WO2019244245A1 - Temperature transition identification device, maintenance planning system, and elevator system - Google Patents

Temperature transition identification device, maintenance planning system, and elevator system Download PDF

Info

Publication number
WO2019244245A1
WO2019244245A1 PCT/JP2018/023314 JP2018023314W WO2019244245A1 WO 2019244245 A1 WO2019244245 A1 WO 2019244245A1 JP 2018023314 W JP2018023314 W JP 2018023314W WO 2019244245 A1 WO2019244245 A1 WO 2019244245A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
unit
elevator
temperature
specifying
Prior art date
Application number
PCT/JP2018/023314
Other languages
French (fr)
Japanese (ja)
Inventor
志賀 諭
塩崎 秀樹
孝太郎 福井
圭 後藤
Original Assignee
三菱電機ビルテクノサービス株式会社
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機ビルテクノサービス株式会社, 三菱電機株式会社 filed Critical 三菱電機ビルテクノサービス株式会社
Priority to KR1020207036134A priority Critical patent/KR102266228B1/en
Priority to CN201880094269.7A priority patent/CN112236383B/en
Priority to PCT/JP2018/023314 priority patent/WO2019244245A1/en
Priority to JP2020525120A priority patent/JP6806287B2/en
Priority to TW107139275A priority patent/TWI765115B/en
Publication of WO2019244245A1 publication Critical patent/WO2019244245A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0006Monitoring devices or performance analysers
    • B66B5/0018Devices monitoring the operating condition of the elevator system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators

Definitions

  • the present invention relates to a temperature transition specifying device, a maintenance planning system, and an elevator system.
  • Patent Document 1 describes an elevator.
  • the elevator described in Patent Literature 1 includes a thermometer.
  • the temperature of the storage battery is measured by the thermometer.
  • the progress of the life of the storage battery is calculated based on the value measured by the thermometer.
  • thermometer is used to measure the temperature of the storage battery. If a thermometer is permanently installed, it must be properly managed so that the thermometer functions properly. For this reason, there is a problem that the number of maintenance items by the elevator maintenance staff increases and it takes time and effort.
  • a temperature transition specifying device includes a storage unit that stores a value measured in a diagnostic operation in which an elevator car performs a specific operation using a specific device, and a time-dependent change in a value stored in the storage unit.
  • a maintenance planning system calculates a second life of a component arranged in an elevator space based on the temperature transition specifying device, the temperature transition specified by the first specifying unit, and the traveling history of the car.
  • a calculation unit; and a determination unit configured to determine whether to inspect or replace the component based on the life calculated by the second calculation unit.
  • the maintenance planning system includes the temperature transition specifying device, a category determining unit that determines an environmental category to which the elevator space belongs based on the temperature transition specified by the first specifying unit, and a category determining unit. Determining means for determining the time to inspect or replace parts arranged in the elevator space based on the determined environmental category.
  • the maintenance planning system includes the temperature transition specifying device, and a category determining unit that determines an environmental category to which the elevator space belongs based on a difference between the temperature transition and the outside air temperature specified by the first specifying unit. Based on the environmental category determined by the category determining unit, a second specifying means for specifying a change in humidity in the elevator space, a temperature change specified by the first specifying means, and a humidity change specified by the second specifying means.
  • a second calculating means for calculating the life of the component disposed in the elevator space based on the traveling history of the vehicle, and a determination for judging the inspection time or replacement time of the component based on the life calculated by the second calculating means. Means.
  • the elevator system includes an elevator car, a specific device, a driving control unit that starts a diagnostic operation when a start condition is satisfied, and causes the car to perform a specific operation using the device, and a specific device in the diagnostic operation.
  • a measuring means for measuring the value, a storage means for storing the value measured by the measuring means, and a seasonal variation component of the temporal change is calculated by removing a long-term variation component from the temporal change of the value stored in the storage means.
  • Calculating means for calculating the temperature change of the elevator space based on the seasonal variation component of the temporal change calculated by the calculating means and the actually measured value of the temperature of the elevator space.
  • the temperature transition specifying device includes a storage unit, a calculating unit, and a specifying unit.
  • the calculation means calculates a seasonal variation component of the temporal change by removing a long-term variation component from the temporal change of the value stored in the storage means.
  • the specifying means specifies the temperature change of the elevator space based on the seasonal variation component of the temporal change calculated by the calculating means and the actually measured value of the temperature of the elevator space. According to the present invention, it is not necessary to permanently install a new measuring instrument, and it is possible to specify the temperature transition of the elevator space.
  • FIG. 2 is a diagram illustrating an example of an elevator system according to the first embodiment. It is a figure showing the example of connection of the equipment provided in the elevator.
  • 5 is a flowchart illustrating an operation example of a control device. 9 is a flowchart illustrating another operation example of the control device. It is a figure showing an example of a maintenance terminal.
  • 5 is a flowchart illustrating an operation example of a data center.
  • 11 is a flowchart illustrating another operation example of the data center.
  • FIG. 7 is a diagram showing a change over time of a minimum voltage value of a battery. It is a figure for explaining the function of a transition specific part. It is a figure showing other examples of a data center.
  • FIG. 11 is a diagram illustrating another operation example of the data center. It is a figure showing other examples of a data center.
  • FIG. 11 is a diagram illustrating another operation example of the data center. It is a figure for explaining the function of a transition specific part.
  • FIG. 3 is a diagram illustrating an example of hardware resources of a control device.
  • FIG. 9 is a diagram illustrating another example of the hardware resources of the control device.
  • FIG. 1 is a diagram illustrating an example of an elevator system according to the first embodiment.
  • the elevator system shown in FIG. 1 includes an elevator 1 and a data center 2.
  • the elevator 1 and the data center 2 can communicate with each other via a communication network 3.
  • the system in which the elevator 1 communicates with the data center 2 may be any system.
  • FIG. 2 is a diagram illustrating a connection example of devices provided in the elevator 1.
  • the elevator 1 includes, for example, a car 10 and a counterweight 11.
  • the car 10 moves up and down the hoistway 12.
  • the counterweight 11 moves up and down the hoistway 12.
  • the car 10 and the counterweight 11 are suspended from the hoistway 12 by the main rope 13.
  • the hoisting machine 14 includes a drive sheave 15, an electric motor 16, and a brake device 17.
  • the main rope 13 is wound around the drive sheave 15.
  • the electric motor 16 drives the drive sheave 15.
  • the electric motor 16 is controlled by the control device 18. That is, the control device 18 controls the rotation and stop of the drive sheave 15.
  • the car 10 moves according to the rotation of the drive sheave 15. If the drive sheave 15 is not rotating, the car 10 stops.
  • An encoder (not shown) is provided on a rotating shaft of the electric motor 16. When the electric motor 16 rotates, a rotation signal indicating a rotation direction and a rotation angle is output from the encoder. The rotation signal output from the encoder is input to the control device 18.
  • the brake device 17 is a device for holding the car 10 stationary.
  • the brake device 17 is controlled by the control device 18. In normal operation, the brake device 17 operates after the drive sheave 15 stops. When the brake device 17 operates, a force is applied to a member interlocking with the drive sheave 15 so as to prevent the rotation of the drive sheave 15.
  • the governor 19 operates the emergency stop 20 provided in the car 10 when the descending speed of the car 10 exceeds a specific first reference speed.
  • the governor 19 includes, for example, a governor rope 21, a governor sheave 22, and a tension sheave 23.
  • the governing rope 21 is connected to the car 10.
  • the speed control rope 21 is wound around a speed control sheave 22 and a tension sheave 23.
  • the speed control rope 21 moves.
  • the speed control sheave 22 and the tension sheave 23 rotate.
  • An encoder may be provided on the rotation shaft of the governing sheave 22. In this case, a rotation signal indicating the rotation direction and the rotation angle of the governor sheave 22 is output from the encoder.
  • the rotation signal output from the encoder is input to the control device 18.
  • the safety device 24 is provided, for example, on the hoistway 12.
  • the safety device 24 forcibly stops the car 10 when the car 10 enters the terminal floor at a speed higher than a specific second reference speed.
  • a specific second reference speed In the example shown in FIG. 1, when the car 10 passes above a specific position at a speed higher than the second reference speed, the safety device 24 operates.
  • the safety device 24 When the safety device 24 operates, the deceleration of the electric motor 16 is forcibly started. Thereby, the drive sheave 15 stops. That is, the car 10 stops.
  • the battery 25 is used to bring the passengers in the car 10 down to the nearest floor during a power outage. For example, when a power failure occurs, power from the battery 25 is supplied to the control device 18, the hoist 14, and the car 10.
  • the communication device 26 communicates with the data center 2.
  • the communication device 26 is connected to the control device 18.
  • the method by which the communication device 26 communicates with the data center 2 may be any method.
  • FIG. 1 shows an example in which the hoisting machine 14, the control device 18, the battery 25, and the communication device 26 are provided in the hoistway 12.
  • the elevator 1 includes a machine room
  • the hoist 14, the control device 18, the battery 25, and the communication device 26 may be provided in the machine room.
  • a part of the hoisting machine 14, the control device 18, the battery 25, and the communication device 26 may be provided in the machine room.
  • the control device 18 includes, for example, an operation control unit 30, a measurement unit 31, and a temperature acquisition unit 32.
  • the functions of the control device 18 will be described below with reference to FIGS.
  • FIG. 3 is a flowchart illustrating an operation example of the control device 18.
  • the control device 18 determines whether or not the start condition is satisfied (S101).
  • the start condition is a condition for starting the diagnostic operation.
  • the start condition is set in advance. If the start condition is not satisfied, the operation control unit 30 controls, for example, normal operation. In normal operation, the operation control unit 30 causes the car 10 to sequentially respond to the registered call.
  • the diagnostic operation is performed periodically. For example, at 1:00 am on the 10th of every month, the start condition is satisfied. As another example, the diagnostic operation is performed irregularly. For example, when the communication device 26 receives a specific signal from the outside, the start condition is satisfied. When the start condition is satisfied, the operation control unit 30 starts the diagnostic operation (S102). The diagnostic operation is performed to determine whether there is an abnormality in the equipment provided in the elevator 1.
  • the operation control unit 30 causes the car 10 to perform a specific operation using a specific device in the diagnostic operation, for example.
  • the measurement unit 31 measures a specific value in the diagnostic operation (S103). For example, the measuring unit 31 measures a value related to the operation of the car 10 or a value related to the device. The value measured by the measuring unit 31 is used to determine the presence or absence of an abnormality.
  • the operation control unit 30 causes the car 10 to perform a specific operation using the battery 25 in the diagnostic operation.
  • the operation control unit 30 causes the car 10 to perform a specific traveling using the electric power from the battery 25.
  • the voltage value of the battery 25 is measured by the measuring unit 31 while the specific traveling is being performed.
  • the minimum voltage value Vmin of the battery 25 measured by the measuring unit 31 falls below the reference value, an abnormality is determined.
  • the operation control unit 30 causes the car 10 to perform a specific operation using the brake device 17 in the diagnostic operation.
  • the operation control unit 30 moves the car 10 in a specific direction at a specific speed.
  • the operation control unit 30 operates the brake device 17 when the car 10 is moving at the specific speed.
  • the brake device 17 operates, the car 10 starts to decelerate, and thereafter the car 10 stops.
  • the measuring unit 31 measures a distance that the car 10 has moved from when the brake device 17 operates to when the car 10 stops.
  • this distance is also referred to as a moving distance L1.
  • the measurement of the movement distance L1 is performed based on a rotation signal from an encoder provided on a rotation shaft of the electric motor 16.
  • the measurement of the moving distance L1 may be performed based on a rotation signal from an encoder provided on the rotating shaft of the governing sheave 22.
  • an abnormality is determined.
  • the operation control unit 30 causes the car 10 to perform a specific operation using the safety device 24 in the diagnostic operation.
  • the operation control unit 30 causes the car 10 to enter the terminal floor at a specific speed higher than the second reference speed.
  • the safety device 24 operates.
  • the measuring unit 31 measures a distance that the car 10 has moved from when the safety device 24 operates to when the car 10 stops.
  • this distance is also referred to as a moving distance L2.
  • the measurement of the moving distance L2 is performed based on a rotation signal from an encoder provided on the rotation shaft of the electric motor 16.
  • the measurement of the moving distance L2 may be performed based on a rotation signal from an encoder provided on the rotating shaft of the governing sheave 22.
  • an abnormality is determined.
  • the measured value by the measuring unit 31 is transmitted to the data center 2 (S105).
  • the measurement value transmitted to the data center 2 includes, for example, the minimum voltage value Vmin, the moving distance L1, and the moving distance L2.
  • the function of determining the presence or absence of an abnormality may be provided in the elevator 1 or in the data center 2.
  • the determination of the presence or absence of the abnormality is performed, for example, after the diagnosis operation is completed.
  • the data center 2 has the above determination function, the determination of the presence or absence of the abnormality is performed, for example, after the process of S105.
  • FIG. 4 is a flowchart showing another operation example of the control device 18.
  • the control device 18 determines whether communication with the maintenance terminal 40 is possible (S201).
  • the maintenance person perform maintenance work on the elevator 1 regularly or irregularly.
  • the maintenance person carries the maintenance terminal 40 when performing maintenance work.
  • the maintenance person carries the maintenance terminal 40 and enters the hoistway 12.
  • the elevator 1 includes a machine room, the maintenance person carries the maintenance terminal 40 and enters the machine room.
  • FIG. 5 is a diagram showing an example of the maintenance terminal 40.
  • the maintenance terminal 40 includes, for example, a thermometer 41 and a communication unit 42.
  • the communication unit 42 communicates with the control device 18. For example, when the maintenance terminal 40 is connected to the control device 18, the determination is Yes in S201.
  • the communication unit 42 may communicate with the control device 18 via the communication device 26.
  • the communication unit 42 may communicate with the control device 18 via a device provided in the car 10.
  • the communication unit 42 may perform wireless communication with the control device 18.
  • the control device 18 determines whether the maintenance terminal 40 exists in the hoistway 12 (S202). For example, when the control device 18 is provided in the hoistway 12 and the maintenance terminal 40 is connected to the control device 18 by wire, the determination in S202 is Yes. When the maintenance person is carrying the maintenance terminal 40, for example, when a specific switch arranged on the hoistway 12 is operated, it is determined as Yes in S202. As another example, when the maintenance switch provided on the car 10 is operated, it is determined as Yes in S202.
  • the temperature acquisition unit 32 acquires the actual measured value of the temperature measured by the thermometer 41 (S203).
  • the value acquired in S203 is an actually measured value of the temperature of the hoistway 12.
  • the measured temperature value acquired by the temperature acquisition unit 32 is transmitted to the data center 2 (S204).
  • the data center 2 includes, for example, a storage unit 50, a change calculation unit 51, a transition identification unit 52, and a communication unit 53.
  • the functions of the data center 2 will be described below with reference to FIGS.
  • FIG. 6 is a flowchart illustrating an operation example of the data center 2.
  • the data center 2 it is determined whether or not the value measured by the measuring unit 31 has been received from the elevator 1 (S301).
  • the measurement value transmitted from the elevator 1 in S105 is received by the communication unit 53.
  • the communication unit 53 stores the received measured value in the storage unit 50 (S302).
  • the value measured by the measuring unit 31 in the diagnostic operation is stored in the storage unit 50. That is, the storage unit 50 stores a value related to the operation of the car 10 and a value related to a specific device.
  • the diagnostic operation is performed, for example, periodically.
  • the storage unit 50 periodically stores the minimum voltage value Vmin of the battery 25 measured in the diagnostic operation.
  • the storage unit 50 periodically stores the moving distance L1 of the car 10 measured in the diagnostic operation.
  • the storage unit 50 periodically stores the moving distance L2 of the car 10 measured in the diagnostic operation.
  • the data center 2 it is determined whether or not the measured temperature value acquired by the temperature acquisition unit 32 has been received from the elevator 1 (S303).
  • the measured temperature value transmitted from the elevator 1 in S204 is received by the communication unit 53.
  • the communication unit 53 Upon receiving the measured temperature value from the elevator 1, the communication unit 53 stores the received measured value in the storage unit 50 (S304).
  • the storage unit 50 stores the actually measured temperature of the hoistway 12 measured by the thermometer 41.
  • the maintenance staff performs maintenance work, for example, periodically.
  • the storage unit 50 periodically stores the actually measured value of the temperature of the hoistway 12 measured by the thermometer 41.
  • FIG. 7 is a flowchart showing another operation example of the data center 2.
  • the storage unit 50 stores a minimum voltage value Vmin of the battery 25 measured in the diagnostic operation.
  • the variation calculation unit 51 reads the minimum voltage value Vmin of the battery 25 from the storage unit 50 (S401).
  • FIG. 8 is a diagram showing the change over time of the minimum voltage value Vmin of the battery 25.
  • a curve A shown in FIG. 8 shows a temporal change of the minimum voltage value Vmin measured in the diagnostic operation of a certain elevator A.
  • a curve B shows a temporal change of the minimum voltage value Vmin measured in the diagnostic operation of another elevator B.
  • the change over time of the minimum voltage value Vmin includes a long-term variation component and a seasonal variation component.
  • the long-term fluctuation component mainly occurs due to deterioration of the battery 25.
  • the minimum voltage value Vmin gradually becomes smaller as time passes.
  • the seasonal fluctuation component mainly occurs due to a change in the temperature of the hoistway 12 where the battery 25 is installed.
  • the minimum voltage value Vmin becomes a large value in summer when the temperature of the hoistway 12 becomes high, and becomes a small value in winter when the temperature of the hoistway 12 becomes low.
  • the fluctuation calculator 51 calculates the seasonal fluctuation component of the temporal change by removing the long-term fluctuation component from the temporal change of the minimum voltage value Vmin (S402). For example, the fluctuation calculator 51 calculates, as a long-term fluctuation component, a difference between the minimum voltage value measured in a certain month and the minimum voltage value measured in the same month of the following year. The fluctuation calculator 51 may calculate a value obtained by averaging the differences for a plurality of months as a long-term fluctuation component. The fluctuation calculator 51 may calculate a difference between the maximum value of the minimum voltage value measured in a certain year and the maximum value of the minimum voltage value measured in the following year as a long-term fluctuation component.
  • the fluctuation calculator 51 may calculate the difference between the minimum value of the minimum voltage value measured in a certain year and the minimum value of the minimum voltage value measured in the following year as a long-term fluctuation component. Further, the variation calculation unit 51 may determine the long-term variation component by identifying a prediction model having a long-term variation component and a periodic variation component by a statistical method.
  • a prediction model for example, a model represented as a sum of a component represented by a linear function or a quadratic function and a component represented by a trigonometric function can be adopted. Another model may be adopted as the prediction model.
  • the fluctuation calculator 51 may calculate the cycle and amplitude of the seasonal fluctuation component in S402.
  • the calculated amplitude of the seasonal variation component corresponds to the difference between the summer temperature and the winter temperature of the hoistway 12.
  • the transition specifying unit 52 reads the actually measured value of the temperature of the hoistway 12 from the storage unit 50 (S403).
  • the transition specifying unit 52 specifies the temperature transition of the hoistway 12 based on the seasonal fluctuation component of the temporal change of the minimum voltage value Vmin calculated in S402 and the measured value of the temperature read in S403 (S404).
  • FIG. 9 is a diagram for explaining the function of the transition specifying unit 52.
  • the storage unit 50 stores in advance a first conversion table for converting a seasonal variation component of the minimum voltage value Vmin over time into a relative temperature transition.
  • the transition specifying unit 52 converts the seasonal fluctuation component calculated in S402 into a relative temperature transition by using the first conversion table. Further, the transition specifying unit 52 determines the offset value of the relative temperature transition based on the actually measured value of the temperature read in S403. Thereby, the transition specifying unit 52 specifies an absolute temperature transition of the hoistway 12. In the following, the absolute temperature transition is simply referred to as “temperature transition”.
  • the temperature transition of the hoistway 12 specified by the transition specifying unit 52 is indicated by a curve C. If the curve C can be specified, the temperature of the hoistway 12 on specific days in the past and the future can be estimated. If the temperature actually measured when the maintenance staff visits does not match the estimated temperature, the actual temperature may be calculated using a probability model.
  • the temperature transition of the hoistway 12 is specified using the minimum voltage value Vmin of the battery 25.
  • the minimum voltage value Vmin of the battery 25 is a value measured in the diagnostic operation. Therefore, with the example shown in the present embodiment, the temperature transition of the hoistway 12 can be specified without permanently installing a new measuring instrument. In the maintenance inspection, the maintenance items of the maintenance staff do not increase.
  • the minimum voltage value Vmin of the battery 25 is used to specify the temperature transition of the hoistway 12.
  • the temperature transition of the hoistway 12 may be specified using the moving distance L1 of the car 10 by the same method as the above-described specifying method.
  • the temperature transition of the hoistway 12 may be specified using the moving distance L2 of the car 10. Note that the battery 25 is not a device used in normal operation. Therefore, when the minimum voltage value Vmin of the battery 25 is used, there is an advantage that the temperature transition of the hoistway 12 can be specified without being affected by the number of times the car 10 travels.
  • the hoistway 12 is an example of an elevator space in which devices are installed.
  • the elevator space may be a machine room. That is, the transition specifying unit 52 may specify the temperature transition of the machine room using the actually measured value of the temperature of the machine room measured by the thermometer 41.
  • the temperature acquisition unit 32 acquires the actually measured value of the temperature measured by the thermometer 41.
  • the transition specifying unit 52 may specify the temperature transition of the machine room using the actually measured value of the temperature of the hoistway 12 measured by the thermometer 41.
  • the transition specifying unit 52 may specify the temperature transition of the hoistway 12 based on the measured value of the temperature of the machine room measured by the thermometer 41. That is, the transition specifying unit 52 specifies the temperature transition of the elevator space using the actually measured value of the temperature of the elevator space measured by the thermometer 41.
  • FIG. 10 is a diagram illustrating another example of the data center 2.
  • the data center 2 illustrated in FIG. 10 further includes, for example, a life calculation unit 54 and a determination unit 55 in addition to the storage unit 50, the change calculation unit 51, the transition identification unit 52, and the communication unit 53.
  • FIG. 11 is a diagram illustrating another operation example of the data center 2. The operation illustrated in FIG. 11 is performed, for example, after the operation illustrated in FIG.
  • the life calculation unit 54 calculates the life of the components arranged in the elevator space (S501). For example, the life calculating unit 54 simulates component deterioration based on the temperature transition specified by the transition specifying unit 52 and the traveling history of the car 10 and calculates the life of the component.
  • the travel history of the car 10 may be the number of travels of the car 10 or the travel distance of the car 10.
  • the life calculation unit 54 calculates the life of the electric components arranged inside the control device 18.
  • the life calculation unit 54 may calculate the life of a resin component such as a belt.
  • the determination unit 55 determines the inspection time of the component (S502).
  • the determination unit 55 determines the inspection time based on the life of the component calculated by the life calculation unit 54.
  • the determination unit 55 may determine the replacement time of the component in S502. This makes it possible to create an appropriate maintenance plan according to the inspection time or replacement time of the part.
  • FIG. 12 is a diagram showing another example of the data center 2. As shown in FIG. The data center 2 illustrated in FIG. 12 further includes, for example, a category determination unit 56 and a determination unit 55 in addition to the storage unit 50, the change calculation unit 51, the transition identification unit 52, and the communication unit 53.
  • FIG. 13 is a diagram illustrating another operation example of the data center 2. The operation illustrated in FIG. 13 is performed, for example, after the operation illustrated in FIG.
  • the category determining unit 56 determines an environment category to which the elevator space belongs (S601).
  • the environment of the elevator space differs depending on the structure of the building in which the elevator 1 is installed. Further, the environment of the elevator space differs depending on the position and the direction in which the elevator 1 is installed. For example, when the elevator 1 is installed in the center of a large-scale building, the temperature of the elevator space is constant throughout the year. In addition, when the elevator 1 is installed at a position where outside air can easily enter, the temperature of the elevator space is easily affected by the outside air temperature. When the elevator 1 is a so-called see-through elevator and is installed at a position receiving direct sunlight, the temperature of the elevator space changes more greatly than a change in the outside air temperature.
  • a plurality of environment categories are set in advance.
  • a first classification condition for determining an environment category to which the elevator space belongs is set in advance.
  • the category determining unit 56 determines an environmental category based on the temperature transition specified by the transition specifying unit 52 and the first classification condition. For example, the category determination unit 56 calculates characteristic amounts such as a maximum temperature, a minimum temperature, a transition cycle, and a transition amplitude from the specified temperature transition.
  • the category determination unit 56 determines the environment category by applying the calculated feature amount to the first classification condition.
  • the determination unit 55 determines the inspection time of the component (S602).
  • the determination unit 55 determines the inspection time of the components arranged in the elevator space based on the environmental category of the elevator space determined by the category determination unit 56. For example, a component inspection cycle is set in advance for each environmental category.
  • the determination unit 55 may determine the replacement time of the component in S602. This makes it possible to create an appropriate maintenance plan according to the inspection time or replacement time of the part.
  • FIG. 14 is a diagram showing another example of the data center 2.
  • the data center 2 shown in FIG. 14 includes, for example, a category determination unit 56, a transition identification unit 57, a life calculation unit 54, and a determination unit 55 in addition to a storage unit 50, a variation calculation unit 51, a transition identification unit 52, and a communication unit 53.
  • FIG. 15 is a diagram illustrating another operation example of the data center 2. The operation illustrated in FIG. 15 is performed, for example, after the operation illustrated in FIG.
  • the category determining unit 56 determines an environment category to which the elevator space belongs (S701). In the examples illustrated in FIGS. 14 and 15, the category determining unit 56 determines the environmental category based on the difference between the temperature transition specified by the transition specifying unit 52 and the outside air temperature.
  • the outside air temperature can be obtained from an external organization such as the Meteorological Agency.
  • the category determining unit 56 determines an environmental category based on the difference between the temperature of the elevator space on a certain day and the outside air temperature on that day estimated from the temperature transition.
  • the above difference varies depending on the season.
  • the elevator 1 is installed at a position where outside air can easily enter, the above difference is relatively small throughout the year.
  • the above difference also varies depending on the material of the wall forming the hoistway 12.
  • a plurality of environment categories are set in advance.
  • a second classification condition for determining an environment category to which the elevator space belongs is set in advance.
  • the category determination unit 56 determines an environment category based on, for example, the difference and the second classification condition.
  • the storage unit 50 stores in advance a second conversion table for each environment category.
  • the second conversion table is a table for converting the outside air humidity into the humidity of the elevator space. For example, in order to create the second conversion table, the humidity of various elevator spaces is actually measured.
  • the second conversion table is created in advance using the outside air humidity and the measured value of the humidity in the elevator space, and is stored in the storage unit 50.
  • the outside air humidity can be obtained from an external organization such as the Meteorological Agency.
  • the transition specifying unit 57 specifies a humidity transition in the elevator space based on the environmental category determined by the category determining unit 56.
  • FIG. 16 is a diagram for explaining the function of the transition specifying unit 57.
  • FIG. 16 shows an example in which the humidity transition is specified using a second conversion table of an environmental category in which a building is provided with air conditioning equipment but the hoistway 12 is not provided with air conditioning equipment.
  • the transition specifying unit 57 reads the corresponding second conversion table from the storage unit 50 (S702). That is, the transition specifying unit 57 reads the second conversion table corresponding to the environment category determined by the category determining unit 56 from the storage unit 50 in S702.
  • the transition specifying unit 57 specifies the humidity transition of the elevator space using the read second conversion table (S703).
  • the life calculator 54 calculates the life of the components arranged in the elevator space (S704).
  • the life calculation unit 54 simulates component deterioration based on the temperature change specified by the change specifying unit 52, the humidity change specified by the change specifying unit 57, and the running history of the car 10, and calculates the life of the component. Is calculated.
  • the travel history of the car 10 may be the number of travels of the car 10 or the travel distance of the car 10.
  • the determining unit 55 determines the inspection time of the component (S705).
  • the determination unit 55 determines the inspection time based on the life of the component calculated by the life calculation unit 54.
  • the determining unit 55 may determine the replacement time of the component in S705. This makes it possible to create an appropriate maintenance plan according to the inspection time or replacement time of the part.
  • the temperature transition specifying function is provided in the data center 2
  • the above-described temperature transition specifying function may be provided in the elevator 1.
  • a part of the temperature transition function may be provided in the elevator 1.
  • FIG. 17 is a diagram illustrating an example of hardware resources of the control device 18.
  • the control device 18 includes a processing circuit 60 including, for example, a processor 61 and a memory 62 as hardware resources.
  • the control device 18 realizes the functions of the respective units indicated by reference numerals 30 to 32 by executing the program stored in the memory 62 by the processor 61.
  • the processor 61 is also called a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a DSP.
  • a CPU Central Processing Unit
  • a central processing unit a central processing unit
  • a processing unit an arithmetic unit
  • a microprocessor a microcomputer
  • a DSP digital signal processor
  • a semiconductor memory a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD may be employed.
  • the semiconductor memory that can be used includes a RAM, a ROM, a flash memory, an EPROM, an EEPROM, and the like.
  • FIG. 18 is a diagram showing another example of the hardware resources of the control device 18.
  • the control device 18 includes a processing circuit 60 including, for example, a processor 61, a memory 62, and dedicated hardware 63.
  • FIG. 18 illustrates an example in which some of the functions of the control device 18 are implemented by dedicated hardware 63. All the functions of the control device 18 may be realized by the dedicated hardware 63.
  • the dedicated hardware 63 a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof can be adopted.
  • the components indicated by reference numerals 50 to 57 indicate the functions of the data center 2.
  • the hardware resources of the data center 2 are the same as in the example shown in FIG.
  • the data center 2 includes a processing circuit including, for example, a processor and a memory as hardware resources.
  • the functions of the storage unit 50 are realized by the memory.
  • the data center 2 realizes the functions of the respective units denoted by reference numerals 50 to 57 by executing the program stored in the memory by the processor.
  • the data center 2 may include, as hardware resources, a processing circuit including a processor, a memory, and dedicated hardware. Further, all the functions of the data center 2 may be realized by dedicated hardware.
  • 1 elevator, 2 data center, 3 communication network 10 car, 11 counterweight, 12 hoistway, 13 main rope, 14 hoist, 15 drive sheave, 16 electric motor, 17 brake, 18 control, 19 governor Machine, ⁇ 20 ⁇ emergency stop, ⁇ 21 ⁇ governing rope, ⁇ 22 ⁇ governing sheave, ⁇ 23 ⁇ stretcher, ⁇ 24 ⁇ safety device, ⁇ 25 ⁇ battery, ⁇ 26 ⁇ communication device, ⁇ 30 ⁇ operation control unit, ⁇ 31 ⁇ measuring unit, ⁇ 32 ⁇ temperature acquisition unit, ⁇ 40 ⁇ maintenance terminal, 41 ⁇ thermometer, ⁇ 42 ⁇ communication unit, ⁇ 50 ⁇ storage unit, ⁇ 51 ⁇ fluctuation calculation unit, ⁇ 52 ⁇ transition identification unit, ⁇ 53 ⁇ communication unit, ⁇ 54 ⁇ life calculation unit, ⁇ 55 ⁇ determination unit, ⁇ 56 ⁇ category determination unit, ⁇ 57 ⁇ transition identification unit, ⁇ 60 ⁇ processing circuit, # 61 Process , 62 memory, 63 dedicated hardware

Landscapes

  • Indicating And Signalling Devices For Elevators (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Abstract

This temperature transition identification device is provided with, for example, a storage unit (50), a fluctuation calculation unit (51), and a transition identification unit (52). Values measured during elevator diagnostic operation are stored in the storage unit (50). The fluctuation calculation unit (51) removes a long-term fluctuation component from a temporal change of the values stored in the storage unit (50), and calculates a seasonal fluctuation component of the temporal change. The transition identification unit (52) identifies temperature transition in an elevator space on the basis of the seasonal fluctuation component of the temporal change calculated by the fluctuation calculation unit (51) and the real measured value of the temperature in the elevator space.

Description

温度推移特定装置、保守計画システム及びエレベーターシステムTemperature transition identification device, maintenance planning system and elevator system
 この発明は、温度推移特定装置、保守計画システム及びエレベーターシステムに関する。 The present invention relates to a temperature transition specifying device, a maintenance planning system, and an elevator system.
 特許文献1に、エレベーターが記載されている。特許文献1に記載されたエレベーターは温度計を備える。温度計によって、蓄電池の温度が計測される。温度計によって計測された値に基づいて、蓄電池の寿命の進行度が算出される。 エ レ ベ ー タ ー Patent Document 1 describes an elevator. The elevator described in Patent Literature 1 includes a thermometer. The temperature of the storage battery is measured by the thermometer. The progress of the life of the storage battery is calculated based on the value measured by the thermometer.
日本特開2006-312528号公報Japanese Patent Application Laid-Open No. 2006-31528
 エレベーターに備えられた部品の劣化は、温度によって進み具合が異なる。特許文献1に記載されたエレベーターでは、蓄電池の温度を計測するために温度計が用いられる。温度計を常設する場合は、温度計が正しく機能するように温度計を適切に管理しなければならない。このため、エレベーターの保守員による保守項目が増え、手間がかかるといった問題があった。 劣化 Deterioration of the components provided in the elevator varies depending on the temperature. In the elevator described in Patent Literature 1, a thermometer is used to measure the temperature of the storage battery. If a thermometer is permanently installed, it must be properly managed so that the thermometer functions properly. For this reason, there is a problem that the number of maintenance items by the elevator maintenance staff increases and it takes time and effort.
 この発明は、上述のような課題を解決するためになされた。この発明の目的は、新たな計測器を常設する必要がなく、エレベーター空間の温度推移を特定することができる温度推移特定装置を提供することである。この発明の他の目的は、このような温度推移特定装置を利用した保守計画システムを提供することである。この発明の他の目的は、新たな計測器を常設する必要がなく、エレベーター空間の温度推移を特定することができるエレベーターシステムを提供することである。 The present invention has been made to solve the problems described above. An object of the present invention is to provide a temperature transition specifying device capable of specifying a temperature transition of an elevator space without requiring a permanent installation of a new measuring instrument. Another object of the present invention is to provide a maintenance planning system using such a temperature transition specifying device. Another object of the present invention is to provide an elevator system that does not require a permanent installation of a new measuring instrument and can specify a temperature transition in an elevator space.
 この発明に係る温度推移特定装置は、特定の機器を用いてエレベーターのかごが特定の動作を行う診断運転において計測された値を記憶する記憶手段と、記憶手段に記憶された値の経時変化から長期変動成分を除去することにより、経時変化の季節変動成分を算出する算出手段と、算出手段によって算出された経時変化の季節変動成分とエレベーター空間の温度の実測値とに基づいて、エレベーター空間の温度推移を特定する第1特定手段と、を備える。 A temperature transition specifying device according to the present invention includes a storage unit that stores a value measured in a diagnostic operation in which an elevator car performs a specific operation using a specific device, and a time-dependent change in a value stored in the storage unit. Calculating means for calculating a seasonal variation component of the temporal change by removing the long-term variation component; and a seasonal variation component of the temporal change calculated by the calculation means and an actually measured value of the temperature of the elevator space, First specifying means for specifying a temperature transition.
 この発明に係る保守計画システムは、上記温度推移特定装置と、第1特定手段によって特定された温度推移とかごの走行履歴とに基づいて、エレベーター空間に配置された部品の寿命を算出する第2算出手段と、第2算出手段が算出した寿命に基づいて、部品の点検時期又は交換時期を判定する判定手段と、を備える。 A maintenance planning system according to the present invention calculates a second life of a component arranged in an elevator space based on the temperature transition specifying device, the temperature transition specified by the first specifying unit, and the traveling history of the car. A calculation unit; and a determination unit configured to determine whether to inspect or replace the component based on the life calculated by the second calculation unit.
 また、この発明に係る保守計画システムは、上記温度推移特定装置と、第1特定手段によって特定された温度推移に基づいて、エレベーター空間が属する環境カテゴリーを決定するカテゴリー決定部と、カテゴリー決定部によって決定された環境カテゴリーに基づいて、エレベーター空間に配置された部品の点検時期又は交換時期を判定する判定手段と、を備える。 In addition, the maintenance planning system according to the present invention includes the temperature transition specifying device, a category determining unit that determines an environmental category to which the elevator space belongs based on the temperature transition specified by the first specifying unit, and a category determining unit. Determining means for determining the time to inspect or replace parts arranged in the elevator space based on the determined environmental category.
 また、この発明に係る保守計画システムは、上記温度推移特定装置と、第1特定手段によって特定された温度推移及び外気温度の差に基づいて、エレベーター空間が属する環境カテゴリーを決定するカテゴリー決定部と、カテゴリー決定部によって決定された環境カテゴリーに基づいて、エレベーター空間の湿度推移を特定する第2特定手段と、第1特定手段によって特定された温度推移と第2特定手段によって特定された湿度推移とかごの走行履歴とに基づいて、エレベーター空間に配置された部品の寿命を算出する第2算出手段と、第2算出手段が算出した寿命に基づいて、部品の点検時期又は交換時期を判定する判定手段と、を備える。 Further, the maintenance planning system according to the present invention includes the temperature transition specifying device, and a category determining unit that determines an environmental category to which the elevator space belongs based on a difference between the temperature transition and the outside air temperature specified by the first specifying unit. Based on the environmental category determined by the category determining unit, a second specifying means for specifying a change in humidity in the elevator space, a temperature change specified by the first specifying means, and a humidity change specified by the second specifying means. A second calculating means for calculating the life of the component disposed in the elevator space based on the traveling history of the vehicle, and a determination for judging the inspection time or replacement time of the component based on the life calculated by the second calculating means. Means.
 この発明に係るエレベーターシステムは、エレベーターのかごと、特定の機器と、開始条件が成立すると診断運転を開始し、機器を用いてかごに特定の動作を行わせる運転制御手段と、診断運転において特定の値を計測する計測手段と、計測手段によって計測された値を記憶する記憶手段と、記憶手段に記憶された値の経時変化から長期変動成分を除去することにより、経時変化の季節変動成分を算出する算出手段と、算出手段によって算出された経時変化の季節変動成分とエレベーター空間の温度の実測値とに基づいて、エレベーター空間の温度推移を特定する特定手段と、を備える。 The elevator system according to the present invention includes an elevator car, a specific device, a driving control unit that starts a diagnostic operation when a start condition is satisfied, and causes the car to perform a specific operation using the device, and a specific device in the diagnostic operation. A measuring means for measuring the value, a storage means for storing the value measured by the measuring means, and a seasonal variation component of the temporal change is calculated by removing a long-term variation component from the temporal change of the value stored in the storage means. Calculating means for calculating the temperature change of the elevator space based on the seasonal variation component of the temporal change calculated by the calculating means and the actually measured value of the temperature of the elevator space.
 例えば、この発明に係る温度推移特定装置は、記憶手段、算出手段、及び特定手段を備える。算出手段は、記憶手段に記憶された値の経時変化から長期変動成分を除去することにより、経時変化の季節変動成分を算出する。特定手段は、算出手段によって算出された経時変化の季節変動成分とエレベーター空間の温度の実測値とに基づいて、エレベーター空間の温度推移を特定する。この発明によれば、新たな計測器を常設する必要がなく、エレベーター空間の温度推移を特定することができる。 For example, the temperature transition specifying device according to the present invention includes a storage unit, a calculating unit, and a specifying unit. The calculation means calculates a seasonal variation component of the temporal change by removing a long-term variation component from the temporal change of the value stored in the storage means. The specifying means specifies the temperature change of the elevator space based on the seasonal variation component of the temporal change calculated by the calculating means and the actually measured value of the temperature of the elevator space. According to the present invention, it is not necessary to permanently install a new measuring instrument, and it is possible to specify the temperature transition of the elevator space.
実施の形態1におけるエレベーターシステムの例を示す図である。FIG. 2 is a diagram illustrating an example of an elevator system according to the first embodiment. エレベーターに備えられた機器の接続例を示す図である。It is a figure showing the example of connection of the equipment provided in the elevator. 制御装置の動作例を示すフローチャートである。5 is a flowchart illustrating an operation example of a control device. 制御装置の他の動作例を示すフローチャートである。9 is a flowchart illustrating another operation example of the control device. 保守端末の例を示す図である。It is a figure showing an example of a maintenance terminal. データセンターの動作例を示すフローチャートである。5 is a flowchart illustrating an operation example of a data center. データセンターの他の動作例を示すフローチャートである。11 is a flowchart illustrating another operation example of the data center. バッテリーの最小電圧値の経時変化を示す図である。FIG. 7 is a diagram showing a change over time of a minimum voltage value of a battery. 推移特定部の機能を説明するための図である。It is a figure for explaining the function of a transition specific part. データセンターの他の例を示す図である。It is a figure showing other examples of a data center. データセンターの動作例を示す図である。It is a figure showing an example of operation of a data center. データセンターの他の例を示す図である。It is a figure showing other examples of a data center. データセンターの他の動作例を示す図である。FIG. 11 is a diagram illustrating another operation example of the data center. データセンターの他の例を示す図である。It is a figure showing other examples of a data center. データセンターの他の動作例を示す図である。FIG. 11 is a diagram illustrating another operation example of the data center. 推移特定部の機能を説明するための図である。It is a figure for explaining the function of a transition specific part. 制御装置のハードウェア資源の例を示す図である。FIG. 3 is a diagram illustrating an example of hardware resources of a control device. 制御装置のハードウェア資源の他の例を示す図である。FIG. 9 is a diagram illustrating another example of the hardware resources of the control device.
 添付の図面を参照し、本発明を説明する。重複する説明は、適宜簡略化或いは省略する。各図において、同一の符号は同一の部分又は相当する部分を示す。 The present invention will be described with reference to the accompanying drawings. Duplicate descriptions will be simplified or omitted as appropriate. In each drawing, the same reference numerals indicate the same or corresponding parts.
実施の形態1.
 図1は、実施の形態1におけるエレベーターシステムの例を示す図である。図1に示すエレベーターシステムは、エレベーター1、及びデータセンター2を備える。エレベーター1とデータセンター2とは、通信ネットワーク3を介して通信が可能である。エレベーター1とデータセンター2とが通信を行う方式は、如何なる方式であっても良い。図2は、エレベーター1に備えられた機器の接続例を示す図である。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating an example of an elevator system according to the first embodiment. The elevator system shown in FIG. 1 includes an elevator 1 and a data center 2. The elevator 1 and the data center 2 can communicate with each other via a communication network 3. The system in which the elevator 1 communicates with the data center 2 may be any system. FIG. 2 is a diagram illustrating a connection example of devices provided in the elevator 1.
 エレベーター1は、例えばかご10及びつり合いおもり11を備える。かご10は、昇降路12を上下に移動する。つり合いおもり11は、昇降路12を上下に移動する。かご10及びつり合いおもり11は、主ロープ13によって昇降路12に吊り下げられる。 The elevator 1 includes, for example, a car 10 and a counterweight 11. The car 10 moves up and down the hoistway 12. The counterweight 11 moves up and down the hoistway 12. The car 10 and the counterweight 11 are suspended from the hoistway 12 by the main rope 13.
 巻上機14は、駆動綱車15、電動機16、及びブレーキ装置17を備える。駆動綱車15に主ロープ13が巻き掛けられる。電動機16は、駆動綱車15を駆動する。電動機16は、制御装置18によって制御される。即ち、制御装置18は、駆動綱車15の回転及び停止を制御する。駆動綱車15の回転に応じてかご10は移動する。駆動綱車15が回転していなければ、かご10は停止する。電動機16の回転軸にエンコーダ(図示せず)が設けられる。電動機16が回転すると、回転方向及び回転角度を示す回転信号がエンコーダから出力される。エンコーダから出力された回転信号は、制御装置18に入力される。 The hoisting machine 14 includes a drive sheave 15, an electric motor 16, and a brake device 17. The main rope 13 is wound around the drive sheave 15. The electric motor 16 drives the drive sheave 15. The electric motor 16 is controlled by the control device 18. That is, the control device 18 controls the rotation and stop of the drive sheave 15. The car 10 moves according to the rotation of the drive sheave 15. If the drive sheave 15 is not rotating, the car 10 stops. An encoder (not shown) is provided on a rotating shaft of the electric motor 16. When the electric motor 16 rotates, a rotation signal indicating a rotation direction and a rotation angle is output from the encoder. The rotation signal output from the encoder is input to the control device 18.
 ブレーキ装置17は、かご10を静止保持するための装置である。ブレーキ装置17は、制御装置18によって制御される。通常運転では、ブレーキ装置17は、駆動綱車15が停止してから動作する。ブレーキ装置17が動作すると、駆動綱車15に連動する部材に対して、駆動綱車15の回転を阻止するように力が加えられる。 The brake device 17 is a device for holding the car 10 stationary. The brake device 17 is controlled by the control device 18. In normal operation, the brake device 17 operates after the drive sheave 15 stops. When the brake device 17 operates, a force is applied to a member interlocking with the drive sheave 15 so as to prevent the rotation of the drive sheave 15.
 調速機19は、かご10の下降速度が特定の第1基準速度を超えると、かご10に備えられた非常止め20を動作させる。調速機19は、例えば調速ロープ21、調速綱車22、及び張り車23を備える。調速ロープ21は、かご10に連結される。調速ロープ21は、調速綱車22及び張り車23に巻き掛けられる。かご10が移動すると、調速ロープ21が移動する。調速ロープ21が移動すると、調速綱車22及び張り車23が回転する。調速綱車22の回転軸にエンコーダが設けられても良い。この場合、調速綱車22の回転方向及び回転角度を示す回転信号がエンコーダから出力される。エンコーダから出力された回転信号は、制御装置18に入力される。 The governor 19 operates the emergency stop 20 provided in the car 10 when the descending speed of the car 10 exceeds a specific first reference speed. The governor 19 includes, for example, a governor rope 21, a governor sheave 22, and a tension sheave 23. The governing rope 21 is connected to the car 10. The speed control rope 21 is wound around a speed control sheave 22 and a tension sheave 23. When the car 10 moves, the governing rope 21 moves. When the speed control rope 21 moves, the speed control sheave 22 and the tension sheave 23 rotate. An encoder may be provided on the rotation shaft of the governing sheave 22. In this case, a rotation signal indicating the rotation direction and the rotation angle of the governor sheave 22 is output from the encoder. The rotation signal output from the encoder is input to the control device 18.
 安全装置24は、例えば昇降路12に設けられる。安全装置24は、かご10が特定の第2基準速度より速い速度で終端階に進入した際に、かご10を強制的に停止させる。図1に示す例では、かご10が第2基準速度より速い速度で特定の位置を上方に通過すると、安全装置24が動作する。安全装置24が動作すると電動機16の減速が強制的に開始される。これにより、駆動綱車15が停止する。即ち、かご10が停止する。 The safety device 24 is provided, for example, on the hoistway 12. The safety device 24 forcibly stops the car 10 when the car 10 enters the terminal floor at a speed higher than a specific second reference speed. In the example shown in FIG. 1, when the car 10 passes above a specific position at a speed higher than the second reference speed, the safety device 24 operates. When the safety device 24 operates, the deceleration of the electric motor 16 is forcibly started. Thereby, the drive sheave 15 stops. That is, the car 10 stops.
 バッテリー25は、停電時にかご10にいる乗客を最寄り階に降ろすために使用される。例えば、停電が発生すると、バッテリー25からの電力が制御装置18、巻上機14、及びかご10に供給される。 The battery 25 is used to bring the passengers in the car 10 down to the nearest floor during a power outage. For example, when a power failure occurs, power from the battery 25 is supplied to the control device 18, the hoist 14, and the car 10.
 通信装置26は、データセンター2と通信する。通信装置26は、制御装置18に接続される。通信装置26がデータセンター2と通信を行う方式は、如何なる方式であっても良い。 The communication device 26 communicates with the data center 2. The communication device 26 is connected to the control device 18. The method by which the communication device 26 communicates with the data center 2 may be any method.
 図1は、巻上機14、制御装置18、バッテリー25、及び通信装置26が昇降路12に設けられる例を示す。エレベーター1が機械室を備える場合、巻上機14、制御装置18、バッテリー25、及び通信装置26は、機械室に設けられても良い。巻上機14、制御装置18、バッテリー25、及び通信装置26の一部が機械室に設けられても良い。 FIG. 1 shows an example in which the hoisting machine 14, the control device 18, the battery 25, and the communication device 26 are provided in the hoistway 12. When the elevator 1 includes a machine room, the hoist 14, the control device 18, the battery 25, and the communication device 26 may be provided in the machine room. A part of the hoisting machine 14, the control device 18, the battery 25, and the communication device 26 may be provided in the machine room.
 図2に示すように、制御装置18は、例えば運転制御部30、計測部31、及び温度取得部32を備える。以下に、図3及び図4も参照し、制御装置18が備える機能について説明する。図3は、制御装置18の動作例を示すフローチャートである。 制 御 As shown in FIG. 2, the control device 18 includes, for example, an operation control unit 30, a measurement unit 31, and a temperature acquisition unit 32. The functions of the control device 18 will be described below with reference to FIGS. FIG. 3 is a flowchart illustrating an operation example of the control device 18.
 制御装置18では、開始条件が成立したか否かが判定される(S101)。開始条件は、診断運転を開始するための条件である。開始条件は、予め設定される。開始条件が成立していなければ、運転制御部30は、例えば通常運転を制御する。通常運転では、運転制御部30は、登録された呼びにかご10を順次応答させる。 The control device 18 determines whether or not the start condition is satisfied (S101). The start condition is a condition for starting the diagnostic operation. The start condition is set in advance. If the start condition is not satisfied, the operation control unit 30 controls, for example, normal operation. In normal operation, the operation control unit 30 causes the car 10 to sequentially respond to the registered call.
 一例として、診断運転は定期的に行われる。例えば、毎月10日の午前1時になると、開始条件が成立する。他の例として、診断運転は不定期に行われる。例えば、通信装置26が外部から特定の信号を受信すると、開始条件が成立する。開始条件が成立すると、運転制御部30は、診断運転を開始する(S102)。診断運転は、エレベーター1に備えられた機器に異常があるか否かを判定するために行なわれる。 診断 As an example, the diagnostic operation is performed periodically. For example, at 1:00 am on the 10th of every month, the start condition is satisfied. As another example, the diagnostic operation is performed irregularly. For example, when the communication device 26 receives a specific signal from the outside, the start condition is satisfied. When the start condition is satisfied, the operation control unit 30 starts the diagnostic operation (S102). The diagnostic operation is performed to determine whether there is an abnormality in the equipment provided in the elevator 1.
 運転制御部30は、例えば、診断運転において特定の機器を用いてかご10に特定の動作を行わせる。計測部31は、診断運転において特定の値を計測する(S103)。例えば、計測部31は、かご10の動作に関する値或いは上記機器に関する値を計測する。計測部31によって計測された値は、異常の有無を判定するために使用される。 The operation control unit 30 causes the car 10 to perform a specific operation using a specific device in the diagnostic operation, for example. The measurement unit 31 measures a specific value in the diagnostic operation (S103). For example, the measuring unit 31 measures a value related to the operation of the car 10 or a value related to the device. The value measured by the measuring unit 31 is used to determine the presence or absence of an abnormality.
 一例として、運転制御部30は、診断運転においてバッテリー25を用いてかご10に特定の動作を行わせる。例えば、運転制御部30は、バッテリー25からの電力により、かご10に特定の走行を行わせる。診断運転において上記特定の走行が行われている間、バッテリー25の電圧値が計測部31によって計測される。計測部31によって計測されたバッテリー25の最小電圧値Vminが基準値を下回ると、異常が判定される。 As an example, the operation control unit 30 causes the car 10 to perform a specific operation using the battery 25 in the diagnostic operation. For example, the operation control unit 30 causes the car 10 to perform a specific traveling using the electric power from the battery 25. During the diagnosis run, the voltage value of the battery 25 is measured by the measuring unit 31 while the specific traveling is being performed. When the minimum voltage value Vmin of the battery 25 measured by the measuring unit 31 falls below the reference value, an abnormality is determined.
 他の例として、運転制御部30は、診断運転においてブレーキ装置17を用いてかご10に特定の動作を行わせる。例えば、運転制御部30は、かご10を特定の方向に特定の速度で移動させる。運転制御部30は、かご10が上記特定の速度で移動している時に、ブレーキ装置17を動作させる。ブレーキ装置17が動作するとかご10が減速を開始し、その後にかご10は停止する。計測部31は、ブレーキ装置17が動作してからかご10が停止するまでにかご10が移動した距離を計測する。以下においては、この距離のことを移動距離L1とも表記する。例えば、移動距離L1の計測は、電動機16の回転軸に設けられたエンコーダからの回転信号に基づいて行われる。調速綱車22の回転軸にエンコーダが設けられる場合は、移動距離L1の計測は、調速綱車22の回転軸に設けられたエンコーダからの回転信号に基づいて行われても良い。計測部31によって計測された移動距離L1が基準値を上回ると、異常が判定される。 As another example, the operation control unit 30 causes the car 10 to perform a specific operation using the brake device 17 in the diagnostic operation. For example, the operation control unit 30 moves the car 10 in a specific direction at a specific speed. The operation control unit 30 operates the brake device 17 when the car 10 is moving at the specific speed. When the brake device 17 operates, the car 10 starts to decelerate, and thereafter the car 10 stops. The measuring unit 31 measures a distance that the car 10 has moved from when the brake device 17 operates to when the car 10 stops. Hereinafter, this distance is also referred to as a moving distance L1. For example, the measurement of the movement distance L1 is performed based on a rotation signal from an encoder provided on a rotation shaft of the electric motor 16. When an encoder is provided on the rotation shaft of the governing sheave 22, the measurement of the moving distance L1 may be performed based on a rotation signal from an encoder provided on the rotating shaft of the governing sheave 22. When the moving distance L1 measured by the measuring unit 31 exceeds the reference value, an abnormality is determined.
 他の例として、運転制御部30は、診断運転において安全装置24を用いてかご10に特定の動作を行わせる。例えば、運転制御部30は、かご10を第2基準速度より速い特定の速度で終端階に進入させる。これにより、安全装置24が動作する。計測部31は、安全装置24が動作してからかご10が停止するまでにかご10が移動した距離を計測する。以下においては、この距離のことを移動距離L2とも表記する。例えば、移動距離L2の計測は、電動機16の回転軸に設けられたエンコーダからの回転信号に基づいて行われる。調速綱車22の回転軸にエンコーダが設けられる場合は、移動距離L2の計測は、調速綱車22の回転軸に設けられたエンコーダからの回転信号に基づいて行われても良い。計測部31によって計測された移動距離L2が基準値を上回ると、異常が判定される。 As another example, the operation control unit 30 causes the car 10 to perform a specific operation using the safety device 24 in the diagnostic operation. For example, the operation control unit 30 causes the car 10 to enter the terminal floor at a specific speed higher than the second reference speed. As a result, the safety device 24 operates. The measuring unit 31 measures a distance that the car 10 has moved from when the safety device 24 operates to when the car 10 stops. Hereinafter, this distance is also referred to as a moving distance L2. For example, the measurement of the moving distance L2 is performed based on a rotation signal from an encoder provided on the rotation shaft of the electric motor 16. When an encoder is provided on the rotation shaft of the governing sheave 22, the measurement of the moving distance L2 may be performed based on a rotation signal from an encoder provided on the rotating shaft of the governing sheave 22. When the moving distance L2 measured by the measuring unit 31 exceeds the reference value, an abnormality is determined.
 診断運転が終了すると(S104)、計測部31による計測値がデータセンター2に送信される(S105)。データセンター2に送信される計測値には、例えば、最小電圧値Vmin、移動距離L1、及び移動距離L2が含まれる。なお、異常の有無を判定する機能は、エレベーター1が備えても良いし、データセンター2が備えても良い。上記判定機能をエレベーター1が備える場合、異常の有無の判定は、例えば診断運転が終了した後に行われる。上記判定機能をデータセンター2が備える場合、異常の有無の判定は、例えばS105の処理の後に行われる。 (4) When the diagnostic operation is completed (S104), the measured value by the measuring unit 31 is transmitted to the data center 2 (S105). The measurement value transmitted to the data center 2 includes, for example, the minimum voltage value Vmin, the moving distance L1, and the moving distance L2. The function of determining the presence or absence of an abnormality may be provided in the elevator 1 or in the data center 2. When the elevator 1 has the above-described determination function, the determination of the presence or absence of the abnormality is performed, for example, after the diagnosis operation is completed. When the data center 2 has the above determination function, the determination of the presence or absence of the abnormality is performed, for example, after the process of S105.
 図4は、制御装置18の他の動作例を示すフローチャートである。制御装置18では、保守端末40との通信が可能であるか否かが判定される(S201)。 FIG. 4 is a flowchart showing another operation example of the control device 18. The control device 18 determines whether communication with the maintenance terminal 40 is possible (S201).
 保守員は、定期的或いは不定期にエレベーター1の保守作業を行う。保守員は、保守作業を行う際に保守端末40を携帯する。保守員は、保守端末40を携帯して昇降路12に入る。エレベーター1が機械室を備える場合、保守員は、保守端末40を携帯して機械室に入る。 Maintenance personnel perform maintenance work on the elevator 1 regularly or irregularly. The maintenance person carries the maintenance terminal 40 when performing maintenance work. The maintenance person carries the maintenance terminal 40 and enters the hoistway 12. When the elevator 1 includes a machine room, the maintenance person carries the maintenance terminal 40 and enters the machine room.
 図5は、保守端末40の例を示す図である。保守端末40は、例えば温度計41、及び通信部42を備える。通信部42は、制御装置18と通信する。例えば、保守端末40が制御装置18に接続されると、S201でYesと判定される。通信部42は、通信装置26を介して制御装置18と通信しても良い。通信部42は、かご10に備えられた機器を介して制御装置18と通信しても良い。通信部42は、制御装置18と無線通信しても良い。 FIG. 5 is a diagram showing an example of the maintenance terminal 40. The maintenance terminal 40 includes, for example, a thermometer 41 and a communication unit 42. The communication unit 42 communicates with the control device 18. For example, when the maintenance terminal 40 is connected to the control device 18, the determination is Yes in S201. The communication unit 42 may communicate with the control device 18 via the communication device 26. The communication unit 42 may communicate with the control device 18 via a device provided in the car 10. The communication unit 42 may perform wireless communication with the control device 18.
 S201でYesと判定されると、制御装置18では、保守端末40が昇降路12に存在するか否かが判定される(S202)。例えば、制御装置18が昇降路12に設けられ、保守端末40が制御装置18に有線接続されると、S202でYesと判定される。保守員が保守端末40を携帯している場合、例えば昇降路12に配置された特定のスイッチが操作されると、S202でYesと判定される。他の例として、かご10の上に設けられた保守スイッチが操作されると、S202でYesと判定される。 If the determination is Yes in S201, the control device 18 determines whether the maintenance terminal 40 exists in the hoistway 12 (S202). For example, when the control device 18 is provided in the hoistway 12 and the maintenance terminal 40 is connected to the control device 18 by wire, the determination in S202 is Yes. When the maintenance person is carrying the maintenance terminal 40, for example, when a specific switch arranged on the hoistway 12 is operated, it is determined as Yes in S202. As another example, when the maintenance switch provided on the car 10 is operated, it is determined as Yes in S202.
 S202でYesと判定されると、温度取得部32は、温度計41によって計測された温度の実測値を取得する(S203)。S203で取得される値は、昇降路12の温度の実測値である。温度取得部32によって取得された温度の実測値は、データセンター2に送信される(S204)。 If the determination is Yes in S202, the temperature acquisition unit 32 acquires the actual measured value of the temperature measured by the thermometer 41 (S203). The value acquired in S203 is an actually measured value of the temperature of the hoistway 12. The measured temperature value acquired by the temperature acquisition unit 32 is transmitted to the data center 2 (S204).
 図1に示すように、データセンター2は、例えば記憶部50、変動算出部51、推移特定部52、及び通信部53を備える。以下に、図6から図9も参照し、データセンター2が備える機能について説明する。図6は、データセンター2の動作例を示すフローチャートである。 As shown in FIG. 1, the data center 2 includes, for example, a storage unit 50, a change calculation unit 51, a transition identification unit 52, and a communication unit 53. The functions of the data center 2 will be described below with reference to FIGS. FIG. 6 is a flowchart illustrating an operation example of the data center 2.
 データセンター2では、計測部31が計測した値をエレベーター1から受信したか否かが判定される(S301)。S105でエレベーター1から送信された計測値は、通信部53によって受信される。通信部53は、エレベーター1から計測値を受信すると、受信した計測値を記憶部50に記憶する(S302)。これにより、記憶部50には、診断運転において計測部31によって計測された値が記憶される。即ち、記憶部50には、かご10の動作に関する値及び特定の機器に関する値が記憶される。 In the data center 2, it is determined whether or not the value measured by the measuring unit 31 has been received from the elevator 1 (S301). The measurement value transmitted from the elevator 1 in S105 is received by the communication unit 53. When receiving the measured value from the elevator 1, the communication unit 53 stores the received measured value in the storage unit 50 (S302). As a result, the value measured by the measuring unit 31 in the diagnostic operation is stored in the storage unit 50. That is, the storage unit 50 stores a value related to the operation of the car 10 and a value related to a specific device.
 診断運転は、例えば定期的に行われる。記憶部50には、診断運転で計測されたバッテリー25の最小電圧値Vminが定期的に記憶される。他の例として、記憶部50には、診断運転で計測されたかご10の移動距離L1が定期的に記憶される。他の例として、記憶部50には、診断運転で計測されたかご10の移動距離L2が定期的に記憶される。 The diagnostic operation is performed, for example, periodically. The storage unit 50 periodically stores the minimum voltage value Vmin of the battery 25 measured in the diagnostic operation. As another example, the storage unit 50 periodically stores the moving distance L1 of the car 10 measured in the diagnostic operation. As another example, the storage unit 50 periodically stores the moving distance L2 of the car 10 measured in the diagnostic operation.
 また、データセンター2では、温度取得部32が取得した温度の実測値をエレベーター1から受信したか否かが判定される(S303)。S204でエレベーター1から送信された温度の実測値は、通信部53によって受信される。通信部53は、エレベーター1から温度の実測値を受信すると、受信した実測値を記憶部50に記憶する(S304)。これにより、記憶部50には、温度計41によって計測された昇降路12の温度の実測値が記憶される。保守員は、例えば定期的に保守作業を行う。記憶部50には、温度計41によって計測された昇降路12の温度の実測値が定期的に記憶される。 {Circle around (4)} In the data center 2, it is determined whether or not the measured temperature value acquired by the temperature acquisition unit 32 has been received from the elevator 1 (S303). The measured temperature value transmitted from the elevator 1 in S204 is received by the communication unit 53. Upon receiving the measured temperature value from the elevator 1, the communication unit 53 stores the received measured value in the storage unit 50 (S304). Thus, the storage unit 50 stores the actually measured temperature of the hoistway 12 measured by the thermometer 41. The maintenance staff performs maintenance work, for example, periodically. The storage unit 50 periodically stores the actually measured value of the temperature of the hoistway 12 measured by the thermometer 41.
 図7は、データセンター2の他の動作例を示すフローチャートである。例えば、記憶部50に、診断運転において計測されたバッテリー25の最小電圧値Vminが記憶されている。変動算出部51は、記憶部50からバッテリー25の最小電圧値Vminを読み出す(S401)。 FIG. 7 is a flowchart showing another operation example of the data center 2. For example, the storage unit 50 stores a minimum voltage value Vmin of the battery 25 measured in the diagnostic operation. The variation calculation unit 51 reads the minimum voltage value Vmin of the battery 25 from the storage unit 50 (S401).
 図8は、バッテリー25の最小電圧値Vminの経時変化を示す図である。図8に示す曲線Aは、あるエレベーターAの診断運転において計測された最小電圧値Vminの経時変化を示す。曲線Bは、他のエレベーターBの診断運転において計測された最小電圧値Vminの経時変化を示す。 FIG. 8 is a diagram showing the change over time of the minimum voltage value Vmin of the battery 25. A curve A shown in FIG. 8 shows a temporal change of the minimum voltage value Vmin measured in the diagnostic operation of a certain elevator A. A curve B shows a temporal change of the minimum voltage value Vmin measured in the diagnostic operation of another elevator B.
 図8に示すように、最小電圧値Vminの経時変化には、長期変動成分と季節変動成分とが含まれる。長期変動成分は、主としてバッテリー25の劣化に起因して発生する。例えば、バッテリー25が劣化することにより、最小電圧値Vminは時間の経過とともに徐々に小さな値になる。一方、季節変動成分は、主として、バッテリー25が設置されている昇降路12の温度の変化に起因して発生する。例えば、最小電圧値Vminは、昇降路12の温度が高くなる夏に大きな値になり、昇降路12の温度が低くなる冬に小さな値になる。 示 す As shown in FIG. 8, the change over time of the minimum voltage value Vmin includes a long-term variation component and a seasonal variation component. The long-term fluctuation component mainly occurs due to deterioration of the battery 25. For example, as the battery 25 deteriorates, the minimum voltage value Vmin gradually becomes smaller as time passes. On the other hand, the seasonal fluctuation component mainly occurs due to a change in the temperature of the hoistway 12 where the battery 25 is installed. For example, the minimum voltage value Vmin becomes a large value in summer when the temperature of the hoistway 12 becomes high, and becomes a small value in winter when the temperature of the hoistway 12 becomes low.
 変動算出部51は、最小電圧値Vminの経時変化から長期変動成分を除去することにより、経時変化の季節変動成分を算出する(S402)。例えば、変動算出部51は、長期変動成分として、ある月に計測された最小電圧値と翌年の同じ月に計測された最小電圧値との差分を計算する。変動算出部51は、複数月分の上記差分を平均した値を長期変動成分として計算しても良い。変動算出部51は、ある年に計測された最小電圧値の最大値と翌年に計測された最小電圧値の最大値との差分を長期変動成分として計算しても良い。変動算出部51は、ある年に計測された最小電圧値の最小値とその翌年に計測された最小電圧値の最小値との差分を長期変動成分として計算しても良い。また、変動算出部51は、長期変動成分と周期変動成分とを有する予測モデルを統計的手法によって同定することにより、長期変動成分を求めても良い。上記予測モデルとして、例えば、1次関数又は2次関数で表現される成分と三角関数で表現される成分の合計として表現されるモデルを採用することができる。上記予測モデルとして、他のモデルを採用しても良い。 The fluctuation calculator 51 calculates the seasonal fluctuation component of the temporal change by removing the long-term fluctuation component from the temporal change of the minimum voltage value Vmin (S402). For example, the fluctuation calculator 51 calculates, as a long-term fluctuation component, a difference between the minimum voltage value measured in a certain month and the minimum voltage value measured in the same month of the following year. The fluctuation calculator 51 may calculate a value obtained by averaging the differences for a plurality of months as a long-term fluctuation component. The fluctuation calculator 51 may calculate a difference between the maximum value of the minimum voltage value measured in a certain year and the maximum value of the minimum voltage value measured in the following year as a long-term fluctuation component. The fluctuation calculator 51 may calculate the difference between the minimum value of the minimum voltage value measured in a certain year and the minimum value of the minimum voltage value measured in the following year as a long-term fluctuation component. Further, the variation calculation unit 51 may determine the long-term variation component by identifying a prediction model having a long-term variation component and a periodic variation component by a statistical method. As the prediction model, for example, a model represented as a sum of a component represented by a linear function or a quadratic function and a component represented by a trigonometric function can be adopted. Another model may be adopted as the prediction model.
 変動算出部51は、S402において季節変動成分の周期と振幅とを算出しても良い。算出された季節変動成分の振幅は、昇降路12の夏の温度と冬の温度との差に対応する。 The fluctuation calculator 51 may calculate the cycle and amplitude of the seasonal fluctuation component in S402. The calculated amplitude of the seasonal variation component corresponds to the difference between the summer temperature and the winter temperature of the hoistway 12.
 次に、推移特定部52は、記憶部50から昇降路12の温度の実測値を読み出す(S403)。推移特定部52は、S402で算出された最小電圧値Vminの経時変化の季節変動成分とS403で読み出した温度の実測値とに基づいて、昇降路12の温度推移を特定する(S404)。 Next, the transition specifying unit 52 reads the actually measured value of the temperature of the hoistway 12 from the storage unit 50 (S403). The transition specifying unit 52 specifies the temperature transition of the hoistway 12 based on the seasonal fluctuation component of the temporal change of the minimum voltage value Vmin calculated in S402 and the measured value of the temperature read in S403 (S404).
 図9は、推移特定部52の機能を説明するための図である。例えば、記憶部50に、最小電圧値Vminの経時変化の季節変動成分を相対的温度推移に変換するための第1変換テーブルが予め記憶される。推移特定部52は、第1変換テーブルを用いることにより、S402で算出された季節変動成分を相対的温度推移に変換する。また、推移特定部52は、S403で読み出した温度の実測値に基づいて、相対的温度推移のオフセット値を決定する。これにより、推移特定部52は、昇降路12の絶対的な温度推移を特定する。以下においては、絶対的な温度推移のことを単に「温度推移」という。 FIG. 9 is a diagram for explaining the function of the transition specifying unit 52. For example, the storage unit 50 stores in advance a first conversion table for converting a seasonal variation component of the minimum voltage value Vmin over time into a relative temperature transition. The transition specifying unit 52 converts the seasonal fluctuation component calculated in S402 into a relative temperature transition by using the first conversion table. Further, the transition specifying unit 52 determines the offset value of the relative temperature transition based on the actually measured value of the temperature read in S403. Thereby, the transition specifying unit 52 specifies an absolute temperature transition of the hoistway 12. In the following, the absolute temperature transition is simply referred to as “temperature transition”.
 図9では、推移特定部52によって特定される昇降路12の温度推移を曲線Cで示している。曲線Cを特定することができれば、過去及び未来の特定の日の昇降路12の温度を推定することができる。なお、保守員が訪問した時に実測された温度と上記推定された温度とが一致しない場合は、確率モデルによって実際の温度を求めても良い。 In FIG. 9, the temperature transition of the hoistway 12 specified by the transition specifying unit 52 is indicated by a curve C. If the curve C can be specified, the temperature of the hoistway 12 on specific days in the past and the future can be estimated. If the temperature actually measured when the maintenance staff visits does not match the estimated temperature, the actual temperature may be calculated using a probability model.
 本実施の形態に示す例では、バッテリー25の最小電圧値Vminを用いて、昇降路12の温度推移を特定する。バッテリー25の最小電圧値Vminは、診断運転において計測される値である。このため、本実施の形態に示す例であれば、新たな計測器を常設することなく、昇降路12の温度推移を特定できる。保守点検において、保守員の保守項目が増えることもない。 In the example shown in the present embodiment, the temperature transition of the hoistway 12 is specified using the minimum voltage value Vmin of the battery 25. The minimum voltage value Vmin of the battery 25 is a value measured in the diagnostic operation. Therefore, with the example shown in the present embodiment, the temperature transition of the hoistway 12 can be specified without permanently installing a new measuring instrument. In the maintenance inspection, the maintenance items of the maintenance staff do not increase.
 本実施の形態では、昇降路12の温度推移を特定するために、バッテリー25の最小電圧値Vminを用いる例について説明した。これは一例である。上述した特定方法と同様の方法により、かご10の移動距離L1を用いて昇降路12の温度推移を特定しても良い。かご10の移動距離L2を用いて昇降路12の温度推移を特定しても良い。なお、バッテリー25は、通常運転で使用される機器ではない。このため、バッテリー25の最小電圧値Vminを用いる場合は、かご10の走行回数等の影響を受けることなく昇降路12の温度推移を特定できるといった利点がある。 In the present embodiment, an example has been described in which the minimum voltage value Vmin of the battery 25 is used to specify the temperature transition of the hoistway 12. This is an example. The temperature transition of the hoistway 12 may be specified using the moving distance L1 of the car 10 by the same method as the above-described specifying method. The temperature transition of the hoistway 12 may be specified using the moving distance L2 of the car 10. Note that the battery 25 is not a device used in normal operation. Therefore, when the minimum voltage value Vmin of the battery 25 is used, there is an advantage that the temperature transition of the hoistway 12 can be specified without being affected by the number of times the car 10 travels.
 本実施の形態では、昇降路12の温度の実測値を用いて、昇降路12の温度推移を特定する例について説明した。昇降路12は、機器が設置されるエレベーター空間の一例である。エレベーター1が機械室を備える場合、エレベーター空間は機械室であっても良い。即ち、推移特定部52は、温度計41によって計測された機械室の温度の実測値を用いて、機械室の温度推移を特定しても良い。かかる場合、S202において、保守端末40が機械室に存在するか否かが判定される。S202でYesと判定されると、温度取得部32は、温度計41によって計測された温度の実測値を取得する。 In the present embodiment, an example has been described in which the temperature transition of the hoistway 12 is specified using the measured value of the temperature of the hoistway 12. The hoistway 12 is an example of an elevator space in which devices are installed. When the elevator 1 includes a machine room, the elevator space may be a machine room. That is, the transition specifying unit 52 may specify the temperature transition of the machine room using the actually measured value of the temperature of the machine room measured by the thermometer 41. In such a case, in S202, it is determined whether the maintenance terminal 40 is present in the machine room. If the determination is Yes in S202, the temperature acquisition unit 32 acquires the actually measured value of the temperature measured by the thermometer 41.
 なお、昇降路12の温度と機械室の温度との差は、比較的小さいことが多い。このため、推移特定部52は、温度計41によって計測された昇降路12の温度の実測値を用いて、機械室の温度推移を特定しても良い。推移特定部52は、温度計41によって計測された機械室の温度の実測値に基づいて、昇降路12の温度推移を特定しても良い。即ち、推移特定部52は、温度計41によって計測されたエレベーター空間の温度の実測値を用いて、エレベーター空間の温度推移を特定する。 Note that the difference between the temperature of the hoistway 12 and the temperature of the machine room is often relatively small. For this reason, the transition specifying unit 52 may specify the temperature transition of the machine room using the actually measured value of the temperature of the hoistway 12 measured by the thermometer 41. The transition specifying unit 52 may specify the temperature transition of the hoistway 12 based on the measured value of the temperature of the machine room measured by the thermometer 41. That is, the transition specifying unit 52 specifies the temperature transition of the elevator space using the actually measured value of the temperature of the elevator space measured by the thermometer 41.
 次に、データセンター2に備えられた温度推移特定機能を利用して、保守計画システムを構築する例について説明する。図10は、データセンター2の他の例を示す図である。図10に示すデータセンター2は、記憶部50、変動算出部51、推移特定部52、及び通信部53に加え、例えば寿命算出部54、及び判定部55を更に備える。図11は、データセンター2の他の動作例を示す図である。図11に示す動作は、例えば図7に示す動作の後に行われる。 Next, an example in which a maintenance planning system is constructed by using the temperature transition specifying function provided in the data center 2 will be described. FIG. 10 is a diagram illustrating another example of the data center 2. The data center 2 illustrated in FIG. 10 further includes, for example, a life calculation unit 54 and a determination unit 55 in addition to the storage unit 50, the change calculation unit 51, the transition identification unit 52, and the communication unit 53. FIG. 11 is a diagram illustrating another operation example of the data center 2. The operation illustrated in FIG. 11 is performed, for example, after the operation illustrated in FIG.
 S404でエレベーター空間の温度推移が特定されると、寿命算出部54は、そのエレベーター空間に配置された部品の寿命を算出する(S501)。例えば、寿命算出部54は、推移特定部52によって特定された温度推移とかご10の走行履歴とに基づいて部品劣化のシミュレーションを行い、その部品の寿命を算出する。かご10の走行履歴は、かご10の走行回数でも良いし、かご10の走行距離でも良い。例えば、寿命算出部54は、制御装置18の内部に配置された電気部品の寿命を算出する。寿命算出部54は、ベルト等の樹脂部品の寿命を算出しても良い。 When the temperature transition of the elevator space is specified in S404, the life calculation unit 54 calculates the life of the components arranged in the elevator space (S501). For example, the life calculating unit 54 simulates component deterioration based on the temperature transition specified by the transition specifying unit 52 and the traveling history of the car 10 and calculates the life of the component. The travel history of the car 10 may be the number of travels of the car 10 or the travel distance of the car 10. For example, the life calculation unit 54 calculates the life of the electric components arranged inside the control device 18. The life calculation unit 54 may calculate the life of a resin component such as a belt.
 判定部55は、部品の点検時期を判定する(S502)。判定部55は、寿命算出部54によって算出された部品の寿命に基づいて、点検時期の判定を行う。判定部55は、S502において部品の交換時期を判定しても良い。これにより、部品の点検時期或いは交換時期に応じた適切な保守計画を作成することができる。 The determination unit 55 determines the inspection time of the component (S502). The determination unit 55 determines the inspection time based on the life of the component calculated by the life calculation unit 54. The determination unit 55 may determine the replacement time of the component in S502. This makes it possible to create an appropriate maintenance plan according to the inspection time or replacement time of the part.
 図12は、データセンター2の他の例を示す図である。図12に示すデータセンター2は、記憶部50、変動算出部51、推移特定部52、及び通信部53に加え、例えばカテゴリー決定部56、及び判定部55を更に備える。図13は、データセンター2の他の動作例を示す図である。図13に示す動作は、例えば図7に示す動作の後に行われる。 FIG. 12 is a diagram showing another example of the data center 2. As shown in FIG. The data center 2 illustrated in FIG. 12 further includes, for example, a category determination unit 56 and a determination unit 55 in addition to the storage unit 50, the change calculation unit 51, the transition identification unit 52, and the communication unit 53. FIG. 13 is a diagram illustrating another operation example of the data center 2. The operation illustrated in FIG. 13 is performed, for example, after the operation illustrated in FIG.
 S404でエレベーター空間の温度推移が特定されると、カテゴリー決定部56は、そのエレベーター空間が属する環境カテゴリーを決定する(S601)。例えば、エレベーター1が設置されているビルの構造により、そのエレベーター空間の環境は異なる。また、エレベーター1が設置されている位置及び向きにより、そのエレベーター空間の環境は異なる。例えば、エレベーター1が大規模ビルの中央部に設置されている場合、そのエレベーター空間の温度は年間を通して一定である。また、外気が入りやすい位置にエレベーター1が設置されている場合、そのエレベーター空間の温度は外気温度に影響され易い。エレベーター1が所謂シースルーエレベーターであり且つ直射日光を受ける位置に設置されている場合、そのエレベーター空間の温度は、外気温度の変化より大きく変化する。 When the temperature transition of the elevator space is specified in S404, the category determining unit 56 determines an environment category to which the elevator space belongs (S601). For example, the environment of the elevator space differs depending on the structure of the building in which the elevator 1 is installed. Further, the environment of the elevator space differs depending on the position and the direction in which the elevator 1 is installed. For example, when the elevator 1 is installed in the center of a large-scale building, the temperature of the elevator space is constant throughout the year. In addition, when the elevator 1 is installed at a position where outside air can easily enter, the temperature of the elevator space is easily affected by the outside air temperature. When the elevator 1 is a so-called see-through elevator and is installed at a position receiving direct sunlight, the temperature of the elevator space changes more greatly than a change in the outside air temperature.
 図12及び図13に示す例では、複数の環境カテゴリーが予め設定される。また、エレベーター空間が属する環境カテゴリーを決定するための第1分類条件が予め設定される。カテゴリー決定部56は、推移特定部52によって特定された温度推移と第1分類条件とに基づいて、環境カテゴリーの決定を行う。例えば、カテゴリー決定部56は、特定された温度推移から最高温度、最低温度、推移の周期、及び推移の振幅といった特徴量を算出する。カテゴリー決定部56は、算出した特徴量を第1分類条件に当てはめ、環境カテゴリーを決定する。 In the examples shown in FIGS. 12 and 13, a plurality of environment categories are set in advance. In addition, a first classification condition for determining an environment category to which the elevator space belongs is set in advance. The category determining unit 56 determines an environmental category based on the temperature transition specified by the transition specifying unit 52 and the first classification condition. For example, the category determination unit 56 calculates characteristic amounts such as a maximum temperature, a minimum temperature, a transition cycle, and a transition amplitude from the specified temperature transition. The category determination unit 56 determines the environment category by applying the calculated feature amount to the first classification condition.
 判定部55は、部品の点検時期を判定する(S602)。判定部55は、カテゴリー決定部56によって決定されたエレベーター空間の環境カテゴリーに基づいて、そのエレベーター空間に配置された部品の点検時期を判定する。例えば、部品の点検周期が環境カテゴリーごとに予め設定される。判定部55は、S602において部品の交換時期を判定しても良い。これにより、部品の点検時期或いは交換時期に応じた適切な保守計画を作成することができる。 The determination unit 55 determines the inspection time of the component (S602). The determination unit 55 determines the inspection time of the components arranged in the elevator space based on the environmental category of the elevator space determined by the category determination unit 56. For example, a component inspection cycle is set in advance for each environmental category. The determination unit 55 may determine the replacement time of the component in S602. This makes it possible to create an appropriate maintenance plan according to the inspection time or replacement time of the part.
 図14は、データセンター2の他の例を示す図である。図14に示すデータセンター2は、記憶部50、変動算出部51、推移特定部52、及び通信部53に加え、例えばカテゴリー決定部56、推移特定部57、寿命算出部54、及び判定部55を更に備える。図15は、データセンター2の他の動作例を示す図である。図15に示す動作は、例えば図7に示す動作の後に行われる。 FIG. 14 is a diagram showing another example of the data center 2. As shown in FIG. The data center 2 shown in FIG. 14 includes, for example, a category determination unit 56, a transition identification unit 57, a life calculation unit 54, and a determination unit 55 in addition to a storage unit 50, a variation calculation unit 51, a transition identification unit 52, and a communication unit 53. Is further provided. FIG. 15 is a diagram illustrating another operation example of the data center 2. The operation illustrated in FIG. 15 is performed, for example, after the operation illustrated in FIG.
 S404でエレベーター空間の温度推移が特定されると、カテゴリー決定部56は、そのエレベーター空間が属する環境カテゴリーを決定する(S701)。図14及び図15に示す例では、カテゴリー決定部56は、推移特定部52によって特定された温度推移と外気温度との差に基づいて、環境カテゴリーの決定を行う。外気温度は、例えば気象庁等の外部機関から入手することができる。カテゴリー決定部56は、温度推移から推定されるある日のエレベーター空間の温度とその日の外気温度との差に基づいて、環境カテゴリーを決定する。 When the temperature transition of the elevator space is specified in S404, the category determining unit 56 determines an environment category to which the elevator space belongs (S701). In the examples illustrated in FIGS. 14 and 15, the category determining unit 56 determines the environmental category based on the difference between the temperature transition specified by the transition specifying unit 52 and the outside air temperature. The outside air temperature can be obtained from an external organization such as the Meteorological Agency. The category determining unit 56 determines an environmental category based on the difference between the temperature of the elevator space on a certain day and the outside air temperature on that day estimated from the temperature transition.
 例えば、エレベーター空間に空調装置が設けられている場合、上記差は季節によって変動する。外気が入りやすい位置にエレベーター1が設置されている場合、上記差は年間を通して比較的小さくなる。昇降路12を形成する壁の材質によっても上記差は変動する。 For example, when an air conditioner is installed in the elevator space, the above difference varies depending on the season. When the elevator 1 is installed at a position where outside air can easily enter, the above difference is relatively small throughout the year. The above difference also varies depending on the material of the wall forming the hoistway 12.
 図14及び図15に示す例では、複数の環境カテゴリーが予め設定される。また、エレベーター空間が属する環境カテゴリーを決定するための第2分類条件が予め設定される。カテゴリー決定部56は、例えば、上記差と第2分類条件とに基づいて、環境カテゴリーの決定を行う。 In the examples shown in FIGS. 14 and 15, a plurality of environment categories are set in advance. In addition, a second classification condition for determining an environment category to which the elevator space belongs is set in advance. The category determination unit 56 determines an environment category based on, for example, the difference and the second classification condition.
 また、図14及び図15に示す例では、記憶部50に、環境カテゴリー別の第2変換テーブルが予め記憶される。第2変換テーブルは、外気湿度をエレベーター空間の湿度に変換するためのテーブルである。例えば、第2変換テーブルを作成するため、様々なエレベーター空間の湿度が実際に計測される。第2変換テーブルは、外気湿度とエレベーター空間の湿度の実測値とを用いて事前に作成され、記憶部50に記憶される。外気湿度は、例えば気象庁等の外部機関から入手することができる。 In the examples shown in FIGS. 14 and 15, the storage unit 50 stores in advance a second conversion table for each environment category. The second conversion table is a table for converting the outside air humidity into the humidity of the elevator space. For example, in order to create the second conversion table, the humidity of various elevator spaces is actually measured. The second conversion table is created in advance using the outside air humidity and the measured value of the humidity in the elevator space, and is stored in the storage unit 50. The outside air humidity can be obtained from an external organization such as the Meteorological Agency.
 推移特定部57は、カテゴリー決定部56が決定した環境カテゴリーに基づいて、エレベーター空間の湿度推移を特定する。図16は、推移特定部57の機能を説明するための図である。図16は、ビルに空調設備が備えられているが昇降路12には空調設備が備えられていない環境カテゴリーの第2変換テーブルを用いて、湿度推移が特定された例を示す。例えば、推移特定部57は、記憶部50から対応の第2変換テーブルを読み出す(S702)。即ち、推移特定部57は、S702において、カテゴリー決定部56が決定した環境カテゴリーに対応する第2変換テーブルを記憶部50から読み出す。推移特定部57は、読み出した第2変換テーブルを用いて、エレベーター空間の湿度推移を特定する(S703)。 The transition specifying unit 57 specifies a humidity transition in the elevator space based on the environmental category determined by the category determining unit 56. FIG. 16 is a diagram for explaining the function of the transition specifying unit 57. FIG. 16 shows an example in which the humidity transition is specified using a second conversion table of an environmental category in which a building is provided with air conditioning equipment but the hoistway 12 is not provided with air conditioning equipment. For example, the transition specifying unit 57 reads the corresponding second conversion table from the storage unit 50 (S702). That is, the transition specifying unit 57 reads the second conversion table corresponding to the environment category determined by the category determining unit 56 from the storage unit 50 in S702. The transition specifying unit 57 specifies the humidity transition of the elevator space using the read second conversion table (S703).
 S703でエレベーター空間の湿度推移が特定されると、寿命算出部54は、そのエレベーター空間に配置された部品の寿命を算出する(S704)。例えば、寿命算出部54は、推移特定部52によって特定された温度推移と推移特定部57によって特定された湿度推移とかご10の走行履歴とに基づいて部品劣化のシミュレーションを行い、その部品の寿命を算出する。かご10の走行履歴は、かご10の走行回数でも良いし、かご10の走行距離でも良い。 When the humidity transition in the elevator space is specified in S703, the life calculator 54 calculates the life of the components arranged in the elevator space (S704). For example, the life calculation unit 54 simulates component deterioration based on the temperature change specified by the change specifying unit 52, the humidity change specified by the change specifying unit 57, and the running history of the car 10, and calculates the life of the component. Is calculated. The travel history of the car 10 may be the number of travels of the car 10 or the travel distance of the car 10.
 判定部55は、部品の点検時期を判定する(S705)。判定部55は、寿命算出部54によって算出された部品の寿命に基づいて、点検時期の判定を行う。判定部55は、S705において部品の交換時期を判定しても良い。これにより、部品の点検時期或いは交換時期に応じた適切な保守計画を作成することができる。 The determining unit 55 determines the inspection time of the component (S705). The determination unit 55 determines the inspection time based on the life of the component calculated by the life calculation unit 54. The determining unit 55 may determine the replacement time of the component in S705. This makes it possible to create an appropriate maintenance plan according to the inspection time or replacement time of the part.
 本実施の形態では、温度推移特定機能がデータセンター2に備えられる例について説明した。上述した温度推移特定機能は、エレベーター1に備えられても良い。温度推移機能の一部がエレベーター1に備えられても良い。 In the present embodiment, an example in which the temperature transition specifying function is provided in the data center 2 has been described. The above-described temperature transition specifying function may be provided in the elevator 1. A part of the temperature transition function may be provided in the elevator 1.
 本実施の形態において、符号30~32に示す各部は、制御装置18が有する機能を示す。図17は、制御装置18のハードウェア資源の例を示す図である。制御装置18は、ハードウェア資源として、例えばプロセッサ61とメモリ62とを含む処理回路60を備える。制御装置18は、メモリ62に記憶されたプログラムをプロセッサ61によって実行することにより、符号30~32に示す各部の機能を実現する。 In the present embodiment, the components indicated by reference numerals 30 to 32 indicate the functions of the control device 18. FIG. 17 is a diagram illustrating an example of hardware resources of the control device 18. The control device 18 includes a processing circuit 60 including, for example, a processor 61 and a memory 62 as hardware resources. The control device 18 realizes the functions of the respective units indicated by reference numerals 30 to 32 by executing the program stored in the memory 62 by the processor 61.
 プロセッサ61は、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ或いはDSPともいわれる。メモリ62として、半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク或いはDVDを採用しても良い。採用可能な半導体メモリには、RAM、ROM、フラッシュメモリ、EPROM及びEEPROM等が含まれる。 The processor 61 is also called a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a DSP. As the memory 62, a semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD may be employed. The semiconductor memory that can be used includes a RAM, a ROM, a flash memory, an EPROM, an EEPROM, and the like.
 図18は、制御装置18のハードウェア資源の他の例を示す図である。図18に示す例では、制御装置18は、例えばプロセッサ61、メモリ62、及び専用ハードウェア63を含む処理回路60を備える。図18は、制御装置18が有する機能の一部を専用ハードウェア63によって実現する例を示す。制御装置18が有する機能の全部を専用ハードウェア63によって実現しても良い。専用ハードウェア63として、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又はこれらの組み合わせを採用できる。 FIG. 18 is a diagram showing another example of the hardware resources of the control device 18. As shown in FIG. In the example illustrated in FIG. 18, the control device 18 includes a processing circuit 60 including, for example, a processor 61, a memory 62, and dedicated hardware 63. FIG. 18 illustrates an example in which some of the functions of the control device 18 are implemented by dedicated hardware 63. All the functions of the control device 18 may be realized by the dedicated hardware 63. As the dedicated hardware 63, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof can be adopted.
 同様に、符号50~57に示す各部は、データセンター2が有する機能を示す。データセンター2のハードウェア資源は、図17に示す例と同様である。データセンター2は、ハードウェア資源として、例えばプロセッサとメモリとを含む処理回路を備える。記憶部50が有する機能は、上記メモリによって実現される。データセンター2は、メモリに記憶されたプログラムをプロセッサによって実行することにより、符号50~57に示す各部の機能を実現する。データセンター2は、ハードウェア資源として、プロセッサ、メモリ、及び専用ハードウェアを含む処理回路を備えても良い。また、データセンター2が有する機能の全部を専用ハードウェアによって実現しても良い。 Similarly, the components indicated by reference numerals 50 to 57 indicate the functions of the data center 2. The hardware resources of the data center 2 are the same as in the example shown in FIG. The data center 2 includes a processing circuit including, for example, a processor and a memory as hardware resources. The functions of the storage unit 50 are realized by the memory. The data center 2 realizes the functions of the respective units denoted by reference numerals 50 to 57 by executing the program stored in the memory by the processor. The data center 2 may include, as hardware resources, a processing circuit including a processor, a memory, and dedicated hardware. Further, all the functions of the data center 2 may be realized by dedicated hardware.
 特定された温度推移を利用し、エレベーター空間に配置された空調設備を制御することも可能である。 空調 It is also possible to control the air conditioning equipment located in the elevator space using the specified temperature transition.
 1 エレベーター、 2 データセンター、 3 通信ネットワーク、 10 かご、 11 つり合いおもり、 12 昇降路、 13 主ロープ、 14 巻上機、 15 駆動綱車、 16 電動機、 17 ブレーキ装置、 18 制御装置、 19 調速機、 20 非常止め、 21 調速ロープ、 22 調速綱車、 23 張り車、 24 安全装置、 25 バッテリー、 26 通信装置、 30 運転制御部、 31 計測部、 32 温度取得部、 40 保守端末、 41 温度計、 42 通信部、 50 記憶部、 51 変動算出部、 52 推移特定部、 53 通信部、 54 寿命算出部、 55 判定部、 56 カテゴリー決定部、 57 推移特定部、 60 処理回路、 61 プロセッサ、 62 メモリ、 63 専用ハードウェア 1 elevator, 2 data center, 3 communication network, 10 car, 11 counterweight, 12 hoistway, 13 main rope, 14 hoist, 15 drive sheave, 16 electric motor, 17 brake, 18 control, 19 governor Machine, {20} emergency stop, {21} governing rope, {22} governing sheave, {23} stretcher, {24} safety device, {25} battery, {26} communication device, {30} operation control unit, {31} measuring unit, {32} temperature acquisition unit, {40} maintenance terminal, 41} thermometer, {42} communication unit, {50} storage unit, {51} fluctuation calculation unit, {52} transition identification unit, {53} communication unit, {54} life calculation unit, {55} determination unit, {56} category determination unit, {57} transition identification unit, {60} processing circuit, # 61 Process , 62 memory, 63 dedicated hardware

Claims (12)

  1.  特定の機器を用いてエレベーターのかごが特定の動作を行う診断運転において計測された値を記憶する記憶手段と、
     前記記憶手段に記憶された値の経時変化から長期変動成分を除去することにより、前記経時変化の季節変動成分を算出する算出手段と、
     前記算出手段によって算出された前記経時変化の季節変動成分とエレベーター空間の温度の実測値とに基づいて、前記エレベーター空間の温度推移を特定する第1特定手段と、
    を備えた温度推移特定装置。
    Storage means for storing a value measured in a diagnostic operation in which the elevator car performs a specific operation using a specific device,
    Calculating means for calculating a seasonal variation component of the temporal change, by removing a long-term variation component from the temporal variation of the value stored in the storage means,
    First specifying means for specifying a temperature transition of the elevator space based on a seasonal variation component of the temporal change and an actually measured value of the temperature of the elevator space calculated by the calculating means;
    Temperature transition identification device provided with.
  2.  前記機器はバッテリーであり、
     前記診断運転において、前記バッテリーからの電力で前記かごが特定の走行を行い、
     前記記憶手段に、前記診断運転において計測された前記バッテリーの最小電圧値が記憶された請求項1に記載の温度推移特定装置。
    The device is a battery,
    In the diagnostic operation, the car performs a specific traveling with power from the battery,
    The temperature transition specifying device according to claim 1, wherein a minimum voltage value of the battery measured in the diagnostic operation is stored in the storage unit.
  3.  前記機器は、前記かごを静止保持するためのブレーキ装置であり、
     前記診断運転において、前記かごが特定の第1速度で移動している時に前記ブレーキ装置が動作し、
     前記記憶手段に、前記診断運転において計測された前記かごの移動距離が記憶され、
     前記移動距離は、前記ブレーキ装置が動作してから前記かごが停止するまでに前記かごが移動した距離である請求項1に記載の温度推移特定装置。
    The device is a brake device for holding the car stationary,
    In the diagnostic operation, the brake device operates when the car is moving at a specific first speed,
    In the storage means, the travel distance of the car measured in the diagnostic operation is stored,
    The temperature transition specifying device according to claim 1, wherein the moving distance is a distance that the car has moved from when the brake device operates to when the car stops.
  4.  前記機器は、前記かごが基準速度より速い速度で終端階に進入すると前記かごを強制的に停止させる安全装置であり、
     前記診断運転において、前記かごが前記基準速度より速い第2速度で前記終端階に進入し、
     前記記憶手段に、前記診断運転において計測された前記かごの移動距離が記憶され、
     前記移動距離は、前記安全装置が動作してから前記かごが停止するまでに前記かごが移動した距離である請求項1に記載の温度推移特定装置。
    The device is a safety device that forcibly stops the car when the car enters the terminal floor at a speed higher than a reference speed,
    In the diagnostic operation, the car enters the terminal floor at a second speed higher than the reference speed,
    In the storage means, the travel distance of the car measured in the diagnostic operation is stored,
    The temperature transition specifying device according to claim 1, wherein the moving distance is a distance that the car has moved from when the safety device operates to when the car stops.
  5.  請求項1から請求項4の何れか一項に記載の温度推移特定装置と、
     前記第1特定手段によって特定された温度推移と前記かごの走行履歴とに基づいて、前記エレベーター空間に配置された部品の寿命を算出する第2算出手段と、
     前記第2算出手段が算出した寿命に基づいて、前記部品の点検時期又は交換時期を判定する判定手段と、
    を備えた保守計画システム。
    A temperature transition specifying device according to any one of claims 1 to 4,
    A second calculating unit that calculates a life of a component arranged in the elevator space based on the temperature transition specified by the first specifying unit and the traveling history of the car;
    Determining means for determining an inspection time or a replacement time of the component based on the life calculated by the second calculating means;
    Maintenance planning system.
  6.  請求項1から請求項4の何れか一項に記載の温度推移特定装置と、
     前記第1特定手段によって特定された温度推移に基づいて、前記エレベーター空間が属する環境カテゴリーを決定するカテゴリー決定部と、
     前記カテゴリー決定部によって決定された環境カテゴリーに基づいて、前記エレベーター空間に配置された部品の点検時期又は交換時期を判定する判定手段と、
    を備えた保守計画システム。
    A temperature transition specifying device according to any one of claims 1 to 4,
    A category determining unit that determines an environmental category to which the elevator space belongs based on the temperature transition specified by the first specifying unit;
    Determining means for determining an inspection time or a replacement time of a component arranged in the elevator space based on the environmental category determined by the category determining unit;
    Maintenance planning system.
  7.  請求項1から請求項4の何れか一項に記載の温度推移特定装置と、
     前記第1特定手段によって特定された温度推移及び外気温度の差に基づいて、前記エレベーター空間が属する環境カテゴリーを決定するカテゴリー決定部と、
     前記カテゴリー決定部によって決定された環境カテゴリーに基づいて、前記エレベーター空間の湿度推移を特定する第2特定手段と、
     前記第1特定手段によって特定された温度推移と前記第2特定手段によって特定された湿度推移と前記かごの走行履歴とに基づいて、前記エレベーター空間に配置された部品の寿命を算出する第2算出手段と、
     前記第2算出手段が算出した寿命に基づいて、前記部品の点検時期又は交換時期を判定する判定手段と、
    を備えた保守計画システム。
    A temperature transition specifying device according to any one of claims 1 to 4,
    A category determining unit that determines an environmental category to which the elevator space belongs based on the difference between the temperature transition and the outside air temperature specified by the first specifying unit;
    Second specifying means for specifying a humidity transition in the elevator space based on the environmental category determined by the category determining unit;
    A second calculation for calculating a life of a component arranged in the elevator space based on the temperature transition specified by the first specifying unit, the humidity change specified by the second specifying unit, and the traveling history of the car; Means,
    Determining means for determining an inspection time or a replacement time of the component based on the life calculated by the second calculating means;
    Maintenance planning system.
  8.  エレベーターのかごと、
     特定の機器と、
     開始条件が成立すると診断運転を開始し、前記機器を用いて前記かごに特定の動作を行わせる運転制御手段と、
     前記診断運転において特定の値を計測する計測手段と、
     前記計測手段によって計測された値を記憶する記憶手段と、
     前記記憶手段に記憶された値の経時変化から長期変動成分を除去することにより、前記経時変化の季節変動成分を算出する算出手段と、
     前記算出手段によって算出された前記経時変化の季節変動成分とエレベーター空間の温度の実測値とに基づいて、前記エレベーター空間の温度推移を特定する特定手段と、
    を備えたエレベーターシステム。
    Elevator car,
    Specific equipment,
    An operation control unit that starts a diagnostic operation when the start condition is satisfied, and causes the car to perform a specific operation using the device,
    Measuring means for measuring a specific value in the diagnostic operation,
    Storage means for storing a value measured by the measurement means,
    Calculating means for calculating a seasonal variation component of the temporal change, by removing a long-term variation component from the temporal variation of the value stored in the storage means,
    Based on a seasonal variation component of the temporal change and an actual measured value of the temperature of the elevator space calculated by the calculating unit, a specifying unit that specifies a temperature transition of the elevator space,
    Elevator system with.
  9.  前記機器はバッテリーであり、
     前記運転制御手段は、前記診断運転において、前記バッテリーからの電力で前記かごに特定の走行を行わせ、
     前記計測手段は、前記バッテリーの電圧値を計測し、
     前記記憶手段に、前記診断運転において前記計測手段によって計測された最小電圧値が記憶される請求項8に記載のエレベーターシステム。
    The device is a battery,
    The operation control means causes the car to perform a specific run with electric power from the battery in the diagnostic operation,
    The measuring means measures a voltage value of the battery,
    9. The elevator system according to claim 8, wherein the minimum voltage value measured by the measurement unit in the diagnostic operation is stored in the storage unit.
  10.  前記機器は、前記かごを静止保持するためのブレーキ装置であり、
     前記運転制御手段は、前記診断運転において、前記かごが特定の第1速度で移動している時に前記ブレーキ装置を動作させ、
     前記計測手段は、前記診断運転において前記ブレーキ装置が動作してから前記かごが停止するまでに前記かごが移動した距離を計測し、
     前記記憶手段に、前記計測手段によって計測された距離が記憶される請求項8に記載のエレベーターシステム。
    The device is a brake device for holding the car stationary,
    The operation control means operates the brake device when the car is moving at a specific first speed in the diagnostic operation,
    The measuring means measures a distance traveled by the car until the car stops after the brake device operates in the diagnostic operation,
    The elevator system according to claim 8, wherein the storage unit stores the distance measured by the measurement unit.
  11.  前記機器は、前記かごが基準速度より速い速度で終端階に進入すると前記かごを強制的に停止させる安全装置であり、
     前記運転制御手段は、前記診断運転において、前記かごを前記基準速度より速い第2速度で前記終端階に進入させ、
     前記計測手段は、前記診断運転において前記安全装置が動作してから前記かごが停止するまでに前記かごが移動した距離を計測し、
     前記記憶手段に、前記計測手段によって計測された距離が記憶される請求項8に記載のエレベーターシステム。
    The device is a safety device that forcibly stops the car when the car enters the terminal floor at a speed higher than a reference speed,
    The operation control means causes the car to enter the terminal floor at a second speed higher than the reference speed in the diagnostic operation,
    The measuring means measures a distance traveled by the car before the car stops after the safety device operates in the diagnostic operation,
    The elevator system according to claim 8, wherein the storage unit stores the distance measured by the measurement unit.
  12.  保守員が携帯する保守端末に備えられた温度計と、
     前記保守端末が前記エレベーター空間に存在する時に前記温度計によって計測された温度の実測値を取得する取得手段と、
    を更に備え、
     前記取得手段によって取得された温度の実測値が前記記憶手段に記憶される請求項8から請求項11の何れか一項に記載のエレベーターシステム。
    A thermometer provided in a maintenance terminal carried by maintenance personnel,
    Acquisition means for acquiring an actual measurement value of the temperature measured by the thermometer when the maintenance terminal is present in the elevator space,
    Further comprising
    The elevator system according to any one of claims 8 to 11, wherein the measured temperature value acquired by the acquisition means is stored in the storage means.
PCT/JP2018/023314 2018-06-19 2018-06-19 Temperature transition identification device, maintenance planning system, and elevator system WO2019244245A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207036134A KR102266228B1 (en) 2018-06-19 2018-06-19 Temperature trend specific device, maintenance planning system and elevator system
CN201880094269.7A CN112236383B (en) 2018-06-19 2018-06-19 Temperature transition determination device, maintenance planning system, and elevator system
PCT/JP2018/023314 WO2019244245A1 (en) 2018-06-19 2018-06-19 Temperature transition identification device, maintenance planning system, and elevator system
JP2020525120A JP6806287B2 (en) 2018-06-19 2018-06-19 Temperature transition identification device, maintenance planning system and elevator system
TW107139275A TWI765115B (en) 2018-06-19 2018-11-06 Temperature trend identification apparatus, maintenance planning system, and elevator system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/023314 WO2019244245A1 (en) 2018-06-19 2018-06-19 Temperature transition identification device, maintenance planning system, and elevator system

Publications (1)

Publication Number Publication Date
WO2019244245A1 true WO2019244245A1 (en) 2019-12-26

Family

ID=68983549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023314 WO2019244245A1 (en) 2018-06-19 2018-06-19 Temperature transition identification device, maintenance planning system, and elevator system

Country Status (5)

Country Link
JP (1) JP6806287B2 (en)
KR (1) KR102266228B1 (en)
CN (1) CN112236383B (en)
TW (1) TWI765115B (en)
WO (1) WO2019244245A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7315119B2 (en) * 2021-03-18 2023-07-26 三菱電機ビルソリューションズ株式会社 elevator monitoring device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003212447A (en) * 2002-01-28 2003-07-30 Matsushita Electric Works Ltd Elevator remote supervisory system
WO2005030627A1 (en) * 2003-09-29 2005-04-07 Mitsubishi Denki Kabushiki Kaisha Control device for elevator
WO2007039928A1 (en) * 2005-09-30 2007-04-12 Mitsubishi Denki Kabushiki Kaisha Elevator apparatus
JP2017088314A (en) * 2015-11-10 2017-05-25 株式会社日立ビルシステム Equipment diagnostic apparatus, equipment diagnostic method, and equipment diagnostic system
JP2017149567A (en) * 2016-02-26 2017-08-31 株式会社日立ビルシステム Rope elongation amount prediction device, elevator device, and rope elongation amount prediction system
JP2017220328A (en) * 2016-06-06 2017-12-14 株式会社日立ビルシステム Life estimation device for led lighting device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004083090A1 (en) * 2003-03-18 2004-09-30 Mitsubishi Denki Kabushiki Kaisha Emergency stop device for elevator
PT1741656E (en) * 2004-04-27 2012-02-07 Mitsubishi Electric Corp Elevator apparatus
JP2006312528A (en) 2005-05-09 2006-11-16 Mitsubishi Electric Corp Electric power storage device of elevator
CN102821885B (en) * 2010-04-09 2014-12-31 东芝三菱电机产业系统株式会社 Rolled material cooling control device, rolled material cooling control method, and rolled material cooling control program
CN103391827B (en) * 2011-02-24 2016-01-20 三菱电机株式会社 Electric discharge device and electrical discharge machining system
JP6115644B2 (en) * 2013-09-03 2017-04-19 三菱電機株式会社 Elevator control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003212447A (en) * 2002-01-28 2003-07-30 Matsushita Electric Works Ltd Elevator remote supervisory system
WO2005030627A1 (en) * 2003-09-29 2005-04-07 Mitsubishi Denki Kabushiki Kaisha Control device for elevator
WO2007039928A1 (en) * 2005-09-30 2007-04-12 Mitsubishi Denki Kabushiki Kaisha Elevator apparatus
JP2017088314A (en) * 2015-11-10 2017-05-25 株式会社日立ビルシステム Equipment diagnostic apparatus, equipment diagnostic method, and equipment diagnostic system
JP2017149567A (en) * 2016-02-26 2017-08-31 株式会社日立ビルシステム Rope elongation amount prediction device, elevator device, and rope elongation amount prediction system
JP2017220328A (en) * 2016-06-06 2017-12-14 株式会社日立ビルシステム Life estimation device for led lighting device

Also Published As

Publication number Publication date
JP6806287B2 (en) 2021-01-06
KR20210002736A (en) 2021-01-08
CN112236383B (en) 2022-02-11
CN112236383A (en) 2021-01-15
KR102266228B1 (en) 2021-06-18
TW202000574A (en) 2020-01-01
TWI765115B (en) 2022-05-21
JPWO2019244245A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
US11679955B2 (en) Weighting sensor data with environmental data in a system for transportation of passengers
KR101880353B1 (en) System for prognosticating failure of elevator
CN105173943A (en) Elevator inspection system
EP2999952B1 (en) Techniques for monitoring gear condition
JP6525118B2 (en) Alarm system
CN112805233B (en) Elevator brake device abnormality diagnosis system
CN104860148B (en) Elevator device
CN112840141B (en) Elevator brake deterioration prediction system
EP3680204A1 (en) A remote monitoring system and a method for remotely monitoring an elevator system
US10769867B2 (en) Method for maintenance of a transportation device, software program, and controller
WO2019244245A1 (en) Temperature transition identification device, maintenance planning system, and elevator system
CN102471013B (en) Elevator control device
CN105293231B (en) Elevator control gear
WO2018061081A1 (en) Elevator device and elevator system
WO2024209544A1 (en) Elevator management system
WO2024209548A1 (en) Management system for elevators
JP7361869B1 (en) Elevator remote inspection system and elevator remote inspection method
WO2019077686A1 (en) Elevator maintenance work assistance device
JPS6138112B2 (en)
JP2016172604A (en) Energy saving measuring device and method of lift
CN114585582A (en) Method for predicting a fault in a passenger movement system
BR112019000440B1 (en) METHOD FOR DETERMINING A STATE OF A SYSTEM FOR TRANSPORTING PASSENGERS, COMPUTER READABLE MEDIUM, STATUS DETERMINING DEVICE FOR A SYSTEM FOR TRANSPORTING PASSENGERS AND SYSTEM FOR TRANSPORTING PASSENGERS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923701

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525120

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207036134

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923701

Country of ref document: EP

Kind code of ref document: A1