WO2019242000A1 - 负载均衡方法及设备 - Google Patents

负载均衡方法及设备 Download PDF

Info

Publication number
WO2019242000A1
WO2019242000A1 PCT/CN2018/092397 CN2018092397W WO2019242000A1 WO 2019242000 A1 WO2019242000 A1 WO 2019242000A1 CN 2018092397 W CN2018092397 W CN 2018092397W WO 2019242000 A1 WO2019242000 A1 WO 2019242000A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
cell
switched
accessed
network device
Prior art date
Application number
PCT/CN2018/092397
Other languages
English (en)
French (fr)
Inventor
田宜波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/092397 priority Critical patent/WO2019242000A1/zh
Priority to EP18923082.4A priority patent/EP3796708B1/en
Priority to CN201880094465.4A priority patent/CN112262592B/zh
Publication of WO2019242000A1 publication Critical patent/WO2019242000A1/zh
Priority to US17/128,688 priority patent/US11405825B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/086Load balancing or load distribution among access entities
    • H04W28/0861Load balancing or load distribution among access entities between base stations
    • H04W28/0862Load balancing or load distribution among access entities between base stations of same hierarchy level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/0827Triggering entity
    • H04W28/0835Access entity, e.g. eNB
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/086Load balancing or load distribution among access entities
    • H04W28/0861Load balancing or load distribution among access entities between base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • H04W28/0958Management thereof based on metrics or performance parameters
    • H04W28/0967Quality of Service [QoS] parameters
    • H04W28/0975Quality of Service [QoS] parameters for reducing delays

Definitions

  • the embodiments of the present application relate to the field of communications technologies, and in particular, to a load balancing method and device.
  • a terminal may periodically send a Sounding Reference Signal (SRS) to a base station, and the base station demodulates the SRS signal, thereby obtaining uplink channel quality.
  • SRS Sounding Reference Signal
  • the base station In order to enable a terminal to transmit an uplink SRS on a specified physical resource, the base station must allocate a specific physical resource, that is, an SRS resource, to each terminal.
  • the SRS resources that a base station can allocate include cell-level SRS resources and user-level SRS resources.
  • the user-level SRS resources are a subset of the cell-level SRS resources, that is, the user-level SRS resources need to be selected from the cell-level SRS resources.
  • the total amount of cell-level SRS resources is constant, and the number of terminals that can be allocated to SRS resources is limited. After SRS resources are exhausted, terminals cannot be allocated to SRS resources. Therefore, a load balancing method is urgently needed. Enables the terminal to allocate SRS resources.
  • the embodiments of the present application provide a load balancing method and device, so that a terminal that is handed over from another cell to another cell can increase the beamforming gain on the basis of load balancing, and a terminal that accesses this cell can obtain SRS resources.
  • an embodiment of the present application provides a load balancing method, including:
  • the network device determines the terminal to be switched according to the transmission mode of the accessed terminal accessing the first cell , Where the first cell and the second cell have different carrier frequencies but the same coverage, the network device can cover the first cell and the second cell;
  • the network device switches the terminal to be switched to the second cell, and after the terminal to be switched to the second cell, the network device allocates the shortest period resource to the terminal to be switched from the available SRS resources in the second cell, so that the terminal to be switched
  • the period of the SRS resource allocated by the terminal in the second cell is smaller than the period of the SRS resource allocated in the first cell, thereby achieving load balancing, so that the terminal to be accessed that needs to access the first cell can be allocated the SRS resource, It also enables the terminal to be accessed to obtain shorter SRS resources after switching to the second cell, and the terminal to be switched can increase the beamforming gain.
  • the determining, by the network device, a terminal to be switched according to a transmission mode of an accessed terminal that accesses the first cell includes:
  • the network device determines the terminal to be switched among the target terminals; wherein the SRS resources allocated by the terminals are short periods For example, when the period of the SRS resource allocated to the terminal is shorter than the preset period, when the transmission mode of the terminal is a beamforming transmission mode, a BF gain can be obtained.
  • the determining, by the network device in the target terminal, a terminal to be switched includes:
  • the network device determines the terminal to be switched according to the period of the SRS resource allocated to each of the target terminals. For example, the network device may sequentially select the target terminal as the terminal to be switched from multiple target terminals according to a preset rule.
  • the preset rule may be that the target terminal is selected in order from the longest to the shortest of the period of the SRS resource allocated by the target terminal.
  • the period of the SRS resource allocated by the terminal to be switched in the first cell is greater than the shortest period of the SRS resource allocated by the second cell.
  • the network device allocates the shortest period SRS resource of the second cell to the terminal to be switched according to the resource allocation principle of first assigning short-cycle resources and then long-period resources, which improves the terminal to be switched BF gain.
  • the method further includes: if there is no target terminal having a transmission mode of BF transmission mode among the accessed terminals that have accessed the first cell, the network device is to be accessed The terminal to be accessed in the first cell is determined to be a terminal to be switched.
  • the network device switching the terminal to be switched to the second cell includes:
  • the network device receives a handover response from the terminal to be switched for indicating a successful handover.
  • the method further includes:
  • the method further includes:
  • the network device releases an SRS resource allocated by the terminal to be switched in the first cell, and determines a period of a target resource in a period of the allocable SRS resource of the first cell, where the target resource is SRS resources to be allocated to the terminal to be accessed; the network device sends a connection response to the terminal to be accessed, and the connection response includes a period of the target resource.
  • the load balancing process is triggered.
  • the network device controls the terminal to be switched to the second cell. Cell, thereby releasing the SRS resources of the terminal to be switched in the first cell, not only enabling the terminal to be switched to increase the BF gain in the second cell, but also enabling the terminal to be accessed to obtain short-period SRS resources from the first cell. Chance to gain BF gain.
  • the method before the network device sends a connection response to the terminal to be accessed, the method further includes:
  • the connection response further includes the transmission mode of the terminal to be accessed.
  • the method before the network device switches the terminal to be switched to the second cell, the method further includes:
  • the network device adjusts the antenna array of the network device according to the SRS.
  • an embodiment of the present application provides a network device, including:
  • the processing module determines the to-be-switched according to the transmission mode of the accessed terminal accessing the first cell A terminal, wherein the first cell and the second cell are cells in a multi-carrier same coverage network, and the network device covers the first cell and the second cell;
  • the processing module is further configured to switch the terminal to be switched to the second cell; wherein the period of the SRS resources allocated to the terminal to be switched in the second cell is shorter than that in the first cell. The period of the SRS resource.
  • the processing module is specifically configured to:
  • the SRS resource is an SRS resource with a period shorter than a preset period.
  • the processing module is specifically configured to:
  • the processing module is further configured to:
  • the terminal to be accessed to be accessed in the first cell is determined as the terminal to be switched.
  • the method further includes: a sending module and a receiving module;
  • the processing module is specifically configured to send a switching instruction to the terminal to be switched through the sending module, where the switching instruction is used to instruct the terminal to be switched to switch to the second cell;
  • the processing module is specifically configured to receive a handover response from the terminal to be switched through the receiving module, which indicates a successful handover.
  • the method further includes: a sending module and a receiving module;
  • the processing module is specifically configured to receive an access request from a terminal to be accessed to access the first cell through the receiving module;
  • the processing module is further configured to release the SRS resources allocated by the to-be-switched terminal in the first cell after switching the to-be-switched terminal to the second cell, and Determining a period of a target resource among the periods of allocable SRS resources, where the target resource is an SRS resource to be allocated to the terminal to be accessed;
  • the processing module is further configured to send a connection response to the terminal to be accessed through the sending module, where the connection response includes a period of the target resource.
  • the processing module is further configured to: before sending a connection response to the terminal to be accessed, determine a transmission mode of the terminal to be accessed, the connection response further includes the Transmission mode of the terminal to be accessed.
  • the processing module is further configured to: before switching the terminal to be switched to the second cell, receive an SRS sent by an accessed terminal whose transmission mode is a BF transmission mode; Said SRS, adjust the antenna array of the network equipment.
  • an embodiment of the present application provides a network device, including: at least one processor and a memory;
  • the memory stores computer execution instructions
  • the at least one processor executes computer-executable instructions stored in the memory, so that the at least one processor executes the method according to the first aspect above or various possible designs of the first aspect.
  • an embodiment of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer-executable instructions.
  • the first aspect or the first aspect is implemented as above. The methods described in various possible designs.
  • an embodiment of the present application further provides a computer program product, where the computer program product includes computer program code, and when the computer program code is run on a computer, the computer is caused to execute the first aspect or the first aspect.
  • the computer program product includes computer program code
  • the computer program product includes computer program code
  • an embodiment of the present application further provides a chip, including a memory and a processor, where the memory is used to store a computer execution instruction, and the processor is used to call and run the computer execution instruction from the memory, so that The chip executes the method according to the first aspect or the various possible designs of the first aspect.
  • the network device Enter the transmission mode of the terminal, determine the terminal to be switched, and determine the terminal to be switched by the transmission mode, so that the terminal with the transmission mode of BF transmission mode can be determined as the terminal to be switched.
  • the network device switches the terminal to be switched to the second cell.
  • the network allocates the SRS resource with the shortest period that can be allocated in the second cell to the terminal to be switched.
  • the period of the SRS resource allocated to the terminal to be switched in the second cell is less than the period of the SRS resource allocated in the first cell, so that it has BF.
  • the terminal in the transmission mode is switched from the first cell to the second cell, thereby achieving load balancing, so that the terminal to be accessed that needs to access the first cell can be allocated SRS resources, and the terminal to be accessed is switched to the second cell Later, shorter SRS resources can be obtained, and the terminal to be switched can increase the beamforming gain.
  • FIG. 1 illustrates a network architecture that may be applicable to embodiments of the present application
  • FIG. 2 is a schematic diagram of implementing downlink beamforming according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of implementing downlink beamforming according to an embodiment of the present application.
  • FIG. 4 is a first schematic flowchart of a load balancing method according to an embodiment of the present application.
  • FIG. 5 is a second schematic flowchart of a load balancing method according to an embodiment of the present application.
  • FIG. 6 is a third flowchart of a load balancing method according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a hardware structure of a network device according to an embodiment of the present application.
  • the network architecture and service scenarios described in the embodiments of the present application are intended to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application. Those skilled in the art can know that with the network The evolution of the architecture and the emergence of new business scenarios. The technical solutions provided in the embodiments of the present application are also applicable to similar technical issues.
  • the embodiments of the present application can be applied to a wireless communication system.
  • the wireless communication systems mentioned in the embodiments of the present application include but are not limited to: Narrowband Internet of Things (NB-IoT), Global Mobile Communication system (Global System for Mobile, Communications, GSM), Enhanced Data Rate GSM Evolution System (Enhanced Data Rate for GSM Evolution, EDGE), Wideband Code Division Multiple Access System (Wideband Code Division Multiple Access, WCDMA), Code Division Multiple Access 2000 System (Code Division Multiple Access, CDMA2000), Time Division-Synchronization Code Division Multiple Access (TD-SCDMA), Long-Term Evolution System (Long Terminal, Evolution, LTE) and next-generation 5G mobile communication system .
  • NB-IoT Narrowband Internet of Things
  • GSM Global Mobile Communication system
  • GSM Global System for Mobile, Communications
  • EDGE Enhanced Data Rate for GSM Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access 2000 System
  • TD-SCDMA Time Division-Synchronization Code Division
  • FIG. 1 illustrates a network architecture that may be applicable to embodiments of the present application.
  • the network architecture provided by this embodiment includes a network device 101 and a terminal 102.
  • the network device 101 is a device for accessing a terminal to a wireless network, and may be a base station in Global System of Mobile (GSM) or Code Division Multiple Access (CDMA) (Base Transceiver Station, BTS for short), or base station (NodeB, NB) in Wideband Code Division Multiple Access (WCDMA), or Long Term Evolution (LTE) Evolved NodeB (referred to as eNB or eNodeB), or a relay station or access point, or a network-side device (such as a base station) or a future evolved public land mobile network (Public Land Mobile Network) in a future 5G network.
  • GSM Global System of Mobile
  • CDMA Code Division Multiple Access
  • BTS Base Transceiver Station
  • NodeB, NB Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • eNB or eNodeB Long Term Evolution Evolved NodeB
  • a relay station or access point or a network-
  • the terminal 102 may be a wireless terminal or a wired terminal.
  • the wireless terminal may be a device that provides voice and / or other business data connectivity to the user, a handheld device with a wireless connection function, or other processing equipment connected to a wireless modem. .
  • a wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN).
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or a "cellular" phone) and a mobile terminal with a mobile terminal.
  • Computers for example, can be portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices that exchange languages and / or data with a wireless access network.
  • a wireless terminal can also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, The access terminal (Access terminal), user terminal (User terminal), and user agent (User agent) are not limited here.
  • FIG. 1 schematically illustrates a possible schematic, and the terminal 102 is a mobile phone as an example for illustration.
  • the above-mentioned communication system can provide multi-carrier same coverage networking.
  • multi-carrier same coverage networking refers to the use of 2 or more carriers (each carrier is a cell) for coverage networking in each sector direction.
  • the carrier frequencies are F1 and F2, and F1 and F2 cover the same area.
  • the terminal can be served by two cells at the same location.
  • a terminal may periodically send a Sounding Reference Signal (SRS) to a network device, and the network device demodulates the SRS signal, thereby obtaining an uplink Channel quality.
  • SRS Sounding Reference Signal
  • SRS resources have characteristics such as periodicity, frequency division or code division, and comb structure.
  • SRS resource allocation includes cell-level SRS resources and user-level SRS resources.
  • the SRS resource refers to a resource for transmitting SRS.
  • the cell-level SRS resources include resources with subframe periods of 5 ms and 10 ms, and the resources are determined by the frame structure of Time Division Duplexing (TDD). For example, on the configured cell-level SRS subframe, if the subframe is a normal uplink subframe, the last symbol of the subframe is used to transmit SRS, and data cannot be transmitted, otherwise the data will interfere with the SRS; if the subframe The frame is a special subframe, and one or two symbols of the special subframe are used to transmit the SRS.
  • TDD Time Division Duplexing
  • the subframe period corresponding to the user-level SRS resource is ⁇ 5, 10, 20, 40, 80, 160, 320 ⁇ ms.
  • the SRS resources allocated to the user must be configured on the SRS subframes of the cell, and the user-level SRS resources are a subset of the cell-level SRS resources.
  • the SRS resources are actually allocated to terminals corresponding to the users.
  • the SRS resources allocated to the cell by the LTE TDD system are limited, and the SRS resources that can be allocated to users in the cell are also limited.
  • the number of users that can be allocated to the SRS resource is subject to the following factors: cycle, code division, number of single-user resource blocks (RB), symbols, and so on.
  • cycle code division
  • RB single-user resource blocks
  • symbols and so on.
  • For user-level SRS resources different SRS resource allocation periods, the number of users allocated to access the current SRS resource period is limited, and beyond this specification, newly accessed users allocate the next SRS resource allocation period.
  • short-period resources are allocated first, that is, resources with a subframe period of 5ms are allocated to the terminal first, and resources with a subframe period of 10ms are allocated when no resources are available, and so on until the cell SRS resources are exhausted, and SRS resources are no longer allocated to terminals after cell-level SRS resources are exhausted (unless other terminals release SRS resources).
  • the transmission mode is a beamforming (BF) transmission mode
  • BF beamforming
  • beamforming is a signal preprocessing technique based on an antenna array; a directional beam is generated by adjusting the weighting coefficient of each array element in the antenna array, thereby obtaining a significant array gain. It is especially effective for improving the demodulation signal-to-noise ratio of target users and improving the throughput rate of users at the cell edge.
  • the weight value changes with the change of the wireless channel environment to ensure that the beam is always aimed at the target user.
  • FIG. 2 is a schematic diagram of OFDM symbol generation according to an embodiment of the present application.
  • the network device performs downlink transmission, after the channel coding is completed, the coded bits are scrambled, modulated, and layer mapped. After the layer mapping is completed, BF weighting processing is performed, and finally, the resource particle (Resource Element, RE) mapping to obtain OFDM symbols.
  • the weight calculation in the BF weighting process under TDD uses uplink channel estimation information (SRS) to calculate the downlink channel-related weight vector through TDD uplink and downlink channel reciprocity estimation, and performs downlink beams according to the weight vector.
  • SRS uplink channel estimation information
  • FIG. 3 is a schematic diagram of implementation of downlink beamforming provided by an embodiment of the present application.
  • the network device after receiving the SRS sent by the terminal, the network device performs uplink channel estimation, performs receive channel compensation according to the uplink channel estimation, and then calculates and maintains a covariance matrix for each user according to the uplink channel estimation. Eigenvalue decomposition is performed on the covariance matrix to obtain a BF weight vector estimation.
  • a BF weight vector estimation related information of the Physical Uplink Shared Channel (PUSCH), and a demodulated reference signal (Dedicated Reference Signal), DRS) for downlink beamforming.
  • PUSCH Physical Uplink Shared Channel
  • DRS dedicated Reference Signal
  • the SRS resource allocated to the mobile user needs to be selected as a short period.
  • the BF transmission mode includes a single-stream BF transmission mode, a dual-stream BF transmission mode, and a multiple-user beamforming (MUBF) transmission mode.
  • the single-stream transmission mode uses one antenna port, and maps to one layer when performing layer mapping on data modulation.
  • the dual-stream transmission mode uses two antenna ports, which are mapped into two layers when layer mapping is performed on data modulation.
  • the MUBF transmission mode utilizes the strong correlation between the channels between the antennas and the spatial diversity of different user channels to multiplex multiple downlink user data onto the same time-frequency resource to improve network capacity and cell throughput. Under the strong correlation of terminal antennas, users cannot perform multi-stream transmission by themselves, which creates a performance bottleneck.
  • MUBF uses the channel spatial diversity of different users to obtain greater spatial freedom to multiplex multiple streams, thereby gaining gain.
  • the difference between the dual-stream BF transmission mode and the MUBF transmission mode is that for the dual-stream BF transmission mode, two codeword data are allocated to one user. For the MUBF transmission mode, two codewords are given to two different users.
  • FIG. 4 is a first schematic flowchart of a load balancing method according to an embodiment of the present application. As shown in Figure 4, the method includes:
  • the network device determines the standby mode according to the transmission mode of the accessed terminal accessing the first cell.
  • a handover terminal wherein the first cell and the second cell are cells in a multi-carrier same coverage network, and the network device covers the first cell and the second cell;
  • the cells covered by the network equipment are configured according to the cell configuration information.
  • the configuration includes, for example, multi-carrier configuration, transmission power of each carrier, cell-level SRS resource configuration, and users.
  • the configuration of the SRS resources is not limited to, multi-carrier configuration, transmission power of each carrier, cell-level SRS resource configuration, and users.
  • the multi-carrier configuration is, for example, a configuration of carriers covering different frequencies of each cell shown in FIG. 1.
  • the network device corresponds to 6 cells, and the two cells overlapping each other are cells with multiple carriers and the same coverage.
  • the number of cells with multiple carriers and the same coverage is not particularly limited.
  • the configuration of the cell-level SRS resource may include a period of the cell-level SRS resource.
  • the period of the cell-level SRS resource is specifically a period of a subframe in which the SRS is transmitted, and the period of the subframe is, for example, 5 ms or 10 ms.
  • the first subframe, the sixth subframe, and the eleventh subframe Frames ... are used to transmit SRS.
  • the configuration of the cell-level SRS resources of each cell may be the same or different, which is not particularly limited herein in this embodiment.
  • the configuration of user-level SRS resources is similar to the configuration of cell-level SRS resources, except that the user-level SRS resources are a subset of the cell-level SRS resources.
  • the network equipment can store the cell configuration information.
  • the terminal can access the cell covered by the network device.
  • the network device can select the user-level SRS resource from the cell-level SRS resources, and assign the user-level SRS resource to the terminal, and
  • the SRS resources of the covered cells are dynamically stored to understand the remaining SRS resources of each cell in real time.
  • the user-level SRS resource can be sent to the terminal through a radio resource control protocol (Radio Resource Control (RRC) connection message (Connection Reconfiguration).
  • RRC Radio Resource Control
  • the network device When a terminal accesses a cell covered by a network device, the network device also determines the transmission mode of the terminal.
  • TM Transmission Mode
  • the network device can determine the transmission mode of the terminal according to factors such as the location of the terminal in the cell, the channel condition, and the speed of the terminal. This embodiment does not specifically limit the specific implementation of the network device to determine the transmission mode for the terminal, as long as the network device The transmission mode can be determined for the terminal.
  • TM7 and TM8 correspond to the BF transmission mode.
  • the SRS resource allocated by the network device to the terminal is a short-cycle resource, for example, the subframe period is 5, 10, 20, 40ms.
  • the network device may determine the load of each cell based on the SRS resource in real time or according to a preset period, and then perform load balancing based on the load.
  • this embodiment is referred to as a first cell for the purpose of differentiation, and a cell with the same coverage as the first cell is referred to as a second cell.
  • the number of the second cells may be at least one, that is, the second cell may be one or more, and the network device simultaneously covers the first cell and the second cell.
  • the network device determines whether the period of the SRS resources that can be allocated by the first cell is greater than the period of the SRS resources that can be allocated by the second cell.
  • the assignable SRS resources refer to the remaining SRS resources that have not been allocated.
  • the shortest period of the SRS resource that can be allocated in the first cell and the period of the SRS resource that can be allocated in the second cell are compared.
  • the shortest period of the SRS resource that can be allocated in the first cell is 160 ms
  • the first The period of the SRS resources that can be allocated in the second cell is 20ms, 40ms, 160ms, and 320ms. Therefore, it can be known that the minimum period of the resources that can be allocated in the first cell is 160ms which is greater than the period of the SRS resources that can be allocated in the second cell is 20ms, 40ms.
  • the shortest period of the SRS resources that can be allocated in the first cell can also be compared with the shortest period of the SRS resources that can be allocated in the second cell, so that the network device can determine the Whether the shortest period is greater than the shortest period of SRS resources that can be allocated by the second cell.
  • the network device determines the terminal to be switched according to the transmission mode of the accessed terminal that accesses the first cell.
  • a terminal whose transmission mode is the BF transmission mode can be used as a candidate terminal to be switched, while other terminals are not used as candidate terminals to be switched. .
  • the network device determines, from the accessed terminals that have accessed the first cell, whether there is a target terminal whose transmission mode is the beamforming BF transmission mode, wherein the SRS resources corresponding to the BF transmission mode have a period shorter than a preset period. SRS resources. That is, as described above, a network device allocates a short-period SRS resource to a terminal having a BF transmission mode. If there is a target terminal with a transmission mode of BF in the accessed terminals that have accessed the first cell, that is, the target terminal involved in the embodiment of the present application is a terminal that has accessed the first cell, and the transmission mode is BF transmission mode. Then, the network device determines the terminal to be switched among the target terminals whose transmission mode is the BF transmission mode.
  • the BF transmission mode is the single-stream BF transmission mode described above, or a single-stream user in MUBF.
  • MUBF includes paired users, and each paired user is a single-stream user.
  • the transmission mode of the terminal is a dual-stream BF transmission mode, the BF gain obtained by the terminal is large, so it does not need to be switched to the second cell.
  • the network device determines the terminal to be switched according to the period of the SRS resources that each target terminal has allocated.
  • the period of the SRS resource allocated by the terminal to be switched in the first cell is greater than the shortest period of the SRS resource allocated by the second cell.
  • a target terminal may be sequentially selected as a terminal to be switched among a plurality of target terminals according to a preset rule.
  • the preset rule may be, for example, sequentially selecting the target terminal according to the period of the SRS resource allocated by the target terminal from long to short.
  • the target terminal is sequentially selected as the terminal to be switched according to a preset rule, and when the period of the SRS resource that can be allocated in the second cell is equal to the period of the target terminal, the target terminal is no longer selected as the terminal to be switched. Terminals, or all terminals have been regarded as terminals to be switched before reaching equal. The following uses specific examples for explanation.
  • the target terminal to be switched is determined among the target terminals of the allocated SRS resources with a period of 160 ms.
  • the network device allocates the shortest SRS resource of the second cell to the terminal to be switched, that is, the period of the SRS resource allocated to the terminal to be switched is 80 ms.
  • the purpose of selecting the terminal to be switched in this embodiment is to ensure that after the terminal switches to the second cell, the period of the SRS resource allocated by the terminal is smaller than the period of the SRS resource allocated by the terminal in the first cell, so that the terminal obtains The BF gain is improved.
  • the network device switches the terminal to be switched to the second cell, where the period of the SRS resource allocated to the terminal to be switched in the second cell is smaller than the period of the SRS resource allocated in the first cell.
  • the network device After determining the terminal to be switched, the network device switches the terminal to be switched to the second cell.
  • the handover is a load-based handover and is an intra-site handover, that is, the terminal is handed over from one cell of the network device to another cell of the network device, that is, the handover process is enclosed within one network device.
  • the network device sends a handover instruction to the terminal to be handed over, and the handover instruction is used to instruct the terminal to be handed over to the second cell.
  • the handover instruction may be sent to a terminal to be handed over through a radio resource control protocol (Radio Resource Control (RRC) reconfiguration message (Connection Reconfiguration).
  • RRC Radio Resource Control
  • the to-be-switched terminal After the to-be-switched terminal successfully switches to the second cell, the to-be-switched terminal sends a handover response to the network device to indicate that the handover is successful.
  • RRC Radio Resource Control
  • the network device releases the SRS resources allocated by the terminal to be switched in the first cell, and at the same time, the network device allocates the short-period SRS resources that can be allocated by the second cell to the terminal to be switched.
  • the cycle of the short-cycle resource may be carried in the handover instruction, or the cycle of the short-cycle resource may be sent to the terminal to be switched by other messages. It can be known from the above that the period of the SRS resources allocated to the terminal to be switched in the second cell is smaller than the period of the SRS resources allocated to the first cell.
  • the network device if the period of the SRS resource that can be allocated in the first cell is greater than the period of the SRS resource that can be allocated in the second cell, the network device according to the accessed terminal accessing the first cell Transmission mode, determine the terminal to be switched, and determine the terminal to be switched by the transmission mode, so that the terminal with the transmission mode of BF transmission mode can be determined as the terminal to be switched, the network device switches the terminal to be switched to the second cell, and the network device will The SRS resource with the shortest period that can be allocated in the second cell is allocated to the terminal to be switched.
  • the period of the SRS resource allocated to the terminal to be switched in the second cell is less than the period of the SRS resource allocated in the first cell, so that it has a BF transmission mode.
  • the terminal is switched from the first cell to the second cell, thereby achieving load balancing, so that the terminal to be accessed that needs to access the first cell can be allocated SRS resources, and the terminal to be accessed can be switched to the second cell.
  • the terminal to be switched can increase the beamforming gain.
  • the network device can not only trigger the process of load balancing autonomously, but also trigger the process of load balancing when a terminal accesses the first cell.
  • the following uses two specific embodiments for detailed description respectively.
  • FIG. 5 is a second flowchart of a load balancing method according to an embodiment of the present application. As shown in FIG. 5, the method includes:
  • the network device receives an access request to access the first cell from the terminal to be accessed.
  • the network device determines whether a transmission mode exists in the accessed terminal that has accessed the first cell as Target terminal in beamforming BF transmission mode; if yes, execute S504; if not, execute S505;
  • the network device determines a terminal to be switched among target terminals whose transmission mode is the BF transmission mode.
  • the network device determines the terminal to be accessed to be accessed to the first cell as the terminal to be switched.
  • the terminal to be accessed that is to access the first cell sends an access request to the network device to access the first cell, and after the network device receives the access request, the load balancing process is triggered.
  • the network device After the network device determines that the period of the SRS resource that can be allocated in the first cell is greater than the period of the SRS resource that can be allocated in the second cell, if there is a transmission mode in the accessed terminal that has accessed the first cell, beam-formed BF transmission.
  • the target terminal in the mode determines the terminal to be switched among the target terminals whose transmission mode is the BF transmission mode. For a specific implementation manner of determining the terminal to be switched, refer to the embodiment shown in FIG. 4, which is not described in this embodiment.
  • the network equipment directly The terminal to be accessed in the first cell to be accessed is determined as the terminal to be switched, and the network device may send a switching instruction to the terminal to be accessed, the switching instruction is used to instruct the terminal to be switched to the second cell.
  • the period of the SRS resource allocated in the second cell is smaller than the period of the SRS resource allocated in the first cell, so that the terminal to be accessed can obtain a shorter period.
  • Periodic SRS resources have the opportunity to increase the BF gain.
  • the load balancing process is triggered. If it is determined that there is a transmission mode for a beam assignment in an already accessed terminal that has accessed the first cell, Target terminal in the BF transmission mode, the network device determines the terminal to be accessed in the first cell as the terminal to be switched, so that the terminal to be accessed can obtain SRS resources with a shorter period from the second cell, and has a chance Get or increase the BF gain.
  • FIG. 6 is a third flowchart of a load balancing method according to an embodiment of the present application. As shown in FIG. 6, the method includes:
  • the terminal to be accessed sends an access request to the network device to access the first cell;
  • the network device determines that the period of the SRS resources that can be allocated in the first cell is greater than the period of the SRS resources that can be allocated in the second cell.
  • the network device determines the terminal to be switched according to the transmission mode of the accessed terminal that accesses the first cell.
  • the network device sends a handover instruction to the terminal to be switched, where the handover instruction is used to instruct the terminal to be switched to the second cell and the period of the SRS resource allocated by the terminal to be switched in the second cell.
  • the terminal to be handed over sends a handover response to the network device, where the handover response is used to indicate that the terminal to be handed over has been handed over to the second cell;
  • the network device releases the SRS resources allocated by the terminal to be switched in the first cell;
  • the network device determines a period of the target resource among the periods of the allocable SRS resources of the first cell, where the target resource is the SRS resource to be allocated to the terminal to be accessed;
  • the network device sends a connection response to the terminal to be accessed, where the connection response includes a period of the target resource.
  • This embodiment is different from the above-mentioned embodiment of FIG. 5.
  • the network device in this embodiment receives the access request from the terminal to be accessed to access the first cell
  • the network device when the load balancing mechanism is triggered, the network device is in
  • the terminal to be switched can be determined according to the transmission mode of the accessed terminal accessing the first cell. That is, the terminal to be switched is determined in a terminal that has accessed the first cell. For a specific determination process, refer to the embodiment shown in FIG. 4, which is not repeatedly described in this embodiment.
  • the network device After the terminal to be switched is determined from the terminals that have accessed the first cell, the network device sends a switching instruction to the terminal to be switched, the switching instruction is used to instruct the terminal to be switched to the second cell.
  • the handover instruction may further indicate a period of SRS resources allocated by the terminal to be handed over in the second cell.
  • the terminal to be handed over After the terminal to be handed over is successfully switched to the second cell, the terminal to be handed over sends a handover response to the network device, and the handover response is used to indicate that the terminal to be handed over has been handed over to the second cell.
  • the network device releases the SRS resources allocated by the terminal to be switched in the first cell.
  • the allocable SRS resources of the first cell increase, and the network device determines the period of the target resource among the allocable SRS resources of the first cell.
  • the target resource is an SRS resource to be allocated to a terminal to be accessed. Specifically, the period of the target resource is the period of the resource with the shortest period.
  • the network device After determining the SRS resources of the terminal to be accessed, the network device sends a connection response to the terminal to be accessed, where the connection response includes the period of the target resource.
  • the network device further determines a transmission mode of the terminal to be accessed, and the connection response further includes a transmission mode of the terminal to be accessed.
  • This embodiment triggers a load balancing process after a network device receives an access request from a terminal to be accessed to access the first cell, and when there is a terminal to be switched, the network device controls the terminal to be switched.
  • the network device controls the terminal to be switched.
  • To the second cell thereby releasing the SRS resources of the terminal to be switched in the first cell, not only enabling the terminal to be switched to increase the BF gain in the second cell, but also enabling the terminal to be accessed to obtain a short-period SRS from the first cell Resources, have the opportunity to gain BF gain.
  • FIG. 7 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • the network device 70 includes a processing module 701, a receiving module 702, and a sending module 703.
  • the processing module 701 determines the A handover terminal, wherein the first cell and the second cell are cells in a multi-carrier same coverage network, and the network device covers the first cell and the second cell;
  • the processing module 701 is further configured to switch the terminal to be switched to the second cell; wherein the period of the SRS resources allocated to the terminal to be switched in the second cell is shorter than that in the first cell. The period of the allocated SRS resources.
  • processing module 701 is specifically configured to:
  • the SRS resource is an SRS resource with a period shorter than a preset period.
  • processing module 701 is specifically configured to:
  • processing module 701 is further configured to:
  • the terminal to be accessed to be accessed in the first cell is determined as the terminal to be switched.
  • the processing module 701 is specifically configured to send a switching instruction to the terminal to be switched through the sending module 703, where the switching instruction is used to instruct the terminal to be switched to switch to the first terminal.
  • the processing module 701 is specifically configured to receive, through the receiving module 702, a handover response for indicating a successful handover from the terminal to be handed over.
  • the processing module 701 is specifically configured to receive an access request from a terminal to be accessed to access the first cell through the receiving module 702;
  • the processing module 701 is further configured to release the SRS resources allocated by the to-be-switched terminal in the first cell after switching the to-be-switched terminal to the second cell, and Determining the period of the target resource from the period of the allocable SRS resources, the target resource is the SRS resource to be allocated to the terminal to be accessed;
  • the processing module 701 is further configured to send a connection response to the terminal to be accessed through the sending module 703, where the connection response includes a period of the target resource.
  • the processing module 701 is further configured to: before sending a connection response to the terminal to be accessed, determine a transmission mode of the terminal to be accessed, the connection response further includes The transmission mode of the terminal to be accessed is described.
  • the processing module 701 is further configured to: before switching the terminal to be switched to the second cell, receive an SRS sent by an accessed terminal whose transmission mode is a BF transmission mode; according to The SRS adjusts an antenna array of the network device.
  • the network device provided in this embodiment may be used to execute the foregoing load balancing method, and its implementation principles and technical effects are similar. This embodiment will not repeat them here.
  • the division of the module is only a kind of logical function division. In actual implementation, there may be another division manner. For example, multiple modules or components may be combined or integrated into another system, or some features may be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or modules, and may be electrical, mechanical or other forms.
  • the modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical modules, which may be located in one place, or may be distributed on multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional module in each embodiment of the present application may be integrated into one processing module, or each module may exist separately physically, or two or more modules may be integrated into one module.
  • FIG. 8 is a schematic diagram of a hardware structure of a network device according to an embodiment of the present application.
  • the network device 80 includes: at least one processor 801 and a memory 802. among them
  • the memory 802 is configured to store a computer execution instruction
  • the processor 801 is configured to execute a computer execution instruction stored in a memory to implement each step performed by the network device in the embodiments of the foregoing method in FIG. 1 to FIG. 6. For details, refer to related descriptions in the foregoing method embodiments.
  • the memory 802 may be independent or integrated with the processor 801.
  • the network device 80 may further include a bus 803, configured to connect the memory 802 and the processor 801.
  • the network device 80 may further include a communication component 803, configured to complete an action of sending or receiving.
  • the communication component 803 may include a transmitter and a receiver, and may also be a device with integrated transmission and reception functions.
  • the network device 80 provided in this embodiment may be used to execute the method performed by the network device in the foregoing embodiments, and its implementation principles and technical effects are similar. This embodiment will not repeat them here.
  • This embodiment also provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer-executable instructions. When the computer-executable instructions are executed, the methods described in FIG. 1 to FIG. 6 are implemented.
  • An embodiment of the present application further provides a computer program product, where the computer program product includes computer program code, and when the computer program code is run on a computer, the computer is caused to execute a program executed by the network device shown in FIGS. 1 to 6 method.
  • An embodiment of the present application further provides a chip, including a memory and a processor, where the memory is used to store a computer execution instruction, and the processor is used to call and run the computer execution instruction from the memory, so that the chip executes The method implemented by the network device as above.
  • the processor may be a central processing unit (English: Central Processing Unit, referred to as CPU), or other general-purpose processors, digital signal processors (English: Digital Signal Processor, referred to as: DSP), Application Specific Integrated Circuit (English: Application Specific Integrated Circuit, ASIC for short) and so on.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like. The steps of the method disclosed in connection with the invention can be directly embodied as being executed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory may include high-speed RAM memory, and may also include non-volatile storage NVM, such as at least one disk memory.
  • the bus may be an Industry Standard Architecture (ISA) bus, an External Component Interconnect (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus.
  • ISA Industry Standard Architecture
  • PCI External Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus and so on.
  • the bus in the drawings of the present application is not limited to only one bus or one type of bus.
  • the foregoing computer-readable storage medium may be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable and removable Programmable read-only memory (EEPROM), erasable programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable and removable Programmable read-only memory
  • EPROM erasable programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • a readable storage medium may be any available medium that can be accessed by a general purpose or special purpose computer.
  • An exemplary readable storage medium is coupled to the processor such that the processor can read information from, and write information to, the readable storage medium.
  • the readable storage medium may also be part of the processor.
  • the processor and the readable storage medium may be located in Application Specific Integrated Circuits (Application Specific Integrated Circuits, ASIC for short).
  • ASIC Application Specific Integrated Circuits
  • the processor and the readable storage medium may reside in the device as discrete components.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the foregoing storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes .

Abstract

一种负载均衡方法及设备,该方法包括:若第一小区可分配的探测参考信号SRS资源的周期大于第二小区可分配的SRS资源的周期,则网络设备根据接入第一小区的已接入终端的传输模式,确定待切换终端,其中,第一小区与第二小区为多载波同覆盖组网中的小区,且网络设备覆盖第一小区与第二小区(S401);网络设备将待切换终端切换至第二小区;其中,待切换终端在第二小区被分配的SRS资源的周期小于在第一小区被分配的SRS资源的周期(S402)。该方法在负载均衡的基础上使得待接入终端在接入第一小区后可以获取SRS资源,待切换终端在切换至第二小区时可以提高波束赋形增益。

Description

负载均衡方法及设备 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种负载均衡方法及设备。
背景技术
在长期演进(Long Term Evolution,LTE)通信系统中,终端可以周期性向基站发送探测参考信号(Sounding Reference Signal,SRS),基站对该SRS信号进行解调,由此可以获得上行信道质量。
为了使终端能够在指定的物理资源上发射上行SRS,基站必须为每一个终端分配特定的物理资源,即SRS资源。目前,基站可以分配的SRS资源包括小区级SRS资源和用户级SRS资源。其中,用户级的SRS资源是小区级SRS资源的子集,即用户级SRS资源需要在小区级SRS资源中做出选择。
然而,小区级SRS资源的总量是一定的,能够分配到SRS资源的终端的数量是有限的,SRS资源耗尽后终端将无法被分配到SRS资源,因此,亟需一种负载均衡方法,使得终端能够分配到SRS资源。
发明内容
本申请实施例提供一种负载均衡方法及设备,在负载均衡的基础上使得从本小区切换至其它小区的终端可以提高波束赋形增益,接入本小区的终端可以获取SRS资源。
第一方面,本申请实施例提供一种负载均衡方法,包括:
若第一小区可分配的探测参考信号SRS资源的周期大于第二小区可分配的SRS资源的周期,则网络设备根据接入所述第一小区的已接入终端的传输模式,确定待切换终端,其中,第一小区与第二小区的载频不同但覆盖范围相同,该网络设备可以覆盖该第一小区和第二小区;
网络设备将待切换终端切换至第二小区,在该待切换终端切换至第二小区后,网络设备在第二小区的可用SRS资源中将周期最短的资源分配给该待切换终端,使得待切换终端在第二小区被分配的SRS资源的周期小于在第一小区被分配的SRS资源的周期,从而实现了负载的均衡,使得需要接入第一小区的待接入终端可以分配到SRS资源,还使得待接入终端切换至第二小区后可以获取更短的SRS资源,待切换终端可以提高波束赋形增益。
在一种可能的设计中,所述网络设备根据接入所述第一小区的已接入终端的传输模式,确定待切换终端,包括:
若已接入第一小区的已接入终端中存在传输模式为波束赋形BF传输模式的目标终端,则网络设备在目标终端中确定待切换终端;其中,在终端分配的SRS资源为短周期的资源时,例如终端被分配的SRS资源的周期小于预设周期时,当该终端的传输 模式为波束赋形传输模式时,能够获取到BF增益。
在一种可能的设计中,所述网络设备在所述目标终端中确定待切换终端,包括:
所述网络设备根据各所述目标终端被分配的SRS资源的周期,确定待切换终端,例如,可以根据预设规则在多个目标终端中依次选择目标终端作为待切换终端。该预设规则可以为按照目标终端的分配的SRS资源的周期从长到短的顺序依次选择目标终端。该待切换终端在第一小区被分配的SRS资源的周期大于第二小区可分配的SRS资源的最短周期。在待切换终端切换至第二小区,网络设备根据先分配短周期资源再分配长周期资源的资源分配原则,将第二小区的最短周期的SRS资源分配给该待切换终端,提高了待切换终端的BF增益。
在一种可能的设计中,所述方法还包括:若已接入所述第一小区的已接入终端中不存在传输模式为BF传输模式的目标终端,则所述网络设备将待接入所述第一小区的待接入终端确定为待切换终端。
在一种可能的设计中,所述网络设备将所述待切换终端切换至所述第二小区,包括:
所述网络设备向所述待切换终端发送切换指令,所述切换指令用于指示所述待切换终端切换至所述第二小区;
所述网络设备从所述待切换终端接收用于指示切换成功的切换响应。
在一种可能的设计中,所述方法还包括:
所述网络设备从待接入所述第一小区的待接入终端接收接入请求;
所述网络设备将所述待切换终端切换至所述第二小区之后,所述方法还包括:
所述网络设备释放所述待切换终端在所述第一小区中被分配的SRS资源,并在所述第一小区的可分配的SRS资源的周期中确定目标资源的周期,所述目标资源为待分配给所述待接入终端的SRS资源;所述网络设备向所述待接入终端发送连接响应,所述连接响应中包括所述目标资源的周期。
通过在网络设备接收到待接入终端发送的接入第一小区的接入请求后,触发负载均衡流程,在存在可以进行切换的待切换终端时,网络设备控制该待切换终端切换至第二小区,从而可以释放该待切换终端在第一小区的SRS资源,不仅使得待切换终端可以在第二小区提高BF增益,还使得待接入终端可以从第一小区获取短周期的SRS资源,有机会获取BF增益。
在一种可能的设计中,所述网络设备向所述待接入终端发送连接响应之前,所述方法还包括:
所述网络设备确定所述待接入终端的传输模式,则所述连接响应中还包括所述待接入终端的传输模式。
在一种可能的设计中,所述网络设备将所述待切换终端切换至所述第二小区之前,所述方法还包括:
所述网络设备接收传输模式为BF传输模式的已接入终端发送的SRS;
所述网络设备根据所述SRS,调整所述网络设备的天线阵列。
第二方面,本申请实施例提供一种网络设备,包括:
处理模块,若第一小区可分配的探测参考信号SRS资源的周期大于第二小区可分 配的SRS资源的周期,则根据接入所述第一小区的已接入终端的传输模式,确定待切换终端,其中,所述第一小区与所述第二小区为多载波同覆盖组网中的小区,且所述网络设备覆盖所述第一小区与所述第二小区;
所述处理模块还用于将所述待切换终端切换至所述第二小区;其中,所述待切换终端在所述第二小区被分配的SRS资源的周期小于在所述第一小区被分配的SRS资源的周期。
在一种可能的设计中,所述处理模块具体用于:
若已接入所述第一小区的已接入终端中存在传输模式为波束赋形BF传输模式的目标终端,则在所述目标终端中确定待切换终端;其中,所述BF传输模式对应的SRS资源为周期小于预设周期的SRS资源。
在一种可能的设计中,所述处理模块具体用于:
根据各所述目标终端被分配的SRS资源的周期,确定待切换终端,所述待切换终端在所述第一小区被分配的SRS资源的周期大于所述第二小区可分配的SRS资源的最短周期。
在一种可能的设计中,所述处理模块还用于:
若已接入所述第一小区的已接入终端中不存在传输模式为BF传输模式的目标终端,则将待接入所述第一小区的待接入终端确定为待切换终端。
在一种可能的设计中,还包括:发送模块和接收模块;其中
所述处理模块具体用于:通过所述发送模块向所述待切换终端发送切换指令,所述切换指令用于指示所述待切换终端切换至所述第二小区;
所述处理模块具体用于:通过所述接收模块从所述待切换终端接收用于指示切换成功的切换响应。
在一种可能的设计中,还包括:发送模块和接收模块;其中
所述处理模块具体用于:通过所述接收模块从待接入所述第一小区的待接入终端接收接入请求;
所述处理模块还用于在将所述待切换终端切换至所述第二小区之后,释放所述待切换终端在所述第一小区中被分配的SRS资源,并在所述第一小区的可分配的SRS资源的周期中确定目标资源的周期,所述目标资源为待分配给所述待接入终端的SRS资源;
所述处理模块还用于:通过所述发送模块向所述待接入终端发送连接响应,所述连接响应中包括所述目标资源的周期。
在一种可能的设计中,所述处理模块还用于:在向所述待接入终端发送连接响应之前,确定所述待接入终端的传输模式,则所述连接响应中还包括所述待接入终端的传输模式。
在一种可能的设计中,所述处理模块还用于:在将所述待切换终端切换至所述第二小区之前,接收传输模式为BF传输模式的已接入终端发送的SRS;根据所述SRS,调整所述网络设备的天线阵列。
第三方面,本申请实施例提供一种网络设备,包括:至少一个处理器和存储器;
所述存储器存储计算机执行指令;
所述至少一个处理器执行所述存储器存储的计算机执行指令,使得所述至少一个处理器执行如上第一方面或第一方面各种可能的设计所述的方法。
第四方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被执行时,实现如上第一方面或第一方面各种可能的设计所述的方法。
第五方面,本申请实施例还提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如上第一方面或第一方面各种可能的设计所述的方法。
第六方面,本申请实施例还提供一种芯片,包括存储器和处理器,所述存储器用于存储计算机执行指令,所述处理器用于从所述存储器中调用并运行所述计算机执行指令,使得所述芯片执行如上第一方面或第一方面各种可能的设计所述的方法。
本实施例提供的基于SRS资源的负载均衡方法及设备,若第一小区可分配的SRS资源的周期大于第二小区可分配的SRS资源的周期,则网络设备根据接入第一小区的已接入终端的传输模式,确定待切换终端,通过传输模式来确定待切换终端,使得传输模式为BF传输模式的终端可以被确定为待切换终端,网络设备将待切换终端切换至第二小区,网络设备将第二小区可分配的最短周期的SRS资源分配给待切换终端,该待切换终端在第二小区被分配的SRS资源的周期小于在第一小区被分配的SRS资源的周期,使得具有BF传输模式的终端由第一小区切换至第二小区,从而实现了负载的均衡,使得需要接入第一小区的待接入终端可以分配到SRS资源,还使得待接入终端切换至第二小区后可以获取更短的SRS资源,待切换终端可以提高波束赋形增益。
附图说明
图1示出了本申请实施例可能适用的一种网络架构;
图2为本申请实施例提供的下行波束赋形的实现示意图;
图3为本申请实施例提供的下行波束赋形的实现示意图;
图4为本申请实施例提供的负载均衡方法的流程示意图一;
图5为本申请实施例提供的负载均衡方法的流程示意图二;
图6为本申请实施例提供的负载均衡方法的流程示意图三;
图7为本申请实施例提供的网络设备的结构示意图;
图8为本申请实施例提供的网络设备的硬件结构示意图。
具体实施方式
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例可以应用于无线通信系统,需要说明的是,本申请实施例提及的无线通信系统包括但不限于:窄带物联网系统(Narrow Band-Internet of Things,NB-IoT)、全球 移动通信系统(Global System for Mobile Communications,GSM)、增强型数据速率GSM演进系统(Enhanced Data rate for GSM Evolution,EDGE)、宽带码分多址系统(Wideband Code Division Multiple Access,WCDMA)、码分多址2000系统(Code Division Multiple Access,CDMA2000)、时分同步码分多址系统(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA),长期演进系统(Long Term Evolution,LTE)以及下一代5G移动通信系统。
下面结合图1对本申请实施例的可能的网络架构进行介绍。图1示出了本申请实施例可能适用的一种网络架构。如图1所示,本实施例提供的网络架构包括网络设备101和终端102。
其中,网络设备101是一种将终端接入到无线网络的设备,可以是全球移动通讯(Global System of Mobile communication,简称GSM)或码分多址(Code Division Multiple Access,简称CDMA)中的基站(Base Transceiver Station,简称BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)中的基站(NodeB,简称NB),还可以是长期演进(Long Term Evolution,简称LTE)中的演进型基站(Evolved Node B,简称eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的网络侧设备(例如基站)或未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等,在此并不限定。图1示意性的绘出了一种可能的示意,以该网络设备101为基站为例进行了绘示。
该终端102可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,简称RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,简称PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,简称SIP)话机、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字助理(Personal Digital Assistant,简称PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent),在此不作限定。图1示意性的绘出了一种可能的示意,以该终端102为移动电话为例进行了绘示。
在本实施例中,上述的通信系统可以提供多载波同覆盖组网。其中,多载波同覆盖组网是指每扇区方向上使用2个载波或者更多载波(每个载波是一个小区)进行覆盖组网。以2载波组网为例,如图1所示,载频分别为F1和F2,F1和F2覆盖完全相同的区域。在2载波同覆盖网络中,终端在同一位置可以被两个小区服务。
进一步地,在长期演进(Long Term Evolution,LTE)通信系统中,终端可以周期性向网络设备发送探测参考信号(Sounding Reference Single,SRS),网络设备对该SRS信号进行解调,由此可以获得上行信道质量。
其中,SRS资源具备周期性、频分或码分以及梳状结构等特征。SRS资源的分配 包括小区级SRS资源,用户级SRS资源。该SRS资源是指用于传输SRS的资源。
在一种可能的实现方式中,小区级SRS资源包括子帧周期为5ms和10ms的资源,该资源是由时分双工(Time Division Duplexing,TDD)的帧结构决定的。例如,在配置的小区级SRS子帧上,若该子帧为正常上行子帧,则该子帧的最后一个符号用于传送SRS,不能传送数据,否则数据会对SRS有干扰;若该子帧为特殊子帧,则该特殊子帧的一个或两个符号用于传送SRS。
在一种可能的实现方式中,在TDD模式下,针对用户级SRS资源所对应的子帧周期为{5,10,20,40,80,160,320}ms。其中,给用户分配的SRS资源必须配置在小区的SRS子帧上,用户级的SRS资源是小区级的SRS资源的子集。本领域技术人员可以理解,在给用户分配SRS资源时,实际为给用户对应的终端分配SRS资源。
在TDD系统中,基于小区上行吞吐量和容量的综合考虑,LTE TDD系统分配给小区的SRS资源是有限的,则小区接入的用户能分配到的SRS资源也是有限的。
小区级SRS资源分配方案确定后,能分配到SRS资源的用户数规格受如下几个因素约束:周期、码分、单用户资源块(Resource Block,RB)数、符号数等。针对用户级SRS资源,不同的SRS资源分配周期,接入分配到当前SRS资源周期的用户数规格是有限的,超过此规格,新接入的用户分配下一个SRS资源分配周期。
例如,在为用户分配SRS资源时,先分配短周期资源,即先向终端分配子帧周期为5ms的资源,在没有可用资源时,再分配子帧周期为10ms的资源,依次类推,直到小区级SRS资源耗尽,在小区级的SRS资源耗尽后不再为终端分配SRS资源(除非有其他终端释放SRS资源)。
在终端分配的SRS资源为短周期的资源时,在传输模式为波束赋形(Beam forming,BF)传输模式时,能够获取到BF增益。下面对波束赋形的相关内容进行详细说明。
具体地,波束赋形是一种基于天线阵列的信号预处理技术;通过调整天线阵列中每个阵元的加权系数产生具有指向性的波束,从而获得明显的阵列增益。对提高目标用户的解调信噪比,改善小区边缘用户吞吐率特别有效。权值随无线信道环境变化而变化,以保证波束时刻对准目标用户。
图2为本申请实施例提供的OFDM符号产生的示意图。如图2所示,在网络设备进行下行传输时,在信道编码完成后,对编码后比特进行加扰、调制以及层映射,在层映射完成后,进行BF加权处理,最后通过资源粒子(Resource Element,RE)映射,得到OFDM符号。具体地TDD下BF加权处理过程中的权值计算是利用上行信道估计信息(SRS),通过TDD上下行信道互易性估计计算出下行信道相关的权值向量,根据该权值向量进行下行波束赋形。
图3为本申请实施例提供的下行波束赋形的实现示意图。如图3所示,网络设备在接收到终端发送的SRS之后,进行上行信道估计,根据上行信道估计进行接收通道补偿,然后再根据该上行信道估计来计算和维护每个用户的协方差矩阵,对协方差矩阵进行特征值分解得到BF权值向量估计,根据该BF权值向量估计、物理上行链路共享信道(Physical Uplink Shared Channel,PUSCH)的相关信息以及解调参考信号(Dedicated Reference Signal,DRS)进行下行波束赋形。
由此可知,为保证移动用户的BF权值更新及时,为移动用户分配的SRS资源需 要选择为短周期。
进一步地,BF传输模式(Transmission Mode,TM)包括单流BF传输模式、双流BF传输模式以及多用户BF(Multiple-User Beamforming,MUBF)传输模式。其中,单流传输模式使用一个天线端口,在对数据调制完进行层映射时映射成一层。双流传输模式使用两个天线端口,在对数据调制完进行层映射时映射成两层。MUBF传输模式利用天线间信道强相关性和不同用户信道的空间多样性,将多个下行用户数据复用到相同的时频资源上,提高网络容量和小区吞吐量。在终端天线强相关性下,用户自身无法进行多流传输,形成了性能瓶颈,而MUBF利用不同用户的信道空间多样性,能够获得更大的空间自由度对多流进行复用,从而获得增益。双流BF传输模式和MUBF传输模式的差异在于,对于双流BF传输模式,两个码字数据是分给一个用户的。对于MUBF传输模式,两个码字分别给两个不同用户。
本实施例在对SRS资源的负载做均衡时,不仅使得新接入的用户能够分配到SRS资源,还充分考虑了BF增益,尽可能的使终端能够获取到BF增益。下面采用详细的实施例,对本申请实施例提供的基于SRS资源的负载均衡方法的具体实现过程进行详细说明。
图4为本申请实施例提供的负载均衡方法的流程示意图一。如图4所示,该方法包括:
S401、若第一小区可分配的探测参考信号SRS资源的周期大于第二小区可分配的SRS资源的周期,则网络设备根据接入所述第一小区的已接入终端的传输模式,确定待切换终端,其中,所述第一小区与所述第二小区为多载波同覆盖组网中的小区,且所述网络设备覆盖所述第一小区与所述第二小区;
在具体实现过程中,在初始设置网络设备时,会根据小区配置信息对网络设备所覆盖的小区进行配置,该配置例如包括多载波配置、各载波的发射功率、小区级SRS资源的配置、用户级SRS资源的配置。
其中,多载波配置例如图1所示的覆盖每个小区的不同频率的载波的配置。以图1所示为例,网络设备对应有6个小区,其中上下重叠的两个小区为多载波同覆盖的小区。本领域技术人员可以理解,多载波同覆盖的小区不仅可以有两个,还可以有多个,本实施例对多载波同覆盖的小区的数量不做特别限制。
小区级SRS资源的配置可以包括小区级SRS资源的周期,该小区级SRS资源的周期具体为传输SRS的子帧的周期,该子帧的周期例如为5ms或10ms。以子帧的周期为5ms,每个子帧的长度为1ms为例进行说明,即每5个子帧中有1个子帧用于传输SRS,例如,第1个子帧、第6个子帧、第11个子帧……等用于传输SRS。每个小区的小区级SRS资源的配置可以相同也可以不同,本实施例此处不做特别限制。
用户级SRS资源的配置与小区级SRS资源的配置类似,所不同的是用户级SRS资源为小区级SRS资源的子集。
在对网络设备配置完成后,网络设备可以对该小区配置信息进行存储。在网络设备覆盖的小区开始工作时,终端可以接入网络设备所覆盖的小区,网络设备可以在小区级SRS资源中选择用户级SRS资源,并为终端分配用户级SRS资源,并对该网络设备覆盖的小区的SRS资源进行动态存储,以实时了解每个小区的剩余SRS资源。其 中,用户级SRS资源可以通过无线资源控制协议(Radio Resource Control,RRC)连接消息(Connection Reconfiguration)发送给终端。
在终端接入网络设备所覆盖的小区时,网络设备还会确定该终端的传输模式。在一种可能的传输模式示例中,LTE的传输模式(Transmission Mode,TM)有9种,分别为TM1,单天线端口传输;TM2,发送分集模式;TM3,开环空间分集;TM4,闭环空间分集;TM5,多用户多入多出技术(Multi-User Multiple-InputMultiple-Output,MU-MIMO)传输模式;TM6,Rank1的传输;TM7,单流波束赋形模式;TM8,双流波束赋形模式;TM9支持最大到8层的传输。网络设备可以根据终端在小区中的位置、信道情况、终端的移动速度等因素来确定终端的传输模式,本实施例对网络设备为终端确定传输模式的具体实现方式不做特别限制,只要网络设备可以为终端确定传输模式即可。
其中,TM7和TM8对应BF传输模式,当终端采用TM7或TM8进行传输时,网络设备为该终端分配的SRS资源为短周期的资源,例如子帧周期为5,10,20,40ms。
网络设备可以实时也可以按照预设周期来确定每个小区基于SRS资源的负载,然后基于该负载来进行负载均衡。具体地,针对任一小区而言,本实施例此处为了区分,将其称为第一小区,对于与该第一小区为多载波同覆盖的小区称为第二小区。该第二小区的数量可以为至少一个,即该第二小区可以为一个也可以为多个,且该网络设备同时覆盖该第一小区与第二小区。
在进行负载均衡过程中,网络设备判断第一小区可分配的SRS资源的周期是否大于第二小区可分配的SRS资源的周期。其中,可分配的SRS资源是指没有被分配出去的剩余的SRS资源。
在具体比较过程中,针对第一小区可分配的SRS资源的最短周期与第二小区可分配的SRS资源的周期进行比较,例如,第一小区可分配的SRS资源的最短周期为160ms,而第二小区可分配的SRS资源的周期为20ms,40ms,160ms,320ms,由此可知,第一小区可分配的资源的最短周期为160ms大于第二小区可分配的SRS资源的周期20ms,40ms。本领域技术人员可以理解,还可以可将第一小区可分配的SRS资源的最短周期与第二小区可分配的SRS资源的最短周期进行比较,从而网络设备判断第一小区可分配的SRS资源的最短周期是否大于第二小区可分配的SRS资源的最短周期。
若第一小区可分配的SRS资源的周期大于第二小区可分配的SRS资源的周期,则网络设备根据接入第一小区的已接入终端的传输模式,确定待切换终端。
由上可知,终端的传输模式有多种,由于本申请实施例需要考虑BF增益,则可以将传输模式为BF传输模式的终端作为候选的待切换终端,而其它终端不作为候选的待切换终端。
具体地,网络设备在已接入第一小区的已接入终端中判断是否存在传输模式为波束赋形BF传输模式的目标终端,其中,BF传输模式对应的SRS资源为周期小于预设周期的SRS资源。即如上所述,网络设备给具有BF传输模式的终端分配短周期的SRS资源。若已接入第一小区的已接入终端中存在传输模式为BF传输模式的目标终端,即本申请实施例所涉及的目标终端为已接入第一小区的终端,且传输模式为BF传输模式。则网络设备在传输模式为BF传输模式的目标终端中确定待切换终端。
可选地,该BF传输模式为上述的单流BF传输模式,或MUBF中的单流用户。其中,MUBF中包括配对用户,而每个配对用户都为单流用户。当终端的传输模式为双流BF传输模式时,该终端获取的BF增益较大,所以不需要将其切换至第二小区。
在具体实现过程中,网络设备根据各目标终端已分配的SRS资源的周期,确定待切换终端。其中,该待切换终端在第一小区被分配的SRS资源的周期大于第二小区可分配的SRS资源的最短周期。
在具体实现过程中,可以根据预设规则在多个目标终端中依次选择目标终端作为待切换终端。该预设规则例如可以为按照目标终端的分配的SRS资源的周期从长到短的顺序依次选择目标终端。
具体地,在多个目标终端中根据预设规则依次选择目标终端作为待切换终端,直至第二小区中可分配的SRS资源的周期等于目标终端的周期时,则不再选择目标终端作为待切换终端,或者在达到等于之前,已将所有的目标终端作为待切换终端。下面以具体的例子进行说明。
例如,目标终端有7个,其中有两个目标终端被分配的SRS资源的周期为40ms,有三个目标终端被分配的SRS资源的周期是80ms,还有两个目标终端被分配的SRS资源的周期是160ms,第二小区可分配的SRS资源的周期为80ms,160ms和320ms,则在被分配的SRS资源的周期是160ms的目标终端中确定待切换终端。在该待切换终端切换至第二小区时,网络设备会将第二小区的最短的SRS资源分配给该待切换终端,即分配给该待切换终端的SRS资源的周期为80ms。
即本实施例选择待切换终端的宗旨是,保证终端切换至第二小区之后,使得终端分配到的SRS资源的周期小于终端在第一小区分配到的SRS的资源的周期,从而使得终端获取到的BF增益得到提高。
S402、网络设备将待切换终端切换至第二小区,其中,待切换终端在第二小区被分配的SRS资源的周期小于在第一小区被分配的SRS资源的周期。
在确定待切换终端之后,网络设备将该待切换终端切换至第二小区。具体地,该切换为基于负载的切换,且为站内切换,即将终端从网络设备的一个小区切换至网络设备的另一个小区,也即切换过程封闭在一个网络设备内。
在切换时,网络设备向待切换终端发送切换指令,该切换指令用于指示将该待切换终端切换至第二小区。该切换指令可以通过无线资源控制协议(Radio Resource Control,RRC)重配置消息(Connection Reconfiguration)发送给待切换终端。在待切换终端成功切换至第二小区后,该待切换终端向网络设备发送用于指示切换成功的切换响应。
在待切换终端切换成功之后,网络设备释放该待切换终端在第一小区中分配的SRS资源,同时网络设备将第二小区可分配的短周期的SRS资源分配给所述待切换终端。例如,可以在切换指令中携带该短周期资源的周期,也可以通过其它消息向该待切换终端发送该短周期的资源的周期。由上可知,待切换终端在第二小区被分配的SRS资源的周期小于在第一小区被分配的SRS资源的周期。
本实施例提供的基于SRS资源的负载均衡方法,若第一小区可分配的SRS资源的周期大于第二小区可分配的SRS资源的周期,则网络设备根据接入第一小区的已接入 终端的传输模式,确定待切换终端,通过传输模式来确定待切换终端,使得传输模式为BF传输模式的终端可以被确定为待切换终端,网络设备将待切换终端切换至第二小区,网络设备将第二小区可分配的最短周期的SRS资源分配给待切换终端,该待切换终端在第二小区被分配的SRS资源的周期小于在第一小区被分配的SRS资源的周期,使得具有BF传输模式的终端由第一小区切换至第二小区,从而实现了负载的均衡,使得需要接入第一小区的待接入终端可以分配到SRS资源,还使得待接入终端切换至第二小区后可以获取更短的SRS资源,待切换终端可以提高波束赋形增益。
在上述实施例的基础上,网络设备不仅可以自主触发负载均衡的过程,还可以在有终端接入第一小区时,来触发负载均衡的过程。下面采用两个具体实施例来分别进行详细说明。
图5为本申请实施例提供的负载均衡方法的流程示意图二,如图5所示,该方法包括:
S501、网络设备从待接入终端接收接入第一小区的接入请求;
S502、若第一小区可分配的探测参考信号SRS资源的周期大于第二小区可分配的SRS资源的周期,则网络设备在已接入第一小区的已接入终端中判断是否存在传输模式为波束赋形BF传输模式的目标终端;若是,则执行S504,若否,则执行S505;
S503、网络设备在传输模式为BF传输模式的目标终端中确定待切换终端;
S504、网络设备将待接入第一小区的待接入终端确定为待切换终端。
在本实施例中,待接入第一小区的待接入终端向该网络设备发送接入第一小区的接入请求,在网络设备接收到该接入请求之后,触发负载均衡流程。
在网络设备确定第一小区可分配的SRS资源的周期大于第二小区可分配的SRS资源的周期后,若在已接入第一小区的已接入终端中存在传输模式为波束赋形BF传输模式的目标终端,则在传输模式为BF传输模式的目标终端中确定待切换终端,具体的确定待切换终端的实现方式可参见图4所示实施例,本实施例此处不再赘述。
若在已接入第一小区的已接入终端中确定不存在传输模式为BF传输模式的目标终端,则说明没有可以获取BF增益的终端,因此不需要对这些终端进行切换,网络设备直接将待接入第一小区的待接入终端确定为待切换终端,网络设备可以向待接入终端发送切换指令,该切换指令用于指示该待接入终端切换至第二小区。
当该待接入终端接入第二小区后,在第二小区所被分配的SRS资源的周期小于在所述第一小区被分配的SRS资源的周期,从而使得待接入终端可以获取更短周期的SRS资源,有机会提高BF增益。
本实施例通过在网络设备从待接入终端接收接入第一小区的接入请求后,触发负载均衡流程,若在已接入第一小区的已接入终端中判断存在传输模式为波束赋形BF传输模式的目标终端,则网络设备将待接入第一小区的待接入终端确定为待切换终端,从而使得待接入终端可以从第二小区获取更短周期的SRS资源,有机会获取或提高BF增益。
图6为本申请实施例提供的负载均衡方法的流程示意图三,如图6所示,该方法包括:
S601、待接入终端向网络设备发送接入第一小区的接入请求;
S602、网络设备确定第一小区可分配的SRS资源的周期大于第二小区可分配的SRS资源的周期;
S603、网络设备根据接入第一小区的已接入终端的传输模式,确定待切换终端;
S604、网络设备向待切换终端发送切换指令,该切换指令用于指示待切换终端切换至第二小区以及该待切换终端在第二小区被分配的SRS资源的周期;
S605、待切换终端向网络设备发送切换响应,该切换响应用于指示待切换终端已切换至第二小区;
S606、网络设备释放待切换终端在第一小区中被分配的SRS资源;
S607、网络设备在第一小区的可分配的SRS资源的周期中确定目标资源的周期,所述目标资源为待分配给所述待接入终端的SRS资源;
S608、网络设备向待接入终端发送连接响应,该连接响应中包括该目标资源的周期。
本实施例与上述图5实施例所不同的是,本实施例的网络设备在接收到待接入终端发送的接入第一小区的接入请求后,在触发负载均衡机制时,网络设备在确定第一小区可分配的SRS资源的周期大于第二小区可分配的SRS资源的周期后,能够根据接入第一小区的已接入终端的传输模式,确定待切换终端。即待切换终端是在已接入第一小区的终端中确定的,具体的确定过程可参见图4所示实施例,本实施例此处不再赘述。
当在已接入第一小区的终端中确定待切换终端后,网络设备向待切换终端发送切换指令,该切换指令用于指示待切换终端切换至第二小区。可选地,该切换指令还可以指示该待切换终端在第二小区被分配的SRS资源的周期。
在待切换终端切换到第二小区成功后,待切换终端向网络设备发送切换响应,该切换响应用于指示待切换终端已切换至第二小区。由此网络设备释放待切换终端在第一小区中分配的SRS资源,此时第一小区的可分配的SRS资源增多,网络设备在第一小区的可分配的SRS资源中确定目标资源的周期,该目标资源为待分配给待接入终端的SRS资源。具体地,该目标资源的周期即为周期最短的资源的周期。
在确定待接入终端的SRS资源后,网络设备向待接入终端发送连接响应,该连接响应中包括该目标资源的周期。可选地,网络设备还确定待接入终端的传输模式,该连接响应中还包括待接入终端的传输模式。
本实施例通过在网络设备接收到待接入终端发送的接入第一小区的接入请求后,触发负载均衡流程,在存在可以进行切换的待切换终端时,网络设备控制该待切换终端切换至第二小区,从而可以释放该待切换终端在第一小区的SRS资源,不仅使得待切换终端可以在第二小区提高BF增益,还使得待接入终端可以从第一小区获取短周期的SRS资源,有机会获取BF增益。
图7为本申请实施例提供的网络设备的结构示意图。如图7所示,该网络设备70包括:处理模块701、接收模块702以及发送模块703。
处理模块701,若第一小区可分配的探测参考信号SRS资源的周期大于第二小区可分配的SRS资源的周期,则根据接入所述第一小区的已接入终端的传输模式,确定待切换终端,其中,所述第一小区与所述第二小区为多载波同覆盖组网中的小区,且所述网络设备覆盖所述第一小区与所述第二小区;
所述处理模块701还用于将所述待切换终端切换至所述第二小区;其中,所述待切换终端在所述第二小区被分配的SRS资源的周期小于在所述第一小区被分配的SRS资源的周期。
在一种可能的设计中,所述处理模块701具体用于:
若已接入所述第一小区的已接入终端中存在传输模式为波束赋形BF传输模式的目标终端,则在所述目标终端中确定待切换终端;其中,所述BF传输模式对应的SRS资源为周期小于预设周期的SRS资源。
在一种可能的设计中,所述处理模块701具体用于:
根据各所述目标终端被分配的SRS资源的周期,确定待切换终端,所述待切换终端在所述第一小区被分配的SRS资源的周期大于所述第二小区可分配的SRS资源的最短周期。
在一种可能的设计中,所述处理模块701还用于:
若已接入所述第一小区的已接入终端中不存在传输模式为BF传输模式的目标终端,则将待接入所述第一小区的待接入终端确定为待切换终端。
在一种可能的设计中,所述处理模块701具体用于:通过所述发送模块703向所述待切换终端发送切换指令,所述切换指令用于指示所述待切换终端切换至所述第二小区;
所述处理模块701具体用于:通过所述接收模块702从所述待切换终端接收用于指示切换成功的切换响应。
在一种可能的设计中,所述处理模块701具体用于:通过所述接收模块702从待接入所述第一小区的待接入终端接收接入请求;
所述处理模块701还用于在将所述待切换终端切换至所述第二小区之后,释放所述待切换终端在所述第一小区中被分配的SRS资源,并在所述第一小区的可分配的SRS资源的周期中确定目标资源的周期,所述目标资源为待分配给所述待接入终端的SRS资源;
所述处理模块701还用于:通过所述发送模块703向所述待接入终端发送连接响应,所述连接响应中包括所述目标资源的周期。
在一种可能的设计中,所述处理模块701还用于:在向所述待接入终端发送连接响应之前,确定所述待接入终端的传输模式,则所述连接响应中还包括所述待接入终端的传输模式。
在一种可能的设计中,所述处理模块701还用于:在将所述待切换终端切换至所述第二小区之前,接收传输模式为BF传输模式的已接入终端发送的SRS;根据所述SRS,调整所述网络设备的天线阵列。
本实施例提供的网络设备,可用于执行上述的负载均衡方法,其实现原理和技术效果类似,本实施例此处不再赘述。
所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。
图8为本申请实施例提供的网络设备的硬件结构示意图。如图8所示,该网络设备80包括:至少一个处理器801和存储器802。其中
存储器802,用于存储计算机执行指令;
处理器801,用于执行存储器存储的计算机执行指令,以实现上述方法实施例中图1至图6实施例中网络设备所执行的各个步骤。具体可以参见前述方法实施例中的相关描述。
可选地,存储器802既可以是独立的,也可以跟处理器801集成在一起。
当所述存储器802是独立于处理器801之外的器件时,所述网络设备80还可以包括:总线803,用于连接所述存储器802和处理器801。
可选地,网络设备80还可以进一步包括通信部件803,用于向完成发送或接收的动作。该通信部件803可以包括发送器和接收器,也可以为集成发送和接收功能的设备。
本实施例提供的网络设备80,可用于执行上述各实施例中网络设备所执行的方法,其实现原理和技术效果类似,本实施例此处不再赘述。
本实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被执行时,实现如上图1至图6所述的方法。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行图1至图6所示的网络设备所执行的方法。
本申请实施例还提供一种芯片,包括存储器和处理器,所述存储器用于存储计算机执行指令,所述处理器用于从所述存储器中调用并运行所述计算机执行指令,使得所述芯片执行如上网络设备所实现的方法。
在上述的实施例中,应理解,处理器可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合发明所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
存储器可能包含高速RAM存储器,也可能还包括非易失性存储NVM,例如至少一个磁盘存储器。
总线可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。总线可以分为地址总线、数据总 线、控制总线等。为便于表示,本申请附图中的总线并不限定仅有一根总线或一种类型的总线。
上述的计算机可读存储介质,上述可读存储介质可以是由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。可读存储介质可以是通用或专用计算机能够存取的任何可用介质。
一种示例性的可读存储介质耦合至处理器,从而使处理器能够从该可读存储介质读取信息,且可向该可读存储介质写入信息。当然,可读存储介质也可以是处理器的组成部分。处理器和可读存储介质可以位于专用集成电路(Application Specific Integrated Circuits,简称:ASIC)中。当然,处理器和可读存储介质也可以作为分立组件存在于设备中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (18)

  1. 一种负载均衡方法,其特征在于,包括:
    若第一小区可分配的探测参考信号SRS资源的周期大于第二小区可分配的SRS资源的周期,则网络设备根据接入所述第一小区的已接入终端的传输模式,确定待切换终端,其中,所述第一小区与所述第二小区为多载波同覆盖组网中的小区,且所述网络设备覆盖所述第一小区与所述第二小区;
    所述网络设备将所述待切换终端切换至所述第二小区;其中,所述待切换终端在所述第二小区被分配的SRS资源的周期小于在所述第一小区被分配的SRS资源的周期。
  2. 根据权利要求1所述的方法,其特征在于,所述网络设备根据接入所述第一小区的已接入终端的传输模式,确定待切换终端,包括:
    若已接入所述第一小区的已接入终端中存在传输模式为波束赋形BF传输模式的目标终端,则所述网络设备在所述目标终端中确定待切换终端;其中,所述BF传输模式对应的SRS资源为周期小于预设周期的SRS资源。
  3. 根据权利要求2所述的方法,其特征在于,所述网络设备在所述目标终端中确定待切换终端,包括:
    所述网络设备根据各所述目标终端被分配的SRS资源的周期,确定待切换终端,所述待切换终端在所述第一小区被分配的SRS资源的周期大于所述第二小区可分配的SRS资源的最短周期。
  4. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    若已接入所述第一小区的已接入终端中不存在传输模式为BF传输模式的目标终端,则所述网络设备将待接入所述第一小区的待接入终端确定为待切换终端。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述网络设备将所述待切换终端切换至所述第二小区,包括:
    所述网络设备向所述待切换终端发送切换指令,所述切换指令用于指示所述待切换终端切换至所述第二小区;
    所述网络设备从所述待切换终端接收用于指示切换成功的切换响应。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备从待接入所述第一小区的待接入终端接收接入请求;
    所述网络设备将所述待切换终端切换至所述第二小区之后,所述方法还包括:
    所述网络设备释放所述待切换终端在所述第一小区中被分配的SRS资源,并在所述第一小区的可分配的SRS资源的周期中确定目标资源的周期,所述目标资源为待分配给所述待接入终端的SRS资源;
    所述网络设备向所述待接入终端发送连接响应,所述连接响应中包括所述目标资源的周期。
  7. 根据权利要求6所述的方法,其特征在于,所述网络设备向所述待接入终端发送连接响应之前,所述方法还包括:
    所述网络设备确定所述待接入终端的传输模式,则所述连接响应中还包括所述待接入终端的传输模式。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述网络设备将所述待切换终端切换至所述第二小区之前,所述方法还包括:
    所述网络设备接收传输模式为BF传输模式的已接入终端发送的SRS;
    所述网络设备根据所述SRS,调整所述网络设备的天线阵列。
  9. 一种网络设备,其特征在于,包括:
    处理模块,若第一小区可分配的探测参考信号SRS资源的周期大于第二小区可分配的SRS资源的周期,则根据接入所述第一小区的已接入终端的传输模式,确定待切换终端,其中,所述第一小区与所述第二小区为多载波同覆盖组网中的小区,且所述网络设备覆盖所述第一小区与所述第二小区;
    所述处理模块还用于将所述待切换终端切换至所述第二小区;其中,所述待切换终端在所述第二小区被分配的SRS资源的周期小于在所述第一小区被分配的SRS资源的周期。
  10. 根据权利要求9所述的设备,其特征在于,所述处理模块具体用于:
    若已接入所述第一小区的已接入终端中存在传输模式为波束赋形BF传输模式的目标终端,则在所述目标终端中确定待切换终端;其中,所述BF传输模式对应的SRS资源为周期小于预设周期的SRS资源。
  11. 根据权利要求10所述的设备,其特征在于,所述处理模块具体用于:
    根据各所述目标终端被分配的SRS资源的周期,确定待切换终端,所述待切换终端在所述第一小区被分配的SRS资源的周期大于所述第二小区可分配的SRS资源的最短周期。
  12. 根据权利要求10所述的设备,其特征在于,所述处理模块还用于:
    若已接入所述第一小区的已接入终端中不存在传输模式为BF传输模式的目标终端,则将待接入所述第一小区的待接入终端确定为待切换终端。
  13. 根据权利要求9至12任一项所述的设备,其特征在于,还包括:发送模块和接收模块;其中
    所述处理模块具体用于:通过所述发送模块向所述待切换终端发送切换指令,所述切换指令用于指示所述待切换终端切换至所述第二小区;
    所述处理模块具体用于:通过所述接收模块从所述待切换终端接收用于指示切换成功的切换响应。
  14. 根据权利要求9至12任一项所述的设备,其特征在于,还包括:发送模块和接收模块;其中
    所述处理模块具体用于:通过所述接收模块从待接入所述第一小区的待接入终端接收接入请求;
    所述处理模块还用于在将所述待切换终端切换至所述第二小区之后,释放所述待切换终端在所述第一小区中被分配的SRS资源,并在所述第一小区的可分配的SRS资源的周期中确定目标资源的周期,所述目标资源为待分配给所述待接入终端的SRS资源;
    所述处理模块还用于:通过所述发送模块向所述待接入终端发送连接响应,所述连接响应中包括所述目标资源的周期。
  15. 根据权利要求14所述的设备,其特征在于,所述处理模块还用于:在向所述待接入终端发送连接响应之前,确定所述待接入终端的传输模式,则所述连接响应中还包括所述待接入终端的传输模式。
  16. 根据权利要求9至15任一项所述的设备,其特征在于,所述处理模块还用于:在将所述待切换终端切换至所述第二小区之前,接收传输模式为BF传输模式的已接入终端发送的SRS;根据所述SRS,调整所述网络设备的天线阵列。
  17. 一种网络设备,其特征在于,包括:至少一个处理器和存储器;
    所述存储器存储计算机执行指令;
    所述至少一个处理器执行所述存储器存储的计算机执行指令,使得所述至少一个处理器执行如权利要求1至8任一项所述的方法。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被执行时,实现如权利要求1至8任一项所述的方法。
PCT/CN2018/092397 2018-06-22 2018-06-22 负载均衡方法及设备 WO2019242000A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2018/092397 WO2019242000A1 (zh) 2018-06-22 2018-06-22 负载均衡方法及设备
EP18923082.4A EP3796708B1 (en) 2018-06-22 2018-06-22 Method and device for load balancing
CN201880094465.4A CN112262592B (zh) 2018-06-22 2018-06-22 负载均衡方法及设备
US17/128,688 US11405825B2 (en) 2018-06-22 2020-12-21 Load balancing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/092397 WO2019242000A1 (zh) 2018-06-22 2018-06-22 负载均衡方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/128,688 Continuation US11405825B2 (en) 2018-06-22 2020-12-21 Load balancing method and device

Publications (1)

Publication Number Publication Date
WO2019242000A1 true WO2019242000A1 (zh) 2019-12-26

Family

ID=68982597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092397 WO2019242000A1 (zh) 2018-06-22 2018-06-22 负载均衡方法及设备

Country Status (4)

Country Link
US (1) US11405825B2 (zh)
EP (1) EP3796708B1 (zh)
CN (1) CN112262592B (zh)
WO (1) WO2019242000A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210360474A1 (en) * 2020-05-15 2021-11-18 Samsung Electronics Co., Ltd. Methods and apparatus for network load balancing optimization

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101742565A (zh) * 2009-12-11 2010-06-16 北京北方烽火科技有限公司 一种lte移动通信网络中小区间负载均衡方法
CN101754280A (zh) * 2009-12-28 2010-06-23 华为技术有限公司 多载波的负载均衡方法及装置
US20120331478A1 (en) * 2010-03-24 2012-12-27 Zhiqiu Zhu Method and device for processing inter-subframe service load balancing and processing inter-cell interference
CN106341853A (zh) * 2015-07-10 2017-01-18 中兴通讯股份有限公司 一种实现切换的方法、装置和基站
CN107566101A (zh) * 2016-06-30 2018-01-09 中兴通讯股份有限公司 一种探测参考信号srs资源的配置方法、装置及基站

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2510730C2 (ru) * 2009-07-06 2014-04-10 Телефонактиеболагет Л М Эрикссон (Пабл) Улучшенный управляющий узел
EP2334122B1 (en) * 2009-12-14 2014-03-26 Intel Mobile Communications GmbH Method and apparatus for data communication in LTE cellular networks
US9585083B2 (en) * 2011-06-17 2017-02-28 Samsung Electronics Co., Ltd. Apparatus and method for supporting network entry in a millimeter-wave mobile broadband communication system
US8797988B2 (en) * 2012-03-02 2014-08-05 Nokia Siemens Networks Oy Resource allocation methods and use thereof for sounding reference signals in uplink
US9351205B2 (en) * 2012-05-11 2016-05-24 Qualcomm Incorporated Carrier aggregation capable mobile operation over single frequency
US10136337B2 (en) * 2013-03-28 2018-11-20 Lg Electronics Inc. Method and apparatus for acquiring channel state information in antenna array
US9445326B2 (en) * 2013-12-17 2016-09-13 Mbit Wireless, Inc. Method and apparatus for improved user experience in wireless communication terminals
EP3179762A4 (en) * 2014-08-06 2018-03-07 Mitsubishi Electric Corporation Communication system
CN108886457B (zh) * 2016-04-01 2021-11-30 华为技术有限公司 用于srs切换、发送和增强的系统与方法
CN107347005B (zh) * 2016-05-05 2020-09-11 华为技术有限公司 配置探测参考信号的方法和装置
AR108438A1 (es) * 2016-05-13 2018-08-22 Ericsson Telefon Ab L M Control de potencia de enlace ascendente para conmutación basada en portadora de señales de referencia de sonido
US20180049079A1 (en) * 2016-08-12 2018-02-15 Qualcomm Incorporated Handover in wireless communications
US9942814B1 (en) * 2017-01-12 2018-04-10 Sprint Spectrum L.P. Systems and methods for selecting an access node and/or cell sector for handover of a wireless device
US11223967B2 (en) * 2017-04-18 2022-01-11 Qualcomm Incorporated Techniques to provide energy efficient radio resource management
US10602418B2 (en) * 2018-06-11 2020-03-24 Google Llc Handover of a wireless connection based on uplink and downlink signal qualities

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101742565A (zh) * 2009-12-11 2010-06-16 北京北方烽火科技有限公司 一种lte移动通信网络中小区间负载均衡方法
CN101754280A (zh) * 2009-12-28 2010-06-23 华为技术有限公司 多载波的负载均衡方法及装置
US20120331478A1 (en) * 2010-03-24 2012-12-27 Zhiqiu Zhu Method and device for processing inter-subframe service load balancing and processing inter-cell interference
CN106341853A (zh) * 2015-07-10 2017-01-18 中兴通讯股份有限公司 一种实现切换的方法、装置和基站
CN107566101A (zh) * 2016-06-30 2018-01-09 中兴通讯股份有限公司 一种探测参考信号srs资源的配置方法、装置及基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3796708A4 *

Also Published As

Publication number Publication date
US11405825B2 (en) 2022-08-02
EP3796708B1 (en) 2023-06-21
EP3796708A4 (en) 2021-04-28
EP3796708A1 (en) 2021-03-24
CN112262592A (zh) 2021-01-22
US20210112454A1 (en) 2021-04-15
CN112262592B (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
KR102481397B1 (ko) 다중 입력 다중 출력 무선 시스템을 위한 사운딩 기준 신호 전력 제어
CN109495879B (zh) 一种资源配置方法、基站和终端
JP2022122939A (ja) New radioのためのcsiフィードバック設計
KR102162409B1 (ko) 매시브 다중 입력 다중 출력 시스템에서 계층적 채널 사운딩 및 채널 상태 정보 피드백을 위한 장치 및 방법
KR101670528B1 (ko) 채널 정보 피드백과 상위 랭크 전용 빔 포밍을 이용한 CoΜP 공동 송신
US8320926B2 (en) Methods and arrangements in a wireless communication system
US8498256B2 (en) Method for allocating resources for edge-users using cooperative MIMO
US11528064B2 (en) Determination of sub-band allocation parameters for wireless networks
CN110972251A (zh) 信号传输方法、相关设备及系统
US20150312919A1 (en) Virtual antenna mapping method and apparatus for feedback of virtual antenna mapping information in mimo system
CN107079513A (zh) 被配置用于报告双连接的非周期性信道状态信息的装置
CN111866936A (zh) 辅小区激活方法和装置
WO2009037580A2 (en) Providing space division multiple access in a wireless network
WO2014101242A1 (zh) 报告信道状态信息csi的方法、用户设备和基站
EP3711266A1 (en) Systems and methods regarding frequency-selective srs transmission and pusch precoding
WO2021147078A1 (en) Precoding matrix indicator feedback for multiple transmission hypotheses
KR101410603B1 (ko) 셀룰러 네트워크에서 다중 사용자 안테나 빔형성을 지원하는 시스템 및 방법
US11876736B2 (en) Allocating the same time-frequency resources to different UEs based on orthogonal beams assigned to the different UEs
US11405825B2 (en) Load balancing method and device
CN110547022A (zh) 用于指示调度授权的系统和方法
KR20210010199A (ko) 무선 통신 시스템에서 전력 제어를 위한 장치 및 방법
WO2022027625A1 (en) Frequency domain precoding for fdd reciprocity
US11742904B2 (en) Method and apparatus for multi-user multi-antenna transmission
WO2022169513A1 (en) Iterative precoder computation and coordination for improved sidelink and uplink coverages
JP2024500395A (ja) より高いランクの送信をサポートするためのタイプiiポート選択コードブックを拡張する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923082

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018923082

Country of ref document: EP

Effective date: 20201215

NENP Non-entry into the national phase

Ref country code: DE