WO2019242360A1 - 一种信道质量信息处理方法及装置 - Google Patents

一种信道质量信息处理方法及装置 Download PDF

Info

Publication number
WO2019242360A1
WO2019242360A1 PCT/CN2019/079239 CN2019079239W WO2019242360A1 WO 2019242360 A1 WO2019242360 A1 WO 2019242360A1 CN 2019079239 W CN2019079239 W CN 2019079239W WO 2019242360 A1 WO2019242360 A1 WO 2019242360A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel quality
prefabricated
csi
terminal
quality information
Prior art date
Application number
PCT/CN2019/079239
Other languages
English (en)
French (fr)
Inventor
戚丽丽
王俊玲
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019242360A1 publication Critical patent/WO2019242360A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to, but not limited to, wireless communication technologies, and in particular, to a method and device for processing channel quality information.
  • the departure angle (DOA) of the uplink and downlink channels has reciprocity.
  • the base station divides the cell into multiple prefabricated beams according to the range of the DOA, and selects activated prefabricated beams for the terminal from the divided multiple prefabricated beams according to a certain strategy. In this way, the base station can activate the prefabricated beams to the terminal. send data. Terminals with activated non-intersection of prefabricated beams can spatially multiplex the same time-frequency resources to increase network capacity.
  • CSI Channel State Information
  • the present disclosure provides a method and device for processing channel quality information, which can ensure the demodulation performance of a terminal, thereby improving network capacity.
  • the present disclosure provides a channel quality information processing method, including:
  • a beam that is consistent with the activated prefabricated beam is selected as a beam for reporting channel quality information.
  • the present disclosure further provides a device for implementing channel quality information processing, including a processor and a memory; wherein, the computer stores a computer program that can be run on the processor: and is configured to execute any one of the foregoing to implement channel quality. Steps of a method of information processing.
  • the present disclosure also provides a device for implementing channel quality information processing, including: a first determining module, a second determining module, and a processing module; wherein,
  • a first determining module configured to determine, according to a configured transmission parameter, a beam set for which channel quality reference information is periodically transmitted on a prefabricated beam;
  • a second determining module configured to determine an activated prefabricated beam of the terminal
  • the processing module is configured to select, from the determined beam set, a beam consistent with the activated prefabricated beam as a beam for reporting channel quality information.
  • the present disclosure further provides a computer-readable storage medium storing computer-executable instructions for performing the method for implementing channel quality information processing according to any one of the foregoing.
  • the technical solution of the present disclosure at least includes: determining a set of beams that the channel quality reference information is periodically transmitted on the prefabricated beam according to the configured transmission parameters; determining the activated prefabricated beam of the terminal; and selecting a beam consistent with the activated prefabricated beam from the determined beam set as the Beam for reporting channel quality information.
  • the embodiments of the present disclosure ensure the demodulation performance of the terminal, thereby improving the network capacity.
  • FIG. 1 is a flowchart of a channel quality information processing method of the present disclosure
  • FIG. 2 is a schematic structural diagram of a composition of a channel quality information processing apparatus of the present disclosure.
  • TM9 is a propagation mode defined in 3GPP Rel-10. Compared with the past, TM9 adds new Channel State Information-Reference Signal (CSI-RS, Channel State Information-Reference Signal), which is responsible for user-level channel measurement / Feedback. Different users can have different CSI-RS configurations. Combined with user-level pilot demodulation reference signals (DMRS, Demodulation Reference Signal), they can form a beam for users together, and achieve the effect that waves follow people. At the same time, the beam of the base station can be changed from a fatter cell-level beam to multiple narrower user-level beams. Irrelevant beams can be paired to achieve multi-user MIMO (MU-MIMO), thereby multiplexing spectrum resources. Increase network capacity.
  • CSI-RS Channel State Information-Reference Signal
  • DMRS Demodulation Reference Signal
  • the beam transmitted by the base station to the terminal i.e., the activated prefabricated beam
  • the cell reference signal e.g., multiple prefabricated cells in the cell
  • the solution for obtaining channel quality information can make a reference signal, such as a CSI-RS, measured by a terminal such as a TM9 terminal consistent with the terminal's active prefabricated beam, thereby obtaining accurate channel quality and ensuring the demodulation performance of the terminal. , Thereby increasing network capacity.
  • FIG. 1 is a flowchart of a channel quality information processing method of the present disclosure. As shown in FIG. 1, it includes:
  • Step 100 Determine a beam set that the channel quality reference information is periodically transmitted on the prefabricated beam according to the configured transmission parameters.
  • the cell is divided into multiple pre-formed beam coverages according to the DOA range, and each pre-formed beam corresponds to a DOA range.
  • the overlap between pre-made beams needs to be small enough.
  • the width of the DOA range covered by the prefabricated beam is related to the number of antennas of the base station. The more base station antennas, the narrower the width of the DOA range covered by the prefabricated beam.
  • the sending parameters include, but are not limited to, a signal sending period and an offset within the period.
  • this step includes:
  • the prefabricated beam corresponding to each channel quality reference information transmission period in the beam set is determined.
  • the channel quality reference information can be implemented to be transmitted in a rolling manner according to a pre-made beam period in the beam set.
  • determining a prefabricated beam corresponding to each channel quality reference information transmission cycle in the beam set includes: determining a prefabricated beam BF j corresponding to the transmitted channel quality reference information according to a preset periodic transmission policy , so that the channel quality reference information is prefabricated. Periodically transmitted on the beam.
  • the prefabricated beam BF j corresponding to the transmitted channel quality reference information is:
  • BF j (FrameNo CSI-RS ⁇ 1) mod BF NUM ;
  • BF j ((FrameNo CSI-RS ⁇ 1) +1) mod BF NUM ; where mod represents a modulo operation, and ⁇ represents a left shift.
  • the prefabricated beam BF j corresponding to the transmitted channel quality reference information is:
  • BF j (FrameNo CSI-RS / (I CSI-RS / 10)) mod BF NUM ;
  • Mod represents modulo operation.
  • the channel quality reference information is corresponding to the prefabricated beams, and the corresponding relationship is to correspond to all even-numbered prefabricated beams (in order from small to large), and then all odd-numbered prefabricated beams (in order from small to large).
  • the prefabricated beam BF j corresponding to the transmission channel quality reference information is:
  • BF j ((FrameNo CSI-RS ⁇ 1) mod BF NUM ) ⁇ 2;
  • BF j (((FrameNo CSI-RS ⁇ 1) +1) mod BF NUM ) ⁇ 2 + 1; where mod represents a modulo operation and ⁇ represents a left shift .
  • the above example is not used to limit the implementation of the periodic transmission strategy, as long as the prefabricated beam BF j corresponding to the transmission channel quality reference information is determined according to a preset periodic transmission strategy, so that the channel quality reference information is periodically transmitted on the prefabricated beam.
  • the channel quality reference information is a CSI-RS signal.
  • this step specifically includes: calculating a subframe for transmitting CSI-RS according to the configured CSI-RS signal transmission period I CSI-RS and the offset ⁇ CSI-RS within the period. No .; according to the prefabricated beam of the cell and the calculated subframe number of the transmitted CSI-RS, determine the prefabricated beam corresponding to each CIS-RS transmission cycle, and these prefabricated beams form a beam set.
  • the purpose of traversing and transmitting the CSI-RS signal of the cell according to the pre-made beams in the wave speed set can be achieved. That is, the base station traverses the pre-cast beams of the cell's CSI-RS signals in the determined beam set, that is, periodically sends the CSI-RS signals corresponding to the pre-cast beams every CSI-RS transmission period.
  • Step 101 Determine the active pre-cast beam of the terminal.
  • the terminal may include, but is not limited to, a terminal such as a TM9.
  • determining the terminal's activated prefabricated beam in this step includes:
  • the uplink channel is estimated by the uplink sounding signal of the terminal such as the TM9 terminal, and the terminal's activated prefabricated beam is selected from the prefabricated beams according to the set activation strategy.
  • the set activation strategy may include, but is not limited to, separately calculating the projection energy of the uplink channel on each prefabricated beam, and using the prefabricated beam corresponding to the maximum projection energy as the terminal's Activate the prefabricated beam.
  • one of the beams such as a beam with a small beam number, may be taken as the activated prefabricated beam of the terminal.
  • step 100 there is no strict execution order between step 100 and step 101 in the present disclosure.
  • Step 102 From the determined beam set, select a beam that is consistent with the activated prefabricated beam as a beam for reporting channel quality information.
  • the same beam as the activated prefabricated beam is sent to send the channel channel reference quality information, and the found beam is used as the beam that triggers the terminal to report the channel quality information, that is, the terminal is triggered according to the prefabricated beam.
  • Report aperiodic channel quality information At this time, the non-periodic channel quality information reported by the terminal is calculated based on the channel quality reference information signal measurement of the same prefabricated beam corresponding to the currently activated prefabricated beam. Therefore, the base station obtains accurate channel quality information for subsequent scheduling. , To achieve the beam domain space division multiplexing of the terminal, thereby improving the network capacity.
  • the reporting step is to wait for the next time to trigger the reporting of the channel quality reference information corresponding to the found pre-formed beam.
  • the trigger opportunity is discarded.
  • the purpose is to ensure that the aperiodic CSI of the terminal must be obtained by measuring the CSI-RS channel corresponding to the pre-cast beam of the terminal. Since the periodic CSI information reported by the terminal is not necessarily the result of the measurement of the CSI-RS signal corresponding to the pre-fabricated beam of the terminal, the aperiodic reported CSI information of the present disclosure will be used in the scheduling process.
  • the channel quality reference information of a cell such as a CSI-RS signal
  • a cell channel quality reference information such as a CSI-RS signal of a prefabricated beam
  • the cell channel quality reference information such as a CSI-RS signal of a prefabricated beam
  • the terminal By triggering the reporting of channel quality information on the selected beam, it is ensured that the channel quality reference signal such as CSI-RS that the terminal such as the TM9 terminal measures is consistent with the prefabricated beam activated by the terminal itself.
  • the accurate channel quality is ensured, thereby ensuring the demodulation performance of the terminal, thereby increasing the network capacity.
  • An embodiment of the present invention further provides a computer-readable storage medium storing computer-executable instructions, where the computer-executable instructions are used to execute the method for implementing channel quality information processing according to any one of the foregoing.
  • An embodiment of the present invention further provides a device for implementing channel quality information processing, including a processor and a memory; wherein the memory stores a computer program operable on the processor: for executing any of the foregoing to implement channel quality information processing Steps of the method.
  • FIG. 2 is a schematic structural diagram of a composition of a channel quality information processing device according to the present disclosure. As shown in FIG. 2, at least: a first determining module, a second determining module, and a processing module;
  • a first determining module configured to determine, according to a configured transmission parameter, a beam set for which channel quality reference information is periodically transmitted on a prefabricated beam;
  • a second determining module configured to determine an activated prefabricated beam of the terminal
  • the processing module is configured to select, from the determined beam set, a beam consistent with the activated prefabricated beam as a beam for reporting channel quality information.
  • the apparatus of the present disclosure further includes a pre-processing module configured to divide the cell into multiple pre-formed beams uniformly according to the range of the DOA, and each pre-formed beam corresponds to a DOA range.
  • a pre-processing module configured to divide the cell into multiple pre-formed beams uniformly according to the range of the DOA, and each pre-formed beam corresponds to a DOA range.
  • the sending parameters include, but are not limited to, a signal sending period and an offset within the period.
  • the first determining module is specifically configured as:
  • the channel quality erases the pre-cast beam corresponding to the information transmission period.
  • the channel quality reference information is a CSI-RS signal.
  • the second determining module is specifically configured as:
  • the uplink channel is estimated based on the terminal's uplink sounding signal, and the terminal's activated prefabricated beam is selected from the prefabricated beams according to the set policy.
  • the set strategy may include, but is not limited to, separately calculating the projection energy of the uplink channel on each prefabricated beam, and using the prefabricated beam corresponding to the maximum projection energy as the activation of the terminal. Precast beam.
  • the terminal may include, but is not limited to, a terminal such as a TM9.
  • processing module is specifically configured as:
  • the same beam as the activated prefabricated beam to transmit the channel channel quality information is searched, and the found beam is used as the beam for reporting channel quality information.
  • the processing module is further configured to: discard this time The trigger opportunity does not perform the reporting step, and waits for the next trigger to report the channel quality information corresponding to the found pre-formed beam.
  • PDCCH Physical Downlink Control Channel
  • the channel quality reference information of a cell such as a CSI-RS signal
  • a cell channel quality reference information such as a CSI-RS signal of a prefabricated beam
  • the terminal triggers the terminal to aperiodicly correspond to the prefabricated beam.
  • Report channel quality information such as CSI.
  • the FDD Massive MIMO scenario is taken as an example to describe the method for processing channel quality information in the present disclosure in detail.
  • the cell is divided into 7 prefabricated beams according to the range of the DOA, and the numbers are 0-6.
  • the CSI-RS transmission subframe is calculated according to the configured transmission parameters of the transmission CSI-RS.
  • the configuration parameters of the CSI-RS include: a transmission period I CSI-RS and an offset ⁇ CSI-RS within the period.
  • the value of I CSI-RS is 5
  • the value of ⁇ CSI-RS is 1, and the calculation is as follows: the radio frame number (FrameNo CSI-RS ) is 0, and the subframe number (SubFrameNo CSI-RS ) is The CSI-RS signal is transmitted at 1:00, and the next time the CSI-RS signal is transmitted with a wireless frame number of 0 and a subframe number of 6, the CSI-RS signal is transmitted in the same manner every 5 CSI-RS periods.
  • the number of prefabricated beams BF NUM is 7 beams, and the numbers are 0-6.
  • the CSI-RS signals are corresponding to the prefabricated beams in ascending order, and the corresponding CSI-RS is transmitted.
  • the prefabricated beam BF j is:
  • BF j (FrameNo CSI-RS ⁇ 1) mod BF NUM ;
  • BF j ((FrameNo CSI-RS ⁇ 1) +1) mod BF NUM ; where mod represents a modulo operation, and ⁇ represents a left shift.
  • the corresponding pre-cast beam number to be transmitted is 0; when the frame number is 0 and the subframe number is 6, the corresponding pre-cast beam number is 1.
  • the CSI-RS signals corresponding to the pre-fabricated beams of the cell are transmitted in turn.
  • the terminal's activated prefabricated beam i is determined according to the following formula:
  • the energy of P 0 , P 1 , P 2 , P 3 , P 4 , P 5 , and P 6 are respectively 800, 12000, 600, 300, 200, 180, 100, then, according to formula (1), it is easy to determine that the number of the active prefabricated beam of the terminal is 1.
  • the CSI-RS signal is sent to match the preformed beam sent by the CSI-RS in each cycle.
  • the terminal is triggered.
  • Aperiodic CSI report In the first embodiment, when the frame number is 0 and the subframe number is 6, the aperiodic CSI report of the terminal is triggered.
  • the aperiodic CSI information reported by the terminal obtained according to the method of the present disclosure can be used for subsequent scheduling. .
  • the cell is divided into 7 prefabricated beams according to the range of the DOA, and the numbers are 0-6.
  • the CSI-RS transmission subframe is calculated according to the configured transmission parameters of the transmission CSI-RS.
  • the configuration parameters of the CSI-RS include: a transmission period I CSI-RS and an offset ⁇ CSI-RS within the period.
  • the value of I CSI-RS is 10 and the value of ⁇ CSI-RS is 2, and the calculation is that the CSI-RS signal is transmitted when the wireless frame number is 0 and the subframe number is 2, and the next time CSI is transmitted -For the RS signal, when the wireless frame number is 1 and the subframe number is 2, the CSI-RS signal is sent every 1 CSI-RS period, such as 10ms.
  • the number of prefabricated beams BF NUM is 7 beams, and the numbers are 0-6. If the CSI-RS signals are corresponding to the prefabricated beams in ascending order, the prefabricated beams BF j corresponding to the CSI-RS are :
  • BF j (FrameNo CSI-RS / (I CSI-RS / 10)) mod BF NUM ;
  • Mod represents modulo operation.
  • the corresponding pre-cast beam number to be transmitted is 0; when the frame number is 1 and the subframe number is 2, the corresponding pre-cast beam number is 1.
  • the CSI-RS signals corresponding to the pre-fabricated beams of the cell are transmitted in turn.
  • the activated prefabricated beam i of the terminal is determined:
  • the energies of P 0 , P 1 , P 2 , P 3 , P 4 , P 5 , and P 6 are 12000, 12000, 600, 300, 200, 180, and 100, respectively, according to the formula ( 1) It is easy to determine that the number of the active prefabricated beam of the terminal is 0. It should be noted that in this embodiment, the energy of both beams is the maximum value. Then, a beam with a small beam number can be taken as the active prefabricated beam of the terminal. In the second embodiment, the prefabricated beam with a number of 0 . It should be noted that a large number can also be selected here, as long as one beam is used as the activated prefabricated beam of the terminal, and there is no limitation on which one is selected.
  • the preformed beam transmitted by the CSI-RS is matched.
  • the terminal is triggered.
  • the terminal reports aperiodic CSI.
  • the aperiodic CSI information reported by the terminal obtained according to the method of the present disclosure can be used for subsequent scheduling .
  • the CSI-RS transmission subframe is calculated according to the configured transmission parameters of the transmission CSI-RS.
  • the configuration parameters of the CSI-RS include: a transmission period I CSI-RS and an offset ⁇ CSI-RS within the period.
  • the value of I CSI-RS is 5, and the value of ⁇ CSI-RS is 1, and it is calculated that the CSI-RS signal is transmitted when the wireless frame number is 0 and the subframe number is 1, and the next time CSI is transmitted.
  • -For the RS signal when the radio frame number is 0 and the subframe number is 6, the CSI-RS signal is sent every 1 CSI-RS period, such as 5ms.
  • the number of prefabricated beams BF NUM is 11 beams, and the numbers are 0-10.
  • the CSI-RS signal is corresponding to the prefabricated beams, and the correspondence relationship is to first correspond to all even numbers (from small to large). Sequence of preformed beams), and then correspond to all the odd-numbered preformed beams (in ascending order). In this way, the pre-cast beam BF j corresponding to the transmission CSI-RS is:
  • BF j ((FrameNo CSI-RS ⁇ 1) mod BF NUM ) ⁇ 2;
  • BF j (((FrameNo CSI-RS ⁇ 1) +1) mod BF NUM ) ⁇ 2 + 1; where mod represents a modulo operation and ⁇ represents a left shift .
  • the corresponding pre-cast beam number to be transmitted is 0; when the frame number is 0 and the subframe number is 6, the corresponding pre-cast beam number is 1.
  • the CSI-RS signals corresponding to the pre-fabricated beams of the cell are transmitted in turn.
  • the activated prefabricated beam i of the terminal is determined:
  • the energies of P 0 , P 1 , P 2 , P 3 , P 4 , P 5 , and P 6 are 2000, 2000, 600 , 300 , 200 , 10080, 100 , 300 , 200 , 1280, respectively. , 500, then, according to formula (1), it is easy to determine that the number of the active prefabricated beam of the terminal is 5.
  • the prefabricated beam No. 5 matches the prefabricated beam sent by the CSI-RS in each CSI-RS signal transmission cycle.
  • the terminal is triggered.
  • the terminal reports aperiodic CSI.
  • the aperiodic CSI information reported by the terminal obtained according to the method of the present disclosure can be used for subsequent scheduling. .
  • the CSI-RS transmission subframe is calculated according to the configured transmission parameters of the transmission CSI-RS.
  • the configuration parameters of the CSI-RS include: a transmission period I CSI-RS and an offset ⁇ CSI-RS within the period.
  • the CSI-RS signal is transmitted when the wireless frame number is 0 and the subframe number is 2, and the next transmission
  • the CSI-RS signal is a wireless frame number of 1 and a subframe number of 2
  • the CSI-RS signal is transmitted in the same order every 10 CSI-RS periods, such as 10 ms.
  • the number of prefabricated beams BF NUM is 11 beams, and the numbers are 0-10.
  • the CSI-RS signals are corresponding to the prefabricated beams in ascending order, and the corresponding CSI-RS is transmitted.
  • the prefabricated beam BF j is:
  • BF j (FrameNo CSI-RS / (I CSI-RS / 10)) mod BF NUM ;
  • Mod represents modulo operation.
  • the corresponding pre-cast beam number to be transmitted is 0; when the frame number is 1 and the subframe number is 2, the corresponding pre-cast beam number is 1.
  • the CSI-RS signals corresponding to the pre-fabricated beams of the cell are transmitted in turn.
  • the activated prefabricated beam i of the terminal is determined:
  • the energies of P 0 , P 1 , P 2 , P 3 , P 4 , P 5 , and P 6 are 2000, 2000, 600 , 300 , 200 , 1080, 100 , 300 , 200 , and 12800, respectively. , 500, then, according to formula (1), it is easy to determine that the number of the active prefabricated beam of the terminal is 9.
  • the prefabricated beam No. 9 matches the prefabricated beam sent by the CSI-RS in each CSI-RS signal transmission period.
  • the terminal is triggered.
  • the frame number is 9 and the subframe number is 2, an aperiodic CSI report of the terminal is triggered.
  • the priority of the terminal is relatively low at the time of scheduling, the resource that triggers DCI cannot be allocated during resource allocation, and aperiodic CSI reporting cannot be triggered. Then, according to the embodiment of the present disclosure, no Trigger the aperiodic CSI report of this terminal. After waiting for I CSI-RS ⁇ BF NUM subframes, the aperiodic CSI report of the terminal is triggered when the number of the pre-cast beam sent by the CSI-RS is 9 again.
  • the aperiodic CSI information reported by the terminal obtained according to the method of the present disclosure can be used for subsequent scheduling. .
  • the method and device for processing channel quality information provided by the embodiments of the present invention have the following beneficial effects: the demodulation performance of the terminal is ensured, and the network capacity is further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种信道质量信息处理方法及装置,包括:根据配置的发送参数确定信道质量参考信息在预制波束上周期发送的波束集合;确定终端的激活预制波束;从确定出的波束集合中选择与激活预制波束一致的波束作为上报信道质量信息的波束。本公开实施例保证了终端的解调性能,进而提升了网络容量。

Description

一种信道质量信息处理方法及装置 技术领域
本公开涉及但不限于无线通信技术,尤指一种信道质量信息处理方法及装置。
背景技术
随着第四代(4G,the 4th Generation mobile communication technology)移动通信系统的持续发展,大规模多输入多输出(Massive MIMO,Massive Multiple Input Multiple Output)技术将成为提升网络容量的一项重要技术。
在频分双工(FDD,Frequency Divided Duplex)制式下,上下行信道的离开角(DOA,Departure Of Angle)具有互易性。在Massive MIMO技术中,基站将小区按照DOA范围划分为多个预制波束覆盖,并且按照一定的策略从划分的多个预制波束中为终端选择激活预制波束,这样,基站可以通过激活预制波束向终端发送数据。激活预制波束无交集的终端可以空分复用相同的时频资源从而提高网络容量。
在FDD制式下,Massive MIMO技术策略中,由于小区中存在多个预制波束,而终端在特定时刻只有一个激活的预制波束,这样,对如传输模式9(TM9,Transmission Mode 9)的用户来讲,会导致基站向终端发送数据的波束(即激活的预制波束)与发送小区参考信号的波束(如小区多个预制波束)可能不同,这样会直接导致终端估计的下行信道质量如信道状态信息(CSI,Channel State Information)与实际数据发送的信道不匹配,从而影响了终端的解调性能。
发明内容
本公开提供一种信道质量信息处理方法及装置,能够保证终端的解调性能,进而提升网络容量。
本公开提供了一种信道质量信息处理方法,包括:
根据配置的发送参数确定信道质量参考信息在预制波束上周期发送的波束集合;
确定终端的激活预制波束;
从确定出的波束集合中选择与激活预制波束一致的波束作为上报信道质量信息的波束。
本公开又提供了一种实现信道质量信息处理的设备,包括处理器、存储器;其中,存储器上存储有可在处理器上运行的计算机程序:用于执行上述任一项所述的实现信道质量信息处理的方法的步骤。
本公开还提供了一种实现信道质量信息处理的装置,包括:第一确定模块、第二确定模块,处理模块;其中,
第一确定模块,设置为根据配置的发送参数确定信道质量参考信息在预制波束上周期发送的波束集合;
第二确定模块,设置为确定终端的激活预制波束;
处理模块,设置为从确定出的波束集合中选择与激活预制波束一致的波束作为上报信道质量信息的波束。
本公开再提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一项所述的实现信道质量信息处理的方法。
本公开技术方案至少包括:根据配置的发送参数确定信道质量参考信息在预制波束上周期发送的波束集合;确定终端的激活预制波束;从确定出的波束集合中选择与激活预制波束一致的波束作为上报信道质量信息的波束。本公开实施例保证了终端的解调性能,进而提升了网络容量。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为本公开信道质量信息处理方法的流程图;
图2为本公开信道质量信息处理装置的组成结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
TM9是在3GPP Rel-10中定义的一种传播模式,相较以往,TM9增加了新的信道状态信息-参考信号(CSI-RS,Channel State Information-Reference Signal),负责用户级的信道测量/反馈。不同的用户可以有不同的CSI-RS配置,结合用户级导频的解调参考信号(DMRS,Demodulation Reference Signal),可以一起形成针对用户的波束,达到波随人动的效果。同时,基站的波束可以从以往一个较胖的小区级波束变为多个较窄的用户级波束,不相干的波束可以组成配对,实现多用户MIMO(MU-MIMO),从而复用频谱资源,提升网络容量。
但是,如果基站向终端发送数据的波束(即激活的预制波束)与发送小区参考信号的波束(如小区多个预制波束)可能不同,则会导致终端估计的下行信道质量如CSI与实际数据发送的信道不匹配,从而影响终端的解调性能。本公开提供的获取信道质量信息的方案,可以使得终端如TM9终端进行测量的参考信号如CSI-RS与终端本身的激活预制波束保持一致,从而能获得准确的信道质量,保证终端的解调性能,进而提升网络容量。
图1为本公开信道质量信息处理方法的流程图,如图1所示,包括:
步骤100:根据配置的发送参数确定信道质量参考信息在预制波束上 周期发送的波束集合。
本步骤之前还包括:
将小区按照DOA范围划分为多个预制波束覆盖,每个预制波束对应一个DOA范围。预制波束之间交叠要求足够小。其中,预制波束覆盖的DOA范围宽度与基站的天线个数有关,基站天线越多,则预制波束覆盖的DOA范围宽度可以越窄。
可选地,发送参数包括但不限于:信号发送周期和周期内的偏移量。
可选地,本步骤包括:
按照配置的信号发送周期和在周期内的偏移量计算发送信道质量参考信息的无线帧号(FrameNo CSI-RS)和子帧号(SubFrameNo CSI-RS);
根据小区的预制波束和计算出的发送信道质量参考信息的无线帧号和子帧号,确定波束集合中的每个信道质量参考信息发送周期对应的预制波束。这样,可以实现信道质量参考信息按照波束集合中的预制波束周期滚动发送。
可选地,确定波束集合中的每个信道质量参考信息发送周期对应的预制波束包括:按照预先设置的周期发送策略确定发送信道质量参考信息对应的预制波束BF j,使得信道质量参考信息在预制波束上周期发送。
下面结合实例对周期发送策略进行举例说明。
比如:将信道质量参考信息与预制波束的编号从小到大的顺序对应,则发送信道质量参考信息对应的预制波束BF j为:
当SubFrameNo CSI-RS小于5时,BF j=(FrameNo CSI-RS<<1)mod BF NUM
当SubFrameNo CSI-RS大于或等于5时,BF j=((FrameNo CSI-RS<<1)+1)mod BF NUM;其中,mod表示取模运算,<<表示左移。
又如:将信道质量参考信息与预制波束的编号从小到大的顺序对应,则发送信道质量参考信息对应的预制波束BF j为:
BF j=(FrameNo CSI-RS/(I CSI-RS/10))mod BF NUM;其中,Mod表示取模运 算。
再如:将信道质量参考信息与预制波束对应,对应关系为先对应所有偶数编号(按照从小到大的顺序)的预制波束,再对应所有奇数编号(按照从小到大的顺序)的预制波束。这样,发送信道质量参考信息对应的预制波束BF j为:
当SubFrameNo CSI-RS小于5时,BF j=((FrameNo CSI-RS<<1)mod BF NUM)×2;
当SubFrameNo CSI-RS大于或等于5时,BF j=(((FrameNo CSI-RS<<1)+1)mod BF NUM)×2+1;其中,mod表示取模运算,<<表示左移。
上述实例并不用于限定周期发送策略的实现,只要按照预先设置的周期发送策略确定发送信道质量参考信息对应的预制波束BF j使得信道质量参考信息在预制波束上周期发送即可。
可选地,在FDD Massive MIMO场景下,信道质量参考信息为CSI-RS信号。
以信道质量参考信息为CSI-RS为例,本步骤具体包括:按照配置的CSI-RS信号发送周期I CSI-RS和在周期内的偏移量Δ CSI-RS计算发送CSI-RS的子帧号;根据小区的预制波束和计算出的发送CSI-RS的子帧号,确定每个CIS-RS发送周期对应的预制波束,这些预制波束形成波束集合。这样,就可以实现小区CSI-RS信号按照波速集合中的预制波束遍历发送的目的。也就是说,基站将小区的CSI-RS信号在确定出的波束集合中的预制波束进行遍历发送,即每隔CSI-RS发送周期周期性下发对应预制波束的CSI-RS信号。
步骤101:确定终端的激活预制波束。
可选地,终端可以包括但不限于如TM9终端。
可选地,本步骤中的确定终端的激活预制波束包括:
通过终端如TM9终端上行探测信号估计上行信道,按照设置的激活策略从预制波束中选择终端的激活预制波束。
可选地,由于上下行信道的DOA具有互易性,设置的激活策略可以包括但不限于:分别计算上行信道在各预制波束的投影能量,将最大的投影能量对应的预制波束作为该终端的激活预制波束。
可选地,当存在多个对应最大的投影能量的预制波束时,可以取其中一个波束如波束编号小的波束作为该终端的激活预制波束。
需要说明的是,本公开中的步骤100与步骤101之间并没有严格的先后执行顺序。
步骤102:从确定出的波束集合中选择与激活预制波束一致的波束作为上报信道质量信息的波束。
按照终端的激活预制波束,从得到的波束集合中查找与激活预制波束相同的发送小区信道参考质量信息的波束,将查找出的波束作为触发终端上报信道质量信息的波束即根据预制波束触发了终端非周期性的信道质量信息上报。此时,终端上报的非周期性的信道质量信息是根据当前激活的预制波束对应的相同预制波束的信道质量参考信息信号测量计算得到的,因此,基站得到了准确的信道质量信息用于后续调度,实现对终端的波束域空分复用,从而提升了网络容量。
可选地,如果由于下行物理控制信道(PDCCH,Physical Downlink Control Channel)资源不够或者其他原因等,不能触发该终端的非周期性的信道质量信息的上报,则丢弃此次触发机会即不执行此时上报的步骤,等下一次再触发上报对应查找到的预制波束的信道质量参考信息。
以信道质量信息为CSI-RS为例,如果由于PDCCH资源不够或者其他原因等,如果计算得到的CSI-RS下发子帧无法下发触发非周期CSI的DCI0格式,则丢弃此次触发机会,等下一次对应该预制波束的CSI-RS信号,目的是保证该终端的非周期性CSI必须是对应该终端的预制波束的CSI-RS信道测量得到的。由于终端上报的周期性CSI信息不一定是对应该终端的预制波束CSI-RS信号测量的结果,因此,调度过程中会使用本公开非周期性上报的CSI信息。
本公开实施例中,对小区的信道质量参考信息如CSI-RS信号按照预制波束进行遍历发送,匹配小区信道质量参考信息如CSI-RS信号的预制波束,触发终端对应预制波束的非周期性的信道质量信息如CSI的上报。通过在选择出的波束上触发信道质量信息的上报,确保了终端如TM9终端进行测量的信道质量参考信号如CSI-RS所在的预制波束与终端本身的激活预制波束是一致的,这样,必然获得了准确的信道质量,从而保证了终端的解调性能,进而提升了网络容量。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一项所述的实现信道质量信息处理的方法。
本发明实施例还提供一种实现信道质量信息处理的设备,包括处理器、存储器;其中,存储器上存储有可在处理器上运行的计算机程序:用于执行上述任一项实现信道质量信息处理的方法的步骤。
图2为本公开信道质量信息处理装置的组成结构示意图,如图2所示,至少包括:第一确定模块、第二确定模块,处理模块;其中,
第一确定模块,设置为根据配置的发送参数确定信道质量参考信息在预制波束上周期发送的波束集合;
第二确定模块,设置为确定终端的激活预制波束;
处理模块,设置为从确定出的波束集合中选择与激活预制波束一致的波束作为上报信道质量信息的波束。
可选地,本公开装置还包括:预处理模块,设置为将小区按照DOA范围均匀划分为多个预制波束覆盖,每个预制波束对应一个DOA范围。
可选地,发送参数包括但不限于:信号发送周期和周期内的偏移量。
可选地,第一确定模块具体设置为:
按照配置的信号发送周期和在周期内的偏移量计算发送信道质量参考信息的子帧号;根据小区的预制波束和计算出的发送信道质量参考信息 的子帧号,确定波束集合中每个信道质量擦没考信息发送周期对应的预制波束。
可选地,在FDD Massive MIMO场景下,信道质量参考信息为CSI-RS信号。
可选地,第二确定模块具体设置为:
通过终端上行探测信号估计上行信道,按照设置的策略从预制波束中选择终端的激活预制波束。
可选地,由于上下行信道的DOA具有互易性,设置的策略可以包括但不限于:分别计算上行信道在各预制波束的投影能量,将最大的投影能量对应的预制波束作为该终端的激活预制波束。
可选地,终端可以包括但不限于如TM9终端。
可选地,处理模块具体设置为:
按照终端的激活预制波束,从得到的波束集合中查找与激活预制波束相同的发送小区信道质量信息的波束,将查找出的波束作为上报信道质量信息的波束。
可选地,如果由于下行物理控制信道(PDCCH,Physical Downlink Control Channel)资源不够或者其他原因等,不能触发该终端的非周期性信道质量信息的上报,那么,处理模块还设置为:丢弃此次触发机会即不执行此次上报的步骤,等下一次再触发上报对应查找到的预制波束的信道质量信息。
本公开实施例中,对小区的信道质量参考信息如CSI-RS信号按照预制波束进行遍历发送,匹配小区信道质量参考信息如CSI-RS信号的预制波束,触发终端对应预制波束的非周期性的信道质量信息如CSI的上报。通过在选择出的波束上触发信道质量信息的上报,确保了终端如TM9终端进行测量的信道质量参考信号如CSI-RS所在的预制波束与终端本身的激活预制波束是一致的,这样,必然获得了准确的信道质量,从而保证了终端的解调性能,进而提升了网络容量。
下面以FDD Massive MIMO场景为例,详细描述本公开实现信道质量信息处理方法。
第一实施例
假设将小区按照DOA范围划分为7个预制波束覆盖,编号分别为0-6。
一方面,按照配置的发送CSI-RS的发送参数计算CSI-RS发送子帧,其中,CSI-RS的配置参数包括:发送周期I CSI-RS和在周期内的偏移量Δ CSI-RS
第一实施例中,假设I CSI-RS取值为5,Δ CSI-RS取值为1,计算得到:无线帧号(FrameNo CSI-RS)为0,子帧号(SubFrameNo CSI-RS)为1时发送CSI-RS信号,下一次发送CSI-RS信号为无线帧号为0,子帧号为6时,依次类推,每隔I CSI-RS周期如5ms发送CSI-RS信号。
第一实施例中,预制波束的数量BF NUM为7个波束,编号为0-6,本实施例中,将CSI-RS信号与预制波束从小到大的顺序对应,则发送CSI-RS对应的预制波束BF j为:
当SubFrameNo CSI-RS小于5时,BF j=(FrameNo CSI-RS<<1)mod BF NUM
当SubFrameNo CSI-RS大于或等于5时,BF j=((FrameNo CSI-RS<<1)+1)mod BF NUM;其中,mod表示取模运算,<<表示左移。
按照上述计算方法,当帧号为0,子帧号为1时,对应需要发送的预制波束的编号为0;当帧号为0,子帧号为6时,对应发送的预制波束的编号为1,依次类推,一直循环轮流发送小区预制波束对应的CSI-RS信号。
另一方面,根据终端在各个预制波束上的投影能量P i,并按照下面公式确定该终端的激活预制波束i:
i=max(P 0,P 1,...,P N)         (1)
其中,i=0~6;N=6,max表示取最大值运算;第一实施例中,假设P 0、P 1、P 2、P 3、P 4、P 5、P 6的能量分别为800、12000、600、300、200、180、100,那么,按照公式(1)容易确定出该终端的激活预制波束的编号为 1。
根据确定出的终端的激活预制波束i即编号为1的预制波束,在每个CSI-RS信号发送周期匹配CSI-RS发送的预制波束,当CSI-RS发送的预制波束为1时,触发终端的非周期性CSI上报。第一实施例中,在帧号为0,子帧号为6时触发终端的非周期性CSI上报。
这样,保证了终端上报的周期性CSI信息对应的是该终端的预制波束CSI-RS信号测量的结果,因此,按照本公开方法得到的终端上报的非周期性CSI信息是可以用于后续调度的。
第二实施例
假设将小区按照DOA范围划分为7个预制波束覆盖,编号分别为0-6。
一方面,按照配置的发送CSI-RS的发送参数计算CSI-RS发送子帧,其中,CSI-RS的配置参数包括:发送周期I CSI-RS和在周期内的偏移量Δ CSI-RS
第二实施例中,假设I CSI-RS取值为10,Δ CSI-RS取值为2,计算得到:无线帧号为0,子帧号为2时发送CSI-RS信号,下一次发送CSI-RS信号为无线帧号为1,子帧号为2时,依次类推,每隔I CSI-RS周期如10ms发送CSI-RS信号。
第二实施例中,预制波束的数量BF NUM为7个波束,编号为0-6,将CSI-RS信号与预制波束从小到大的顺序对应,则发送CSI-RS对应的预制波束BF j为:
BF j=(FrameNo CSI-RS/(I CSI-RS/10))mod BF NUM;其中,Mod表示取模运算。
按照上述计算方法,当帧号为0,子帧号为2时,对应需要发送的预制波束的编号为0;当帧号为1,子帧号为2时,对应发送的预制波束的编号为1,依次类推,一直循环轮流发送小区预制波束对应的CSI-RS信号。
另一方面,根据终端在各个预制波束上的投影能量P i,并按照公式(1)确定该终端的激活预制波束i:
第二实施例中,假设P 0、P 1、P 2、P 3、P 4、P 5、P 6的能量分别为12000、12000、600、300、200、180、100,那么,按照公式(1)容易确定出该终端的激活预制波束的编号为0。需要说明的是,本实施例中有两个波束的能量都为最大值,那么,可以取波束编号小的波束作为该终端的激活预制波束,第二实施例中即为编号为0的预制波束。需要说明的是,这里也可以选编号大的,只要从中用一个波束作为该终端的激活预制波束即可,具体选哪个并没有限制。
根据确定出的终端的激活预制波束i即编号为0的预制波束,在每个CSI-RS信号发送周期匹配CSI-RS发送的预制波束,当CSI-RS发送的预制波束为0时,触发终端的非周期性CSI上报。第二实施例中,在帧号为0,子帧号为2时触发终端的非周期性CSI上报。
这样,保证了终端上报的周期性CSI信息对应的是该终端的预制波束CSI-RS信号测量的结果,因此,按照本公开方法得到的终端上报的非周期性CSI信息是可以用于后续调度的。
第三实施例
假设将小区按照DOA范围划分为11个预制波束覆盖,编号分别为0-10。
一方面,按照配置的发送CSI-RS的发送参数计算CSI-RS发送子帧,其中,CSI-RS的配置参数包括:发送周期I CSI-RS和在周期内的偏移量Δ CSI-RS
第三实施例中,假设I CSI-RS取值为5,Δ CSI-RS取值为1,计算得到:无线帧号为0,子帧号为1时发送CSI-RS信号,下一次发送CSI-RS信号为无线帧号为0,子帧号为6时,依次类推,每隔I CSI-RS周期如5ms发送CSI-RS信号。
第三实施例中,预制波束的数量BF NUM为11个波束,编号为0-10,本实施例中,将CSI-RS信号与预制波束对应,对应关系为先对应所有偶数编号(从小到大的顺序)的预制波束,再对应所有奇数编号(从小到大的顺序)的预制波束。这样,发送CSI-RS对应的预制波束BF j为:
当SubFrameNo CSI-RS小于5时,BF j=((FrameNo CSI-RS<<1)mod BF NUM)×2;
当SubFrameNo CSI-RS大于或等于5时,BF j=(((FrameNo CSI-RS<<1)+1)mod BF NUM)×2+1;其中,mod表示取模运算,<<表示左移。
按照上述计算方法,当帧号为0,子帧号为1时,对应需要发送的预制波束的编号为0;当帧号为0,子帧号为6时,对应发送的预制波束的编号为1,依次类推,一直循环轮流发送小区预制波束对应的CSI-RS信号。
另一方面,根据终端在各个预制波束上的投影能量P i,并按照公式(1)确定该终端的激活预制波束i:
第三实施例中,假设P 0、P 1、P 2、P 3、P 4、P 5、P 6的能量分别为2000、2000、600、300、200、10080、100、300、200、1280、500,那么,按照公式(1)容易确定出该终端的激活预制波束的编号为5。
根据确定出的终端的激活预制波束i即编号为5的预制波束,在每个CSI-RS信号发送周期匹配CSI-RS发送的预制波束,当CSI-RS发送的预制波束为5时,触发终端的非周期性CSI上报。第三实施例中,在帧号为4,子帧号为1时触发终端的非周期性CSI上报。
这样,保证了终端上报的周期性CSI信息对应的是该终端的预制波束CSI-RS信号测量的结果,因此,按照本公开方法得到的终端上报的非周期性CSI信息是可以用于后续调度的。
第四实施例
假设将小区按照DOA范围划分为11个预制波束覆盖,编号分别为0-10。
一方面,按照配置的发送CSI-RS的发送参数计算CSI-RS发送子帧,其中,CSI-RS的配置参数包括:发送周期I CSI-RS和在周期内的偏移量Δ CSI-RS
第四实施例中,假设I CSI-RS取值为10,Δ CSI-RS取值为2时,计算得到:无线帧号为0,子帧号为2时发送CSI-RS信号,下一次发送CSI-RS信号 为无线帧号为1,子帧号为2时,依次类推,每隔I CSI-RS周期如10ms发送CSI-RS信号。
第四实施例中,预制波束的数量BF NUM为11个波束,编号为0-10,本实施例中,将CSI-RS信号与预制波束从小到大的顺序对应,则发送CSI-RS对应的预制波束BF j为:
BF j=(FrameNo CSI-RS/(I CSI-RS/10))mod BF NUM;其中,Mod表示取模运算。
按照上述计算方法,当帧号为0,子帧号为2时,对应需要发送的预制波束的编号为0;当帧号为1,子帧号为2时,对应发送的预制波束的编号为1,依次类推,一直循环轮流发送小区预制波束对应的CSI-RS信号。
另一方面,根据终端在各个预制波束上的投影能量P i,并按照公式(1)确定该终端的激活预制波束i:
第四实施例中,假设P 0、P 1、P 2、P 3、P 4、P 5、P 6的能量分别为2000、2000、600、300、200、1080、100、300、200、12800、500,那么,按照公式(1)容易确定出该终端的激活预制波束的编号为9。
根据确定出的终端的激活预制波束i即编号为9的预制波束,在每个CSI-RS信号发送周期匹配CSI-RS发送的预制波束,当CSI-RS发送的预制波束为9时,触发终端的非周期性CSI上报。第二实施例中,在帧号为9,子帧号为2时触发终端的非周期性CSI上报。
但是,本实施例中,如果在调度时由于本终端的优先级比较低,在分配资源时没有分配到触发DCI的资源,无法触发非周期CSI上报,那么,按照本公开实施例,此时不触发此终端的非周期性CSI上报,等待I CSI-RS×BF NUM个子帧后,CSI-RS发送的预制波束的编号再次为9时,再触发该终端的非周期性CSI上报。
这样,保证了终端上报的周期性CSI信息对应的是该终端的预制波束CSI-RS信号测量的结果,因此,按照本公开方法得到的终端上报的非周 期性CSI信息是可以用于后续调度的。
以上所述,仅为本发明的较佳实例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,本发明实施例提供的一种信道质量信息处理方法及装置具有以下有益效果:保证了终端的解调性能,进而提升了网络容量。

Claims (10)

  1. 一种信道质量信息处理方法,包括:
    根据配置的发送参数确定信道质量参考信息在预制波束上周期发送的波束集合;
    确定终端的激活预制波束;
    从确定出的波束集合中选择与激活预制波束一致的波束作为上报信道质量信息的波束。
  2. 根据权利要求1所述的信道质量信息处理方法,其中,所述发送参数包括:信号发送周期和周期内的偏移量;
    所述确定信道质量参考信息在预制波束上周期发送的波束集合包括:
    按照配置的信号发送周期和在周期内的偏移量计算发送信道质量参考信息的无线帧号和子帧号;
    根据所述预制波束和计算出的发送信道质量参考信息的无线帧号和子帧号,确定所述波束集合中的每个信道质量参考信息发送周期对应的预制波束。
  3. 根据权利要求2所述的信道质量信息处理方法,其中,所述确定波束集合中的每个信道质量参考信息发送周期对应的预制波束包括:
    按照预先设置的周期发送策略确定发送信道质量参考信息对应的预制波束,使得信道质量参考信息在预制波束上周期发送。
  4. 根据权利要求1所述的信道质量信息处理方法,其中,所述确定终端的激活预制波束包括:
    通过所述终端上行探测信号估计上行信道,按照设置的激活策略从所述预制波束中选择终端的激活预制波束。
  5. 根据权利要求4所述的信道质量信息处理方法,其中,所述激活策略包括:分别计算所述上行信道在各预制波束的投影能量,将最大的投影能量对应的预制波束作为所述终端的激活预制波束。
  6. 根据权利要求1所述的信道质量信息处理方法,其中,所述选择与激活预制波束一致的波束作为上报信道质量信息的波束包括:
    按照所述终端的激活预制波束,从所述波束集合中查找与所述激活预制波束相同的发送小区信道参考质量信息的波束,将查找出的波束作为所述上报信道质量信息的波束。
  7. 根据权利要求6所述的信道质量信息处理方法,如果不能上报所述信道质量信息,所述方法还包括:
    不执行所述上报的步骤,等待下一次查找到所述波束集合中与激活预制波束相同的波束再上报所述信道质量信息。
  8. 一种实现信道质量信息处理的设备,包括处理器、存储器;其中,存储器上存储有可在处理器上运行的计算机程序:用于执行权利要求1~权利要求7任一项所述的实现信道质量信息处理的方法的步骤。
  9. 一种实现信道质量信息处理的装置,包括:第一确定模块、第二确定模块,处理模块;其中,
    第一确定模块,设置为根据配置的发送参数确定信道质量参考信息在预制波束上周期发送的波束集合;
    第二确定模块,设置为确定终端的激活预制波束;
    处理模块,设置为从确定出的波束集合中选择与激活预制波束一致的波束作为上报信道质量信息的波束。
  10. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1~权利要求7任一项所述的实 现信道质量信息处理的方法。
PCT/CN2019/079239 2018-06-22 2019-03-22 一种信道质量信息处理方法及装置 WO2019242360A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810654307.1 2018-06-22
CN201810654307.1A CN110635828B (zh) 2018-06-22 2018-06-22 一种信道质量信息处理方法及装置

Publications (1)

Publication Number Publication Date
WO2019242360A1 true WO2019242360A1 (zh) 2019-12-26

Family

ID=68967924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079239 WO2019242360A1 (zh) 2018-06-22 2019-03-22 一种信道质量信息处理方法及装置

Country Status (2)

Country Link
CN (1) CN110635828B (zh)
WO (1) WO2019242360A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016045695A1 (en) * 2014-09-23 2016-03-31 Telefonaktiebolaget L M Ericsson (Publ) Triggering pilot transmission for mobility measurements
CN105790913A (zh) * 2014-12-26 2016-07-20 上海无线通信研究中心 FDD模式massive-MIMO系统中上行导频的选择与分配方法
CN106921423A (zh) * 2015-12-28 2017-07-04 电信科学技术研究院 一种确定模拟波束的方法和设备
CN107889230A (zh) * 2016-09-29 2018-04-06 中兴通讯股份有限公司 信号发送、接收发送及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9264206B2 (en) * 2012-10-30 2016-02-16 Lg Electronics Inc. Signal transmission and reception method using random beamforming in wireless communication system and apparatus therefor
KR102346981B1 (ko) * 2014-11-28 2022-01-04 삼성전자주식회사 무선 통신 시스템에서 채널 추정 방법 및 장치
US10700752B2 (en) * 2016-01-14 2020-06-30 Samsung Electronics Co., Ltd. System, method, and apparatus of beam-tracking and beam feedback operation in a beam-forming based system
US10243642B2 (en) * 2016-04-22 2019-03-26 Lg Electronics Inc. Method and base station for receiving system information, and method and user equipment for transmitting system information
US11265880B2 (en) * 2016-11-03 2022-03-01 Qualcomm Incorporated Beam sets for cell and beam mobility
CN108111267B (zh) * 2017-05-05 2022-05-20 中兴通讯股份有限公司 信号的传输方法和系统及控制信息的发送方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016045695A1 (en) * 2014-09-23 2016-03-31 Telefonaktiebolaget L M Ericsson (Publ) Triggering pilot transmission for mobility measurements
CN105790913A (zh) * 2014-12-26 2016-07-20 上海无线通信研究中心 FDD模式massive-MIMO系统中上行导频的选择与分配方法
CN106921423A (zh) * 2015-12-28 2017-07-04 电信科学技术研究院 一种确定模拟波束的方法和设备
CN107889230A (zh) * 2016-09-29 2018-04-06 中兴通讯股份有限公司 信号发送、接收发送及装置

Also Published As

Publication number Publication date
CN110635828B (zh) 2022-03-25
CN110635828A (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
US11784694B2 (en) Method for measuring and reporting channel state information in wireless communication system and device therefor
CN108933648B (zh) 信道状态信息的处理方法及装置、终端、基站
US11121754B2 (en) Method for measuring and reporting channel state information in wireless communication system and device for same
CN111371539B (zh) 控制基于csi-rs的信道估计的方法、基站和介质
JP2020511834A (ja) 無線通信システムにおけるビーム復旧を行う方法、及びこのための装置
US20220216944A1 (en) METHOD FOR REPEATING A TRANSPORT BLOCK (TB) OVER MULTIPLE TRANSMISSION/RECEPTION POINTS (TRPs)
US20160301505A1 (en) Systems and methods related to flexible csi-rs configuration and associated feedback
US20230254082A1 (en) Method and device for transmitting data in mobile communication system
CN114826499A (zh) 识别用于发送第一上行链路信道的资源
KR20190101449A (ko) 다중 입력 다중 출력 무선 시스템을 위한 사운딩 기준 신호 전력 제어
US11259308B2 (en) Signal processing method and apparatus
CN104145431A (zh) 用于终端在无线通信系统中接收下行链路信号的方法及其装置
US11575424B2 (en) UE recommended CSI settings
US11838774B2 (en) Transmission reception point specific beam failure recovery process
EP4189875A1 (en) Ultra-low latency csi timeline for urllc csi reporting
CN112106400A (zh) 无线电接入网络的测量报告
US11424806B2 (en) Method and device for determining precoding, method and device for detecting data, storage medium and electronic device
US11843436B2 (en) Assigning resources to ports based on coherence
WO2019242360A1 (zh) 一种信道质量信息处理方法及装置
WO2013170782A1 (zh) 配置信道测量和进行上行信道测量的方法、系统及设备
KR20180110675A (ko) 주파수 분할 듀플렉싱 기반 무선 통신 네트워크에서 harq 프로세싱
WO2018064986A1 (zh) 在多天线系统中实现信道测量的方法、装置和存储介质
CN115333682B (zh) 反馈处理方法、发送方法、反馈方法、设备和存储介质
EP4367822A1 (en) Trigger state configuration and csi report triggering for dynamic spectrum sharing (dss) with carrier aggregation (ca)
KR20230096754A (ko) 무선 통신 시스템에서 자기 간섭 채널을 추정하기 위한 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19821803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19821803

Country of ref document: EP

Kind code of ref document: A1