WO2019244292A1 - Electronic circuit breaker - Google Patents

Electronic circuit breaker Download PDF

Info

Publication number
WO2019244292A1
WO2019244292A1 PCT/JP2018/023544 JP2018023544W WO2019244292A1 WO 2019244292 A1 WO2019244292 A1 WO 2019244292A1 JP 2018023544 W JP2018023544 W JP 2018023544W WO 2019244292 A1 WO2019244292 A1 WO 2019244292A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
time
value
control device
circuit
Prior art date
Application number
PCT/JP2018/023544
Other languages
French (fr)
Japanese (ja)
Inventor
雄介 瀧川
野村 敏光
幸樹 原田
聖崇 近井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/023544 priority Critical patent/WO2019244292A1/en
Priority to CN201980040590.1A priority patent/CN112352363B/en
Priority to PCT/JP2019/016939 priority patent/WO2019244467A1/en
Priority to JP2020525307A priority patent/JP6930664B2/en
Publication of WO2019244292A1 publication Critical patent/WO2019244292A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/093Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current with timing means

Definitions

  • the present invention relates to an electronic circuit breaker that performs a trip operation by calculating a trip operation time according to a current level flowing in an AC electric circuit by a microcomputer.
  • a conventional electronic circuit breaker includes a current detecting and converting means for detecting a fault current flowing in an electric circuit and converting it into a digital signal, a level determining means comprising a micro computer for determining the level of the digital signal, and a level determining means.
  • a time generating means comprising a microcomputer which performs a predetermined time operation corresponding to the set level, an output means which responds to the time operation of the time generating means, and a heat energy generated by an accident current during the time operation of the time generating means.
  • Generating means comprising a microcomputer for generating a pulse having a pulse width at predetermined intervals during the timed operation, a capacitor charged by the pulse, and discharging the charge stored in the capacitor in the form of a CR time constant circuit. And a reset resistor after resetting the microcomputer.
  • a charging and discharging circuit means for inputting to the microcomputer as an initial value for generating timed calculation timed generating means residual voltage of the capacitor.
  • the resistance value of the discharge resistor of the charging / discharging circuit means is a single value, the off time as a load current is long in the electric circuit (for example, 1 second flows and 12 seconds do not flow).
  • the off time as a load current is long in the electric circuit (for example, 1 second flows and 12 seconds do not flow).
  • an intermittent overcurrent with a short OFF time for example, 0.5 seconds flows but not 0.5 seconds
  • the capacitor is charged. Since the voltage cannot be completely discharged and the charging voltage continues to be added, there is a problem that a current value lower than the operation characteristic may malfunction as an overcurrent.
  • An object of the present invention is to provide an electronic circuit breaker in which a tripping characteristic is processed by a microcomputer, and to obtain an accurate tripping characteristic in consideration of the heat storage and heat radiation characteristics of an electric circuit even for intermittent load currents with various ON / OFF cycles. To provide an electronic circuit breaker.
  • An electronic circuit breaker is connected to a switching contact inserted in an AC circuit, a current transformer for detecting a current flowing in the AC circuit, and a secondary side of the current transformer, and rectifies the detected current.
  • a control device for calculating an accumulated current value obtained by integrating and accumulating the current product of the square value of the effective value of the current and the detection cycle, and for opening and closing the switching contact based on the accumulated current value;
  • an OFF time measuring circuit for measuring an OFF time, which is a time during which the output voltage of the power supply circuit has become lower than the operable voltage of the control device, and the control device reads from the OFF time measuring circuit at startup. OFF time, off Based on the ON time corresponding to the conduction time in the ON current and intermittent loads which corresponds to the conduction current in the load is to determine the initial value of the cumulative current value.
  • FIG. 2 is a block diagram illustrating an electronic circuit breaker according to Embodiment 1 of the present invention.
  • FIG. 5 is an explanatory diagram for describing a method of obtaining an effective value of a current by sampling of the electronic circuit breaker according to the first embodiment.
  • 5 is a flowchart showing processing of the microcomputer according to the first embodiment.
  • 4 is a flowchart of an overcurrent detection process shown in FIG.
  • FIG. 4 is a block diagram showing an electronic circuit breaker according to Embodiment 2 of the present invention.
  • 9 is a flowchart showing processing of the microcomputer according to the second embodiment.
  • 7 is a flowchart of an overcurrent detection process shown in FIG.
  • FIG. 9 is a block diagram showing an electronic circuit breaker according to Embodiment 3 of the present invention.
  • 13 is a flowchart showing processing of the microcomputer according to the third embodiment. It is a flowchart of the overcurrent detection processing shown in FIG.
  • FIG. FIG. 1 is a block diagram showing an electronic circuit breaker according to Embodiment 1 of the present invention
  • FIG. 2 is an explanatory diagram for explaining a method of obtaining an effective value of a current by sampling
  • FIG. FIG. 4 is a flowchart showing details of the overcurrent detection processing shown in FIG.
  • an electronic circuit breaker 100 includes a switching contact 2 inserted into an AC circuit 1 to open and close the AC circuit 1, and a load provided on the AC circuit 1 and flowing through the AC circuit 1.
  • a current transformer 3 for outputting a detection current proportional to the current, a rectifier circuit 4 connected to the secondary side of the current transformer 3 for rectifying the detection current, and an electronic type using the current output from the rectifier circuit 4
  • a power supply circuit 5 for outputting a constant voltage used for the operation inside the circuit breaker; a waveform conversion circuit 6 connected to the output side of the rectifier circuit 4 for converting a detection current of the current transformer 3 into an analog voltage signal;
  • a microcomputer 10 (hereinafter, referred to as a microcomputer 10) as a control device for performing a trip characteristic process based on an analog voltage signal of the waveform conversion circuit 6, and a trip device 8 driven by each trip signal from the microcomputer 10.
  • the microcomputer 10 includes a first A / D converter 11a for converting an analog voltage signal of the waveform conversion circuit 6 into a digital signal, and a current of the current flowing through the AC circuit 1 based on the digital signal output from the first A / D converter 11a.
  • An effective value calculating section 12 for calculating an effective value
  • a time characteristic calculating section 13 for processing a time characteristic based on the effective value of the current calculated by the effective value calculating section 12 and opening the switching contact 2 when an overcurrent occurs
  • And a second output A for converting the trip output port 14 for driving the trip circuit 7 and the capacitor voltage V TIME of the OFF time measuring circuit 20 to a digital signal based on the output of the trip signal from the time characteristic calculation unit 13.
  • a / D converter 11 b for converting the capacitor voltage VTM into a digital signal, a charging output port 16 for outputting power to charge the thermal energy storage capacitor 31 of the thermal energy storage circuit 30, An output port 17 for instantaneous discharge for outputting an instantaneous complete discharge of the capacitor 31 for storing heat energy, an output port 18 for outputting an output for discharging the capacitor 31 for storing heat energy to a predetermined voltage, It is composed of
  • the OFF time measurement circuit 20 has one end connected to the second A / D converter 11b and the other end connected to the ground, a cathode connected to one end of the time measurement capacitor 21, and a cathode connected to the anode.
  • a time measurement output port 15 via a resistor 22, and a discharge resistor 24 is connected at one end to one end of the time measurement capacitor 21 and the other end is connected to the ground. I have.
  • the thermal energy storage circuit 30 has one end connected to the third A / D converter 11c and the other end connected to the ground, and a cathode connected to one end of the thermal energy storage capacitor 31.
  • a diode 33 having an anode connected to the charging output port 16 via the resistor 32, a collector connected to one end of the thermal energy storage capacitor 31, and a base connected to the immediate discharging output port 17 via the resistor 34.
  • a transistor 35 having an emitter connected to ground, a resistor 36 having one end connected to the base of the transistor 35 and the other end connected to ground, and a resistor having one end connected to one end of the capacitor 31 for storing heat energy.
  • the collector is connected to the other end of the resistor 37, and the base is connected to the discharge output port 18 via the resistor 38.
  • a transistor 39 whose emitter is connected to ground, one end connected to the base of transistor 39, a resistor 310 whose other end is connected to ground, and a.
  • the detection current of the AC circuit 1 detected by the current transformer 3 is converted into an analog voltage signal based on the detection current by the waveform conversion circuit 6, and then converted from the analog voltage signal to a digital value by the first A / D converter 11a. Is converted.
  • the detection cycle of this detection current that is, the sampling cycle is ⁇ t. Since it is necessary to obtain the effective value of the load current flowing through the AC circuit 1, the AC power supply frequency of the AC circuit 1 is sampled for 100 msec, which is equivalent to 5 cycles at 50 Hz and 6 cycles at 60 Hz.
  • I 1 2 ( ⁇ i 2 ) which is calculated by dividing the square of the accumulated sampling number m of digital values Request / m. I 1 2 square root becomes the effective value I 1 of the load current.
  • step S101 initial settings of the microcomputer 10 such as a clock and an output port are performed, and the process proceeds to step S102.
  • step S102 the capacitor voltage V TIME of the time measuring capacitor 21 is converted into a digital signal by the second A / D converter 11b, and the process proceeds to step S103.
  • step S103 using the following equation (1), the load current is calculated OFF time t 2 in the period of the OFF, the process proceeds to step S104.
  • tau are pointing time constant determined by the capacitance value of the discharge resistor 24 and the time measurement capacitor 21, the maximum voltage value V 1 was charged to the time measurement capacitor 21 (eg, 3.3V) .
  • step S104 the capacitor voltage V TM of the thermal energy storage capacitor 31 is converted into a digital signal V TM AD by the third A / D converter 11c, the process proceeds to step S105.
  • step S105 the previous, the provisional cumulative current value LTD 1 the load current corresponds to the thermal energy accumulated in the wire to supply power to the load during the period of ON is calculated by the equation (2), the flow proceeds to step S106.
  • LTD 1 trip threshold ⁇ V TM AD / V MAX AD (2)
  • V MAX AD is a digital value after A / D conversion corresponding to the maximum voltage value charged in the time measuring capacitor 21.
  • step S106 it obtains the ON time t 1 of the previous cycle by the equation (3) from the effective value I 1 of the provisional cumulative current value LTD 1, and ON current calculated so far, the flow proceeds to step S107.
  • t 1 LTD 1 / I 1 2 (3)
  • step S107 the effective value I 1 as so far ON time calculated t 1, OFF time t 2, ON current, the thermal equivalent current Ie determined by equation (4), the flow proceeds to step S107.
  • step S108 it is determined whether or not the thermal equivalent current Ie is equal to or more than a predetermined threshold (for example, a rated current set value I 0 ). , The process proceeds to step S110.
  • step S109 it sets the provisional cumulative current value LTD 1 to cumulative current value LTD with the time characteristics calculating unit 13, in step S110, after setting the accumulated current value LTD zero, the process proceeds to step S111.
  • step S111 the time measurement output port 15 of the microcomputer 10 keeps outputting the output signal S0 at the H level while the overcurrent or the normal current flows in the AC circuit 1, and keeps the time measurement capacitor 21 at the maximum level. Is charged, and the process proceeds to the overcurrent detection process in step S200.
  • Overcurrent detection process is a loop process of the constant cycle, as shown in FIG. 4, in step S201, the effective value I 1 of the secondary output current of the current transformer which is obtained by the effective value calculating section 12 as the ON current whether in the overcurrent state, i.e., it determines the effective value I 1 is whether the rated current set value I 0 or more. If the effective value I 1 is equal to or greater than the rated current set value I 0, the process proceeds to step S202, if the effective value I 1 is less than the rated current set value I 0, the process proceeds to step S203.
  • the rated current set value I a predetermined value in claims.
  • step S202 the effective value I 1 is a more rated current set value I 0, according to the equation (5), performs addition processing of the accumulated current value LTD, the process proceeds to step S204.
  • LTD Last LTD + ( ⁇ t ⁇ I 1 2 ) (5)
  • step S203 the effective value I 1 is less than the rated current set value I 0, according to the equation (6), the subtraction processing of the accumulated current value LTD, the process proceeds to step S204.
  • LTD Last time LTD ⁇ t ⁇ (I 0 2 ⁇ I 1 2 ) (6)
  • step S204 the scheduled charge value Vref of the thermal energy storage capacitor 31 is calculated from the accumulated current value LTD obtained in step S202 or step S203 according to equation (7), and the process proceeds to step S205.
  • V ref V MAX AD ⁇ LTD / trip threshold (7)
  • step S205 the digital signal V TM AD the capacitor voltage V TM of the thermal energy storage capacitor 31 and converted by a third A / D conversion 11c is determined whether charging predetermined value V ref or more. If the digital signal V TM AD is not less than the planned charging value V ref, the process proceeds to step S206, if the digital signal V TM AD is less than the scheduled charging value V ref, the process proceeds to step S207.
  • step S206 since the digital signal V TM AD such or planned charging value V ref, by controlling the output signal S1 of the charging output port 16 at a given time H level, the thermal energy store through a resistor 32 and a diode 33 The capacitor 31 is charged to the scheduled charge value Vref , and the process proceeds to step S208.
  • step S207 since the digital signal V TM AD is less than the planned charging value V ref, the output signal S3 of the discharge output port 18 to control the predetermined time H level, the collector of the transistor 39 through the resistor 38 -Conducting between the emitters and discharging the thermal energy storage capacitor 31 to the expected charge value Vref via the resistor 37, and the process proceeds to step S208.
  • step S208 it is determined whether the accumulated current value LTD is equal to or greater than a trip threshold. If the accumulated current value LTD is equal to or greater than the trip threshold, the process proceeds to step S209. If the accumulated current value LTD is less than the trip threshold, the process returns to step S201 to perform the processes in step S201 and subsequent steps again. In step S209, the output signal S2 of the immediate discharge output port 17 is controlled to the H level, and the collector and the emitter of the transistor 35 are made conductive through the resistor 34, thereby rapidly discharging the thermal energy storage capacitor 31. The process proceeds to step S210.
  • step S210 by setting the voltage signal S4 of the trip output port 14 to the H level, the trip circuit 7 is driven and the trip device 8 is operated, so that the switching contact 2 is opened and the AC circuit 1 is opened.
  • the charging voltage of the time measuring capacitor 21 is gradually discharged with the time constant determined by the discharging resistor 24 connected in parallel with the capacitance value. Will be done.
  • the discharging resistor 37 connected to the heat energy storage capacitor 31 is connected to the transistor 39 and has no other discharging path, the leakage current of the heat energy storage capacitor 31 itself and the transistor 35, Since the discharge is performed very slowly in accordance with only the leakage current of 39, the heat storage energy of the electric wire to the load can be held for a long time.
  • an example of a circuit using the time measuring capacitor 21 and the discharging resistor 24 for discharging is shown as the OFF time measuring circuit 20, but power is supplied from a battery or a super capacitor or the like.
  • a clock IC Integrated @ Circuit
  • the switching contact 2 inserted into the AC circuit 1, the current transformer 3 for detecting the current flowing in the AC circuit 1, and the secondary side of the current transformer 3 are connected to A rectifier circuit 4 for rectifying, a power supply circuit 5 connected to an output side of the rectifier circuit 4 and outputting a constant voltage, and detecting a detected current at a predetermined detection cycle, and detecting the detected current at a predetermined value corresponding to the rated current.
  • a microcomputer 10 for calculating an accumulated current value obtained by integrating and accumulating the current product of the square value of the effective value of the detected current and the detection period during the period of time exceeded, and for opening and closing the switching contact 2 based on the accumulated current value;
  • the microcomputer 10 has an OFF time measuring circuit 20 for measuring an OFF time that is a time during which the output voltage of the power supply circuit 5 has become lower than the operable voltage of the microcomputer 10.
  • OFF time read from 2 because it determines the initial value of the cumulative current value based on the ON time t 1 corresponding to the energizing time of the ON current I ON and intermittent loads which corresponds to the conduction current in the intermittent load, can be performed to correct tripping operation It becomes.
  • a thermal energy storage capacitor 31 charged by the microcomputer 10 to a voltage corresponding to the accumulated current value, and a thermal energy storage circuit 30 connected to the microcomputer 10 so that the charge voltage of the thermal energy storage capacitor 31 can be read by the microcomputer 10 are included.
  • oN current I oN is using the effective value I 1 of the detected current from the current transformer 3 which is calculated at the start of the microcomputer 10
  • oN time t 1 is at the start of the charging voltage
  • the cumulative current value LTD calculated by the microcomputer 10 is obtained by accumulating the square value of the effective value of the detected current during a period in which the microcomputer 10 exceeds a predetermined value.
  • the energy of the thermal energy storage capacitor 31 is instantaneously discharged by setting the output signal S2 of the instantaneous discharge output port 17 to the H level. Without this, continuous power supply becomes possible.
  • FIG. 5 is a block diagram of the electronic circuit breaker according to the second embodiment
  • FIG. 6 is a flowchart showing processing of the microcomputer
  • FIG. 7 is a flowchart showing details of the overcurrent detection processing shown in FIG.
  • the difference between the first embodiment and the present embodiment is that, as shown in FIG. 5, a non-volatile memory 40 is provided in place of the thermal energy storage circuit 30 and the microcomputer 10 is used to acquire the data of the non-volatile memory 40 by communication. In some cases, a communication unit 19 is provided inside.
  • the nonvolatile memory 40 use of a ferroelectric memory (Ferroelectric Random Access Memory), a resistance change type memory (Resistive Random Access Memory), or the like is assumed.
  • the third A / D converter 11c, the charging output port 16, the immediate discharging output port 17, and the discharging output port 18 provided inside the microcomputer 10 are eliminated. .
  • Other configurations are the same as those in the first embodiment, and thus detailed description is omitted.
  • the accumulated current value LTD and the ON time counter are always written in the non-volatile memory 40, and when the microcomputer 10 is restarted in an intermittent load environment, the time characteristic is not changed.
  • the calculation unit 13 reads out the accumulated current value LTD and the ON time counter from the nonvolatile memory 40 via the communication unit 19, and performs processing.
  • the thermal equivalent current Ie is calculated.
  • e is calculated by the following equation (8) and becomes 40A.
  • the thermal equivalent current Ie is 50 A and does not match, so that it does not exceed the predetermined threshold. There is a possibility that the erroneous processing is performed, and the charging voltage of the thermal energy storage capacitor 31 is not reflected on the accumulated current value LTD and becomes inoperable.
  • step S304 the nonvolatile memory 40, reads out the accumulated electric current value LTD recorded when there is a previous power as a provisional cumulative current value LTD 1, after reading the value of the ON time counter as the ON time t 1, step S305 Proceed to.
  • step S305 using the provisional cumulative current value LTD 1 and ON time t 1 is read out from the non-volatile memory 40, and calculates the ON current I ON by equation (9), the flow proceeds to step S306.
  • I ON ⁇ (LTD 1 / t 1 ) (9)
  • step S306 ON current I ON calculated in step S305, OFF time t 2 read in step S303, and ON from the time t 1 read out in step S304, the thermal equivalent current I e by using the equation (10) The calculation is performed, and the process proceeds to step S307.
  • Steps S307 to S310 have the same processing contents as steps S108 to S111 shown in FIG.
  • step S310 after performing the same processing as step S111, the process proceeds to the overcurrent detection processing in step S400.
  • Overcurrent detection process is a loop process of the constant cycle, as shown in FIG. 7, in step S401, the effective value I 1 of the secondary output current of the current transformer 3 which is obtained by the effective value computing unit 12 is overcurrent whether the state, i.e., determines the effective value I 1 is whether the rated current set value I 0 or more. If the effective value I 1 is equal to or greater than the rated current set value I 0, the process proceeds to step S402, if the effective value I 1 is less than the rated current set value I 0, the process proceeds to step S403.
  • the rated current set value I 0 at is the predetermined value in claims.
  • step S402 the same process as step S202 shown in FIG. 3 is performed, and the process proceeds to step S404.
  • step S403 the same process as in step S203 shown in FIG. 3 is performed, and the process proceeds to step S405.
  • step S404 an ON time counter is added, and the process proceeds to step S406.
  • the overcurrent detection process is a fixed-cycle loop process performed every 1.25 msec, for example, the addition process of the ON time counter can be a process of simply adding the counter value by one. If the overcurrent detection process is not a fixed-cycle loop process, it is necessary to add a value proportional to the elapsed time from the previous process.
  • step S405 a subtraction process of the ON time counter is performed, and the flow advances to step S406.
  • the overcurrent detection process is a fixed-cycle loop process performed every 1.25 msec, for example, the subtraction process of the ON time counter can be a process of simply subtracting one from the counter value. If the overcurrent detection process is not a fixed-cycle loop process, it is necessary to perform a process of subtracting a value proportional to the elapsed time from the previous process.
  • step S406 the accumulated current value LTD calculated in step S402 or step S403 immediately before coming to step S406, similarly ON time counter value as the ON time t 1 calculated in step S404 or step S405 immediately before coming to step S406 Is written to the non-volatile memory 40, and the process proceeds to step S407.
  • step S407 it is determined whether the accumulated current value LTD calculated in step S402 or step S403 is equal to or greater than a trip threshold immediately before step S407. If the accumulated current value LTD is equal to or larger than the trip threshold, the process proceeds to step S408, and if the accumulated current value LTD is smaller than the trip threshold, the process returns to step S401, and the process of step S401 is performed at regular intervals.
  • step S408 a process of writing “0” as the value of the accumulated current value LTD of the nonvolatile memory 40 and the value of the ON time counter is performed, and the process proceeds to step S409.
  • step S409 as in step S210, the tripping circuit 7 is driven by operating the tripping circuit 8 by setting the voltage signal S4 of the tripping output port 14 to the H level, thereby opening the on-off contact 2 to disconnect the AC circuit. Release 1.
  • the process of writing the accumulated current value LTD and the value of the ON time counter to the non-volatile memory 40 is performed every time in step S406 of the overcurrent detection process. If the number of times of writing is limited, the process may proceed to step S408, that is, write to the non-volatile memory 40 before the on / off contact 2 is tripped.
  • the switching contact 2 inserted into the AC circuit 1, the current transformer 3 for detecting the current flowing in the AC circuit 1, and the secondary side of the current transformer 3 are connected to A rectifier circuit 4 for rectifying, a power supply circuit 5 connected to an output side of the rectifier circuit 4 and outputting a constant voltage, and detecting a detected current at a predetermined detection cycle, and detecting the detected current at a predetermined value corresponding to the rated current.
  • a microcomputer 10 for calculating an accumulated current value obtained by integrating and accumulating the current product of the square value of the effective value of the detected current and the detection period during the period of time exceeded, and for opening and closing the switching contact 2 based on the accumulated current value;
  • the microcomputer 10 has an OFF time measuring circuit 20 for measuring an OFF time that is a time during which the output voltage of the power supply circuit 5 has become lower than the operable voltage of the microcomputer 10.
  • OFF time read from 2 because it determines the initial value of the cumulative current value LTD based on the ON time t 1 corresponding to the energizing time of the ON current I ON and intermittent loads which corresponds to the conduction current in the intermittent load, be carried out by accurate tripping operation It becomes possible.
  • the microcomputer 10 further includes a non-volatile memory 40 connected to the microcomputer 10.
  • a non-volatile memory 40 connected to the microcomputer 10.
  • the cumulative current value LTD calculated by the microcomputer 10 is obtained by accumulating the square value of the effective value of the detected current during a period in which the microcomputer 10 exceeds a predetermined value.
  • FIG. FIG. 8 is a block diagram showing an electronic circuit breaker according to Embodiment 3 of the present invention
  • FIG. 9 is a flowchart showing processing of a microcomputer
  • FIG. 10 is a flowchart of overcurrent detection processing shown in FIG.
  • the second embodiment an example in which the accumulated current value LTD and the value of the ON time counter are written to the nonvolatile memory has been described.
  • the present embodiment only the value of the ON time counter is written to the nonvolatile memory, current is to use the effective value I 1 of the secondary output current of the current transformer which is obtained by the effective value computing unit 12. Therefore, FIG. 8 showing the configuration of the electronic circuit breaker 300 of the present embodiment is the same as FIG. 5 described in the second embodiment, and a description thereof will be omitted.
  • step S504 the nonvolatile memory 40, reads the ON time t 1 that is recorded when a last energized, the process proceeds to step S505.
  • step S505 it calculates an effective value I 1 as ON current than the detection current of the current transformer 3, the process proceeds to step S506.
  • step S506 ON time t 1 read in step S504, from the effective value I 1 of the ON current calculated in OFF time t 2 and the step S505 obtained in step S503, the thermal equivalent current I e Equation (4) And the process proceeds to step S507.
  • step S507 ON time t 1 read in step S504, the provisional cumulative current value LTD 1 determined by the equation (11) from the thermal equivalent current I e was OFF time t 2 and the step S506 calculating determined in step S503, step S508 Proceed to.
  • LTD 1 I e 2 (t 1 + t 2 ) (11)
  • Steps S508 to S511 have the same processing contents as steps S307 to S310 shown in FIG.
  • step S511 after performing the same processing as in step S310, the process proceeds to the overcurrent detection processing in step S600.
  • the overcurrent detection process is a loop process of periodic, as shown in FIG. 10, in step S601, the effective value I 1 of the secondary output current of the current transformer 3 which is obtained by the effective value computing unit 12 is overcurrent whether the state, i.e., determines the effective value I 1 is whether the rated current set value I 0 or more. If the effective value I 1 is equal to or greater than the rated current set value I 0, the process proceeds to step S602, if the effective value I 1 is less than the rated current set value I 0, the process proceeds to step S603.
  • the rated current set value I 0 at is the predetermined value in claims.
  • Steps S602 to S605 are the same processing contents as steps S402 to S405 shown in FIG. After performing the processing of step S604 or step S605, the process proceeds to step S606.
  • step S606 performs a process of writing the ON value of the time counter calculated in step S604 or step S605 immediately before coming to step S606 as the ON time t 1 to the nonvolatile memory 40, the process advances to step S607.
  • step S607 it is determined whether the accumulated current value LTD calculated in step S602 or step S603 is equal to or larger than the trip threshold immediately before step S607.
  • the process proceeds to step S608, and when the accumulated current value LTD is smaller than the trip threshold, the process returns to step S601, and the process of step S601 is performed at regular intervals.
  • step S608 the performs processing to write "0" as the value of the ON time t 1 to the nonvolatile memory 40, the process proceeds to step S609.
  • step S609 as in step S409, the voltage signal S4 of the trip output port 14 is set to the H level, thereby driving the trip circuit 7 and operating the trip device 8, thereby opening the on-off contact 2 to release the AC circuit. Release 1.
  • the process of writing the value of the ON time counter to the non-volatile memory 40 in step S606 of the overcurrent detection process is performed every time.
  • the number of times of writing to the non-volatile memory to be used is limited.
  • the processing proceeds to step S608, that is, before the on / off contact 2 is tripped, the data may be written to the nonvolatile memory 40.
  • the switching contact 2 inserted into the AC circuit 1, the current transformer 3 for detecting the current flowing in the AC circuit 1, and the secondary side of the current transformer 3 are connected to A rectifier circuit 4 for rectifying, a power supply circuit 5 connected to an output side of the rectifier circuit 4 and outputting a constant voltage, and detecting a detected current at a predetermined detection cycle, and detecting the detected current at a predetermined value corresponding to the rated current.
  • a microcomputer 10 for calculating an accumulated current value obtained by integrating and accumulating the current product of the square value of the effective value of the detected current and the detection period during the period of time exceeded, and for opening and closing the switching contact 2 based on the accumulated current value;
  • the microcomputer 10 has an OFF time measuring circuit 20 for measuring an OFF time that is a time during which the output voltage of the power supply circuit 5 has become lower than the operable voltage of the microcomputer 10.
  • OFF time read from 2 because it determines the initial value of the cumulative current value LTD based on the ON time t 1 corresponding to the current time in the ON current and intermittent loads which corresponds to the conduction current in the intermittent load, can be performed to correct tripping operation as Become.
  • an OFF time t 2 is read from the OFF time measuring circuit 20, as ON current I ON calculated from the secondary output current of the current transformer 3 the effective value I 1, to calculate the thermal equivalent current I e provisional cumulative current value LTD 1 from, it is possible to perform with accurate tripping operation.

Abstract

This electronic circuit breaker is provided with: a current transformer 3 for detecting current flowing through an AC electric path 1; a rectifier circuit 4 connected to the secondary side of the current transformer 3 and rectifying the detected current; a power supply circuit 5 connected to the output side of the rectifier circuit 4 and outputting a constant voltage; and a microcomputer 10 for detecting the detected current at a predetermined detection cycle, calculating an accumulated current value which is obtained by accumulating the product of the square value of the effective value of the detected current in a period during which the detected current exceeds a predetermined value corresponding to a rated current and the detection cycle, and opening a switching contact 2 on the basis of the accumulated current value. The electronic circuit breaker has an OFF-time measuring circuit 20 connected to the microcomputer 10 and measuring an OFF-time that is time during which the output voltage of the power supply circuit 5 has been less than the operable voltage of the microcomputer 10. The microcomputer 10 determines the initial value of the accumulated current value on the basis of the OFF-time read from the OFF-time measuring circuit 20 during startup, the ON-current corresponding to energization current in an intermittent load, and the ON-time corresponding to energization time in the intermittent load.

Description

電子式回路遮断器Electronic circuit breaker
この発明は、マイクロコンピュータにより交流電路に流れる電流レベルに応じた引外し動作時間を演算し引外し動作を行う電子式回路遮断器に関するものである。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic circuit breaker that performs a trip operation by calculating a trip operation time according to a current level flowing in an AC electric circuit by a microcomputer.
 従来の電子式回路遮断器は、電路に流れる事故電流を検出してディジタル信号に変換する電流検出変換手段と、ディジタル信号のレベルを判別するマイクロコンピユータからなるレベル判別手段と、レベル判別手段により判別されたレベルに対応する所定の限時動作を行うマイクロコンピユータからなる時限発生手段と、時限発生手段の限時動作に応動する出力手段と、時限発生手段の限時動作中に事故電流により生じる熱エネルギーに応じたパルス幅を有するパルスを限時動作中の所定の時間ごとに発生させるマイクロコンピユータからなるパルス発生手段と、パルスによって充電されるコンデンサおよびこのコンデンサに蓄えられた電荷をCR時定数回路の態様で放電させる放電用抵抗を含み、かつマイクロコンピユータのリセット後の再スタート時もしくは事故電流の再発時にコンデンサの残留電圧を時限発生手段の発生時限算出の初期値としてマイクロコンピユータに入力する充放電回路手段と、を備えている。 A conventional electronic circuit breaker includes a current detecting and converting means for detecting a fault current flowing in an electric circuit and converting it into a digital signal, a level determining means comprising a micro computer for determining the level of the digital signal, and a level determining means. A time generating means comprising a microcomputer which performs a predetermined time operation corresponding to the set level, an output means which responds to the time operation of the time generating means, and a heat energy generated by an accident current during the time operation of the time generating means. Generating means comprising a microcomputer for generating a pulse having a pulse width at predetermined intervals during the timed operation, a capacitor charged by the pulse, and discharging the charge stored in the capacitor in the form of a CR time constant circuit. And a reset resistor after resetting the microcomputer. During relapse start time or fault current and a, a charging and discharging circuit means for inputting to the microcomputer as an initial value for generating timed calculation timed generating means residual voltage of the capacitor.
特開昭60-113617JP-A-60-13617
 従来の電子式回路遮断器では、充放電回路手段の放電用抵抗における抵抗値は単一であるため、負荷電流として電路にOFF時間が長い(例えば、1秒流れて12秒流れない)断続的な過電流を想定し、放電用抵抗の抵抗値を大きくすると、OFF時間の短い(例えば、0.5秒流れて0.5秒流れない)断続的な過電流が流れた場合、コンデンサの充電電圧を放電しきれず、充電電圧が加算され続けることによって動作特性を下回る電流値でも過電流として誤動作してしまうという問題があった。
 また、その逆にOFF時間が短い過電流を想定し、放電用抵抗の抵抗値を小さくすると、OFF時間の長い過電流が流れた場合、OFF時間の間にコンデンサの充電電圧が放電により0となってしまい、熱エネルギーが蓄電できないこととなり、不動作となる可能性があった。
In a conventional electronic circuit breaker, since the resistance value of the discharge resistor of the charging / discharging circuit means is a single value, the off time as a load current is long in the electric circuit (for example, 1 second flows and 12 seconds do not flow). Assuming a large overcurrent and increasing the resistance value of the discharging resistor, if an intermittent overcurrent with a short OFF time (for example, 0.5 seconds flows but not 0.5 seconds) flows, the capacitor is charged. Since the voltage cannot be completely discharged and the charging voltage continues to be added, there is a problem that a current value lower than the operation characteristic may malfunction as an overcurrent.
Conversely, assuming an overcurrent with a short OFF time and reducing the resistance value of the discharging resistor, if an overcurrent with a long OFF time flows, the charging voltage of the capacitor becomes 0 due to discharging during the OFF time. As a result, heat energy could not be stored, and there was a possibility that the device would not operate.
 この発明は、マイクロコンピュータによって引外し特性を処理する電子式回路遮断器において、多様なON/OFF周期の断続負荷電流に対しても電路の蓄熱放熱特性を考慮した正確な引外し特性を得ることができる電子式回路遮断器を提供するものである。 An object of the present invention is to provide an electronic circuit breaker in which a tripping characteristic is processed by a microcomputer, and to obtain an accurate tripping characteristic in consideration of the heat storage and heat radiation characteristics of an electric circuit even for intermittent load currents with various ON / OFF cycles. To provide an electronic circuit breaker.
 この発明に係る電子式回路遮断器は、交流電路に挿入された開閉接点と、交流電路に流れる電流を検出する変流器と、変流器の二次側に接続され、検出電流を整流する整流回路と、整流回路の出力側に接続され、一定の電圧を出力する電源回路と、検出電流を所定の検出周期で検出し、検出電流が定格電流に対応する所定値を超えた期間における検出電流の実効値の2乗値と検出周期との電流積を積算累積した累積電流値を算出するとともに、累積電流値に基づいて開閉接点を開離させる制御装置とを備え、制御装置に接続され、電源回路の出力電圧が制御装置の動作可能電圧未満になっていた時間であるOFF時間を計測するためのOFF時間計測回路を有し、制御装置は、起動時に、OFF時間計測回路から読み込んだOFF時間、断続負荷における通電電流に相当するON電流および断続負荷における通電時間に相当するON時間に基づき累積電流値の初期値を決定するものである。 An electronic circuit breaker according to the present invention is connected to a switching contact inserted in an AC circuit, a current transformer for detecting a current flowing in the AC circuit, and a secondary side of the current transformer, and rectifies the detected current. A rectifier circuit, a power supply circuit connected to an output side of the rectifier circuit and outputting a constant voltage, and a detection circuit that detects a detection current at a predetermined detection cycle and detects the detection current during a period when the detection current exceeds a predetermined value corresponding to the rated current. A control device for calculating an accumulated current value obtained by integrating and accumulating the current product of the square value of the effective value of the current and the detection cycle, and for opening and closing the switching contact based on the accumulated current value; And an OFF time measuring circuit for measuring an OFF time, which is a time during which the output voltage of the power supply circuit has become lower than the operable voltage of the control device, and the control device reads from the OFF time measuring circuit at startup. OFF time, off Based on the ON time corresponding to the conduction time in the ON current and intermittent loads which corresponds to the conduction current in the load is to determine the initial value of the cumulative current value.
 この発明に係る電子式回路遮断器によれば、制御装置が動作不可になっていた時間であるOFF時間を計測するためのOFF時間計測回路を備えたので、正確な引外し動作を行うことが可能となる。
 この発明の上記以外の目的、特徴、観点および効果は、図面を参照する以下のこの発明の詳細な説明から、さらに明らかになるであろう。
According to the electronic circuit breaker according to the present invention, since the OFF time measuring circuit for measuring the OFF time during which the control device is inoperable is provided, an accurate tripping operation can be performed. It becomes possible.
Other objects, features, aspects and effects of the present invention will become more apparent from the following detailed description of the present invention which refers to the accompanying drawings.
本発明の実施の形態1における電子式回路遮断器を示すブロック図である。FIG. 2 is a block diagram illustrating an electronic circuit breaker according to Embodiment 1 of the present invention. 実施の形態1における電子式回路遮断器のサンプリングによる電流の実効値を得る方法を説明するための説明図である。FIG. 5 is an explanatory diagram for describing a method of obtaining an effective value of a current by sampling of the electronic circuit breaker according to the first embodiment. 実施の形態1におけるマイクロコンピュータの処理を示すフローチャートである。5 is a flowchart showing processing of the microcomputer according to the first embodiment. 図3に示す過電流検出処理のフローチャートである。4 is a flowchart of an overcurrent detection process shown in FIG. 本発明の実施の形態2に係る電子式回路遮断器を示すブロック図である。FIG. 4 is a block diagram showing an electronic circuit breaker according to Embodiment 2 of the present invention. 実施の形態2におけるマイクロコンピュータの処理を示すフローチャートである。9 is a flowchart showing processing of the microcomputer according to the second embodiment. 図6に示す過電流検出処理のフローチャートである。7 is a flowchart of an overcurrent detection process shown in FIG. 本発明の実施の形態3に係る電子式回路遮断器を示すブロック図である。FIG. 9 is a block diagram showing an electronic circuit breaker according to Embodiment 3 of the present invention. 実施の形態3におけるマイクロコンピュータの処理を示すフローチャートである。13 is a flowchart showing processing of the microcomputer according to the third embodiment. 図9に示す過電流検出処理のフローチャートである。It is a flowchart of the overcurrent detection processing shown in FIG.
 以下、この発明に係る電子式回路遮断器の実施の形態について図面を用いて説明する。なお、各図において同一符号は同一、若しくは相当部分を示している。 Hereinafter, embodiments of an electronic circuit breaker according to the present invention will be described with reference to the drawings. In each drawing, the same reference numerals indicate the same or corresponding parts.
実施の形態1.
 図1はこの発明の実施の形態1に係る電子式回路遮断器を示すブロック図、図2はサンプリングによる電流の実効値を得る方法を説明するための説明図、図3はマイクロコンピュータの処理を示すフローチャート、図4は図3に示す過電流検出処理の詳細を示すフローチャートである。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing an electronic circuit breaker according to Embodiment 1 of the present invention, FIG. 2 is an explanatory diagram for explaining a method of obtaining an effective value of a current by sampling, and FIG. FIG. 4 is a flowchart showing details of the overcurrent detection processing shown in FIG.
 図1に示すように、本実施の形態における電子式回路遮断器100は、交流電路1に挿入され交流電路1を開閉する開閉接点2と、交流電路1に設けられ、交流電路1に流れる負荷電流に比例した検出電流を出力する変流器3と、この変流器3の二次側に接続され、検出電流を整流する整流回路4と、この整流回路4から出力された電流により電子式回路遮断器内部の動作に用いる一定の電圧を出力する電源回路5と、整流回路4の出力側に接続され、変流器3の検出電流をアナログ電圧信号に変換する波形変換回路6と、この波形変換回路6のアナログ電圧信号に基づき引外し特性の処理を行う制御装置としてのマイクロコンピュータ10(以下、マイコン10という)と、マイコン10からの各引外し信号により引外し装置8を駆動し開閉接点2を開離させる引外し回路7と、交流電路1に流れる負荷電流が減少して電源回路5の出力電圧が低下することによりマイコン10が動作していない時間を計測するためのOFF時間計測回路20と、負荷電流によって電線に蓄積される熱エネルギーを模擬する熱エネルギー保存回路30と、から構成されている。 As shown in FIG. 1, an electronic circuit breaker 100 according to the present embodiment includes a switching contact 2 inserted into an AC circuit 1 to open and close the AC circuit 1, and a load provided on the AC circuit 1 and flowing through the AC circuit 1. A current transformer 3 for outputting a detection current proportional to the current, a rectifier circuit 4 connected to the secondary side of the current transformer 3 for rectifying the detection current, and an electronic type using the current output from the rectifier circuit 4 A power supply circuit 5 for outputting a constant voltage used for the operation inside the circuit breaker; a waveform conversion circuit 6 connected to the output side of the rectifier circuit 4 for converting a detection current of the current transformer 3 into an analog voltage signal; A microcomputer 10 (hereinafter, referred to as a microcomputer 10) as a control device for performing a trip characteristic process based on an analog voltage signal of the waveform conversion circuit 6, and a trip device 8 driven by each trip signal from the microcomputer 10. A trip circuit 7 for opening the closed contact 2 and an OFF time for measuring a time during which the microcomputer 10 is not operating due to a decrease in load current flowing through the AC circuit 1 and a decrease in the output voltage of the power circuit 5. It comprises a measuring circuit 20 and a thermal energy storage circuit 30 that simulates thermal energy stored in the electric wire by a load current.
 マイコン10は、波形変換回路6のアナログ電圧信号をディジタル信号に変換する第1のA/D変換11aと、第1のA/D変換11aが出力するディジタル信号に基づき交流電路1を流れる電流の実効値を演算する実効値演算部12と、実効値演算部12が算出した電流の実効値に基づき、時限特性の処理を行い過電流発生時に開閉接点2を開離させる時限特性演算部13と、時限特性演算部13からの引外し信号の出力に基づき、引外し回路7を駆動する引外し出力ポート14と、OFF時間計測回路20のコンデンサ電圧VTIMEをディジタル信号に変換する第2のA/D変換11bと、OFF時間計測回路20の時間計測用コンデンサ21を充電するために電圧を出力する時間計測用出力ポート15と、熱エネルギー保存回路30におけるコンデンサ電圧VTMをディジタル信号に変換する第3のA/D変換11cと、熱エネルギー保存回路30の熱エネルギー保存用コンデンサ31を充電するために出力を行う充電用出力ポート16と、遮断時に熱エネルギー保存用コンデンサ31を瞬時に完全放電させるための出力を行う即時放電用出力ポート17と、熱エネルギー保存用コンデンサ31を所定の電圧まで放電させるための出力を行う放電用出力ポート18と、から構成されている。 The microcomputer 10 includes a first A / D converter 11a for converting an analog voltage signal of the waveform conversion circuit 6 into a digital signal, and a current of the current flowing through the AC circuit 1 based on the digital signal output from the first A / D converter 11a. An effective value calculating section 12 for calculating an effective value; a time characteristic calculating section 13 for processing a time characteristic based on the effective value of the current calculated by the effective value calculating section 12 and opening the switching contact 2 when an overcurrent occurs; And a second output A for converting the trip output port 14 for driving the trip circuit 7 and the capacitor voltage V TIME of the OFF time measuring circuit 20 to a digital signal based on the output of the trip signal from the time characteristic calculation unit 13. / D converter 11 b, a time measurement output port 15 for outputting a voltage to charge the time measurement capacitor 21 of the OFF time measurement circuit 20, and a heat energy storage circuit 30. A / D converter 11c for converting the capacitor voltage VTM into a digital signal, a charging output port 16 for outputting power to charge the thermal energy storage capacitor 31 of the thermal energy storage circuit 30, An output port 17 for instantaneous discharge for outputting an instantaneous complete discharge of the capacitor 31 for storing heat energy, an output port 18 for outputting an output for discharging the capacitor 31 for storing heat energy to a predetermined voltage, It is composed of
 OFF時間計測回路20は、一端が第2のA/D変換11bに接続され、他端がグランドに接続された時間計測用コンデンサ21と、カソードが時間計測用コンデンサ21の一端に接続され、アノードが抵抗22を介して時間計測用出力ポート15に接続されたダイオード23と、一端が時間計測用コンデンサ21の一端に接続され、他端がグランドに接続された放電抵抗24と、から構成されている。 The OFF time measurement circuit 20 has one end connected to the second A / D converter 11b and the other end connected to the ground, a cathode connected to one end of the time measurement capacitor 21, and a cathode connected to the anode. Are connected to a time measurement output port 15 via a resistor 22, and a discharge resistor 24 is connected at one end to one end of the time measurement capacitor 21 and the other end is connected to the ground. I have.
 熱エネルギー保存回路30は、一端が第3のA/D変換11cに接続され、他端がグランドに接続された熱エネルギー保存用コンデンサ31と、カソードが熱エネルギー保存用コンデンサ31の一端に接続され、アノードが抵抗32を介して充電用出力ポート16に接続されたダイオード33と、コレクタが熱エネルギー保存用コンデンサ31の一端に接続され、ベースが抵抗34を介して即時放電用出力ポート17に接続され、エミッタがグランドに接続されたトランジスタ35と、一端がトランジスタ35のベースに接続され、他端がグランドに接続された抵抗36と、一端が熱エネルギー保存用コンデンサ31の一端に接続された抵抗37と、コレクタが抵抗37の他端に接続され、ベースが抵抗38を介して放電用出力ポート18に接続され、エミッタがグランドに接続されたトランジスタ39と、一端がトランジスタ39のベースに接続され、他端がグランドに接続された抵抗310と、から構成されている。 The thermal energy storage circuit 30 has one end connected to the third A / D converter 11c and the other end connected to the ground, and a cathode connected to one end of the thermal energy storage capacitor 31. A diode 33 having an anode connected to the charging output port 16 via the resistor 32, a collector connected to one end of the thermal energy storage capacitor 31, and a base connected to the immediate discharging output port 17 via the resistor 34. A transistor 35 having an emitter connected to ground, a resistor 36 having one end connected to the base of the transistor 35 and the other end connected to ground, and a resistor having one end connected to one end of the capacitor 31 for storing heat energy. 37, the collector is connected to the other end of the resistor 37, and the base is connected to the discharge output port 18 via the resistor 38. Is connected, a transistor 39 whose emitter is connected to ground, one end connected to the base of transistor 39, a resistor 310 whose other end is connected to ground, and a.
 次に、マイコン10内の実効値演算部12および時限特性演算部13の処理について説明する。
 まず、時限特性演算部13での負荷電流の演算方法について図2により説明する。変流器3で検出された交流電路1の検出電流は、波形変換回路6で検出電流に基づくアナログ電圧信号に変換された後、第1のA/D変換11aでアナログ電圧信号からディジタル値へ変換される。この検出電流の検出周期、すなわち、サンプリング周期はΔtである。交流電路1を流れる負荷電流の実効値を得る必要から、交流電路1の交流電源周波数が、例えば、50Hzの場合には5周期に相当、60Hzの場合には6周期に相当する100msec間、サンプリングされるディジタル値の2乗移動平均、すなわち、ディジタル値の2乗を累積しサンプリング数mで割ることで算出されるI =(Σi)/mを求める。I の平方根が、負荷電流の実効値Iとなる。
Next, the processing of the effective value calculation unit 12 and the time characteristic calculation unit 13 in the microcomputer 10 will be described.
First, the calculation method of the load current in the time characteristic calculator 13 will be described with reference to FIG. The detection current of the AC circuit 1 detected by the current transformer 3 is converted into an analog voltage signal based on the detection current by the waveform conversion circuit 6, and then converted from the analog voltage signal to a digital value by the first A / D converter 11a. Is converted. The detection cycle of this detection current, that is, the sampling cycle is Δt. Since it is necessary to obtain the effective value of the load current flowing through the AC circuit 1, the AC power supply frequency of the AC circuit 1 is sampled for 100 msec, which is equivalent to 5 cycles at 50 Hz and 6 cycles at 60 Hz. square moving average of the digital values, i.e., I 1 2 = (Σi 2 ) which is calculated by dividing the square of the accumulated sampling number m of digital values Request / m. I 1 2 square root becomes the effective value I 1 of the load current.
 次に、時限特性演算部13の処理について、図3~図4を用いて説明する。
 図3に示すように、電源回路5からの電源によりマイコン10が起動すると、まず、ステップS101で、クロックや出力ポートなどマイコン10の初期設定を行い、ステップS102に進む。ステップS102では、時間計測用コンデンサ21のコンデンサ電圧VTIMEを第2のA/D変換11bによりディジタル信号に変換し、ステップS103に進む。
 ステップS103では、以下に示す(1)式を用いて、負荷電流がOFFの周期におけるOFF時間tを算出し、ステップS104に進む。ここで、τは放電抵抗24および時間計測用コンデンサ21の容量値により決定される時定数、Vは時間計測用コンデンサ21に充電される最大の電圧値(例えば3.3V)を指している。
Next, the processing of the time characteristic calculator 13 will be described with reference to FIGS.
As shown in FIG. 3, when the microcomputer 10 is started by the power supply from the power supply circuit 5, first, in step S101, initial settings of the microcomputer 10 such as a clock and an output port are performed, and the process proceeds to step S102. In step S102, the capacitor voltage V TIME of the time measuring capacitor 21 is converted into a digital signal by the second A / D converter 11b, and the process proceeds to step S103.
In step S103, using the following equation (1), the load current is calculated OFF time t 2 in the period of the OFF, the process proceeds to step S104. Here, tau are pointing time constant determined by the capacitance value of the discharge resistor 24 and the time measurement capacitor 21, the maximum voltage value V 1 was charged to the time measurement capacitor 21 (eg, 3.3V) .
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ステップS104では、熱エネルギー保存用コンデンサ31のコンデンサ電圧VTMを第3のA/D変換11cによりディジタル信号VTMADに変換し、ステップS105に進む。ステップS105では、前回、負荷電流がONの周期時に負荷へ給電する電線に蓄積されていた熱エネルギーに相当する暫定累積電流値LTDを式(2)により算出し、ステップS106に進む。
    LTD=トリップ閾値×VTMAD/VMAXAD  ・・・(2)
 ここで、VMAXADは、時間計測用コンデンサ21に充電される最大の電圧値に対応するA/D変換後のディジタル値である。
In step S104, the capacitor voltage V TM of the thermal energy storage capacitor 31 is converted into a digital signal V TM AD by the third A / D converter 11c, the process proceeds to step S105. In step S105, the previous, the provisional cumulative current value LTD 1 the load current corresponds to the thermal energy accumulated in the wire to supply power to the load during the period of ON is calculated by the equation (2), the flow proceeds to step S106.
LTD 1 = trip threshold × V TM AD / V MAX AD (2)
Here, V MAX AD is a digital value after A / D conversion corresponding to the maximum voltage value charged in the time measuring capacitor 21.
 ステップS106では、これまで求めた暫定累積電流値LTD、およびON電流としての実効値Iから式(3)により前回周期のON時間tを求め、ステップS107に進む。
    t = LTD/I   ・・・(3)
 ステップS107では、これまでに求めたON時間t,OFF時間t,ON電流としての実効値Iから、熱的等価電流Ieを式(4)によって求め、ステップS107に進む。
In step S106, it obtains the ON time t 1 of the previous cycle by the equation (3) from the effective value I 1 of the provisional cumulative current value LTD 1, and ON current calculated so far, the flow proceeds to step S107.
t 1 = LTD 1 / I 1 2 (3)
In step S107, the effective value I 1 as so far ON time calculated t 1, OFF time t 2, ON current, the thermal equivalent current Ie determined by equation (4), the flow proceeds to step S107.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ステップS108では、熱的等価電流Ieが所定の閾値(例えば定格電流設定値I)以上かどうかの判定を行い、所定の閾値以上の場合には、ステップS109に進み、所定の閾値未満の場合には、ステップS110に進む。
 ステップS109では、時限特性演算部13の持つ累積電流値LTDへ暫定累積電流値LTDをセットし、ステップS110では、累積電流値LTDを0にセットした後、ステップS111に進む。
In step S108, it is determined whether or not the thermal equivalent current Ie is equal to or more than a predetermined threshold (for example, a rated current set value I 0 ). , The process proceeds to step S110.
In step S109, it sets the provisional cumulative current value LTD 1 to cumulative current value LTD with the time characteristics calculating unit 13, in step S110, after setting the accumulated current value LTD zero, the process proceeds to step S111.
 ステップS111において、マイコン10の時間計測用出力ポート15は、交流電路1に過電流もしくは正常な電流が流れている間、出力信号S0をHレベルで出力し続け、時間計測用コンデンサ21を常に最大のエネルギー量が充電された状態とし、ステップS200の過電流検出処理に進む。 In step S111, the time measurement output port 15 of the microcomputer 10 keeps outputting the output signal S0 at the H level while the overcurrent or the normal current flows in the AC circuit 1, and keeps the time measurement capacitor 21 at the maximum level. Is charged, and the process proceeds to the overcurrent detection process in step S200.
 定周期のループ処理である過電流検出処理は、図4に示すように、ステップS201で、ON電流として実効値演算部12により得られた変流器の二次出力電流の実効値Iが過電流状態であるかどうか、すなわち、実効値Iが定格電流設定値I以上かを判定する。実効値Iが定格電流設定値I以上の場合には、ステップS202に進み、実効値Iが定格電流設定値I未満の場合には、ステップS203に進む。ここで、定格電流設定値Iが、請求の範囲に記載の所定値である。 Overcurrent detection process is a loop process of the constant cycle, as shown in FIG. 4, in step S201, the effective value I 1 of the secondary output current of the current transformer which is obtained by the effective value calculating section 12 as the ON current whether in the overcurrent state, i.e., it determines the effective value I 1 is whether the rated current set value I 0 or more. If the effective value I 1 is equal to or greater than the rated current set value I 0, the process proceeds to step S202, if the effective value I 1 is less than the rated current set value I 0, the process proceeds to step S203. Here, the rated current set value I 0, a predetermined value in claims.
 ステップS202では、実効値Iが定格電流設定値I以上なので、式(5)に従い、累積電流値LTDの加算処理を行い、ステップS204に進む。
    LTD=前回LTD+(Δt×I ) ・・・(5)
 ステップS203では、実効値Iが定格電流設定値I未満なので、式(6)に従い、累積電流値LTDの減算処理を行い、ステップS204に進む。
    LTD=前回LTD-Δt×(I -I ) ・・・(6)
 なお、Δtは第1のA/D変換11aの変換周期となるが、通常、固定値となるので、演算を簡略化するため、Δt=1として処理しても良い。
In step S202, the effective value I 1 is a more rated current set value I 0, according to the equation (5), performs addition processing of the accumulated current value LTD, the process proceeds to step S204.
LTD = Last LTD + (Δt × I 1 2 ) (5)
In step S203, the effective value I 1 is less than the rated current set value I 0, according to the equation (6), the subtraction processing of the accumulated current value LTD, the process proceeds to step S204.
LTD = Last time LTD−Δt × (I 0 2 −I 1 2 ) (6)
Note that Δt is the conversion period of the first A / D converter 11a, but is usually a fixed value, so that it may be processed as Δt = 1 to simplify the calculation.
 ステップS204では、ステップS202もしくはステップS203で求めた累積電流値LTDより熱エネルギー保存用コンデンサ31の充電予定値Vrefを式(7)に従い算出し、ステップS205に進む。
    Vref=VMAXAD×LTD/トリップ閾値 ・・・(7)
 ステップS205では、熱エネルギー保存用コンデンサ31のコンデンサ電圧VTMを第3のA/D変換11cにより変換したディジタル信号VTMADが、充電予定値Vref以上かを判定する。ディジタル信号VTMADが充電予定値Vref以上の場合、ステップS206に進み、ディジタル信号VTMADが充電予定値Vref未満の場合、ステップS207に進む。
In step S204, the scheduled charge value Vref of the thermal energy storage capacitor 31 is calculated from the accumulated current value LTD obtained in step S202 or step S203 according to equation (7), and the process proceeds to step S205.
V ref = V MAX AD × LTD / trip threshold (7)
In step S205, the digital signal V TM AD the capacitor voltage V TM of the thermal energy storage capacitor 31 and converted by a third A / D conversion 11c is determined whether charging predetermined value V ref or more. If the digital signal V TM AD is not less than the planned charging value V ref, the process proceeds to step S206, if the digital signal V TM AD is less than the scheduled charging value V ref, the process proceeds to step S207.
 ステップS206では、ディジタル信号VTMADが充電予定値Vref以上なので、充電用出力ポート16の出力信号S1を所定の時間Hレベルに制御することで、抵抗32およびダイオード33を介して熱エネルギー保存用コンデンサ31を充電予定値Vrefまで充電し、ステップS208に進む。
 一方、ステップS207では、ディジタル信号VTMADが充電予定値Vref未満なので、放電用出力ポート18の出力信号S3を所定の時間Hレベルに制御することで、抵抗38を介してトランジスタ39のコレクタ-エミッタ間を導通させ、抵抗37を介して熱エネルギー保存用コンデンサ31を充電予定値Vrefまで放電させ、ステップS208に進む。
In step S206, since the digital signal V TM AD such or planned charging value V ref, by controlling the output signal S1 of the charging output port 16 at a given time H level, the thermal energy store through a resistor 32 and a diode 33 The capacitor 31 is charged to the scheduled charge value Vref , and the process proceeds to step S208.
On the other hand, in step S207, since the digital signal V TM AD is less than the planned charging value V ref, the output signal S3 of the discharge output port 18 to control the predetermined time H level, the collector of the transistor 39 through the resistor 38 -Conducting between the emitters and discharging the thermal energy storage capacitor 31 to the expected charge value Vref via the resistor 37, and the process proceeds to step S208.
 ステップS208では、累積電流値LTDが、トリップ閾値以上かを判定する。累積電流値LTDがトリップ閾値以上の場合、ステップS209に進み、累積電流値LTDがトリップ閾値未満の場合、ステップS201に戻りステップS201以降の処理を再度行う。
 ステップS209では、即時放電用出力ポート17の出力信号S2をHレベルに制御し、抵抗34を介してトランジスタ35のコレクタ-エミッタ間を導通させることで、熱エネルギー保存用コンデンサ31を急速に放電させ、ステップS210に進む。
In step S208, it is determined whether the accumulated current value LTD is equal to or greater than a trip threshold. If the accumulated current value LTD is equal to or greater than the trip threshold, the process proceeds to step S209. If the accumulated current value LTD is less than the trip threshold, the process returns to step S201 to perform the processes in step S201 and subsequent steps again.
In step S209, the output signal S2 of the immediate discharge output port 17 is controlled to the H level, and the collector and the emitter of the transistor 35 are made conductive through the resistor 34, thereby rapidly discharging the thermal energy storage capacitor 31. The process proceeds to step S210.
 ステップS210では、引外し出力ポート14の電圧信号S4をHレベルとすることで、引外し回路7を駆動し引外し装置8を動作させることにより開閉接点2を開離し交流電路1を開放する。 In step S210, by setting the voltage signal S4 of the trip output port 14 to the H level, the trip circuit 7 is driven and the trip device 8 is operated, so that the switching contact 2 is opened and the AC circuit 1 is opened.
 断続負荷がOFF周期となり、マイコン10の駆動電源が喪失した場合は、時間計測用コンデンサ21の充電電圧が、その容量値と並列に接続された放電抵抗24で決定される時定数をもって緩やかに放電されていく。一方、熱エネルギー保存用コンデンサ31に接続されている放電用の抵抗37はトランジスタ39に接続されており、その他に放電する経路がないため、熱エネルギー保存用コンデンサ31自身の漏れ電流およびトランジスタ35、39の漏れ電流のみに従い非常に緩やかに放電されていくため、負荷への電線の蓄熱エネルギーを長期間保持することができる。 When the intermittent load becomes an OFF cycle and the drive power supply of the microcomputer 10 is lost, the charging voltage of the time measuring capacitor 21 is gradually discharged with the time constant determined by the discharging resistor 24 connected in parallel with the capacitance value. Will be done. On the other hand, since the discharging resistor 37 connected to the heat energy storage capacitor 31 is connected to the transistor 39 and has no other discharging path, the leakage current of the heat energy storage capacitor 31 itself and the transistor 35, Since the discharge is performed very slowly in accordance with only the leakage current of 39, the heat storage energy of the electric wire to the load can be held for a long time.
 なお、本実施の形態では、OFF時間計測回路20として時間計測用コンデンサ21と放電用の放電抵抗24を用いた回路例を示したが、電池もしくはスーパーキャパシター等から電源を供給されるようにした時計IC(Integrated Circuit)を用いてもよい。 In the present embodiment, an example of a circuit using the time measuring capacitor 21 and the discharging resistor 24 for discharging is shown as the OFF time measuring circuit 20, but power is supplied from a battery or a super capacitor or the like. A clock IC (Integrated @ Circuit) may be used.
 本実施の形態によれば、交流電路1に挿入された開閉接点2と、交流電路1に流れる電流を検出する変流器3と、変流器3の二次側に接続され、検出電流を整流する整流回路4と、整流回路4の出力側に接続され、一定の電圧を出力する電源回路5と、検出電流を所定の検出周期で検出し、検出電流が定格電流に対応する所定値を超えた期間における検出電流の実効値の2乗値と検出周期との電流積を積算累積した累積電流値を算出するとともに、累積電流値に基づいて開閉接点2を開離させるマイコン10と、を備え、電源回路5の出力電圧がマイコン10の動作可能電圧未満になっていた時間であるOFF時間を計測するためのOFF時間計測回路20を有し、マイコン10は、起動時に、OFF時間計測回路から読み込んだOFF時間t、断続負荷における通電電流に相当するON電流IONおよび断続負荷における通電時間に相当するON時間tに基づき累積電流値の初期値を決定するので、正確な引外し動作を行うことが可能となる。 According to the present embodiment, the switching contact 2 inserted into the AC circuit 1, the current transformer 3 for detecting the current flowing in the AC circuit 1, and the secondary side of the current transformer 3 are connected to A rectifier circuit 4 for rectifying, a power supply circuit 5 connected to an output side of the rectifier circuit 4 and outputting a constant voltage, and detecting a detected current at a predetermined detection cycle, and detecting the detected current at a predetermined value corresponding to the rated current. A microcomputer 10 for calculating an accumulated current value obtained by integrating and accumulating the current product of the square value of the effective value of the detected current and the detection period during the period of time exceeded, and for opening and closing the switching contact 2 based on the accumulated current value; The microcomputer 10 has an OFF time measuring circuit 20 for measuring an OFF time that is a time during which the output voltage of the power supply circuit 5 has become lower than the operable voltage of the microcomputer 10. OFF time read from 2, because it determines the initial value of the cumulative current value based on the ON time t 1 corresponding to the energizing time of the ON current I ON and intermittent loads which corresponds to the conduction current in the intermittent load, can be performed to correct tripping operation It becomes.
 また、マイコン10から累積電流値に対応する電圧に充電される熱エネルギー保存用コンデンサ31と、熱エネルギー保存用コンデンサ31の充電電圧がマイコン10に読み込み可能に接続された熱エネルギー保存回路30とを備え、ON電流IONはマイコン10の起動時に算出した変流器3からの検出電流の実効値Iを使用し、ON時間tは熱エネルギー保存回路30の充電電圧およびマイコン10の起動時に算出した変流器3からの検出電流の実効値Iから算出するので、正確な引外し動作を行うことが可能となる。 Also, a thermal energy storage capacitor 31 charged by the microcomputer 10 to a voltage corresponding to the accumulated current value, and a thermal energy storage circuit 30 connected to the microcomputer 10 so that the charge voltage of the thermal energy storage capacitor 31 can be read by the microcomputer 10 are included. includes, oN current I oN is using the effective value I 1 of the detected current from the current transformer 3 which is calculated at the start of the microcomputer 10, oN time t 1 is at the start of the charging voltage and the microcomputer 10 of the thermal energy storage circuit 30 since calculated from the effective value I 1 of the detected current from the calculated current transformer 3, it is possible to perform and accurate tripping operation.
 また、マイコン10が算出する累積電流値LTDは、所定値を超えた期間における検出電流の実効値の2乗値を累積したものなので、マイコン10による累積電流値の演算負荷を減らすことができる。 The cumulative current value LTD calculated by the microcomputer 10 is obtained by accumulating the square value of the effective value of the detected current during a period in which the microcomputer 10 exceeds a predetermined value.
 また、引外し動作時には即時放電用出力ポート17の出力信号S2をHレベルとすることで熱エネルギー保存用コンデンサ31のエネルギーを瞬時に放電するため、過電流動作後の再投入時にも即時動作することなく、連続給電が可能となる。 In addition, during the tripping operation, the energy of the thermal energy storage capacitor 31 is instantaneously discharged by setting the output signal S2 of the instantaneous discharge output port 17 to the H level. Without this, continuous power supply becomes possible.
実施の形態2.
 次に、この発明の実施の形態2における電子式回路遮断器200について説明する。
 図5は実施の形態2における電子式回路遮断器のブロック図、図6はマイクロコンピュータの処理を示すフローチャート、図7は図6に示す過電流検出処理の詳細を示すフローチャートである。
 実施の形態1と本実施の形態の差異は、図5に示すように、熱エネルギー保存回路30に換えて不揮発性メモリ40を設け、不揮発性メモリ40のデータを通信によって取得するためにマイコン10内部へ通信部19を設けたものある。ここで、不揮発性メモリ40には、強誘電体メモリ(Ferroelectric Random Access Memory)や、抵抗変化型メモリ(Resistive Random Access Memory)等の使用を想定している。
Embodiment 2 FIG.
Next, an electronic circuit breaker 200 according to Embodiment 2 of the present invention will be described.
FIG. 5 is a block diagram of the electronic circuit breaker according to the second embodiment, FIG. 6 is a flowchart showing processing of the microcomputer, and FIG. 7 is a flowchart showing details of the overcurrent detection processing shown in FIG.
The difference between the first embodiment and the present embodiment is that, as shown in FIG. 5, a non-volatile memory 40 is provided in place of the thermal energy storage circuit 30 and the microcomputer 10 is used to acquire the data of the non-volatile memory 40 by communication. In some cases, a communication unit 19 is provided inside. Here, as the nonvolatile memory 40, use of a ferroelectric memory (Ferroelectric Random Access Memory), a resistance change type memory (Resistive Random Access Memory), or the like is assumed.
 また、実施の形態1では、マイコン10の内部に設けられていた第3のA/D変換11c、充電用出力ポート16、即時放電用出力ポート17、および放電用出力ポート18は廃止されている。その他の構成については、実施の形態1と同様であるので、詳細説明は省略する。
 本実施の形態における電子式回路遮断器200では、不揮発性メモリ40に累積電流値LTDおよびON時間カウンタを常に書き込みしておき、断続負荷の環境においてマイコン10が再起動した場合には、時限特性演算部13が、通信部19を介して不揮発性メモリ40から累積電流値LTDおよびON時間カウンタを読み出し、処理を行うものである。
In the first embodiment, the third A / D converter 11c, the charging output port 16, the immediate discharging output port 17, and the discharging output port 18 provided inside the microcomputer 10 are eliminated. . Other configurations are the same as those in the first embodiment, and thus detailed description is omitted.
In the electronic circuit breaker 200 according to the present embodiment, the accumulated current value LTD and the ON time counter are always written in the non-volatile memory 40, and when the microcomputer 10 is restarted in an intermittent load environment, the time characteristic is not changed. The calculation unit 13 reads out the accumulated current value LTD and the ON time counter from the nonvolatile memory 40 via the communication unit 19, and performs processing.
 実施の形態1における電子式回路遮断器100では、ON電流として現在周期における変流器3の二次出力電流の実効値Iを用いて熱的等価電流Iの算出を行うため、断続負荷の電流値がその周期内で常に一定であることを前提にしている。そのため、断続負荷の電流値が周期によって大きく異なった場合、正確な熱的等価電流Iの算出ができないこととなる。
 例えば、前回周期のON時の電流の実効値I=100A,現在周期のON時の電流の実効値I’=80A,ON時間t=1sec,OFF時間t=3secの断続負荷を想定する。実施の形態1では、マイコン10が再起動した直後の電流の実効値I’=80Aを使用し、式(4)を用いて熱的等価電流Iを計算するので、熱的等価電流Iは、次の式(8)で算出され、40Aとなる。
To perform the calculation of the thermal equivalent current I e with the electronic circuit breaker 100 according to the first embodiment, the effective value I 1 of the secondary output current of the current transformer 3 in the current cycle as the ON current, intermittent load Is assumed to be always constant within the period. Therefore, when the current value of the intermittent load greatly differs depending on the cycle, it is impossible to accurately calculate the thermal equivalent current Ie .
For example, an intermittent load having an effective value of current I 1 = 100 A when the current cycle was ON, an effective value I 1 ′ = 80 A of current when the current cycle is ON, ON time t 1 = 1 sec, and OFF time t 2 = 3 sec. Suppose. In the first embodiment, since the effective value I 1 ′ = 80 A of the current immediately after the microcomputer 10 is restarted is used to calculate the thermal equivalent current Ie using the equation (4), the thermal equivalent current Ie is calculated. e is calculated by the following equation (8) and becomes 40A.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 一方、本来の前回周期のON時の電流の実効値I=100Aを使用して計算した場合、熱的等価電流Iは50Aとなり一致しないこととなるので、所定の閾値を超えていないという誤った処理となり、熱エネルギー保存用コンデンサ31の充電電圧が累積電流値LTDに反映されず不動作となってしまう可能性があった。 On the other hand, when the calculation is performed using the effective value I 1 = 100 A of the current at the time of the ON of the previous previous cycle, the thermal equivalent current Ie is 50 A and does not match, so that it does not exceed the predetermined threshold. There is a possibility that the erroneous processing is performed, and the charging voltage of the thermal energy storage capacitor 31 is not reflected on the accumulated current value LTD and becomes inoperable.
 次に、電子式回路遮断器200における時限特性演算部13の処理について、図6、図7を用いて説明する。
 図6に示すように、電源回路5からの電源によりマイコン10が起動すると、まず、ステップS301から処理を開始するが、ステップS301~ステップS303は、図3に示すステップS101~ステップS103とそれぞれ同じ処理内容なので、説明は省略する。
 ステップS304では、不揮発性メモリ40から、前回通電があったときに記録した累積電流値LTDを暫定累積電流値LTDとして読み出し、ON時間カウンタの値をON時間tとして読み出した後、ステップS305に進む。
Next, the processing of the time characteristic calculation unit 13 in the electronic circuit breaker 200 will be described with reference to FIGS.
As shown in FIG. 6, when the microcomputer 10 is started up by the power supply from the power supply circuit 5, the processing is first started from step S301, but steps S301 to S303 are the same as steps S101 to S103 shown in FIG. Description of the processing is omitted.
In step S304, the nonvolatile memory 40, reads out the accumulated electric current value LTD recorded when there is a previous power as a provisional cumulative current value LTD 1, after reading the value of the ON time counter as the ON time t 1, step S305 Proceed to.
 ステップS305では、不揮発性メモリ40から読み出した暫定累積電流値LTDおよびON時間tを用いて、式(9)によりON電流IONを算出し、ステップS306に進む。
      ION=√(LTD/t) ・・・(9)
 ステップS306では、ステップS305で算出したON電流ION、ステップS303で読み出したOFF時間t、およびステップS304で読み出したON時間tから、式(10)を用いて熱的等価電流Iを計算し、ステップS307に進む。
In step S305, using the provisional cumulative current value LTD 1 and ON time t 1 is read out from the non-volatile memory 40, and calculates the ON current I ON by equation (9), the flow proceeds to step S306.
I ON = √ (LTD 1 / t 1 ) (9)
In step S306, ON current I ON calculated in step S305, OFF time t 2 read in step S303, and ON from the time t 1 read out in step S304, the thermal equivalent current I e by using the equation (10) The calculation is performed, and the process proceeds to step S307.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ステップS307~ステップS310は、図3に示すステップS108~ステップS111とそれぞれ同じ処理内容なので説明は省略する。ステップS310では、ステップS111と同じ処理を行った後、ステップS400の過電流検出処理に進む。 Steps S307 to S310 have the same processing contents as steps S108 to S111 shown in FIG. In step S310, after performing the same processing as step S111, the process proceeds to the overcurrent detection processing in step S400.
 定周期のループ処理である過電流検出処理は、図7に示すように、ステップS401で、実効値演算部12により得られた変流器3の二次出力電流の実効値Iが過電流状態であるかどうか、すなわち、実効値Iが定格電流設定値I以上かどうかを判定する。実効値Iが定格電流設定値I以上の場合には、ステップS402に進み、実効値Iが定格電流設定値I未満の場合には、ステップS403に進む。ここでの定格電流設定値Iが、請求の範囲に記載の所定値である。 Overcurrent detection process is a loop process of the constant cycle, as shown in FIG. 7, in step S401, the effective value I 1 of the secondary output current of the current transformer 3 which is obtained by the effective value computing unit 12 is overcurrent whether the state, i.e., determines the effective value I 1 is whether the rated current set value I 0 or more. If the effective value I 1 is equal to or greater than the rated current set value I 0, the process proceeds to step S402, if the effective value I 1 is less than the rated current set value I 0, the process proceeds to step S403. Here the rated current set value I 0 at is the predetermined value in claims.
 ステップS402では、図3に示すステップS202と同じ処理を行い、ステップS404に進む。
 また、ステップS403では、図3に示すステップS203と同じ処理を行い、ステップS405に進む。
 ステップS404では、ON時間カウンタの加算処理を行い、ステップS406に進む。ON時間カウンタの加算処理は、過電流検出処理が、例えば、1.25msecごとに行われる定周期のループ処理である場合には、単純にカウンタ値を1だけ加算する処理とすることができる。過電流検出処理が、定周期のループ処理でない場合には、前回処理時からの経過時間に比例した値を加算する処理とする必要がある。
In step S402, the same process as step S202 shown in FIG. 3 is performed, and the process proceeds to step S404.
In step S403, the same process as in step S203 shown in FIG. 3 is performed, and the process proceeds to step S405.
In step S404, an ON time counter is added, and the process proceeds to step S406. When the overcurrent detection process is a fixed-cycle loop process performed every 1.25 msec, for example, the addition process of the ON time counter can be a process of simply adding the counter value by one. If the overcurrent detection process is not a fixed-cycle loop process, it is necessary to add a value proportional to the elapsed time from the previous process.
  ステップS405では、ON時間カウンタの減算処理を行い、ステップS406に進む。ON時間カウンタの減算処理は、過電流検出処理が、例えば、1.25msecごとに行われる定周期のループ処理である場合には、単純にカウンタ値を1だけ減算する処理とすることができる。過電流検出処理が、定周期のループ処理でない場合には、前回処理時からの経過時間に比例した値を減算する処理とする必要がある。 In step S405, a subtraction process of the ON time counter is performed, and the flow advances to step S406. When the overcurrent detection process is a fixed-cycle loop process performed every 1.25 msec, for example, the subtraction process of the ON time counter can be a process of simply subtracting one from the counter value. If the overcurrent detection process is not a fixed-cycle loop process, it is necessary to perform a process of subtracting a value proportional to the elapsed time from the previous process.
 ステップS406では、ステップS406にくる直前にステップS402もしくはステップS403で算出した累積電流値LTDと、同じくステップS406にくる直前にステップS404もしくはステップS405で算出したON時間tとしてのON時間カウンタの値とを不揮発性メモリ40に書き込む処理を行い、ステップS407に進む。 In step S406, the accumulated current value LTD calculated in step S402 or step S403 immediately before coming to step S406, similarly ON time counter value as the ON time t 1 calculated in step S404 or step S405 immediately before coming to step S406 Is written to the non-volatile memory 40, and the process proceeds to step S407.
 ステップS407では、ステップS407にくる直前にステップS402もしくはステップS403で算出した累積電流値LTDがトリップ閾値以上かを判定する。累積電流値LTDがトリップ閾値以上である場合には、ステップS408に進み、累積電流値LTDがトリップ閾値未満である場合にはステップS401に戻り、ステップS401移行の処理を定周期で行う。 In step S407, it is determined whether the accumulated current value LTD calculated in step S402 or step S403 is equal to or greater than a trip threshold immediately before step S407. If the accumulated current value LTD is equal to or larger than the trip threshold, the process proceeds to step S408, and if the accumulated current value LTD is smaller than the trip threshold, the process returns to step S401, and the process of step S401 is performed at regular intervals.
 ステップS408では、不揮発性メモリ40の累積電流値LTDの値およびON時間カウンタの値として“0”を書き込む処理を行い、ステップS409に進む。
 ステップS409では、ステップS210と同じく、引外し出力ポート14の電圧信号S4をHレベルとすることで、引外し回路7を駆動し引外し装置8を動作させることにより開閉接点2を開離し交流電路1を開放する。
In step S408, a process of writing “0” as the value of the accumulated current value LTD of the nonvolatile memory 40 and the value of the ON time counter is performed, and the process proceeds to step S409.
In step S409, as in step S210, the tripping circuit 7 is driven by operating the tripping circuit 8 by setting the voltage signal S4 of the tripping output port 14 to the H level, thereby opening the on-off contact 2 to disconnect the AC circuit. Release 1.
 なお、本実施の形態の例では、累積電流値LTDとON時間カウンタの値を過電流検出処理のステップS406で、毎回、不揮発性メモリ40に書き込む処理としたが、使用する不揮発性メモリへの書き込み回数に制限がある場合には、ステップS408に進んだ場合、すなわち、開閉接点2を引外す前に不揮発性メモリ40へ書き込むようにしてもよい。 In the example of the present embodiment, the process of writing the accumulated current value LTD and the value of the ON time counter to the non-volatile memory 40 is performed every time in step S406 of the overcurrent detection process. If the number of times of writing is limited, the process may proceed to step S408, that is, write to the non-volatile memory 40 before the on / off contact 2 is tripped.
 本実施の形態によれば、交流電路1に挿入された開閉接点2と、交流電路1に流れる電流を検出する変流器3と、変流器3の二次側に接続され、検出電流を整流する整流回路4と、整流回路4の出力側に接続され、一定の電圧を出力する電源回路5と、検出電流を所定の検出周期で検出し、検出電流が定格電流に対応する所定値を超えた期間における検出電流の実効値の2乗値と検出周期との電流積を積算累積した累積電流値を算出するとともに、累積電流値に基づいて開閉接点2を開離させるマイコン10と、を備え、電源回路5の出力電圧がマイコン10の動作可能電圧未満になっていた時間であるOFF時間を計測するためのOFF時間計測回路20を有し、マイコン10は、起動時に、OFF時間計測回路から読み込んだOFF時間t、断続負荷における通電電流に相当するON電流IONおよび断続負荷における通電時間に相当するON時間tに基づき累積電流値LTDの初期値を決定するので、正確な引外し動作を行うことが可能となる。 According to the present embodiment, the switching contact 2 inserted into the AC circuit 1, the current transformer 3 for detecting the current flowing in the AC circuit 1, and the secondary side of the current transformer 3 are connected to A rectifier circuit 4 for rectifying, a power supply circuit 5 connected to an output side of the rectifier circuit 4 and outputting a constant voltage, and detecting a detected current at a predetermined detection cycle, and detecting the detected current at a predetermined value corresponding to the rated current. A microcomputer 10 for calculating an accumulated current value obtained by integrating and accumulating the current product of the square value of the effective value of the detected current and the detection period during the period of time exceeded, and for opening and closing the switching contact 2 based on the accumulated current value; The microcomputer 10 has an OFF time measuring circuit 20 for measuring an OFF time that is a time during which the output voltage of the power supply circuit 5 has become lower than the operable voltage of the microcomputer 10. OFF time read from 2, because it determines the initial value of the cumulative current value LTD based on the ON time t 1 corresponding to the energizing time of the ON current I ON and intermittent loads which corresponds to the conduction current in the intermittent load, be carried out by accurate tripping operation It becomes possible.
 また、マイコン10に接続された不揮発性メモリ40を備え、マイコン10は、検出電流の実効値が定格電流に対応する所定値以上の場合には加算し、検出電流の実効値が所定値未満の場合には減算することでON時間tを算出し、累積電流値LTDおよびON時間tを不揮発性メモリ40に書き込むとともに、マイコン10の起動時には、ON時間tは不揮発性メモリ40から読み込み、ON電流IONは不揮発性メモリ40から読み込んだ累積電流値LTDおよび不揮発性メモリから読み込んだON時間tから算出するので、正確なON時間tおよびON電流IONを得ることが可能となる。 The microcomputer 10 further includes a non-volatile memory 40 connected to the microcomputer 10. When the effective value of the detected current is equal to or more than a predetermined value corresponding to the rated current, the microcomputer 10 adds the effective value, and the effective value of the detected current is less than the predetermined value. case calculates the oN time t 1 by subtracting reads and writes to the accumulated current value LTD and oN time nonvolatile memory 40 to t 1, at the time of startup of the microcomputer 10, the oN time t 1 from the non-volatile memory 40 , ON current ION is calculated from the accumulated current value LTD read from the non-volatile memory 40 and the ON time t 1 read from the non-volatile memory, so that accurate ON time t 1 and ON current ION can be obtained. Become.
 また、マイコン10が算出する累積電流値LTDは、所定値を超えた期間における検出電流の実効値の2乗値を累積したものなので、マイコン10による累積電流値の演算負荷を減らすことができる。 The cumulative current value LTD calculated by the microcomputer 10 is obtained by accumulating the square value of the effective value of the detected current during a period in which the microcomputer 10 exceeds a predetermined value.
実施の形態3.
 図8は本発明の実施の形態3に係る電子式回路遮断器を示すブロック図、図9はマイクロコンピュータの処理を示すフローチャート、図10は図9に示す過電流検出処理のフローチャートである。
 実施の形態2では、不揮発性メモリに累積電流値LTDとON時間カウンタの値を書き込む例を示したが、本実施の形態は、ON時間カウンタの値だけを不揮発性メモリに書き込むようにし、ON電流は実効値演算部12により得られた変流器の二次出力電流の実効値Iを使用するものである。よって、本実施の形態の電子式回路遮断器300の構成を示す図8は、実施の形態2で説明した図5と同じなので、説明を省略する。
Embodiment 3 FIG.
FIG. 8 is a block diagram showing an electronic circuit breaker according to Embodiment 3 of the present invention, FIG. 9 is a flowchart showing processing of a microcomputer, and FIG. 10 is a flowchart of overcurrent detection processing shown in FIG.
In the second embodiment, an example in which the accumulated current value LTD and the value of the ON time counter are written to the nonvolatile memory has been described. However, in the present embodiment, only the value of the ON time counter is written to the nonvolatile memory, current is to use the effective value I 1 of the secondary output current of the current transformer which is obtained by the effective value computing unit 12. Therefore, FIG. 8 showing the configuration of the electronic circuit breaker 300 of the present embodiment is the same as FIG. 5 described in the second embodiment, and a description thereof will be omitted.
 本実施の形態の電子式回路遮断器300における時限特性演算部13の処理について、図9、図10を用いて説明する。
 図9に示すように、電源回路5からの電源によりマイコン10が起動すると、まず、ステップS501から処理を開始するが、ステップS501~ステップS503は、図6に示すステップS301~ステップS303とそれぞれ同じ処理内容なので、説明は省略する。
 ステップS504では、不揮発性メモリ40から、前回通電があったときに記録したON時間tを読み出し、ステップS505に進む。
The processing of the time characteristic calculating unit 13 in the electronic circuit breaker 300 according to the present embodiment will be described with reference to FIGS.
As shown in FIG. 9, when the microcomputer 10 is started by the power supply from the power supply circuit 5, the processing is first started from step S501, but steps S501 to S503 are the same as steps S301 to S303 shown in FIG. Description of the processing is omitted.
In step S504, the nonvolatile memory 40, reads the ON time t 1 that is recorded when a last energized, the process proceeds to step S505.
 ステップS505では、変流器3の検出電流より実効値IをON電流として算出し、ステップS506に進む。ステップS506では、ステップS504で読み出したON時間t、ステップS503で求めたOFF時間tおよびステップS505で算出したON電流としての実効値Iより、熱的等価電流Iを式(4)によって求め、ステップS507に進む。 In step S505, it calculates an effective value I 1 as ON current than the detection current of the current transformer 3, the process proceeds to step S506. In step S506, ON time t 1 read in step S504, from the effective value I 1 of the ON current calculated in OFF time t 2 and the step S505 obtained in step S503, the thermal equivalent current I e Equation (4) And the process proceeds to step S507.
 ステップS507では、ステップS504で読み出したON時間t、ステップS503で求めたOFF時間tおよびステップS506算出した熱的等価電流Iより式(11)により暫定累積電流値LTD求め、ステップS508に進む。
      LTD=I (t+t) ・・・(11)
In step S507, ON time t 1 read in step S504, the provisional cumulative current value LTD 1 determined by the equation (11) from the thermal equivalent current I e was OFF time t 2 and the step S506 calculating determined in step S503, step S508 Proceed to.
LTD 1 = I e 2 (t 1 + t 2 ) (11)
 ステップS508~ステップS511は、図6に示すステップS307~ステップS310とそれぞれ同じ処理内容なので説明は省略する。ステップS511では、ステップS310と同じ処理を行った後、ステップS600の過電流検出処理に進む。 Steps S508 to S511 have the same processing contents as steps S307 to S310 shown in FIG. In step S511, after performing the same processing as in step S310, the process proceeds to the overcurrent detection processing in step S600.
 定周期のループ処理である過電流検出処理は、図10に示すように、ステップS601で、実効値演算部12により得られた変流器3の二次出力電流の実効値Iが過電流状態であるかどうか、すなわち、実効値Iが定格電流設定値I以上かどうかを判定する。実効値Iが定格電流設定値I以上の場合には、ステップS602に進み、実効値Iが定格電流設定値I未満の場合には、ステップS603に進む。ここでの定格電流設定値Iが、請求の範囲に記載の所定値である。 The overcurrent detection process is a loop process of periodic, as shown in FIG. 10, in step S601, the effective value I 1 of the secondary output current of the current transformer 3 which is obtained by the effective value computing unit 12 is overcurrent whether the state, i.e., determines the effective value I 1 is whether the rated current set value I 0 or more. If the effective value I 1 is equal to or greater than the rated current set value I 0, the process proceeds to step S602, if the effective value I 1 is less than the rated current set value I 0, the process proceeds to step S603. Here the rated current set value I 0 at is the predetermined value in claims.
 ステップS602~ステップS605は、図7に示すステップS402~ステップS405とそれぞれ同じ処理内容なので説明は省略する。ステップS604もしくはステップS605の処理をおこなった後、ステップS606に進む。
 ステップS606では、ステップS606にくる直前にステップS604もしくはステップS605で算出したON時間カウンタの値をON時間tとして不揮発性メモリ40に書き込む処理を行い、ステップS607に進む。
Steps S602 to S605 are the same processing contents as steps S402 to S405 shown in FIG. After performing the processing of step S604 or step S605, the process proceeds to step S606.
In step S606, performs a process of writing the ON value of the time counter calculated in step S604 or step S605 immediately before coming to step S606 as the ON time t 1 to the nonvolatile memory 40, the process advances to step S607.
 ステップS607では、ステップS607にくる直前にステップS602もしくはステップS603で算出した累積電流値LTDがトリップ閾値以上かを判定する。累積電流値LTDがトリップ閾値以上である場合には、ステップS608に進み、累積電流値LTDがトリップ閾値未満である場合にはステップS601に戻り、ステップS601移行の処理を定周期で行う。 In step S607, it is determined whether the accumulated current value LTD calculated in step S602 or step S603 is equal to or larger than the trip threshold immediately before step S607. When the accumulated current value LTD is equal to or larger than the trip threshold, the process proceeds to step S608, and when the accumulated current value LTD is smaller than the trip threshold, the process returns to step S601, and the process of step S601 is performed at regular intervals.
 ステップS608では、不揮発性メモリ40にON時間tの値として“0”を書き込む処理を行い、ステップS609に進む。
 ステップS609では、ステップS409と同じく、引外し出力ポート14の電圧信号S4をHレベルとすることで、引外し回路7を駆動し引外し装置8を動作させることにより開閉接点2を開離し交流電路1を開放する。
At step S608, the performs processing to write "0" as the value of the ON time t 1 to the nonvolatile memory 40, the process proceeds to step S609.
In step S609, as in step S409, the voltage signal S4 of the trip output port 14 is set to the H level, thereby driving the trip circuit 7 and operating the trip device 8, thereby opening the on-off contact 2 to release the AC circuit. Release 1.
 なお、本実施の形態の例では、ON時間カウンタの値を過電流検出処理のステップS606で、毎回、不揮発性メモリ40に書き込む処理としたが、使用する不揮発性メモリへの書き込み回数に制限がある場合には、ステップS608に進んだ場合、すなわち、開閉接点2を引外す前に不揮発性メモリ40へ書き込むようにしてもよい。 In the example of the present embodiment, the process of writing the value of the ON time counter to the non-volatile memory 40 in step S606 of the overcurrent detection process is performed every time. However, the number of times of writing to the non-volatile memory to be used is limited. In some cases, when the processing proceeds to step S608, that is, before the on / off contact 2 is tripped, the data may be written to the nonvolatile memory 40.
 本実施の形態によれば、交流電路1に挿入された開閉接点2と、交流電路1に流れる電流を検出する変流器3と、変流器3の二次側に接続され、検出電流を整流する整流回路4と、整流回路4の出力側に接続され、一定の電圧を出力する電源回路5と、検出電流を所定の検出周期で検出し、検出電流が定格電流に対応する所定値を超えた期間における検出電流の実効値の2乗値と検出周期との電流積を積算累積した累積電流値を算出するとともに、累積電流値に基づいて開閉接点2を開離させるマイコン10と、を備え、電源回路5の出力電圧がマイコン10の動作可能電圧未満になっていた時間であるOFF時間を計測するためのOFF時間計測回路20を有し、マイコン10は、起動時に、OFF時間計測回路から読み込んだOFF時間t、断続負荷における通電電流に相当するON電流および断続負荷における通電時間に相当するON時間tに基づき累積電流値LTDの初期値を決定するので、正確な引外し動作を行うことが可能となる。 According to the present embodiment, the switching contact 2 inserted into the AC circuit 1, the current transformer 3 for detecting the current flowing in the AC circuit 1, and the secondary side of the current transformer 3 are connected to A rectifier circuit 4 for rectifying, a power supply circuit 5 connected to an output side of the rectifier circuit 4 and outputting a constant voltage, and detecting a detected current at a predetermined detection cycle, and detecting the detected current at a predetermined value corresponding to the rated current. A microcomputer 10 for calculating an accumulated current value obtained by integrating and accumulating the current product of the square value of the effective value of the detected current and the detection period during the period of time exceeded, and for opening and closing the switching contact 2 based on the accumulated current value; The microcomputer 10 has an OFF time measuring circuit 20 for measuring an OFF time that is a time during which the output voltage of the power supply circuit 5 has become lower than the operable voltage of the microcomputer 10. OFF time read from 2, because it determines the initial value of the cumulative current value LTD based on the ON time t 1 corresponding to the current time in the ON current and intermittent loads which corresponds to the conduction current in the intermittent load, can be performed to correct tripping operation as Become.
また、不揮発性メモリ40に保存された前回周期におけるON時間tと、OFF時間計測回路20から読み込んだOFF時間tと、変流器3の二次出力電流から算出したON電流IONとしての実効値Iと、から熱的等価電流Iと暫定累積電流値LTDを算出するため、正確な引外し動作を行うことが可能となる。 Further, the ON time t 1 in the previous cycle stored in the nonvolatile memory 40, an OFF time t 2 is read from the OFF time measuring circuit 20, as ON current I ON calculated from the secondary output current of the current transformer 3 the effective value I 1, to calculate the thermal equivalent current I e provisional cumulative current value LTD 1 from, it is possible to perform with accurate tripping operation.
 また、マイコン10が算出する累積電流値は、所定値を超えた期間における検出電流の実効値の2乗値を累積したものなので、マイコン10による累積電流値の演算負荷を減らすことができる。 {Circle around (2)} Since the cumulative current value calculated by the microcomputer 10 is obtained by accumulating the square value of the effective value of the detected current during the period exceeding the predetermined value, the calculation load of the cumulative current value by the microcomputer 10 can be reduced.
  2 開閉接点、3 変流器、4 整流回路、5 電源回路、6 波形変換回路、
  7 引外し回路、8 引外し装置、10 マイクロコンピュータ、
 20 OFF時間計測回路、30 熱エネルギー保存回路、40 不揮発性メモリ、
100 電子式回路遮断器。
2 switching contacts, 3 current transformers, 4 rectifier circuits, 5 power supply circuits, 6 waveform conversion circuits,
7 trip circuit, 8 trip device, 10 microcomputer,
20 OFF time measurement circuit, 30 thermal energy storage circuit, 40 nonvolatile memory,
100 Electronic circuit breaker.

Claims (5)

  1.  交流電路に挿入された開閉接点と、
    前記交流電路に流れる電流を検出する変流器と、
    前記変流器の二次側に接続され、検出電流を整流する整流回路と、
    前記整流回路の出力側に接続され、一定の電圧を出力する電源回路と、
    前記検出電流を所定の検出周期で検出し、前記検出電流が定格電流に対応する所定値を超えた期間における前記検出電流の実効値の2乗値と前記検出周期との積を累積した累積電流値を算出するとともに、前記累積電流値に基づいて前記開閉接点を開離させる制御装置と、を備え、
    前記制御装置に接続され、前記電源回路の出力電圧が前記制御装置の動作可能電圧未満になっていた時間であるOFF時間を計測するためのOFF時間計測回路を有し、
    前記制御装置は、起動時に、前記OFF時間計測回路から読み込んだ前記OFF時間、断続負荷における通電電流に相当するON電流および前記断続負荷における通電時間に相当するON時間に基づき前記累積電流値の初期値を決定することを特徴とする電子式回路遮断器。
    A switching contact inserted in the AC circuit,
    A current transformer for detecting a current flowing in the AC circuit,
    A rectifier circuit connected to the secondary side of the current transformer and rectifying the detection current;
    A power supply circuit connected to the output side of the rectifier circuit and outputting a constant voltage;
    A cumulative current which is obtained by detecting the detection current at a predetermined detection cycle and accumulating a product of a square value of an effective value of the detection current and a detection cycle during a period when the detection current exceeds a predetermined value corresponding to a rated current; Calculating a value, and a control device for opening the switching contact based on the accumulated current value,
    An OFF time measurement circuit connected to the control device, for measuring an OFF time that is a time when the output voltage of the power supply circuit has been less than the operable voltage of the control device,
    At the time of start-up, the control device initializes the cumulative current value based on the OFF time read from the OFF time measurement circuit, an ON current corresponding to an energizing current in the intermittent load, and an ON time corresponding to an energizing time in the intermittent load. An electronic circuit breaker for determining a value.
  2.  前記制御装置に接続された不揮発性メモリを備え、
     前記制御装置は、前記所定値以上の場合には加算し、前記検出電流の実効値が前記所定値未満の場合には減算することで前記ON時間を算出し、前記累積電流値および前記ON時間を前記不揮発性メモリに書き込むとともに、
    前記制御装置の起動時に、前記ON時間は前記不揮発性メモリから読み込み、前記ON電流は前記不揮発性メモリから読み込んだ前記累積電流値および前記不揮発性メモリから読み込んだ前記ON時間から算出することを特徴とする請求項1に記載の電子式回路遮断器。
    A nonvolatile memory connected to the control device,
    The control device calculates the ON time by adding when the predetermined value is equal to or more than the predetermined value and subtracting when the effective value of the detected current is less than the predetermined value, and calculates the accumulated current value and the ON time. Into the nonvolatile memory,
    When the control device is started, the ON time is read from the nonvolatile memory, and the ON current is calculated from the cumulative current value read from the nonvolatile memory and the ON time read from the nonvolatile memory. The electronic circuit breaker according to claim 1, wherein
  3.  前記制御装置から前記累積電流値に対応する電圧に充電されるコンデンサと、前記コンデンサの充電電圧が前記制御装置に読み込み可能に接続された熱エネルギー保存回路とを備え、
    前記ON電流は前記制御装置の起動時に算出した前記検出電流の実効値を使用し、前記ON時間は前記熱エネルギー保存回路の前記充電電圧および前記制御装置の起動時に算出した前記検出電流の実効値から算出することを特徴とする請求項1に記載の電子式回路遮断器。
    A capacitor charged to a voltage corresponding to the accumulated current value from the control device, and a heat energy storage circuit connected to the control device so that the charged voltage of the capacitor can be read by the control device,
    The ON current uses an effective value of the detected current calculated at the time of starting the control device, and the ON time is an effective value of the charging current of the thermal energy storage circuit and the effective value of the detected current calculated at the time of starting the control device. The electronic circuit breaker according to claim 1, wherein the electronic circuit breaker is calculated from:
  4.  前記制御装置に接続された不揮発性メモリを備え、
     前記制御装置は、前記所定値以上の場合には加算し、前記検出電流の実効値が前記所定値未満の場合には減算することで前記ON時間を算出し、前記ON時間を前記不揮発性メモリに書き込むとともに、
    前記ON電流は前記制御装置の起動時に算出した前記検出電流の実効値を使用し、前記ON時間は前記不揮発性メモリから読み込むことを特徴とする請求項1に記載の電子式回路遮断器。
    A nonvolatile memory connected to the control device,
    The control device calculates the ON time by adding when the effective value of the detected current is equal to or more than the predetermined value, and subtracts when the effective value of the detected current is less than the predetermined value, and calculates the ON time by using the nonvolatile memory. While writing to
    2. The electronic circuit breaker according to claim 1, wherein the ON current uses an effective value of the detection current calculated when the control device is started, and the ON time is read from the nonvolatile memory. 3.
  5.  前記制御装置が算出する前記累積電流値は、前記所定値を超えた期間における前記検出電流の実効値の2乗値を累積したものであることを特徴とする請求項1から請求項4のいずれか1項に記載の電子式回路遮断器。 5. The method according to claim 1, wherein the cumulative current value calculated by the control device is obtained by accumulating a square value of an effective value of the detected current during a period exceeding the predetermined value. 6. The electronic circuit breaker according to claim 1.
PCT/JP2018/023544 2018-06-21 2018-06-21 Electronic circuit breaker WO2019244292A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2018/023544 WO2019244292A1 (en) 2018-06-21 2018-06-21 Electronic circuit breaker
CN201980040590.1A CN112352363B (en) 2018-06-21 2019-04-22 Electronic circuit breaker
PCT/JP2019/016939 WO2019244467A1 (en) 2018-06-21 2019-04-22 Electronic circuit breaker
JP2020525307A JP6930664B2 (en) 2018-06-21 2019-04-22 Electronic circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/023544 WO2019244292A1 (en) 2018-06-21 2018-06-21 Electronic circuit breaker

Publications (1)

Publication Number Publication Date
WO2019244292A1 true WO2019244292A1 (en) 2019-12-26

Family

ID=68982795

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/023544 WO2019244292A1 (en) 2018-06-21 2018-06-21 Electronic circuit breaker
PCT/JP2019/016939 WO2019244467A1 (en) 2018-06-21 2019-04-22 Electronic circuit breaker

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016939 WO2019244467A1 (en) 2018-06-21 2019-04-22 Electronic circuit breaker

Country Status (3)

Country Link
JP (1) JP6930664B2 (en)
CN (1) CN112352363B (en)
WO (2) WO2019244292A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116191383B (en) * 2023-03-06 2023-09-29 江苏吉泰科电气有限责任公司 Overcurrent protection method and circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08223777A (en) * 1995-02-09 1996-08-30 Toshiba Corp Load controller
JP2001016759A (en) * 1999-06-25 2001-01-19 Tempearl Ind Co Ltd Short-circuit detecting method, and circuit breaking method and alarm outputting method using the short- circuit detecting method, and plug or socket using the circuit breaking method or the alarm outputting method
JP2001128354A (en) * 1999-10-22 2001-05-11 Mitsubishi Electric Corp Electronic circuit breaker
JP2009170338A (en) * 2008-01-18 2009-07-30 Chubu Electric Power Co Inc Circuit breaker for low voltage power contract
JP2010093946A (en) * 2008-10-08 2010-04-22 Mitsubishi Electric Corp Electronic circuit breaker

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101614764A (en) * 2008-06-27 2009-12-30 上海亿盟电气自动化技术有限公司 Improve the method for sampling effective value precision in a kind of AC signal sampling
EP2717289B1 (en) * 2011-05-24 2015-07-29 Mitsubishi Electric Corporation Electronic circuit breaker
CN104391167A (en) * 2014-11-24 2015-03-04 常熟开关制造有限公司(原常熟开关厂) Current effective value measuring method, measuring device and circuit breaker

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08223777A (en) * 1995-02-09 1996-08-30 Toshiba Corp Load controller
JP2001016759A (en) * 1999-06-25 2001-01-19 Tempearl Ind Co Ltd Short-circuit detecting method, and circuit breaking method and alarm outputting method using the short- circuit detecting method, and plug or socket using the circuit breaking method or the alarm outputting method
JP2001128354A (en) * 1999-10-22 2001-05-11 Mitsubishi Electric Corp Electronic circuit breaker
JP2009170338A (en) * 2008-01-18 2009-07-30 Chubu Electric Power Co Inc Circuit breaker for low voltage power contract
JP2010093946A (en) * 2008-10-08 2010-04-22 Mitsubishi Electric Corp Electronic circuit breaker

Also Published As

Publication number Publication date
CN112352363A (en) 2021-02-09
WO2019244467A1 (en) 2019-12-26
JPWO2019244467A1 (en) 2020-12-17
JP6930664B2 (en) 2021-09-01
CN112352363B (en) 2022-11-15

Similar Documents

Publication Publication Date Title
JP4668957B2 (en) Charge control method and electronic device
US8665574B2 (en) Thermal memory in a fault powered system
US7821232B2 (en) Method of calculating remaining capacity of rechargeable battery
US7332358B2 (en) MOSFET temperature sensing
JP6219687B2 (en) Semiconductor device, battery pack and portable terminal
JP2007328943A (en) Abnormality deciding method of battery pack and battery pack
JP5014699B2 (en) Electronic trip device with power supply circuit including boosting means and circuit breaker including such trip device
KR20200046593A (en) Electronic circuit for estimating intensity of load current based on internal condition of boost converter
CN105634051B (en) Remaining battery level predicting device and battery pack
JP6859585B2 (en) Methods and battery management systems for determining battery power limits
JP6844090B2 (en) How to estimate the parameters of the equivalent circuit model for the battery and the battery management system
Van Quang et al. A fully integrated multimode wireless power charger IC with adaptive supply control and built-in resistance compensation
JPWO2016038873A1 (en) Control device, control method, and program
JP6896965B2 (en) Equivalent circuit model parameter estimation method and battery management system for batteries
JP2005269760A (en) Rechargeable battery and rechargeable battery pack
US20080252262A1 (en) Device And Method For Charging And Controlling The Charge Of A Battery
JP4783446B2 (en) Charge / discharge test controller and charge / discharge test method
WO2019244467A1 (en) Electronic circuit breaker
JP4812368B2 (en) Charger with life diagnosis function for power capacitors
JP4846755B2 (en) Portable electronic devices
JP2005517962A (en) Method and circuit device for measuring average current consumption of battery drive device
US9793737B2 (en) Electronic device including a very low voltage generator powering a battery
JP2018169238A (en) Power storage controller, power storage control system, server, power storage control method, and program
CN112505555A (en) Device for monitoring a battery and method for monitoring a battery
CN112824909A (en) Fuel gauge circuit and method of controlling duty cycle of current from battery to load

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP