signal voltage in the signal used for acquiring the luminance information. Item 4. The imaging device according to Item 3.
  5.  前記輝度取得手段は、前記二つ以上の増幅回路のうち相対的に低い増幅率が設定された増幅回路により前記信号電圧が増幅されて前記デジタル変換された信号から、前記輝度情報を取得し、
     前記増幅率決定手段は、前記二つ以上の増幅回路のうち相対的に高い増幅率が設定された増幅回路に対し、前記輝度情報に応じた増幅率を決定することを特徴とする請求項4に記載の撮像装置。
    The luminance obtaining means obtains the luminance information from the digitally converted signal in which the signal voltage is amplified by an amplifier circuit having a relatively low amplification factor set among the two or more amplifier circuits,
    5. The amplification factor determining unit according to claim 4, wherein an amplification factor corresponding to the luminance information is determined for an amplification circuit having a relatively high amplification factor set among the two or more amplification circuits. An imaging device according to item 1.
  6.  前記輝度取得手段は、前記デジタル変換された信号による画像の輝度の平均値および標準偏差、または、前記デジタル変換された信号による画像の輝度の歪度と尖度の少なくともいずれかを、前記輝度情報として取得することを特徴とする請求項4に記載の撮像装置。 The luminance obtaining means may calculate the average value and the standard deviation of the luminance of the image based on the digitally converted signal, or at least one of the skewness and the kurtosis of the luminance of the image based on the digitally converted signal, using the luminance information. The imaging device according to claim 4, wherein the image is acquired as:
  7.  前記輝度取得手段は、前記デジタル変換された信号による画像の輝度の平均値および標準偏差を、前記輝度情報として取得し、
     前記増幅率決定手段は、前記輝度情報と、優先する輝度範囲を設定する設定モードとを基に、前記増幅回路の増幅率を決定することを特徴とする請求項4に記載の撮像装置。
    The luminance obtaining means obtains an average value and a standard deviation of luminance of an image based on the digitally converted signal, as the luminance information,
    The imaging apparatus according to claim 4, wherein the amplification factor determination unit determines an amplification factor of the amplification circuit based on the luminance information and a setting mode for setting a priority luminance range.
  8.  前記輝度取得手段は、前記デジタル変換された信号による画像の輝度の歪度と尖度の少なくともいずれかを、前記輝度情報として取得し、
     前記増幅率決定手段は、前記輝度情報と、増幅率を記したテーブルとを基に、前記増幅回路の増幅率を決定することを特徴とする請求項4に記載の撮像装置。
    The luminance acquisition unit acquires at least one of skewness and kurtosis of luminance of an image based on the digitally converted signal as the luminance information,
    The imaging apparatus according to claim 4, wherein the amplification factor determination unit determines the amplification factor of the amplification circuit based on the luminance information and a table describing the amplification factor.
  9.  前記信号電荷を保存する少なくとも一つ以上の電荷メモリを有し、
     前記輝度取得手段は、前記電荷メモリから出力された前記信号電荷を電圧変換した信号電圧を基に、前記輝度情報を取得することを特徴とする請求項4に記載の撮像装置。
    Having at least one or more charge memories for storing the signal charges,
    The imaging apparatus according to claim 4, wherein the luminance acquisition unit acquires the luminance information based on a signal voltage obtained by voltage-converting the signal charge output from the charge memory.
  10.  前記デジタル変換された信号による画像を画像メモリに保存する保存手段を有し、
     前記輝度取得手段は、前記保存された画像から輝度のヒストグラムを取得することを特徴とする請求項4に記載の撮像装置。
    Having storage means for storing an image based on the digitally converted signal in an image memory,
    The imaging apparatus according to claim 4, wherein the brightness obtaining unit obtains a brightness histogram from the stored image.
  11.  前記増幅率決定手段は、前記ヒストグラムのなかで頻度が少ない部分を閾値処理により判定し、前記判定の結果と画質の評価値とを基に、前記増幅率の決定を行うことを特徴とする請求項10に記載の撮像装置。 The amplification factor determining means determines a portion having a low frequency in the histogram by threshold processing, and determines the amplification factor based on a result of the determination and an evaluation value of image quality. Item 11. The imaging device according to Item 10.
  12.  前記増幅率決定手段は、前記閾値処理による判定の結果を基に、候補となる複数の増幅率が取得された場合、前記候補となる複数の増幅率のなかから、前記画質の評価値を基に、前記決定する増幅率を選択することを特徴とする請求項11に記載の撮像装置。 When a plurality of candidate amplification factors are obtained based on a result of the determination by the threshold processing, the amplification factor determination unit determines the image quality evaluation value from among the plurality of candidate amplification factors. The imaging apparatus according to claim 11, wherein the amplification factor to be determined is selected.
  13.  前記増幅率決定手段は、前記画質の評価値としてS/Nを取得することを特徴とする請求項11に記載の撮像装置。 The imaging apparatus according to claim 11, wherein the amplification factor determination unit acquires S / N as the evaluation value of the image quality.
  14.  前記増幅率決定手段は、前記ヒストグラムのなかで頻度が少ない部分を閾値処理により判定し、前記判定の結果を基に前記ヒストグラムを輝度により分割し、前記分割した領域毎に重要度を決定して、前記重要度を基に、前記増幅率の決定を行うことを特徴とする請求項10に記載の撮像装置。 The amplification factor determining means determines a less frequent part in the histogram by threshold processing, divides the histogram based on luminance based on the result of the determination, and determines the importance for each of the divided areas. The imaging apparatus according to claim 10, wherein the amplification factor is determined based on the importance.
  15.  前記増幅率決定手段は、前記重要度として、前記ヒストグラムの頻度の最大値、または、頻度の総数を取得することを特徴とする請求項14に記載の撮像装置。 The imaging apparatus according to claim 14, wherein the amplification factor determination unit acquires a maximum value of the frequency of the histogram or a total number of frequencies as the importance.
  16.  前記合成手段は、二つ以上の増幅率、及び、光電変換された信号がデジタル変換する際に発生する読出しノイズ量に応じて決定された重みを用いて合成することを特徴とする請求項1乃至15のいずれか一項に記載の撮像装置。 2. The synthesizing unit according to claim 1, wherein the synthesizing unit synthesizes using two or more amplification factors and a weight determined according to an amount of readout noise generated when the photoelectrically converted signal is digitally converted. The imaging device according to any one of claims 15 to 15.
  17.  被写体の光学像を光電変換した信号電荷が電圧変換された信号電圧を、増幅した後にデジタル変換する撮像装置の制御方法であって、
     二つ以上の増幅率によって前記信号電圧を増幅する工程と、
     前記二つ以上の増幅率に基づいて、増幅した後にデジタル変換された信号それぞれに対する重みを決定する重み決定工程と、
     前記二つ以上の増幅した後に前記デジタル変換された信号を、前記重みを用いて合成する合成工程と、
     を有することを特徴とする撮像装置の制御方法。
    A signal voltage obtained by voltage conversion of a signal charge obtained by photoelectrically converting an optical image of a subject, and a control method of an imaging apparatus that performs digital conversion after amplification.
    Amplifying the signal voltage by two or more amplification factors;
    A weight determination step of determining a weight for each of the digitally converted signals after amplification based on the two or more amplification factors,
    A synthesizing step of synthesizing the digitally converted signal after the two or more amplifications using the weights,
    A method for controlling an imaging device, comprising:
  18.  被写体の光学像を光電変換した信号電荷が電圧変換された信号電圧を増幅した後にデジタル変換する撮像装置の制御方法をコンピュータに実行させるプログラムであって、
     二つ以上の増幅率によって前記信号電圧を増幅させる工程と、
     前記二つ以上の増幅率に基づいて、増幅した後にデジタル変換された信号それぞれに対する重みを決定する重み決定工程と、
     前記二つ以上の増幅した後に前記デジタル変換された信号を、前記重みを用いて合成する合成工程と、
     をコンピュータに実行させるプログラム。
    A program that causes a computer to execute a control method of an imaging device that performs digital conversion after amplifying a signal voltage obtained by voltage-converting a signal charge obtained by photoelectrically converting an optical image of a subject,
    Amplifying the signal voltage by two or more amplification factors,
    A weight determination step of determining a weight for each of the digitally converted signals after amplification based on the two or more amplification factors,
    A synthesizing step of synthesizing the digitally converted signal after the two or more amplifications using the weights,
    A program that causes a computer to execute.
PCT/JP2019/022851 2018-06-19 2019-06-10 Imaging device, control method for imaging device, and program WO2019244686A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/123,938 US11563900B2 (en) 2018-06-19 2020-12-16 Imaging apparatus to improve signal-to-noise ratio, method of controlling the imaging apparatus, and non-transitory computer-readable storage medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-115919 2018-06-19
JP2018115919 2018-06-19
JP2019077034A JP7378951B2 (en) 2018-06-19 2019-04-15 Imaging device, method of controlling the imaging device, and program
JP2019-077034 2019-04-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/123,938 Continuation US11563900B2 (en) 2018-06-19 2020-12-16 Imaging apparatus to improve signal-to-noise ratio, method of controlling the imaging apparatus, and non-transitory computer-readable storage medium

Publications (1)

Publication Number Publication Date
WO2019244686A1 true WO2019244686A1 (en) 2019-12-26

Family

ID=68983957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022851 WO2019244686A1 (en) 2018-06-19 2019-06-10 Imaging device, control method for imaging device, and program

Country Status (1)

Country Link
WO (1) WO2019244686A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670222A (en) * 1992-08-21 1994-03-11 Fuji Photo Film Co Ltd Image processing device and method thereof and video camera
US20100177225A1 (en) * 2009-01-09 2010-07-15 Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg Image sensor
JP2013236362A (en) * 2012-04-12 2013-11-21 Canon Inc Imaging device and imaging system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670222A (en) * 1992-08-21 1994-03-11 Fuji Photo Film Co Ltd Image processing device and method thereof and video camera
US20100177225A1 (en) * 2009-01-09 2010-07-15 Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg Image sensor
JP2013236362A (en) * 2012-04-12 2013-11-21 Canon Inc Imaging device and imaging system

Similar Documents

Publication Publication Date Title
US8508619B2 (en) High dynamic range image generating apparatus and method
US9398230B2 (en) Imaging device and imaging method
JP5561112B2 (en) Image processing apparatus, imaging apparatus, and program
US10397473B2 (en) Image processing apparatus having an image synthesis unit that generates synthesized image data depending on an object brightness, and related image-pickup apparatus
JP2016001807A (en) Image processing system, imaging apparatus with the same, image processing method, and image processing program
US20150022687A1 (en) System and method for automatic exposure and dynamic range compression
JP2015023511A (en) Imaging apparatus, image processing method and image processing program
WO2017057048A1 (en) Image processing device, image processing method and program
JP6557455B2 (en) Imaging apparatus, control method therefor, program, and storage medium
JP7378951B2 (en) Imaging device, method of controlling the imaging device, and program
JP2017200140A (en) Imaging device, imaging apparatus and control method
JP3394019B2 (en) Exposure control circuit of image input device
JP7247609B2 (en) Imaging device, imaging method and program
WO2019244686A1 (en) Imaging device, control method for imaging device, and program
JP2016100686A (en) Imaging device and imaging method
US8368782B2 (en) Multiple exposure image pickup apparatus, multiple exposure image pickup method, program, and recording medium
JP5094656B2 (en) Imaging apparatus, control method thereof, and program
JP5172283B2 (en) Stereo image processing apparatus, stereo image processing method, and program
JP5588729B2 (en) Image signal processing device
JP2002112108A (en) Image processing unit
CN116249026B (en) Signal processing device and method for image sensor
JP7418986B2 (en) Imaging device and method of controlling the imaging device
JPH05115045A (en) Exposure control circuit for picture input device
TWI694723B (en) Automatic exposure imaging system and method
JP2018026743A (en) Image processor, control method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19821656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19821656

Country of ref document: EP

Kind code of ref document: A1