WO2019242019A1 - 充电装置、移动终端和充电控制方法 - Google Patents

充电装置、移动终端和充电控制方法 Download PDF

Info

Publication number
WO2019242019A1
WO2019242019A1 PCT/CN2018/092485 CN2018092485W WO2019242019A1 WO 2019242019 A1 WO2019242019 A1 WO 2019242019A1 CN 2018092485 W CN2018092485 W CN 2018092485W WO 2019242019 A1 WO2019242019 A1 WO 2019242019A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
voltage
wireless
management module
channel
Prior art date
Application number
PCT/CN2018/092485
Other languages
English (en)
French (fr)
Inventor
杨冬笋
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2018/092485 priority Critical patent/WO2019242019A1/zh
Publication of WO2019242019A1 publication Critical patent/WO2019242019A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present application relates to the field of charging technology, and more particularly, to a charging device, a mobile terminal, and a charging control method.
  • the present application provides a charging device, a mobile terminal, and a charging control method to simplify the structure of the charging device.
  • a charging device including: a wireless receiving circuit for converting a received wireless charging signal into charging power; a charging interface for receiving charging power provided by an external power supply device; and a charging management module for Adjusting the voltage and / or current in the charging energy output by the wireless receiving circuit or the charging interface; a control module, configured to control the wireless receiving circuit when detecting that the wireless receiving circuit receives the wireless charging signal;
  • the wireless receiving circuit is electrically connected to the first charging channel where the charging management module is located, and controls the charging interface and the charging management module when it is detected that the charging interface receives charging power provided by an external power supply device.
  • the second charging channel is turned on.
  • a mobile terminal including: the charging device and the battery according to the first aspect.
  • a charging control method including: using a wireless receiving circuit to convert a received wireless charging signal into charging power; using a charging interface to receive charging power provided by an external power supply device; and detecting the wireless receiving circuit
  • control the wireless receiving circuit to conduct conduction with the first charging channel where the charging management module is located, and control the charging interface when detecting that the charging interface receives charging power provided by an external power supply device.
  • the charging interface is electrically connected to a second charging channel in which the charging management module is located, wherein the charging management module is configured to adjust a voltage and / or current in the charging energy output by the wireless receiving circuit or the charging interface.
  • FIG. 1 is a schematic structural diagram of a charging device according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a charging device according to another embodiment of the present application.
  • FIG. 3 is an example diagram of a specific implementation of the selection switch in FIG. 2.
  • FIG. 4 is a schematic structural diagram of a charging device according to another embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a charging device according to another embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a mobile terminal according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a charging control method according to an embodiment of the present application.
  • the charging device 100 provided in the embodiment of the present application is described in detail below with reference to FIG. 1.
  • the charging device 100 may include a wireless receiving circuit 110, a charging interface 120 and a charging management module 130.
  • the wireless receiving circuit 110 can be used to convert the received wireless charging signal into charging power (or charging power, which can include charging voltage and charging current).
  • the wireless receiving circuit 110 may receive a wireless charging signal through a receiving coil or a receiving antenna (not shown in the figure) to obtain alternating current, and use a shaping circuit (such as a rectifier circuit and / or a filter circuit) inside the wireless receiving circuit 110 to The AC power output from the coil is rectified and / or filtered to convert the AC power into charging power suitable for charging.
  • the charging interface 120 may be used to receive charging power provided by an external power supply device.
  • the embodiment of the present application does not specifically limit the type of the charging interface 120.
  • the charging interface 120 may be a universal serial bus (USB) interface or a lightning interface.
  • the USB interface may be a standard USB interface, a micro USB interface, or a Type-C interface.
  • the charging interface 120 may also be an interface circuit for receiving externally input charging power.
  • the interface circuit may include, for example, a power line.
  • the charging management module 130 may be configured to adjust the voltage and / or current in the charging energy output by the wireless receiving circuit 110 or the charging interface 120.
  • the charging management module 130 may be configured to adjust the voltage and / or current in the charging energy output by the wireless receiving circuit 110 or the charging interface 120 so that the voltage and current that finally enters the battery 200 meets the charging requirements of the battery 200.
  • the charging management module 130 is configured to adjust the voltage and / or current in the charging energy output by the wireless receiving circuit 110 or the charging interface 120.
  • the charging management module 130 may also be replaced by: the charging management module 130 is configured to charge the battery 200. Process for charge management.
  • the charging management module 130 is configured to adjust the voltage and / or current in the charging power output by the wireless receiving circuit 110 or the charging interface 120, and may also be replaced by: the charging management module 130 is configured to adjust the battery 200 The charging process is controlled by constant current and / or constant voltage.
  • the charging management module 130 may be, for example, a charging integrated circuit (IC), or a charger.
  • the wireless receiving circuit 110 and the charging management module 130 may be located on the first charging channel 150.
  • the first charging channel 150 may also be referred to as a wireless charging channel.
  • the first charging channel 150 may start at the wireless receiving circuit 110 and terminate at the battery 200.
  • the first charging channel 150 can be used to charge the battery 200 according to the charging power output by the wireless receiving circuit 110.
  • a voltage stabilization circuit may be provided on the first charging channel 150.
  • the voltage stabilizing circuit may be, for example, a low dropout regulator (LDO) as shown in FIG. 2.
  • LDO low dropout regulator
  • the charging interface 120 and the charging management module 130 may be located on the second charging channel 160.
  • the second charging channel 160 may also be referred to as a wired charging channel.
  • the second charging channel 160 may start at the charging interface 120 and terminate at the battery 200.
  • the second charging channel 160 may be used to charge the battery 200 according to the charging power output by the charging interface 120.
  • a voltage and / or current protection circuit may be provided on the second charging channel 160.
  • a negative voltage protection (NVP) circuit and / or an overvoltage protection (OVP) circuit can be provided on the second charging channel 160.
  • the first charging channel 150 and the second charging channel 160 share the same charging management module 130, which can simplify the structure of the charging device 100 and reduce the cost of the charging device 100.
  • the charging device 100 may further include a control module 140.
  • the control module 140 may be configured to control the first charging channel 150 and / or the second charging channel 160 to be turned on or off.
  • the control module 140 may be, for example, a microcontroller unit (MCU).
  • MCU microcontroller unit
  • AP application processor
  • the control module 140 can control the first charging channel 150 and the second charging channel 160 in various ways. For example, the control module 140 may select whether the first charging channel 150 or the second charging channel 160 works according to a command input by the user, and may also select according to whether the first charging channel 150 and / or the second charging channel 160 receives an external charging signal. Whether the first charging channel 150 works or the second charging channel 160 works. In addition, in some embodiments, the control module 140 may select only one charging channel to work at the same time. In other embodiments, the control module 140 may also control the first charging channel 150 and the second charging channel 160 to work at the same time.
  • control module 140 may be configured to control the first charging channel 150 to be turned on when detecting that the wireless receiving circuit 110 receives a wireless charging signal, and to detect that the charging interface 120 receives an external power supply When charging power provided by the device, the second charging channel 160 is controlled to be turned on.
  • the control module 140 may directly control the first charging channel 150 and the second charging channel 160, or may indirectly control the first charging channel 150 and the second charging channel 160.
  • the first charging channel 150 and the second charging channel 160 may be controlled.
  • a charging channel 150 and a second charging channel 160 are controlled. The following describes this implementation manner in detail with reference to FIG. 2.
  • the charging device 100 may include a first detection circuit 161 and a second detection circuit 162.
  • the first detection line 161 may be connected to the first charging channel 150
  • the second detection line 162 may be connected to the second charging channel 160.
  • the control module 140 can detect that the first charging channel 150 has a voltage signal through the first detection line 161 and control the first charging channel 150 to work through the selection switch 170; for the same reason,
  • the control module 140 may detect that a voltage signal is present on the second charging channel 160 through the second detection line 162, and control the second charging channel 160 to work through the selection switch 170.
  • the voltage signal detected by the control module 140 may be a voltage signal after resistance current limiting and level matching.
  • the selection switch 170 may be connected in series on the first charging channel 150 and the second charging channel 160, respectively. In the embodiment of FIG. 2, the selection switch 170 is connected in series before the charge management module 130, but the embodiment of the present application is not limited thereto. The selection switch 170 may also be connected in series between the charge management module 130 and the battery 200.
  • the embodiment of the present application does not specifically limit the type of the selection switch 170.
  • the selection switch 170 may be a single-pole double-throw switch as shown in FIG. 2, or may be a switch chip having a selection function.
  • the single pole double throw switch has the advantages of simple structure and control.
  • a single-pole double-throw switch may be implemented by using multiple metal oxide semiconductor (MOS) tubes.
  • MOS transistors 172 and 174 may be connected in series on the first charging channel 150, so that the line between IN1 and OUT1 becomes a part of the first charging channel 150.
  • the control module 140 may be connected to the control terminals of the MOS transistors 172 and 174 for controlling the MOS transistors 172 and 174 to be turned on or off at the same time, thereby controlling the first charging channel 150 to work or not work.
  • the MOS transistors 176 and 178 may be connected in series on the second charging channel 160, so that the line between IN2 and OUT2 becomes a part of the second charging channel 160.
  • the control module 140 may be connected to the control terminals of the MOS transistors 176, 178, for controlling the MOS transistors 176, 178 to be turned on or off at the same time, thereby controlling the second charging channel 160 to work or not work.
  • a single-pole double-throw switch can also be implemented using a load switch.
  • the load switch may be, for example, a load switch having an anti-backflow function.
  • the battery 200 mentioned above may include one battery cell, or may include multiple battery cells connected in series.
  • the charging device 100 provided in the embodiment of the present application can charge one battery cell or multiple batteries connected in series with each other.
  • the type of the charging management module 130 may be selected according to actual needs, for example, a buck-type charging IC (such as a Buck Charger) or a boost-type charging IC may be selected, or a charging IC having both boost and buck functions (Like Buck-Boost Charger).
  • a buck-type charging IC such as a Buck Charger
  • a boost-type charging IC may be selected, or a charging IC having both boost and buck functions (Like Buck-Boost Charger).
  • the charging management module 130 may be configured as a step-down charging IC.
  • the charging device 100 uses a standard wireless charging protocol (such as the Qi-BPP protocol) for wireless charging signal transmission with a wireless transmitting device, and the voltage in the charging power output by the wireless receiving circuit 110 is 5V; meanwhile, the charging device 100 uses a standard
  • the USB charging protocol obtains a charging signal from a power supply device, and the voltage in the charging power output by the USB interface is also 5V.
  • the battery 200 includes only one battery cell, and the maximum charging voltage required by the battery cell is less than 5V (for example, 4.25V). In this case, since the voltage in the charging power output by the wireless receiving circuit 110 and the charging interface 120 is always greater than the charging voltage required by the battery 200, the charging management module 130 may select a step-down charging IC.
  • the charging management module 130 may be configured as a boost-type charging IC.
  • the boost voltage of the charge management module 130 is used to meet the charging voltage requirement of the battery 200.
  • the charging device 100 uses a high-voltage transmission method to transmit wireless charging signals with a wireless transmitting device.
  • the voltage in the charging power output by the wireless receiving circuit 110 is 20V.
  • the charging device 100 uses a standard USB charging protocol to provide equipment from a power source. Obtain the charging signal.
  • the voltage in the charging energy output by the USB interface is 5V.
  • the battery 200 includes two cells connected in series with each other, and the charging voltage required for the cells is 6-8V. In this case, since the voltage in the charging power output by the wireless receiving circuit 110 is always greater than the charging voltage required by the battery 200, the voltage in the charging power output by the charging interface 120 is always less than the charging voltage required by the battery 200.
  • the charging management module 130 may select a charging IC having both a step-up and a step-down function. When the first charging channel 150 works, the charging management module 130 performs a voltage reduction function; when the second charging channel 160 works, the charging management module 130 performs a voltage boosting function.
  • the first charging channel 150 may further be provided with a step-down circuit 180.
  • the step-down circuit 180 may be configured to perform step-down processing on the voltage on the first charging channel 150.
  • a step-down circuit 180 is provided inside the charging device 100.
  • a wireless charging signal can be transmitted between the wireless transmitting device and the charging device in a high voltage manner, which is beneficial to reducing the current at the wireless receiving circuit 110 and thus reducing the charging device 100. Of heat.
  • the step-down circuit 180 may be a step-down circuit having a step-down conversion efficiency (or power conversion efficiency) higher than the step-down conversion efficiency of the charge management module 130, and may be, for example, a charge pump.
  • the charging device 100 may further include a communication module 190 for communicating with the wireless transmitting device according to the voltage difference between the input voltage and the output voltage of the charging management module 130. (Such as a wireless charging base, not shown in the figure) to perform wireless communication and instruct the wireless transmitting device to adjust the wireless charging signal to reduce the pressure difference.
  • a communication module 190 for communicating with the wireless transmitting device according to the voltage difference between the input voltage and the output voltage of the charging management module 130. (Such as a wireless charging base, not shown in the figure) to perform wireless communication and instruct the wireless transmitting device to adjust the wireless charging signal to reduce the pressure difference.
  • the communication module 190 and the control module 140 are separately provided, but the embodiment of the present application is not limited thereto.
  • the communication module 190 may also be integrated with the control module 140 to form a communication control module.
  • the communication module 190 can measure the voltage difference between the input voltage and the output voltage of the charge management module 130 by detecting the voltages at the input and output terminals of the charge management module 130, and the charge management module 130 can also actively report to the communication module 190. The voltage difference between its input and output voltages.
  • the step-down conversion efficiency of the charge management module 130 is positively related to the pressure difference between its input voltage and output voltage. Reducing the voltage difference can improve the step-down conversion efficiency of the charge management module 130 and further reduce the amount of heat generated by the charging device 100.
  • the communication module 190 may be configured to send feedback information to the wireless transmitting device according to the state of the battery 200 (such as the voltage and / or power of the battery) when the first charging channel 150 is operating, indicating that the wireless The transmitting device adjusts the transmitting power of the wireless charging signal so that the transmitting power of the wireless charging signal matches the current charging voltage and / or charging current required by the battery.
  • the communication module 190 in the charging device 100 can communicate with a wireless transmitting device whose transmission power is adjustable, and adjust the transmitting power of the wireless transmitting device in real time according to the state of the battery 200.
  • the feedback information sent by the communication module 190 to the wireless transmitting device may be, for example, information indicating the voltage and / or power of the battery 200, or may be information instructing the wireless transmitting device to increase or decrease the transmission power of the wireless charging signal.
  • the embodiment of the present application does not specifically limit the wireless communication mode between the communication module 190 and the wireless transmitting device.
  • the communication module 190 and the wireless transmitting device can perform wireless communication based on bluetooth, wireless fidelity (Wi-Fi) or backscatter modulation (or power load modulation).
  • an embodiment of the present application further provides a mobile terminal 600.
  • the mobile terminal 600 may include the charging device 100 and the battery 200 described in any one of the foregoing embodiments.
  • FIG. 7 is a schematic flowchart of a charging control method according to an embodiment of the present application.
  • the method in FIG. 7 may be executed by the charging device 100 described above, or may be executed by the mobile terminal 600 described above.
  • the method of FIG. 7 includes steps S710-S740. Each step of FIG. 7 is described in detail below.
  • step S710 the wireless receiving circuit is used to convert the received wireless charging signal into charging power.
  • step S720 the charging interface is used to receive the charging power provided by the external power supply device.
  • step S730 when it is detected that the wireless receiving circuit receives the wireless charging signal, control the wireless receiving circuit and the first charging channel where the charging management module is located to be conductive.
  • step S740 when it is detected that the charging interface receives the charging power provided by the external power supply device, the charging interface is controlled to be conductive with the second charging channel where the charging management module is located, wherein the charging management module is used for Adjusting the voltage and / or current in the charging energy output by the wireless receiving circuit or the charging interface.
  • the charging management module is a step-down charging integrated circuit or a step-up charging integrated circuit.
  • a voltage output by the wireless charging signal is greater than a charging voltage currently required by the battery
  • the charging management module is configured to perform a step-down process on the voltage on the first charging channel, so that the first The output voltage of the charging channel matches the charging voltage currently required by the battery.
  • a step-down circuit is further provided on the first charging channel, and is configured to perform step-down processing on the voltage on the first charging channel.
  • the step-down conversion efficiency of the step-down circuit is greater than the step-down conversion efficiency of the charge management module.
  • the step-down circuit is a charge pump.
  • the method of FIG. 7 may further include: when the first charging channel is working, performing wireless communication with a wireless transmitting device according to a voltage difference between an input voltage and an output voltage of the charging management module, and instructing the The wireless transmitting device adjusts the wireless charging signal to reduce the pressure difference.
  • the method of FIG. 7 may further include: when the first charging channel is working, sending feedback information to the wireless transmitting device according to the state of the battery, instructing the wireless transmitting device to adjust the wireless charging
  • the transmission power of the signal is such that the transmission power of the wireless charging signal matches the charging voltage and / or charging current currently required by the battery.
  • the voltage output by the charging interface is less than the current required charging voltage of the battery
  • the charging management module is configured to perform a step-up process on the voltage on the second charging channel so that the second charging The output voltage of the channel matches the charging voltage currently required by the battery.
  • the battery includes one or multiple cells in series with each other.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

提供一种充电装置、移动终端和充电控制方法。该充电装置包括:无线接收电路,用于将接收到的无线充电信号转换成充电电能;充电接口,用于接收外部电源提供设备提供的充电电能;充电管理模块,用于对无线接收电路或充电接口输出的充电电能中的电压和/或电流进行调整;控制模块,用于在检测到无线接收电路接收到无线充电信号时,控制无线接收电路与充电管理模块所在的第一充电通道导通,以及在检测到充电接口接收到外部电源提供设备提供的充电电能时,控制充电接口与充电管理模块所在的第二充电通道导通。上述充电装置中,有线充电和无线充电共用同一充电管理模块,这样可以简化充电装置的结构,并降低充电装置的成本。

Description

充电装置、移动终端和充电控制方法 技术领域
本申请涉及充电技术领域,更为具体地,涉及一种充电装置、移动终端和充电控制方法。
背景技术
随着充电技术的发展,许多充电装置在支持有线充电功能的基础上扩展了无线充电功能。
发明内容
本申请提供一种充电装置、移动终端和充电控制方法,以简化充电装置的结构。
第一方面,提供一种充电装置,包括:无线接收电路,用于将接收到的无线充电信号转换成充电电能;充电接口,用于接收外部电源提供设备提供的充电电能;充电管理模块,用于对所述无线接收电路或所述充电接口输出的充电电能中的电压和/或电流进行调整;控制模块,用于在检测到所述无线接收电路接收到所述无线充电信号时,控制所述无线接收电路与所述充电管理模块所在的第一充电通道导通,以及在检测到所述充电接口接收到外部电源提供设备提供的充电电能时,控制所述充电接口与所述充电管理模块所在的第二充电通道导通。
第二方面,提供一种移动终端,包括:如第一方面所述的充电装置和电池。
第三方面,提供一种充电控制方法,包括:利用无线接收电路将接收到的无线充电信号转换成充电电能;利用充电接口接收外部电源提供设备提供的充电电能;在检测到所述无线接收电路接收到所述无线充电信号时,控制所述无线接收电路与充电管理模块所在的第一充电通道导通,以及在检测到所述充电接口接收到外部电源提供设备提供的充电电能时,控制所述充电接口与所述充电管理模块所在的第二充电通道导通,其中所述充电管理模块用于对所述无线接收电路或所述充电接口输出的充电电能中的电压和/或电流进行调整。
附图说明
图1是本申请一个实施例提供的充电装置的示意性结构图。
图2是本申请另一实施例提供的充电装置的示意性结构图。
图3是图2中的选择开关的具体实现方式的示例图。
图4是本申请又一实施例提供的充电装置的示意性结构图。
图5是本申请又一实施例提供的充电装置的示意性结构图。
图6是本申请实施例提供的移动终端的示意性结构图。
图7是本申请实施例提供的充电控制方法的示意性流程图。
具体实施方式
下面结合图1,对本申请实施例提供的充电装置100进行详细描述。
如图1所示,充电装置100可以包括无线接收电路110,充电接口120和充电管理模块130。
无线接收电路110(也可称为Wireless RX)可用于将接收到的无线充电信号转换成充电电能(或称充电功率,可以包括充电电压和充电电流)。例如,无线接收电路110可以通过接收线圈或接收天线(图中未示出)接收无线充电信号,得到交流电,并利用无线接收电路110内部的整形电路(如整流电路和/或滤波电路)对接收线圈输出的交流电进行整流和/或滤波等操作,从而将该交流电转换成适于充电的充电电能。
充电接口120(也可以称为有线充电接口120)可用于接收外部电源提供设备提供的充电电能。本申请实施例对充电接口120的类型不做具体限定,例如,可以是通用串行总线(universal serial bus,USB)接口或lightning接口。所述USB接口可以是标准USB接口,也可以是micro USB接口,还可以是Type-C接口。可选地,在一些实施例中,充电接口120也可以是用于接收外部输入的充电电能的接口电路。该接口电路例如可以包括功率线。
充电管理模块130可用于对无线接收电路110或充电接口120输出的充电电能中的电压和/或电流进行调整。例如,充电管理模块130可用于对无线接收电路110或充电接口120输出的充电电能中的电压和/或电流进行调整,使得最终进入电池200的电压和电流满足电池200的充电需求。在一些实施例中,充电管理模块130用于对无线接收电路110或充电接口120输出的充 电电能中的电压和/或电流进行调整也可替换为:充电管理模块130用于对电池200的充电过程进行充电管理。或者,在一些实施例中,充电管理模块130用于对无线接收电路110或充电接口120输出的充电电能中的电压和/或电流进行调整也可替换为:充电管理模块130用于对电池200的充电过程进行恒流和/或恒压控制。充电管理模块130例如可以是充电集成电路(integrated circuit,IC),或称charger。
无线接收电路110和充电管理模块130可以位于第一充电通道150上。第一充电通道150有时也可称为无线充电通道。第一充电通道150可以起始于无线接收电路110,终止于电池200。第一充电通道150可用于根据无线接收电路110输出的充电电能对电池200进行充电。
应理解,除充电管理模块130之外,还可以根据实际需要在第一充电通道150上设置其他类型的功能电路,本申请实施例对此并不限定。例如,可以在第一充电通道150上设置稳压电路。该稳压电路例如可以是如图2所示的低压差调节器(low dropout regulator,LDO)。
充电接口120和充电管理模块130可以位于第二充电通道160上。第二充电通道160有时也可称为有线充电通道。第二充电通道160可起始于充电接口120,终止于电池200。第二充电通道160可用于根据充电接口120输出的充电电能对电池200进行充电
应理解,除充电管理模块130之外,还可以根据实际需要在第二充电通道160上设置其他类型的功能电路,本申请实施例对此并不限定。作为一个示例,可以在第二充电通道160上设置电压和/或电流的保护电路。例如,如图2所示,可以在第二充电通道160上设置负压保护(negative voltage protection,NVP)电路和/或过压保护(over voltage protection,OVP)电路等。
从图1可以看出,充电装置100中,第一充电通道150和第二充电通道160共用同一充电管理模块130,这样可以简化充电装置100的结构,并降低充电装置100的成本。
可选地,在一些实施例中,充电装置100还可包括控制模块140。控制模块140可用于控制第一充电通道150和/或第二充电通道160导通或关断。
控制模块140例如可以是微控制器单元(microcontroller unit,MCU)。当充电装置100集成在具有应用处理器(application processor,AP)的终端 设备(如手机)内部时,该控制模块140也可以是该AP。
控制模块140对第一充电通道150和第二充电通道160的控制方式可以有多种。例如,控制模块140可以根据用户输入的命令选择第一充电通道150工作还是第二充电通道160工作,也可以根据第一充电通道150和/或第二充电通道160是否接收到外部的充电信号选择第一充电通道150工作还是第二充电通道160工作。此外,在一些实施例中,控制模块140在同一时间可以仅选择一个充电通道工作。在另一些实施例中,控制模块140也可以在同一时间控制第一充电通道150和第二充电通道160同时工作。
可选地,在一个实施例中,控制模块140可用于在检测到无线接收电路110接收到无线充电信号时,控制第一充电通道150导通,以及在检测到充电接口120接收到外部电源提供设备提供的充电电能时,控制第二充电通道160导通。
控制模块140可以直接对第一充电通道150和第二充电通道160进行控制,也可间接对第一充电通道150和第二充电通道160进行控制,例如可以按照图2,通过选择开关170对第一充电通道150和第二充电通道160进行控制。下面结合图2,对这种实现方式进行详细说明。
如图2所示,充电装置100可包括第一检测线路161和第二检测线路162。第一检测线路161可以与第一充电通道150相连,第二检测线路162可以与第二充电通道160相连。当无线接收电路110接收到无线充电信号时,控制模块140可以通过第一检测线路161检测到第一充电通道150上具有电压信号,并通过选择开关170控制第一充电通道150工作;同理,当外部的电源提供设备通过充电接口120输出充电电能时,控制模块140可以通过第二检测线路162检测到第二充电通道160上具有电压信号,并通过选择开关170控制第二充电通道160工作。控制模块140检测的电压信号可以是经过电阻限流和电平匹配之后的电压信号。
选择开关170可分别串联在第一充电通道150和第二充电通道160上。在图2实施例中,选择开关170串联在充电管理模块130之前,但本申请实施例不限于此,选择开关170也可以串联在充电管理模块130和电池200之间。
本申请实施例对选择开关170的类型不做具体限定。选择开关170可以是如图2所示的单刀双掷开关,也可以具有选择功能的开关芯片。单刀双掷 开关具有结构和控制简单的优点。
单刀双掷开关的实现方式可以有多种。作为一个示例,单刀双掷开关可以采用多个金属氧化物半导体(metal oxide semiconductor,MOS)管实现。以图3为例,MOS管172,174可以串联在第一充电通道150上,使得IN1和OUT1之间的线路成为第一充电通道150的一部分。控制模块140可以与MOS管172,174的控制端相连,用于控制MOS管172,174同时导通或关断,从而控制第一充电通道150工作或不工作。同理,MOS管176,178可以串联在第二充电通道160上,使得IN2和OUT2之间的线路成为第二充电通道160的一部分。控制模块140可以与MOS管176,178的控制端相连,用于控制MOS管176,178同时导通或关断,从而控制第二充电通道160工作或不工作。
作为另一个示例,单刀双掷开关也可以采用负载开关(load switch)实现。该负载开关例如可以是具有防倒灌功能的负载开关。
上文提及的电池200可以包括一节电芯,也可以包括相互串联的多节电芯。换句话说,本申请实施例提供的充电装置100可以为一节电芯充电,也可以为相互串联的多节电芯充电。
应理解,充电管理模块130的类型可以根据实际需求选择,例如可以选取降压型充电IC(如Buck型Charger)或升压型充电IC,也可以选取同时具有升压和降压功能的充电IC(如Buck-Boost Charger)。
作为一个示例,如果无线接收电路110和充电接口120输出的充电电能中的电压始终大于电池200的充电电压的最大值,则可以将充电管理模块130配置为降压型充电IC。
例如,充电装置100采用标准的无线充电协议(如Qi-BPP协议)与无线发射设备进行无线充电信号传输,无线接收电路110输出的充电电能中的电压为5V;同时,充电装置100采用标准的USB充电协议从电源提供设备获取充电信号,USB接口输出的充电电能中的电压也为5V。电池200仅包括一节电芯,该电芯需要的最大充电电压小于5V(如可以是4.25V)。在这种情况下,由于无线接收电路110和充电接口120输出的充电电能中的电压始终大于电池200需要的充电电压,因此,充电管理模块130可以选取降压型充电IC。
作为另一示例,如果充电接口120或无线接收电路110输出的充电电能 中的电压可能高于电池200需要的充电电压,也可能低于电池200需要的充电电压。在电池200需要的充电电压高于充电接口120或无线接收电路110输出的充电电能中的电压时,充电管理模块130可配置为升压型充电IC。
例如,电池200采用上述的相互串联的多节电芯时,通过充电管理模块130的升压满足电池200的充电电压需求。
又如,充电装置100采用高压传输方式与无线发射设备进行无线充电信号的传输,无线接收电路110输出的充电电能中的电压为20V;此外,充电装置100采用标准的USB充电协议从电源提供设备获取充电信号,USB接口输出的充电电能中的电压为5V。电池200包括相互串联的两节电芯,该电芯需要的充电电压为6-8V。在这种情况下,由于无线接收电路110输出的充电电能中的电压始终大于电池200所需的充电电压,充电接口120输出的充电电能中的电压始终小于电池200所需的充电电压,因此,充电管理模块130可以选取同时具有升压和降压功能的充电IC。当第一充电通道150工作时,充电管理模块130执行降压功能;当第二充电通道160工作时,充电管理模块130执行升压功能。
可选地,如图4所示,第一充电通道150上还可设置有降压电路180。降压电路180可用于对第一充电通道150上的电压进行降压处理。
在充电装置100内部设置降压电路180,这样一来,无线发射设备和充电装置之间可以采用高压方式进行无线充电信号的传输,有利于降低无线接收电路110处的电流,进而降低充电装置100的发热量。
降压电路180可以是降压转换效率(或功率转换效率)高于充电管理模块130的降压转换效率的降压电路,例如可以是电荷泵。
此外,为了进一步降低充电过程的发热量,如图5所示,充电装置100还可包括通信模块190,用于根据充电管理模块130的输入电压和输出电压之间的压差,与无线发射设备(如无线充电底座,图中未示出)进行无线通信,指示无线发射设备对无线充电信号进行调整,以降低压差。
在图5中,通信模块190和控制模块140是分开设置的,但本申请实施例不限于此,通信模块190也可以与控制模块140集成在一起,形成通信控制模块。
充电管理模块130的输入电压和输出电压之间的压差的测量方式可以有多种。例如,通信模块190可以通过检测充电管理模块130的输入端和输出 端的电压的方式测量充电管理模块130的输入电压和输出电压之间的压差,也可由充电管理模块130主动向通信模块190上报其输入电压和输出电压之间的压差。
充电管理模块130的降压转换效率与其输入电压和输出电压之间的压差正相关,降低该压差可以提高充电管理模块130的降压转换效率,进而进一步降低充电装置100的发热量。
可选地,在一些实施例中,通信模块190可用于当第一充电通道150工作时,根据电池200的状态(如电池的电压和/或电量),向无线发射设备发送反馈信息,指示无线发射设备调整无线充电信号的发射功率,使得无线充电信号的发射功率与电池当前所需的充电电压和/或充电电流相匹配。
换句话说,充电装置100中的通信模块190可以与发射功率可调的无线发射设备通信,并根据电池200的状态实时调节无线发射设备的发射功率。通信模块190向无线发射设备发送的反馈信息例如可以是指示电池200的电压和/或电量的信息,也可以是指示无线发射设备调大或调小无线充电信号的发射功率的信息。
本申请实施例对通信模块190与无线发射设备之间的无线通信方式不做具体限定。例如,通信模块190与无线发射设备可以基于蓝牙(bluetooth)、无线保真(wireless fidelity,Wi-Fi)或反向散射(backscatter)调制方式(或功率负载调制方式)进行无线通信。
如图6所示,本申请实施例还提供一种移动终端600。移动终端600可包括前文任一实施例描述的充电装置100和电池200。
上文结合图1至图6,详细描述了本申请的装置实施例,下面结合图6,详细描述本申请的方法实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面装置实施例。
图7是本申请实施例提供的充电控制方法的示意性流程图。图7的方法可以由上文中的充电装置100执行,也可以由上文中的移动终端600执行。图7的方法包括步骤S710-S740,下面对图7的各个步骤进行详细描述。
在步骤S710,利用无线接收电路将接收到的无线充电信号转换成充电电能。
在步骤S720,利用充电接口接收外部电源提供设备提供的充电电能。
在步骤S730,在检测到所述无线接收电路接收到所述无线充电信号时, 控制所述无线接收电路与充电管理模块所在的第一充电通道导通。
在步骤S740,在检测到所述充电接口接收到外部电源提供设备提供的充电电能时,控制所述充电接口与所述充电管理模块所在的第二充电通道导通,其中所述充电管理模块用于对所述无线接收电路或所述充电接口输出的充电电能中的电压和/或电流进行调整。
可选地,所述充电管理模块为降压型充电集成电路或升压型充电集成电路。
可选地,所述无线充电信号输出的电压大于所述电池当前所需的充电电压,所述充电管理模块用于对所述第一充电通道上的电压进行降压处理,使得所述第一充电通道的输出电压与所述电池当前所需的充电电压相匹配。
可选地,所述第一充电通道上还设置有降压电路,用于对所述第一充电通道上的电压进行降压处理。
可选地,所述降压电路的降压转换效率大于所述充电管理模块的降压转换效率。
可选地,所述降压电路为电荷泵。
可选地,图7的方法还可包括:当所述第一充电通道工作时,根据所述充电管理模块的输入电压和输出电压之间的压差,与无线发射设备进行无线通信,指示所述无线发射设备对所述无线充电信号进行调整,以降低所述压差。
可选地,图7的方法还可包括:当所述第一充电通道工作时,根据所述电池的状态,向所述无线发射设备发送反馈信息,指示所述无线发射设备调整所述无线充电信号的发射功率,使得所述无线充电信号的发射功率与所述电池当前所需的充电电压和/或充电电流相匹配。
可选地,所述充电接口输出的电压小于所述电池当前所需的充电电压,所述充电管理模块用于对所述第二充电通道上的电压进行升压处理,使得所述第二充电通道的输出电压与所述电池当前所需的充电电压相匹配。
可选地,所述电池包括一节或相互串联的多节电芯。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种充电装置,其特征在于,包括:
    无线接收电路,用于将接收到的无线充电信号转换成充电电能;
    充电接口,用于接收外部电源提供设备提供的充电电能;
    充电管理模块,用于对所述无线接收电路或所述充电接口输出的充电电能中的电压和/或电流进行调整;
    控制模块,用于在检测到所述无线接收电路接收到所述无线充电信号时,控制所述无线接收电路与所述充电管理模块所在的第一充电通道导通,以及
    在检测到所述充电接口接收到外部电源提供设备提供的充电电能时,控制所述充电接口与所述充电管理模块所在的第二充电通道导通。
  2. 根据权利要求1所述的充电装置,其特征在于,所述充电管理模块为降压型充电集成电路或升压型充电集成电路。
  3. 根据权利要求1或2所述的充电装置,其特征在于,所述无线接收电路输出的充电电能的电压大于所述电池当前所需的充电电压,所述充电管理模块用于对所述第一充电通道上的电压进行降压处理,使得所述第一充电通道的输出电压与所述电池当前所需的充电电压相匹配。
  4. 根据权利要求3所述的充电装置,其特征在于,所述第一充电通道上还设置有降压电路,用于对所述第一充电通道上的电压进行降压处理。
  5. 根据权利要求4所述的充电装置,其特征在于,所述降压电路的降压转换效率大于所述充电管理模块的降压转换效率。
  6. 根据权利要求4或5所述的充电装置,其特征在于,所述降压电路为电荷泵。
  7. 根据权利要求1-6中任一项所述的充电装置,其特征在于,所述充电装置还包括:
    通信模块,用于当所述第一充电通道工作时,根据所述充电管理模块的输入电压和输出电压之间的压差,与无线发射设备进行无线通信,指示所述无线发射设备对所述无线充电信号进行调整,以降低所述压差。
  8. 根据权利要求1-7中任一项所述的充电装置,其特征在于,所述充电装置还包括:
    通信模块,用于当所述第一充电通道工作时,根据所述电池的状态,向 所述无线发射设备发送反馈信息,指示所述无线发射设备调整所述无线充电信号的发射功率,使得所述无线充电信号的发射功率与所述电池当前所需的充电电压和/或充电电流相匹配。
  9. 根据权利要求1-8中任一项所述的充电装置,其特征在于,所述充电接口输出的充电电能中的电压小于所述电池当前所需的充电电压,所述充电管理模块用于对所述第二充电通道上的电压进行升压处理,使得所述第二充电通道的输出电压与所述电池当前所需的充电电压相匹配。
  10. 根据权利要求1-9中任一项所述的充电装置,其特征在于,所述电池包括一节或相互串联的多节电芯。
  11. 一种移动终端,其特征在于,包括:
    如权利要求1-10中任一项所述的充电装置和所述电池。
  12. 一种充电控制方法,其特征在于,包括:
    利用无线接收电路将接收到的无线充电信号转换成充电电能;
    利用充电接口接收外部电源提供设备提供的充电电能;
    在检测到所述无线接收电路接收到所述无线充电信号时,控制所述无线接收电路与充电管理模块所在的第一充电通道导通,以及
    在检测到所述充电接口接收到外部电源提供设备提供的充电电能时,控制所述充电接口与所述充电管理模块所在的第二充电通道导通,其中所述充电管理模块用于对所述无线接收电路或所述充电接口输出的充电电能中的电压和/或电流进行调整。
  13. 根据权利要求12所述的充电控制方法,其特征在于,所述充电管理模块为降压型充电集成电路或升压型充电集成电路。
  14. 根据权利要求12或13所述的充电控制方法,其特征在于,所述无线充电信号输出的充电电能中的电压大于所述电池当前所需的充电电压,所述充电管理模块用于对所述第一充电通道上的电压进行降压处理,使得所述第一充电通道的输出电压与所述电池当前所需的充电电压相匹配。
  15. 根据权利要求14所述的充电控制方法,其特征在于,所述第一充电通道上还设置有降压电路,用于对所述第一充电通道上的电压进行降压处理。
  16. 根据权利要求15所述的充电控制方法,其特征在于,所述降压电路的降压转换效率大于所述充电管理模块的降压转换效率。
  17. 根据权利要求15或16所述的充电控制方法,其特征在于,所述降压电路为电荷泵。
  18. 根据权利要求12-17中任一项所述的充电控制方法,其特征在于,所述充电控制方法还包括:
    当所述第一充电通道工作时,根据所述充电管理模块的输入电压和输出电压之间的压差,与无线发射设备进行无线通信,指示所述无线发射设备对所述无线充电信号进行调整,以降低所述压差。
  19. 根据权利要求12-18中任一项所述的充电控制方法,其特征在于,所述充电控制方法还包括:
    当所述第一充电通道工作时,根据所述电池的状态,向所述无线发射设备发送反馈信息,指示所述无线发射设备调整所述无线充电信号的发射功率,使得所述无线充电信号的发射功率与所述电池当前所需的充电电压和/或充电电流相匹配。
  20. 根据权利要求12-19中任一项所述的充电控制方法,其特征在于,所述充电接口输出的充电电能中的电压小于所述电池当前所需的充电电压,所述充电管理模块用于对所述第二充电通道上的电压进行升压处理,使得所述第二充电通道的输出电压与所述电池当前所需的充电电压相匹配。
  21. 根据权利要求12-20中任一项所述的充电控制方法,其特征在于,所述电池包括一节或相互串联的多节电芯。
PCT/CN2018/092485 2018-06-22 2018-06-22 充电装置、移动终端和充电控制方法 WO2019242019A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/092485 WO2019242019A1 (zh) 2018-06-22 2018-06-22 充电装置、移动终端和充电控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/092485 WO2019242019A1 (zh) 2018-06-22 2018-06-22 充电装置、移动终端和充电控制方法

Publications (1)

Publication Number Publication Date
WO2019242019A1 true WO2019242019A1 (zh) 2019-12-26

Family

ID=68983178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092485 WO2019242019A1 (zh) 2018-06-22 2018-06-22 充电装置、移动终端和充电控制方法

Country Status (1)

Country Link
WO (1) WO2019242019A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103002158A (zh) * 2012-12-21 2013-03-27 东莞宇龙通信科技有限公司 终端和终端充电的管理方法
CN103078365A (zh) * 2012-12-26 2013-05-01 青岛歌尔声学科技有限公司 蓝牙耳机充电盒及其充电方法
CN103208835A (zh) * 2013-03-20 2013-07-17 中国科学院电工研究所 一种带无线充电的电池管理系统
CN103545880A (zh) * 2013-09-27 2014-01-29 深圳天珑无线科技有限公司 无线充电位置校准方法及电子设备
WO2014081054A1 (ko) * 2012-11-26 2014-05-30 주식회사 차후 무선충전방식 휴대전화의 충전 제어장치와 제어방법
CN103956784A (zh) * 2014-04-15 2014-07-30 国家电网公司 一种电动汽车无线与有线充电切换装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014081054A1 (ko) * 2012-11-26 2014-05-30 주식회사 차후 무선충전방식 휴대전화의 충전 제어장치와 제어방법
CN103002158A (zh) * 2012-12-21 2013-03-27 东莞宇龙通信科技有限公司 终端和终端充电的管理方法
CN103078365A (zh) * 2012-12-26 2013-05-01 青岛歌尔声学科技有限公司 蓝牙耳机充电盒及其充电方法
CN103208835A (zh) * 2013-03-20 2013-07-17 中国科学院电工研究所 一种带无线充电的电池管理系统
CN103545880A (zh) * 2013-09-27 2014-01-29 深圳天珑无线科技有限公司 无线充电位置校准方法及电子设备
CN103956784A (zh) * 2014-04-15 2014-07-30 国家电网公司 一种电动汽车无线与有线充电切换装置

Similar Documents

Publication Publication Date Title
WO2019242020A1 (zh) 充电装置、移动终端和充电控制方法
CN109148990B (zh) 无线充电方法、电子设备、无线充电装置和无线充电系统
EP3282549B1 (en) Adapter and charging control method
EP2942853B1 (en) Charging method, mobile device, charging device and charging system
EP3843241B1 (en) Electronic device
US11611237B2 (en) Wireless power reception apparatus and mobile terminal
CN108347089B (zh) 电能传输控制器、电能传输系统和电能传输方法
TW201804698A (zh) 適配器和充電控制方法
WO2019223004A1 (zh) 无线充电接收装置及移动终端
US20180145525A1 (en) Charging managment method and system thereof
CN107248758B (zh) 一种智能型双通道快充放电路径管理系统及方法
TWI633739B (zh) 具有調節迴路之電池充電系統及充電方法
CN116388350B (zh) 充电控制方法、储能设备和可读存储介质
WO2019242019A1 (zh) 充电装置、移动终端和充电控制方法
CN110707945A (zh) 整流电路、无线充电装置、电源提供设备及无线充电系统
WO2021093708A1 (zh) 无线充电装置、待充电设备、充电系统及方法、存储介质
CN112398209A (zh) 无线充电装置、系统、控制方法、终端设备及存储介质
US20220320902A1 (en) Apparatus for wireless charging, terminal and charging method
CN109964384B (zh) 具有调节回路的电池充电系统
WO2023115779A1 (zh) 充电架构、充电控制方法、充电芯片及终端设备
KR20230037655A (ko) 배터리 피드백 제어 기능이 있는 병렬 충전기 회로
CN112290611A (zh) 用于无线充电的系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923126

Country of ref document: EP

Kind code of ref document: A1