WO2019244420A1 - Information processing device, management system, control program and prediction method - Google Patents

Information processing device, management system, control program and prediction method Download PDF

Info

Publication number
WO2019244420A1
WO2019244420A1 PCT/JP2019/008987 JP2019008987W WO2019244420A1 WO 2019244420 A1 WO2019244420 A1 WO 2019244420A1 JP 2019008987 W JP2019008987 W JP 2019008987W WO 2019244420 A1 WO2019244420 A1 WO 2019244420A1
Authority
WO
WIPO (PCT)
Prior art keywords
deterioration
curve
degree
information processing
mineral oil
Prior art date
Application number
PCT/JP2019/008987
Other languages
French (fr)
Japanese (ja)
Inventor
慶祐 大前
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2019244420A1 publication Critical patent/WO2019244420A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity

Definitions

  • the present invention relates to an information processing apparatus, a management system, a control program, and a prediction method for predicting a degree of deterioration of an object.
  • Patent Literature 1 discloses a method of diagnosing the state of deterioration of an insulator. In the method, a correction value of a diagnosis item in consideration of the influence of an external environmental factor is obtained, and the deterioration state of the insulator is diagnosed using the correction value.
  • Patent Document 2 discloses an information processing device or the like for estimating the life of a device.
  • the information processing apparatus measures a physical quantity in an installation environment, and outputs a measurement result as sensor information, and a device life that changes according to the installation environment based on the sensor information output from the sensor.
  • a device life prediction unit for predicting.
  • the information processing apparatus includes a pattern holding unit that holds, for each physical quantity measured by the sensor, a plurality of patterns defined in advance by a curve indicating a device life with time.
  • the device life prediction unit predicts the device life by selecting a predetermined pattern from a plurality of patterns held in the pattern holding unit based on sensor information output from the sensor.
  • the above-described conventional technology is not a technology on the premise that a device or a member constituting the device undergoes unsteady deterioration such that deterioration progresses to an unexpected degree in a short period of time. Therefore, in the above-described related art, when the deterioration of the target device proceeds irregularly, there is a possibility that it may be difficult to accurately predict the life of the target device.
  • One object of one embodiment of the present invention is to realize an information processing device or the like capable of performing accurate life prediction.
  • an information processing apparatus includes a curve determination unit that determines a deterioration curve representing a degree of deterioration of the target object with respect to elapsed time according to an environmental factor of the target object.
  • An acquisition unit that periodically acquires a measured value of a physical quantity reflecting the degree of deterioration of the object; and a degree of deterioration of the object based on the measured value of the physical quantity and the deterioration curve.
  • a predicting unit that predicts a period until the time reaches.
  • a control method of the information processing apparatus includes a curve determining step of determining a deterioration curve representing a degree of deterioration of the object with respect to elapsed time according to an environmental factor of the object; An acquisition step of periodically acquiring a measured value of a physical quantity reflecting the degree of deterioration of the target object, based on the measured value of the physical quantity and the deterioration curve, until the degree of deterioration of the object reaches a predetermined degree of deterioration. A prediction step of predicting a period.
  • FIG. 1 is a block diagram illustrating a main configuration of a life estimating apparatus according to a first embodiment of the present invention. It is a figure showing an example of an example of application of a life prediction device in a system concerning Embodiment 1 of the present invention.
  • 5 is a flowchart illustrating an example of a flow of a life expectancy process of the information processing apparatus according to the first embodiment of the present invention.
  • FIGS. 7A and 7B are diagrams illustrating an example of a deterioration curve indicated by a deterioration function according to the first embodiment of the present invention.
  • FIG. 4 is a graph showing the time until the insulating property of the mineral oil is lost when the accelerated test of the mineral oil is performed in a dark place with the humidity kept constant according to the first embodiment of the present invention. It is a figure which shows the relationship between the common logarithm (Ln (t)) of the life time of the mineral oil at each temperature and the reciprocal of the temperature T (K) according to the first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a relationship between a common logarithm Ln (I) of absorbance and an elapsed time t in the mineral oil according to the first embodiment of the present invention.
  • 4 is a diagram illustrating a temperature profile of the transformer up to an elapsed time t according to the first embodiment of the present invention.
  • 4 is a graph showing the time until the insulating property of the mineral oil is lost when an accelerated test of the mineral oil is performed in a dark place with the humidity and the temperature kept constant, according to the first embodiment of the present invention.
  • the figure which shows the relationship between the common logarithm (Ln (t)) of the life time in the mineral oil containing each water content and the reciprocal of the water content A contained in the mineral oil (1 / A) according to Embodiment 1 of the present invention. It is.
  • FIG. 6 is a block diagram illustrating a main configuration of a life estimating device 4a according to a second embodiment of the present invention.
  • 9 is a flowchart illustrating an example of a flow of a life prediction process of the information processing device according to the second embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of an application example of the life prediction device (management system) 4 in the system 1. First, an outline of an application example of the life estimation device 4 will be described with reference to FIG.
  • the system 1 is a system for predicting the life of the mineral oil of the transformer 2 with respect to the electrical insulation. According to the above configuration, the user can replace the mineral oil before the mineral oil loses the electrical insulating property, and the failure of the transformer 2 can be prevented.
  • the system 1 includes a transformer 2, a prediction device 3, and a data center 6. Further, the prediction device 3 includes a life prediction device 4.
  • the life prediction device 4 calculates a deterioration function or a deterioration curve representing the relationship between the use time of the mineral oil and the degree of deterioration from environmental factors (temperature, humidity, etc.) that affect the environment of the mineral oil provided in the transformer 2.
  • the life expectancy predicting device 4 periodically (at a predetermined timing) acquires the measurement result of the degree of deterioration of the mineral oil of the transformer 2. For example, as the mineral oil deteriorates, the transmitted light intensity (transmittance) of infrared light (infrared radiation: IR) of a predetermined wavelength in the mineral oil decreases.
  • IR infrared radiation
  • the life prediction device 4 may acquire the measurement result of the degree of deterioration of the mineral oil by acquiring the measurement result of the transmitted light intensity of the IR of the predetermined wavelength in the mineral oil.
  • the life expectancy predicting device 4 calculates the actual use time of the mineral oil from the degree of deterioration of the mineral oil.
  • the substantial use time is not the time when the mineral oil is actually used, but the time corresponding to the degree of deterioration of the mineral oil.
  • the life prediction device 4 predicts the time when the mineral oil reaches a predetermined degree of deterioration from the deterioration function and the actual use time of the mineral oil, and predicts the life of the mineral oil.
  • the life of the object is predicted using the actual degree of deterioration of the object at the time of the prediction. Therefore, even if the target object has undergone the unsteady deterioration by the time of performing the prediction, there is an effect that the life can be predicted in consideration of the unsteady deterioration.
  • the above configuration can be realized by forming a system with an IR light source and an IR sensor, and can accurately predict the life at low cost.
  • the non-stationary deterioration includes, for example, a deterioration outside a predicted range due to a sudden change in the amount of water contained in mineral oil caused by a maintenance operation, a natural disaster, a beast damage, or the like.
  • the transformer 2 includes the mineral oil having an electrical insulating property. Further, as shown in FIG. 2, the transformer 2 includes a valve 21 for discharging the mineral oil from the transformer 2 to the prediction device 3. When the mineral oil is discharged from the transformer 2, it is injected into the prediction device 3 via the suction path 33 of the prediction device 3.
  • the prediction device 3 includes a suction path 33, a rotary blade 34, a rotary shaft 35, a magnet 36, an electric motor 37, and a life prediction device 4.
  • the suction path 33, the rotary blade 34, the rotary shaft 35, the magnet 36, and the electric motor 37 are configured to suction the mineral oil from the transformer 2 to the prediction device 3.
  • the configuration including the suction path 33, the rotary blades 34, the rotary shaft 35, the magnet 36, and the electric motor 37 may return the mineral oil whose deterioration degree has been measured to the transformer 2.
  • FIG. 1 is a block diagram showing a configuration of a main part of the life estimating device 4 according to the present embodiment.
  • the life estimation device 4 includes an IR light source protection housing 41, a transmission window 42, an IR light source 43, an IR sensor protection housing 44, a wavelength cut filter 45, an IR sensor 46, and a temperature sensor 47. And an information processing device 100.
  • the IR light source 43 is disposed inside the IR light source protection housing 41.
  • the IR light source 43 irradiates the mineral oil sucked by the prediction device 3 with IR through the transmission window 42 provided in the IR light source protection casing 41.
  • the IR light source 43 may be configured to generate mid-infrared rays to far-infrared rays (for example, IR having a wavelength of 2.5 ⁇ m to 1000 ⁇ m).
  • As a material of the transmission window 42 calcium fluoride (CaF 2 ) or the like may be used.
  • the light generated by the IR light source 43 is a near-infrared ray (for example, IR having a wavelength of 0.7 to 2.5 ⁇ m) or visible light (for example, light having a wavelength of 0.4 to 0.7 ⁇ m). May be glass. According to the above configuration, a general-purpose product can be used for the IR light source 43. Further, the cost of the transmission window 42 can be reduced.
  • the IR sensor 46 As shown in FIG. 2, the IR sensor 46 is disposed inside the IR sensor protection housing 44. The IR sensor 46 detects the IR radiated from the IR light source 43 and transmitted through the mineral oil via the transmission window 42 and the wavelength cut filter 45 installed in the IR sensor protection casing 44.
  • the wavelength cut filter 45 is a filter that cuts off IR of a predetermined wavelength.
  • the wavelength cut filter 45 may be configured to selectively transmit IR having a wavelength in the range of 5 to 6 ⁇ m.
  • the IR sensor 46 may be configured to detect IR at a wavelength that is absorbed by a functional group that increases with the deterioration of the mineral oil.
  • the measured value of the degree of deterioration of the mineral oil changes according to the molecular structure of the mineral oil. According to the configuration, it is possible to realize the life predicting device 4 that measures the degree of deterioration of the mineral oil by utilizing the characteristics of the deterioration of the mineral oil.
  • a filter that cuts IR of a wavelength other than the wavelength absorbed by the functional group may be used as the wavelength cut filter 45.
  • the IR sensor 46 outputs a signal indicating the detected IR transmitted light intensity to the control unit 48.
  • the life prediction device 4 may be configured not to include the wavelength cut filter 45 by applying the IR light source 43 that irradiates IR having a narrow wavelength range to the life prediction device 4. According to the above configuration, the number of members constituting the life prediction device 4 can be reduced, and the degree of freedom in designing the life prediction device 4 can be increased. For example, it is possible to contribute to downsizing of the life prediction device 4.
  • the temperature sensor 47 measures the temperature of the mineral oil, and outputs a signal indicating the measured temperature to the control unit 48.
  • the information processing device 100 includes a control unit 48, a communication unit 49, a timer 50, and a storage unit 51.
  • the control unit 48 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and controls each component according to information processing.
  • the control unit 48 includes a deterioration function creation unit (curve determination unit) 481, a transmitted light intensity determination unit (acquisition unit) 482, a life calculation unit (prediction unit) 483, and a change rate change unit (deterioration curve correction unit) 484. I have.
  • FIG. 4 is a diagram illustrating an example of a deterioration curve indicated by the deterioration function created by the deterioration function creating unit 481.
  • the curve shown by the solid line in FIG. 4 shows the deterioration curve.
  • the deterioration curve shows the relationship between the use time (elapsed time) of the mineral oil and the degree of deterioration of the mineral oil.
  • the deterioration function creating unit 481 determines the deterioration curve representing the degree of deterioration of the mineral oil with respect to the elapsed time according to the environmental factor of the mineral oil (object).
  • the deterioration function creating unit 481 generates a deterioration function indicating the relationship between the usage time of the mineral oil and the transmitted light intensity (degree of deterioration) of the mineral oil from the temperature of the mineral oil indicated by the signal received from the temperature sensor 47. calculate.
  • the deterioration function creation unit 481 stores the deterioration function data 511 indicating at least one of the calculated deterioration function and the deterioration curve in the storage unit 51.
  • the transmitted light intensity determination unit 482 acquires the transmitted light intensity of the mineral oil from the IR sensor 46 at a predetermined cycle with reference to the timer 50.
  • the timer 50 determines the elapsed time since the transmitted light intensity determination unit 482 acquires the transmitted light intensity, or
  • the life calculation unit 483 indicates the elapsed time after calculating the life of the mineral oil.
  • the transmitted light intensity reflects the degree of deterioration of the mineral oil (object).
  • the transmitted light intensity determination unit 482 periodically acquires a measured value of a physical quantity that reflects the degree of deterioration of the target object.
  • the transmitted light intensity determination unit 482 compares the current predicted value of the transmitted light intensity predicted from the deterioration function data 511 with the actually measured value of the acquired transmitted light intensity.
  • the transmitted light intensity determination unit 482 determines whether the difference between the actually measured value and the predicted value is any of the following (1) to (3).
  • the transmitted light intensity determination unit 482 outputs the predicted value of the transmitted light intensity to the life calculation unit 483.
  • the transmitted light intensity determination unit 482 outputs the measured value of the transmitted light intensity to the life calculation unit 483.
  • the transmitted light intensity determination unit 482 outputs the predicted value and the measured value of the transmitted light intensity to the life calculation unit 483.
  • the transmitted light intensity determination unit 482 may be configured to acquire the absorbance and calculate the transmitted light intensity.
  • the change rate changing unit 484 changes the change rate of the deterioration curve indicated by the deterioration function data 511. More specifically, the change rate changing unit 484 calculates a difference between the obtained measured value and the predicted value of the transmitted light intensity.
  • the change rate changing unit 484 may refer to the change rate table 512 stored in the storage unit 51 and set the change rate corresponding to the magnitude of the difference between the actually measured value and the predicted value.
  • the change rate table 512 shows a change rate according to the magnitude of the difference between the actually measured value and the predicted value.
  • the change rate changing unit 484 changes the deterioration function data 511 such that the change rate of the deterioration curve becomes the set change rate. After that, the change rate changing unit 484 outputs the actually measured value of the transmitted light intensity to the life calculating unit 483. That is, the life calculation unit 483 calculates the life time described later using the deterioration function data 511 in which the change rate of the deterioration curve is changed.
  • the life calculation unit 483 predicts a period until the degree of deterioration of the mineral oil reaches a predetermined degree of deterioration based on the acquired transmitted light intensity and the deterioration curve.
  • the life calculation unit 483 refers to the deterioration function data 511 and calculates the elapsed time corresponding to the actually measured value or the predicted value of the transmitted light intensity output from the transmitted light intensity determination unit 482 or the change rate change unit 484. calculate.
  • the life calculation unit 483 calculates the remaining life of the mineral oil using the calculated elapsed time.
  • the life calculation unit 483 outputs a signal indicating the calculated remaining life of the mineral oil to the data center 6, which is an external device, via the communication unit 49.
  • the communication unit 49 performs communication with an external device.
  • the communication unit 49 may perform wired communication using a cable or the like, or may perform wireless communication.
  • the data center 6 is for managing the transformer 2, for example.
  • the data center 6 receives a signal indicating the life time (remaining life) of the mineral oil from the life prediction device 4.
  • the data center 6 may include a display unit and the like.
  • the data center 6 notifies the user of the life time of the mineral oil of the transformer 2 by displaying the life time predicted by the life prediction device 4 on the display unit or the like.
  • FIG. 3 is a flowchart illustrating an example of the flow of the life estimation process of the information processing apparatus 100. An example of the flow of the life prediction process of the information processing device 100 will be described with reference to FIG.
  • the deterioration function creating unit 481 acquires a signal indicating the temperature of the mineral oil from the temperature sensor 47 (S1)
  • the use time of the mineral oil and the transmitted light intensity of the mineral oil (deterioration) are used using the temperature indicated by the acquired signal.
  • a degree is calculated (a deterioration curve is generated).
  • the life calculation unit 483 predicts the life time of the mineral oil from the deterioration function data 511 (S2: curve determination step).
  • the curve shown by the solid line in FIG. 4A is a graph (deterioration curve) representing the deterioration function calculated by the deterioration function generator 481.
  • the horizontal axis of the graph indicates the use time of the mineral oil
  • the vertical axis indicates the transmitted light intensity of the mineral oil.
  • a life determination value is set on the vertical axis.
  • the life calculation unit 483 predicts the predicted time (Lt1) at which the transmitted light intensity of the mineral oil reaches the life determination value as the life time of the mineral oil, and calculates the mineral oil from the usage time up to the present and the life time of the mineral oil. Predict the remaining life time.
  • the life calculation unit 483 calculates a life time (initial life time) at the start of use of the mineral oil from the predicted life time of the mineral oil, and subtracts the use time from the initial life time to the present time. To calculate the remaining life time of the mineral oil.
  • the transmitted light intensity determination unit 482 determines the transmitted light intensity of the mineral oil from the IR sensor 46 when a predetermined period elapses after the life calculation unit 483 calculates the life (S3). Acquisition (S4: acquisition step). Subsequently, the transmitted light intensity determining unit 482 determines whether the difference between the current predicted value of the transmitted light intensity predicted from the deterioration function data 511 and the actually measured value of the transmitted light intensity is equal to or greater than a first threshold value. (S5). When the difference between the measured value and the predicted value is less than the first threshold value (NO in S5), the life calculation unit 483 predicts the life time from the use time corresponding to the predicted value (S6: prediction step). Then, the process returns to S3.
  • transmitted light intensity determination section 482 determines the current predicted value of transmitted light intensity predicted from deterioration function data 511 and the acquired transmission It is determined whether the difference between the measured light intensity and the measured value is equal to or greater than a second threshold (S7).
  • the life calculation unit 483 calculates the use time corresponding to the measured value from the deterioration curve. That is, the use time in the deterioration curve is corrected (S8). Subsequently, the life calculation unit 483 predicts the life time from the corrected use time (S6). Then, the process returns to S3.
  • the processing subsequent to S5, S7, S8 and S6 will be specifically described with reference to FIG.
  • the predicted value of the transmitted light intensity at the time point t 'in the deterioration curve is the predicted value Y1.
  • the measured value of the transmitted light intensity IR measured by the IR sensor 46 at time t ' is the measured value YA'.
  • the life calculating unit 483 corrects the use time in the deterioration curve as follows.
  • the life calculation unit 483 sets the time point ta at which the transmitted light intensity corresponds to the actually measured value YA 'in the deterioration curve as the current time, and corrects the usage time up to the present time to the time up to the time point ta (assumed elapsed time). Subsequently, the life calculating unit 483 predicts the current life time (remaining life) of the mineral oil from the time point ta and the life time point Lt1 by calculating the time from the time point ta to the life time point Lt1.
  • the above processing can be paraphrased as follows.
  • the life calculation unit 483 specifies a deemed elapsed time that can be regarded as elapsed from the degree of deterioration and the deterioration curve corresponding to the actually measured value (measured value) of the transmitted light intensity. Subsequently, the life calculation unit 483 predicts a period until the degree of deterioration of the mineral oil reaches the life determination value (a predetermined degree of deterioration) according to the deterioration curve after the assumed elapsed time.
  • the remaining life of the mineral oil can be accurately predicted.
  • the change rate changing unit 484 changes the change rate of the deterioration curve (S9). Subsequently, the life calculation unit 483 predicts the life time from the deterioration curve whose rate of change has been changed (S6). Then, the process returns to S3.
  • the predicted value of the transmitted light intensity at the time point t ′′ in the deterioration curve is the predicted value Y2.
  • the measured value of the transmitted light intensity IR acquired from the IR sensor 46 at time t ′′ is the measured value YA ′′.
  • the change rate changing unit 484 sets the change rate of the deterioration curve indicated by the deterioration function data 511 so that the progress of the deterioration becomes faster. change.
  • the change rate changing unit 484 changes the change rate according to the magnitude of the difference between the measured value and the predicted value.
  • the degradation curve whose rate of change has been changed is indicated by a chain line.
  • the deterioration curve whose rate of change is changed starts from the actual measurement value YA '' at the time point t ''.
  • the life calculation unit 483 calculates the remaining life of the mineral oil from the time t ′′ and the changed time Lt2 of the life.
  • the life calculation unit 483 uses the first curve (FIG.
  • the curve shown by the solid line in (b) is used as a future deterioration curve. If the difference between the degree of deterioration corresponding to the transmitted light intensity of the mineral oil at the time and the degree of deterioration expected from the deterioration curve at the time is larger than a predetermined value, the life calculation unit 483 determines that the deterioration is smaller than the first curve. Is used as the future deterioration curve (the curve shown by the one-dot chain line in FIG. 4B).
  • the cause of extreme deterioration of mineral oil in a short period of time may be a change in the water content of the mineral oil. As the moisture content of the mineral oil increases, the rate of deterioration of the mineral oil increases.
  • the second curve which progresses faster than the first curve, is used as the future deterioration curve. Therefore, the remaining life of the mineral oil can be accurately predicted.
  • three or more curves that are candidates for the deterioration curve are prepared, and a curve that becomes the deterioration curve may be selected according to the magnitude of the difference B between the predicted value Y2 and the actually measured value YA ′′.
  • the life predicting device 4 is configured to predict the remaining life of the mineral oil using the transmitted light intensity (transmittance). However, the life predicting device 4 uses the absorbance to measure the remaining life of the mineral oil. May be predicted.
  • the deterioration function according to the present embodiment may be created (calculated) as described below.
  • the deterioration function creation unit 481 creates a deterioration function based on the temperature, with the environmental factor of the mineral oil as the temperature.
  • FIG. 5 is a graph showing the time until the insulation of the mineral oil is lost when the accelerated test of the mineral oil is performed in a dark place with the humidity kept constant (60%).
  • the abscissa indicates the elapsed time, and the ordinate indicates the percentage (unreliability) of the samples that have lost the insulating property among the samples (for example, 10 samples) that have been tested.
  • the temperature T the time until the insulation property is lost in the samples at 90 ° C., 105 ° C., and 120 ° C. is shown by a Weibull distribution.
  • the elapsed time at which the unreliability becomes 70% at each temperature may be set as the life of each temperature.
  • FIG. 6 is a diagram showing the relationship between the common logarithm of the lifetime at each temperature (Ln (t)) and the reciprocal of the temperature T (K).
  • the life L can be expressed by the following equation by applying the Arrhenius model.
  • a shown in FIG. 6 has shown the inclination.
  • FIG. 7 is a diagram showing the relationship between the common logarithm Ln (I) of absorbance in mineral oil and the elapsed time t.
  • the absorbance is an IR absorbance at a wavelength that the carbonyl group absorbs.
  • the cause of the degree of deterioration of the mineral oil is caused by an increase in the carbonyl groups of the mineral oil, and the mineral absorbance (peak area I) at the wavelength (wavelength of 5.7 ⁇ m to 5.9 ⁇ m) absorbed by the carbonyl group indicates Calculate the degree of oil deterioration.
  • the relationship shown in FIG. 7 was obtained when the vertical axis is the common logarithm of the absorbance of IR and the horizontal axis is the elapsed time.
  • b shown in FIG. 7 has shown the inclination. From the above results, it could be determined that the increase in carbonyl groups in the mineral oil was a primary reaction in which the amount of oxygen was constant.
  • FIG. 8 is a diagram showing a temperature profile in the transformer 2 up to the elapsed time t.
  • the vertical axis of the graph shown in FIG. 8 indicates the temperature T, and the horizontal axis indicates the elapsed time.
  • the average temperature up to the elapsed time t be the average temperature T AVE.t.
  • the remaining life LRe at the elapsed time t can be calculated by the following formula.
  • the IR light is irradiated from the IR light source 43 onto the mineral oil, transmitted through the wavelength cut filter 45 which is a band-pass filter that cuts other than the wavelength absorption band of the carbonyl group, and detected by the IR sensor 46. Let It be the absorbance of.
  • the elapsed time t real calculated from the degradation function and the absorbance It shown in the above equation 2 can be expressed by the following equation from the inverse function of the above equation 2.
  • the difference between the elapsed time t and the elapsed time t real calculated by the absorbance It and the deterioration function can be caused not only by steady deterioration but also by unsteady deterioration (inspection, maintenance, power outage, unsteady use, etc.) High in nature. Therefore, by setting t real to the substantial elapsed time, an appropriate remaining life can be calculated.
  • an appropriate remaining life LRe can be calculated by the following Expression 5 obtained by converting (correcting) t in Expression 3 above to t real for calculating the remaining life LRe.
  • the deterioration function creating unit 481 creates a deterioration function according to the water content of the mineral oil.
  • FIG. 9 shows the time until the insulation of the mineral oil is lost when the accelerated test of the mineral oil is performed in a dark place with the humidity and the temperature kept constant (for example, the humidity is 60% and the temperature is 105 ° C.). It is a graph.
  • the abscissa indicates the elapsed time, and the ordinate indicates the percentage (unreliability) of the samples that have lost the insulating property among the samples (for example, 10 samples) that have been tested.
  • the time until the insulating property is lost in the samples in which the amount of water contained in the mineral oil is 100 ppm, 300 ppm, and 500 ppm is shown by a Weibull distribution.
  • the elapsed time at which the unreliability becomes 70% in the sample containing each moisture content may be set as the life of the mineral oil containing each moisture content.
  • FIG. 10 is a graph showing the relationship between the common logarithm (Ln (t)) of the life of a mineral oil containing each water content and the reciprocal (1 / A) of the water content A contained in the mineral oil.
  • the life L can be expressed by the following equation by applying the Arrhenius model. Note that a 'shown in FIG. 10 indicates an inclination.
  • FIG. 11 is a graph showing the relationship between the common logarithm Ln (I) of the absorbance of mineral oil at the wavelength absorbed by the carbonyl group and the elapsed time t.
  • the relationship shown in FIG. 11 was obtained.
  • b 'shown in FIG. 11 has shown the inclination. From the above results, it could be determined that the increase in carbonyl groups in the mineral oil was a primary reaction in which the amount of oxygen was constant.
  • the deterioration function creating unit 481 calculates the contribution of a plurality of environmental factors (temperature, humidity, water content of mineral oil, illuminance, etc.) to the deterioration function (deterioration curve), and calculates the deterioration function (deterioration) from the plurality of environmental factors. Curve).
  • FIG. 12 is a block diagram showing a main configuration of a life estimating device 4a according to the present embodiment.
  • the lifetime prediction device 4a includes a transmitted light intensity determination unit 482a instead of the transmitted light intensity determination unit 482 included in the lifetime prediction device 4 described in the first embodiment. Further, the life estimating device 4a includes a change rate changing section 484a instead of the change rate changing section 484.
  • the change rate changing unit 484a acquires the detection result of the moisture (contaminant) contained in the mineral oil (target), and corrects the deterioration curve according to the moisture content of the mineral oil.
  • the life predicting device 4a includes an IR sensor 46a instead of the IR sensor 46.
  • the IR sensor 46a outputs, in addition to the function of the IR sensor 46, the absorbance of the wavelength absorbed by water to the change rate changing unit 484a.
  • the life prediction device 4a includes a storage unit 51a that stores an absorbance-water content correspondence table 513a and a water content-change rate correspondence table 514a instead of the storage unit 51.
  • the absorbance-water content correspondence table 513a shows the water content corresponding to the value of the absorbance at the wavelength absorbed by water.
  • the water content-change rate correspondence table 514a shows the change rate of the deterioration curve changed by the change rate changing unit 484 in accordance with the water content of the mineral oil.
  • the change rate is associated with the water content-change rate correspondence table 514a such that the greater the water content, the faster the deterioration progresses. That is, the change rate changing unit 484a corrects the future deterioration curve so that the larger the amount of the contaminant in the target object, the faster the deterioration progresses.
  • the deterioration curve can be changed so that the deterioration progresses faster according to the amount of the contaminants.
  • FIG. 13 is a flowchart illustrating an example of the flow of the life estimation process of the information processing apparatus 100a.
  • An example of the flow of the life prediction process of the information processing device 100a will be described with reference to FIG. Note that among the processing illustrated in FIG. 13, the same processing as the processing illustrated in FIG. 3 of the first embodiment is denoted by the same step number, and description thereof will not be repeated.
  • the transmitted light intensity determination unit 482a determines whether the difference between the predicted value and the measured value is equal to or greater than a second threshold (S7). When the difference between the measured value and the predicted value is equal to or greater than the second threshold value (YES in S7), the transmitted light intensity determining unit 482a causes the change rate changing unit 484a to determine the absorbance of the mineral oil having a wavelength absorbed by water. Instruct acquisition.
  • the change rate changing unit 484a acquires, from the IR sensor 46a, a value of absorbance obtained by irradiating the mineral oil with an IR having a wavelength that is absorbed by water (S10).
  • the change rate changing unit 484a determines the change rate of the deterioration curve to be changed with reference to the absorbance-moisture content correspondence table 513a and the moisture content-change rate correspondence table 514a.
  • the change rate changing unit 484a changes the deterioration function data so that the change rate of the deterioration curve is determined and becomes the change rate (S11).
  • the life calculation unit 483 predicts the remaining life of the mineral oil using the changed deterioration function data (S6).
  • the life prediction devices 4 and 4a predict the life of the mineral oil provided in the transformer 2 .
  • the temperature during operation of the engine affects the deterioration of the engine oil. Therefore, the deterioration function may be created from the temperature detected by the temperature sensor during operation of the engine. Therefore, the life prediction devices 4 and 4a can be applied to prediction of the remaining life of the engine oil provided in the engine.
  • Control blocks of the information processing apparatus 100 and the information processing apparatus 100a (particularly, a deterioration function creating unit 481, a transmitted light intensity determining unit 482, a transmitted light intensity determining unit 482a, a life calculating unit 483, a change rate changing unit 484, and a change rate changing unit 484a. ) May be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or may be realized by software.
  • the information processing apparatus 100 and the information processing apparatus 100a include a computer that executes instructions of a program that is software for realizing each function.
  • This computer includes, for example, one or more processors and a computer-readable recording medium storing the above-described program. Then, in the computer, the object of the present invention is achieved when the processor reads the program from the recording medium and executes the program.
  • the processor for example, a CPU (Central Processing Unit) can be used.
  • the recording medium include “temporary tangible media” such as ROM (Read Only Memory), tapes, disks, cards, semiconductor memories, and programmable logic circuits. Further, a RAM (Random Access Memory) for expanding the program may be further provided.
  • the program may be supplied to the computer via an arbitrary transmission medium (a communication network, a broadcast wave, or the like) capable of transmitting the program.
  • a transmission medium a communication network, a broadcast wave, or the like
  • one embodiment of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
  • An information processing apparatus includes a curve determination unit that determines a deterioration curve representing a degree of deterioration of the object with respect to elapsed time according to an environmental factor of the object, and reflects the degree of deterioration of the object.
  • An acquisition unit that periodically acquires the measured value of the physical quantity, and a prediction that predicts a period until the degree of deterioration of the target object reaches a predetermined degree of deterioration based on the measured value of the physical quantity and the deterioration curve. Unit.
  • a control method of the information processing apparatus includes a curve determining step of determining a deterioration curve representing a degree of deterioration of the object with respect to elapsed time according to an environmental factor of the object; An acquisition step of periodically acquiring a measured value of a physical quantity reflecting the degree of deterioration of the target object, based on the measured value of the physical quantity and the deterioration curve, until the degree of deterioration of the object reaches a predetermined degree of deterioration. A prediction step of predicting a period.
  • the life of the object is predicted using the actual degree of deterioration of the object at the time of the prediction. Therefore, even if the target object has undergone the unsteady deterioration by the time of performing the prediction, there is an effect that the life can be predicted in consideration of the unsteady deterioration.
  • the predicting unit from the deterioration degree and the deterioration curve corresponding to the measured value of the physical quantity, specifies an assumed elapsed time that can be regarded as elapsed, and according to the deterioration curve after the assumed elapsed time, according to the deterioration curve. A period until the degree of deterioration reaches a predetermined degree of deterioration may be predicted.
  • the remaining life of the mineral oil can be predicted based on the measured value of the degree of deterioration. That is, there is an effect that accurate life prediction can be performed.
  • the prediction unit when a difference between the degree of deterioration corresponding to the measured value of the physical quantity at a certain point in time and the degree of deterioration expected from the deterioration curve at the point in time is equal to or less than a predetermined value, the first curve is changed to a future curve.
  • the difference between the degree of deterioration corresponding to the measured value of the physical quantity at the time and the degree of deterioration expected from the deterioration curve at the time is larger than a predetermined value, the first curve is used.
  • the second curve in which the deterioration progresses faster may be used as the future deterioration curve.
  • the cause of extreme deterioration in a short period of time is a change in the water content of the mineral oil.
  • the rate of deterioration of the mineral oil increases.
  • the second curve which progresses faster than the first curve, is used as the future deterioration curve. Therefore, there is an effect that the remaining life of the mineral oil can be accurately predicted.
  • the information processing apparatus may include a deterioration curve correction unit that acquires a detection result of a contaminant included in the target object and corrects the future deterioration curve in accordance with the detection result of the contaminant. According to the above configuration, there is an effect that an appropriate remaining life prediction can be performed according to the detection result of the contaminant.
  • the prediction unit may correct the future degradation curve such that the greater the amount of the contaminant, the faster the degradation progresses. According to the configuration, the prediction unit has an effect that the deterioration curve can be changed so that the progress of the deterioration is accelerated according to the amount of the contaminant.
  • the measured value of the physical quantity may change according to the molecular structure of the object. According to the above configuration, there is an effect that the life can be predicted based on the deterioration according to the molecular structure.
  • the physical quantity may be a transmittance of light having a predetermined wavelength. According to the above configuration, there is an effect that the life can be predicted using the transmittance of light having a predetermined wavelength.
  • the physical quantity may be a transmittance of an infrared ray having a predetermined wavelength. According to the above configuration, there is an effect that the life can be predicted using the transmittance of infrared light having a predetermined wavelength.
  • the environmental factor may be temperature. According to the above configuration, there is an effect that the curve determination unit can determine a deterioration curve indicating a degree of deterioration of the object with respect to elapsed time according to the temperature of the object.
  • the object may be oil. According to the above configuration, there is an effect that the life of the oil can be predicted.
  • the object may be oil, and the contaminant may be water. According to the above configuration, there is an effect that the life expectancy of oil can be predicted according to the water content.
  • a management system may include any one of the above-described information processing apparatuses and a sensor that measures the physical quantity.
  • a control program is a control program for causing a computer to function as the above-described information processing device, the control program including the curve determination unit, the acquisition unit, and the prediction A computer may function as a unit.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The present invention performs accurate lifetime prediction, even when deterioration of a subject is abnormally progressed. This information processing device (100) is provided with: a deterioration function construction unit (481) which determines a deterioration curve that indicates the degree of deterioration of a subject with respect to an elapsed time according to an environmental factor; a transmitted light intensity determination unit (482) which periodically acquires a physical amount that reflects the degree of deterioration; and a lifetime calculation unit (483) which predicts a remaining lifetime of the subject from the physical amount and the deterioration curve.

Description

情報処理装置、管理システム、制御プログラムおよび予測方法Information processing apparatus, management system, control program, and prediction method
 本発明は対象物の劣化度合いを予測する情報処理装置、管理システム、制御プログラム、および予測方法に関する。 The present invention relates to an information processing apparatus, a management system, a control program, and a prediction method for predicting a degree of deterioration of an object.
 機器の寿命を予測する方法として、例えば、特許文献1には、絶縁物の劣化状況を診断する方法が開示されている。前記方法では、外部環境要因の影響を考慮した診断項目の補正値を取得し、前記補正値を利用して絶縁物の劣化状況を診断する。 As a method of estimating the service life of a device, for example, Patent Literature 1 discloses a method of diagnosing the state of deterioration of an insulator. In the method, a correction value of a diagnosis item in consideration of the influence of an external environmental factor is obtained, and the deterioration state of the insulator is diagnosed using the correction value.
 また、特許文献2には、機器の寿命を予測する情報処理装置等が開示されている。詳細には、当該情報処理装置は設置環境における物理量を測定し、その測定結果をセンサ情報として出力するセンサと、センサから出力されるセンサ情報に基づいて、設置環境に応じて変化する機器寿命を予測する機器寿命予測部とを備える。さらに、当該情報処理装置はセンサにより測定される物理量ごとに、時間の経過に伴う機器寿命を示す曲線によって予め定義されている複数のパターンを保持するパターン保持部を備える。機器寿命予測部は、パターン保持部に保持されている複数のパターンの中から、センサから出力されるセンサ情報に基づいて所定のパターンを選択することにより機器寿命を予測する。 Patent Document 2 discloses an information processing device or the like for estimating the life of a device. In detail, the information processing apparatus measures a physical quantity in an installation environment, and outputs a measurement result as sensor information, and a device life that changes according to the installation environment based on the sensor information output from the sensor. And a device life prediction unit for predicting. Further, the information processing apparatus includes a pattern holding unit that holds, for each physical quantity measured by the sensor, a plurality of patterns defined in advance by a curve indicating a device life with time. The device life prediction unit predicts the device life by selecting a predetermined pattern from a plurality of patterns held in the pattern holding unit based on sensor information output from the sensor.
日本国公開特許公報「特開2005-61901号公報(2005年3月10日公開)」Japanese Unexamined Patent Publication “JP 2005-61901 A (published March 10, 2005)” 日本国公開特許公報「特開2017-219515号公報(2017年12月14日公開)」Japanese Unexamined Patent Publication "JP-A-2017-219515 (published on December 14, 2017)"
 しかしながら、上述のような従来技術は、機器または機器を構成する部材が、短期間で想定外の度合いで劣化が進むような非定常の劣化が生じることを前提とした技術ではない。そのため、上述のような従来技術は、対象機器の劣化が非定常に進むと、正確な寿命予測を行うことが困難となる虞が生じ得た。 However, the above-described conventional technology is not a technology on the premise that a device or a member constituting the device undergoes unsteady deterioration such that deterioration progresses to an unexpected degree in a short period of time. Therefore, in the above-described related art, when the deterioration of the target device proceeds irregularly, there is a possibility that it may be difficult to accurately predict the life of the target device.
 本発明の一態様は、正確な寿命予測を行うことができる情報処理装置等を実現することを目的とする。 One object of one embodiment of the present invention is to realize an information processing device or the like capable of performing accurate life prediction.
 前記の課題を解決するために、本発明の一態様に係る情報処理装置は、対象物の環境因子に応じて、経過時間に対する前記対象物の劣化度合いを表す劣化曲線を決定する曲線決定部と、前記対象物の劣化度合いを反映した物理量の測定値を定期的に取得する取得部と、前記物理量の前記測定値と前記劣化曲線とに基づいて、前記対象物の劣化度合いが所定の劣化度合いに達するまでの期間を予測する予測部とを備える。 In order to solve the above problem, an information processing apparatus according to an aspect of the present invention includes a curve determination unit that determines a deterioration curve representing a degree of deterioration of the target object with respect to elapsed time according to an environmental factor of the target object. An acquisition unit that periodically acquires a measured value of a physical quantity reflecting the degree of deterioration of the object; and a degree of deterioration of the object based on the measured value of the physical quantity and the deterioration curve. And a predicting unit that predicts a period until the time reaches.
 また、本発明の一態様に係る情報処理装置の制御方法は、対象物の環境因子に応じて、経過時間に対する前記対象物の劣化度合いを表す劣化曲線を決定する曲線決定工程と、前記対象物の劣化度合いを反映した物理量の測定値を定期的に取得する取得工程と、前記物理量の前記測定値と前記劣化曲線とに基づいて、前記対象物の劣化度合いが所定の劣化度合いに達するまでの期間を予測する予測工程とを含む。 Further, a control method of the information processing apparatus according to an aspect of the present invention includes a curve determining step of determining a deterioration curve representing a degree of deterioration of the object with respect to elapsed time according to an environmental factor of the object; An acquisition step of periodically acquiring a measured value of a physical quantity reflecting the degree of deterioration of the target object, based on the measured value of the physical quantity and the deterioration curve, until the degree of deterioration of the object reaches a predetermined degree of deterioration. A prediction step of predicting a period.
 本発明の一態様によれば、対象物の劣化度合いが所定の劣化度合いに達するまでの期間を正確に予測できる。 According to one embodiment of the present invention, it is possible to accurately predict a period until the degree of deterioration of the target object reaches the predetermined degree of deterioration.
本発明の実施形態1に係る寿命予測装置の要部構成を示すブロック図である。FIG. 1 is a block diagram illustrating a main configuration of a life estimating apparatus according to a first embodiment of the present invention. 本発明の実施形態1に係るシステムにおける寿命予測装置の適用例の一例を示す図である。It is a figure showing an example of an example of application of a life prediction device in a system concerning Embodiment 1 of the present invention. 本発明の実施形態1に係る情報処理装置の寿命予測処理の流れの一例を示すフローチャートである。5 is a flowchart illustrating an example of a flow of a life expectancy process of the information processing apparatus according to the first embodiment of the present invention. (a)および(b)は、本発明の実施形態1に係る劣化関数が示す劣化曲線の一例を示す図である。FIGS. 7A and 7B are diagrams illustrating an example of a deterioration curve indicated by a deterioration function according to the first embodiment of the present invention. 本発明の実施形態1に係る湿度を一定とし暗所にて鉱物油の加速試験を行った場合の鉱物油の絶縁性が失われるまでの時間を示したグラフである。4 is a graph showing the time until the insulating property of the mineral oil is lost when the accelerated test of the mineral oil is performed in a dark place with the humidity kept constant according to the first embodiment of the present invention. 本発明の実施形態1に係る各温度における鉱物油の寿命時間の常用対数(Ln(t))と温度T(K)の逆数との関係を示す図である。It is a figure which shows the relationship between the common logarithm (Ln (t)) of the life time of the mineral oil at each temperature and the reciprocal of the temperature T (K) according to the first embodiment of the present invention. 本発明の実施形態1に係る鉱物油における吸光度の常用対数Ln(I)と経過時間tとの関係を示す図である。FIG. 3 is a diagram illustrating a relationship between a common logarithm Ln (I) of absorbance and an elapsed time t in the mineral oil according to the first embodiment of the present invention. 本発明の実施形態1に係る、経過時間tまでの変圧器の温度プロファイルを示す図である。FIG. 4 is a diagram illustrating a temperature profile of the transformer up to an elapsed time t according to the first embodiment of the present invention. 本発明の実施形態1に係る、湿度および温度を一定とし、暗所にて鉱物油の加速試験を行った場合の鉱物油の絶縁性が失われるまでの時間を示したグラフである。4 is a graph showing the time until the insulating property of the mineral oil is lost when an accelerated test of the mineral oil is performed in a dark place with the humidity and the temperature kept constant, according to the first embodiment of the present invention. 本発明の実施形態1に係る、各水分量を含む鉱物油における寿命時間の常用対数(Ln(t))と鉱物油に含まれる水分量Aの逆数(1/A)との関係を示す図である。The figure which shows the relationship between the common logarithm (Ln (t)) of the life time in the mineral oil containing each water content and the reciprocal of the water content A contained in the mineral oil (1 / A) according to Embodiment 1 of the present invention. It is. 本発明の実施形態1に係る、カルボニル基が吸収する波長のIRにおける鉱物油の吸光度の常用対数Ln(I)と経過時間tとの関係を示す図である。It is a figure which shows the relationship between the common logarithm Ln (I) of the absorbance of the mineral oil in IR of the wavelength which a carbonyl group absorbs, and elapsed time t which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る寿命予測装置4aの要部構成を示すブロック図である。FIG. 6 is a block diagram illustrating a main configuration of a life estimating device 4a according to a second embodiment of the present invention. 本発明の実施形態2に係る情報処理装置の寿命予測処理の流れの一例を示すフローチャートである。9 is a flowchart illustrating an example of a flow of a life prediction process of the information processing device according to the second embodiment of the present invention.
 〔実施形態1〕
 以下、本発明の一実施形態について、詳細に説明する。
[Embodiment 1]
Hereinafter, an embodiment of the present invention will be described in detail.
 §1 適用例
 図2はシステム1における寿命予測装置(管理システム)4の適用例の一例を示す図である。はじめに、図2を用いて寿命予測装置4の適用例の概要を説明する。
§1 Application Example FIG. 2 is a diagram showing an example of an application example of the life prediction device (management system) 4 in the system 1. First, an outline of an application example of the life estimation device 4 will be described with reference to FIG.
 システム1は変圧器2が備える鉱物油の電気絶縁性に関する寿命を予測するシステムである。前記の構成によれば、鉱物油が電気絶縁性を失う前に、ユーザは鉱物油の取り換えを行うことができ、変圧器2の故障を予防することができる。 The system 1 is a system for predicting the life of the mineral oil of the transformer 2 with respect to the electrical insulation. According to the above configuration, the user can replace the mineral oil before the mineral oil loses the electrical insulating property, and the failure of the transformer 2 can be prevented.
 図2に示すように、システム1は、変圧器2、予測機器3およびデータセンタ6を含む。また、予測機器3は、寿命予測装置4を備えている。 As shown in FIG. 2, the system 1 includes a transformer 2, a prediction device 3, and a data center 6. Further, the prediction device 3 includes a life prediction device 4.
 寿命予測装置4は、変圧器2が備える鉱物油の環境に影響する環境因子(温度、湿度等)から、鉱物油の使用時間と劣化度との関係を表す劣化関数または劣化曲線を算出する。 The life prediction device 4 calculates a deterioration function or a deterioration curve representing the relationship between the use time of the mineral oil and the degree of deterioration from environmental factors (temperature, humidity, etc.) that affect the environment of the mineral oil provided in the transformer 2.
 また、寿命予測装置4は、定期的に(所定のタイミングで)変圧器2の鉱物油の劣化度の測定結果を取得する。例えば、鉱物油の劣化が進行すると、鉱物油における所定波長の赤外線(infrared radiation:IR)の透過光強度(透過率)は減少する。 (4) The life expectancy predicting device 4 periodically (at a predetermined timing) acquires the measurement result of the degree of deterioration of the mineral oil of the transformer 2. For example, as the mineral oil deteriorates, the transmitted light intensity (transmittance) of infrared light (infrared radiation: IR) of a predetermined wavelength in the mineral oil decreases.
 したがって、寿命予測装置4は鉱物油における所定波長のIRの透過光強度の測定結果を取得することで、鉱物油の劣化度の測定結果を取得してもよい。 Therefore, the life prediction device 4 may acquire the measurement result of the degree of deterioration of the mineral oil by acquiring the measurement result of the transmitted light intensity of the IR of the predetermined wavelength in the mineral oil.
 寿命予測装置4は、鉱物油の劣化度から鉱物油の実質的な使用時間を算出する。ここで、実質的な使用時間とは、鉱物油が実際に使用された時間ではなく、鉱物油の劣化度に対応付いた時間である。寿命予測装置4は、上記劣化関数と鉱物油の実質的な使用時間とから鉱物油が所定の劣化度に達する時間を予測し、鉱物油の寿命を予測する。 The life expectancy predicting device 4 calculates the actual use time of the mineral oil from the degree of deterioration of the mineral oil. Here, the substantial use time is not the time when the mineral oil is actually used, but the time corresponding to the degree of deterioration of the mineral oil. The life prediction device 4 predicts the time when the mineral oil reaches a predetermined degree of deterioration from the deterioration function and the actual use time of the mineral oil, and predicts the life of the mineral oil.
 前記の構成によれば、予測行う時点における対象物の実際の劣化度合いを用いて対象物の寿命を予測する。そのため、予測行う時点までに対象物に非定常な劣化が生じていたとしても、当該非定常な劣化を考慮に入れた寿命予測を行うことができるという効果を奏する。 According to the above configuration, the life of the object is predicted using the actual degree of deterioration of the object at the time of the prediction. Therefore, even if the target object has undergone the unsteady deterioration by the time of performing the prediction, there is an effect that the life can be predicted in consideration of the unsteady deterioration.
 また、上記構成は、IR光源およびIRセンサでシステムを組むことで実現が可能であり、低コストで正確な寿命予測を可能にすることができる。 The above configuration can be realized by forming a system with an IR light source and an IR sensor, and can accurately predict the life at low cost.
 非定常な劣化としては、例えば、保全作業、天災、獣害等によって生じる鉱物油に含まれる水分量の急激の変化等を原因とする予測範囲外の劣化等を挙げることができる。 The non-stationary deterioration includes, for example, a deterioration outside a predicted range due to a sudden change in the amount of water contained in mineral oil caused by a maintenance operation, a natural disaster, a beast damage, or the like.
 §2 構成例
 (変圧器2)
 上述のように、変圧器2は電気絶縁性を有する鉱物油を備えている。また、図2に示すように、変圧器2は鉱物油を変圧器2から予測機器3に排出するためのバルブ21を備えている。鉱物油は変圧器2から排出されると、予測機器3の吸引経路33を介して予測機器3に注入される。
§2 Configuration example (Transformer 2)
As described above, the transformer 2 includes the mineral oil having an electrical insulating property. Further, as shown in FIG. 2, the transformer 2 includes a valve 21 for discharging the mineral oil from the transformer 2 to the prediction device 3. When the mineral oil is discharged from the transformer 2, it is injected into the prediction device 3 via the suction path 33 of the prediction device 3.
 (予測機器3)
 予測機器3は、吸引経路33、回転翼34、回転軸35、磁石36、電動モータ37、および寿命予測装置4を備えている。吸引経路33、回転翼34、回転軸35、磁石36および電動モータ37は、鉱物油を変圧器2から予測機器3に吸引するための構成である。また、吸引経路33、回転翼34、回転軸35、磁石36および電動モータ37から成る構成は、劣化度が測定された鉱物油を変圧器2に戻してもよい。
(Estimation device 3)
The prediction device 3 includes a suction path 33, a rotary blade 34, a rotary shaft 35, a magnet 36, an electric motor 37, and a life prediction device 4. The suction path 33, the rotary blade 34, the rotary shaft 35, the magnet 36, and the electric motor 37 are configured to suction the mineral oil from the transformer 2 to the prediction device 3. In addition, the configuration including the suction path 33, the rotary blades 34, the rotary shaft 35, the magnet 36, and the electric motor 37 may return the mineral oil whose deterioration degree has been measured to the transformer 2.
  (寿命予測装置4)
 図1は、本実施形態に係る寿命予測装置4の要部構成を示すブロック図である。
(Life prediction device 4)
FIG. 1 is a block diagram showing a configuration of a main part of the life estimating device 4 according to the present embodiment.
 図1および図2に示すように、寿命予測装置4は、IR光源保護筐体41、透過窓42、IR光源43、IRセンサ保護筐体44、波長カットフィルタ45、IRセンサ46、温度センサ47および情報処理装置100を備えている。 As shown in FIGS. 1 and 2, the life estimation device 4 includes an IR light source protection housing 41, a transmission window 42, an IR light source 43, an IR sensor protection housing 44, a wavelength cut filter 45, an IR sensor 46, and a temperature sensor 47. And an information processing device 100.
   (IR光源43)
 図2に示すように、IR光源43は、IR光源保護筐体41内に配置している。IR光源43は、IR光源保護筐体41に設置されている透過窓42を介して、予測機器3に吸引された鉱物油にIRを照射する。IR光源43は、中赤外線から遠赤外線(例えば、2.5μm~1000μmの波長のIR)を発生する構成としてもよい。透過窓42の素材としては、フッ化カルシウム(CaF)等を用いてもよい。
(IR light source 43)
As shown in FIG. 2, the IR light source 43 is disposed inside the IR light source protection housing 41. The IR light source 43 irradiates the mineral oil sucked by the prediction device 3 with IR through the transmission window 42 provided in the IR light source protection casing 41. The IR light source 43 may be configured to generate mid-infrared rays to far-infrared rays (for example, IR having a wavelength of 2.5 μm to 1000 μm). As a material of the transmission window 42, calcium fluoride (CaF 2 ) or the like may be used.
 また、IR光源43が発生する光を近赤外線(例えば、0.7~2.5μmの波長のIR)または可視光(例えば、0.4~0.7μmの波長の光)とし、透過窓42の素材をガラスとしてもよい。前記構成によれば、IR光源43に汎用品を用いることができる。また、透過窓42にかかるコストをコストダウンさせることができる。 Further, the light generated by the IR light source 43 is a near-infrared ray (for example, IR having a wavelength of 0.7 to 2.5 μm) or visible light (for example, light having a wavelength of 0.4 to 0.7 μm). May be glass. According to the above configuration, a general-purpose product can be used for the IR light source 43. Further, the cost of the transmission window 42 can be reduced.
   (IRセンサ46)
 図2に示すように、IRセンサ46は、IRセンサ保護筐体44内に配置している。IRセンサ46は、IR光源43から照射されて鉱物油を透過したIRを、IRセンサ保護筐体44に設置されている透過窓42および波長カットフィルタ45を介して検知する。波長カットフィルタ45は、所定の波長のIRをカットするフィルタである。例えば、波長カットフィルタ45は、5~6μm範囲の波長のIRを選択的に透過する構成であってもよい。
(IR sensor 46)
As shown in FIG. 2, the IR sensor 46 is disposed inside the IR sensor protection housing 44. The IR sensor 46 detects the IR radiated from the IR light source 43 and transmitted through the mineral oil via the transmission window 42 and the wavelength cut filter 45 installed in the IR sensor protection casing 44. The wavelength cut filter 45 is a filter that cuts off IR of a predetermined wavelength. For example, the wavelength cut filter 45 may be configured to selectively transmit IR having a wavelength in the range of 5 to 6 μm.
 例えば、IRセンサ46は、鉱物油の劣化に伴って増加する官能基が吸収する波長のIRを検知する構成としてもよい。換言すると、鉱物油の劣化度合いの測定値は、鉱物油の分子構造に応じて変化する。前記構成によれば、鉱物油の劣化の特性を利用して、鉱物油の劣化度合いを測定する寿命予測装置4を実現することができる。 For example, the IR sensor 46 may be configured to detect IR at a wavelength that is absorbed by a functional group that increases with the deterioration of the mineral oil. In other words, the measured value of the degree of deterioration of the mineral oil changes according to the molecular structure of the mineral oil. According to the configuration, it is possible to realize the life predicting device 4 that measures the degree of deterioration of the mineral oil by utilizing the characteristics of the deterioration of the mineral oil.
 この場合、波長カットフィルタ45として当該官能基が吸収する波長以外の波長のIRをカットするフィルタを用いてもよい。前記官能基として、例えば、カルボキシル基、ケトン、アルデヒド等に含まれるカルボニル基(>C=O)を用いてもよい。IRセンサ46は検知したIRの透過光強度を示す信号を制御部48に出力する。 In this case, a filter that cuts IR of a wavelength other than the wavelength absorbed by the functional group may be used as the wavelength cut filter 45. As the functional group, for example, a carbonyl group (> C = O) contained in a carboxyl group, a ketone, an aldehyde or the like may be used. The IR sensor 46 outputs a signal indicating the detected IR transmitted light intensity to the control unit 48.
 また、寿命予測装置4に波長域の狭いIRを照射するIR光源43を適用することによって、寿命予測装置4が波長カットフィルタ45を備えていない構成としてもよい。前記の構成よれば、寿命予測装置4を構成する部材点数を減らし、寿命予測装置4の設計自由度を上げることができる。例えば、寿命予測装置4の小型化に寄与することができる。 The life prediction device 4 may be configured not to include the wavelength cut filter 45 by applying the IR light source 43 that irradiates IR having a narrow wavelength range to the life prediction device 4. According to the above configuration, the number of members constituting the life prediction device 4 can be reduced, and the degree of freedom in designing the life prediction device 4 can be increased. For example, it is possible to contribute to downsizing of the life prediction device 4.
   (温度センサ47)
 温度センサ47は、鉱物油の温度を測定し、測定した温度を示す信号を制御部48に出力する。
(Temperature sensor 47)
The temperature sensor 47 measures the temperature of the mineral oil, and outputs a signal indicating the measured temperature to the control unit 48.
   (情報処理装置100)
 情報処理装置100は制御部48、通信部49、タイマ50、および記憶部51を備えている。
(Information processing device 100)
The information processing device 100 includes a control unit 48, a communication unit 49, a timer 50, and a storage unit 51.
    (制御部48)
 制御部48は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を含み、情報処理に応じて各構成要素の制御を行う。制御部48は、劣化関数作成部(曲線決定部)481、透過光強度判定部(取得部)482、寿命算出部(予測部)483および変化率変更部(劣化曲線修正部)484を備えている。
(Control unit 48)
The control unit 48 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and controls each component according to information processing. The control unit 48 includes a deterioration function creation unit (curve determination unit) 481, a transmitted light intensity determination unit (acquisition unit) 482, a life calculation unit (prediction unit) 483, and a change rate change unit (deterioration curve correction unit) 484. I have.
     (劣化関数作成部481)
 図4は、劣化関数作成部481が作成する劣化関数が示す劣化曲線の一例を示す図である。図4の実線で示す曲線は劣化曲線を示している。劣化曲線は鉱物油の使用時間(経過時間)と鉱物油の劣化度との関係を示している。
(Deterioration function creation unit 481)
FIG. 4 is a diagram illustrating an example of a deterioration curve indicated by the deterioration function created by the deterioration function creating unit 481. The curve shown by the solid line in FIG. 4 shows the deterioration curve. The deterioration curve shows the relationship between the use time (elapsed time) of the mineral oil and the degree of deterioration of the mineral oil.
 劣化関数作成部481は、鉱物油(対象物)の環境因子に応じて、経過時間に対する鉱物油の劣化度合いを表す前記劣化曲線を決定する。 The deterioration function creating unit 481 determines the deterioration curve representing the degree of deterioration of the mineral oil with respect to the elapsed time according to the environmental factor of the mineral oil (object).
 詳細には、劣化関数作成部481は、温度センサ47から受信した信号が示す鉱物油の温度から、鉱物油の使用時間と鉱物油の透過光強度(劣化度)との関係を表す劣化関数を算出する。劣化関数作成部481は算出した劣化関数および劣化曲線の少なくとも1つを示す劣化関数データ511を記憶部51に格納する。 More specifically, the deterioration function creating unit 481 generates a deterioration function indicating the relationship between the usage time of the mineral oil and the transmitted light intensity (degree of deterioration) of the mineral oil from the temperature of the mineral oil indicated by the signal received from the temperature sensor 47. calculate. The deterioration function creation unit 481 stores the deterioration function data 511 indicating at least one of the calculated deterioration function and the deterioration curve in the storage unit 51.
     (透過光強度判定部482)
 透過光強度判定部482は、IRセンサ46から鉱物油の透過光強度を、タイマ50を参照して所定の周期にて取得する。タイマ50は透過光強度判定部482が透過光強度を取得してからの経過時間、または。寿命算出部483が鉱物油の寿命を算出してからの経過時間を示す。当該透過光強度は鉱物油(対象物)の劣化度合いを反映している。
(Transmitted light intensity determination unit 482)
The transmitted light intensity determination unit 482 acquires the transmitted light intensity of the mineral oil from the IR sensor 46 at a predetermined cycle with reference to the timer 50. The timer 50 determines the elapsed time since the transmitted light intensity determination unit 482 acquires the transmitted light intensity, or The life calculation unit 483 indicates the elapsed time after calculating the life of the mineral oil. The transmitted light intensity reflects the degree of deterioration of the mineral oil (object).
 換言すると、透過光強度判定部482は対象物の劣化度合いを反映した物理量の測定値を定期的に取得する。 In other words, the transmitted light intensity determination unit 482 periodically acquires a measured value of a physical quantity that reflects the degree of deterioration of the target object.
 透過光強度判定部482は、劣化関数データ511から予測される現在の透過光強度の予測値と取得した透過光強度の実測値とを比較する。 The transmitted light intensity determination unit 482 compares the current predicted value of the transmitted light intensity predicted from the deterioration function data 511 with the actually measured value of the acquired transmitted light intensity.
 透過光強度判定部482は、実測値と予測値との差が以下(1)から(3)の何れかであるかを判定する。 (4) The transmitted light intensity determination unit 482 determines whether the difference between the actually measured value and the predicted value is any of the following (1) to (3).
 (1)実測値と予測値との差が第1の閾値未満
 (2)実測値と予測値との差が第1の閾値以上、かつ、第2の閾値未満
 (3)実測値と予測値との差が第2の閾値以上
 (1)の場合、透過光強度判定部482は、透過光強度の予測値を寿命算出部483に出力する。
(1) The difference between the measured value and the predicted value is less than the first threshold value (2) The difference between the measured value and the predicted value is equal to or more than the first threshold value and less than the second threshold value (3) The measured value and the predicted value If the difference from the difference is equal to or more than the second threshold value (1), the transmitted light intensity determination unit 482 outputs the predicted value of the transmitted light intensity to the life calculation unit 483.
 (2)の場合、透過光強度判定部482は、透過光強度の実測値を寿命算出部483に出力する。 In the case of (2), the transmitted light intensity determination unit 482 outputs the measured value of the transmitted light intensity to the life calculation unit 483.
 (3)の場合、透過光強度判定部482は、透過光強度の予測値と実測値とを寿命算出部483に出力する。 In the case of (3), the transmitted light intensity determination unit 482 outputs the predicted value and the measured value of the transmitted light intensity to the life calculation unit 483.
 なお、透過光強度判定部482は吸光度を取得して透過光強度を算出する構成としてもよい。 The transmitted light intensity determination unit 482 may be configured to acquire the absorbance and calculate the transmitted light intensity.
     (変化率変更部484)
 変化率変更部484は、劣化関数データ511が示す劣化曲線の変化率を変更する。詳細には、変化率変更部484は、取得した透過光強度の実測値と予測値との差を算出する。例えば、変化率変更部484は、記憶部51に格納されている変化率テーブル512を参照し、実測値と予測値との差の大きさに対応した変化率に設定してもよい。例えば、変化率テーブル512には、実測値と予測値との差の大きさに応じた変化率が示されている。
(Change rate change unit 484)
The change rate changing unit 484 changes the change rate of the deterioration curve indicated by the deterioration function data 511. More specifically, the change rate changing unit 484 calculates a difference between the obtained measured value and the predicted value of the transmitted light intensity. For example, the change rate changing unit 484 may refer to the change rate table 512 stored in the storage unit 51 and set the change rate corresponding to the magnitude of the difference between the actually measured value and the predicted value. For example, the change rate table 512 shows a change rate according to the magnitude of the difference between the actually measured value and the predicted value.
 変化率変更部484は、劣化曲線の変化率が設定した変化率となるように、劣化関数データ511を変更する。その後、変化率変更部484は、透過光強度の実測値を寿命算出部483に出力する。すなわち、寿命算出部483は劣化曲線の変化率が変更された劣化関数データ511を用いて、後述する寿命時間の算出を行う。 The change rate changing unit 484 changes the deterioration function data 511 such that the change rate of the deterioration curve becomes the set change rate. After that, the change rate changing unit 484 outputs the actually measured value of the transmitted light intensity to the life calculating unit 483. That is, the life calculation unit 483 calculates the life time described later using the deterioration function data 511 in which the change rate of the deterioration curve is changed.
     (寿命算出部483)
 寿命算出部483は、取得した透過光強度と劣化曲線とに基づいて、鉱物油の劣化度合いが所定の劣化度合いに達するまでの期間を予測する。
(Life calculation unit 483)
The life calculation unit 483 predicts a period until the degree of deterioration of the mineral oil reaches a predetermined degree of deterioration based on the acquired transmitted light intensity and the deterioration curve.
 詳細には、寿命算出部483は、劣化関数データ511を参照して、透過光強度判定部482または変化率変更部484から出力された透過光強度の実測値または予測値に対応する経過時間を算出する。寿命算出部483は、算出した経過時間を用いて、鉱物油の余寿命を算出する。寿命算出部483は算出した鉱物油の余寿命を示す信号を通信部49を介して外部機器であるデータセンタ6に出力する。 More specifically, the life calculation unit 483 refers to the deterioration function data 511 and calculates the elapsed time corresponding to the actually measured value or the predicted value of the transmitted light intensity output from the transmitted light intensity determination unit 482 or the change rate change unit 484. calculate. The life calculation unit 483 calculates the remaining life of the mineral oil using the calculated elapsed time. The life calculation unit 483 outputs a signal indicating the calculated remaining life of the mineral oil to the data center 6, which is an external device, via the communication unit 49.
   (通信部49)
 通信部49は外部機器との通信を行う。通信部49はケーブルなどを利用した有線の通信を行ってもよいし、無線通信を行ってもよい。
(Communication unit 49)
The communication unit 49 performs communication with an external device. The communication unit 49 may perform wired communication using a cable or the like, or may perform wireless communication.
 (データセンタ6)
 データセンタ6は、例えば、変圧器2の管理を行うためのものである。データセンタ6は、寿命予測装置4から鉱物油の寿命時間(余寿命)を示す信号を受信する。データセンタ6は表示部などを備えていてもよい。データセンタ6は寿命予測装置4が予測した寿命時間を、当該表示部に表示する等してユーザに変圧器2の鉱物油の寿命時間を報知する。
(Data center 6)
The data center 6 is for managing the transformer 2, for example. The data center 6 receives a signal indicating the life time (remaining life) of the mineral oil from the life prediction device 4. The data center 6 may include a display unit and the like. The data center 6 notifies the user of the life time of the mineral oil of the transformer 2 by displaying the life time predicted by the life prediction device 4 on the display unit or the like.
 §3 動作例
 (情報処理装置100の処理の流れの例)
 図3は情報処理装置100の寿命予測処理の流れの一例を示すフローチャートである。図3を用いて、情報処理装置100の寿命予測処理の流れの一例について説明する。
§3 Operation example (example of processing flow of information processing apparatus 100)
FIG. 3 is a flowchart illustrating an example of the flow of the life estimation process of the information processing apparatus 100. An example of the flow of the life prediction process of the information processing device 100 will be described with reference to FIG.
 劣化関数作成部481は、温度センサ47から鉱物油の温度を示す信号を取得する(S1)と、取得した信号が示す温度を用いて、鉱物油の使用時間と鉱物油の透過光強度(劣化度)との関係を表す劣化関数を算出する(劣化曲線を生成する)。続いて、寿命算出部483は劣化関数データ511から鉱物油の寿命時間を予測する(S2:曲線決定工程)。ここで、寿命算出部483による寿命時間の予測の詳細について図4の(a)を用いて説明する。図4の(a)において実線で示す曲線は、劣化関数作成部481が算出した劣化関数を表すグラフ(劣化曲線)である。当該グラフの横軸は鉱物油の使用時間を示しており、縦軸は鉱物油の透過光強度を示している。また、縦軸には寿命判定値が設定されている。寿命算出部483は、鉱物油の透過光強度が寿命判定値に達する予測時点(Lt1)を鉱物油の寿命の時点を予測し、現在までの使用時間と鉱物油の寿命の時点とから鉱物油の余寿命時間を予測する。 When the deterioration function creating unit 481 acquires a signal indicating the temperature of the mineral oil from the temperature sensor 47 (S1), the use time of the mineral oil and the transmitted light intensity of the mineral oil (deterioration) are used using the temperature indicated by the acquired signal. (A degree) is calculated (a deterioration curve is generated). Subsequently, the life calculation unit 483 predicts the life time of the mineral oil from the deterioration function data 511 (S2: curve determination step). Here, details of the prediction of the life time by the life calculation unit 483 will be described with reference to FIG. The curve shown by the solid line in FIG. 4A is a graph (deterioration curve) representing the deterioration function calculated by the deterioration function generator 481. The horizontal axis of the graph indicates the use time of the mineral oil, and the vertical axis indicates the transmitted light intensity of the mineral oil. Further, a life determination value is set on the vertical axis. The life calculation unit 483 predicts the predicted time (Lt1) at which the transmitted light intensity of the mineral oil reaches the life determination value as the life time of the mineral oil, and calculates the mineral oil from the usage time up to the present and the life time of the mineral oil. Predict the remaining life time.
 例えば、寿命算出部483は、予測される鉱物油の寿命の時点から、鉱物油の使用開始時の寿命時間(初期寿命時間)を算出し、当該初期寿命時間から現在までの使用時間を差し引くことで鉱物油の余寿命時間を算出する。 For example, the life calculation unit 483 calculates a life time (initial life time) at the start of use of the mineral oil from the predicted life time of the mineral oil, and subtracts the use time from the initial life time to the present time. To calculate the remaining life time of the mineral oil.
 続いて、透過光強度判定部482は、寿命算出部483が寿命を算出してから所定の期間が経過すると(S3)、透過光強度判定部482はIRセンサ46から鉱物油の透過光強度を取得する(S4:取得工程)。続いて、透過光強度判定部482は劣化関数データ511から予測される現在の透過光強度の予測値と取得した透過光強度の実測値との差が第1の閾値以上であるかを判定する(S5)。実測値と予測値との差が第1の閾値未満である場合(S5でNO)、寿命算出部483は予測値に対応する使用時間から寿命時間を予測する(S6:予測工程)。そして、処理はS3に戻る。 Subsequently, the transmitted light intensity determination unit 482 determines the transmitted light intensity of the mineral oil from the IR sensor 46 when a predetermined period elapses after the life calculation unit 483 calculates the life (S3). Acquisition (S4: acquisition step). Subsequently, the transmitted light intensity determining unit 482 determines whether the difference between the current predicted value of the transmitted light intensity predicted from the deterioration function data 511 and the actually measured value of the transmitted light intensity is equal to or greater than a first threshold value. (S5). When the difference between the measured value and the predicted value is less than the first threshold value (NO in S5), the life calculation unit 483 predicts the life time from the use time corresponding to the predicted value (S6: prediction step). Then, the process returns to S3.
 実測値と予測値との差が第1の閾値以上である場合(S5でYES)、透過光強度判定部482は劣化関数データ511から予測される現在の透過光強度の予測値と取得した透過光強度の実測値との差が第2の閾値以上であるかを判定する(S7)。実測値と予測値との差が第2の閾値未満である場合(S7でNO)、寿命算出部483は劣化曲線から実測値に対応する使用時間を算出する。すなわち、劣化曲線における使用時間を補正する(S8)。続いて、寿命算出部483は補正した使用時間から寿命時間を予測する(S6)。そして、処理はS3に戻る。 If the difference between the measured value and the predicted value is equal to or greater than the first threshold value (YES in S5), transmitted light intensity determination section 482 determines the current predicted value of transmitted light intensity predicted from deterioration function data 511 and the acquired transmission It is determined whether the difference between the measured light intensity and the measured value is equal to or greater than a second threshold (S7). When the difference between the measured value and the predicted value is less than the second threshold value (NO in S7), the life calculation unit 483 calculates the use time corresponding to the measured value from the deterioration curve. That is, the use time in the deterioration curve is corrected (S8). Subsequently, the life calculation unit 483 predicts the life time from the corrected use time (S6). Then, the process returns to S3.
 ここで、図4の(a)を参照して、S5、S7、S8およびS6に続く処理を具体的に説明する。図4の(a)に示すように、劣化曲線における時点t’の透過光強度の予測値は予測値Y1となる。一方で、時点t’において、IRセンサ46が測定した透過光強度IRの実測値が実測値YA’であったとする。予測値Y1と実測値YA’との差Aが第1の閾値以上、かつ、第2の閾値未満である場合、寿命算出部483は劣化曲線における使用時間を以下のように補正する。寿命算出部483は劣化曲線において透過光強度が実測値YA’に対応する時点taを現在とし、現在までの使用時間を時点taまでの時間(見なし経過時間)と補正する。続いて、寿命算出部483は時点taと寿命の時点Lt1とから、時点taから寿命の時点Lt1までの時間を算出することによって現在の鉱物油の寿命時間(余寿命)を予測する。 Here, the processing subsequent to S5, S7, S8 and S6 will be specifically described with reference to FIG. As shown in FIG. 4A, the predicted value of the transmitted light intensity at the time point t 'in the deterioration curve is the predicted value Y1. On the other hand, it is assumed that the measured value of the transmitted light intensity IR measured by the IR sensor 46 at time t 'is the measured value YA'. When the difference A between the predicted value Y1 and the actually measured value YA 'is equal to or larger than the first threshold and smaller than the second threshold, the life calculating unit 483 corrects the use time in the deterioration curve as follows. The life calculation unit 483 sets the time point ta at which the transmitted light intensity corresponds to the actually measured value YA 'in the deterioration curve as the current time, and corrects the usage time up to the present time to the time up to the time point ta (assumed elapsed time). Subsequently, the life calculating unit 483 predicts the current life time (remaining life) of the mineral oil from the time point ta and the life time point Lt1 by calculating the time from the time point ta to the life time point Lt1.
 上述の処理は、以下のように換言することができる。寿命算出部483は透過光強度の実測値(測定値)に対応する劣化度合いと劣化曲線とから、経過したと見なせる見なし経過時間を特定する。続いて、寿命算出部483は前記見なし経過時間より後における劣化曲線に従って、鉱物油の劣化度合いが寿命判定値(所定の劣化度合い)に達するまでの期間を予測する。 The above processing can be paraphrased as follows. The life calculation unit 483 specifies a deemed elapsed time that can be regarded as elapsed from the degree of deterioration and the deterioration curve corresponding to the actually measured value (measured value) of the transmitted light intensity. Subsequently, the life calculation unit 483 predicts a period until the degree of deterioration of the mineral oil reaches the life determination value (a predetermined degree of deterioration) according to the deterioration curve after the assumed elapsed time.
 前記の構成によれば、劣化度合いの予測値と実測値とに差が生じた場合においても、鉱物油の余寿命を正確に予測することができる。 According to the above configuration, even when a difference occurs between the predicted value of the degree of deterioration and the actually measured value, the remaining life of the mineral oil can be accurately predicted.
 実測値と予測値との差が第2の閾値以上である場合(S7でYES)、変化率変更部484は劣化曲線の変化率を変更する(S9)。続いて、寿命算出部483は変化率が変更された劣化曲線から寿命時間を予測する(S6)。そして、処理はS3に戻る。 If the difference between the measured value and the predicted value is greater than or equal to the second threshold (YES in S7), the change rate changing unit 484 changes the change rate of the deterioration curve (S9). Subsequently, the life calculation unit 483 predicts the life time from the deterioration curve whose rate of change has been changed (S6). Then, the process returns to S3.
 ここで、図4の(b)を参照して、S5、S7、S9およびS6に続く処理を具体的に説明する。図4の(b)に示すように、劣化曲線における時点t’’の透過光強度の予測値は予測値Y2となる。一方で、時点t’’において、IRセンサ46から取得した透過光強度IRの実測値が実測値YA’’であったとする。予測値Y2と実測値YA’’との差Bが第2の閾値以上である場合、変化率変更部484は劣化関数データ511が示す劣化曲線の変化率を、劣化の進行が速くなるように変更する。詳細には、変化率変更部484は実測値と予測値との差の大きさに応じて、当該変化率を変更する。図4の(b)には、変化率が変更された劣化曲線は一点鎖線によって示されている。図4の(b)に示すように、変化率が変更された劣化曲線は時点t’’の実測値YA’’から開始する。また、変化率および劣化曲線の開始位置が変更されることによって、鉱物油の透過光強度が寿命判定値に達する予測時点がLt2に変更する。続いて、寿命算出部483は時点t’’と変更された寿命の時点Lt2とから、鉱物油の余寿命を算出する。 Here, the processing subsequent to S5, S7, S9 and S6 will be specifically described with reference to FIG. As shown in FIG. 4B, the predicted value of the transmitted light intensity at the time point t ″ in the deterioration curve is the predicted value Y2. On the other hand, it is assumed that the measured value of the transmitted light intensity IR acquired from the IR sensor 46 at time t ″ is the measured value YA ″. When the difference B between the predicted value Y2 and the actually measured value YA ″ is equal to or greater than the second threshold, the change rate changing unit 484 sets the change rate of the deterioration curve indicated by the deterioration function data 511 so that the progress of the deterioration becomes faster. change. Specifically, the change rate changing unit 484 changes the change rate according to the magnitude of the difference between the measured value and the predicted value. In FIG. 4B, the degradation curve whose rate of change has been changed is indicated by a chain line. As shown in FIG. 4B, the deterioration curve whose rate of change is changed starts from the actual measurement value YA '' at the time point t ''. Further, when the change rate and the start position of the deterioration curve are changed, the predicted time when the transmitted light intensity of the mineral oil reaches the life determination value is changed to Lt2. Subsequently, the life calculation unit 483 calculates the remaining life of the mineral oil from the time t ″ and the changed time Lt2 of the life.
 上述の処理は、以下のように換言することができる。ある時点における鉱物油の透過光強度に対応する劣化度合いと、該時点における劣化曲線から予想される劣化度合いとの差が、所定値以下の場合、寿命算出部483は第1曲線(図4の(b)における実線で示す曲線)を未来の劣化曲線として使用する。また、該時点における鉱物油の透過光強度に対応する劣化度合いと、該時点における劣化曲線から予想される劣化度合いとの差が、所定値より大きい場合、寿命算出部483は第1曲線より劣化の進行が速い第2曲線(図4の(b)における一点鎖線で示す曲線)を未来の劣化曲線として使用する。 The above processing can be paraphrased as follows. When the difference between the degree of deterioration corresponding to the transmitted light intensity of the mineral oil at a certain point in time and the degree of deterioration expected from the deterioration curve at that point in time is equal to or less than a predetermined value, the life calculation unit 483 uses the first curve (FIG. The curve shown by the solid line in (b) is used as a future deterioration curve. If the difference between the degree of deterioration corresponding to the transmitted light intensity of the mineral oil at the time and the degree of deterioration expected from the deterioration curve at the time is larger than a predetermined value, the life calculation unit 483 determines that the deterioration is smaller than the first curve. Is used as the future deterioration curve (the curve shown by the one-dot chain line in FIG. 4B).
 例えば、鉱物油において短期間に極度に劣化が進む原因として、鉱物油の水分の含量の変化を挙げることができる。鉱物油の水分の含量が増加すると、鉱物油の劣化の進行速度は速くなる。 For example, the cause of extreme deterioration of mineral oil in a short period of time may be a change in the water content of the mineral oil. As the moisture content of the mineral oil increases, the rate of deterioration of the mineral oil increases.
 前記の構成によれば、鉱物油の水分の含量が増加した可能性がある場合、第1曲線より劣化の進行が速い第2曲線を未来の劣化曲線として使用する。そのため、鉱物油の余寿命を正確に予測することができる。なお、劣化曲線の候補となる曲線は3つ以上用意されており、予測値Y2と実測値YA’’との差Bの大きさに応じて、劣化曲線となる曲線が選択されてもよい。 According to the above configuration, if there is a possibility that the water content of the mineral oil has increased, the second curve, which progresses faster than the first curve, is used as the future deterioration curve. Therefore, the remaining life of the mineral oil can be accurately predicted. Note that three or more curves that are candidates for the deterioration curve are prepared, and a curve that becomes the deterioration curve may be selected according to the magnitude of the difference B between the predicted value Y2 and the actually measured value YA ″.
 また、上述の説明では、寿命予測装置4は透過光強度(透過率)を用いて鉱物油の余寿命を予測する構成を示したが、寿命予測装置4は吸光度を用いて鉱物油の余寿命を予測する構成としてしてもよい。 Further, in the above description, the life predicting device 4 is configured to predict the remaining life of the mineral oil using the transmitted light intensity (transmittance). However, the life predicting device 4 uses the absorbance to measure the remaining life of the mineral oil. May be predicted.
 (劣化関数の作成例1)
 本実施形態に係る劣化関数は以下に示すように作成(算出)されてもよい。本例においては、劣化関数作成部481は、鉱物油の環境因子を温度として、温度によって劣化関数を作成する。
(Example 1 of creation of deterioration function)
The deterioration function according to the present embodiment may be created (calculated) as described below. In this example, the deterioration function creation unit 481 creates a deterioration function based on the temperature, with the environmental factor of the mineral oil as the temperature.
 図5は、湿度を一定(60%)とし暗所にて鉱物油の加速試験を行った場合の鉱物油の絶縁性が失われるまでの時間を示したグラフである。横軸は経過時間を示し、縦軸は試験を行ったサンプル(例えば、サンプル数が10)のうち絶縁性を失ったサンプルのパーセント(不信頼度)を示している。図5においては、温度Tとして、90℃、105℃および120℃の状態のサンプルにおける絶縁性が失われるまでの時間をワイブル分布にて示している。例えば、各温度において不信頼度が70%となる経過時間を各温度の寿命としてもよい。 FIG. 5 is a graph showing the time until the insulation of the mineral oil is lost when the accelerated test of the mineral oil is performed in a dark place with the humidity kept constant (60%). The abscissa indicates the elapsed time, and the ordinate indicates the percentage (unreliability) of the samples that have lost the insulating property among the samples (for example, 10 samples) that have been tested. In FIG. 5, as the temperature T, the time until the insulation property is lost in the samples at 90 ° C., 105 ° C., and 120 ° C. is shown by a Weibull distribution. For example, the elapsed time at which the unreliability becomes 70% at each temperature may be set as the life of each temperature.
 図6は、各温度における寿命の常用対数(Ln(t))と温度T(K)の逆数との関係を示す図である。寿命Lはアレニウスモデルを適用することにより以下の式で表すことができる。なお、図6に示すaは傾きを示している。 FIG. 6 is a diagram showing the relationship between the common logarithm of the lifetime at each temperature (Ln (t)) and the reciprocal of the temperature T (K). The life L can be expressed by the following equation by applying the Arrhenius model. In addition, a shown in FIG. 6 has shown the inclination.
 Ln(L)=a×(1/T)
 L=exp(a/T)・・・式1
 次に、例えば、特定の温度(例えば、120℃)、一定の湿度(60%)、暗所において鉱物油の加速劣化試験を行った場合の鉱物油の化学変化による劣化度を示す関数を作成する例について説明する。
Ln (L) = a × (1 / T)
L = exp (a / T) ・ ・ ・ Equation 1
Next, for example, a function indicating the degree of deterioration of a mineral oil due to a chemical change when an accelerated deterioration test of the mineral oil is performed in a specific temperature (for example, 120 ° C.), a constant humidity (60%), and a dark place is created. An example will be described.
 図7は、鉱物油における吸光度の常用対数Ln(I)と経過時間tとの関係を示す図である。当該吸光度はカルボニル基が吸収する波長のIRの吸光度である。 FIG. 7 is a diagram showing the relationship between the common logarithm Ln (I) of absorbance in mineral oil and the elapsed time t. The absorbance is an IR absorbance at a wavelength that the carbonyl group absorbs.
 本例においては、鉱物油の劣化度の原因を鉱物油のカルボニル基の増加とし、カルボニル基が吸収する波長(5.7μm~5.9μmの波長)のIRの吸光度(ピーク面積I)から鉱物油の劣化度を算出する。図7に示すように、縦軸をIRの吸光度の常用対数とし、横軸を経過時間とすると図7に示す関係が得られた。なお、図7に示すbは傾きを示している。前記結果から、鉱物油におけるカルボニル基の増加は酸素の量を一定とした一次反応であると判断することができた。 In this example, the cause of the degree of deterioration of the mineral oil is caused by an increase in the carbonyl groups of the mineral oil, and the mineral absorbance (peak area I) at the wavelength (wavelength of 5.7 μm to 5.9 μm) absorbed by the carbonyl group indicates Calculate the degree of oil deterioration. As shown in FIG. 7, the relationship shown in FIG. 7 was obtained when the vertical axis is the common logarithm of the absorbance of IR and the horizontal axis is the elapsed time. In addition, b shown in FIG. 7 has shown the inclination. From the above results, it could be determined that the increase in carbonyl groups in the mineral oil was a primary reaction in which the amount of oxygen was constant.
 以上の結果から、温度120℃、湿度60%、暗所における、カルボニル基が吸収する波長の鉱物油の吸光度と経過時間との関係は以下の式で表すことができる。 From the above results, the relationship between the absorbance of the mineral oil at the wavelength absorbed by the carbonyl group and the elapsed time at a temperature of 120 ° C., a humidity of 60% and a dark place can be expressed by the following equation.
 Ln(I)=b×t
 I=exp(bt)・・・式2
 (鉱物油の余寿命の算出例1)
 本実施形態に係る鉱物油の余寿命の算出は以下に説明するように行われてもよい。
Ln (I) = b × t
I = exp (bt) ... Equation 2
(Calculation example 1 of remaining life of mineral oil)
The calculation of the remaining life of the mineral oil according to the present embodiment may be performed as described below.
 図8は、経過時間tまでの変圧器2における温度プロファイルを示す図である。図8に示すグラフの縦軸は温度Tを示しており、横軸は経過時間を示している。 FIG. 8 is a diagram showing a temperature profile in the transformer 2 up to the elapsed time t. The vertical axis of the graph shown in FIG. 8 indicates the temperature T, and the horizontal axis indicates the elapsed time.
 例えば、経過時間tまでの平均温度を平均温度TAVE.tとする。経過時間tにおける余寿命LReは以下の計算式により算出することができる。 For example, let the average temperature up to the elapsed time t be the average temperature T AVE.t. The remaining life LRe at the elapsed time t can be calculated by the following formula.
 LRe =L-t=exp(a/TAVE.t) - t・・・式3
 また、経過時間tにおいて、IR光源43からIRを鉱物油に照射し、カルボニル基の波長吸収帯以外をカットするバンドパスフィルタである波長カットフィルタ45を透過してIRセンサ46に検知されたIRの吸光度をItとする。
LRe = Lt = exp (a / T AVE.t )-t ・ ・ ・ Equation 3
Further, at the elapsed time t, the IR light is irradiated from the IR light source 43 onto the mineral oil, transmitted through the wavelength cut filter 45 which is a band-pass filter that cuts other than the wavelength absorption band of the carbonyl group, and detected by the IR sensor 46. Let It be the absorbance of.
 この場合、前記式2が示す劣化関数と吸光度Itとから算出される経過時間trealは、前記式2の逆関数から以下の式で表すことができる。 In this case, the elapsed time t real calculated from the degradation function and the absorbance It shown in the above equation 2 can be expressed by the following equation from the inverse function of the above equation 2.
 I-1=t=Ln(I)/b
 treal=Ln(It)/b・・・式4
 経過時間tと吸光度Itおよび劣化関数により算出された経過時間trealとの差は、定常の劣化だけではなく、非定常な劣化(検査、保全、停電、非定常使用等)を原因として生じる可能性が高い。そのため、trealを実質的な経過時間とすることによって、適切な余寿命を算出することができる。
I -1 = t = Ln (I) / b
t real = Ln (It) / b ・ ・ ・ Equation 4
The difference between the elapsed time t and the elapsed time t real calculated by the absorbance It and the deterioration function can be caused not only by steady deterioration but also by unsteady deterioration (inspection, maintenance, power outage, unsteady use, etc.) High in nature. Therefore, by setting t real to the substantial elapsed time, an appropriate remaining life can be calculated.
 よって、余寿命LReを算出するための上述の式3におけるtをtrealに変換(補正)した下記の式5によって、適切な余寿命LReを算出することができる。 Therefore, an appropriate remaining life LRe can be calculated by the following Expression 5 obtained by converting (correcting) t in Expression 3 above to t real for calculating the remaining life LRe.
 LRe =L - t=exp(a/TAVE.t) - treal・・・式5
 (劣化関数の作成例2)
 次に、本実施形態に係る劣化関数の他の作成の例について説明する。本例においては、劣化関数作成部481は鉱物油の水分含量に応じて劣化関数を作成する。
LRe = L-t = exp (a / T AVE.t )-t real・ ・ ・ Equation 5
(Example 2 of creation of deterioration function)
Next, another example of creating the deterioration function according to the present embodiment will be described. In this example, the deterioration function creating unit 481 creates a deterioration function according to the water content of the mineral oil.
 図9は、湿度および温度を一定(例えば、湿度60%、温度105℃)とし、暗所にて鉱物油の加速試験を行った場合の鉱物油の絶縁性が失われるまでの時間を示したグラフである。横軸は経過時間を示し、縦軸は試験を行ったサンプル(例えば、サンプル数が10)のうち絶縁性を失ったサンプルのパーセント(不信頼度)を示している。図9においては、鉱物油に含まれる水分量が100ppm、300ppmおよび500ppmのサンプルにおける絶縁性が失われるまでの時間をワイブル分布にて示している。例えば、各水分量を含むサンプルにおいて不信頼度が70%となる経過時間を、各水分量を含む鉱物油の寿命としてもよい。 FIG. 9 shows the time until the insulation of the mineral oil is lost when the accelerated test of the mineral oil is performed in a dark place with the humidity and the temperature kept constant (for example, the humidity is 60% and the temperature is 105 ° C.). It is a graph. The abscissa indicates the elapsed time, and the ordinate indicates the percentage (unreliability) of the samples that have lost the insulating property among the samples (for example, 10 samples) that have been tested. In FIG. 9, the time until the insulating property is lost in the samples in which the amount of water contained in the mineral oil is 100 ppm, 300 ppm, and 500 ppm is shown by a Weibull distribution. For example, the elapsed time at which the unreliability becomes 70% in the sample containing each moisture content may be set as the life of the mineral oil containing each moisture content.
 図10は、各水分量を含む鉱物油における寿命の常用対数(Ln(t))と鉱物油に含まれる水分量Aの逆数(1/A)との関係を示す図である。寿命Lはアレニウスモデルを適用することにより以下の式で表すことができる。なお、図10に示すa’は傾きを示している。 FIG. 10 is a graph showing the relationship between the common logarithm (Ln (t)) of the life of a mineral oil containing each water content and the reciprocal (1 / A) of the water content A contained in the mineral oil. The life L can be expressed by the following equation by applying the Arrhenius model. Note that a 'shown in FIG. 10 indicates an inclination.
 Ln(L)=a'×(1/A)
 L=exp(a'/A)・・・式6
 次に、例えば、一定の温度(105℃)、一定の湿度(60%)、一定の鉱物油に含まれる特定の水分量(例えば、水分量300ppm)、暗所において鉱物油の加速劣化試験を行った場合の鉱物油の化学変化による劣化度を示す関数を作成する例について説明する。
Ln (L) = a '× (1 / A)
L = exp (a '/ A) ・ ・ ・ Equation 6
Next, for example, at a certain temperature (105 ° C), a certain humidity (60%), a certain amount of water contained in a certain mineral oil (for example, a water content of 300 ppm), an accelerated deterioration test of the mineral oil in a dark place is performed. An example in which a function indicating the degree of deterioration of a mineral oil due to a chemical change when the function is performed will be described.
 図11は、カルボニル基が吸収する波長の鉱物油における吸光度の常用対数Ln(I)と経過時間tとの関係を示す図である。 FIG. 11 is a graph showing the relationship between the common logarithm Ln (I) of the absorbance of mineral oil at the wavelength absorbed by the carbonyl group and the elapsed time t.
 本例においては、鉱物油の劣化度の原因を鉱物油のカルボニル基(>C=O)の増加とし、カルボニル基が吸収する波長の吸光度(ピーク面積I)から鉱物油の劣化度を算出する。図11に示すように、縦軸をIRの吸光度の常用対数とし、横軸を経過時間とすると図11に示す関係が得られた。なお、図11に示すb’は傾きを示している。前記結果から、鉱物油におけるカルボニル基の増加は酸素の量を一定とした一次反応であると判断することができた。 In this example, the cause of the deterioration degree of the mineral oil is assumed to be an increase in the carbonyl group (> C = O) of the mineral oil, and the deterioration degree of the mineral oil is calculated from the absorbance (peak area I) at the wavelength absorbed by the carbonyl group. . As shown in FIG. 11, when the vertical axis is a common logarithm of the absorbance of IR and the horizontal axis is elapsed time, the relationship shown in FIG. 11 was obtained. In addition, b 'shown in FIG. 11 has shown the inclination. From the above results, it could be determined that the increase in carbonyl groups in the mineral oil was a primary reaction in which the amount of oxygen was constant.
 以上の結果から、温度105℃、湿度60%、鉱物油に含まれる水分量が300ppm、暗所における、鉱物油のカルボニル基が吸収する波長のIRの吸光度と経過時間との関係は以下の式で表すことができる。 From the above results, the relationship between the IR absorbance of the wavelength absorbed by the carbonyl group of the mineral oil and the elapsed time in a dark place at a temperature of 105 ° C, a humidity of 60%, a moisture content of the mineral oil of 300 ppm, and a dark place is given by Can be represented by
 Ln(I)=b'×t
 I=exp(b't)・・・式7
 なお、劣化関数作成部481は、劣化関数(劣化曲線)に対する複数の環境因子(温度、湿度、鉱物油の水分含量、照度など)の寄与度を算出し、複数の環境因子から劣化関数(劣化曲線)を作成してもよい。
Ln (I) = b '× t
I = exp (b't) ... Equation 7
The deterioration function creating unit 481 calculates the contribution of a plurality of environmental factors (temperature, humidity, water content of mineral oil, illuminance, etc.) to the deterioration function (deterioration curve), and calculates the deterioration function (deterioration) from the plurality of environmental factors. Curve).
 〔実施形態2〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 2]
Another embodiment of the present invention will be described below. For convenience of explanation, members having the same functions as the members described in the above embodiment are denoted by the same reference numerals, and the description thereof will not be repeated.
 §1 構成例
 図12は、本実施形態に係る寿命予測装置4aの要部構成を示すブロック図である。
§1 Configuration Example FIG. 12 is a block diagram showing a main configuration of a life estimating device 4a according to the present embodiment.
 図12に示すように、本実施形態に係る寿命予測装置4aは実施形態1にて説明した寿命予測装置4が備える透過光強度判定部482の代わりに透過光強度判定部482aを備えている。また、寿命予測装置4aは変化率変更部484の代わりに変化率変更部484aを備えている。 寿命 As shown in FIG. 12, the lifetime prediction device 4a according to the present embodiment includes a transmitted light intensity determination unit 482a instead of the transmitted light intensity determination unit 482 included in the lifetime prediction device 4 described in the first embodiment. Further, the life estimating device 4a includes a change rate changing section 484a instead of the change rate changing section 484.
 変化率変更部484aは、鉱物油(対象物)に含まれる水分(混入物)の検出結果を取得し、鉱物油の水分含量に応じて、劣化曲線を修正する。 The change rate changing unit 484a acquires the detection result of the moisture (contaminant) contained in the mineral oil (target), and corrects the deterioration curve according to the moisture content of the mineral oil.
 前記の構成によれば、鉱物油の水分含量に応じた適切な鉱物油の余寿命予測を行うことができる。 According to the above configuration, it is possible to appropriately predict the remaining life of the mineral oil according to the water content of the mineral oil.
 実施形態1にて説明した透過光強度判定部482および変化率変更部484が行う処理と透過光強度判定部482aおよび変化率変更部484aが行う処理との違いについては、下記の「情報処理装置100aの処理の流れの例」にて詳細に説明する。 Regarding the difference between the processing performed by the transmitted light intensity determination unit 482 and the change rate change unit 484 described in the first embodiment and the processing performed by the transmitted light intensity determination unit 482a and the change rate change unit 484a, the following “information processing apparatus” Example of Process Flow of 100a ".
 また、寿命予測装置4aはIRセンサ46の代わりにIRセンサ46aを備えている。IRセンサ46aはIRセンサ46の機能に加え、水に吸収される波長の吸光度を変化率変更部484aに出力する。 (4) The life predicting device 4a includes an IR sensor 46a instead of the IR sensor 46. The IR sensor 46a outputs, in addition to the function of the IR sensor 46, the absorbance of the wavelength absorbed by water to the change rate changing unit 484a.
 また、寿命予測装置4aは記憶部51の代わりに、吸光度-水分含量対応テーブル513aおよび水分含量-変化率対応テーブル514aを格納している記憶部51aを備えている。 The life prediction device 4a includes a storage unit 51a that stores an absorbance-water content correspondence table 513a and a water content-change rate correspondence table 514a instead of the storage unit 51.
 吸光度-水分含量対応テーブル513aには、水に吸収される波長の吸光度の値に対応する水分含量が示されている。水分含量-変化率対応テーブル514aには、変化率変更部484が変更する劣化曲線の変化率が鉱物油の水分含量に対応させて示されている。 The absorbance-water content correspondence table 513a shows the water content corresponding to the value of the absorbance at the wavelength absorbed by water. The water content-change rate correspondence table 514a shows the change rate of the deterioration curve changed by the change rate changing unit 484 in accordance with the water content of the mineral oil.
 例えば水分含量-変化率対応テーブル514aには、水分含量が多いほど劣化の進行が速くなるように変化率が対応付いている。すなわち、変化率変更部484aは対象物への混入物の量が多いほど、より劣化の進行が速くなるよう未来の劣化曲線を修正する。 For example, the change rate is associated with the water content-change rate correspondence table 514a such that the greater the water content, the faster the deterioration progresses. That is, the change rate changing unit 484a corrects the future deterioration curve so that the larger the amount of the contaminant in the target object, the faster the deterioration progresses.
 前記構成によれば、混入物の量に応じて劣化の進行が速くなるように劣化曲線を変更することができる。 According to the above configuration, the deterioration curve can be changed so that the deterioration progresses faster according to the amount of the contaminants.
 §2 動作例
 (情報処理装置100aの処理の流れの例)
 図13は情報処理装置100aの寿命予測処理の流れの一例を示すフローチャートである。図13を用いて、情報処理装置100aの寿命予測処理の流れの一例について説明する。なお、図13に示す処理のうち、実施形態1の図3に示す処理と同様の処理については同じスッテプ番号を付記し、その説明を繰り返さない。
§2 Operation example (example of processing flow of information processing apparatus 100a)
FIG. 13 is a flowchart illustrating an example of the flow of the life estimation process of the information processing apparatus 100a. An example of the flow of the life prediction process of the information processing device 100a will be described with reference to FIG. Note that among the processing illustrated in FIG. 13, the same processing as the processing illustrated in FIG. 3 of the first embodiment is denoted by the same step number, and description thereof will not be repeated.
 透過光強度判定部482aは前記予測値と前記実測値との差が第2の閾値以上であるかを判定する(S7)。前記実測値と前記予測値との差が第2の閾値以上である場合(S7でYES)、透過光強度判定部482aは変化率変更部484aに水に吸収される波長の鉱物油における吸光度の取得を指示する。変化率変更部484aは、水に吸収される波長のIRを鉱物油に照射することによって得られる吸光度の値をIRセンサ46aから取得する(S10)。続いて、変化率変更部484aは、吸光度-水分含量対応テーブル513aおよび水分含量-変化率対応テーブル514aを参照し、変更する劣化曲線の変化率を決定する。変化率変更部484aは、劣化曲線の変化率が決定して変化率となるように劣化関数データを変更する(S11)。その後、寿命算出部483は変更された劣化関数データを用いて、鉱物油の余寿命を予測する(S6)。 (4) The transmitted light intensity determination unit 482a determines whether the difference between the predicted value and the measured value is equal to or greater than a second threshold (S7). When the difference between the measured value and the predicted value is equal to or greater than the second threshold value (YES in S7), the transmitted light intensity determining unit 482a causes the change rate changing unit 484a to determine the absorbance of the mineral oil having a wavelength absorbed by water. Instruct acquisition. The change rate changing unit 484a acquires, from the IR sensor 46a, a value of absorbance obtained by irradiating the mineral oil with an IR having a wavelength that is absorbed by water (S10). Subsequently, the change rate changing unit 484a determines the change rate of the deterioration curve to be changed with reference to the absorbance-moisture content correspondence table 513a and the moisture content-change rate correspondence table 514a. The change rate changing unit 484a changes the deterioration function data so that the change rate of the deterioration curve is determined and becomes the change rate (S11). Thereafter, the life calculation unit 483 predicts the remaining life of the mineral oil using the changed deterioration function data (S6).
 なお、上述の実施形態においては、寿命予測装置4および4aが、変圧器2が備える鉱物油の寿命を予測する構成について説明した。例えば、エンジン動作時の温度がエンジンオイルの劣化に影響を与える。そのため、エンジン動作時に温度センサが検出した温度から、劣化関数を作成してもよい。よって、寿命予測装置4および4aをエンジンが備えるエンジンオイルの余寿命の予測に適用することができる。 In the above-described embodiment, the configuration in which the life prediction devices 4 and 4a predict the life of the mineral oil provided in the transformer 2 has been described. For example, the temperature during operation of the engine affects the deterioration of the engine oil. Therefore, the deterioration function may be created from the temperature detected by the temperature sensor during operation of the engine. Therefore, the life prediction devices 4 and 4a can be applied to prediction of the remaining life of the engine oil provided in the engine.
 〔ソフトウェアによる実現例〕
 情報処理装置100および情報処理装置100aの制御ブロック(特に劣化関数作成部481、透過光強度判定部482、透過光強度判定部482a、寿命算出部483、変化率変更部484および変化率変更部484a)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
[Example of software implementation]
Control blocks of the information processing apparatus 100 and the information processing apparatus 100a (particularly, a deterioration function creating unit 481, a transmitted light intensity determining unit 482, a transmitted light intensity determining unit 482a, a life calculating unit 483, a change rate changing unit 484, and a change rate changing unit 484a. ) May be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or may be realized by software.
 後者の場合、情報処理装置100および情報処理装置100aは、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば1つ以上のプロセッサを備えていると共に、上記プログラムを記憶したコンピュータ読み取り可能な記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the information processing apparatus 100 and the information processing apparatus 100a include a computer that executes instructions of a program that is software for realizing each function. This computer includes, for example, one or more processors and a computer-readable recording medium storing the above-described program. Then, in the computer, the object of the present invention is achieved when the processor reads the program from the recording medium and executes the program. As the processor, for example, a CPU (Central Processing Unit) can be used. Examples of the recording medium include “temporary tangible media” such as ROM (Read Only Memory), tapes, disks, cards, semiconductor memories, and programmable logic circuits. Further, a RAM (Random Access Memory) for expanding the program may be further provided. Further, the program may be supplied to the computer via an arbitrary transmission medium (a communication network, a broadcast wave, or the like) capable of transmitting the program. Note that one embodiment of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining the technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 〔まとめ〕
 本発明の一態様に係る情報処理装置は、対象物の環境因子に応じて、経過時間に対する前記対象物の劣化度合いを表す劣化曲線を決定する曲線決定部と、前記対象物の劣化度合いを反映した物理量の測定値を定期的に取得する取得部と、前記物理量の前記測定値と前記劣化曲線とに基づいて、前記対象物の劣化度合いが所定の劣化度合いに達するまでの期間を予測する予測部とを備える。
[Summary]
An information processing apparatus according to one aspect of the present invention includes a curve determination unit that determines a deterioration curve representing a degree of deterioration of the object with respect to elapsed time according to an environmental factor of the object, and reflects the degree of deterioration of the object. An acquisition unit that periodically acquires the measured value of the physical quantity, and a prediction that predicts a period until the degree of deterioration of the target object reaches a predetermined degree of deterioration based on the measured value of the physical quantity and the deterioration curve. Unit.
 また、本発明の一態様に係る情報処理装置の制御方法は、対象物の環境因子に応じて、経過時間に対する前記対象物の劣化度合いを表す劣化曲線を決定する曲線決定工程と、前記対象物の劣化度合いを反映した物理量の測定値を定期的に取得する取得工程と、前記物理量の前記測定値と前記劣化曲線とに基づいて、前記対象物の劣化度合いが所定の劣化度合いに達するまでの期間を予測する予測工程とを含む。 Further, a control method of the information processing apparatus according to an aspect of the present invention includes a curve determining step of determining a deterioration curve representing a degree of deterioration of the object with respect to elapsed time according to an environmental factor of the object; An acquisition step of periodically acquiring a measured value of a physical quantity reflecting the degree of deterioration of the target object, based on the measured value of the physical quantity and the deterioration curve, until the degree of deterioration of the object reaches a predetermined degree of deterioration. A prediction step of predicting a period.
 前記の構成によれば、予測を行う時点における対象物の実際の劣化度合いを用いて対象物の寿命を予測する。そのため、予測行う時点までに対象物に非定常な劣化が生じていたとしても、当該非定常な劣化を考慮に入れた寿命予測を行うことができるという効果を奏する。 According to the configuration described above, the life of the object is predicted using the actual degree of deterioration of the object at the time of the prediction. Therefore, even if the target object has undergone the unsteady deterioration by the time of performing the prediction, there is an effect that the life can be predicted in consideration of the unsteady deterioration.
 前記予測部は、前記物理量の前記測定値に対応する劣化度合いと前記劣化曲線とから、経過したと見なせる見なし経過時間を特定し、前記見なし経過時間より後における前記劣化曲線に従って、前記対象物の劣化度合いが所定の劣化度合いに達するまでの期間を予測してもよい。 The predicting unit, from the deterioration degree and the deterioration curve corresponding to the measured value of the physical quantity, specifies an assumed elapsed time that can be regarded as elapsed, and according to the deterioration curve after the assumed elapsed time, according to the deterioration curve. A period until the degree of deterioration reaches a predetermined degree of deterioration may be predicted.
 前記の構成によれば、劣化度合いの予測値と実測値とに差が生じた場合においても、劣化度合いの実測値に基づいて鉱物油の余寿命を予測することができる。すなわち、正確な寿命予測を行うことができるという効果を奏する。 According to the configuration, even when a difference occurs between the predicted value and the measured value of the degree of deterioration, the remaining life of the mineral oil can be predicted based on the measured value of the degree of deterioration. That is, there is an effect that accurate life prediction can be performed.
 前記予測部は、ある時点における前記物理量の前記測定値に対応する劣化度合いと、該時点における前記劣化曲線から予想される劣化度合いとの差が、所定値以下の場合、第1曲線を未来の前記劣化曲線として使用し、該時点における前記物理量の前記測定値に対応する劣化度合いと、該時点における前記劣化曲線から予想される劣化度合いとの差が、所定値より大きい場合、前記第1曲線より劣化の進行が速い第2曲線を未来の前記劣化曲線として使用してもよい。 The prediction unit, when a difference between the degree of deterioration corresponding to the measured value of the physical quantity at a certain point in time and the degree of deterioration expected from the deterioration curve at the point in time is equal to or less than a predetermined value, the first curve is changed to a future curve. When the difference between the degree of deterioration corresponding to the measured value of the physical quantity at the time and the degree of deterioration expected from the deterioration curve at the time is larger than a predetermined value, the first curve is used. The second curve in which the deterioration progresses faster may be used as the future deterioration curve.
 例えば、対象物が鉱物油である場合において、短期間に極度に劣化が進む原因に、鉱物油の水分の含量の変化を挙げることができる。鉱物油の水分の含量が増加すると、鉱物油の劣化の進行速度は速くなる。 For example, when the target is a mineral oil, the cause of extreme deterioration in a short period of time is a change in the water content of the mineral oil. As the moisture content of the mineral oil increases, the rate of deterioration of the mineral oil increases.
 前記の構成によれば、鉱物油の水分の含量が増加した可能性がある場合、第1曲線より劣化の進行が速い第2曲線を未来の劣化曲線として使用する。そのため、鉱物油の余寿命を正確に予測することができるという効果を奏する。 According to the above configuration, if there is a possibility that the water content of the mineral oil has increased, the second curve, which progresses faster than the first curve, is used as the future deterioration curve. Therefore, there is an effect that the remaining life of the mineral oil can be accurately predicted.
 前記情報処理装置は前記対象物に含まれる混入物の検出結果を取得し、前記混入物の検出結果に応じて、未来の前記劣化曲線を修正する劣化曲線修正部を備えてもよい。前記の構成によれば、混入物の検出結果に応じた適切な余寿命予測を行うことができるという効果を奏する。 The information processing apparatus may include a deterioration curve correction unit that acquires a detection result of a contaminant included in the target object and corrects the future deterioration curve in accordance with the detection result of the contaminant. According to the above configuration, there is an effect that an appropriate remaining life prediction can be performed according to the detection result of the contaminant.
 前記予測部は、前記混入物の量が多いほど、より劣化の進行が速くなるよう未来の前記劣化曲線を修正してもよい。前記構成によれば、予測部は混入物の量に応じて劣化の進行が速くなるように、劣化曲線を変更することができるという効果を奏する。 The prediction unit may correct the future degradation curve such that the greater the amount of the contaminant, the faster the degradation progresses. According to the configuration, the prediction unit has an effect that the deterioration curve can be changed so that the progress of the deterioration is accelerated according to the amount of the contaminant.
 前記物理量の前記測定値は、前記対象物の分子構造に応じて変化してもよい。前記構成によれば、分子構造に応じた劣化に基づき寿命予測を行うことができるという効果を奏する。 前 記 The measured value of the physical quantity may change according to the molecular structure of the object. According to the above configuration, there is an effect that the life can be predicted based on the deterioration according to the molecular structure.
 前記物理量は、所定波長の光の透過率であってもよい。前記の構成によれば、所定波長の光の透過率を用いて寿命予測を行うことができるという効果を奏する。 物理 The physical quantity may be a transmittance of light having a predetermined wavelength. According to the above configuration, there is an effect that the life can be predicted using the transmittance of light having a predetermined wavelength.
 前記物理量は、所定波長の赤外線の透過率であってもよい。前記の構成によれば、所定波長の赤外線の透過率を用いて寿命予測を行うことができるという効果を奏する。 物理 The physical quantity may be a transmittance of an infrared ray having a predetermined wavelength. According to the above configuration, there is an effect that the life can be predicted using the transmittance of infrared light having a predetermined wavelength.
 前記環境因子は、温度であってもよい。前記の構成によれば、曲線決定部は対象物の温度に応じて、経過時間に対する前記対象物の劣化度合いを表す劣化曲線を決定することができるという効果を奏する。 The environmental factor may be temperature. According to the above configuration, there is an effect that the curve determination unit can determine a deterioration curve indicating a degree of deterioration of the object with respect to elapsed time according to the temperature of the object.
 前記対象物は、油であってもよい。前記の構成によれば、油の寿命予測を行うことができるという効果を奏する。 The object may be oil. According to the above configuration, there is an effect that the life of the oil can be predicted.
 前記対象物は、油であり、前記混入物は水であってもよい。前記の構成によれば、水の含有量に応じて油の寿命予測を行うことができるという効果を奏する。 The object may be oil, and the contaminant may be water. According to the above configuration, there is an effect that the life expectancy of oil can be predicted according to the water content.
 前記の課題を解決するために、本発明の一態様に係る管理システムは、上述の何れかの情報処理装置と、前記物理量を測定するセンサと、を備えていてもよい。 To solve the above-described problem, a management system according to an aspect of the present invention may include any one of the above-described information processing apparatuses and a sensor that measures the physical quantity.
 前記の課題を解決するために、本発明の一態様に係る制御プログラムは、上述の情報処理装置としてコンピュータを機能させるための制御プログラムであって、前記曲線決定部、前記取得部、および前記予測部としてコンピュータを機能させてもよい。 In order to solve the above-described problem, a control program according to an embodiment of the present invention is a control program for causing a computer to function as the above-described information processing device, the control program including the curve determination unit, the acquisition unit, and the prediction A computer may function as a unit.
 4、4a      寿命予測装置(管理システム)
 481       劣化関数作成部(曲線決定部)
 482       透過光強度判定部(取得部)
 483       寿命算出部(予測部)
 484、484a  変化率変更部(劣化曲線修正部)
 100、100a  情報処理装置
 S2        曲線決定工程
 S4        取得工程
 S6        予測工程
4, 4a Life prediction device (management system)
481 Deterioration function creation unit (curve determination unit)
482 Transmitted light intensity determination unit (acquisition unit)
483 Life Calculator (Predictor)
484, 484a Change rate change unit (deterioration curve correction unit)
100, 100a Information processing device S2 Curve determination step S4 Acquisition step S6 Prediction step

Claims (14)

  1.  対象物の環境因子に応じて、経過時間に対する前記対象物の劣化度合いを表す劣化曲線を決定する曲線決定部と、
     前記対象物の劣化度合いを反映した物理量の測定値を定期的に取得する取得部と、
     前記物理量の前記測定値と前記劣化曲線とに基づいて、前記対象物の劣化度合いが所定の劣化度合いに達するまでの期間を予測する予測部とを備えることを特徴とする情報処理装置。
    A curve determining unit that determines a deterioration curve representing a degree of deterioration of the object with respect to elapsed time according to an environmental factor of the object,
    An acquisition unit that periodically acquires a measured value of a physical quantity that reflects the degree of deterioration of the object,
    An information processing apparatus, comprising: a prediction unit that predicts a period until the degree of deterioration of the target object reaches a predetermined degree of deterioration based on the measured value of the physical quantity and the deterioration curve.
  2.  前記予測部は、
      前記物理量の前記測定値に対応する劣化度合いと前記劣化曲線とから、経過したと見なせる見なし経過時間を特定し、
      前記見なし経過時間より後における前記劣化曲線に従って、前記対象物の劣化度合いが所定の劣化度合いに達するまでの期間を予測することを特徴とする請求項1に記載の情報処理装置。
    The prediction unit includes:
    From the degree of deterioration and the deterioration curve corresponding to the measured value of the physical quantity, specify an assumed elapsed time that can be regarded as elapsed,
    The information processing apparatus according to claim 1, wherein a period until the degree of deterioration of the target object reaches a predetermined degree of deterioration is predicted according to the deterioration curve after the assumed elapsed time.
  3.  前記予測部は、
      ある時点における前記物理量の前記測定値に対応する劣化度合いと、該時点における前記劣化曲線から予想される劣化度合いとの差が、所定値以下の場合、第1曲線を未来の前記劣化曲線として使用し、
      該時点における前記物理量の前記測定値に対応する劣化度合いと、該時点における前記劣化曲線から予想される劣化度合いとの差が、所定値より大きい場合、前記第1曲線より劣化の進行が速い第2曲線を未来の前記劣化曲線として使用することを特徴とする請求項1または2に記載の情報処理装置。
    The prediction unit includes:
    When the difference between the degree of deterioration corresponding to the measured value of the physical quantity at a certain point in time and the degree of deterioration expected from the deterioration curve at the point in time is equal to or less than a predetermined value, the first curve is used as the future deterioration curve. And
    When the difference between the degree of deterioration corresponding to the measured value of the physical quantity at the time point and the degree of deterioration expected from the deterioration curve at the time point is larger than a predetermined value, the deterioration progresses faster than the first curve. The information processing apparatus according to claim 1, wherein two curves are used as the future degradation curve.
  4.  前記対象物に含まれる混入物の検出結果を取得し、前記混入物の検出結果に応じて、未来の前記劣化曲線を修正する劣化曲線修正部を備えることを特徴とする請求項1から3のいずれか一項に記載の情報処理装置。 4. The method according to claim 1, further comprising: acquiring a detection result of a contaminant included in the target object, and correcting a future deterioration curve in accordance with the detection result of the contaminant. 5. The information processing device according to claim 1.
  5.  前記劣化曲線修正部は、前記混入物の量が多いほど、より劣化の進行が速くなるよう未来の前記劣化曲線を修正することを特徴とする請求項4に記載の情報処理装置。 5. The information processing apparatus according to claim 4, wherein the deterioration curve correction unit corrects the future deterioration curve so that the deterioration progresses faster as the amount of the contaminant increases. 6.
  6.  前記物理量の前記測定値は、前記対象物の分子構造に応じて変化することを特徴とする請求項1から5のいずれか一項に記載の情報処理装置。 6. The information processing apparatus according to claim 1, wherein the measurement value of the physical quantity changes according to a molecular structure of the target.
  7.  前記物理量は、所定波長の光の透過率であることを特徴とする請求項1から6のいずれか一項に記載の情報処理装置。 7. The information processing apparatus according to claim 1, wherein the physical quantity is a transmittance of light having a predetermined wavelength. 8.
  8.  前記物理量は、所定波長の赤外線の透過率であることを特徴とする請求項7に記載の情報処理装置。 8. The information processing apparatus according to claim 7, wherein the physical quantity is a transmittance of infrared light having a predetermined wavelength.
  9.  前記環境因子は、温度であることを特徴とする請求項1から8のいずれか一項に記載の情報処理装置。 The information processing apparatus according to any one of claims 1 to 8, wherein the environmental factor is a temperature.
  10.  前記対象物は、油であることを特徴とする請求項1から9のいずれか一項に記載の情報処理装置。 The information processing apparatus according to any one of claims 1 to 9, wherein the object is oil.
  11.  前記対象物は、油であり、前記混入物は水であることを特徴とする請求項4または5に記載の情報処理装置。 6. The information processing apparatus according to claim 4, wherein the object is oil, and the contaminant is water.
  12.  請求項1から11のいずれか一項に記載の情報処理装置と、
     前記物理量を測定するセンサと、を備えることを特徴とする管理システム。
    An information processing apparatus according to any one of claims 1 to 11,
    And a sensor for measuring the physical quantity.
  13.  請求項1に記載の情報処理装置としてコンピュータを機能させるための制御プログラムであって、前記曲線決定部、前記取得部、および前記予測部としてコンピュータを機能させるための制御プログラム。 A control program for causing a computer to function as the information processing apparatus according to claim 1, wherein the control program causes the computer to function as the curve determination unit, the acquisition unit, and the prediction unit.
  14.  対象物の環境因子に応じて、経過時間に対する前記対象物の劣化度合いを表す劣化曲線を決定する曲線決定工程と、
     前記対象物の劣化度合いを反映した物理量の測定値を定期的に取得する取得工程と、
     前記物理量の前記測定値と前記劣化曲線とに基づいて、前記対象物の劣化度合いが所定の劣化度合いに達するまでの期間を予測する予測工程とを含むことを特徴とする予測方法。
    A curve determining step of determining a deterioration curve representing a degree of deterioration of the object with respect to elapsed time according to an environmental factor of the object,
    An acquisition step of periodically acquiring a measured value of a physical quantity reflecting the degree of deterioration of the object,
    A prediction step of predicting a period until the degree of deterioration of the object reaches a predetermined degree of deterioration based on the measured value of the physical quantity and the deterioration curve.
PCT/JP2019/008987 2018-06-20 2019-03-07 Information processing device, management system, control program and prediction method WO2019244420A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018117069A JP2019219281A (en) 2018-06-20 2018-06-20 Information processing apparatus, management system, control program, and prediction method
JP2018-117069 2018-06-20

Publications (1)

Publication Number Publication Date
WO2019244420A1 true WO2019244420A1 (en) 2019-12-26

Family

ID=68982838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008987 WO2019244420A1 (en) 2018-06-20 2019-03-07 Information processing device, management system, control program and prediction method

Country Status (2)

Country Link
JP (1) JP2019219281A (en)
WO (1) WO2019244420A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042643A (en) * 1983-08-19 1985-03-06 Yaskawa Electric Mfg Co Ltd Detection of thermal deterioration
JP2002124425A (en) * 2000-10-12 2002-04-26 Hitachi Ltd Method of diagnosing deterioration of oil-filled electric apparatus and device therefor
US20090063060A1 (en) * 2007-09-05 2009-03-05 Yizhong Sun Methods for detecting oil deterioration and oil level
JP2012141146A (en) * 2010-12-28 2012-07-26 Toshiba Corp Apparatus, method and program for diagnosing deterioration of insulating material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042643A (en) * 1983-08-19 1985-03-06 Yaskawa Electric Mfg Co Ltd Detection of thermal deterioration
JP2002124425A (en) * 2000-10-12 2002-04-26 Hitachi Ltd Method of diagnosing deterioration of oil-filled electric apparatus and device therefor
US20090063060A1 (en) * 2007-09-05 2009-03-05 Yizhong Sun Methods for detecting oil deterioration and oil level
JP2012141146A (en) * 2010-12-28 2012-07-26 Toshiba Corp Apparatus, method and program for diagnosing deterioration of insulating material

Also Published As

Publication number Publication date
JP2019219281A (en) 2019-12-26

Similar Documents

Publication Publication Date Title
US11719760B2 (en) Probabilistic determination of transformer end of life
JP5840342B2 (en) Insulation degradation diagnosis method for insulation materials
WO2017116655A1 (en) Prognostic and health monitoring systems for circuit breakers
JP2013011462A (en) Method for predicting life of led
US9285308B2 (en) Interference-compensating NDIR gas sensor for measuring acetylene
US11815566B2 (en) System and method of determining age of a transformer
JP5722027B2 (en) Insulation material deterioration diagnosis device, deterioration diagnosis method, and deterioration diagnosis program
WO2019244420A1 (en) Information processing device, management system, control program and prediction method
JP5836904B2 (en) Insulation material degradation diagnosis method and apparatus
JP2011007662A (en) Method and apparatus for diagnosing remaining life and program
CN116297229A (en) Method for detecting aging degree of crosslinked polyethylene insulating material based on yellow degree evolution
JP5872643B2 (en) Insulation degradation diagnosis method for insulation materials
JP7226417B2 (en) Hydrogen sulfide concentration estimation device
JP2020067380A (en) Deterioration estimation device, deterioration estimation system, deterioration estimation method and computer program
JP7299749B2 (en) Solar power generation output prediction device, solar power generation output prediction method, and program
JP7395395B2 (en) Polluting substance amount measuring device and polluting substance amount measuring method
JP2022034106A (en) Dust accumulation amount estimation method, dust accumulation detection device, and dew condensation risk detection device
JP7263129B2 (en) Deterioration estimation device, deterioration estimation system, deterioration estimation method, and computer program
JP7468565B2 (en) Control device, measuring device, and dew prevention method
RU2807402C1 (en) Method for diagnostics of high voltage pulse capacitor
KR102536005B1 (en) Method and Apparatus for Setting Reception Threshold in Backscatter Communication
US11579133B2 (en) Fast water activity measurement system
CN117741309A (en) Method and device for evaluating insulation aging state and service life of high-frequency sensor
RU2330301C1 (en) Method of monitoring integrated circuits by moisture content in under-casing volume
JP2016148627A (en) Method and device for diagnosing degradation in macromolecular material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19821756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19821756

Country of ref document: EP

Kind code of ref document: A1