WO2019244676A1 - Traveling control device and traveling control method - Google Patents

Traveling control device and traveling control method Download PDF

Info

Publication number
WO2019244676A1
WO2019244676A1 PCT/JP2019/022766 JP2019022766W WO2019244676A1 WO 2019244676 A1 WO2019244676 A1 WO 2019244676A1 JP 2019022766 W JP2019022766 W JP 2019022766W WO 2019244676 A1 WO2019244676 A1 WO 2019244676A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
inter
preceding vehicle
distance
control device
Prior art date
Application number
PCT/JP2019/022766
Other languages
French (fr)
Japanese (ja)
Inventor
拓真 須藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019244676A1 publication Critical patent/WO2019244676A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a travel control device and a travel control method for a vehicle.
  • JP-A-2013-173383 discloses a vehicle follow-up control device.
  • the following control device for a vehicle specifies a preceding vehicle that is a preceding vehicle traveling in front of the own vehicle, and determines whether or not there is a direction instruction in a direction indicator of the preceding vehicle at the time of following control with respect to the preceding vehicle. judge. Then, if it is determined that there is a direction instruction, if there is a situation that hinders the lane change of the preceding vehicle, for example, if there is a vehicle in an adjacent lane running parallel to the preceding vehicle, When there is a vehicle having a high speed, the following control is continued. On the other hand, when there is no situation that prevents the lane change of the preceding vehicle, the following control is canceled.
  • a travel control device for a vehicle.
  • the traveling control device includes a front vehicle identification unit that identifies a preceding vehicle that is a preceding vehicle traveling ahead of the host vehicle, a front vehicle behavior detection unit that detects the behavior of the preceding vehicle, and an identification unit that identifies the preceding vehicle.
  • a follow-up control unit that performs a follow-up control for following the preceding vehicle at a predetermined inter-vehicle distance, and, in accordance with the detected behavior of the preceding vehicle, the preceding vehicle departs from the lane in which the own vehicle travels.
  • a withdrawal determination unit that determines whether or not there is a withdrawal situation that is highly likely to be performed.
  • the following control unit sets the inter-vehicle distance in the following control to a first distance when the preceding vehicle is not in the departure situation. Is changed to a second inter-vehicle distance shorter than the inter-vehicle distance.
  • the following control unit sets the following distance in the following control to the second following distance shorter than the first following distance. Since the change is made, the own vehicle does not approach the preceding vehicle as compared with the case where the following control is not performed.
  • the inter-vehicle distance with the preceding vehicle can be maintained at the second inter-vehicle distance shorter than the first inter-vehicle distance even if the deceleration is slower than the deceleration of the preceding vehicle. That is, when it is determined that there is a high possibility that the preceding vehicle will depart from the lane in which the own vehicle is traveling, there is no need to decelerate the own vehicle in accordance with the preceding vehicle, and the own vehicle can be decelerated more slowly than the preceding vehicle. .
  • the acceleration for returning the own vehicle to the original speed may be smaller. That is, fluctuations in the acceleration and speed of the own vehicle can be suppressed to a small level. That is, useless deceleration and acceleration can be prevented. As a result, the driver feeling can be improved and the fuel efficiency can be improved.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of a traveling control device
  • FIG. 2 is an explanatory diagram showing a configuration of various detection units and a travel control device.
  • FIG. 3 is an explanatory diagram showing a detection range of a front vehicle or another vehicle
  • FIG. 4 is a flowchart of the follow-up control executed by the travel control device
  • FIG. 5 is an explanatory diagram illustrating a target inter-vehicle distance correction process performed by the traveling control device.
  • FIG. 6 is an explanatory diagram comparing the front vehicle recognition state and the control state of the comparative example and the present embodiment
  • FIG. 7 is an example of a situation in which the target inter-vehicle distance correction processing is executed
  • FIG. 1 is an explanatory diagram showing a schematic configuration of a traveling control device
  • FIG. 2 is an explanatory diagram showing a configuration of various detection units and a travel control device.
  • FIG. 3 is an explanatory diagram showing a detection range of a front vehicle or another
  • FIG. 8 is another example of a situation in which the target inter-vehicle distance correction processing is executed.
  • FIG. 9 is another example of a situation in which the target inter-vehicle distance correction process is executed.
  • FIG. 10 is an explanatory diagram showing the acceleration, speed, and target inter-vehicle distance of the own vehicle when the preceding vehicle decelerates and leaves.
  • FIG. 11 is an explanatory diagram showing the acceleration, speed, and target inter-vehicle distance of the own vehicle when the preceding vehicle has left without decelerating.
  • the host vehicle 10 includes a travel control device 100, a drive system 130, a steering system 140, a braking system 160, rear wheels 170 and 171, front wheels 172 and 173, various detection units 180, a communication unit 190, A route guidance device 195.
  • the travel control device 100 acquires various information necessary for driving the own vehicle 10 using the various detection units 180, the communication unit 190, and the route guidance device 195, and controls the operation of the own vehicle 10.
  • the own vehicle 10 may be a vehicle for automatic driving or a vehicle for non-automatic driving. When the vehicle 10 is not in the automatic driving mode, the travel control device 100 assists the driver in driving.
  • the drive system 130 includes a drive ECU 132, a drive device 134, a differential gear 136, and a drive shaft 138.
  • the drive ECU 132 receives an instruction from the travel control device 100 and controls the drive device 134.
  • the driving device 134 is, for example, an electric motor or an internal combustion engine. Note that the drive device 134 may include both an electric motor and an internal combustion engine.
  • the output of the driving device 134 is transmitted to the rear wheels 170 and 171 via the differential gear 136 and the driving shaft 138.
  • the driving device 134 may also be used as a generator that regenerates kinetic energy of the vehicle 10 into electric power.
  • the driving device 134 drives the rear wheels 170, 171.
  • the driving device 134 may drive the front wheels 172, 173, or may drive both the rear wheels 170, 171 and the front wheels 172, 173.
  • the steering system 140 includes a steering ECU 142, a steering wheel 144, an encoder 146, a steering device 148, a steering motor 150, and a steering gear 152.
  • the steering ECU controls the steering device 148 in response to an instruction from the traveling control device 100.
  • An encoder 146 is connected to the steering device 148, and the encoder 146 detects a rotation angle of the handle 144 when the driver operates the handle 144.
  • the steering device 148 drives the steering motor 150 in accordance with an instruction from the steering ECU in the case of automatic driving, and drives the steering motor 150 in accordance with the rotation angle of the steering wheel 144 in the case of non-automatic driving. Assist the operation of.
  • the steering motor 150 controls the steering angle (the angle with respect to the straight traveling direction) of the front wheels 172 and 173 via the steering gear 152.
  • the steering gear 152 is composed of, for example, a rack and a pinion. Turning radius may be applied to the steering angles of the right and left front wheels 172 and 173 by the steering gear 152 as needed.
  • the braking system 160 includes a braking ECU 162, a hydraulic pump 164, a brake hose 166, a brake caliper 168, and a brake disc 169.
  • the braking ECU 162 drives and controls the hydraulic pump 164 in response to an instruction from the travel control device 100.
  • the hydraulic pump 164 sends hydraulic pressure to the brake caliper 168 via the brake hose 166.
  • the brake caliper 168 brakes the vehicle 10 by pressing a brake pad (not shown) against the brake disc 169.
  • the disc brake for pressing the brake pad against the brake disc 169 has been described as an example, but a drum brake may be used.
  • the travel control device 100 may perform braking by instructing the driving ECU 130 to regenerate from the electric motor.
  • the various detection units 180 acquire information necessary for the traveling of the vehicle 10.
  • the various detection units 180 will be described later.
  • the communication unit 190 uses the vehicle-to-vehicle communication such as V2V (Vehicle-to-Vehicle) or the road-to-vehicle communication such as V2I (Vehicle-to-roadside-Infrastructure) to drive another vehicle or the vehicle 10. Get information about roads.
  • the route guidance device 195 has map information, for example, receives a signal from a satellite of GNSS (Global Navigation Satellite System), specifies the position of the vehicle 10, and determines the route of the vehicle 10 to the destination. invite.
  • GNSS Global Navigation Satellite System
  • the route guidance device 195 receives, for example, radio waves from radio beacons provided on roads, radio waves from mobile base stations, and radio waves from Wi-Fi base stations in addition to signals from GNSS satellites, and uses these.
  • the position of the vehicle 10 may be specified.
  • the map information may include the number of lanes of the road, the width of the lane, the traffic direction in the lane, and road regulation information.
  • the host vehicle 10 includes a camera 182, a radar 184, a vehicle speed detection unit 186, and a steering direction detection unit 188 as various detection units 180.
  • the camera 182 photographs the front of the vehicle 10.
  • a monocular camera or a binocular camera can be used as the camera 182.
  • the camera 182 may be a monochrome camera or a color camera. Further, the camera 182 may be a camera including a wide-angle lens and a zoom lens. Further, a wide angle may be covered by a plurality of cameras 182. Further, a rotating device for changing the shooting direction of the camera 182 may be provided.
  • the radar 184 emits an electromagnetic wave or a laser in front of the own vehicle 10 and receives the reflected wave to detect a state in front of the own vehicle 10.
  • a millimeter wave radar using a millimeter wave for example, an infrared radar using an infrared ray, and a LiDAR (Light Detection and Ranging) radar using light having a shorter wavelength than the infrared ray can be used.
  • the radar 184 may have a configuration including a plurality of radars.
  • the vehicle speed detector 186 detects and acquires the speed of the vehicle 10.
  • the speed of the vehicle 10 can be detected using, for example, the rotational speed of the differential gear 136 or the drive shaft 138.
  • the steering direction detector 188 detects and acquires the directions of the front wheels 173 and 174.
  • the direction of the front wheels 173, 174 can be detected using the position of the rack of the steering gear 152.
  • the travel control device 100 includes a forward vehicle identification unit 104, a lane detection unit 106, a preceding vehicle behavior detection unit 108, a departure determination unit 116, a follow-up control unit 118, an auto cruise control unit 120, and a travel mode switching unit. 122.
  • the travel control device 100 is a computer including a CPU 102, a RAM, a ROM, an input / output port (I / O), and the like.
  • the operation of the CPU 102 causes the front vehicle identification unit 104, the lane detection unit 106, and the front vehicle behavior detection.
  • the functions of the unit 108, the departure determination unit 116, the following control unit 118, the auto cruise control unit 120, and the traveling mode switching unit 122 are realized.
  • the illustration of the RAM, ROM, and input / output ports (I / O) is omitted. In addition, illustration and description of functions and configurations not related to the following control and the auto cruise control are omitted.
  • the front vehicle specifying unit 104 detects the front vehicle 20 ahead of the own vehicle 10 using the camera 182 and the radar 184 described above, and specifies the presence and position of the front vehicle 20 as shown in FIG. As shown in FIG. 3, the preceding vehicle specifying unit 104 provides a reliability index (expressed as a percentage) according to the distance from the own vehicle 10, and determines the preceding vehicle 20 existing in a region equal to or larger than a predetermined index as described later.
  • the vehicle behavior detection unit 108, the departure determination unit 116, and the follow-up control unit 118 perform the following. Note that the front vehicle specifying unit 104 can also obtain the relative speed Rv of the front vehicle 20 using the relative transition of the position of the front vehicle 20.
  • the lane detecting unit 106 detects the lane boundary lines S1, S2, and S3 in front of the vehicle 10 using the camera 182 described above, as shown in FIG.
  • the front vehicle behavior detecting unit 108 detects the behavior of the front vehicle 20, particularly, the lateral behavior.
  • the front vehicle behavior detection unit 108 includes a direction instruction detection unit 110, a front vehicle lateral speed acquisition unit 112, and a front vehicle travel information acquisition unit 114.
  • the direction indication detection unit 110 detects whether or not the direction indicator of the preceding vehicle is blinking from the image of the preceding vehicle 20 acquired using the camera 182.
  • the front vehicle lateral speed acquisition unit 112 acquires the lateral speed of the front vehicle 20 using the transition of the position of the front vehicle 20 acquired using the camera 182 and the radar 184.
  • the front vehicle traveling information acquisition unit 114 acquires traveling information of the preceding vehicle, for example, speed and steering direction, using inter-vehicle communication such as V2V (Vehicle-to-Vehicle).
  • the front vehicle behavior detection unit 108 does not need to include all of the direction instruction detection unit 110, the front vehicle lateral speed acquisition unit 112, and the front vehicle travel information acquisition unit 114, and may include at least one.
  • the departure determination unit 116 can use the behavior of the front vehicle 20 detected or obtained by using the front vehicle behavior detection unit 108 to determine whether or not the front vehicle 20 is leaving the lane in which the vehicle 10 travels, or can leave the lane. It is determined whether the property is large.
  • Follow-up control section 118 executes follow-up control.
  • the follow-up control is control for causing the own vehicle 10 to follow the preceding vehicle at a speed equal to or less than a preset speed and at a distance between the own vehicle 10 and the preceding vehicle 20.
  • the auto cruise control unit 120 controls auto cruise of the vehicle 10.
  • the auto cruise means that the vehicle 10 runs at a speed equal to or less than a preset speed and does not deviate from the lane.
  • the traveling mode switching unit 122 switches between following control, auto cruise control, and normal control.
  • the normal control means a control that is neither the follow-up control nor the auto-cruise control.
  • the traveling mode switching unit 122 switches from the auto cruise control to the following control.
  • the driving mode switching unit 122 Switch from tracking control to auto cruise control.
  • the traveling mode switching unit 122 switches to follow-up control or auto cruise control, and when the auto cruise switch 125 is off, switches to normal control.
  • the turning on and off of the auto cruise switch 125 is performed by, for example, a driver.
  • step S100 in FIG. 4 the preceding vehicle specifying unit 104 determines whether or not the preceding vehicle 20 exists in a region having a confidence index of 50% or more, for example. If the preceding vehicle 20 does not exist, the process proceeds to step S110, and the auto-cruise control unit 120 causes the own vehicle 10 to auto-cruise. On the other hand, when there is a preceding vehicle, the process proceeds to step S120, and the following control unit 118 executes control in which the own vehicle 10 follows the preceding vehicle 20.
  • the front vehicle specifying unit 104 does not determine that the front vehicle 20 exists in the region with the reliability index of 50% or more. However, the front vehicle 20 exists in a lane adjacent to the lane in which the host vehicle 10 travels, the front vehicle 20 is blinking the lane-side direction indicator of the host vehicle 10, and the lane boundary on the blinking side is If the driver is stepping on the vehicle, the preceding vehicle specifying unit 104 may increase the confidence index by, for example, 10% to 50%, and may determine whether or not the preceding vehicle 20 exists in a region where the confidence index is 50% or more. . This is because the front vehicle 20 may interrupt the lane in which the vehicle runs.
  • step S120 the following control unit 118 controls the traveling of the own vehicle 10 so as to follow the preceding vehicle 20.
  • the follow-up control unit 118 controls the driving so that the speed of the own vehicle 10 is equal to or less than a preset vehicle speed and the inter-vehicle distance between the own vehicle 10 and the preceding vehicle 20 is equal to or more than the target inter-vehicle distance.
  • the ECU 132 controls the drive system 130 and the brake ECU 162 controls the brake system 160.
  • the target inter-vehicle distance at this time is referred to as “first inter-vehicle distance”.
  • the first inter-vehicle distance may be a fixed value or may be determined according to the speed of the vehicle 10.
  • the tracking control unit 118 may increase the first inter-vehicle distance as the speed of the own vehicle 10 increases, and may set a fixed value when the speed of the own vehicle 10 is equal to or higher than a predetermined speed.
  • the following control unit 118 uses the target inter-vehicle distance, but the target inter-vehicle time may be used instead of the target inter-vehicle distance.
  • the inter-vehicle time is the time from when the preceding vehicle 20 passes through a point to when the vehicle 10 passes through the point. That is, the control using the target inter-vehicle time means that the control is performed based on a time period from when the preceding vehicle 20 passes through a certain point to when the own vehicle 10 passes through that point.
  • control unit 118 controls the steering ECU 142 so as not to keep the vehicle 10 at a distance equal to or longer than the target vehicle distance from the preceding vehicle 20 and to protrude from the lane in which the vehicle 10 is traveling. 140 may be controlled or the driver may be assisted.
  • step S130 the departure determination unit 116 determines whether the front vehicle 20 can depart from the front of the vehicle 10. If the possibility that the front vehicle 20 will be separated from the front of the own vehicle 10 is large, the process proceeds to step S140. If the possibility that the front vehicle 20 is separated from the front of the own vehicle 10 is small, The process moves to step S190. As described above, the departure determination unit 116 uses the behavior of the front vehicle 20 acquired from the front vehicle behavior detection unit 108 to determine whether the possibility that the front vehicle 20 will depart is high or low.
  • the leaving determination unit 116 determines that there is a high possibility that the preceding vehicle 20 will leave, there is a two-preceding vehicle further ahead of the preceding vehicle 20, and the relative speed Rv between the own vehicle 10 and the preceding vehicle is large.
  • a negative value that is, when the vehicle is approaching immediately before, it is not necessary to determine that there is a high possibility of leaving. This is because, even if the front vehicle 20 leaves, there is a possibility that the vehicle will be replaced by the vehicle before the previous vehicle and become the front vehicle.
  • the preceding vehicle specifying unit 104 determines whether or not the preceding vehicle 20 has left the front of the own vehicle 10. For example, when the preceding vehicle 20 has moved to a region having a confidence index of less than 50%, it may be determined that the preceding vehicle 20 has left from the front of the own vehicle 10. At this time, if the preceding vehicle 20 is stepping on the lane boundary indicated by the turn signal, the preceding vehicle specifying unit 104 may determine that the preceding vehicle 20 has left by lowering the confidence index. For example, when the front vehicle 20 is on the same lane as the own vehicle 10 and further exists in the area with a confidence index of 50%, but the direction indicator is blinking and the driver is stepping on the lane boundary on the blinking side. For example, the reliability index may be reduced by, for example, 10% to 40%, and it may be determined that the preceding vehicle 20 has left from the front of the own vehicle 10.
  • step S150 the following control unit 118 calculates the relative speed Rv and the relative distance Rd between the vehicle 10 and the front vehicle 20.
  • step S160 the following control unit 118 determines whether or not the relative speed Rv between the vehicle 10 and the preceding vehicle 20 is less than a predetermined threshold value V. If the relative speed Rv between the host vehicle 10 and the front vehicle 20 is less than the threshold value V, the process proceeds to step S190; otherwise, the process proceeds to step S170.
  • step S170 the following control unit 118 determines whether the relative distance Rd between the vehicle 10 and the preceding vehicle 20 is less than a predetermined threshold value W. If the relative distance Rd between the host vehicle 10 and the preceding vehicle 20 is less than the threshold value W, the process proceeds to step S190; otherwise, the process proceeds to step S180.
  • step S180 the tracking control unit 118 changes the target inter-vehicle distance to a second inter-vehicle distance shorter than the first inter-vehicle distance, as shown in FIG.
  • the second inter-vehicle distance is, for example, about half or 1/3 of the first inter-vehicle distance.
  • the tracking control unit 118 may determine the magnitude of the second inter-vehicle distance or the rate of decrease of the second inter-vehicle distance with respect to the first inter-vehicle distance according to the speed of the vehicle 10.
  • the following control unit 118 may shorten the inter-vehicle time.
  • step S190 as shown in FIG. 5, the following control unit 118 maintains the target inter-vehicle distance with the preceding vehicle 20 to be greater than or equal to the first inter-vehicle distance.
  • the following control unit 118 includes a map for setting a first inter-vehicle distance and a second inter-vehicle distance in accordance with the speed of the own vehicle 10 and the relative speed Rv between the own vehicle 10 and the front vehicle 20.
  • a map may be used.
  • Comparative Examples 1 and 2 are different from the present embodiment in the following points. Comparative Example 1 does not determine the possibility that the front vehicle 20 will leave the front of the vehicle 10. In other words, there are only two states: a state 1 in which the front vehicle specifying unit 104 recognizes and specifies the front vehicle 20 and a state 2 in which the front vehicle specifying unit 104 does not recognize and specify the front vehicle 20. In contrast, the present embodiment and Comparative Example 2 determine the possibility that the front vehicle 20 will leave the front of the vehicle 10.
  • the front vehicle specifying unit 104 recognizes and specifies the front vehicle 20 but does not determine the departure determination unit 116 when the front vehicle 20 separates from the front of the vehicle 10.
  • the control of the own vehicle 10 in State 1 and State 2 is the same. That is, in state 1, in this embodiment and Comparative Examples 1 and 2, the following control unit 118 sets the speed of the own vehicle 10 to the set vehicle speed or less and sets the target inter-vehicle distance between the own vehicle 10 and the front vehicle 20. Is executed, and control for following the front vehicle 20 is executed. In the state 2, the auto cruise control unit 120 causes the own vehicle 10 to run independently at a predetermined set vehicle speed.
  • the present embodiment is different from the comparative example 2 as follows.
  • the comparative example 2 in the case of the state 3, the following of the preceding vehicle 20 is released, and the auto cruise control unit 120 causes the own vehicle 10 to run independently at a predetermined set vehicle speed.
  • the following control unit 118 changes the target inter-vehicle distance between the vehicle 10 and the front vehicle 20 from the first inter-vehicle distance to the second inter-vehicle distance. Then, control for following the front vehicle 20 is executed.
  • the preceding vehicle 20 changes lanes from an overtaking lane on a highway to a traveling lane.
  • the front vehicle 20 changes lanes to the traveling lane while blinking the direction indicator.
  • the preceding vehicle specifying unit 104 recognizes the front vehicle 20, and the following control unit 118 executes the following control so as to keep the inter-vehicle distance with the front vehicle 20 equal to or greater than the first inter-vehicle distance.
  • the following control unit 118 releases the following of the preceding vehicle 20.
  • the auto cruise control unit 120 causes the own vehicle 10 to perform independent auto cruise traveling at the set vehicle speed. Therefore, the vehicle 10 approaches the front vehicle 20.
  • the departure determination unit 116 determines that the front vehicle 20 has departed
  • the following control unit 118 determines the target inter-vehicle distance with the front vehicle 20 from the first inter-vehicle distance by the first inter-vehicle distance. Change to the inter-vehicle distance of 2.
  • the own vehicle 10 is closer to the front vehicle 20 than the comparative example 1, though not as much as the comparative example 2.
  • the travel control device 100 instructs the braking ECU 162 to brake the host vehicle 10.
  • the auto cruise control unit 120 determines whether the own vehicle 10 is running at a preset vehicle speed. To auto-cruise. The same applies to the case where the own vehicle 10 and the preceding vehicle 20 travel in the traveling lane and the preceding vehicle 20 moves to the passing lane.
  • the preceding vehicle 20 changes lanes from an expressway to an exit road.
  • the front vehicle 20 decelerates while blinking the direction indicator, and changes lanes to the exit road.
  • the following control unit 118 executes the following control so that the inter-vehicle distance with the preceding vehicle 20 is greater than or equal to the first inter-vehicle distance with the deceleration of the preceding vehicle 20. Therefore, the braking ECU 162 is instructed to brake and the own vehicle 10 is decelerated.
  • the auto cruise control unit 120 causes the own vehicle 10 to perform the auto cruise alone at the set vehicle speed in order to cancel the following of the front vehicle 20. . Therefore, the vehicle 10 approaches the front vehicle 20.
  • the departure determination unit 116 determines that the front vehicle 20 has departed
  • the following control unit 118 determines the target inter-vehicle distance with the front vehicle 20 from the first inter-vehicle distance by the first inter-vehicle distance. Change to the inter-vehicle distance of 2.
  • the own vehicle 10 is closer to the front vehicle 20 than the comparative example 1, though not as much as the comparative example 2.
  • the travel control device 100 instructs the braking ECU 162 to brake the host vehicle 10.
  • the auto cruise control unit 120 executes the control of the own vehicle 10 at a preset vehicle speed. To auto-cruise.
  • the auto cruise control unit 120 causes the own vehicle 10 to perform the auto cruise alone at the set vehicle speed in order to cancel the following of the front vehicle 20. Therefore, the vehicle 10 approaches the front vehicle 20.
  • the following control unit 118 determines that there is a high possibility that the preceding vehicle 20 will leave, the following control unit 118 changes the target inter-vehicle distance from the first inter-vehicle distance to the second inter-vehicle distance. .
  • the own vehicle 10 is closer to the front vehicle 20 than the comparative example 1, though not as much as the comparative example 2.
  • the front vehicle 20 stops when there is a traverser at the left turn.
  • the travel control device 100 of the own vehicle 10 To stop the vehicle.
  • the auto cruise control unit 120 causes the own vehicle 10 to auto cruise at a preset vehicle speed.
  • Comparative Example 1 in which the target inter-vehicle distance is maintained to be greater than or equal to the first inter-vehicle distance with respect to the acceleration and the vehicle speed of the own vehicle 10 when the front vehicle 20 decelerates and separates, and the target inter-vehicle distance is set to the second inter-vehicle distance A comparison will be made with this embodiment in which the distance is changed. As is clear from the graph shown in FIG. 10, the variation of the acceleration and the variation of the speed are smaller in the present embodiment than in Comparative Example 1.
  • Comparative Example 1 when the front vehicle 20 decelerates, the own vehicle 10 also decelerates in accordance with the deceleration, and when the front vehicle 20 separates from the front of the own vehicle 10, the vehicle accelerates to the set speed.
  • the target inter-vehicle distance is changed from the first inter-vehicle distance to the second inter-vehicle distance. Therefore, the deceleration of the own vehicle 10 during the interval between the first inter-vehicle distance and the second inter-vehicle distance may be slower than the deceleration of the front vehicle 20.
  • the speed of the own vehicle 10 during the interval between the first inter-vehicle distance and the second inter-vehicle distance is higher in the present embodiment than in Comparative Example 1.
  • the vehicle accelerates to the set speed.
  • the acceleration since the speed of the own vehicle 10 before acceleration is higher than that in Comparative Example 1, the acceleration may be slow to the set speed.
  • the fluctuations in the acceleration and the speed of the vehicle 10 can be suppressed to be smaller than in Comparative Example 1. That is, in the present embodiment, unnecessary deceleration and acceleration are not required as compared with Comparative Example 1.
  • the present embodiment can improve the driver feeling and the fuel efficiency as compared with the comparative example.
  • a comparative example 1 in which the target inter-vehicle distance is maintained to be equal to or more than the first inter-vehicle distance with respect to the acceleration and the vehicle speed of the own vehicle 10 when the front vehicle 20 leaves without deceleration, and the target inter-vehicle distance is set to the second Is compared with the present embodiment in which the distance between vehicles is changed. It is assumed that the speed of the front vehicle 20 is lower than the speed of the auto cruise of the vehicle 10. In this case, as shown in FIG. 11, the tracking control unit 118 changes the target inter-vehicle distance from the first inter-vehicle distance to the second inter-vehicle distance from the time when it is determined that there is a high possibility that the preceding vehicle 20 will leave.
  • the vehicle 10 is accelerated to increase the speed. Therefore, there is no need to accelerate to the set speed after the completion of the separation of the front vehicle 20. Therefore, according to the present embodiment, the change in acceleration and speed can be made more gradual than in Comparative Example 1, and the driver feeling can be improved. Also, fuel efficiency can be improved.
  • the following control unit 118 performs the following of the preceding vehicle 20. Instead of canceling, the second inter-vehicle distance shorter than the first inter-vehicle distance is changed to follow the preceding vehicle 20, so that unnecessary deceleration / acceleration is eliminated, and the driver feeling is reduced. It can improve fuel economy as well as improving fuel economy. Further, since the following of the front vehicle 20 is not released, the own vehicle 10 does not approach the front vehicle 20.
  • the follow-up control unit 118 may reduce the inter-vehicle distance from the front vehicle 20 from the first inter-vehicle distance to the second inter-vehicle distance, or may shorten the target inter-vehicle time. . Further, the tracking control unit 118 may determine the first inter-vehicle distance and the second inter-vehicle distance according to the speed of the vehicle 10. Further, the following control unit 118 may determine the ratio of the second inter-vehicle distance to the first inter-vehicle distance according to the speed of the vehicle 10.
  • the front vehicle behavior detection unit 108 includes a direction instruction detection unit 110 that detects the behavior of the front vehicle 20 by using the blinking of the direction indicator of the front vehicle 20, and the departure determination unit 116 uses the behavior to You may determine the possibility that 20 will leave
  • the front vehicle behavior detection unit 108 includes a front vehicle lateral direction detection unit 112 that detects the behavior of the front vehicle 20 using the lateral speed of the front vehicle 20.
  • the departure determination unit 116 uses the behavior to The possibility that the vehicle 20 will leave may be determined. Even when the preceding vehicle 20 changes lanes or turns right or left without turning on the direction indicator, it is possible to determine the possibility that the preceding vehicle 20 will leave.
  • the front vehicle behavior detection unit 108 includes a front vehicle traveling information acquisition unit that acquires the movement and behavior of the front vehicle 20 acquired by the inter-vehicle communication, and the departure determination unit 116 determines whether the front vehicle 20 uses the movement and behavior.
  • the possibility of leaving may be determined. Even when it is difficult to detect the movement of the front vehicle 20 with a camera or the like, it is possible to determine the possibility that the front vehicle 20 will leave.
  • the destination and route of the front vehicle 20 can be acquired by inter-vehicle communication, the movement of the front vehicle 20 can be easily predicted.
  • the present invention can be realized as the following modes.
  • a travel control device for a vehicle.
  • the traveling control device includes a front vehicle identification unit (40) that identifies a front vehicle (200) that is a preceding vehicle traveling ahead of the own vehicle (100), and a front vehicle behavior detection unit that detects the behavior of the front vehicle.
  • a follow-up control unit (21) that performs a follow-up control for following the preceding vehicle specified by the preceding vehicle specifying unit at a predetermined inter-vehicle distance, and according to the detected behavior of the preceding vehicle,
  • a departure determination unit (20) for determining whether or not the vehicle is in a departure situation in which there is a high possibility that the preceding vehicle will depart from the lane in which the vehicle travels.
  • the following control unit sets the inter-vehicle distance in the following control to a first distance when the preceding vehicle is not in the departure situation. Is changed to a second inter-vehicle distance shorter than the inter-vehicle distance.
  • the following control unit sets the following distance in the following control to the second following distance shorter than the first following distance. Since the change is made, the own vehicle does not approach the preceding vehicle as compared with the case where the following control is not performed.
  • the inter-vehicle distance with the preceding vehicle can be maintained at the second inter-vehicle distance shorter than the first inter-vehicle distance even if the deceleration is slower than the deceleration of the preceding vehicle. That is, there is no need to decelerate the own vehicle in accordance with the preceding vehicle, and the own vehicle can be decelerated more slowly than the preceding vehicle.
  • the acceleration for returning the own vehicle to the original speed may be smaller. That is, fluctuations in the acceleration and speed of the own vehicle can be suppressed to a small level. That is, useless deceleration and acceleration can be prevented. As a result, the driver feeling can be improved and the fuel efficiency can be improved.
  • the vehicle further includes a vehicle speed detection unit (186) that acquires the speed of the own vehicle, and the following control unit performs the first inter-vehicle distance and the second inter-vehicle distance according to the speed of the own vehicle. May be modified. If the speed of the own vehicle is different, the braking distance is different. Therefore, it is preferable to determine the first inter-vehicle distance and the second inter-vehicle distance according to the speed of the own vehicle.
  • the following control unit may determine a ratio of the second inter-vehicle distance to the first inter-vehicle distance according to the speed of the own vehicle. If the speed of the own vehicle is different, the braking distance is different. Therefore, it is preferable to determine the ratio of the second inter-vehicle distance to the first inter-vehicle distance according to the speed of the own vehicle.
  • the preceding vehicle behavior detecting unit includes a direction instruction detecting unit (50) that detects blinking of the direction indicator of the preceding vehicle, and the departure determining unit uses the blinking of the direction indicator to blink.
  • the possibility that the preceding vehicle may leave may be determined.
  • the preceding vehicle turns on the turn signal, there is a high possibility that the preceding vehicle changes lanes or turns left or right.
  • by using the blinking of the direction indicator it is possible to easily determine whether or not there is a high possibility that the preceding vehicle will leave.
  • the front vehicle behavior detection unit includes a front vehicle lateral speed acquisition unit (112) that acquires a lateral speed of the front vehicle, and the departure determination unit includes a lateral speed of the front vehicle. May be used to determine the possibility that the preceding vehicle will leave. According to this embodiment, it is possible to easily determine whether or not there is a high possibility that the preceding vehicle will be departed even when the preceding vehicle changes lanes or turns right or left without turning on the direction indicator.
  • the front vehicle behavior detecting unit includes a front vehicle traveling information obtaining unit (114) that obtains a movement of the front vehicle by inter-vehicle communication with the front vehicle, and the departure determining unit includes The possibility of the preceding vehicle leaving may be determined using the movement of the preceding vehicle acquired by communication. According to this aspect, even when it is difficult to detect the movement of the preceding vehicle with a camera or the like, it is possible to determine the possibility that the preceding vehicle will leave.
  • an auto cruise control unit (120) is provided, and when the preceding vehicle specifying unit cannot detect the preceding vehicle, the auto cruise control unit executes independent traveling at a preset vehicle speed. May be. According to this aspect, it is possible to control traveling when the vehicle does not follow the preceding vehicle.
  • the present invention can be realized in various forms, and can be realized by, for example, a vehicle running control method or the like in addition to a vehicle running control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)
  • Controls For Constant Speed Travelling (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

A vehicle traveling control device (100) is provided with: a preceding vehicle identification unit (104) that identifies a preceding vehicle (20) traveling ahead of a host vehicle (10); a preceding vehicle behavior detection unit (108) that detects a behavior of the preceding vehicle; a following control unit (118) that executes following control so as to follow the preceding vehicle identified by the preceding vehicle identification unit with a predetermined inter-vehicle distance therefrom; and a leaving determination unit (116) that determines, in accordance with the detected behavior of the preceding vehicle, whether the preceding vehicle is in a leaving state where the preceding vehicle is highly likely to leave a lane on which the host vehicle travels. When the leaving determination unit determines that the preceding vehicle is in the leaving state, the following control unit changes the inter-vehicle distance in the following control to a second inter-vehicle distance shorter than a first inter-vehicle distance set when the preceding vehicle is not in the leaving state, and executes the following control.

Description

走行制御装置及び走行制御方法Travel control device and travel control method 関連出願の相互参照Cross-reference of related applications
 本願は、2018年6月22日に出願された出願番号2018-118826号の日本出願に基づく優先権を主張し、その開示の全てが参照により本願に組み込まれる。 This application claims the priority based on the Japanese Patent Application No. 2018-118826 filed on June 22, 2018, the entire disclosure of which is incorporated herein by reference.
 本発明は、車両の走行制御装置及び走行制御方法に関する。 The present invention relates to a travel control device and a travel control method for a vehicle.
 特開2013-173383号公報には、車両用追従制御装置が開示されている。この車両用追従制御装置は、自車の前方を走行する前方車両である前車を特定し、前車を追従対象とする追従制御に際して前車の方向指示器における方向指示が有るか否かを判定する。その上で、方向指示が有ると判定された場合、前車の車線変更を妨げる状況が存在する場合、例えば、前車に並走する隣接車線の車両が存在する場合や、自車の並走する速度が大きな車両が存在する場合、には追従制御を継続し、一方、前車の車線変更を妨げる状況が存在しない場合には、追従制御の解除を行う。 JP-A-2013-173383 discloses a vehicle follow-up control device. The following control device for a vehicle specifies a preceding vehicle that is a preceding vehicle traveling in front of the own vehicle, and determines whether or not there is a direction instruction in a direction indicator of the preceding vehicle at the time of following control with respect to the preceding vehicle. judge. Then, if it is determined that there is a direction instruction, if there is a situation that hinders the lane change of the preceding vehicle, for example, if there is a vehicle in an adjacent lane running parallel to the preceding vehicle, When there is a vehicle having a high speed, the following control is continued. On the other hand, when there is no situation that prevents the lane change of the preceding vehicle, the following control is canceled.
 特開2013-173383号公報に記載の方法では、車両用追従制御装置が、前車の方向指示器の方向指示の情報から前車の追従制御を解除すると判定した場合において、例えば自車の走行車線からの前車の離脱が遅れた場合には、前方の前車が存在するにもかかわらず自車が前車に接近する場合があることに、発明者らは気がついた。また、車両用追従制御装置が、前車の追従制御を解除しない場合には、たとえば前車が車線変更の際に減速する場合、自車も減速するため、無駄な加減速が生じる場合があることに、発明者らは気がついた。 According to the method described in Japanese Patent Application Laid-Open No. 2013-173383, when the following control device for a vehicle determines that the following control of the preceding vehicle is to be released from the information on the direction indication of the direction indicator of the preceding vehicle, for example, the traveling of the own vehicle is performed. The inventors have noticed that, when the departure of the preceding vehicle from the lane is delayed, the own vehicle may approach the preceding vehicle in spite of the presence of the preceding vehicle in front. In addition, when the following control device for the vehicle does not cancel the following control of the preceding vehicle, for example, when the preceding vehicle decelerates when changing lanes, the own vehicle also decelerates, which may cause unnecessary acceleration / deceleration. In particular, the inventors have noticed.
 本発明の一形態によれば、車両の走行制御装置が提供される。この走行制御装置は、自車の前方を走行する先行車両である前車を特定する前方車両特定部と、前記前車の挙動を検出する前車挙動検出部と、前記前方車両特定部により特定された前記前車を、予め定められた車間距離を空けて追従する追従制御を実行する追従制御部と、検出した前記前車の挙動に従って、前記自車が走行する車線から前記前車が離脱する可能性が高い離脱状況にあるか否かを判定する離脱判定部と、を備える。前記前車が離脱状況にあると前記離脱判定部が判定した場合には、前記追従制御部は、前記追従制御における車間距離を、前記前車が離脱状況にない場合に設定されている第1の車間距離よりも短い第2の車間距離に変更して前記追従制御を実施する。この形態によれば、前車が離脱状況にあると離脱判定部が判定した場合には、追従制御部は、追従制御における車間距離を、第1の車間距離よりも短い第2の車間距離に変更するので、追従制御をしない場合と比較すると、自車が前車に接近することがない。また、前車が減速して車線から離脱するときに、前車の減速よりも緩やかな減速でも、前車との車間距離を第1の車間距離よりも短い第2の車間距離に維持できる。すなわち、自車が走行する車線から前車が離脱する可能性が高いと判断される場合に、前車に合わせて自車を減速する必要が無く、自車を前車よりも緩やかに減速できる。また、前車に合わせて減速する場合に比べて前車が離脱したときの自車の速度が速いため、自車を元の速度に戻すための加速も小さくて良い。すなわち、自車の加速度や速度の変動を小さく抑えることができる。すなわち、無駄な減速・加速をしないようにできる。その結果、ドライバフィーリングを向上すると共に、燃費も向上できる。 According to one aspect of the present invention, a travel control device for a vehicle is provided. The traveling control device includes a front vehicle identification unit that identifies a preceding vehicle that is a preceding vehicle traveling ahead of the host vehicle, a front vehicle behavior detection unit that detects the behavior of the preceding vehicle, and an identification unit that identifies the preceding vehicle. A follow-up control unit that performs a follow-up control for following the preceding vehicle at a predetermined inter-vehicle distance, and, in accordance with the detected behavior of the preceding vehicle, the preceding vehicle departs from the lane in which the own vehicle travels. A withdrawal determination unit that determines whether or not there is a withdrawal situation that is highly likely to be performed. When the departure determination unit determines that the preceding vehicle is in the departure situation, the following control unit sets the inter-vehicle distance in the following control to a first distance when the preceding vehicle is not in the departure situation. Is changed to a second inter-vehicle distance shorter than the inter-vehicle distance. According to this aspect, when the departure determination unit determines that the preceding vehicle is in the departure situation, the following control unit sets the following distance in the following control to the second following distance shorter than the first following distance. Since the change is made, the own vehicle does not approach the preceding vehicle as compared with the case where the following control is not performed. Also, when the preceding vehicle decelerates and leaves the lane, the inter-vehicle distance with the preceding vehicle can be maintained at the second inter-vehicle distance shorter than the first inter-vehicle distance even if the deceleration is slower than the deceleration of the preceding vehicle. That is, when it is determined that there is a high possibility that the preceding vehicle will depart from the lane in which the own vehicle is traveling, there is no need to decelerate the own vehicle in accordance with the preceding vehicle, and the own vehicle can be decelerated more slowly than the preceding vehicle. . In addition, since the speed of the own vehicle when the preceding vehicle separates is faster than when decelerating in accordance with the preceding vehicle, the acceleration for returning the own vehicle to the original speed may be smaller. That is, fluctuations in the acceleration and speed of the own vehicle can be suppressed to a small level. That is, useless deceleration and acceleration can be prevented. As a result, the driver feeling can be improved and the fuel efficiency can be improved.
図1は、走行制御装置の概略構成を示す説明図であり、FIG. 1 is an explanatory diagram showing a schematic configuration of a traveling control device, 図2は、各種検出部と走行制御装置の構成を示す説明図であり、FIG. 2 is an explanatory diagram showing a configuration of various detection units and a travel control device. 図3は、前車や他車の検出範囲を示す説明図であり、FIG. 3 is an explanatory diagram showing a detection range of a front vehicle or another vehicle, 図4は、走行制御装置が実行する追従制御のフローチャートであり、FIG. 4 is a flowchart of the follow-up control executed by the travel control device, 図5は、走行制御装置が実行する目標車間距離の補正処理を示す説明図であり、FIG. 5 is an explanatory diagram illustrating a target inter-vehicle distance correction process performed by the traveling control device. 図6は、比較例と本実施形態の前車認識状態と制御状態とを比較する説明図であり、FIG. 6 is an explanatory diagram comparing the front vehicle recognition state and the control state of the comparative example and the present embodiment, 図7は、目標車間距離の補正処理が実行される状況の一例であり、FIG. 7 is an example of a situation in which the target inter-vehicle distance correction processing is executed, 図8は、目標車間距離の補正処理が実行される状況の他の例であり、FIG. 8 is another example of a situation in which the target inter-vehicle distance correction processing is executed. 図9は、目標車間距離の補正処理が実行される状況の他の例であり、FIG. 9 is another example of a situation in which the target inter-vehicle distance correction process is executed. 図10は、前車が減速して離脱した場合の自車の加速度と、速度と、目標車間距離を示す説明図であり、FIG. 10 is an explanatory diagram showing the acceleration, speed, and target inter-vehicle distance of the own vehicle when the preceding vehicle decelerates and leaves. 図11は、前車が減速せずに離脱した場合の自車の加速度と、速度と、目標車間距離を示す説明図である。FIG. 11 is an explanatory diagram showing the acceleration, speed, and target inter-vehicle distance of the own vehicle when the preceding vehicle has left without decelerating.
 図1を用いて自車10の概略構成を説明する。以下の説明では、自動運転が可能な自車10を例にとって説明するが、説明した内容は、自車10の運転支援にも適用可能である。自車10は、走行制御装置100と、駆動システム130と、操舵システム140と、制動システム160と、後輪170、171と、前輪172、173と、各種検出部180と、通信部190と、経路案内装置195とを備える。 概略 A schematic configuration of the vehicle 10 will be described with reference to FIG. In the following description, the self-vehicle 10 capable of automatic driving will be described as an example. However, the description can be applied to driving support of the self-vehicle 10. The host vehicle 10 includes a travel control device 100, a drive system 130, a steering system 140, a braking system 160, rear wheels 170 and 171, front wheels 172 and 173, various detection units 180, a communication unit 190, A route guidance device 195.
 走行制御装置100は、各種検出部180と、通信部190と、経路案内装置195とを用いて自車10の運転に必要な様々な情報を取得し、自車10の運転を制御する。なお、自車10は、自動運転の車両でもよく、自動運転でない車両でもよい。自車10が自動運転で無い場合には、走行制御装置100は、運転者の運転をアシストする。 The travel control device 100 acquires various information necessary for driving the own vehicle 10 using the various detection units 180, the communication unit 190, and the route guidance device 195, and controls the operation of the own vehicle 10. In addition, the own vehicle 10 may be a vehicle for automatic driving or a vehicle for non-automatic driving. When the vehicle 10 is not in the automatic driving mode, the travel control device 100 assists the driver in driving.
 駆動システム130は、駆動用ECU132と、駆動装置134と、デファレンシャルギア136と、駆動軸138とを備える。駆動用ECU132は、走行制御装置100から指示を受けて、駆動装置134を制御する。駆動装置134は、例えば電動モータあるいは、内燃機関である。なお、駆動装置134として、電動モータと内燃機関の両方を備えてもよい。駆動装置134の出力は、デファレンシャルギア136及び駆動軸138を介して後輪170、171に伝えられる。駆動装置134として電動モータを用いる場合には、駆動装置134は、自車10の運動エネルギーを電力に回生する発電機としても用いられてもよい。本実施形態では、駆動装置134は、後輪170、171を駆動するが、前輪172、173を駆動しても良く、後輪170、171と前輪172、173の両方を駆動しても良い。 The drive system 130 includes a drive ECU 132, a drive device 134, a differential gear 136, and a drive shaft 138. The drive ECU 132 receives an instruction from the travel control device 100 and controls the drive device 134. The driving device 134 is, for example, an electric motor or an internal combustion engine. Note that the drive device 134 may include both an electric motor and an internal combustion engine. The output of the driving device 134 is transmitted to the rear wheels 170 and 171 via the differential gear 136 and the driving shaft 138. When an electric motor is used as the driving device 134, the driving device 134 may also be used as a generator that regenerates kinetic energy of the vehicle 10 into electric power. In the present embodiment, the driving device 134 drives the rear wheels 170, 171. However, the driving device 134 may drive the front wheels 172, 173, or may drive both the rear wheels 170, 171 and the front wheels 172, 173.
 操舵システム140は、操舵用ECU142と、ハンドル144と、エンコーダ146と、操舵装置148と、操舵モータ150と、操舵ギア152と、を備える。自動走行においては、操舵用ECUは、走行制御装置100から指示を受けて、操舵装置148を制御する。操舵装置148には、エンコーダ146が接続されており、エンコーダ146は、運転者がハンドル144を操作したとき、ハンドル144の回転角度を検出する。操舵装置148は、自動走行に場合には、操舵用ECUからの指示より操舵モータ150を駆動し、自動走行でない場合には、ハンドル144の回転角度に応じて操舵モータ150を駆動し、運転者の操作をアシストする。操舵モータ150は、操舵ギア152を介して前輪172、173の舵角(直進方向に対する角度)を制御する。操舵ギア152は、例えば、ラックとピニオンにより構成されている。右左前輪172、173のそれぞれの舵角には、操舵ギア152により、必要に応じたターニングラジアスが付与されてもよい。 The steering system 140 includes a steering ECU 142, a steering wheel 144, an encoder 146, a steering device 148, a steering motor 150, and a steering gear 152. In the automatic traveling, the steering ECU controls the steering device 148 in response to an instruction from the traveling control device 100. An encoder 146 is connected to the steering device 148, and the encoder 146 detects a rotation angle of the handle 144 when the driver operates the handle 144. The steering device 148 drives the steering motor 150 in accordance with an instruction from the steering ECU in the case of automatic driving, and drives the steering motor 150 in accordance with the rotation angle of the steering wheel 144 in the case of non-automatic driving. Assist the operation of. The steering motor 150 controls the steering angle (the angle with respect to the straight traveling direction) of the front wheels 172 and 173 via the steering gear 152. The steering gear 152 is composed of, for example, a rack and a pinion. Turning radius may be applied to the steering angles of the right and left front wheels 172 and 173 by the steering gear 152 as needed.
 制動システム160は、制動用ECU162と、油圧ポンプ164と、ブレーキホース166と、ブレーキキャリパー168と、ブレーキディスク169とを含む。制動用ECU162は、走行制御装置100から指示を受けて、油圧ポンプ164を駆動し、制御する。運転者がブレーキペダル(図示せず)を踏んだとき、及び制動用ECU162から制動指示を受けた時、油圧ポンプ164は、ブレーキホース166を介してブレーキキャリパー168に油圧を送る。ブレーキキャリパー168は、油圧が送られると、ブレーキパッド(図示せず)をブレーキディスク169に押し付けることで自車10を制動する。本実施形態では、ブレーキパッドをブレーキディスク169に押し付けるディスクブレーキを例にとって説明したが、ドラムブレーキでも良い。駆動装置134が電動モータを含む場合には、走行制御装置100は、駆動用ECU130に対して、電動モータからの回生を指示することで、制動を行っても良い。 The braking system 160 includes a braking ECU 162, a hydraulic pump 164, a brake hose 166, a brake caliper 168, and a brake disc 169. The braking ECU 162 drives and controls the hydraulic pump 164 in response to an instruction from the travel control device 100. When the driver steps on a brake pedal (not shown) and receives a braking instruction from the braking ECU 162, the hydraulic pump 164 sends hydraulic pressure to the brake caliper 168 via the brake hose 166. When hydraulic pressure is sent, the brake caliper 168 brakes the vehicle 10 by pressing a brake pad (not shown) against the brake disc 169. In the present embodiment, the disc brake for pressing the brake pad against the brake disc 169 has been described as an example, but a drum brake may be used. When the driving device 134 includes an electric motor, the travel control device 100 may perform braking by instructing the driving ECU 130 to regenerate from the electric motor.
 各種検出部180は、自車10の走行に必要な情報を取得する。各種検出部180については、後述する。通信部190は、V2V(Vehicle-to-Vehicle)のような車車間通信やV2I(Vehicle-to-roadside-Infrastructure)のような路車間通信を利用して、他車や自車10が走行する道路に関する情報を取得する。経路案内装置195は、地図情報を有し、例えば、GNSS(Global Navigation Satellite System)の衛星からの信号を受信して、自車10の位置を特定し、自車10の目的地までの経路を案内する。経路案内装置195は、GNSSの衛星からの信号の他、例えば、道路に設けられた電波ビーコンからの電波、携帯の基地局からの電波、Wi-Fi基地局から電波を受信し、これらを用いて、自車10の位置を特定しても良い。地図情報は、道路の車線数、車線の幅、車線における通行方向、道路の規制情報、を含んでいてもよい。 (4) The various detection units 180 acquire information necessary for the traveling of the vehicle 10. The various detection units 180 will be described later. The communication unit 190 uses the vehicle-to-vehicle communication such as V2V (Vehicle-to-Vehicle) or the road-to-vehicle communication such as V2I (Vehicle-to-roadside-Infrastructure) to drive another vehicle or the vehicle 10. Get information about roads. The route guidance device 195 has map information, for example, receives a signal from a satellite of GNSS (Global Navigation Satellite System), specifies the position of the vehicle 10, and determines the route of the vehicle 10 to the destination. invite. The route guidance device 195 receives, for example, radio waves from radio beacons provided on roads, radio waves from mobile base stations, and radio waves from Wi-Fi base stations in addition to signals from GNSS satellites, and uses these. Thus, the position of the vehicle 10 may be specified. The map information may include the number of lanes of the road, the width of the lane, the traffic direction in the lane, and road regulation information.
 図2を用いて、各種検出部180と走行制御装置100について説明する。自車10は、各種検出部180として、カメラ182と、レーダ184と、車速検出部186と、操舵方向検出部188と、を備える。 各種 Various detection units 180 and the travel control device 100 will be described with reference to FIG. The host vehicle 10 includes a camera 182, a radar 184, a vehicle speed detection unit 186, and a steering direction detection unit 188 as various detection units 180.
 カメラ182は、自車10の前方を撮影する。本実施形態において、カメラ182として、単眼カメラあるいは2眼カメラを用いることができる。カメラ182は、モノクロのカメラでも、カラーのカメラでもよい。また、カメラ182は、広角レンズやズームレンズを備えるカメラであってもよい。また、複数のカメラ182で広角をカバーするようにしても良い。また、カメラ182の撮影方向を代える回転装置を備えていても良い。 The camera 182 photographs the front of the vehicle 10. In the present embodiment, a monocular camera or a binocular camera can be used as the camera 182. The camera 182 may be a monochrome camera or a color camera. Further, the camera 182 may be a camera including a wide-angle lens and a zoom lens. Further, a wide angle may be covered by a plurality of cameras 182. Further, a rotating device for changing the shooting direction of the camera 182 may be provided.
 レーダ184は、自車10の前方に電磁波あるいはレーザーを放射し、その反射波を受信して、自車10の前方の状態を検知する。レーダ184として、例えば、ミリ波を用いるミリ波レーダ、赤外線を用いる赤外線レーダ、赤外線よりも波長の短い光を用いるLiDAR(Light Detection and Ranging)レーダが利用可能である。レーダ184として、これのうちの複数のレーダを備える構成であってもよい。 The radar 184 emits an electromagnetic wave or a laser in front of the own vehicle 10 and receives the reflected wave to detect a state in front of the own vehicle 10. As the radar 184, for example, a millimeter wave radar using a millimeter wave, an infrared radar using an infrared ray, and a LiDAR (Light Detection and Ranging) radar using light having a shorter wavelength than the infrared ray can be used. The radar 184 may have a configuration including a plurality of radars.
 車速検出部186は、自車10の速度を検出し、取得する。自車10の速度は、例えば、デファレンシャルギア136や駆動軸138の回転速度を用いて検出できる。操舵方向検出部188は、前輪173、174の向きを検出し、取得する。前輪173、174の向きは、操舵ギア152のラックの位置を用いて検出できる。 The vehicle speed detector 186 detects and acquires the speed of the vehicle 10. The speed of the vehicle 10 can be detected using, for example, the rotational speed of the differential gear 136 or the drive shaft 138. The steering direction detector 188 detects and acquires the directions of the front wheels 173 and 174. The direction of the front wheels 173, 174 can be detected using the position of the rack of the steering gear 152.
 走行制御装置100は、前方車両特定部104と、車線検出部106と、前車挙動検出部108と、離脱判定部116と、追従制御部118と、オートクルーズ制御部120と、走行モード切替部122と、を備える。走行制御装置100は、CPU102と、RAM,ROM,入出力ポート(I/O)などを備えるコンピュータであり、CPU102の動作により、前方車両特定部104と、車線検出部106と、前車挙動検出部108と、離脱判定部116と、追従制御部118と、オートクルーズ制御部120と、走行モード切替部122の機能が実現される。なお、RAM,ROM,入出力ポート(I/O)については、図示を省略している。また、追従制御及びオートクルーズ制御に関係の無い機能、構成については、図示及び説明を省略する。 The travel control device 100 includes a forward vehicle identification unit 104, a lane detection unit 106, a preceding vehicle behavior detection unit 108, a departure determination unit 116, a follow-up control unit 118, an auto cruise control unit 120, and a travel mode switching unit. 122. The travel control device 100 is a computer including a CPU 102, a RAM, a ROM, an input / output port (I / O), and the like. The operation of the CPU 102 causes the front vehicle identification unit 104, the lane detection unit 106, and the front vehicle behavior detection. The functions of the unit 108, the departure determination unit 116, the following control unit 118, the auto cruise control unit 120, and the traveling mode switching unit 122 are realized. The illustration of the RAM, ROM, and input / output ports (I / O) is omitted. In addition, illustration and description of functions and configurations not related to the following control and the auto cruise control are omitted.
 前方車両特定部104は、上述したカメラ182やレーダ184を用い、図3に示すように、自車10の前方の前車20を検出し、前車20の存在及び位置を特定する。前方車両特定部104は、図3に示すように、自車10からの距離に応じて信頼指数(パーセントで表示)を設け、予め定められた指数以上の領域に存在する前車20を、後述する前車挙動検出部108と、離脱判定部116と、追従制御部118の対象とする。なお、前方車両特定部104は、前車20の位置の相対的な遷移を用いて、前車20の相対速度Rvも取得できる。 The front vehicle specifying unit 104 detects the front vehicle 20 ahead of the own vehicle 10 using the camera 182 and the radar 184 described above, and specifies the presence and position of the front vehicle 20 as shown in FIG. As shown in FIG. 3, the preceding vehicle specifying unit 104 provides a reliability index (expressed as a percentage) according to the distance from the own vehicle 10, and determines the preceding vehicle 20 existing in a region equal to or larger than a predetermined index as described later. The vehicle behavior detection unit 108, the departure determination unit 116, and the follow-up control unit 118 perform the following. Note that the front vehicle specifying unit 104 can also obtain the relative speed Rv of the front vehicle 20 using the relative transition of the position of the front vehicle 20.
 車線検出部106は、上述したカメラ182を用いて、図3に示すように、自車10の前方の車線境界線S1、S2、S3を検出する。 The lane detecting unit 106 detects the lane boundary lines S1, S2, and S3 in front of the vehicle 10 using the camera 182 described above, as shown in FIG.
 前車挙動検出部108は、前車20の挙動、特に、横方向の挙動を検出する。前車挙動検出部108は、方向指示検出部110と、前車横方向速度取得部112と、前車走行情報取得部114とを備える。方向指示検出部110は、カメラ182を用いて取得した前車20の画像から、前車の方向指示器が点滅しているか否かを検出する。前車横方向速度取得部112は、カメラ182やレーダ184を用いて取得した前車20の位置の遷移を用いて前車20の横方向の速度を取得する。前車走行情報取得部114は、V2V(Vehicle-to-Vehicle)のような車車間通信を用いて前車の走行情報、例えば速度や操舵の向き、を取得する。前車挙動検出部108は、方向指示検出部110と、前車横方向速度取得部112と、前車走行情報取得部114の全部を備える必要は無く、少なくとも1つを備えれば良い。 The front vehicle behavior detecting unit 108 detects the behavior of the front vehicle 20, particularly, the lateral behavior. The front vehicle behavior detection unit 108 includes a direction instruction detection unit 110, a front vehicle lateral speed acquisition unit 112, and a front vehicle travel information acquisition unit 114. The direction indication detection unit 110 detects whether or not the direction indicator of the preceding vehicle is blinking from the image of the preceding vehicle 20 acquired using the camera 182. The front vehicle lateral speed acquisition unit 112 acquires the lateral speed of the front vehicle 20 using the transition of the position of the front vehicle 20 acquired using the camera 182 and the radar 184. The front vehicle traveling information acquisition unit 114 acquires traveling information of the preceding vehicle, for example, speed and steering direction, using inter-vehicle communication such as V2V (Vehicle-to-Vehicle). The front vehicle behavior detection unit 108 does not need to include all of the direction instruction detection unit 110, the front vehicle lateral speed acquisition unit 112, and the front vehicle travel information acquisition unit 114, and may include at least one.
 離脱判定部116は、前車挙動検出部108を用いて検出、あるいは取得した前車20の挙動を用いて、自車10走行する車線から前車20が離脱中なのか、あるいは、離脱する可能性が大きいか否かを判定する。 The departure determination unit 116 can use the behavior of the front vehicle 20 detected or obtained by using the front vehicle behavior detection unit 108 to determine whether or not the front vehicle 20 is leaving the lane in which the vehicle 10 travels, or can leave the lane. It is determined whether the property is large.
 追従制御部118は、追従制御を実行する。ここで、追従制御とは、自車10に対し、予め設定された速度以下、かつ、前車20との車間距離を空けて、前車を追従して走行させる制御である。オートクルーズ制御部120は、自車10のオートクルーズを制御する。オートクルーズとは、自車10に対し、予め設定された速度以下で、かつ、車線から逸脱しないように走行させることを意味する。走行モード切替部122は、追従制御と、オートクルーズ制御と、通常制御と、を切り替える。通常制御とは、本実施形態では、追従制御でも、オートクルーズ制御でもない制御を意味する。オートクルーズ中に、前車20に近づいた場合、あるいは、自車10が走行する車線に前車20が割り込んだ場合には、走行モード切替部122は、オートクルーズ制御から追従制御に切り替える。また、前車20の追従制御中に、自車10から前車20が離れた場合、あるいは、自車10が走行する車線から前車20が離脱した場合には、走行モード切替部122は、追従制御からオートクルーズ制御に切り替える。なお、走行モード切替部122は、オートクルーズスイッチ125がオンの時には、追従制御、または、オートクルーズ制御に切り替え、オートクルーズスイッチ125がオフの時には、通常制御に切り替える。なお、オートクルーズスイッチ125のオン・オフは、例えば、運転者により行われる。 Follow-up control section 118 executes follow-up control. Here, the follow-up control is control for causing the own vehicle 10 to follow the preceding vehicle at a speed equal to or less than a preset speed and at a distance between the own vehicle 10 and the preceding vehicle 20. The auto cruise control unit 120 controls auto cruise of the vehicle 10. The auto cruise means that the vehicle 10 runs at a speed equal to or less than a preset speed and does not deviate from the lane. The traveling mode switching unit 122 switches between following control, auto cruise control, and normal control. In the present embodiment, the normal control means a control that is neither the follow-up control nor the auto-cruise control. During the auto cruise, when approaching the preceding vehicle 20 or when the preceding vehicle 20 interrupts the lane in which the vehicle 10 travels, the traveling mode switching unit 122 switches from the auto cruise control to the following control. When the front vehicle 20 separates from the own vehicle 10 during the follow-up control of the front vehicle 20, or when the front vehicle 20 separates from the lane in which the own vehicle 10 runs, the driving mode switching unit 122 Switch from tracking control to auto cruise control. When the auto cruise switch 125 is on, the traveling mode switching unit 122 switches to follow-up control or auto cruise control, and when the auto cruise switch 125 is off, switches to normal control. The turning on and off of the auto cruise switch 125 is performed by, for example, a driver.
 走行制御装置100の各部が行う制御について、フローチャートを用いて説明する。図4に示した処理は、運転者がオートクルーズスイッチ125をオンにしている間、繰り返して実行される。図4のステップS100では、前方車両特定部104は、例えば、信頼指数50%以上の領域に前車20が存在するか否かを判定する。前車20が存在しない場合には、ステップS110に処理を移行し、オートクルーズ制御部120は、自車10をオートクルーズさせる。一方、前車が存在する場合には、ステップS120に移行し、追従制御部118は、自車10が前車20に追従する制御を実行する。なお、前方車両特定部104は、信頼指数40%の領域に前車20が存在する場合には、信頼指数50%以上の領域に前車20が存在すると判定しない。しかし、自車10が走行する車線に隣接する車線に前車20が存在し、前車20が自車10の車線側の方向指示器を点滅させており、かつ、点滅側の車線境界線を踏んでいる場合には、前方車両特定部104は、信頼指数を例えば10%上げて、50%とし、信頼指数50%以上の領域に前車20が存在するか否かを判定してもよい。前車20が自車の走行する車線に割り込んでくる可能性があるからである。 The control performed by each unit of the travel control device 100 will be described using a flowchart. The process shown in FIG. 4 is repeatedly executed while the driver turns on auto cruise switch 125. In step S100 in FIG. 4, the preceding vehicle specifying unit 104 determines whether or not the preceding vehicle 20 exists in a region having a confidence index of 50% or more, for example. If the preceding vehicle 20 does not exist, the process proceeds to step S110, and the auto-cruise control unit 120 causes the own vehicle 10 to auto-cruise. On the other hand, when there is a preceding vehicle, the process proceeds to step S120, and the following control unit 118 executes control in which the own vehicle 10 follows the preceding vehicle 20. Note that when the front vehicle 20 exists in the region with the confidence index of 40%, the front vehicle specifying unit 104 does not determine that the front vehicle 20 exists in the region with the reliability index of 50% or more. However, the front vehicle 20 exists in a lane adjacent to the lane in which the host vehicle 10 travels, the front vehicle 20 is blinking the lane-side direction indicator of the host vehicle 10, and the lane boundary on the blinking side is If the driver is stepping on the vehicle, the preceding vehicle specifying unit 104 may increase the confidence index by, for example, 10% to 50%, and may determine whether or not the preceding vehicle 20 exists in a region where the confidence index is 50% or more. . This is because the front vehicle 20 may interrupt the lane in which the vehicle runs.
 ステップS120では、追従制御部118は、前車20に追従するように自車10の走行を制御する。このとき、追従制御部118は、自車10の速度が予め設定された車速以下であり、かつ、自車10と前車20との車間距離が目標車間距離以上を維持するように、駆動用ECU132に対して駆動システム130を制御させ、制動用ECU162に対して制動システム160を制御させる。このときの目標車間距離を「第1の車間距離」と呼ぶ。ここで、第1の車間距離は、固定値でもよく、自車10の速度に応じて定められていてもよい。また、追従制御部118は、自車10の速度が大きいほど第1の車間距離を長くし、自車10の速度が予め定められた速度以上の場合には、固定値としてもよい。本実施形態では、追従制御部118は、目標車間距離を用いたが、目標車間距離の代わりに、目標車間時間を用いても良い。ここで、車間時間とは、前車20がある地点を通過してから、自車10がその地点を通過するまでの時間である。すなわち、目標車間時間を用いて制御するとは、前車20がある地点を通過してから、自車10がその地点を通過するまでの時間で制御することである。なお、追従制御部118は、前車20との車間距離目標車間距離以上に空けることに加え、を自車10が走行している車線をはみ出さないように、操舵用ECU142に対して操舵システム140を制御し、あるいは、運転者をアシストしてもよい。 In step S120, the following control unit 118 controls the traveling of the own vehicle 10 so as to follow the preceding vehicle 20. At this time, the follow-up control unit 118 controls the driving so that the speed of the own vehicle 10 is equal to or less than a preset vehicle speed and the inter-vehicle distance between the own vehicle 10 and the preceding vehicle 20 is equal to or more than the target inter-vehicle distance. The ECU 132 controls the drive system 130 and the brake ECU 162 controls the brake system 160. The target inter-vehicle distance at this time is referred to as “first inter-vehicle distance”. Here, the first inter-vehicle distance may be a fixed value or may be determined according to the speed of the vehicle 10. The tracking control unit 118 may increase the first inter-vehicle distance as the speed of the own vehicle 10 increases, and may set a fixed value when the speed of the own vehicle 10 is equal to or higher than a predetermined speed. In the present embodiment, the following control unit 118 uses the target inter-vehicle distance, but the target inter-vehicle time may be used instead of the target inter-vehicle distance. Here, the inter-vehicle time is the time from when the preceding vehicle 20 passes through a point to when the vehicle 10 passes through the point. That is, the control using the target inter-vehicle time means that the control is performed based on a time period from when the preceding vehicle 20 passes through a certain point to when the own vehicle 10 passes through that point. Note that the following control unit 118 controls the steering ECU 142 so as not to keep the vehicle 10 at a distance equal to or longer than the target vehicle distance from the preceding vehicle 20 and to protrude from the lane in which the vehicle 10 is traveling. 140 may be controlled or the driver may be assisted.
 ステップS130では、離脱判定部116は、前車20が自車10の前方からの離脱可能性を判定する。前車20が自車10の前方からの離脱する可能性が大きい場合には、処理をステップS140に移行し、前車20が自車10の前方からの離脱する可能性が小さい場合には、処理をステップS190に移行する。上述したように、離脱判定部116は、前車挙動検出部108から取得した前車20の挙動を用いて、前車20が離脱する可能性が大きいか、あるいは小さいかを判定する。なお、離脱判定部116は、前車20が離脱する可能性が大きいと判定しても、前車20のさらに前に前々車があり、自車10と前々車との相対速度Rvが負の場合、すなわち、前々車が近づいている場合には、離脱する可能性が大きいと判定しなくても良い。前車20が離脱しても、前々車が入れ替わりに前車となる可能性があるからである。なお、前車20の方向指示器の点滅を確認しても、前車20が車線を変更せず一定時間が経過した場合には、離脱する可能性が大きいと判定しなくても良い。前車20の運転者が方向指示器を誤って点滅させている場合があるからである。 In step S130, the departure determination unit 116 determines whether the front vehicle 20 can depart from the front of the vehicle 10. If the possibility that the front vehicle 20 will be separated from the front of the own vehicle 10 is large, the process proceeds to step S140. If the possibility that the front vehicle 20 is separated from the front of the own vehicle 10 is small, The process moves to step S190. As described above, the departure determination unit 116 uses the behavior of the front vehicle 20 acquired from the front vehicle behavior detection unit 108 to determine whether the possibility that the front vehicle 20 will depart is high or low. Note that even if the leaving determination unit 116 determines that there is a high possibility that the preceding vehicle 20 will leave, there is a two-preceding vehicle further ahead of the preceding vehicle 20, and the relative speed Rv between the own vehicle 10 and the preceding vehicle is large. In the case of a negative value, that is, when the vehicle is approaching immediately before, it is not necessary to determine that there is a high possibility of leaving. This is because, even if the front vehicle 20 leaves, there is a possibility that the vehicle will be replaced by the vehicle before the previous vehicle and become the front vehicle. In addition, even if the blinking of the direction indicator of the preceding vehicle 20 is confirmed, if the preceding vehicle 20 does not change lanes and a predetermined time has elapsed, it is not necessary to determine that there is a high possibility of leaving. This is because the driver of the front vehicle 20 may blink the turn signal by mistake.
 ステップS140では、前方車両特定部104は、前車20が自車10の前方から離脱したか否かを判定させる。例えば、前車20が、信頼指数50%未満の領域に移動した場合には、前車20が自車10の前方から離脱したと判定してもよい。前方車両特定部104は、このとき、前車20が方向指示器で示す方の車線境界線を踏んでいる場合には、信頼指数を下げて、前車20の離脱を判定してもよい。例えば、前車20が自車10と同じ車線上に存在し、さらに、信頼指数50%の領域に存在するが、方向指示器を点滅させており、点滅側の車線境界線を踏んでいる場合には、信頼指数を例えば10%下げて、40%とし、前車20が自車10の前方から離脱したと判定してもよい。 In step S140, the preceding vehicle specifying unit 104 determines whether or not the preceding vehicle 20 has left the front of the own vehicle 10. For example, when the preceding vehicle 20 has moved to a region having a confidence index of less than 50%, it may be determined that the preceding vehicle 20 has left from the front of the own vehicle 10. At this time, if the preceding vehicle 20 is stepping on the lane boundary indicated by the turn signal, the preceding vehicle specifying unit 104 may determine that the preceding vehicle 20 has left by lowering the confidence index. For example, when the front vehicle 20 is on the same lane as the own vehicle 10 and further exists in the area with a confidence index of 50%, but the direction indicator is blinking and the driver is stepping on the lane boundary on the blinking side. For example, the reliability index may be reduced by, for example, 10% to 40%, and it may be determined that the preceding vehicle 20 has left from the front of the own vehicle 10.
 ステップS150では、追従制御部118は、自車10と前車20との相対速度Rvと相対距離Rdとを算出する。 In step S150, the following control unit 118 calculates the relative speed Rv and the relative distance Rd between the vehicle 10 and the front vehicle 20.
 ステップS160では、追従制御部118は、自車10と前車20との相対速度Rvが、予め定められた閾値V未満か否かを判定する。自車10と前車20との相対速度Rvが、閾値V未満の場合には、処理をステップS190に移行し、閾値V以上の場合には、処理をステップS170に移行する。 In step S160, the following control unit 118 determines whether or not the relative speed Rv between the vehicle 10 and the preceding vehicle 20 is less than a predetermined threshold value V. If the relative speed Rv between the host vehicle 10 and the front vehicle 20 is less than the threshold value V, the process proceeds to step S190; otherwise, the process proceeds to step S170.
 ステップS170では、追従制御部118は、自車10と前車20との相対距離Rdが、予め定められた閾値W未満か否かを判定させる。自車10と前車20との相対距離Rdが、閾値W未満の場合には、処理をステップS190に移行し、閾値W以上の場合には、処理をステップS180に移行する。 In step S170, the following control unit 118 determines whether the relative distance Rd between the vehicle 10 and the preceding vehicle 20 is less than a predetermined threshold value W. If the relative distance Rd between the host vehicle 10 and the preceding vehicle 20 is less than the threshold value W, the process proceeds to step S190; otherwise, the process proceeds to step S180.
 ステップS180では、追従制御部118は、図5で示すように、目標車間距離を、第1の車間距離よりも短い第2の車間距離に小さく変更する。第2の車間距離は、例えば、第1の車間距離の半分あるいは、1/3程度の大きさである。追従制御部118は、自車10の速度に応じて、第2の車間距離の大きさや第1の車間距離に対する第2の車間距離の減少率を定めても良い。また、追従制御部118は、目標車間距離を小さくする代わりに、車間時間を短くしても良い。 In step S180, the tracking control unit 118 changes the target inter-vehicle distance to a second inter-vehicle distance shorter than the first inter-vehicle distance, as shown in FIG. The second inter-vehicle distance is, for example, about half or 1/3 of the first inter-vehicle distance. The tracking control unit 118 may determine the magnitude of the second inter-vehicle distance or the rate of decrease of the second inter-vehicle distance with respect to the first inter-vehicle distance according to the speed of the vehicle 10. In addition, instead of reducing the target inter-vehicle distance, the following control unit 118 may shorten the inter-vehicle time.
 ステップS190では、追従制御部118は、図5で示すように、前車20との間の目標車間距離を第1の車間距離以上空けるように維持する。 In step S190, as shown in FIG. 5, the following control unit 118 maintains the target inter-vehicle distance with the preceding vehicle 20 to be greater than or equal to the first inter-vehicle distance.
 なお、追従制御部118は、自車10の速度と、自車10と前車20との相対速度Rvに応じて第1の車間距離及び第2の車間距離を設定するマップを備え、ステップS180、S190における車間距離を設定あるいは補正するに当たり、マップを用いてもよい。 The following control unit 118 includes a map for setting a first inter-vehicle distance and a second inter-vehicle distance in accordance with the speed of the own vehicle 10 and the relative speed Rv between the own vehicle 10 and the front vehicle 20. In setting or correcting the inter-vehicle distance in S190, a map may be used.
 図6を用いて、比較例と本実施形態の前車20の認識状態とそれに対する自車10の制御を説明する。比較例1、2と本実施形態は、以下の点で相違する。比較例1は、前車20が自車10の前方から離脱する可能性を判定しない。すなわち、前方車両特定部104が前車20を認識して特定している状態1、前方車両特定部104が前車20を認識せず特定していない状態2、の2通りしかない。これに対し、本実施形態と比較例2は、前車20が自車10の前方から離脱する可能性を判定する。すなわち、前方車両特定部104が前車20を認識して特定しているが前車20が自車10の前方から離脱すると離脱判定部116が判定していない状態1、前方車両特定部104が前車20を認識せず特定していない状態2、前方車両特定部104が前車20を認識して特定しているが前車20が自車10の前方から離脱すると離脱判定部116が判定している状態3、の3通りがある。比較例2と本実施形態の違いについては、後述する。 With reference to FIG. 6, the recognition state of the front vehicle 20 of the comparative example and the present embodiment and the control of the own vehicle 10 corresponding thereto will be described. Comparative Examples 1 and 2 are different from the present embodiment in the following points. Comparative Example 1 does not determine the possibility that the front vehicle 20 will leave the front of the vehicle 10. In other words, there are only two states: a state 1 in which the front vehicle specifying unit 104 recognizes and specifies the front vehicle 20 and a state 2 in which the front vehicle specifying unit 104 does not recognize and specify the front vehicle 20. In contrast, the present embodiment and Comparative Example 2 determine the possibility that the front vehicle 20 will leave the front of the vehicle 10. That is, the front vehicle specifying unit 104 recognizes and specifies the front vehicle 20 but does not determine the departure determination unit 116 when the front vehicle 20 separates from the front of the vehicle 10. The state 2 in which the front vehicle 20 is not recognized and not specified, the front vehicle specifying unit 104 recognizes and specifies the front vehicle 20, but the departure determination unit 116 determines that the front vehicle 20 has left from the front of the own vehicle 10. There are three types of state 3, The difference between Comparative Example 2 and the present embodiment will be described later.
 本実施形態、比較例1、2とも、状態1、状態2における自車10の制御は、それぞれ同じである。すなわち、状態1では、本実施形態、比較例1、2とも、追従制御部118は、自車10の速度を設定車速以下とし、かつ、自車10と前車20との間の目標車間距離を短縮せず、前車20に追従する制御を実行する。また、状態2では、オートクルーズ制御部120が、自車10を、予め定められた設定車速で単独走行をさせる。 制 御 In this embodiment and Comparative Examples 1 and 2, the control of the own vehicle 10 in State 1 and State 2 is the same. That is, in state 1, in this embodiment and Comparative Examples 1 and 2, the following control unit 118 sets the speed of the own vehicle 10 to the set vehicle speed or less and sets the target inter-vehicle distance between the own vehicle 10 and the front vehicle 20. Is executed, and control for following the front vehicle 20 is executed. In the state 2, the auto cruise control unit 120 causes the own vehicle 10 to run independently at a predetermined set vehicle speed.
 状態3の場合は、本実施形態と、比較例2は、以下のように異なる。比較例2では、状態3の場合、前車20の追従を解除し、オートクルーズ制御部120は、自車10を、予め定められた設定車速で単独走行をさせる。これに対し、本実施形態では、状態3の場合に、追従制御部118が、自車10と前車20との間の目標車間距離を第1の車間距離から第2の車間距離に変更して、前車20に追従する制御を実行する。 In the case of state 3, the present embodiment is different from the comparative example 2 as follows. In the comparative example 2, in the case of the state 3, the following of the preceding vehicle 20 is released, and the auto cruise control unit 120 causes the own vehicle 10 to run independently at a predetermined set vehicle speed. On the other hand, in the present embodiment, in state 3, the following control unit 118 changes the target inter-vehicle distance between the vehicle 10 and the front vehicle 20 from the first inter-vehicle distance to the second inter-vehicle distance. Then, control for following the front vehicle 20 is executed.
 以下、図面を用いて、自車10の挙動について説明する。まず、前車20が高速道路の追越車線から走行車線に車線変更する場合について説明する。図7に示すように、前車20は、方向指示器を点滅させながら、走行車線に車線変更する。比較例1の場合、前方車両特定部104は、前車20を認識しており、追従制御部118は、前車20との車間距離を第1の車間距離以上空けるように追従制御を実行する。比較例2の場合、前車20が方向指示器を点滅させた場合、追従制御部118は、前車20の追従を解除する。その結果、オートクルーズ制御部120が、自車10を設定車速で単独のオートクルーズ走行をさせる。そのため、前車20に自車10が接近する。これらに対し、本実施形態では、前車20が離脱すると離脱判定部116が判定した場合には、追従制御部118は、前車20との間の目標車間距離を第1の車間距離から第2の車間距離に変更する。その結果、自車10は、比較例2程では無いが、比較例1よりも前車20に近づく。自車10が、前車20に対して、第2の車間距離よりも近づいた場合には、走行制御装置100は、制動用ECU162に対して、自車10の制動を指示する。なお、前車20が走行車線への車線変更を完了し、前方車両特定部104が前車20を検出できなくなった場合には、オートクルーズ制御部120は、予め設定された車速で自車10をオートクルーズさせる。自車10及び前車20が走行車線を走行し、前車20が追越車線に移動する場合も同様である。 Hereinafter, the behavior of the vehicle 10 will be described with reference to the drawings. First, a case in which the preceding vehicle 20 changes lanes from an overtaking lane on a highway to a traveling lane will be described. As shown in FIG. 7, the front vehicle 20 changes lanes to the traveling lane while blinking the direction indicator. In the case of Comparative Example 1, the preceding vehicle specifying unit 104 recognizes the front vehicle 20, and the following control unit 118 executes the following control so as to keep the inter-vehicle distance with the front vehicle 20 equal to or greater than the first inter-vehicle distance. . In the case of Comparative Example 2, when the preceding vehicle 20 blinks the turn signal, the following control unit 118 releases the following of the preceding vehicle 20. As a result, the auto cruise control unit 120 causes the own vehicle 10 to perform independent auto cruise traveling at the set vehicle speed. Therefore, the vehicle 10 approaches the front vehicle 20. On the other hand, in the present embodiment, when the departure determination unit 116 determines that the front vehicle 20 has departed, the following control unit 118 determines the target inter-vehicle distance with the front vehicle 20 from the first inter-vehicle distance by the first inter-vehicle distance. Change to the inter-vehicle distance of 2. As a result, the own vehicle 10 is closer to the front vehicle 20 than the comparative example 1, though not as much as the comparative example 2. When the host vehicle 10 is closer to the preceding vehicle 20 than the second inter-vehicle distance, the travel control device 100 instructs the braking ECU 162 to brake the host vehicle 10. When the preceding vehicle 20 has completed the lane change to the driving lane and the preceding vehicle specifying unit 104 cannot detect the preceding vehicle 20, the auto cruise control unit 120 determines whether the own vehicle 10 is running at a preset vehicle speed. To auto-cruise. The same applies to the case where the own vehicle 10 and the preceding vehicle 20 travel in the traveling lane and the preceding vehicle 20 moves to the passing lane.
 次に、前車20が高速道路から退出路に車線変更する場合について説明する。図8に示すように、前車20は、方向指示器を点滅させながら、減速し、退出路に車線変更する。比較例1の場合、追従制御部118、前車20の減速に伴い、前車20との間の車間距離を第1の車間距離以上に空けるように追従制御を実行する。そのため、制動用ECU162に対して、制動を指示し、自車10を減速させる。比較例2の場合、前車20が方向指示器を点滅させた場合、前車20の追従を解除するため、オートクルーズ制御部120が、自車10を設定車速で単独のオートクルーズ走行をさせる。そのため、前車20に自車10が接近する。これらに対し、本実施形態では、前車20が離脱すると離脱判定部116が判定した場合には、追従制御部118は、前車20との間の目標車間距離を第1の車間距離から第2の車間距離に変更する。その結果、自車10は、比較例2程では無いが、比較例1よりも前車20に近づく。なお、前車20が高速道路から退出路に車線変更するときに減速しない場合は、図7で説明した場合と同じである。自車10が、前車20に対して、第2の車間距離よりも近づいた場合には、走行制御装置100は、制動用ECU162に対して、自車10の制動を指示する。なお、前車20が退出路への車線変更を完了し、前方車両特定部104が前車20を検出できなくなった場合には、オートクルーズ制御部120は、予め設定された車速で自車10をオートクルーズさせる。 Next, a case where the preceding vehicle 20 changes lanes from an expressway to an exit road will be described. As shown in FIG. 8, the front vehicle 20 decelerates while blinking the direction indicator, and changes lanes to the exit road. In the case of the first comparative example, the following control unit 118 executes the following control so that the inter-vehicle distance with the preceding vehicle 20 is greater than or equal to the first inter-vehicle distance with the deceleration of the preceding vehicle 20. Therefore, the braking ECU 162 is instructed to brake and the own vehicle 10 is decelerated. In the case of the comparative example 2, when the front vehicle 20 blinks the turn signal, the auto cruise control unit 120 causes the own vehicle 10 to perform the auto cruise alone at the set vehicle speed in order to cancel the following of the front vehicle 20. . Therefore, the vehicle 10 approaches the front vehicle 20. On the other hand, in the present embodiment, when the departure determination unit 116 determines that the front vehicle 20 has departed, the following control unit 118 determines the target inter-vehicle distance with the front vehicle 20 from the first inter-vehicle distance by the first inter-vehicle distance. Change to the inter-vehicle distance of 2. As a result, the own vehicle 10 is closer to the front vehicle 20 than the comparative example 1, though not as much as the comparative example 2. The case where the preceding vehicle 20 does not decelerate when changing lanes from the highway to the exit road is the same as the case described with reference to FIG. When the host vehicle 10 is closer to the preceding vehicle 20 than the second inter-vehicle distance, the travel control device 100 instructs the braking ECU 162 to brake the host vehicle 10. When the preceding vehicle 20 has completed the lane change to the exit road and the preceding vehicle specifying unit 104 cannot detect the preceding vehicle 20, the auto cruise control unit 120 executes the control of the own vehicle 10 at a preset vehicle speed. To auto-cruise.
 次に、高速道路ではなく、一般道路において、前車20が交差点で左折する場合について説明する。一般道路とは、高速道路以外の道路を指す。高速道路とは、高速自動車国道、あるいは、自動車専用道路を意味する。図9に示すように、前車20は、方向指示器を点滅させながら、減速し、左折する場合について説明する。比較例1の場合、の追従制御部118は、前車20の減速に伴い、前車20との車間距離を第1の車間距離以上空けるように維持するため、制動用ECU162に対して、制動を指示し、自車10を減速させる。比較例2は、前車20が方向指示器を点滅させた場合、前車20の追従を解除するため、オートクルーズ制御部120が、自車10を設定車速で単独のオートクルーズ走行をさせる。そのため、前車20に自車10が接近する。これらに対し、本実施形態では、追従制御部118は、前車20が離脱する可能性が大きいと判定した場合には、目標車間距離を第1の車間距離から第2の車間距離に変更する。その結果、自車10は、比較例2程では無いが、比較例1よりも前車20に近づく。なお、前車20は、左折先に横断者がいる場合には、停止する。このような場合、自車10が、前車20に対して、第2の車間距離よりも近づいた場合には、自車10の走行制御装置100は、制動用ECU162に対して、自車10を停止させるように、制動を指示する。なお、前車20が左折を完了し、自車10の前方から存在しなくなった場合には、オートクルーズ制御部120は、予め設定された車速で自車10をオートクルーズさせる。 Next, a case will be described in which the preceding vehicle 20 turns left at an intersection on an ordinary road, not on an expressway. An ordinary road refers to a road other than an expressway. The expressway means an expressway national highway or a motorway. As shown in FIG. 9, a case will be described in which the front vehicle 20 decelerates and turns left while blinking the turn signal. In the case of Comparative Example 1, the following control unit 118 controls the braking ECU 162 to maintain the inter-vehicle distance with the front vehicle 20 greater than or equal to the first inter-vehicle distance as the front vehicle 20 decelerates. And decelerate the vehicle 10. In the second comparative example, when the front vehicle 20 blinks the direction indicator, the auto cruise control unit 120 causes the own vehicle 10 to perform the auto cruise alone at the set vehicle speed in order to cancel the following of the front vehicle 20. Therefore, the vehicle 10 approaches the front vehicle 20. On the other hand, in the present embodiment, when the following control unit 118 determines that there is a high possibility that the preceding vehicle 20 will leave, the following control unit 118 changes the target inter-vehicle distance from the first inter-vehicle distance to the second inter-vehicle distance. . As a result, the own vehicle 10 is closer to the front vehicle 20 than the comparative example 1, though not as much as the comparative example 2. The front vehicle 20 stops when there is a traverser at the left turn. In such a case, when the own vehicle 10 approaches the preceding vehicle 20 by more than the second inter-vehicle distance, the travel control device 100 of the own vehicle 10 To stop the vehicle. When the preceding vehicle 20 has completed the left turn and is no longer present in front of the own vehicle 10, the auto cruise control unit 120 causes the own vehicle 10 to auto cruise at a preset vehicle speed.
 以下、前車20が減速して離脱した場合の自車10の加速度と車速について、目標車間距離を第1の車間距離以上あけるように維持する比較例1と、目標車間距離を第2の車間距離に変更する本実施形態とを比較する。図10に示すグラフから明らかなように、本実施形態の方が比較例1よりも、加速度の変動が小さく、速度の変動も小さい。すなわち、比較例1では、前車20が減速した場合、その減速に合わせて自車10も減速し、前車20が自車10の前方から離脱した場合には、設定速度まで加速する。これに対し、本実施形態では、前車20が減速した場合、目標車間距離を第1の車間距離から第2の車間距離に変更している。そのため、車間距離が第1の車間距離から第2の車間距離に至るまでの間の自車10の減速は、前車20の減速よりも緩やかでよい。また、車間距離が第1の車間距離から第2の車間距離に至るまでの間の自車10の速度は、本実施形態の方が比較例1よりも速い。その後、前車20が自車10の前方から離脱した場合には、設定速度まで加速する。このとき、本実施形態は比較例1よりも加速前の自車10の速度が速いため、設定速度まで加速が緩やかで良い。このように、本実施形態は、比較例1よりも、自車10の加速度や速度の変動を小さく抑えることができる。すなわち、本実施形態は、比較例1よりも、無駄な減速・加速をしなくて済む。その結果、本実施形態は、比較例よりも、ドライバフィーリングを向上させることができると共に、燃費も向上できる。 Hereinafter, Comparative Example 1 in which the target inter-vehicle distance is maintained to be greater than or equal to the first inter-vehicle distance with respect to the acceleration and the vehicle speed of the own vehicle 10 when the front vehicle 20 decelerates and separates, and the target inter-vehicle distance is set to the second inter-vehicle distance A comparison will be made with this embodiment in which the distance is changed. As is clear from the graph shown in FIG. 10, the variation of the acceleration and the variation of the speed are smaller in the present embodiment than in Comparative Example 1. That is, in Comparative Example 1, when the front vehicle 20 decelerates, the own vehicle 10 also decelerates in accordance with the deceleration, and when the front vehicle 20 separates from the front of the own vehicle 10, the vehicle accelerates to the set speed. On the other hand, in the present embodiment, when the front vehicle 20 decelerates, the target inter-vehicle distance is changed from the first inter-vehicle distance to the second inter-vehicle distance. Therefore, the deceleration of the own vehicle 10 during the interval between the first inter-vehicle distance and the second inter-vehicle distance may be slower than the deceleration of the front vehicle 20. Further, the speed of the own vehicle 10 during the interval between the first inter-vehicle distance and the second inter-vehicle distance is higher in the present embodiment than in Comparative Example 1. Thereafter, when the front vehicle 20 has left from the front of the own vehicle 10, the vehicle accelerates to the set speed. At this time, in the present embodiment, since the speed of the own vehicle 10 before acceleration is higher than that in Comparative Example 1, the acceleration may be slow to the set speed. As described above, in the present embodiment, the fluctuations in the acceleration and the speed of the vehicle 10 can be suppressed to be smaller than in Comparative Example 1. That is, in the present embodiment, unnecessary deceleration and acceleration are not required as compared with Comparative Example 1. As a result, the present embodiment can improve the driver feeling and the fuel efficiency as compared with the comparative example.
 次に、前車20が減速せずに離脱した場合の自車10の加速度と車速について、目標車間距離を第1の車間距離以上あけるように維持する比較例1と、目標車間距離を第2の車間距離に変更する本実施形態とを比較する。前車20の速度は、自車10のオートクルーズの速度よりも遅いとする。この場合、図11に示すように、追従制御部118は、前車20が離脱する可能性が高いと判定されたときから、目標車間距離を第1の車間距離から第2の車間距離に変更するように自車10を加速させ、速度を上げる。そのため、前車20の離脱完了後に加速して設定速度に上げる必要がない。そのため、本実施形態によれば、比較例1よりも、加速度や速度の変化を緩やかにできるので、ドライバフィーリングを向上させることができる。また、燃費も向上できる。 Next, a comparative example 1 in which the target inter-vehicle distance is maintained to be equal to or more than the first inter-vehicle distance with respect to the acceleration and the vehicle speed of the own vehicle 10 when the front vehicle 20 leaves without deceleration, and the target inter-vehicle distance is set to the second Is compared with the present embodiment in which the distance between vehicles is changed. It is assumed that the speed of the front vehicle 20 is lower than the speed of the auto cruise of the vehicle 10. In this case, as shown in FIG. 11, the tracking control unit 118 changes the target inter-vehicle distance from the first inter-vehicle distance to the second inter-vehicle distance from the time when it is determined that there is a high possibility that the preceding vehicle 20 will leave. The vehicle 10 is accelerated to increase the speed. Therefore, there is no need to accelerate to the set speed after the completion of the separation of the front vehicle 20. Therefore, according to the present embodiment, the change in acceleration and speed can be made more gradual than in Comparative Example 1, and the driver feeling can be improved. Also, fuel efficiency can be improved.
 以上、本実施形態によれば、自車10が走行する車線から前車20が離脱する可能性が高まったと離脱判定部116が判定した場合には、追従制御部118は、前車20の追従を解除するのでは無く、第1の車間距離よりも短い第2の車間距離を開けて前車20を追従するように変更するので、無駄な減速・加速をしなくて済み、ドライバフィーリングを向上させることができると共に、燃費も向上できる。また、前車20の追従を解除しないので、自車10が前車20に接近することがない。 As described above, according to the present embodiment, when the departure determining unit 116 determines that the possibility that the preceding vehicle 20 has departed from the lane in which the vehicle 10 travels has increased, the following control unit 118 performs the following of the preceding vehicle 20. Instead of canceling, the second inter-vehicle distance shorter than the first inter-vehicle distance is changed to follow the preceding vehicle 20, so that unnecessary deceleration / acceleration is eliminated, and the driver feeling is reduced. It can improve fuel economy as well as improving fuel economy. Further, since the following of the front vehicle 20 is not released, the own vehicle 10 does not approach the front vehicle 20.
 追従制御部118は、目標車間距離を短縮することで、前車20との車間距離を第1の車間距離から第2の車間距離に短縮してもよく、目標車間時間を短くしても良い。また、追従制御部118は、自車10の速度に応じて第1の車間距離と第2の車間距離とを定めてもよい。さらに、追従制御部118は、自車10の速度に応じて第1の車間距離に対する第2の車間距離の割合を定めてもよい。 By following the target inter-vehicle distance, the follow-up control unit 118 may reduce the inter-vehicle distance from the front vehicle 20 from the first inter-vehicle distance to the second inter-vehicle distance, or may shorten the target inter-vehicle time. . Further, the tracking control unit 118 may determine the first inter-vehicle distance and the second inter-vehicle distance according to the speed of the vehicle 10. Further, the following control unit 118 may determine the ratio of the second inter-vehicle distance to the first inter-vehicle distance according to the speed of the vehicle 10.
 前車挙動検出部108は、前車20の方向指示器の点滅を用いて、前車20の挙動を検出する方向指示検出部110を備え、離脱判定部116は、その挙動を用いて前車20が離脱する可能性を判定してもよい。前車20が方向指示器を点灯させたときには、前車20が車線変更あるいは、右左折する可能性が高いため、前車20が離脱する可能性が高まるからである。 The front vehicle behavior detection unit 108 includes a direction instruction detection unit 110 that detects the behavior of the front vehicle 20 by using the blinking of the direction indicator of the front vehicle 20, and the departure determination unit 116 uses the behavior to You may determine the possibility that 20 will leave | separate. This is because when the front vehicle 20 turns on the turn signal, there is a high possibility that the front vehicle 20 will change lanes or make a right or left turn, and therefore the possibility that the front vehicle 20 will leave will increase.
 前車挙動検出部108は、前車20の横方向の速度を用いて、前車20の挙動を検出する前車横方向検出部112を備え、離脱判定部116は、その挙動を用いて前車20が離脱する可能性を判定してもよい。前車20が方向指示器を点灯させずに、車線変更あるいは、右左折する場合においても、前車20が離脱する可能性を判定できる。 The front vehicle behavior detection unit 108 includes a front vehicle lateral direction detection unit 112 that detects the behavior of the front vehicle 20 using the lateral speed of the front vehicle 20. The departure determination unit 116 uses the behavior to The possibility that the vehicle 20 will leave may be determined. Even when the preceding vehicle 20 changes lanes or turns right or left without turning on the direction indicator, it is possible to determine the possibility that the preceding vehicle 20 will leave.
 前車挙動検出部108は、車車間通信により取得した前車20の動きや挙動を取得する前車走行情報取得部を備え、離脱判定部116は、その動きや挙動を用いて前車20が離脱する可能性を判定してもよい。カメラ等で前車20の動きが検知し難い場合でも前車20が離脱する可能性を判定できる。また、前車20の目的地やルートを車車間通信により取得できる場合には、前車20の動きを容易に予測できる。 The front vehicle behavior detection unit 108 includes a front vehicle traveling information acquisition unit that acquires the movement and behavior of the front vehicle 20 acquired by the inter-vehicle communication, and the departure determination unit 116 determines whether the front vehicle 20 uses the movement and behavior. The possibility of leaving may be determined. Even when it is difficult to detect the movement of the front vehicle 20 with a camera or the like, it is possible to determine the possibility that the front vehicle 20 will leave. In addition, when the destination and route of the front vehicle 20 can be acquired by inter-vehicle communication, the movement of the front vehicle 20 can be easily predicted.
 本発明は、以下の形態として実現することが可能である。 The present invention can be realized as the following modes.
 本発明の一形態によれば、車両の走行制御装置が提供される。この走行制御装置は、自車(100)の前方を走行する先行車両である前車(200)を特定する前方車両特定部(40)と、前記前車の挙動を検出する前車挙動検出部と、前記前方車両特定部により特定された前記前車を、予め定められた車間距離を空けて追従する追従制御を実行する追従制御部(21)と、検出した前記前車の挙動に従って、前記自車が走行する車線から前記前車が離脱する可能性が高い離脱状況にあるか否かを判定する離脱判定部(20)と、を備える。前記前車が離脱状況にあると前記離脱判定部が判定した場合には、前記追従制御部は、前記追従制御における車間距離を、前記前車が離脱状況にない場合に設定されている第1の車間距離よりも短い第2の車間距離に変更して前記追従制御を実施する。この形態によれば、前車が離脱状況にあると離脱判定部が判定した場合には、追従制御部は、追従制御における車間距離を、第1の車間距離よりも短い第2の車間距離に変更するので、追従制御をしない場合と比較すると、自車が前車に接近することがない。また、前車が減速して車線から離脱するときに、前車の減速よりも緩やかな減速でも、前車との車間距離を第1の車間距離よりも短い第2の車間距離に維持できる。すなわち、前車に合わせて自車を減速する必要が無く、自車を前車よりも緩やかに減速できる。また、前車に合わせて減速する場合に比べて前車が離脱したときの自車の速度が速いため、自車を元の速度に戻すための加速も小さくて良い。すなわち、自車の加速度や速度の変動を小さく抑えることができる。すなわち、無駄な減速・加速をしないようにできる。その結果、ドライバフィーリングを向上すると共に、燃費も向上できる。 According to one aspect of the present invention, a travel control device for a vehicle is provided. The traveling control device includes a front vehicle identification unit (40) that identifies a front vehicle (200) that is a preceding vehicle traveling ahead of the own vehicle (100), and a front vehicle behavior detection unit that detects the behavior of the front vehicle. A follow-up control unit (21) that performs a follow-up control for following the preceding vehicle specified by the preceding vehicle specifying unit at a predetermined inter-vehicle distance, and according to the detected behavior of the preceding vehicle, A departure determination unit (20) for determining whether or not the vehicle is in a departure situation in which there is a high possibility that the preceding vehicle will depart from the lane in which the vehicle travels. When the departure determination unit determines that the preceding vehicle is in the departure situation, the following control unit sets the inter-vehicle distance in the following control to a first distance when the preceding vehicle is not in the departure situation. Is changed to a second inter-vehicle distance shorter than the inter-vehicle distance. According to this aspect, when the departure determination unit determines that the preceding vehicle is in the departure situation, the following control unit sets the following distance in the following control to the second following distance shorter than the first following distance. Since the change is made, the own vehicle does not approach the preceding vehicle as compared with the case where the following control is not performed. Also, when the preceding vehicle decelerates and leaves the lane, the inter-vehicle distance with the preceding vehicle can be maintained at the second inter-vehicle distance shorter than the first inter-vehicle distance even if the deceleration is slower than the deceleration of the preceding vehicle. That is, there is no need to decelerate the own vehicle in accordance with the preceding vehicle, and the own vehicle can be decelerated more slowly than the preceding vehicle. In addition, since the speed of the own vehicle when the preceding vehicle separates is faster than when decelerating in accordance with the preceding vehicle, the acceleration for returning the own vehicle to the original speed may be smaller. That is, fluctuations in the acceleration and speed of the own vehicle can be suppressed to a small level. That is, useless deceleration and acceleration can be prevented. As a result, the driver feeling can be improved and the fuel efficiency can be improved.
 上記形態において、さらに、前記自車の速度を取得する車速検出部(186)を備え、前記追従制御部は、前記自車の速度に応じて前記第1の車間距離と前記第2の車間距離とを修正してもよい。自車の速度が異なれば、制動距離が異なるので、自車の速度に応じて第1の車間距離と第2の車間距離とを定めることが好ましい。 In the above aspect, the vehicle further includes a vehicle speed detection unit (186) that acquires the speed of the own vehicle, and the following control unit performs the first inter-vehicle distance and the second inter-vehicle distance according to the speed of the own vehicle. May be modified. If the speed of the own vehicle is different, the braking distance is different. Therefore, it is preferable to determine the first inter-vehicle distance and the second inter-vehicle distance according to the speed of the own vehicle.
 上記形態において、前記追従制御部は、前記自車の速度に応じて前記第1の車間距離に対する前記第2の車間距離の割合を定めてもよい。自車の速度が異なれば、制動距離が異なるので、自車の速度に応じて第1の車間距離に対する第2の車間距離の割合を定めることが好ましい。 In the above aspect, the following control unit may determine a ratio of the second inter-vehicle distance to the first inter-vehicle distance according to the speed of the own vehicle. If the speed of the own vehicle is different, the braking distance is different. Therefore, it is preferable to determine the ratio of the second inter-vehicle distance to the first inter-vehicle distance according to the speed of the own vehicle.
 上記形態において、前記前車挙動検出部は、前記前車の方向指示器の点滅を検知する方向指示検出部(50)を備え、前記離脱判定部は、前記方向指示器の点滅を用いて、前記前車が離脱する可能性を判定してもよい。前車が方向指示器を点灯させたときには、前車が車線変更あるいは、右左折する可能性が高い。この形態によれば、方向指示器の点滅を用いることで、前車が離脱する可能性が高いか否かを容易に判定できる。 In the above aspect, the preceding vehicle behavior detecting unit includes a direction instruction detecting unit (50) that detects blinking of the direction indicator of the preceding vehicle, and the departure determining unit uses the blinking of the direction indicator to blink. The possibility that the preceding vehicle may leave may be determined. When the preceding vehicle turns on the turn signal, there is a high possibility that the preceding vehicle changes lanes or turns left or right. According to this aspect, by using the blinking of the direction indicator, it is possible to easily determine whether or not there is a high possibility that the preceding vehicle will leave.
 上記形態において、前記前車挙動検出部は、前記前車の横方向の速度を取得する前車横方向速度取得部(112)を備え、前記離脱判定部は、前記前車の横方向の速度を用いて、前記前車が離脱する可能性を判定してもよい。この形態によれば、前車が方向指示器を点灯させずに、車線変更あるいは、右左折する場合においても、前車が離脱する可能性が高いか否かを容易に判定できる。 In the above aspect, the front vehicle behavior detection unit includes a front vehicle lateral speed acquisition unit (112) that acquires a lateral speed of the front vehicle, and the departure determination unit includes a lateral speed of the front vehicle. May be used to determine the possibility that the preceding vehicle will leave. According to this embodiment, it is possible to easily determine whether or not there is a high possibility that the preceding vehicle will be departed even when the preceding vehicle changes lanes or turns right or left without turning on the direction indicator.
 上記形態において、前記前車挙動検出部は、前記前車との車車間通信により前記前車の動きを取得する前車走行情報取得部(114)を備え、前記離脱判定部は、前記車車間通信により取得した前記前車の動きを用いて、前記前車が離脱する可能性を判定してもよい。この形態によれば、カメラ等で前車の動きが検知し難い場合でも前車が離脱する可能性を判定できる。 In the above aspect, the front vehicle behavior detecting unit includes a front vehicle traveling information obtaining unit (114) that obtains a movement of the front vehicle by inter-vehicle communication with the front vehicle, and the departure determining unit includes The possibility of the preceding vehicle leaving may be determined using the movement of the preceding vehicle acquired by communication. According to this aspect, even when it is difficult to detect the movement of the preceding vehicle with a camera or the like, it is possible to determine the possibility that the preceding vehicle will leave.
 上記形態において、オートクルーズ制御部(120)を備え、前記前方車両特定部が前記前車を検知できなくなった場合には、前記オートクルーズ制御部は、予め設定された車速で単独走行を実行してもよい。この形態によれば、前車を追従しないときの走行を制御できる。 In the above embodiment, an auto cruise control unit (120) is provided, and when the preceding vehicle specifying unit cannot detect the preceding vehicle, the auto cruise control unit executes independent traveling at a preset vehicle speed. May be. According to this aspect, it is possible to control traveling when the vehicle does not follow the preceding vehicle.
 なお、本発明は、種々の形態で実現することが可能であり、例えば、車両の走行制御装置の他、車両の走行制御方法等で実現することができる。 The present invention can be realized in various forms, and can be realized by, for example, a vehicle running control method or the like in addition to a vehicle running control device.

Claims (8)

  1.  走行制御装置(100)であって、
     自車(10)の前方を走行する先行車両である前車(20)を特定する前方車両特定部(104)と、
     前記前車の挙動を検出する前車挙動検出部(108)と、
     前記前方車両特定部により特定された前記前車を、予め定められた車間距離を空けて追従する追従制御を実行する追従制御部(118)と、
     検出した前記前車の挙動に従って、前記自車が走行する車線から前記前車が離脱する可能性が高い離脱状況にあるか否かを判定する離脱判定部(116)と、
     を備え、
     前記前車が離脱状況にあると前記離脱判定部が判定した場合には、前記追従制御部は、前記追従制御における車間距離を、前記前車が離脱状況にない場合に設定されている第1の車間距離よりも短い第2の車間距離に変更して前記追従制御を実施する、
     走行制御装置。
    A travel control device (100),
    A front vehicle specifying unit (104) for specifying a front vehicle (20) that is a preceding vehicle traveling ahead of the vehicle (10);
    A front vehicle behavior detector (108) for detecting the behavior of the front vehicle;
    A follow-up control unit (118) for performing follow-up control for following the preceding vehicle specified by the preceding vehicle specifying unit at a predetermined inter-vehicle distance;
    A departure determination unit (116) that determines whether or not the preceding vehicle is likely to depart from the lane in which the own vehicle travels, in accordance with the detected behavior of the preceding vehicle.
    With
    When the departure determination unit determines that the preceding vehicle is in the departure situation, the following control unit sets the inter-vehicle distance in the following control to a first distance when the preceding vehicle is not in the departure situation. Performing the following control by changing to a second inter-vehicle distance shorter than the inter-vehicle distance of
    Travel control device.
  2.  請求項1に記載の走行制御装置であって、さらに、
     前記自車の速度を取得する車速検出部(186)を備え、
     前記追従制御部は、前記自車の速度に応じて前記第1の車間距離と前記第2の車間距離とを修正する、
     走行制御装置。
    The travel control device according to claim 1, further comprising:
    A vehicle speed detector (186) for acquiring the speed of the vehicle;
    The following control unit corrects the first inter-vehicle distance and the second inter-vehicle distance according to the speed of the own vehicle,
    Travel control device.
  3.  請求項2に記載の走行制御装置であって、
     前記追従制御部は、前記自車の速度に応じて前記第1の車間距離に対する前記第2の車間距離の割合を定める、
     走行制御装置。
    The travel control device according to claim 2, wherein
    The following control unit determines a ratio of the second inter-vehicle distance to the first inter-vehicle distance according to a speed of the own vehicle,
    Travel control device.
  4.  請求項1から請求項3のいずれか一項に記載の走行制御装置であって、
     前記前車挙動検出部は、前記前車の方向指示器の点滅を検知する方向指示検出部(110)を備え、
     前記離脱判定部は、前記方向指示器の点滅を用いて、前記前車が離脱する可能性を判定する、
     走行制御装置。
    The travel control device according to any one of claims 1 to 3, wherein
    The front vehicle behavior detection unit includes a direction instruction detection unit (110) that detects blinking of a direction indicator of the front vehicle,
    The departure determination unit determines the possibility of the departure of the preceding vehicle using the blinking of the direction indicator,
    Travel control device.
  5.  請求項1から請求項3のいずれか一項に記載の走行制御装置であって、
     前記前車挙動検出部は、前記前車の横方向の速度を取得する前車横方向速度取得部(112)を備え、
     前記離脱判定部は、前記前車の横方向の速度を用いて、前記前車が離脱する可能性を判定する、
     走行制御装置。
    The travel control device according to any one of claims 1 to 3, wherein
    The front vehicle behavior detection unit includes a front vehicle lateral speed acquisition unit (112) that acquires a lateral speed of the front vehicle,
    The leaving determination unit determines a possibility that the preceding vehicle will leave using a lateral speed of the preceding vehicle,
    Travel control device.
  6.  請求項1から請求項3のいずれか一項に記載の走行制御装置であって、
     前記前車挙動検出部は、前記前車との車車間通信により前記前車の動きを取得する前車走行情報取得部(114)を備え、
     前記離脱判定部は、前記車車間通信により取得した前記前車の動きを用いて、前記前車が離脱する可能性を判定する、
     走行制御装置。
    The travel control device according to any one of claims 1 to 3, wherein
    The front vehicle behavior detection unit includes a front vehicle traveling information acquisition unit (114) that acquires the movement of the front vehicle by inter-vehicle communication with the front vehicle,
    The leaving determination unit determines the possibility that the preceding vehicle will leave using the movement of the preceding vehicle obtained by the inter-vehicle communication,
    Travel control device.
  7.  請求項1から請求項6のいずれか一項に記載の走行制御装置であって、
     オートクルーズ制御部(120)を備え、
     前記前方車両特定部が前記前車を検知できなくなった場合には、前記オートクルーズ制御部は、予め設定された車速で単独走行を実行する、
     走行制御装置。
    The travel control device according to any one of claims 1 to 6, wherein
    An auto cruise control unit (120) is provided.
    If the preceding vehicle identification unit can no longer detect the preceding vehicle, the auto cruise control unit performs single traveling at a preset vehicle speed,
    Travel control device.
  8.  走行制御方法であって、
     自車(10)の前方を走行する先行車両である前車(20)を特定し、
     予め定められた車間距離を空けて前記前車を追従する追従制御を実行し、
     前記前車の挙動を検出し、
     検出した前記前車の挙動に従って、前記自車が走行する車線から前記前車が離脱する可能性が高い離脱状況にあるか否かを判定し、
     前記前車が離脱状況にあると判定した場合には、前記追従制御における車間距離を、前記前車が離脱状況にない場合に設定されている第1の車間距離よりも短い第2の車間距離に変更して前記追従制御を実施する、
     走行制御方法。
    A travel control method,
    A preceding vehicle (20) which is a preceding vehicle traveling ahead of the own vehicle (10) is specified,
    Executing a following control to follow the preceding vehicle at a predetermined inter-vehicle distance,
    Detecting the behavior of the preceding vehicle,
    According to the detected behavior of the preceding vehicle, it is determined whether or not there is a high possibility that the preceding vehicle will leave the lane in which the vehicle travels, and
    When it is determined that the preceding vehicle is in the leaving state, the inter-vehicle distance in the following control is set to a second inter-vehicle distance shorter than the first inter-vehicle distance set when the preceding vehicle is not in the leaving state. To implement the following control,
    Travel control method.
PCT/JP2019/022766 2018-06-22 2019-06-07 Traveling control device and traveling control method WO2019244676A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-118826 2018-06-22
JP2018118826A JP7047627B2 (en) 2018-06-22 2018-06-22 Travel control device and travel control method

Publications (1)

Publication Number Publication Date
WO2019244676A1 true WO2019244676A1 (en) 2019-12-26

Family

ID=68983991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022766 WO2019244676A1 (en) 2018-06-22 2019-06-07 Traveling control device and traveling control method

Country Status (2)

Country Link
JP (1) JP7047627B2 (en)
WO (1) WO2019244676A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111071254A (en) * 2020-01-16 2020-04-28 张雪华 Automobile safety system for automatic lane changing and working method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004025933A (en) * 2002-06-21 2004-01-29 Toyota Motor Corp Running control system
JP2010158924A (en) * 2009-01-06 2010-07-22 Toyota Motor Corp Inter-vehicle distance controller
JP2010254004A (en) * 2009-04-22 2010-11-11 Honda Motor Co Ltd Traveling control device for vehicle
JP2010274887A (en) * 2009-06-01 2010-12-09 Toyota Motor Corp Vehicle travel control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004025933A (en) * 2002-06-21 2004-01-29 Toyota Motor Corp Running control system
JP2010158924A (en) * 2009-01-06 2010-07-22 Toyota Motor Corp Inter-vehicle distance controller
JP2010254004A (en) * 2009-04-22 2010-11-11 Honda Motor Co Ltd Traveling control device for vehicle
JP2010274887A (en) * 2009-06-01 2010-12-09 Toyota Motor Corp Vehicle travel control device

Also Published As

Publication number Publication date
JP2019218004A (en) 2019-12-26
JP7047627B2 (en) 2022-04-05

Similar Documents

Publication Publication Date Title
CN109421714B (en) Vehicle control system, vehicle control method, and storage medium
CN109398359B (en) Vehicle control system and vehicle control method
CN107472248B (en) Vehicle travel control device
CN107685721B (en) Vehicle travel control device
US20200231152A1 (en) Vehicle driving support apparatus
JP6222137B2 (en) Vehicle control device
JP6481670B2 (en) Automated driving system
US20190155293A1 (en) Vehicle control system, vehicle control method and vehicle control program
JP2017137001A (en) Travel control device for vehicle
CN110770064B (en) Target vehicle speed generation method and target vehicle speed generation device for driving assistance vehicle
EP3418151B1 (en) Vehicle control device
CA2887118C (en) Vehicle control device
JP7172172B2 (en) vehicle controller
JP2018039303A (en) Vehicle control device
US11072334B2 (en) Vehicle control system
US11731658B2 (en) Vehicle control method and control device
US11299163B2 (en) Control system of vehicle, control method of the same, and non-transitory computer-readable storage medium
JP2009018727A (en) Vehicular driving support apparatus
WO2019244676A1 (en) Traveling control device and traveling control method
US11654931B2 (en) Driving assistance device and vehicle
JP7211291B2 (en) Vehicle running control device
JP2022031832A (en) Vehicle control device
WO2019202859A1 (en) Travel control device
JP7241727B2 (en) Driving support device
JP7393258B2 (en) Control device and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19822904

Country of ref document: EP

Kind code of ref document: A1