WO2019242398A1 - 网络处理方法、装置、核心网、基站和可读存储介质 - Google Patents

网络处理方法、装置、核心网、基站和可读存储介质 Download PDF

Info

Publication number
WO2019242398A1
WO2019242398A1 PCT/CN2019/083961 CN2019083961W WO2019242398A1 WO 2019242398 A1 WO2019242398 A1 WO 2019242398A1 CN 2019083961 W CN2019083961 W CN 2019083961W WO 2019242398 A1 WO2019242398 A1 WO 2019242398A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
wireless capability
interface
terminal wireless
information
Prior art date
Application number
PCT/CN2019/083961
Other languages
English (en)
French (fr)
Inventor
杨立
马子江
黄河
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP19823192.0A priority Critical patent/EP3813427B1/en
Priority to US17/251,995 priority patent/US11641687B2/en
Publication of WO2019242398A1 publication Critical patent/WO2019242398A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1016IP multimedia subsystem [IMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/12Interfaces between hierarchically different network devices between access points and access point controllers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • Embodiments of the present disclosure relate to the field of mobile communication technologies, and in particular, to a network processing method, device, core network, base station, and computer-readable storage medium.
  • the fourth generation (4G) or Long Term Evolution (LTE) cellular mobile communication system includes a 4G core network (Core Network, CN) and a radio access network (Radio Access Network, RAN), of which 4G CN includes MME (Mobility Management Entity, network node), SGW (Serving GateWay, serving gateway), PGW (PDN GateWay, PDN gateway) and other basic network element nodes, and RAN includes evolved NodeB (eNB).
  • MME Mobility Management Entity, network node
  • SGW Serving GateWay, serving gateway
  • PGW PDN GateWay, PDN gateway
  • RAN includes evolved NodeB (eNB).
  • eNB evolved NodeB
  • the fifth generation (5G) cellular mobile communication system included the Next Generation Core Network (5GC) and Next Generation Radio Access Network (NG-RAN), of which 5GC included AMF (Access Mobility Function (Access Mobility Function), SMF (Session Management, Functio, Session Management Function) and UPF (User Plane Function, User Plane Function) and other basic network element nodes, and NG-RAN contains at least two different radio access system RATs Types of base stations, namely: ng-eNB (based on 4G eNB) which continues to evolve (air interface still supports E-UTRA standard), and newly designed gNB (air interface supports New Radio, NR standard) base station.
  • ng-eNB based on 4G eNB
  • 4G eNB 4G eNB
  • gNB air interface supports New Radio, NR standard
  • the NG-RAN base station is connected to the 5GC through the NG interface (including the NG-C control plane connection and the NG-U user plane connection), while the NG-RAN base station is connected through the Xn interface (including the Xn-C control plane connection and Xn-U User plane connection), the above control plane connection is used to transmit control signaling messages between network element nodes, and the user plane connection is used to transmit user service data (packets).
  • the 4G LTE CN and RAN layers cannot effectively support user voice.
  • Voice-like services when users need to perform voice services, they usually adopt 4G-> 3G / 2G network voice services to fall back to Fallback. This fallback process will migrate the terminal UE to the old RAT (Radio Access Type, wireless). Access type) standard network.
  • the 4G CN and RAN layers can supplement and enhance their own functions (such as SPS semi-static scheduling enhancement, TTI bundling binding, etc.), which can optionally support user voice services, such as IMS Voice, VoLTE Voice over LTE is a voice service based on IMS.
  • user voice services such as IMS Voice, VoLTE Voice over LTE is a voice service based on IMS.
  • the user's voice services can be directly carried and served end-to-end in the 4G network, but the premise is that the network side and the terminal UE must be able to support the corresponding set of voice enhancement functions of IMSVoice.
  • both the network side and the terminal UE can optionally support voice services, and when one party cannot support it, it also adopts a processing method of falling back to the old RAT network.
  • the terminal UE supports single connection (Single Connectivity, SC) and dual / multiple connection (DC / MC) configuration and operation functions. And because the current NG interface UE Radio Capability Check procedure disclosed by 3GPP is only for terminal UEs under 5G single connection operation, and not for UEs under 5G dual / multiple connection operation, the AMF / SMF can only know the UE capabilities on the MN side. And function configuration, whether it can effectively support the IMS Voice service; but it is not known whether the SN side UE capability and the SN side local function configuration can effectively support the IMS Voice service. Therefore, only the MN main base station can always try to carry the IMS Voice service, as shown in Figure 1.
  • SC Single Connectivity
  • DC / MC dual / multiple connection
  • the terminal will be forced to withdraw from the current 5G dual / multi-connection operation and fall back to the old RAT network. This will cause Inter-system handover or redirect redirection between systems. , Which brings a lot of process signaling and reduces the user's business experience (because the comprehensive performance of the 4G / 3G / 2G network that has fallen back is not as good as the current 5G network).
  • the SN secondary base station supports the IMS Voice service, this is obviously a waste of network resources.
  • other services based on 5G that may be carried, such as IMS Video, do the same processing as IMS Voice.
  • the embodiments of the present disclosure provide a network processing method, device, core network, base station, and computer-readable storage medium, which are aimed at solving the problem of poor flexibility of the designated service bearer means and poor user experience in the related art in the 5G dual-connection / multi-connection state. problem.
  • an embodiment of the present disclosure provides a network processing method, including:
  • the core network side initiates an NG interface terminal wireless capability check request message to the main base station;
  • the NG interface terminal wireless capability check request message includes terminal wireless capability information of each base station that the terminal accesses through dual or multiple connections;
  • the NG interface terminal wireless capability check response message fed back by the main base station; the NG interface terminal wireless capability check response message carries at least indication information on whether each base station under dual or multiple connections supports the specified service.
  • An embodiment of the present disclosure further provides a network processing method, including:
  • the main base station receives the NG interface terminal wireless capability check request message initiated by the core network side;
  • the NG interface terminal wireless capability check request message includes terminal wireless capability information of each base station that the terminal accesses through dual or multiple connections;
  • the NG interface terminal wireless capability check response message is fed back to the core network side; the NG interface terminal wireless capability check response message carries at least indication information on whether each base station under dual or multiple connections supports the specified service.
  • An embodiment of the present disclosure further provides a network processing apparatus, including:
  • the request initiation module is configured to initiate a NG interface terminal wireless capability check request message to the master base station.
  • the NG interface terminal wireless capability check request message includes the NG interface terminal wireless capability check request message including each terminal that the terminal accesses through dual or multiple connections. Terminal wireless capability information of the base station;
  • the reply receiving module is configured to receive the NG interface terminal wireless capability check response message fed back by the master base station; the NG interface terminal wireless capability check response message carries at least indication information on whether each base station under dual or multiple connections supports the specified service.
  • An embodiment of the present disclosure further provides a network processing apparatus, including:
  • the request receiving module is configured to receive an NG interface terminal wireless capability check request message initiated by the core network side; the NG interface terminal wireless capability check request message includes terminal wireless capability information of each base station that the terminal accesses through dual or multiple connections ;
  • the reply sending module is configured to feed back the NG interface terminal wireless capability check reply message to the core network side; the NG interface terminal wireless capability check reply message carries at least indication information on whether each base station under dual connectivity or multiple connectivity supports the specified service.
  • An embodiment of the present disclosure further provides a core network including a first processor, a first memory, and a first communication bus;
  • the first communication bus is configured to implement connection and communication between the first processor and a first memory
  • the first processor is configured to execute a computer program stored in the first memory to implement the steps of the network processing method described above.
  • An embodiment of the present disclosure further provides a base station including a second processor, a second memory, and a second communication bus;
  • the second communication bus is configured to implement connection and communication between the second processor and a second memory
  • the second processor is configured to execute a computer program stored in the second memory to implement the steps of the foregoing network processing method.
  • An embodiment of the present disclosure further provides a computer-readable storage medium.
  • the computer-readable storage medium stores one or more computer programs, and the computer programs can be executed by one or more processors to implement the foregoing network processing method. step.
  • Embodiments of the present disclosure provide a network processing method, device, core network, base station, and computer-readable storage medium.
  • the core network side initiates a NG interface terminal wireless capability check request message to the main base station; the NG interface terminal wireless capability check request The message includes the terminal wireless capability information of each base station accessed by the terminal through dual or multiple connections, and then receives the NG interface terminal wireless capability check response message fed back by the master base station; the NG interface terminal wireless capability check response message carries at least each Information indicating whether the base station supports the specified service. Therefore, the message exchange between the core network side and the base station enables the terminal to support the designated service of each base station through dual or multi-connection access, thereby providing convenience for users to select the corresponding base station to carry the designated service and ensuring the user experience. .
  • Figure 1 is a schematic diagram of a 5G network communication architecture
  • FIG. 2 is a schematic diagram of a terminal wireless capability detection process
  • 3 is a schematic diagram of a 5G network communication architecture
  • FIG. 4 is a flowchart of a network processing method according to an embodiment of the present disclosure.
  • FIG. 5 is a signal flow diagram of a network processing method between a core network side and a main base station according to an embodiment of the present disclosure
  • FIG. 6 is a signal flow diagram of a network processing method between a primary base station and a secondary base station according to an embodiment of the present disclosure
  • FIG. 7 is a signal flow diagram of a network processing method between a primary base station and a secondary base station according to an embodiment of the present disclosure
  • FIG. 8 is a flowchart of a network processing method according to an embodiment of the present disclosure.
  • FIG. 9 is a signal flow diagram of a network processing method according to an embodiment of the present disclosure.
  • FIG. 10 is a signal flow diagram of a network processing method according to an embodiment of the present disclosure.
  • FIG. 11 is a signal flow diagram of a network processing method according to an embodiment of the present disclosure.
  • FIG. 12 is a signal flow diagram of a network processing method according to an embodiment of the present disclosure.
  • FIG. 13 is a signal flow diagram of a network processing method according to an embodiment of the present disclosure.
  • FIG. 14 is a signal flow diagram of a network processing method according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a network processing apparatus according to an embodiment of the present disclosure.
  • 16 is a schematic structural diagram of a network processing apparatus according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram of a core network composition according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • both the network side and the terminal UE can optionally support voice services, and when one party cannot support it, it also adopts a processing method to fall back to the old RAT network.
  • the 5G system introduces UE Radio Capability check terminal wireless capability check process (as shown in Figure 2) on the NG interface.
  • the 5GC control plane entity AMF sends a UE to the NG-RAN Node (gNB or ng-eNB).
  • gNB or ng-eNB gNB or ng-eNB
  • the capability check request message is based on the message NG-RAN Node to determine whether the wireless capability and network function configuration of the UE currently serving can support the IMS Voice service.
  • the UE RADIO, CAPABILITY, CHECK, and RESPONSE terminal wireless capability check reply message is returned, and the IMS Voice Support Indicator instruction is returned to the AMF.
  • the value of IMS Voice Support Indicator is Supported, it means that AMF can subsequently establish a bearer IMS Voice service for the UE directly in the 5G network; if the value of IMS Voice Support Indicator is Not Supported, it means that AMF cannot directly support the UE in the future.
  • NG-RAN will also use 5G-> 4G / 3G / 2G network voice services to fall back to fallback to handle IMS Voice services in 5G networks.
  • the terminal UE supports single connection (Single Connectivity, SC) and dual / multiple connection (DC / MC) configuration and operation functions.
  • SC Single Connectivity
  • DC / MC dual / multiple connection
  • the UE In the SC single connection mode, the UE has only one data transmission channel (wireless link) on the air interface and the network side, while in the DC / MC dual / multi-connection mode, the UE has two or more data on the air interface or the network side. Transmission channel (wireless link).
  • SC single connection mode the UE has only one data transmission channel (wireless link) on the air interface and the network side
  • DC / MC dual / multi-connection mode the UE has two or more data on the air interface or the network side.
  • Transmission channel In order to simplify the description, the following focuses on the UE dual connection DC as an example.
  • a single connection is a dual connection that only considers the special case of the main base station side of the MN (or M-Node, M-NG-RAN Node) (deleting the secondary base station SN (or S) -Node, S-NG-RAN (Node), all related auxiliary data transmission channels / secondary radio links), and multi-connected MC is a further dimension extension of dual-link DC in more link configurations and operations.
  • DC dual connection the UE can establish and maintain two independent wireless links with two NG-RAN base stations on the air interface at the same time. Radio Link (air interface data transmission channel).
  • One base station is called the master base station MN (Master Node).
  • the other base station is called the secondary base station SN (Secondary Node); and MN and SN can be on the NG interface, and simultaneously with the core network user plane network element entity UPF, and establish and maintain two independent network-side NG-U connections (network Data transmission channel), but only the MN main base station can establish and maintain an NG-C connection with the core network control plane entity AMF.
  • the relevant architecture is shown in Figure 3.
  • the control plane connections between different network element nodes are shown by solid lines, that is, used to transmit network control signaling
  • the user plane connections between different network element nodes are shown by dotted lines, that is, used to transmit users. Business data.
  • NG-U provides a data transmission channel between the UPF and the MN master base station, and is used to transmit the uplink and downlink user service data packets carried by the anchor on the MN-side PDU Session / QoS Flows; similarly, the NG-U ( SN) provides a data transmission channel between the UPF and the SN secondary base station, and is used to transmit the uplink and downlink user service data packets carried by the anchor point on the SN side "splitting" PDU Session / QoS Flows.
  • the multiple data transmission channels on both sides of the MN and SN are established or modified interactively through the NG-C + Xn-C control plane signaling flow.
  • FIG. 4 is a flowchart of a network processing method according to a first embodiment of the present disclosure, including:
  • NGAP UE RADIO CAPABILITY CHECK REQUEST
  • NGAP UE RADIO CAPABILITY CHECK REQUEST
  • NGAP UE RADIO CAPABILITY CHECK RESPONSE feedback from the main base station
  • NGAP UE RADIO CAPABILITY CHECK RESPONSE at least carry indication information about whether each base station supports the specified service.
  • FIG. 5 is a signal flow diagram of a network processing method in this embodiment, which involves an interaction process between a core network side AMF and a base station.
  • the core network side and the base station use NGAP: UE, RADIO, CAPABILITY, CHECK, REQUEST, and NGAP: UE, RADIO, CAPABILITY, CHECK, and RESPONSE messages to obtain the specified services that can be carried on the base station side, so that the main base station can allocate current services accordingly.
  • the NGAP UE RADIO CAPABILITY CHECK RESPONSE that receives feedback from the master base station may include:
  • the primary base station initiates an Xn interface terminal wireless capability check request message XnAP: UE RADIO CAPABILITY CHECK REQUEST to the secondary base station; XnAP: UE RADIO CAPABILITY CHECK REQUEST at least contains the wireless capability information of the terminal type corresponding to the secondary base station; that is, if the secondary base station S -NG-RAN node is gNB, which contains the wireless capability information of the UE corresponding to the NR, that is, UE NR and Radio Capability; if the secondary base station S-NG-RAN node is ng-eNB, it contains the wireless capability of the UE corresponding to E-UTRA. Information, ie UE E-UTRA Radio Capability.
  • the above related information may be expressed by a single joint cell or multiple independent cells.
  • the so-called "joint cell” or the following “joint indication information” specifically means that when one of the primary base station MN or the secondary base station SN can support the "designated service", the IMS Voice Support Indicator is set to a value Is supported; when neither the primary base station MN nor the secondary base station SN can support the "designated service", the IMS Voice Support Indicator is set to Not supported, so in this case there is no need to introduce a new new cell IMS Voice Support Indicator with S -Node.
  • the core network side receives the NGAP feedback from the primary base station according to XnAP: UE, RADIO, CAPABILITY, CHECK, RESPONSE: UERADIO, CAPABILITY, CHECK, RESPONSE; NGAP: UE, RADIO, CAPABILITY, CHECK, RESPONSE, and instructions that indicate whether the primary and secondary BSs support the specified service, or primary and secondary Whether the base station supports joint indication information of a specified service.
  • the secondary base station feedback XnAP: UE RADIO CAPABILITY CHECK RESPONSE to the main base station may include:
  • XnAP UE, RADIO, CAPABILITY, CHECK, and RESPONSE carry instructions indicating whether the terminal can support the specified service under different RAT systems. Among them, at least information indicating whether the UE can support the "designated service" under different RAT systems of NR and E-UTRA is included.
  • the primary base station initiates XnAP: UE RADIO CAPABILITY CHECK REQUEST to the secondary base station before or after launching NGAP: UE RADIO CAPABILITY CHECK REQUEST to the primary base station at the core network side.
  • the NGAP UE RADIO CAPABILITY CHECK RESPONSE that receives feedback from the master base station may include:
  • the primary base station initiates the Xn interface 5G DC related process information to the secondary base station;
  • the Xn interface 5G DC related process information contains at least the wireless capability information of the terminal type corresponding to the secondary base station; that is, if the secondary base station S-NG-RAN node is gNB , It contains the wireless capability information of the terminal corresponding to the NR of the UE; if the secondary base station S-NG-RAN node is ng-eNB, it contains the wireless capability information of the terminal corresponding to the UE E-UTRA.
  • the above related information may be expressed by a single joint cell or multiple independent cells.
  • the core network side receives the NGAP: UE RADIO CAPABILITY CHECK RESPONSE which responds to the information feedback of the main base station according to the Xn interface 5G DC related process;
  • NGAP UE RADIO CAPABILITY CHECK RESPONSE carries instructions indicating whether the primary base station and the secondary base station each support the specified service, or the primary base station Whether the secondary base station supports joint indication information of the designated service.
  • the secondary base station feeding back the Xn interface 5G DC related process reply information to the primary base station may include:
  • the Xn interface 5G DC related process reply information carries instructions indicating whether the terminal can support the specified service under different RAT systems. Among them, at least information indicating whether the UE can support the "designated service" under different RAT systems of NR and E-UTRA is included.
  • the Xn interface 5G DC related process information includes any one of a secondary node addition request message S-NODEADDITION REQUEST and a secondary node modification request message S-NODEMODIFICATIONREQUEST;
  • the reply information of the 5n DC related process of the Xn interface includes S-NODE ADDITION REQUEST ACKNOWLEDGE;
  • the Xn interface 5G DC related process reply information includes: a secondary node modification request confirmation message S-NODE MODIFICATION REQUEST ACKNOWLEDGE.
  • the primary base station initiates the Xn interface 5G DC related process information to the secondary base station.
  • the core network side initiates NGAP to the primary base station: UE RADIO CAPABILITY CHECK REQUEST.
  • the NGAP UE, RADIO, CAPABILITY, CHECK, and REQUEST include at least terminal wireless capability information corresponding to two different RAT systems of NR and E-UTRA.
  • it contains at least UE wireless capability information corresponding to different RAT systems of NR and E-UTRA, that is, UE NR, Radio Capability, and UE E-UTRA Radio Capability.
  • the radio capability information of the terminals corresponding to different RAT systems can be expressed by a single joint cell or multiple independent cells.
  • the designated service includes at least one of an IP multimedia subsystem-based voice service IMS voice service and an IP multimedia subsystem-based video service IMS video service.
  • This embodiment provides a network processing method.
  • the core network side initiates NGAP: UE RADIO CAPABILITY CHECK REQUEST to the master base station; the NGAP: UE RADIO CAPABILITY CHECK REQUEST includes the base stations that the terminal accesses through dual or multiple connections
  • the wireless capability information of the terminal then receives the NGAP: UE RADIO, CAPABILITY, and CHECK RESPONSE feedback from the main base station;
  • the NGAP: UE RADIO CAPABILITY CHECK RESPONSE carries at least indication information about whether each base station supports the specified service. Therefore, the message exchange between the core network side and the base station enables the terminal to support the designated service of each base station through dual or multi-connection access, thereby providing convenience for users to select the corresponding base station to carry the designated service and ensuring the user experience. .
  • FIG. 8 is a flowchart of a network processing method according to a second embodiment of the present disclosure, including:
  • the master base station receives NGAP: UE RADIO, CAPABILITY, and CHECK REQUEST initiated by the core network side;
  • NGAP UE RADIO, CAPABILITY, and CHECK REQUEST includes the wireless capability information of each base station that the terminal accesses through dual or multiple connections;
  • NGAP UE RADIO, CAPABILITY, and CHECK RESPONSE to the core network side
  • NGAP UE RADIO, CAPABILITY, and CHECK RESPONSE carry at least indication information about whether each base station supports the specified service.
  • feeding back NGAP to the core network side: UE RADIO CAPABILITY CHECK RESPONSE includes:
  • the primary base station initiates an Xn interface terminal wireless capability check request message XnAP: UE RADIO CAPABILITY CHECK REQUEST to the secondary base station; XnAP: UE RADIO CAPABILITY CHECK REQUEST at least contains the wireless capability information of the terminal type corresponding to the secondary base station; that is, if the secondary base station S -NG-RAN node is gNB, which contains the wireless capability information of the UE corresponding to the NR, that is, UE NR and Radio Capability; if the secondary base station S-NG-RAN node is ng-eNB, it contains the wireless capability of the UE corresponding to E-UTRA. Information, ie UE E-UTRA Radio Capability.
  • the above related information may be expressed by a single joint cell or multiple independent cells.
  • joint cell or the following “joint indication information” specifically refers to: when one of the primary base station MN or the secondary base station SN can support the "designated service", the IMS Voice Support Indicator is set to supported; when the primary base station MN and If the secondary base station SN cannot support the "designated service", the IMS Voice Support Indicator is set to Not supported, so in this case, it is not necessary to introduce a separate new cell IMS Voice Support Indicator with S-Node.
  • XnAP UE, RADIO, CAPABILITY, CHECK, RESPONSE
  • NGAP UE, RADIO, CAPABILITY, CHECK, RESPONSE
  • NGAP UE, RADIO, CAPABILITY, CHECK, and RESPONSE carry instructions indicating whether the primary base station and the secondary base station each support the specified service, or whether the primary and secondary base stations support the specified service. Joint instruction for designated services.
  • the secondary base station feedback XnAP: UE RADIO CAPABILITY CHECK RESPONSE to the main base station may include:
  • XnAP UE, RADIO, CAPABILITY, CHECK, and RESPONSE carry instructions indicating whether the terminal can support the specified service under different RAT systems. Among them, at least information indicating whether the UE can support the "designated service" under different RAT systems of NR and E-UTRA is included.
  • the primary base station initiates XnAP: UE RADIO CAPABILITY CHECK REQUEST to the secondary base station before or after launching NGAP: UE RADIO CAPABILITY CHECK REQUEST to the primary base station at the core network side.
  • feeding back NGAP to the core network side: UE RADIO CAPABILITY CHECK RESPONSE may include:
  • the primary base station initiates the Xn interface 5G DC related process information to the secondary base station;
  • the Xn interface 5G DC related process information contains at least the wireless capability information of the terminal type corresponding to the secondary base station; that is, if the secondary base station S-NG-RAN node is gNB , It contains the wireless capability information of the terminal corresponding to the NR of the UE; if the secondary base station S-NG-RAN node is ng-eNB, it contains the wireless capability information of the terminal corresponding to the UE E-UTRA.
  • the above related information may be expressed by a single joint cell or multiple independent cells.
  • NGAP UE, RADIO, CAPABILITY, CHECK, and RESPONSE
  • NGAP UE, RADIO, CAPABILITY, CHECK, and RESPONSE
  • the secondary base station feeding back the Xn interface 5G DC related process reply information to the primary base station may include:
  • the Xn interface 5G DC related process reply information carries instructions indicating whether the terminal can support the specified service under different RAT systems. Among them, at least information indicating whether the UE can support the "designated service" under different RAT systems of NR and E-UTRA is included.
  • the Xn interface 5G DC related process information includes any one of a secondary node addition request message S-NODEADDITION REQUEST and a secondary node modification request message S-NODEMODIFICATIONREQUEST;
  • the Xn interface 5G DC related process reply information includes: secondary node addition request confirmation message S-NODE ADDITION REQUEST ACKNOWLEDGE;
  • the Xn interface 5G DC related process reply information includes: a secondary node modification request confirmation message S-NODE MODIFICATION REQUEST ACKNOWLEDGE.
  • the primary base station initiates the Xn interface 5G DC related process information to the secondary base station.
  • the core network side initiates NGAP to the primary base station: UE RADIO CAPABILITY CHECK REQUEST.
  • the NGAP UE, RADIO, CAPABILITY, CHECK, and REQUEST include at least terminal wireless capability information corresponding to two different RAT systems of NR and E-UTRA.
  • it contains at least UE wireless capability information corresponding to different RAT systems of NR and E-UTRA, that is, UE NR, Radio Capability, and UE E-UTRA Radio Capability.
  • the radio capability information of the terminals corresponding to different RAT systems can be expressed by a single joint cell or multiple independent cells.
  • the designated service includes at least one of an IP multimedia subsystem-based voice service IMS voice service and an IP multimedia subsystem-based video service IMS video service.
  • This embodiment provides a network processing method.
  • the core network side initiates NGAP: UE RADIO CAPABILITY CHECK REQUEST to the master base station; the NGAP: UE RADIO CAPABILITY CHECK REQUEST includes the base stations that the terminal accesses through dual or multiple connections
  • the wireless capability information of the terminal then receives the NGAP: UE RADIO, CAPABILITY, and CHECK RESPONSE feedback from the main base station;
  • the NGAP: UE RADIO CAPABILITY CHECK RESPONSE carries at least indication information about whether each base station supports the specified service. Therefore, the message exchange between the core network side and the base station enables the terminal to support the designated service of each base station through dual or multi-connection access, thereby providing convenience for users to select the corresponding base station to carry the designated service and ensuring the user experience. .
  • FIG. 9 is a signal flow diagram of a network processing method according to this embodiment.
  • a UE supports NGEN-DC dual connection configuration and operation.
  • the UE, the primary base station MeNB, and the secondary base station SgNB local functions and capability sets also support IMS Voice Voice services.
  • S901 The UE is first in a single connection activation state with the MeNB, and then enters a serving cell coverage of SgNB, and is ready to enter NGEN-DC dual connection cooperation and operation.
  • the MeNB reports the RRM measurement based on the UE, and determines that it is necessary to establish a NGEN-DC dual connection operation with the target SgNB.
  • the MeNB sends an SN Addition Request message to the target SgNB, which includes the necessary SCG configuration auxiliary parameters, and at least the corresponding NR related to the UE.
  • the MeNB configures the UE to enter the NGEN-DC dual connection operation, and the UE simultaneously establishes a wireless link with the MeNB / SgNB. Since the MeNB learns that the SgNB can support the IMS Voice service, the PDU Session / QoS Flows containing the IMS Voice service can be offloaded to the bearer services in the SgNB.
  • AMF / SMF prepares to initiate IMS Voice voice service. For security reasons, it first initiates NGAP: UE, RADIO, CAPABILITY, CHECK, and REQUEST message to MeNB, which contains UE wireless capability information corresponding to E-UTRA and NR.
  • Capacity indication information such as:
  • IMS Voice Support Indicator supported; indicates that MeNB can support!
  • the AMF / SMF After knowing that the current primary and secondary base stations support the IMS Voice service capability information, the AMF / SMF subsequently initiates a PDU session containing the IMS Voice service and the Resource Setup process.
  • FIG. 10 is a signal flow diagram of a network processing method according to this embodiment.
  • a UE supports NGEN-DC dual-connection configuration and operation, and both the UE and the secondary base station SgNB local functions and capability sets also support IMS Video services, but the main base station MeNB cannot.
  • S1001 The UE is first in a single connection activation state with the MeNB, and then enters a serving cell coverage of SgNB, and is ready to enter the NGEN-DC dual connection cooperation and operation.
  • the MeNB reports the RRM measurement based on the UE. It is determined that the NGEN-DC dual connection operation needs to be established with the target SgNB.
  • the MeNB sends an SN Addition Request message to the target SgNB, including the necessary SCG configuration auxiliary parameters, and at least the corresponding NR related to the UE.
  • the MeNB configures the UE to enter the NGEN-DC dual connection operation, and the UE simultaneously establishes a wireless link with the MeNB / SgNB. Since the MeNB learns that the SgNB can support IMS and Video video services, the PDU Session / QoS Flows containing the IMS and Video video services can be offloaded to the bearer services in the SgNB.
  • S1005 AMF / SMF prepares to launch IMS Video video services. For security reasons, it first initiates NGAP: UE RADIO CAPABILITY CHECK REQUEST message to MeNB, which contains UE wireless capability information corresponding to E-UTRA and NR corresponding to UE.
  • the main base station MeNB cannot support the IMS Video video service capabilities, but the secondary base station SgNB can support the IMS Video video service capabilities, and thus responds to the AMF / SMF NGAP: UE RADIO CAPABILITY CHECK RESPONSE message, containing The MeNB and SgNB currently serving each support the capability indication information of the IMS Video service, such as:
  • IMS Video Support Indicator not supported; indicates that MeNB cannot support!
  • IMS Video Support Indicator with S-Node supported; indicates that SgNB can support!
  • the AMF / SMF After knowing the current capability information of the primary and secondary base stations supporting the IMS and Video services, the AMF / SMF then initiates a PDU with the IMS and Video services.
  • FIG. 11 is a signal flow diagram of a network processing method according to this embodiment.
  • a UE supports NE-DC dual-connection configuration and operation.
  • the UE, the primary base station MgNB, and the secondary base station SeNB local functions and capability sets also support IMS Voice voice services.
  • S1101 The UE is already in an active state of NE-DC dual connection with MgNB and SeNB.
  • the MgNB reports the RRM measurement based on the UE. It is determined that the SCG configuration in the current SeNB needs to be updated and modified.
  • the MgNB sends a SN Modification Request message to the SeNB, which contains the necessary SCG reconfiguration assistance parameters, and at least the UE's corresponding E-UTRA related information. Terminal wireless capability information UE E-UTRA Radio Capability.
  • MgNB reconfigures the UE to enter the NE-DC dual connection operation. Since MgNB learns that the SeNB can support the IMS Voice service, the PDU Session / QoS Flows containing the IMS Voice service can be offloaded to the bearer services in the SeNB.
  • S1105 AMF / SMF prepares to initiate IMS Voice voice service. For security reasons, it first initiates NGAP: UE RADIO CAPABILITY CHECK REQUEST message to MgNB, which contains UE wireless capability information corresponding to E-UTRA and NR corresponding to UE.
  • IMS Voice Support Indicator supported; indicates that MgNB can support!
  • IMS Voice Support Indicator with S-Node supported; indicates that the SeNB can support it!
  • the AMF / SMF After knowing that the current primary and secondary base stations support the IMS Voice service capability information, the AMF / SMF subsequently initiates a PDU Session Resource Setup process that includes the IMS Voice service.
  • FIG. 12 is a signal flow diagram of a network processing method according to this embodiment.
  • a UE supports NE-DC dual-connection configuration and operation, and both the UE and the primary base station MgNB local functions and capability sets also support IMS Video services, but the secondary base station SgNB cannot.
  • S1201 The UE is already in an active state of NE-DC dual connection with MgNB and SeNB.
  • MgNB reports the RRM measurement based on the UE. It is determined that the SCG configuration in the current SeNB needs to be updated. MgNB sends a SN Modification Request message to the SeNB, which contains the necessary SCG reconfiguration assistance parameters, and at least it also contains the UE's corresponding E-UTRA related information. Terminal wireless capability information UE E-UTRA Radio Capability.
  • S1204 The MgNB reconfigures the UE to enter the NE-DC dual connection operation. Since MgNB learns that the SeNB cannot support the IMS Video service, the PDU Session / QoS Flows containing the IMS Video service will not be offloaded to the bearer services in the SeNB.
  • the AMF / SMF prepares to initiate the IMS Video video service. For security reasons, it first initiates NGAP: UE, RADIO, CAPABILITY, CHECK, and REQUEST message to the MgNB, which contains the wireless capability information of the UE corresponding to E-UTRA and NR.
  • the primary base station MgNB can support the IMS Video service capability, but the secondary base station SeNB cannot support the IMS Video service capability, and thus responds to the AMF / SMF NGAP: UE RADIO CAPABILITY CHECK RESPONSE message, which contains the MgNB currently serving And SeNB each support the IMS video service capability indication information, such as:
  • IMS Video Support Indicator supported; indicates that MgNB can support!
  • the AMF / SMF After knowing the current capability information of the primary and secondary base stations supporting the IMS and Video services, the AMF / SMF subsequently initiates a PDU Session and Resource Setup process that includes the IMS and Video services.
  • FIG. 13 is a signal flow diagram of a network processing method according to this embodiment.
  • a UE supports NGEN-DC dual connection configuration and operation, and the UE, MeNB, and SgNB local functions and capability sets all support IMS Voice Voice services.
  • S1301 The UE is already in an active state of NGEN-DC dual connection with MeNB and SgNB.
  • the AMF / SMF prepares to initiate the IMS Voice service. For security reasons, it first initiates the NGAP: UE RADIO CAPABILITY CHECK REQUEST message to the MeNB, which contains the wireless capability information of the UE corresponding to E-UTRA and NR.
  • the MeNB further sends an XnAP: UE, RADIO, CAPABILITY, CHECK, and REQUEST message to the SgNB, which includes the wireless capability information of the UE corresponding to the NR.
  • S1304 SgNB responds to MeNB.
  • the main base station MeNB can support the IMS voice voice capability, and the secondary base station SgNB can also support the IMS voice voice capability, so as to reply to the AMF / SMF NGAP: UE RADIO CAPABILITY check RESPONSE message, including the current service MeNB and SgNB each support IMS Voice Voice capability indication information, such as:
  • IMS Voice Support Indicator supported; indicates that MeNB can support!
  • the AMF / SMF After learning the current capability information of the primary and secondary base stations supporting IMS Voice voice, the AMF / SMF then initiates a PDU session with the IMS Voice service and the Resource Setup process.
  • FIG. 14 is a signal flow diagram of a network processing method according to this embodiment.
  • a UE supports NGEN-DC dual-connection configuration and operation, and both the UE and the secondary base station SgNB local functions and capability sets support IMS Video services, but the main base station MeNB cannot.
  • S1401 The UE is already in an active state of NGEN-DC dual connection with MeNB and SgNB.
  • S1402 The AMF / SMF prepares to initiate the IMS Video video service.
  • the NGAP UE, RADIO, CAPABILITY, and CHECK REQUEST message is first sent to the MeNB, which contains the wireless capability information of the UE corresponding to E-UTRA and NR.
  • the MeNB further sends an XnAP: UE, RADIO, CAPABILITY, CHECK, and REQUEST message to the SgNB, which contains the wireless capability information of the UE corresponding to the NR.
  • the main base station MeNB cannot support the IMS Video video capability, but the secondary base station SgNB can support the IMS Video video capability, and thus responds to the AMF / SMF NGAP: UE RADIO CAPABILITY CHECK RESPONSE message, including the MeNB serving the current service And SgNB each support IMS Video video capability indication information, such as:
  • IMS Video Support Indicator not supported; indicates that MeNB cannot support!
  • IMS Video Support Indicator with S-Node supported; indicates that SgNB can support!
  • the AMF / SMF After knowing the current capability information of the primary and secondary base stations supporting IMS and Video video, the AMF / SMF then initiates a PDU with the IMS Video service and the Session Resource Setup process.
  • FIG. 15 is a schematic diagram of a network processing apparatus according to a ninth embodiment of the present disclosure, including:
  • the request initiating module 151 is configured to initiate a NG interface terminal wireless capability check request message NGAP: UE RADIO CAPABILITY CHECK REQUEST to the main base station; NGAP: UE RADIO CAPABILITY CHECK REQUEST includes the terminals of each base station that the terminal accesses through dual connectivity or multiple connectivity Wireless capability information;
  • the reply receiving module 152 is used for receiving the NG interface terminal wireless capability check reply message NGAP: UE RADIO CAPABILITY CHECK RESPONSE; NGAP: UE RADIO CAPABILITY CHECK RESPONSE carries at least indication information on whether each base station supports the specified service.
  • receiving NGAP: UE RADIO CAPABILITY CHECK RESPONSE feedback from the main base station may include:
  • the primary base station initiates an Xn interface terminal wireless capability check request message XnAP: UE RADIO CAPABILITY CHECK REQUEST to the secondary base station; XnAP: UE RADIO CAPABILITY CHECK REQUEST at least contains the wireless capability information of the terminal type corresponding to the secondary base station; that is, if the secondary base station S -NG-RAN node is gNB, which contains the wireless capability information of the UE corresponding to the NR, that is, UE NR and Radio Capability; if the secondary base station S-NG-RAN node is ng-eNB, it contains the wireless capability of the UE corresponding to E-UTRA. Information, ie UE E-UTRA Radio Capability.
  • the above related information can be expressed by a single joint cell or multiple independent cells.
  • joint cell or the following “joint indication information” specifically refers to: when one of the primary base station MN or the secondary base station SN can support the "designated service", the IMS Voice Support Indicator is set to supported; when the primary base station MN and If the secondary base station SN cannot support the "designated service", the IMS Voice Support Indicator is set to Not supported, so in this case, it is not necessary to introduce a separate new cell IMS Voice Support Indicator with S-Node.
  • the core network side receives the NGAP feedback from the primary base station according to XnAP: UE, RADIO, CAPABILITY, CHECK, RESPONSE: UERADIO, CAPABILITY, CHECK, RESPONSE; NGAP: UE, RADIO, CAPABILITY, CHECK, RESPONSE, and instructions that indicate whether the primary and secondary BSs support the specified service, or primary and secondary Whether the base station supports joint indication information of a specified service.
  • the secondary base station feedback XnAP: UE RADIO CAPABILITY CHECK RESPONSE to the main base station may include:
  • XnAP UE, RADIO, CAPABILITY, CHECK, and RESPONSE carry instructions indicating whether the terminal can support the specified service under different RAT systems. Among them, at least information indicating whether the UE can support the "designated service" under different RAT systems of NR and E-UTRA is included.
  • the primary base station initiates XnAP: UE RADIO CAPABILITY CHECK REQUEST to the secondary base station before or after launching NGAP: UE RADIO CAPABILITY CHECK REQUEST to the primary base station at the core network side.
  • receiving NGAP: UE RADIO CAPABILITY CHECK RESPONSE feedback from the main base station may include:
  • the primary base station initiates the Xn interface 5G DC related process information to the secondary base station;
  • the Xn interface 5G DC related process information contains at least the wireless capability information of the terminal type corresponding to the secondary base station; that is, if the secondary base station S-NG-RAN node is gNB , It contains the wireless capability information of the terminal corresponding to the NR of the UE; if the secondary base station S-NG-RAN node is ng-eNB, it contains the wireless capability information of the terminal corresponding to the UE E-UTRA.
  • the above related information may be expressed by a single joint cell or multiple independent cells.
  • the core network side receives the NGAP: UE RADIO CAPABILITY CHECK RESPONSE which responds to the information feedback of the main base station according to the Xn interface 5G DC related process;
  • NGAP UE RADIO CAPABILITY CHECK RESPONSE carries instructions indicating whether the primary base station and the secondary base station each support the specified service, or the primary base station Whether the secondary base station supports joint indication information of the designated service.
  • the secondary base station feeding back the Xn interface 5G DC related process reply information to the primary base station may include:
  • the Xn interface 5G DC related process reply information carries instructions indicating whether the terminal can support the specified service under different RAT systems. Among them, at least information indicating whether the UE can support the "designated service" under different RAT systems of NR and E-UTRA is included.
  • the Xn interface 5G DC related process information includes any one of a secondary node addition request message S-NODE ADDITION REQUEST and a secondary node modification request message S-NODE MODIFICATION REQUEST;
  • the Xn interface 5G DC related process reply information includes: secondary node addition request confirmation message S-NODE ADDITION REQUEST ACKNOWLEDGE;
  • the Xn interface 5G DC related process reply information includes: a secondary node modification request confirmation message S-NODE MODIFICATION REQUEST ACKNOWLEDGE.
  • the primary base station initiates the Xn interface 5G DC related process information to the secondary base station.
  • the core network side initiates NGAP to the primary base station: UE RADIO CAPABILITY CHECK REQUEST.
  • the NGAP UE, RADIO, CAPABILITY, CHECK, and REQUEST include at least terminal wireless capability information corresponding to two different RAT systems of NR and E-UTRA.
  • it contains at least UE wireless capability information corresponding to different RAT systems of NR and E-UTRA, that is, UE NR, Radio Capability, and UE E-UTRA Radio Capability.
  • the radio capability information of the terminals corresponding to different RAT systems can be expressed by a single joint cell or multiple independent cells.
  • the designated service includes at least one of an IP multimedia subsystem-based voice service IMS voice service and an IP multimedia subsystem-based video service IMS video service.
  • This embodiment provides a network processing device.
  • the core network side initiates NGAP: UE RADIO CAPABILITY CHECK REQUEST to the master base station; the NGAP: UE RADIO CAPABILITY CHECK REQUEST includes the BSs of each base station accessed by the terminal through dual or multiple connections
  • the wireless capability information of the terminal then receives the NGAP: UE RADIO, CAPABILITY, and CHECK RESPONSE feedback from the main base station;
  • the NGAP: UE RADIO CAPABILITY CHECK RESPONSE carries at least indication information about whether each base station supports the specified service. Therefore, the message exchange between the core network side and the base station enables the terminal to support the designated service of each base station through dual or multi-connection access, thereby providing convenience for users to select the corresponding base station to carry the designated service and ensuring the user experience. .
  • FIG. 16 is a schematic diagram of a network processing apparatus according to a tenth embodiment of the present disclosure, including:
  • the request receiving module 161 is configured to receive NGAP: UE, RADIO, CAPABILITY, CHECK, and REQUEST initiated by the core network side;
  • NGAP UE, RADIO, CAPABILITY, CHECK, and REQUEST include wireless capability information of each base station that the terminal accesses through dual or multiple connections;
  • the reply sending module 162 is configured to feed back NGAP: UE, RADIO, CAPABILITY, CHECK, and RESPONSE to the core network side; NGAP: UE, RADIO, CAPABILITY, and CHECK.
  • RESPONSE carries at least indication information about whether each base station supports a specified service.
  • feeding back NGAP to the core network side: UE RADIO CAPABILITY CHECK RESPONSE includes:
  • the primary base station initiates the Xn interface terminal wireless capability check request message XnAP: UE RADIO CAPABILITY CHECK REQUEST to the secondary eNB; XnAP: UE RADIO CAPABILITY CHECK REQUEST contains at least the wireless capability information of the terminal type corresponding to the secondary base station; that is, if the secondary base station S -NG-RAN node is gNB, which contains the wireless capability information of the UE corresponding to the NR, that is, UE NR and Radio Capability; if the secondary base station S-NG-RAN node is ng-eNB, it contains the wireless capability of the UE corresponding to E-UTRA. Information, ie UE E-UTRA Radio Capability.
  • the above related information may be expressed by a single joint cell or multiple independent cells.
  • joint cell or the following “joint indication information” specifically refers to: when one of the primary base station MN or the secondary base station SN can support the "designated service", the IMS Voice Support Indicator is set to supported; when the primary base station MN and If the secondary base station SN cannot support the "designated service", the IMS Voice Support Indicator is set to Not supported, so in this case, it is not necessary to introduce a separate new cell IMS Voice Support Indicator with S-Node.
  • XnAP UE, RADIO, CAPABILITY, CHECK, RESPONSE
  • NGAP UE, RADIO, CAPABILITY, CHECK, RESPONSE
  • NGAP UE, RADIO, CAPABILITY, CHECK, and RESPONSE carry instructions indicating whether the primary base station and the secondary base station each support the specified service, or whether the primary and secondary base stations support the specified service. Joint instruction for designated services.
  • the secondary base station feedback XnAP: UE RADIO CAPABILITY CHECK RESPONSE to the main base station may include:
  • XnAP UE, RADIO, CAPABILITY, CHECK, and RESPONSE carry instructions indicating whether the terminal can support the specified service under different RAT systems. Among them, at least information indicating whether the UE can support the "designated service" under different RAT systems of NR and E-UTRA is included.
  • the primary base station initiates XnAP: UE RADIO CAPABILITY CHECK REQUEST to the secondary base station before or after launching NGAP: UE RADIO CAPABILITY CHECK REQUEST to the primary base station at the core network side.
  • feeding back NGAP to the core network side: UE RADIO CAPABILITY CHECK RESPONSE may include:
  • the primary base station initiates the Xn interface 5G DC related process information to the secondary base station;
  • the Xn interface 5G DC related process information contains at least the wireless capability information of the terminal type corresponding to the secondary base station; that is, if the secondary base station S-NG-RAN node is gNB , It contains the wireless capability information of the terminal corresponding to the NR of the UE; if the secondary base station S-NG-RAN node is ng-eNB, it contains the wireless capability information of the terminal corresponding to the UE E-UTRA.
  • the above related information may be expressed by a single joint cell or multiple independent cells.
  • NGAP UE, RADIO, CAPABILITY, CHECK, and RESPONSE
  • NGAP UE, RADIO, CAPABILITY, CHECK, and RESPONSE
  • the secondary base station feeding back the Xn interface 5G DC related process reply information to the primary base station may include:
  • the Xn interface 5G DC related process reply information carries instructions indicating whether the terminal can support the specified service under different RAT systems. Among them, at least information indicating whether the UE can support the "designated service" under different RAT systems of NR and E-UTRA is included.
  • the Xn interface 5G DC related process information includes any one of a secondary node addition request message S-NODEADDITION REQUEST and a secondary node modification request message S-NODEMODIFICATIONREQUEST;
  • the Xn interface 5G DC related process reply information includes: secondary node addition request confirmation message S-NODE ADDITION REQUEST ACKNOWLEDGE;
  • the Xn interface 5G DC related process reply information includes: a secondary node modification request confirmation message S-NODE MODIFICATION REQUEST ACKNOWLEDGE.
  • the primary base station initiates the Xn interface 5G DC related process information to the secondary base station.
  • the core network side initiates NGAP to the primary base station: UE RADIO CAPABILITY CHECK REQUEST.
  • the NGAP UE, RADIO, CAPABILITY, CHECK, and REQUEST include at least terminal wireless capability information corresponding to two different RAT systems of NR and E-UTRA.
  • it contains at least UE wireless capability information corresponding to different RAT systems of NR and E-UTRA, that is, UE NR, Radio Capability, and UE E-UTRA Radio Capability.
  • the radio capability information of the terminals corresponding to different RAT systems can be expressed by a single joint cell or multiple independent cells.
  • the designated service includes at least one of an IP multimedia subsystem-based voice service IMS voice service and an IP multimedia subsystem-based video service IMS video service.
  • This embodiment provides a network processing device.
  • the core network side initiates NGAP: UE RADIO CAPABILITY CHECK REQUEST to the master base station; the NGAP: UE RADIO CAPABILITY CHECK REQUEST includes the BSs of each base station accessed by the terminal through dual or multiple connections
  • the wireless capability information of the terminal then receives the NGAP: UE RADIO, CAPABILITY, and CHECK RESPONSE feedback from the main base station;
  • the NGAP: UE RADIO CAPABILITY CHECK RESPONSE carries at least indication information about whether each base station supports the specified service. Therefore, the message exchange between the core network side and the base station enables the terminal to support the designated service of each base station through dual or multi-connection access, thereby providing convenience for users to select the corresponding base station to carry the designated service and ensuring the user experience. .
  • FIG. 17 is a schematic diagram of a core network composition according to this embodiment, including a first processor 171, a first memory 172, and a first communication bus 173.
  • the first communication bus 173 is configured to implement connection and communication between the first processor 171 and the first memory 172.
  • the first processor 171 is configured to execute a computer program stored in the first memory 172 to implement the flow of the network processing method in the foregoing embodiments of the present disclosure, and details are not described herein again.
  • FIG. 18 is a schematic diagram of a composition of a base station according to this embodiment, including a second processor 181, a second memory 182, and a second communication bus 183;
  • the second communication bus 183 is configured to implement connection and communication between the second processor 181 and the second memory 182;
  • the second processor 181 is configured to execute a computer program stored in the second memory 182 to implement the flow of the network processing method in the foregoing embodiments of the present disclosure, and details are not described herein again.
  • This embodiment provides a computer-readable storage medium.
  • the computer-readable storage medium stores one or more computer programs, and the computer programs can be executed by one or more processors to implement the networks in the foregoing embodiments. The processing method is not repeated here.
  • modules or steps of the present disclosure may be implemented by a general-purpose computing device, and they may be concentrated on a single computing device or distributed on a network composed of multiple computing devices.
  • they can be implemented with program code executable by a computing device, so that they can be stored in a storage medium (ROM / RAM, magnetic disk, optical disk) and executed by the computing device, and in some cases
  • ROM / RAM, magnetic disk, optical disk a storage medium
  • the steps shown or described may be performed in a different order than here, or they may be made into individual integrated circuit modules, or multiple modules or steps in them may be made into a single integrated circuit module. Therefore, the present disclosure is not limited to any specific combination of hardware and software.
  • the disclosure is applicable to the field of mobile communication technology, so that the message exchange between the core network side and the base station can realize the support of the designated service of each base station accessed by the terminal through dual or multi-connection, and realize the selection of the corresponding base station bearer designation for the user.
  • Business provides convenience and guarantees user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供了一种网络处理方法、装置、核心网、基站和计算机可读存储介质,核心网侧向主基站发起NG接口终端无线能力检查请求消息;所述NG接口终端无线能力检查请求消息包括终端通过双连接或多连接所接入的各基站的终端无线能力信息,然后接收主基站反馈的NG接口终端无线能力检查回复消息;所述NG接口终端无线能力检查回复消息中至少携带各基站是否支持指定业务的指示信息。从而核心网侧和基站之间的消息交互,实现终端通过双连接或多连接接入的各基站的指定业务的支持情况,从而为用户选择相应的基站承载指定业务提供了便利,保证了用户体验。

Description

网络处理方法、装置、核心网、基站和可读存储介质 技术领域
本公开实施例涉及移动通讯技术领域,尤其涉及一种网络处理方法、装置、核心网、基站和计算机可读存储介质。
背景技术
第四代(4 Generation,4G)或称长期演进(Long Term Evolution,LTE)蜂窝移动通讯系统中,包含4G核心网(Core Network,CN)和无线接入网络(Radio Access Network,RAN),其中4G CN包含MME(Mobility Management Entity,网络节点),SGW(Serving GateWay,服务网关),PGW(PDN GateWay,PDN网关)等基本网元节点,而RAN包括演进基站(evolved Node B,eNB)。之后第五代(5 Generation,5G)蜂窝移动通讯系统中,包含了下一代核心网(5GC)和下一代无线接入网络(Next Generation Radio Access Network,NG-RAN),其中5GC包含AMF(Access Mobility Function,接入移动功能),SMF(Session Management Functio,会话管理功能)和UPF(User Plane Function,用户面功能)等基本网元节点,而NG-RAN至少包含两种不同无线接入制式RAT类型的基站,即:基于4G eNB继续演进的ng-eNB(空口仍然支持E-UTRA制式),和全新设计的gNB(空口支持New Radio,NR制式)基站。NG-RAN基站通过NG接口和5GC连接(包含NG-C控制面连接和NG-U用户面连接),而NG-RAN基站之间通过Xn接口连接(包含Xn-C控制面连接和Xn-U用户面连接),上述控制面连接用于传输网元节点之间的控制信令消息,而用户面连接用于传输用户业务数据(包)。
对于4G LTE系统,由于早期设计重点面向PS域的宽带数据类业务,如:大型数据文件的传输,各种互联网数据应用业务等,因此在4G LTE CN和RAN层面,并不能有效地支持用户语音类Voice业务;当用户需要进行语音类业务的时候,通常采取4G->3G/2G网络语音类业务回落Fallback的方式处理,该回落流程会把终端UE迁移回到旧RAT(Radio Access Type,无线接入类型)制式的网络内。在LTE后续演进版本中,4G CN和RAN层面通过自身的功能补充和增强(如SPS半静态调度增强,TTI bundling绑定等),能够可选地支持用户语音类业务,如:IMS Voice,VoLTE即Voice over LTE,是基于IMS的语音业务。此时用户语音类业务可以直接在4G网络中端到端地被承载和服务,但前提是网络侧和终端UE都要能支持IMS Voice相应的语音增强功能集合。
对于5G NG-RAN系统,类似地,网络侧和终端UE也都可选地支持语音类业务,当有一方不能支持的时候也采取向旧RAT制式网络回落的处理方式。
在5G系统中,终端UE支持单连接(Single Connectivity,SC)和双/多连接(Dual/Multiple Connectivity,DC/MC)配置和操作功能。而由于当前3GPP公开的NG接口UE Radio Capability Check流程,仅仅面向5G单连接操作下的终端UE,而不面向5G双/多连接操作下的UE, 因此AMF/SMF只能知道MN侧的UE能力和功能配置,能否有效支持IMS Voice业务;却不能知道SN侧的UE能力和SN侧本地功能配置,能否有效支持IMS Voice业务。因此,只能一直让MN主基站去尝试承载IMS Voice业务,如图1。如果MN主基站也不能支持IMS Voice业务,则终端会被迫退出当前的5G双/多连接操作,回退到旧RAT制式网络中,这会造成系统间Inter-system切换Handover或重定向Redirection操作,带来大量流程信令,且降低用户的业务体验(因为回落去的4G/3G/2G网络各方面综合性能都不如当前的5G网络)。而此时如果SN辅基站支持IMS Voice业务的话,显然这是对网络资源的浪费。而且,除了IMS Voice业务之外,基于5G可能承载的其他业务,如IMS Video做类似IMS Voice一样的处理。
发明内容
本公开实施例提供了一种网络处理方法、装置、核心网、基站和计算机可读存储介质,旨在解决相关技术中5G双连接/多连接状态下指定业务承载手段灵活性差,用户体验差的问题。
为了解决上述技术问题,本公开实施例提供了一种网络处理方法,包括:
核心网侧向主基站发起NG接口终端无线能力检查请求消息;所述NG接口终端无线能力检查请求消息包括终端通过双连接或多连接所接入的各基站的终端无线能力信息;
接收主基站反馈的NG接口终端无线能力检查回复消息;所述NG接口终端无线能力检查回复消息中至少携带双连接或多连接下各基站是否支持指定业务的指示信息。
本公开实施例还提供一种网络处理方法,包括:
主基站接收核心网侧发起的NG接口终端无线能力检查请求消息;所述NG接口终端无线能力检查请求消息包括终端通过双连接或多连接所接入的各基站的终端无线能力信息;
向核心网侧反馈NG接口终端无线能力检查回复消息;所述NG接口终端无线能力检查回复消息中至少携带双连接或多连接下各基站是否支持指定业务的指示信息。
本公开实施例还提供了一种网络处理装置,包括:
请求发起模块,设置为向主基站发起NG接口终端无线能力检查请求消息NG接口终端无线能力检查请求消息;所述NG接口终端无线能力检查请求消息包括终端通过双连接或多连接所接入的各基站的终端无线能力信息;
回复接收模块,设置为接收主基站反馈的NG接口终端无线能力检查回复消息;所述NG接口终端无线能力检查回复消息中至少携带双连接或多连接下各基站是否支持指定业务的指示信息。
本公开实施例还提供一种网络处理装置,包括:
请求接收模块,设置为接收核心网侧发起的NG接口终端无线能力检查请求消息;所述NG接口终端无线能力检查请求消息包括终端通过双连接或多连接所接入的各基站的终端无线能力信息;
回复发送模块,设置为向核心网侧反馈NG接口终端无线能力检查回复消息;所述NG 接口终端无线能力检查回复消息中至少携带双连接或多连接下各基站是否支持指定业务的指示信息。
本公开实施例还提供了一种核心网,包括第一处理器、第一存储器和第一通信总线;
所述第一通信总线设置为实现所述第一处理器和第一存储器之间的连接通信;
所述第一处理器设置为执行所述第一存储器中存储的计算机程序,以实现上述的网络处理方法的步骤。
本公开实施例还提供了一种基站,包括第二处理器、第二存储器和第二通信总线;
所述第二通信总线设置为实现所述第二处理器和第二存储器之间的连接通信;
所述第二处理器设置为执行所述第二存储器中存储的计算机程序,以实现上述的网络处理方法的步骤。
本公开实施例还提供了一种计算机可读存储介质,计算机可读存储介质中存储有一个或者多个计算机程序,计算机程序可被一个或者多个处理器执行,以实现上述的网络处理方法的步骤。
本公开实施例的有益效果是:
本公开实施例提供了一种网络处理方法、装置、核心网、基站和计算机可读存储介质,核心网侧向主基站发起NG接口终端无线能力检查请求消息;所述NG接口终端无线能力检查请求消息包括终端通过双连接或多连接所接入的各基站的终端无线能力信息,然后接收主基站反馈的NG接口终端无线能力检查回复消息;所述NG接口终端无线能力检查回复消息中至少携带各基站是否支持指定业务的指示信息。从而核心网侧和基站之间的消息交互,实现终端通过双连接或多连接接入的各基站的指定业务的支持情况,从而为用户选择相应的基站承载指定业务提供了便利,保证了用户体验。
本公开实施例其他特征和相应的有益效果在说明书的后面部分进行阐述说明,且应当理解,至少部分有益效果从本公开说明书中的记载变的显而易见。
附图说明
图1为5G网络通信架构示意图;
图2为终端无线能力检测流程示意图;
图3为5G网络通信架构示意图;
图4为本公开实施例提供的一种网络处理方法流程图;
图5为本公开实施例提供的一种核心网侧和主基站间网络处理方法信号流图;
图6为本公开实施例提供的一种主基站和辅基站间网络处理方法信号流图;
图7为本公开实施例提供的一种主基站和辅基站间网络处理方法信号流图;
图8为本公开实施例提供的一种网络处理方法流程图;
图9为本公开实施例提供的一种网络处理方法信号流图;
图10为本公开实施例提供的一种网络处理方法信号流图;
图11为本公开实施例提供的一种网络处理方法信号流图;
图12为本公开实施例提供的一种网络处理方法信号流图;
图13为本公开实施例提供的一种网络处理方法信号流图;
图14为本公开实施例提供的一种网络处理方法信号流图;
图15为本公开实施例提供的一种网络处理装置组成示意图;
图16为本公开实施例提供的一种网络处理装置组成示意图;
图17为本公开实施例提供的一种核心网组成示意图;
图18为本公开实施例提供的一种基站组成示意图。
具体实施方式
对于5G NG-RAN系统,网络侧和终端UE也都可选地支持语音类业务,当有一方不能支持的时候也采取向旧RAT制式网络回落的处理方式。5G系统在NG接口引入了UE Radio Capability Check终端无线能力检查流程(如图2),具体为:5GC控制面实体AMF向NG-RAN Node(gNB或ng-eNB)发送UE RADIO CAPABILITY CHECK REQUEST终端无线能力检查请求消息,基于该消息NG-RAN Node判定当前正在服务的UE无线能力和网络侧功能配置,能否支持IMS Voice业务。判定结束后,通过UE RADIO CAPABILITY CHECK RESPONSE终端无线能力检查回复消息,向AMF返回IMS Voice Support Indicator的指示。如果IMS Voice Support Indicator取值为Supported,则表示AMF后续能够直接在5G网络中为该UE建立承载IMS Voice业务;如果IMS Voice Support Indicator取值为Not Supported,则表示AMF后续不能为该UE直接在5G网络中建立承载IMS Voice业务,NG-RAN也会采取5G->4G/3G/2G网络语音类业务回落Fallback的方式处理。
在5G系统中,终端UE支持单连接(Single Connectivity,SC)和双/多连接(Dual/Multiple Connectivity,DC/MC)配置和操作功能。在SC单连接模式下,UE在空口和网络侧都只有一条数据传输通道(无线链接),而在DC/MC双/多连接模式下,UE在空口或网络侧都有两条或以上的数据传输通道(无线链接)。为了简化说明,下面重点以UE双连接DC为例子,单连接就是双连接只考虑MN(或M-Node,M-NG-RAN Node)主基站侧情况的特例(删除掉辅基站SN(或S-Node,S-NG-RAN Node)侧所有相关的辅数据传输通道/辅无线链路),而多连接MC则是双连接DC在更多条链路配置和操作上的进一步维度扩展。DC双连接下,UE可以在空口,同时与两个NG-RAN基站分别建立和保持两条独立的无线链路连接Radio Link(空口数据传输通道),一个基站称为主基站MN(Master Node),另一个基站称为辅基站SN(Secondary Node);而MN和SN可以在NG接口,同时和核心网用户面网元实体UPF,同时建立和保持两条独立的网络侧NG-U连接(网络数据传输通道),但只有MN主基站能和核心网控制面实体AMF建立和保持NG-C连接,相关架构如图3所示。在图3中,用实线表示了不同网元节点之间的控制面连接,即用来传输网络控制信令,用虚线表示了不同网元节点之间的用户面连接,即用来传输用户业务数据。NG-U(MN)提供了UPF和MN主基站之间的数据传输通道,用于传输锚点在MN侧PDU Session/QoS Flows上承载的上下行用户业务数据包;类似地,NG-U(SN)提供了UPF和SN辅基站之间的数据传输通道,用 于传输锚点在SN侧“被分流的”PDU Session/QoS Flows上承载的上下行用户业务数据包。上述MN和SN两侧的多个数据传输通道是通过NG-C+Xn-C控制面信令流程来交互建立或修改完成的。注:由于SN和AMF/SMF之间没有NG-C控制面连接,因此SN辅基站侧的所有配置信息,都必须通过Xn-C控制面链路,和MN主基站交互,或者通过MN中继再转发到AMF/SMF。
为了使本公开的目的、技术方案及优点更加清楚明白,下面通过各实施方式结合附图对本公开实施例作进一步详细说明。应当理解,此处所描述的实施例仅仅用以解释本公开,并不用于限定本公开。
第一实施例
请参考图4,图4是本公开第一实施例提供的网络处理方法流程图,包括:
S401、核心网侧向主基站发起NG接口终端无线能力检查请求消息NGAP:UE RADIO CAPABILITY CHECK REQUEST;NGAP:UE RADIO CAPABILITY CHECK REQUEST包括终端通过双连接或多连接所接入的各基站的终端无线能力信息;
S402、接收主基站反馈的NG接口终端无线能力检查回复消息NGAP:UE RADIO CAPABILITY CHECK RESPONSE;NGAP:UE RADIO CAPABILITY CHECK RESPONSE中至少携带各基站是否支持指定业务的指示信息。
请参考图5,图5为本实施例中的网络处理方法信号流图,其中涉及核心网侧AMF和基站之间的交互流程。核心网侧和基站通过NGAP:UE RADIO CAPABILITY CHECK REQUEST以及NGAP:UE RADIO CAPABILITY CHECK RESPONSE消息,来实现基站侧的所能承载的指定业务的获取,从而主基站可以据此对当前业务进行分配。
在一些实施例中,请参考图6,接收主基站反馈的NGAP:UE RADIO CAPABILITY CHECK RESPONSE可以包括:
主基站向辅基站发起Xn接口终端无线能力检查请求消息XnAP:UE RADIO CAPABILITY CHECK REQUEST;XnAP:UE RADIO CAPABILITY CHECK REQUEST中至少含有面向辅基站对应类型的终端无线能力信息;也就是,如果辅基站S-NG-RAN node为gNB,则含有UE对应NR的终端无线能力信息,即UE NR Radio Capability;如果辅基站S-NG-RAN node为ng-eNB,则含有UE对应E-UTRA的终端无线能力信息,即UE E-UTRA Radio Capability。
辅基站反馈Xn接口终端无线能力检查回复消息XnAP:UE RADIO CAPABILITY CHECK RESPONSE给主基站;XnAP:UE RADIO CAPABILITY CHECK RESPONSE中携带辅基站是否支持指定业务的指示信息;其中,“指定业务”至少包含IMS Voice业务,即:IMS Voice Support Indicator with S-Node=supported or not supported。上述相关信息,可以通过单个联合信元,或者多个独立的信元去表达承载。在发明各实施例中,所谓“联合信元”或下述的“联合指示信息”具体指:当主基站MN或辅基站SN其中之一能够支持“指定业务”,则将IMS Voice Support Indicator设值为supported;当主基站MN和辅基站SN都不能 够支持“指定业务”,则将IMS Voice Support Indicator设值为Not supported,因此这种情况下不需要引入单独的新信元IMS Voice Support Indicator with S-Node。
核心网侧接收主基站根据XnAP:UE RADIO CAPABILITY CHECK RESPONSE反馈的NGAP:UE RADIO CAPABILITY CHECK RESPONSE;NGAP:UE RADIO CAPABILITY CHECK RESPONSE中携带主基站和辅基站各自是否支持指定业务的指示信息,或主辅基站是否支持指定业务的联合指示信息。
在一些实施例中,辅基站反馈XnAP:UE RADIO CAPABILITY CHECK RESPONSE给主基站可以包括:
XnAP:UE RADIO CAPABILITY CHECK RESPONSE中携带终端在不同RAT制式下分别能否支持指定业务的指示信息。其中,至少含有UE在NR和E-UTRA不同RAT制式下分别能否支持“指定业务”的指示信息。
在一些实施例中,主基站向辅基站发起XnAP:UE RADIO CAPABILITY CHECK REQUEST在核心网侧向主基站发起NGAP:UE RADIO CAPABILITY CHECK REQUEST之前或之后。
在一些实施例中,请参考图7,接收主基站反馈的NGAP:UE RADIO CAPABILITY CHECK RESPONSE可以包括:
主基站向辅基站发起Xn接口5G DC相关流程信息;Xn接口5G DC相关流程信息中至少含有面向辅基站对应类型的终端无线能力信息;也就是说,如果辅基站S-NG-RAN node为gNB,则含有UE对应NR的终端无线能力信息;如果辅基站S-NG-RAN node为ng-eNB,则含有UE对应E-UTRA的终端无线能力信息。
辅基站反馈Xn接口5G DC相关流程回复信息给主基站;Xn接口5G DC相关流程回复信息中携带辅基站是否支持指定业务的指示信息;其中,“指定业务”至少包含IMS Voice业务,即:IMS Voice Support Indicator with S-Node=supported or not supported。上述相关信息,可以通过单个联合信元,或者多个独立的信元去表达承载。
核心网侧接收主基站根据Xn接口5G DC相关流程回复信息反馈的NGAP:UE RADIO CAPABILITY CHECK RESPONSE;NGAP:UE RADIO CAPABILITY CHECK RESPONSE中携带主基站和辅基站各自是否支持指定业务的指示信息,或主辅基站是否支持指定业务的联合指示信息。
在一些实施例中,辅基站反馈Xn接口5G DC相关流程回复信息给主基站可以包括:
Xn接口5G DC相关流程回复信息中携带终端在不同RAT制式下分别能否支持指定业务的指示信息。其中,至少含有UE在NR和E-UTRA不同RAT制式下分别能否支持“指定业务”的指示信息。
在一些实施例中,Xn接口5G DC相关流程信息包括:辅节点添加请求消息S-NODE ADDITION REQUEST、辅节点修改请求消息S-NODE MODIFICATION REQUEST中的任意一种;
当Xn接口5G DC相关流程信息为S-NODE ADDITION REQUEST时,Xn接口5G DC 相关流程回复信息包括:辅节点添加请求确认消息S-NODE ADDITION REQUEST ACKNOWLEDGE;
当Xn接口5G DC相关流程信息为S-NODE MODIFICATION REQUEST时,Xn接口5G DC相关流程回复信息包括:辅节点修改请求确认消息S-NODE MODIFICATION REQUEST ACKNOWLEDGE。
在一些实施例中,主基站向辅基站发起Xn接口5G DC相关流程信息在核心网侧向主基站发起NGAP:UE RADIO CAPABILITY CHECK REQUEST之前或之后。
在一些实施例中,NGAP:UE RADIO CAPABILITY CHECK REQUEST中至少包括对应NR和E-UTRA两种不同RAT制式的终端无线能力信息。可选的,至少含有UE分别对应NR和E-UTRA不同RAT制式的终端无线能力信息,即:UE NR Radio Capability和UE E-UTRA Radio Capability。上述对应于不同RAT制式的终端无线能力信息,可以通过单个联合信元或者多个独立的信元去表达承载。
在一些实施例中,指定业务包括基于IP多媒体子系统的语音业务IMS voice业务、基于IP多媒体子系统的视频业务IMS video业务中的至少一种。
本实施例提供了一种网络处理方法,核心网侧向主基站发起NGAP:UE RADIO CAPABILITY CHECK REQUEST;所述NGAP:UE RADIO CAPABILITY CHECK REQUEST包括终端通过双连接或多连接所接入的各基站的终端无线能力信息,然后接收主基站反馈的NGAP:UE RADIO CAPABILITY CHECK RESPONSE;所述NGAP:UE RADIO CAPABILITY CHECK RESPONSE中至少携带各基站是否支持指定业务的指示信息。从而核心网侧和基站之间的消息交互,实现终端通过双连接或多连接接入的各基站的指定业务的支持情况,从而为用户选择相应的基站承载指定业务提供了便利,保证了用户体验。
第二实施例
请参考图8,图8本公开第二实施例提供的一种网络处理方法流程图,包括:
S801、主基站接收核心网侧发起的NGAP:UE RADIO CAPABILITY CHECK REQUEST;NGAP:UE RADIO CAPABILITY CHECK REQUEST包括终端通过双连接或多连接所接入的各基站的终端无线能力信息;
S802、向核心网侧反馈NGAP:UE RADIO CAPABILITY CHECK RESPONSE;NGAP:UE RADIO CAPABILITY CHECK RESPONSE中至少携带各基站是否支持指定业务的指示信息。
在一些实施例中,向核心网侧反馈NGAP:UE RADIO CAPABILITY CHECK RESPONSE包括:
主基站向辅基站发起Xn接口终端无线能力检查请求消息XnAP:UE RADIO CAPABILITY CHECK REQUEST;XnAP:UE RADIO CAPABILITY CHECK REQUEST中至少含有面向辅基站对应类型的终端无线能力信息;也就是,如果辅基站S-NG-RAN node为gNB,则含有UE对应NR的终端无线能力信息,即UE NR Radio Capability;如果辅基站 S-NG-RAN node为ng-eNB,则含有UE对应E-UTRA的终端无线能力信息,即UE E-UTRA Radio Capability。
辅基站反馈Xn接口终端无线能力检查回复消息XnAP:UE RADIO CAPABILITY CHECK RESPONSE给主基站;XnAP:UE RADIO CAPABILITY CHECK RESPONSE中携带辅基站是否支持指定业务的指示信息;其中,“指定业务”至少包含IMS Voice业务,即:IMS Voice Support Indicator with S-Node=supported or not supported。上述相关信息,可以通过单个联合信元,或者多个独立的信元去表达承载。所谓“联合信元”或下述的“联合指示信息”具体指:当主基站MN或辅基站SN其中之一能够支持“指定业务”,则将IMS Voice Support Indicator设值为supported;当主基站MN和辅基站SN都不能够支持“指定业务”,则将IMS Voice Support Indicator设值为Not supported,因此这种情况下不需要引入单独的新信元IMS Voice Support Indicator with S-Node。
根据XnAP:UE RADIO CAPABILITY CHECK RESPONSE向核心网侧反馈NGAP:UE RADIO CAPABILITY CHECK RESPONSE;NGAP:UE RADIO CAPABILITY CHECK RESPONSE中携带主基站和辅基站各自是否支持指定业务的指示信息,或主辅基站是否支持指定业务的联合指示信息。
在一些实施例中,辅基站反馈XnAP:UE RADIO CAPABILITY CHECK RESPONSE给主基站可以包括:
XnAP:UE RADIO CAPABILITY CHECK RESPONSE中携带终端在不同RAT制式下分别能否支持指定业务的指示信息。其中,至少含有UE在NR和E-UTRA不同RAT制式下分别能否支持“指定业务”的指示信息。
在一些实施例中,主基站向辅基站发起XnAP:UE RADIO CAPABILITY CHECK REQUEST在核心网侧向主基站发起NGAP:UE RADIO CAPABILITY CHECK REQUEST之前或之后。
在一些实施例中,向核心网侧反馈NGAP:UE RADIO CAPABILITY CHECK RESPONSE可以包括:
主基站向辅基站发起Xn接口5G DC相关流程信息;Xn接口5G DC相关流程信息中至少含有面向辅基站对应类型的终端无线能力信息;也就是说,如果辅基站S-NG-RAN node为gNB,则含有UE对应NR的终端无线能力信息;如果辅基站S-NG-RAN node为ng-eNB,则含有UE对应E-UTRA的终端无线能力信息。
辅基站反馈Xn接口5G DC相关流程回复信息主基站;Xn接口5G DC相关流程回复信息中携带辅基站是否支持指定业务的指示信息;其中,“指定业务”至少包含IMS Voice业务,即:IMS Voice Support Indicator with S-Node=supported or not supported。上述相关信息,可以通过单个联合信元,或者多个独立的信元去表达承载。
根据Xn接口5G DC相关流程回复信息向核心网侧反馈NGAP:UE RADIO CAPABILITY CHECK RESPONSE;NGAP:UE RADIO CAPABILITY CHECK RESPONSE中携带主基站和辅基站各自是否支持指定业务的指示信息,或主辅基站是否支持指定业务的联合指示信息。
在一些实施例中,辅基站反馈Xn接口5G DC相关流程回复信息给主基站可以包括:
Xn接口5G DC相关流程回复信息中携带终端在不同RAT制式下分别能否支持指定业务的指示信息。其中,至少含有UE在NR和E-UTRA不同RAT制式下分别能否支持“指定业务”的指示信息。
在一些实施例中,Xn接口5G DC相关流程信息包括:辅节点添加请求消息S-NODE ADDITION REQUEST、辅节点修改请求消息S-NODE MODIFICATION REQUEST中的任意一种;
当Xn接口5G DC相关流程信息为S-NODE ADDITION REQUEST时,Xn接口5G DC相关流程回复信息包括:辅节点添加请求确认消息S-NODE ADDITION REQUEST ACKNOWLEDGE;
当Xn接口5G DC相关流程信息为S-NODE MODIFICATION REQUEST时,Xn接口5G DC相关流程回复信息包括:辅节点修改请求确认消息S-NODE MODIFICATION REQUEST ACKNOWLEDGE。
在一些实施例中,主基站向辅基站发起Xn接口5G DC相关流程信息在核心网侧向主基站发起NGAP:UE RADIO CAPABILITY CHECK REQUEST之前或之后。
在一些实施例中,NGAP:UE RADIO CAPABILITY CHECK REQUEST中至少包括对应NR和E-UTRA两种不同RAT制式的终端无线能力信息。可选的,至少含有UE分别对应NR和E-UTRA不同RAT制式的终端无线能力信息,即:UE NR Radio Capability和UE E-UTRA Radio Capability。上述对应于不同RAT制式的终端无线能力信息,可以通过单个联合信元或者多个独立的信元去表达承载。
在一些实施例中,指定业务包括基于IP多媒体子系统的语音业务IMS voice业务、基于IP多媒体子系统的视频业务IMS video业务中的至少一种。
本实施例提供了一种网络处理方法,核心网侧向主基站发起NGAP:UE RADIO CAPABILITY CHECK REQUEST;所述NGAP:UE RADIO CAPABILITY CHECK REQUEST包括终端通过双连接或多连接所接入的各基站的终端无线能力信息,然后接收主基站反馈的NGAP:UE RADIO CAPABILITY CHECK RESPONSE;所述NGAP:UE RADIO CAPABILITY CHECK RESPONSE中至少携带各基站是否支持指定业务的指示信息。从而核心网侧和基站之间的消息交互,实现终端通过双连接或多连接接入的各基站的指定业务的支持情况,从而为用户选择相应的基站承载指定业务提供了便利,保证了用户体验。
第三实施例
请参考图9,图9为本实施例提供的一种网络处理方法信号流图。
在本实施例中,某UE支持NGEN-DC双连接配置和操作,UE,主基站MeNB和辅基站SgNB本地功能和能力集合也都支持IMS Voice语音类业务。
S901:UE先处于和MeNB的单连接激活态,后进入到SgNB的某服务小区覆盖,预备进入NGEN-DC双连接配合和操作。
S902:MeNB基于UE的RRM测量上报,判定需要和目标SgNB建立NGEN-DC双连接操作,MeNB向目标SgNB发送SN Addition Request消息,包含必要的SCG配置辅助参数,同时至少还含有UE对应NR相关的终端无线能力信息UE NR Radio Capability。
S903:SgNB返回给MeNB SN Addition Request Acknowledge消息,包含必要的SCG配置结果信息,同时至少还含有SgNB能否支持IMS Voice业务的能力指示信息,比如:IMS Voice Support Indicator with S-Node=supported。
S904:MeNB配置UE进入NGEN-DC双连接操作,UE同时和MeNB/SgNB建立无线链接。由于MeNB得知SgNB能够支持IMS Voice业务,后续可将含有IMS Voice业务的PDU Session/QoS Flows分流到SgNB内被承载服务。
S905:AMF/SMF准备发起IMS Voice语音业务,为了安全起见,先向MeNB发起NGAP:UE RADIO CAPABILITY CHECK REQUEST消息,含有UE对应E-UTRA和NR相关的终端无线能力信息。
S906:根据MeNB内部之前的判定:主辅基站两侧都能支持IMS Voice业务能力,从而回复给AMF/SMF NGAP:UE RADIO CAPABILITY CHECK RESPONSE消息,含有当前服务的MeNB和SgNB各自支持IMS Voice业务的能力指示信息,比如:
IMS Voice Support Indicator=supported;表示MeNB能支持!
IMS Voice Support Indicator with S-Node=supported;表示SgNB能支持!
S907:得知当前主辅基站都支持IMS Voice业务的能力信息后,AMF/SMF随后发起含有IMS Voice业务的PDU Session Resource Setup流程,MeNB根据上述S903步骤的能力指示IMS Voice Support Indicator with S-Node=supported和其它RRM参考信息(如无线链路覆盖质量,主辅基站节点负荷等),判定何时将该含有IMS Voice业务的PDU Session/QoS Flows分流到SgNB内去承载。
第四实施例
请参考图10,图10为本实施例提供的一种网络处理方法信号流图。
在本实施例中,某UE支持NGEN-DC双连接配置和操作,UE和辅基站SgNB本地功能和能力集合也都支持IMS Video视频类业务,但主基站MeNB不能支持。
S1001:UE先处于和MeNB的单连接激活态,后进入到SgNB的某服务小区覆盖,预备进入NGEN-DC双连接配合和操作。
S1002:MeNB基于UE的RRM测量上报,判定需要和目标SgNB建立NGEN-DC双连接操作,MeNB向目标SgNB发送SN Addition Request消息,包含必要的SCG配置辅助参数,同时至少还含有UE对应NR相关的终端无线能力信息UE NR Radio Capability。
S1003:SgNB返回给MeNB SN Addition Request Acknowledge消息,包含必要的SCG配置结果信息,同时至少还含有SgNB能否支持IMS Video视频类业务的能力指示信息,比如:IMS Video Support Indicator with S-Node=supported。
S1004:MeNB配置UE进入NGEN-DC双连接操作,UE同时和MeNB/SgNB建立无线 链接。由于MeNB得知SgNB能够支持IMS Video视频类业务,后续可将含有IMS Video视频类业务的PDU Session/QoS Flows分流到SgNB内被承载服务。
S1005:AMF/SMF准备发起IMS Video视频类业务,为了安全起见,先向MeNB发起NGAP:UE RADIO CAPABILITY CHECK REQUEST消息,含有UE对应E-UTRA和NR相关的终端无线能力信息。
S1006:根据MeNB内部之前的判定:主基站MeNB不能支持IMS Video视频类业务能力,但辅基站SgNB能支持IMS Video视频类业务能力,从而回复给AMF/SMF NGAP:UE RADIO CAPABILITY CHECK RESPONSE消息,含有当前服务的MeNB和SgNB各自支持IMS Video业务的能力指示信息,比如:
IMS Video Support Indicator=not supported;表示MeNB不能支持!
IMS Video Support Indicator with S-Node=supported;表示SgNB能支持!
S1007:得知当前主辅基站各自支持IMS Video业务的能力信息后,AMF/SMF随后发起含有IMS Video业务的PDU Session Resource Setup流程,MeNB根据上述S1003步骤的能力指示IMS Video Support Indicator with S-Node=supported和其它RRM参考信息(如无线链路覆盖质量,主辅基站节点负荷等),判定立刻将该含有IMS Video业务的PDU Session/QoS Flows分流到SgNB内去承载。
第五实施例
请参考图11,图11为本实施例提供的一种网络处理方法信号流图。
在本实施例中,某UE支持NE-DC双连接配置和操作,UE,主基站MgNB和辅基站SeNB本地功能和能力集合也都支持IMS Voice语音类业务。
S1101:UE已经处于和MgNB和SeNB的NE-DC双连接激活态。
S1102:MgNB基于UE的RRM测量上报,判定需要更新修改当前SeNB内的SCG配置,MgNB向SeNB发送SN Modification Request消息,包含必要的SCG重配置辅助参数,同时至少还含有UE对应E-UTRA相关的终端无线能力信息UE E-UTRA Radio Capability。
S1103:SeNB返回给MgNB SN Modification Request Acknowledge消息,包含必要的SCG重配置结果信息,同时至少还含有SeNB能否支持IMS Voice业务的新能力指示信息,比如:IMS Voice Support Indicator with S-Node=supported。
S1104:MgNB重配置UE进入NE-DC双连接操作。由于MgNB得知SeNB能够支持IMS Voice业务,后续可将含有IMS Voice业务的PDU Session/QoS Flows分流到SeNB内被承载服务。
S1105:AMF/SMF准备发起IMS Voice语音业务,为了安全起见,先向MgNB发起NGAP:UE RADIO CAPABILITY CHECK REQUEST消息,含有UE对应E-UTRA和NR相关的终端无线能力信息。
S1106:根据MgNB内部之前的判定:主辅基站两侧都能支持IMS Voice业务能力,从而回复给AMF/SMF NGAP:UE RADIO CAPABILITY CHECK RESPONSE消息,含有当前 服务的MgNB和SeNB各自支持IMS Voice业务的能力指示信息,比如:
IMS Voice Support Indicator=supported;表示MgNB能支持!
IMS Voice Support Indicator with S-Node=supported;表示SeNB能支持!
S1107:得知当前主辅基站都支持IMS Voice业务的能力信息后,AMF/SMF随后发起含有IMS Voice业务的PDU Session Resource Setup流程,MgNB根据上述S1103步骤的新能力指示IMS Voice Support Indicator with S-Node=supported和其它RRM参考信息(如无线链路覆盖质量,主辅基站节点负荷等),判定何时将该含有IMS Voice业务的PDU Session/QoS Flows分流到SeNB内去承载。
第六实施例
请参考图12,图12为本实施例提供的一种网络处理方法信号流图。
在本实施例中,某UE支持NE-DC双连接配置和操作,UE和主基站MgNB本地功能和能力集合也都支持IMS Video视频类业务,但辅基站SgNB不能支持。
S1201:UE已经处于和MgNB和SeNB的NE-DC双连接激活态。
S1202:MgNB基于UE的RRM测量上报,判定需要更新修改当前SeNB内的SCG配置,MgNB向SeNB发送SN Modification Request消息,包含必要的SCG重配置辅助参数,同时至少还含有UE对应E-UTRA相关的终端无线能力信息UE E-UTRA Radio Capability。
S1203:SeNB返回给MgNB SN Modification Request Acknowledge消息,包含必要的SCG重配置结果信息,同时至少还含有SeNB能否支持IMS Video业务的新能力指示信息,比如:IMS VideoSupport Indicator with S-Node=Not supported。
S1204:MgNB重配置UE进入NE-DC双连接操作。由于MgNB得知SeNB不能够支持IMS Video业务,后续不会将含有IMS Video业务的PDU Session/QoS Flows分流到SeNB内被承载服务。
S1205:AMF/SMF准备发起IMS Video视频业务,为了安全起见,先向MgNB发起NGAP:UE RADIO CAPABILITY CHECK REQUEST消息,含有UE对应E-UTRA和NR相关的终端无线能力信息。
S1206:根据MgNB内部之前的判定:主基站MgNB能支持IMS Video业务能力,但辅基站SeNB不能支持IMS Video业务能力,从而回复给AMF/SMF NGAP:UE RADIO CAPABILITY CHECK RESPONSE消息,含有当前服务的MgNB和SeNB各自支持IMS Video业务的能力指示信息,比如:
IMS Video Support Indicator=supported;表示MgNB能支持!
IMS Video Support Indicator with S-Node=Not supported;表示SeNB不能支持!
S1207:得知当前主辅基站各自支持IMS Video业务的能力信息后,AMF/SMF随后发起含有IMS Video业务的PDU Session Resource Setup流程,MgNB根据上述S1203步骤的新能力指示IMS Video Support Indicator with S-Node=Not supported和其它RRM参考信息(如无线链路覆盖质量,主辅基站节点负荷等),判定不能将该含有IMS Video业务的PDU  Session/QoS Flows分流到SeNB内去承载,只能一直MgNB本地承载服务。
第七实施例
请参考图13,图13为本实施例提供的一种网络处理方法信号流图。
在本实施例中,某UE支持NGEN-DC双连接配置和操作,UE,MeNB和SgNB本地功能和能力集合都支持IMS Voice语音类业务。
S1301:UE已经处于和MeNB,SgNB的NGEN-DC双连接激活态。
S1302:AMF/SMF准备发起IMS Voice语音业务,为了安全起见,先向MeNB发起NGAP:UE RADIO CAPABILITY CHECK REQUEST消息,含有UE对应E-UTRA和NR相关的终端无线能力信息。
S1303:MeNB进一步向SgNB发送XnAP:UE RADIO CAPABILITY CHECK REQUEST消息,含有UE对应NR相关的终端无线能力信息。
S1304:SgNB回复给MeNB XnAP:UE RADIO CAPABILITY CHECK RESPONSE消息,含有SgNB能否支持IMS Voice语音的能力指示信息,比如:IMS Voice Support Indicator with S-Node=supported。
S1305:根据MeNB内部之前的判定:主基站MeNB能支持IMS Voice语音能力,且辅基站SgNB也能支持IMS Voice语音能力,从而回复给AMF/SMF NGAP:UE RADIO CAPABILITY CHECK RESPONSE消息,含有当前服务的MeNB和SgNB各自支持IMS Voice语音的能力指示信息,比如:
IMS Voice Support Indicator=supported;表示MeNB能支持!
IMS Voice Support Indicator with S-Node=supported;表示SgNB能支持!
S1306:得知当前主辅基站各自支持IMS Voice语音的能力信息后,AMF/SMF随后发起含有IMS Voice业务的PDU Session Resource Setup流程,MeNB根据上述S1304步骤的能力指示IMS Voice Support Indicator with S-Node=supported和其它RRM参考信息(如无线链路覆盖质量,主辅基站节点负荷等),判定何时将该含有IMS Voice业务的PDU Session/QoS Flows分流到SgNB内去承载。
第八实施例
请参考图14,图14为本实施例提供的一种网络处理方法信号流图。
在本实施例中,某UE支持NGEN-DC双连接配置和操作,UE和辅基站SgNB本地功能和能力集合都支持IMS Video视频类业务,但主基站MeNB不能支持。
S1401:UE已经处于和MeNB,SgNB的NGEN-DC双连接激活态。
S1402:AMF/SMF准备发起IMS Video视频业务,为了安全起见,先向MeNB发起NGAP:UE RADIO CAPABILITY CHECK REQUEST消息,含有UE对应E-UTRA和NR相关的终端无线能力信息。
S1403:MeNB进一步向SgNB发送XnAP:UE RADIO CAPABILITY CHECK REQUEST 消息,含有UE对应NR相关的终端无线能力信息。
S1404:SgNB回复给MeNB XnAP:UE RADIO CAPABILITY CHECK RESPONSE消息,含有SgNB能否支持IMS Video视频的能力指示信息,比如:IMS Video Support Indicator with S-Node=supported。
S1405:根据MeNB内部之前的判定:主基站MeNB不能支持IMS Video视频能力,但辅基站SgNB能支持IMS Video视频能力,从而回复给AMF/SMF NGAP:UE RADIO CAPABILITY CHECK RESPONSE消息,含有当前服务的MeNB和SgNB各自支持IMS Video视频的能力指示信息,比如:
IMS Video Support Indicator=not supported;表示MeNB不能支持!
IMS Video Support Indicator with S-Node=supported;表示SgNB能支持!
S1406:得知当前主辅基站各自支持IMS Video视频的能力信息后,AMF/SMF随后发起含有IMS Video业务的PDU Session Resource Setup流程,MeNB根据上述S1404步骤的能力指示IMS Video Support Indicator with S-Node=supported和其它RRM参考信息(如无线链路覆盖质量,主辅基站节点负荷等),判定立刻将该含有IMS Video视频业务的PDU Session/QoS Flows分流到SgNB内去承载。
第九实施例
请参考图15,图15为本公开第九实施例提供的一种网络处理装置组成示意图,包括:
请求发起模块151,用于向主基站发起NG接口终端无线能力检查请求消息NGAP:UE RADIO CAPABILITY CHECK REQUEST;NGAP:UE RADIO CAPABILITY CHECK REQUEST包括终端通过双连接或多连接所接入的各基站的终端无线能力信息;
回复接收模块152,用于接收主基站反馈的NG接口终端无线能力检查回复消息NGAP:UE RADIO CAPABILITY CHECK RESPONSE;NGAP:UE RADIO CAPABILITY CHECK RESPONSE中至少携带各基站是否支持指定业务的指示信息。
在一些实施例中,接收主基站反馈的NGAP:UE RADIO CAPABILITY CHECK RESPONSE可以包括:
主基站向辅基站发起Xn接口终端无线能力检查请求消息XnAP:UE RADIO CAPABILITY CHECK REQUEST;XnAP:UE RADIO CAPABILITY CHECK REQUEST中至少含有面向辅基站对应类型的终端无线能力信息;也就是,如果辅基站S-NG-RAN node为gNB,则含有UE对应NR的终端无线能力信息,即UE NR Radio Capability;如果辅基站S-NG-RAN node为ng-eNB,则含有UE对应E-UTRA的终端无线能力信息,即UE E-UTRA Radio Capability。
辅基站反馈Xn接口终端无线能力检查回复消息XnAP:UE RADIO CAPABILITY CHECK RESPONSE给主基站;XnAP:UE RADIO CAPABILITY CHECK RESPONSE中携带辅基站是否支持指定业务的指示信息;其中,“指定业务”至少包含IMS Voice业务,即:IMS Voice Support Indicator with S-Node=supported or not supported。上述相关信息,可以通 过单个联合信元,或者多个独立的信元去表达承载。所谓“联合信元”或下述的“联合指示信息”具体指:当主基站MN或辅基站SN其中之一能够支持“指定业务”,则将IMS Voice Support Indicator设值为supported;当主基站MN和辅基站SN都不能够支持“指定业务”,则将IMS Voice Support Indicator设值为Not supported,因此这种情况下不需要引入单独的新信元IMS Voice Support Indicator with S-Node。
核心网侧接收主基站根据XnAP:UE RADIO CAPABILITY CHECK RESPONSE反馈的NGAP:UE RADIO CAPABILITY CHECK RESPONSE;NGAP:UE RADIO CAPABILITY CHECK RESPONSE中携带主基站和辅基站各自是否支持指定业务的指示信息,或主辅基站是否支持指定业务的联合指示信息。
在一些实施例中,辅基站反馈XnAP:UE RADIO CAPABILITY CHECK RESPONSE给主基站可以包括:
XnAP:UE RADIO CAPABILITY CHECK RESPONSE中携带终端在不同RAT制式下分别能否支持指定业务的指示信息。其中,至少含有UE在NR和E-UTRA不同RAT制式下分别能否支持“指定业务”的指示信息。
在一些实施例中,主基站向辅基站发起XnAP:UE RADIO CAPABILITY CHECK REQUEST在核心网侧向主基站发起NGAP:UE RADIO CAPABILITY CHECK REQUEST之前或之后。
在一些实施例中,接收主基站反馈的NGAP:UE RADIO CAPABILITY CHECK RESPONSE可以包括:
主基站向辅基站发起Xn接口5G DC相关流程信息;Xn接口5G DC相关流程信息中至少含有面向辅基站对应类型的终端无线能力信息;也就是说,如果辅基站S-NG-RAN node为gNB,则含有UE对应NR的终端无线能力信息;如果辅基站S-NG-RAN node为ng-eNB,则含有UE对应E-UTRA的终端无线能力信息。
辅基站反馈Xn接口5G DC相关流程回复信息给主基站;Xn接口5G DC相关流程回复信息中携带辅基站是否支持指定业务的指示信息;其中,“指定业务”至少包含IMS Voice业务,即:IMS Voice Support Indicator with S-Node=supported or not supported。上述相关信息,可以通过单个联合信元,或者多个独立的信元去表达承载。
核心网侧接收主基站根据Xn接口5G DC相关流程回复信息反馈的NGAP:UE RADIO CAPABILITY CHECK RESPONSE;NGAP:UE RADIO CAPABILITY CHECK RESPONSE中携带主基站和辅基站各自是否支持指定业务的指示信息,或主辅基站是否支持指定业务的联合指示信息。
在一些实施例中,辅基站反馈Xn接口5G DC相关流程回复信息给主基站可以包括:
Xn接口5G DC相关流程回复信息中携带终端在不同RAT制式下分别能否支持指定业务的指示信息。其中,至少含有UE在NR和E-UTRA不同RAT制式下分别能否支持“指定业务”的指示信息。
在一些实施例中,Xn接口5G DC相关流程信息包括:辅节点添加请求消息S-NODE  ADDITION REQUEST、辅节点修改请求消息S-NODE MODIFICATION REQUEST中的任意一种;
当Xn接口5G DC相关流程信息为S-NODE ADDITION REQUEST时,Xn接口5G DC相关流程回复信息包括:辅节点添加请求确认消息S-NODE ADDITION REQUEST ACKNOWLEDGE;
当Xn接口5G DC相关流程信息为S-NODE MODIFICATION REQUEST时,Xn接口5G DC相关流程回复信息包括:辅节点修改请求确认消息S-NODE MODIFICATION REQUEST ACKNOWLEDGE。
在一些实施例中,主基站向辅基站发起Xn接口5G DC相关流程信息在核心网侧向主基站发起NGAP:UE RADIO CAPABILITY CHECK REQUEST之前或之后。
在一些实施例中,NGAP:UE RADIO CAPABILITY CHECK REQUEST中至少包括对应NR和E-UTRA两种不同RAT制式的终端无线能力信息。可选的,至少含有UE分别对应NR和E-UTRA不同RAT制式的终端无线能力信息,即:UE NR Radio Capability和UE E-UTRA Radio Capability。上述对应于不同RAT制式的终端无线能力信息,可以通过单个联合信元或者多个独立的信元去表达承载。
在一些实施例中,指定业务包括基于IP多媒体子系统的语音业务IMS voice业务、基于IP多媒体子系统的视频业务IMS video业务中的至少一种。
本实施例提供了一种网络处理装置,核心网侧向主基站发起NGAP:UE RADIO CAPABILITY CHECK REQUEST;所述NGAP:UE RADIO CAPABILITY CHECK REQUEST包括终端通过双连接或多连接所接入的各基站的终端无线能力信息,然后接收主基站反馈的NGAP:UE RADIO CAPABILITY CHECK RESPONSE;所述NGAP:UE RADIO CAPABILITY CHECK RESPONSE中至少携带各基站是否支持指定业务的指示信息。从而核心网侧和基站之间的消息交互,实现终端通过双连接或多连接接入的各基站的指定业务的支持情况,从而为用户选择相应的基站承载指定业务提供了便利,保证了用户体验。
第十实施例
请参考图16,图16为本公开第十实施例提供的一种网络处理装置组成示意图,包括:
请求接收模块161,用于接收核心网侧发起的NGAP:UE RADIO CAPABILITY CHECK REQUEST;NGAP:UE RADIO CAPABILITY CHECK REQUEST包括终端通过双连接或多连接所接入的各基站的终端无线能力信息;
回复发送模块162,用于向核心网侧反馈NGAP:UE RADIO CAPABILITY CHECK RESPONSE;NGAP:UE RADIO CAPABILITY CHECK RESPONSE中至少携带各基站是否支持指定业务的指示信息。
在一些实施例中,向核心网侧反馈NGAP:UE RADIO CAPABILITY CHECK RESPONSE包括:
主基站向辅基站发起Xn接口终端无线能力检查请求消息XnAP:UE RADIO  CAPABILITY CHECK REQUEST;XnAP:UE RADIO CAPABILITY CHECK REQUEST中至少含有面向辅基站对应类型的终端无线能力信息;也就是,如果辅基站S-NG-RAN node为gNB,则含有UE对应NR的终端无线能力信息,即UE NR Radio Capability;如果辅基站S-NG-RAN node为ng-eNB,则含有UE对应E-UTRA的终端无线能力信息,即UE E-UTRA Radio Capability。
辅基站反馈Xn接口终端无线能力检查回复消息XnAP:UE RADIO CAPABILITY CHECK RESPONSE给主基站;XnAP:UE RADIO CAPABILITY CHECK RESPONSE中携带辅基站是否支持指定业务的指示信息;其中,“指定业务”至少包含IMS Voice业务,即:IMS Voice Support Indicator with S-Node=supported or not supported。上述相关信息,可以通过单个联合信元,或者多个独立的信元去表达承载。所谓“联合信元”或下述的“联合指示信息”具体指:当主基站MN或辅基站SN其中之一能够支持“指定业务”,则将IMS Voice Support Indicator设值为supported;当主基站MN和辅基站SN都不能够支持“指定业务”,则将IMS Voice Support Indicator设值为Not supported,因此这种情况下不需要引入单独的新信元IMS Voice Support Indicator with S-Node。
根据XnAP:UE RADIO CAPABILITY CHECK RESPONSE向核心网侧反馈NGAP:UE RADIO CAPABILITY CHECK RESPONSE;NGAP:UE RADIO CAPABILITY CHECK RESPONSE中携带主基站和辅基站各自是否支持指定业务的指示信息,或主辅基站是否支持指定业务的联合指示信息。
在一些实施例中,辅基站反馈XnAP:UE RADIO CAPABILITY CHECK RESPONSE给主基站可以包括:
XnAP:UE RADIO CAPABILITY CHECK RESPONSE中携带终端在不同RAT制式下分别能否支持指定业务的指示信息。其中,至少含有UE在NR和E-UTRA不同RAT制式下分别能否支持“指定业务”的指示信息。
在一些实施例中,主基站向辅基站发起XnAP:UE RADIO CAPABILITY CHECK REQUEST在核心网侧向主基站发起NGAP:UE RADIO CAPABILITY CHECK REQUEST之前或之后。
在一些实施例中,向核心网侧反馈NGAP:UE RADIO CAPABILITY CHECK RESPONSE可以包括:
主基站向辅基站发起Xn接口5G DC相关流程信息;Xn接口5G DC相关流程信息中至少含有面向辅基站对应类型的终端无线能力信息;也就是说,如果辅基站S-NG-RAN node为gNB,则含有UE对应NR的终端无线能力信息;如果辅基站S-NG-RAN node为ng-eNB,则含有UE对应E-UTRA的终端无线能力信息。
辅基站反馈Xn接口5G DC相关流程回复信息主基站;Xn接口5G DC相关流程回复信息中携带辅基站是否支持指定业务的指示信息;其中,“指定业务”至少包含IMS Voice业务,即:IMS Voice Support Indicator with S-Node=supported or not supported。上述相关信息,可以通过单个联合信元,或者多个独立的信元去表达承载。
根据Xn接口5G DC相关流程回复信息向核心网侧反馈NGAP:UE RADIO CAPABILITY CHECK RESPONSE;NGAP:UE RADIO CAPABILITY CHECK RESPONSE中携带主基站和辅基站各自是否支持指定业务的指示信息,或主辅基站是否支持指定业务的联合指示信息。
在一些实施例中,辅基站反馈Xn接口5G DC相关流程回复信息给主基站可以包括:
Xn接口5G DC相关流程回复信息中携带终端在不同RAT制式下分别能否支持指定业务的指示信息。其中,至少含有UE在NR和E-UTRA不同RAT制式下分别能否支持“指定业务”的指示信息。
在一些实施例中,Xn接口5G DC相关流程信息包括:辅节点添加请求消息S-NODE ADDITION REQUEST、辅节点修改请求消息S-NODE MODIFICATION REQUEST中的任意一种;
当Xn接口5G DC相关流程信息为S-NODE ADDITION REQUEST时,Xn接口5G DC相关流程回复信息包括:辅节点添加请求确认消息S-NODE ADDITION REQUEST ACKNOWLEDGE;
当Xn接口5G DC相关流程信息为S-NODE MODIFICATION REQUEST时,Xn接口5G DC相关流程回复信息包括:辅节点修改请求确认消息S-NODE MODIFICATION REQUEST ACKNOWLEDGE。
在一些实施例中,主基站向辅基站发起Xn接口5G DC相关流程信息在核心网侧向主基站发起NGAP:UE RADIO CAPABILITY CHECK REQUEST之前或之后。
在一些实施例中,NGAP:UE RADIO CAPABILITY CHECK REQUEST中至少包括对应NR和E-UTRA两种不同RAT制式的终端无线能力信息。可选的,至少含有UE分别对应NR和E-UTRA不同RAT制式的终端无线能力信息,即:UE NR Radio Capability和UE E-UTRA Radio Capability。上述对应于不同RAT制式的终端无线能力信息,可以通过单个联合信元或者多个独立的信元去表达承载。
在一些实施例中,指定业务包括基于IP多媒体子系统的语音业务IMS voice业务、基于IP多媒体子系统的视频业务IMS video业务中的至少一种。
本实施例提供了一种网络处理装置,核心网侧向主基站发起NGAP:UE RADIO CAPABILITY CHECK REQUEST;所述NGAP:UE RADIO CAPABILITY CHECK REQUEST包括终端通过双连接或多连接所接入的各基站的终端无线能力信息,然后接收主基站反馈的NGAP:UE RADIO CAPABILITY CHECK RESPONSE;所述NGAP:UE RADIO CAPABILITY CHECK RESPONSE中至少携带各基站是否支持指定业务的指示信息。从而核心网侧和基站之间的消息交互,实现终端通过双连接或多连接接入的各基站的指定业务的支持情况,从而为用户选择相应的基站承载指定业务提供了便利,保证了用户体验。
第十一实施例
请参考图17,图17为本实施例提供的一种核心网组成示意图,包括第一处理器171、第一存储器172和第一通信总线173;
第一通信总线173用于实现第一处理器171和第一存储器172之间的连接通信;
第一处理器171用于执行第一存储器172中存储的计算机程序,以实现本公开上述各实施例中的网络处理方法的流程,这里不再赘述。
第十二实施例
请参考图18,图18为本实施例提供的一种基站组成示意图,包括第二处理器181、第二存储器182和第二通信总线183;
第二通信总线183用于实现第二处理器181和第二存储器182之间的连接通信;
第二处理器181用于执行第二存储器182中存储的计算机程序,以实现本公开上述各实施例中的网络处理方法的流程,这里不再赘述。
第十三实施例
本实施例提供了一种计算机可读存储介质,该计算机可读存储介质中存储有一个或者多个计算机程序,计算机程序可被一个或者多个处理器执行,以实现前述各实施例中的网络处理方法,这里不再赘述。
显然,本领域的技术人员应该明白,上述本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储介质(ROM/RAM、磁碟、光盘)中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。所以,本公开不限制于任何特定的硬件和软件结合。
以上内容是结合具体的实施方式对本公开所作的进一步详细说明,不能认定本公开的具体实施只局限于这些说明。对于本公开所属技术领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本公开的保护范围。
工业实用性
本公开适用于移动通讯技术领域,从而核心网侧和基站之间的消息交互,实现终端通过双连接或多连接接入的各基站的指定业务的支持情况,实现为用户选择相应的基站承载指定业务提供了便利,保证了用户体验。

Claims (18)

  1. 一种网络处理方法,包括:
    核心网侧向主基站发起NG接口终端无线能力检查请求消息;所述NG接口终端无线能力检查请求消息包括终端通过双连接或多连接所接入的各基站的终端无线能力信息;
    接收主基站反馈的NG接口终端无线能力检查回复消息;所述NG接口终端无线能力检查回复消息中至少携带双连接或多连接下各基站是否支持指定业务的指示信息。
  2. 如权利要求1所述的网络处理方法,其中,所述接收主基站反馈的NG接口终端无线能力检查回复消息包括:
    主基站向辅基站发起Xn接口终端无线能力检查请求消息;所述Xn接口终端无线能力检查请求消息中至少含有面向所述辅基站对应类型的终端无线能力信息;
    所述辅基站反馈Xn接口终端无线能力检查回复消息给所述主基站;所述Xn接口终端无线能力检查回复消息中携带所述辅基站是否支持指定业务的指示信息;
    核心网侧接收所述主基站根据所述Xn接口终端无线能力检查回复消息反馈的所述NG接口终端无线能力检查回复消息;所述NG接口终端无线能力检查回复消息中携带所述主基站和辅基站各自是否支持指定业务的指示信息,或主辅基站是否支持指定业务的联合指示信息。
  3. 如权利要求2所述的网络处理方法,其中,所述辅基站反馈Xn接口终端无线能力检查回复消息给所述主基站包括:
    所述Xn接口终端无线能力检查回复消息中携带所述终端在不同RAT制式下分别能否支持指定业务的指示信息。
  4. 如权利要求2所述的网络处理方法,其中,所述主基站向辅基站发起Xn接口终端无线能力检查请求消息在所述核心网侧向主基站发起NG接口终端无线能力检查请求消息之前或之后。
  5. 如权利要求1所述的网络处理方法,其中,所述接收主基站反馈的NG接口终端无线能力检查回复消息包括:
    主基站向辅基站发起Xn接口5G DC相关流程信息;所述Xn接口5G DC相关流程信息中至少含有面向所述辅基站对应类型的终端无线能力信息;
    所述辅基站反馈Xn接口5G DC相关流程回复信息给所述主基站;所述Xn接口5G DC相关流程回复信息中携带所述辅基站是否支持指定业务的指示信息;
    核心网侧接收所述主基站根据所述Xn接口5G DC相关流程回复信息反馈的所述NG接口终端无线能力检查回复消息;所述NG接口终端无线能力检查回复消息中携带所述主基站和辅基站各自是否支持指定业务的指示信息,或主辅基站是否支持指定业务的联合指示信息。
  6. 如权利要求5所述的网络处理方法,其中,所述辅基站反馈Xn接口5G DC相关流程回复信息给所述主基站包括:
    所述Xn接口5G DC相关流程回复信息中携带所述终端在不同RAT制式下分别能否支持指定业务的指示信息。
  7. 如权利要求5所述的网络处理方法,其中,所述Xn接口5G DC相关流程信息包括:辅节点添加请求消息、辅节点修改请求消息中的任意一种;
    当所述Xn接口5G DC相关流程信息为辅节点添加请求消息时,所述Xn接口5G DC相关流程回复信息包括:辅节点添加请求确认消息;
    当所述Xn接口5G DC相关流程信息为辅节点修改请求消息时,所述Xn接口5G DC相关流程回复信息包括:辅节点修改请求确认消息。
  8. 如权利要求5所述的网络处理方法,其中,所述主基站向辅基站发起Xn接口5G DC相关流程信息在所述核心网侧向主基站发起NG接口终端无线能力检查请求消息之前或之后。
  9. 如权利要求1-8任一项所述的网络处理方法,其中,所述NG接口终端无线能力检查请求消息中至少包括对应NR和E-UTRA两种不同RAT制式的终端无线能力信息。
  10. 如权利要求1-8任一项所述的网络处理方法,其中,所述指定业务包括基于IP多媒体子系统的语音业务IMS voice业务、基于IP多媒体子系统的视频业务IMS video业务中的至少一种。
  11. 一种网络处理方法,包括:
    主基站接收核心网侧发起的NG接口终端无线能力检查请求消息;所述NG接口终端无线能力检查请求消息包括终端通过双连接或多连接所接入的各基站的终端无线能力信息;
    向核心网侧反馈NG接口终端无线能力检查回复消息;所述NG接口终端无线能力检查回复消息中至少携带双连接或多连接下各基站是否支持指定业务的指示信息。
  12. 如权利要求11所述的网络处理方法,其中,所述向核心网侧反馈NG接口终端无线能力检查回复消息包括:
    主基站向辅基站发起Xn接口终端无线能力检查请求消息;所述Xn接口终端无线能力检查请求消息中至少含有面向所述辅基站对应类型的终端无线能力信息;
    所述辅基站反馈Xn接口终端无线能力检查回复消息给所述主基站;所述Xn接口终端无线能力检查回复消息中携带所述辅基站是否支持指定业务的指示信息;
    根据所述Xn接口终端无线能力检查回复消息向核心网侧反馈所述NG接口终端无线能力检查回复消息;所述NG接口终端无线能力检查回复消息中携带所述主基站和辅基站各自是否支持指定业务的指示信息,或主辅基站是否支持指定业务的联合指示信息。
  13. 如权利要求11所述的网络处理方法,其中,所述向核心网侧反馈NG接口终端无线能力检查回复消息包括:
    主基站向辅基站发起Xn接口5G DC相关流程信息;所述Xn接口5G DC相关流程信息中至少含有面向所述辅基站对应类型的终端无线能力信息;
    所述辅基站反馈Xn接口5G DC相关流程回复信息所述主基站;所述Xn接口5G DC相关流程回复信息中携带所述辅基站是否支持指定业务的指示信息;
    根据所述Xn接口5G DC相关流程回复信息向核心网侧反馈所述NG接口终端无线能力检查回复消息;所述NG接口终端无线能力检查回复消息中携带所述主基站和辅基站各自是否支持指定业务的指示信息,或主辅基站是否支持指定业务的联合指示信息。
  14. 一种网络处理装置,包括:
    请求发起模块,设置为向主基站发起NG接口终端无线能力检查请求消息NG接口终端无线能力检查请求消息;所述NG接口终端无线能力检查请求消息包括终端通过双连接或多连接所接入的各基站的终端无线能力信息;
    回复接收模块,设置为接收主基站反馈的NG接口终端无线能力检查回复消息NG接口终端无线能力检查回复消息;所述NG接口终端无线能力检查回复消息中至少携带双连接或多连接下各基站是否支持指定业务的指示信息。
  15. 一种网络处理装置,包括:
    请求接收模块,设置为接收核心网侧发起的NG接口终端无线能力检查请求消息;所述NG接口终端无线能力检查请求消息包括终端通过双连接或多连接所接入的各基站的终端无线能力信息;
    回复发送模块,设置为向核心网侧反馈NG接口终端无线能力检查回复消息;所述NG接口终端无线能力检查回复消息中至少携带双连接或多连接下各基站是否支持指定业务的指示信息。
  16. 一种核心网,包括第一处理器、第一存储器和第一通信总线;
    所述第一通信总线设置为实现所述第一处理器和第一存储器之间的连接通信;
    所述第一处理器设置为执行所述第一存储器中存储的计算机程序,以实现如权利要求1-10任一项所述网络处理方法的步骤。
  17. 一种基站,包括第二处理器、第二存储器和第二通信总线;
    所述第二通信总线设置为实现所述第二处理器和第二存储器之间的连接通信;
    所述第二处理器设置为执行所述第二存储器中存储的计算机程序,以实现如权利要求11-13任一项所述网络处理方法的步骤。
  18. 一种计算机可读存储介质,其中,所述计算机可读存储介质中存储有一个或者多个计算机程序,所述计算机程序可被一个或者多个处理器执行,以实现如权利要求1-10任一项所述网络处理方法的步骤,或如权利要求11-13任一项所述的网络处理方法的步骤。
PCT/CN2019/083961 2018-06-22 2019-04-23 网络处理方法、装置、核心网、基站和可读存储介质 WO2019242398A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19823192.0A EP3813427B1 (en) 2018-06-22 2019-04-23 Network processing methods, apparatuses, core network node, base station and readable storage medium for performing efficient dual-connectivity or multi-connectivity
US17/251,995 US11641687B2 (en) 2018-06-22 2019-04-23 Network processing method and apparatus, core network, base station and readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810654544.8A CN110636556B (zh) 2018-06-22 2018-06-22 网络处理方法、装置、核心网、基站和可读存储介质
CN201810654544.8 2018-06-22

Publications (1)

Publication Number Publication Date
WO2019242398A1 true WO2019242398A1 (zh) 2019-12-26

Family

ID=68967705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083961 WO2019242398A1 (zh) 2018-06-22 2019-04-23 网络处理方法、装置、核心网、基站和可读存储介质

Country Status (4)

Country Link
US (1) US11641687B2 (zh)
EP (1) EP3813427B1 (zh)
CN (1) CN110636556B (zh)
WO (1) WO2019242398A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3826210A4 (en) * 2018-07-20 2022-04-27 ZTE Corporation METHOD AND DEVICE FOR TRANSMISSION OF CONTROL SIGNALING, SUPPLYING BASE STATION AND STORAGE MEDIUM

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112703805A (zh) * 2018-09-26 2021-04-23 Oppo广东移动通信有限公司 无线通信方法和基站
US12047424B2 (en) * 2020-02-12 2024-07-23 Apple Inc. IMS support for non-voice services
CN113825184B (zh) * 2020-06-19 2022-10-11 大唐移动通信设备有限公司 小区切换方法、装置、电子设备及计算机可读存储介质
CN113179119B (zh) * 2021-04-25 2022-04-19 广州爱浦路网络技术有限公司 天地一体化融合网络系统、消息传输方法和核心网系统
CN115802335B (zh) * 2022-11-01 2024-07-23 中国联合网络通信集团有限公司 一种终端VoNR能力的获取方法、装置及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107872878A (zh) * 2016-09-22 2018-04-03 夏普株式会社 用户设备、基站和相关方法
WO2018062286A1 (ja) * 2016-09-28 2018-04-05 日本電気株式会社 通信システム、無線アクセス装置、及び無線通信端末並びにこれらの制御方法
CN107889241A (zh) * 2016-09-30 2018-04-06 电信科学技术研究院 一种终端能力协商方法、终端及基站
WO2018086551A1 (en) * 2016-11-09 2018-05-17 Mediatek Inc. Enhanced multimedia call control in next generation mobile communication systems

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10206147B2 (en) * 2013-12-19 2019-02-12 Qualcomm Incorporated Serving gateway relocation and secondary node eligibility for dual connectivity
CN104936291A (zh) * 2014-03-21 2015-09-23 中兴通讯股份有限公司 一种控制终端能力的方法、终端及基站
WO2018031746A1 (en) * 2016-08-12 2018-02-15 Intel IP Corporation Long term evolution (lte) and new radio coexistence with reserved resource scheduling
US20190254097A1 (en) * 2016-10-26 2019-08-15 Nec Corporation Communication system, base station, control method, and computer readable medium
CN110324848B (zh) * 2017-06-16 2020-10-16 华为技术有限公司 信息处理方法、通信装置以及计算机存储介质
CN109429279A (zh) * 2017-08-21 2019-03-05 华为技术有限公司 一种选择无线接入网设备的方法及装置
CA3021658A1 (en) * 2017-10-20 2019-04-20 Comcast Cable Communications, Llc Non-access stratum capability information
CN110740023B (zh) * 2018-07-20 2022-04-29 中兴通讯股份有限公司 控制信令的发送方法及装置、服务基站、存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107872878A (zh) * 2016-09-22 2018-04-03 夏普株式会社 用户设备、基站和相关方法
WO2018062286A1 (ja) * 2016-09-28 2018-04-05 日本電気株式会社 通信システム、無線アクセス装置、及び無線通信端末並びにこれらの制御方法
CN107889241A (zh) * 2016-09-30 2018-04-06 电信科学技术研究院 一种终端能力协商方法、终端及基站
WO2018086551A1 (en) * 2016-11-09 2018-05-17 Mediatek Inc. Enhanced multimedia call control in next generation mobile communication systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3813427A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3826210A4 (en) * 2018-07-20 2022-04-27 ZTE Corporation METHOD AND DEVICE FOR TRANSMISSION OF CONTROL SIGNALING, SUPPLYING BASE STATION AND STORAGE MEDIUM

Also Published As

Publication number Publication date
EP3813427A4 (en) 2022-03-16
EP3813427B1 (en) 2023-08-09
CN110636556B (zh) 2024-02-20
EP3813427A1 (en) 2021-04-28
CN110636556A (zh) 2019-12-31
US20220046737A1 (en) 2022-02-10
US11641687B2 (en) 2023-05-02

Similar Documents

Publication Publication Date Title
WO2019242398A1 (zh) 网络处理方法、装置、核心网、基站和可读存储介质
US10911990B2 (en) Network handover method and related device
CN108811016B (zh) 一种支持切换的方法
WO2019137471A1 (zh) 通信方法、接入网设备和终端设备
EP3525545A1 (en) Method for selecting session and service continuity mode in wireless communication system and device therefor
US10827394B2 (en) Triggering selective fallback based on user subscription information
EP4040813A1 (en) Communication method, device and apparatus
CN101594285B (zh) 一种使用聚合最大比特率的方法、装置及系统
EP3763151B1 (en) Methods and system for carrying out a handover of a mobile communication device between different access networks
CN104641682A (zh) 在电路交换回退操作期间处理承载的方法和装置
MX2011003870A (es) Gestion de la calidad de servicios para auto-redireccionamiento en evolucion de largo plazo (lte).
WO2018028498A1 (zh) 一种数据传输方法、装置和系统
WO2019057072A1 (zh) 数据传输的方法及装置
EP3826210A1 (en) Method and device for transmitting control signaling, serving base station, and storage medium
US11974177B2 (en) Method and apparatus for system interworking
US20220141722A1 (en) Systems and methods for handover of dual connectivity user equipment
WO2013167205A1 (en) OFFLOADING OF TRAFFIC FROM THE ANCHOR DeNB IN A MOBILE RELAY SYSTEM
JP2023533422A (ja) デュアルコネクティビティ下でのサイドリンクリレー通信のための方法
CN113661734B (zh) 用于优化系统间切换的方法和装置
CN106572504B (zh) 集群系统切换的方法及装置
EP2437443B1 (en) Communication method, device and system
CN113132322B (zh) 一种通信的方法及装置
CN112368976B (zh) 用于执行组通信的终端和方法
WO2011157106A2 (zh) 一种实现业务数据流分流的方法、系统及相关装置
CN114731714A (zh) 一种会话建立的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19823192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019823192

Country of ref document: EP