WO2019240354A1 - Apparatus and method for diagnosing body malalignment syndrome by using plantar pressure and physical movement information - Google Patents

Apparatus and method for diagnosing body malalignment syndrome by using plantar pressure and physical movement information Download PDF

Info

Publication number
WO2019240354A1
WO2019240354A1 PCT/KR2019/002739 KR2019002739W WO2019240354A1 WO 2019240354 A1 WO2019240354 A1 WO 2019240354A1 KR 2019002739 W KR2019002739 W KR 2019002739W WO 2019240354 A1 WO2019240354 A1 WO 2019240354A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
plantar pressure
movement
sensor
walking
Prior art date
Application number
PCT/KR2019/002739
Other languages
French (fr)
Korean (ko)
Inventor
정재훈
석선호
박하연
Original Assignee
정재훈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정재훈 filed Critical 정재훈
Publication of WO2019240354A1 publication Critical patent/WO2019240354A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4538Evaluating a particular part of the muscoloskeletal system or a particular medical condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/1036Measuring load distribution, e.g. podologic studies
    • A61B5/1038Measuring plantar pressure during gait
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1123Discriminating type of movement, e.g. walking or running
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements

Definitions

  • the present invention relates to an apparatus and method for diagnosing physical malformation syndrome using plantar pressure and body motion information.
  • the plantar pressure and body motion information of natural gait are collected by synchronizing time, and according to the walking process alone and associated analysis.
  • the present invention relates to an apparatus and method for diagnosing physical malformation syndrome using plantar pressure and body motion information, which enables accurate diagnosis of malformation syndrome by enabling to accurately grasp characteristics of a walking operation.
  • the human body is affected and adapts to a variety of things, such as gravity, posture, environment, physical activity, injury, and repetitive movement. Among these, it is very important that human beings are constantly affected by gravity.
  • the influence of gravity on humans makes it possible to measure the normal alignment of human beings, and on the contrary, it is said that gravity is outside the standard of normal alignment.
  • One of our body's functions is to maintain stability and produce efficient movements against gravity. Humans can lead to abnormal patterns of movement and dysfunction such as disease, injury, environment, emotions, body types, developmental conditions, and repetitive physical activity.
  • the normal alignment of the pelvis and spinal curvature is very important to accept the effects of gravity. That is, in order to stabilize the joint supporting the weight, the gravity line must pass through the rotation axis of the joint. If the gravitational line passes abnormally through the axis of rotation of the body joint, misalignment syndrome can occur.
  • Misalignment syndrome occurs when the body's left and right balance is out of balance, and the feet and legs, pelvis and spine are out of balance.
  • muscles and ligaments are asymmetrically tensioned, accompanied by abnormal gait patterns and pains, and a difference in the left and right muscle mass and strength of the body.
  • These symptoms include differences in leg length and deformation of the foot.
  • the human posture seems to be stationary, not seemingly stationary, not symmetrical back and forth, but it is constantly moving internally and forms a dynamic equilibrium state.
  • Korean Patent No. 10-1238094 has a walking correction plate for walking correction on a treadmill used for walking or running, and an angle correction plate for correcting foot angles to induce correct walking of pedestrians whose walking is incomplete due to obstacles. And, to provide a gait corrector to correct the correct walk through repetitive walk practice, Korean Patent Publication No. 10-2015-0113671, 'Posture Correction device and its operation method' for correcting the patient's posture For this purpose, the patient walks on the two pressure measuring scaffolds at the bottom of the treadmill, calculates the pressure, angle and walking speed of each foot, and generates the patient's walking state as a joint-based model using a 3D camera. Compared with the proposed method for providing the patient to correct the posture during walking was proposed.
  • Korean Patent Registration No. 10-1852655 "Spine joint musculoskeletal structure measuring device” allows the patient to rise on the pressure scaffold and the depth image (moiré, stereo camera) of the patient. After obtaining the frontal 3D geometric information by laser measurement, etc., we find the center of gravity and the center reference line and analyze the frontal image to compare the shoulder line with the ground to determine the angle or to determine the symmetry of the skeleton. .
  • This method uses only the most basic and superficial information of the obtained image information superficially, and is only to determine the body distortion in the static state. Therefore, it is possible to grasp the resulting state of the body (spine scoliosis), but there is a limit that practical and specific diagnosis such as the cause, related disease state, walking habits is impossible.
  • the patient's movements are accurately identified in real time through 3D sensors (stereo cameras, laser sensors, infrared sensors, time-of-flight sensors, ultrasonic sensors, etc.) to more clearly determine the symptoms of misalignment syndrome.
  • 3D sensors stereo cameras, laser sensors, infrared sensors, time-of-flight sensors, ultrasonic sensors, etc.
  • An object of the embodiments of the present invention for improving the above-mentioned problems is plantar pressure, foot movements of the upper and lower limbs, foot pressure in the step-by-step process for walking based on information measured in real time through the foot pressure sensor and the 3D sensor of the patient walking
  • An apparatus and method for diagnosing physical malformation syndrome using plantar pressure and movement information of the body to diagnose malformation syndrome according to the timely and more precisely by analyzing the change and movement of the musculoskeletal system related to change To provide.
  • Another object of the embodiments of the present invention is to measure the 3D sensor based on the change of the plantar pressure according to the walking step and the walking step pattern and the time according to the plantar pressure through the plantar pressure sensor while using the 3D sensor having a limited measurement.
  • Still another object of the embodiments of the present invention is to store the measured values of the plantar pressure sensor and the 3D sensor according to the synchronized time information, determine the cause and cause of the foot through the plantar pressure sensor and the 3D sensor, the plantar according to the walking step Based on the measured value and time of the pressure sensor, the motion of the lower limb, pelvis, and torso is judged through the movement of the 3D sensor, and the time information on the movement and movement of the joints in each step of walking is determined by the plantar pressure sensor and the 3D sensor. It is to provide an apparatus and method for diagnosing physical malformation syndrome using plantar pressure and body motion information to provide diagnostic information about malalignment syndrome by measuring the.
  • Another object of the embodiments of the present invention is to use the plantar pressure sensor and the 3D sensor at the same time to collect information about the natural gait, the movement of the support of the lower limbs weight movement through the plantar pressure sensor and the foot through the 3D sensor To provide a device and method for diagnosing physical malformation syndrome using plantar pressure and body motion information to be analyzed based on the correlation between the pelvis and the upper limb.
  • Another object of the embodiments of the present invention is to store plantar pressure change information and 3D information for natural gait according to time synchronization, and then analyze the misalignment syndrome through the same data from various viewpoints as necessary,
  • the present invention provides an apparatus and method for diagnosing physical malformation syndrome using plantar pressure and body motion information, which enables the actual diagnosis of misalignment state and causes by integrating the results of misalignment syndrome analysis.
  • the apparatus for diagnosing body distress syndrome using plantar pressure and body motion information includes a plantar pressure sensor that measures plantar pressure according to human walking at least two steps or more;
  • the 3D sensor measures the movement information of the human body according to the walking at least as depth information, and converts the measured values of the plantar pressure sensor and the 3D sensor into 3D information of the plantar pressure and the human body movement.
  • the gait analysis unit that stores malformation syndrome by analyzing the movement pattern of the upper body of the lower limb which is correlated with the stepped foot state based on the dynamic change of the plantar pressure and the dynamic change of the 3D information.
  • the gait analyzer may compensate for the human body motion 3D information according to the measured value of the 3D sensor according to the human body motion corresponding to the plantar pressure change pattern for each step.
  • the plantar pressure sensor may be at least one of a footrest, a shoe, an insole, a treadmill in which the pressure sensors are disposed.
  • the 3D sensor may be at least one of a stereo camera, a ToF sensor, a laser sensor, an ultrasonic sensor, and a Kinect sensor.
  • the gait analyzer obtains the time step, pressure distribution and change of each step of the foot, the foot and the lower limb supporter through the dynamic change of plantar pressure, and the dynamic change of 3D information synchronized with the dynamic change of plantar pressure.
  • Flexion and extension of the pelvis and upper and lower extremity joints, movement or rotation of adduction and abduction, tibia rotation, torso rotation, body mass left and right, up and down, knee Q angle, knee height, foot height Information on at least one of the body movements can be obtained as the interlocking information.
  • the gait analyzer may include a pressure measuring unit that converts the measured value of the plantar pressure sensor into plantar pressure on the human body, a 3D information generating unit converting the measured value of the 3D sensor into 3D information about human movement, and a pressure measuring unit.
  • a measurement information storage unit for storing the converted values of the 3D information generation unit at a synchronized time, a dynamic pressure change analyzer for dynamically analyzing plantar pressure stored in the measurement information storage unit over time, and a measurement information storage unit
  • the dynamic pressure change analyzer and the dynamic 3D information analyzer are linked to each other based on the detailed walking stage information of the analysis unit and the walking stage analysis unit.
  • the analysis results based on a combination can include requesting and receiving one after the body portion alignment region and to identify the relevance of each part of the body portion diagnostic misalignment unit for generating diagnostic information about the alignment syndrome syndrome.
  • 3D information is generated by generating information about a time point or movement pattern for identifying a human body movement of the plantar pressure change pattern of the corresponding dynamic pressure change analyzer of the gait step divided by the gait step analyzer as 3D information.
  • the apparatus may further include a 3D information compensation unit provided to the generation unit.
  • the pressure measuring unit, the 3D information generation unit, the measurement information storage unit, dynamic pressure change analysis unit, dynamic 3D information analysis unit, walking step analysis unit, 3D information compensation unit and misalignment syndrome diagnosis unit is composed of each unit It may include a control unit for mediating information exchange and information requests between the control unit to control each unit according to the diagnosis process of the malaligned syndrome diagnosis unit.
  • a method for diagnosing physical malformation syndrome using plantar pressure and body motion information includes a movement occurring in the body of plantar pressure and foot abnormalities in a body malformation syndrome diagnosis apparatus including a plantar pressure sensor and a 3D sensor.
  • a method of diagnosing physical malformation syndrome using information comprising: an initialization step of quantifying human movement by mapping a space for diagnosing movement of a human body and a virtual space measured by a 3D sensor; and at least two steps through a plantar pressure sensor Computing the 3D information of the human body movement through the plantar pressure and the 3D sensor of the human body according to the above walking and storing in the measurement information storage unit according to the synchronized time information, the pressure distribution of the plantar pressure stored in the measurement information storage unit Analysis of 3D information or pre-set time information of plantar pressure Subdividing the pedestrian step through at least one of the analysis of the shoes and the change of plantar pressure and the 3D information of the pedestrian step stored in the measurement information storage unit according to the synchronized time, respectively or in combination based on interworking. Analyzing the association of alignment sites with each site and providing a diagnosis of the type and cause of misalignment based on the association of the analyzed body misalignment sites with each site.
  • the method may further include compensating for 3D information according to the movement of the human body corresponding to the plantar pressure change pattern for each step of walking.
  • An apparatus and method for diagnosing physical malformation syndrome using plantar pressure and body motion information are based on plantar pressure and upper and lower limbs based on information measured in real time through plantar pressure sensors and 3D sensors.
  • An apparatus and method for diagnosing physical malformation syndrome using plantar pressure and body motion information utilize plantar pressure sensors while plantar pressure is measured using plantar pressure sensors while limiting measurement. And based on the change of time in each section of plantar pressure, 3D compensates for 3D information about human movement according to sensor measurement, thereby increasing the reliability of the political size of information necessary for judgment of misalignment syndrome. It is possible to manufacture equipment capable of detailed diagnosis of alignment syndrome, and there is an effect of easily distributing such equipment where necessary.
  • An apparatus and method for diagnosing physical malformation syndrome using plantar pressure and body motion information store measured values of plantar pressure sensor and 3D sensor according to synchronized time information, and plantar pressure sensor and 3D sensor Determination of abnormalities and causes of the foot through the 3D sensor movement based on the measured value and time of the foot pressure sensor according to the walking step to determine the abnormalities and causes of the lower limbs, pelvis and torso, plantar pressure sensor And 3D sensors measure time information about joint movement and movement by walking and provide diagnostic information about malalignment syndrome, providing rich diagnostic information on the occurrence sites and causes of complex correlation syndrome It can work.
  • the apparatus and method for diagnosing physical malformation syndrome using plantar pressure and body motion information may simultaneously collect plantar pressure sensors and 3D sensors to collect information on natural gait, and support the lower limbs. By analyzing the movement of the body weight based on the plantar pressure sensor and the correlation between the foot and the upper limb through the 3D sensor, it is possible to quickly determine the occurrence and extent of malalignment syndrome.
  • An apparatus and method for diagnosing physical malformation syndrome using plantar pressure and body motion information store plantar pressure change information and 3D information for natural gait according to time synchronization, and then, if necessary, various viewpoints. Analyze misalignment syndrome through the same data, and by integrating the results of misalignment syndrome analysis from multiple perspectives, it is possible to increase the reliability by enabling a substantial diagnosis of the misalignment state and causes.
  • the apparatus and method for diagnosing physical malformation syndrome using plantar pressure and body motion information can be used for both static and dynamic measurements, and can confirm the compensation mechanism of the body through dynamic measurement of natural gait. It has an effect.
  • FIG. 1 is a conceptual diagram showing a diagnosis method using the apparatus for diagnosing physical malformation syndrome according to an embodiment of the present invention.
  • Figure 2 is a block diagram showing the configuration of the apparatus for diagnosing physical malformation syndrome according to an embodiment of the present invention.
  • Figure 3 is an illustration of walking for explaining the steps of walking to distinguish in the embodiment of the present invention.
  • Figure 4 is an exemplary view for explaining the overall movement pattern of the human body according to the walking applied in the embodiment of the present invention.
  • FIG. 5 is an exemplary diagram for explaining a foot movement pattern for walking.
  • FIG. 6 is an exemplary view showing the movement and plantar pressure change during the standing period of the foot to explain the integrated analysis process of the embodiment of the present invention.
  • FIG. 7 is a conceptual diagram for explaining the movement of the pelvis to be measured for misalignment determination according to an embodiment of the present invention.
  • FIG. 8 is a conceptual view for explaining the types and features of flat feet that can be distinguished in an embodiment of the present invention.
  • FIG 9 is an exemplary view for explaining the Q angle of the knee measured in the embodiment of the present invention.
  • 10 is a pattern graph showing the movement pattern of the pelvis and lower extremity joint measured in the embodiment of the present invention.
  • FIG. 11 is a flowchart illustrating a process for diagnosing physical malformation syndrome according to an embodiment of the present invention.
  • first and second used in the present invention may be used to describe components, but the components should not be limited by the terms. The terms are used only to distinguish one component from another.
  • first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • plantar pressure according to human walking is at least 2 steps (preferably 3 steps).
  • the plantar pressure sensor 110 to measure, the 3D sensor 120 to measure the movement information of the human body according to the walking at least as depth information, the measured value of the plantar pressure sensor 110 and the measured value of the 3D sensor 120 It is converted into 3D information about plantar pressure on the human body and the movement of the human body and stored according to the synchronized time, respectively, and based on the dynamic change of the stored plantar pressure and the dynamic change of 3D information, the plantar state of the walking phase and the upper body having a correlation with it
  • the gait analysis unit 130 for diagnosing malalignment syndrome by interlocking analysis of the movement pattern.
  • the plantar pressure sensor 110 may be a scaffold on which pressure sensors are arranged as shown, but may be a shoe, an insole, a treadmill, or the like, on which a plurality of pressure sensors are disposed.
  • the 3D sensor 120 may be at least one of a stereo camera, a time of flight (ToF) sensor, a laser sensor, an ultrasonic sensor, and a Kinect sensor.
  • the 3D sensor 120 may point depth information of an object together with a high resolution image.
  • a Kinect TM sensor that collects a cloud and maps it to a human body and then generates skeleton information having a plurality of joints will be described.
  • one 3D sensor 120 is disposed at the front position of the examinee, but may be additionally disposed on the rear surface or the side surface if necessary.
  • the subject walks normally using the plantar pressure sensor 110, and the pressure change pattern and the pressure change time (proximal plantar part) generated in the walking state 3D sensor (120) configured to measure the movement of the human body through the 3D sensor 120 and the time information on the pressure of each compartment) and the 3D sensor 120 in real time, and to measure a comprehensive three-dimensional object or various movements of a person ) Is limited to measuring 'walking' and using the dynamic measurement information of the plantar pressure sensor 110 to compensate the measurement results based on the movement pattern according to the walking cycle to increase the reliability of the measurement results. To do that.
  • the apparatus for diagnosing physical disorder syndrome 100 enables a detailed diagnosis of the physical disorder disorder by only a relatively simple measurement.
  • FIG. 2 is a diagram illustrating the operation of the apparatus for diagnosing physical malformation syndrome 100 according to an exemplary embodiment of the present invention, and the body of the human body to be considered in order to determine physical misalignment according to the walking of the subject. This will be described with reference to the example of FIGS. 3 to 10 showing states.
  • FIG. 2 is a block diagram showing the configuration of the apparatus for diagnosing physical malformation syndrome according to an exemplary embodiment of the present invention, in which the foot pressure sensor (step in the illustrated example) 110 and the 3D sensor 120 are interlocked with each other. An internal configuration of the gait analyzer 130 to analyze the gait of the is shown.
  • the illustrated configuration is a functional configuration diagram for convenience of description, and the actual components may be integrated or further subdivided, and interface units, power units, and communication units, which are not essential for understanding the present invention, are omitted.
  • the control unit 139 is applied as a configuration for distinguishing each function unit and interworking them, but in practice, each function unit may be configured as a part of the control unit, and more specifically, executed through the control unit. It may be in the form of a hardware or software program. That is, the illustrated gait analyzer 130 is a computer device having one or more controllers and memory units, and each functional unit may be implemented as a software program, and some of the functional units may be implemented as hardware having separate controllers and memories. This hardware configuration can be variously modified, and the present invention encompasses all such variations.
  • the gait analyzer 130 includes a pressure measuring unit 131 for converting the measured value of the plantar pressure sensor 110 into plantar pressure on the human body, and the 3D sensor 120.
  • 3D information generation unit 132 for converting the measurement value to 3D information about the human body movement
  • measurement information storage unit for storing the converted value of the pressure measuring unit 131 and the 3D information generation unit 132 at a synchronized time 136
  • dynamic pressure change analyzer 137 that dynamically analyzes plantar pressure stored in the measurement information storage unit 136 over time, and 3D information on human movement stored in the measurement information storage unit.
  • the analysis unit 133 and the subdivided beam of the walking step analysis unit 133 After requesting and receiving each of the dynamic pressure change analyzer 137 and the dynamic 3D information analyzer 138 or a combination of analysis results based on interoperability based on the row step information, the association between the body misalignment parts and each part is determined.
  • the misalignment syndrome diagnosis unit 135 may generate a diagnosis information about the body misalignment syndrome.
  • the gait analyzer 130 specifies a human body movement in the plantar pressure change pattern of the corresponding dynamic pressure change analyzer 137 of the gait step subdivided by the gait step analyzer 133.
  • the apparatus may further include a 3D information compensator 134 which generates information about a viewpoint or a movement pattern as information for compensating for 3D information and provides the information to the 3D information generator 132.
  • the gait analyzer 130 may include a pressure measurer 131, a 3D information generator 132, a measurement information storage 136, a dynamic pressure change analyzer 137, a dynamic 3D information analyzer 138, It is composed between the walking step analysis unit 133, the 3D information compensation unit 134 and the misalignment syndrome diagnosis unit 135 to mediate the exchange of information and requests for information between the units, and to determine each unit according to the diagnosis process of the misalignment syndrome diagnosis unit. It may include a control unit 139 for controlling.
  • the functional characteristics of the subject are diagnosed by identifying the walking characteristics of the examinee.
  • the basic walking characteristics of the human body will be described first with reference to FIGS. 3 to 5. .
  • Figure 3 is an exemplary walk for explaining the steps of walking to distinguish in the embodiment of the present invention.
  • the human body continuously produces neurologically patterned movements and movements according to the inherent angles of the joints.
  • Walking is a continuous representation of the patterned movements of the whole body.
  • the foot contact period) and the oleus period foot drop period
  • the lower supportive period both foot contact
  • the lower support period one foot contact. Or seven periods.
  • Adjacent feet When the foot of the lower limb in the stiletto comes next to the foot of the lower leg at 73% of the walking cycle.
  • Tibia Vertical When the tibia of the lower extremity in the skeletal phase is vertical at 87% of the walking cycle.
  • the walking cycle is divided into seven periods as follows.
  • Terminal stance Start when the heel rises and end when the lower leg contacts the ground (30-50%)
  • Pre-glaciator Lifting support of the lower limbs from the initial contact of the opposite side to the toe off of the ipsilateral foot (50-60%)
  • Terminal endure angle from the vertical position of the tibia to just before touching the heel (87-100%)
  • the overall movement of the human body according to the walking pattern is represented by two sinusoidal movements in the vertical line and one sinusoidal movement in the inner and outer lines as shown in FIG. 4.
  • the vertical line there is mass movement in the range of about 5 cm, but the peak is the midpoint of the support of the lower extremity (30%, 80%).
  • the walking interval and the stride characteristics and duration of both feet can be known through the step width added with the stepwise symmetry as shown. .
  • the forward angle is determined based on the second toe from the center of the heel.
  • the stride length of adults is about 72cm and the walking distance is about 10cm, and the forward angle is about 7 ⁇ 12 degrees.
  • Normal walking speed is about 4 ⁇ 5km per hour.
  • the rotation of the pelvis When the gait is determined based on the characteristics of FIG. 3 and FIG. 5, the rotation of the pelvis, the muscular asymmetry between the hip flexor and the hip extensor, and the support of the monotonic limb supporter The difference between the ratio and pressure, the resulting temporal information, and the muscle strength of the lower limbs can be identified, and the flowability of walking can also be identified.
  • the forward angle can predict whether the toe is turning outwardly or inwardly, and the dynamic factors for this walking.
  • Figure 6 is a movement and foot planter during the standing period of the foot to explain the integrated analysis process of the embodiment of the present invention An illustration showing the pressure change.
  • This plantar pressure change pattern (ie, the central movement pattern) is a process of moving from the heel past the center of the sole to the big toe, moving from the heel along the lateral side to the outside to the big toe. .
  • the plantar pressure change pattern indicates whether or not flatfoot (Forefoot varus, Forefoot valgus, Rearfoot varus).
  • flatfoot When this flat foot occurs, hip rotation and femur internal rotation occur due to anterior rotation of the pelvic ilium, and at the same time the instep height due to arch collapse
  • foot flexion Dorsi Flexion
  • the plantar pressure sensor since the plantar pressure sensor is superior in resolution or reliability to the 3D sensor, it may be determined by weighting the measurement information of the plantar pressure sensor.
  • the body malformation syndrome can be diagnosed by precisely analyzing the movement of the human body based on the walking pattern.
  • the pressure measuring unit 131 converts the measured value of the plantar pressure sensor 110 into plantar pressure on the human body. That is, through the plantar pressure pattern of the gait as described above with reference to FIG. 6, the part measured by the plantar pressure sensor 110 corresponds to the part of the foot to determine the pressure corresponding to the plantar pressure of the human body and converts the information. .
  • the 3D information generator 132 first performs an initialization step of quantifying the movement of the human body by mapping a space for diagnosing the movement of the human body and a virtual space measured by the 3D sensor, and then measures the measured value of the 3D sensor 120 in the human body movement. It is converted to 3D information about the body misalignment diagnosis apparatus 100 according to an embodiment of the present invention is a fixed device for measuring the walking of the human body information about the space to be measured and the measured information (image Information, depth information, etc.) and apply the actual unit information to obtain quantitative numerical information on the movement or rotation according to the measured motion information.
  • the calibration process of mapping the measurement space to the virtual 3D space using the information on the bottom surface and the size information on the measurement object is performed as an initialization process to increase the reliability of the quantification of the measurement.
  • the measurement of the human body within a specific range in a fixed area can be increased by adjusting the measurement range.
  • the 3D information generation unit 132 limits the measurement value of the 3D sensor 120 measuring the movement of the human body through the depth information of the image or the point cloud format to the human body, and converts it into a skeleton type having a joint. It may be mistaken as a movement out of the walking step by the measurement error or noise, the measurement angle of the human body.
  • the 3D information generator 132 compensates the human body movement by receiving information from the 3D information compensator 134 as information for compensating for the 3D information or information on the point of time or movement pattern specifying the human body movement among the plantar pressure change patterns. can do.
  • the plantar pressure pattern shown in FIG. 6 it is possible to determine whether the foot is currently in contact with the ground, dropped, only the heel, the entire foot, and the time to press the ground for each section of the foot.
  • the patterned movement information of the upper extremity muscles and skeletal system is used to filter the information that is excessively out of the expected movement pattern of the skeletal system according to the change of plantar pressure pattern or to adjust the measurement parameters to follow the movement pattern (especially Skeleton movement) is generated as compensated 3D information.
  • This 3D information includes a detailed spatial model of the human body that can obtain information about the rotation and torsion of each joint and the skeleton by responding to the set skeleton and the structure of the body as well as the posture change of the human body, the vertical movement of the body, and the measured body.
  • Each partial coordinate information may be included.
  • the measurement information storage unit 136 stores the converted values of the pressure measuring unit 131 and the 3D information generating unit 132 at a synchronized time, and is simply measured as the plantar pressure of the human body in the pressure measuring unit 131. And store the measured information (measured raw sensor values, pressure area and intensity and temporal information on the pressure in each compartment, including comparison of the support of the lower limbs, and information about the area of the sole) with the measurement time information.
  • 3D information generation unit 132 converted into 3D information of the human body (measured raw sensor values, values of each part obtained by mapping to the human body, coordinates of each joint and skeleton obtained by mapping to the skeleton, corrected joints and skeletons) Coordinates, etc.) may be stored together with the measurement time information, and the actual measurement time points of the two measurement units may be accurately synchronized with the same time information.
  • the conversion values of the pressure measuring unit 131 and the 3D information generating unit 132 may be stored in the measurement information storage unit 136 at regular intervals according to specific time information.
  • the information stored in synchronization with the time information stored in the measurement information storage unit 136 may be repeatedly drawn out and utilized as needed.
  • the information can be easily identified by identifying the exact walking step-by-step time point or linked to the measurement information of one side. have.
  • the plantar pressure sensor 110 and the 3D sensor 120 respectively identify patterns of plantar pressure change or human body movement patterns, and if there is an abnormality, perform additional analysis on a highly correlated linkage.
  • the dynamic pressure change analyzer 137 and the dynamic 3D information analyzer 138 may analyze each dynamic change according to a required time point or period.
  • the dynamic pressure change analysis unit 137 dynamically analyzes plantar pressure stored in the measurement information storage unit 136 over time, and according to the change in pressure, the walking step of FIG. 2 or the center of gravity movement of FIG. It is possible to analyze the position of each foot according to the foot pressure change of 6 and the walking of FIG.
  • the dynamic 3D information analyzing unit 138 dynamically analyzes 3D information about the human body motion stored in the measurement information storage unit over time, and the human body movement includes the walking step of FIG. 2 or the center of gravity movement of FIG. 3. It is possible to analyze the position of each foot according to the walking of 5, foot shape or movement according to the walking of FIG. 6, and also to measure and analyze skeletal movement and joint movement and rotation of the human body.
  • the most directly correlated part of the foot according to the state of the foot is the movement of the pelvis.
  • the pelvis shows three characteristic movements, and as shown in FIG. 7, a total of 8 degrees of horizontal rotational motion (A) is issued by 4 degrees in each direction according to the walking.
  • the translational motion B occurs, and the translational motion C within 5 degrees each up and down occurs on the y axis.
  • the dynamic pressure change analyzer 137 measures the time the foot presses the ground, and predicts problems of flat feet, knees, hips, and pelvis when one foot presses the ground longer than the opposite foot.
  • the increase in the time the foot pushes to the ground just before the toe-off may result in excessive arch collapse or Dorsi flexion above normal angle, excessive hip and femur, internal rotation of the knee joint, and anterior rotation of the pelvic cotton bone.
  • the rotation of the opposite pelvis occurs at the end of the standing phase, depending on how far the big toe is pushed just before the toe-off.
  • the driving force of the big toe of one foot is insufficient, the rotational force of the ipsilateral and opposite pelvis falls, which can be confirmed by linking the operating pressure change analyzer 137 and the dynamic 3D information analyzer 138.
  • the pelvis rotates in the sagittal plane, and the rotation of each Ilium occurs in the anterior rotation and posterior rotation in the flexion plane.
  • the entire rotation of the pelvis occurs (forward rotation of the lower limb moving forward), and the rotation of the entire pelvis from the front surface, that is, upward movement on the side where weight load is applied, and downward movement on the other side.
  • the sacrum also rotates right and left alternately around the vertical and oblique axes according to each walking cycle. Therefore, the movement of the pelvis has a specific movement pattern according to the step of walking, and it is possible to suspect that body misalignment occurs when such a pattern is shifted.
  • the hip joint connected to the pelvis also appears as a movement pattern as the gait, femur (Femur) is rotated at the same time as the pelvis.
  • the right hip joint In the right heel contact (Initial Contact), the right hip joint is slightly externally rotated depending on the relative posterior position of the left anterior superior iliac spine (ASIS).
  • ASIS anterior superior iliac spine
  • the hip and femur movements associated with the gait are associated with the knee joint.
  • the knee joint is in a relative external rotational position of 2-3 degrees. Since the internal rotation of the tibia is greater than the femur throughout the standing phase, the knee joint gradually turns inward. By the end of the toe release, the knee joint is about 5 degrees of relative internal rotation. During the swing phase, the knee joint rotates outward to prepare for the next heel contact.
  • the weight of the heel at the point of heel contact is moved forward along the outer surface.
  • the period is from the initial contact of the heel to the mid stance, the period of movement from the back to the front of the body, which is the anterior, posterior (flexion, extension) exercise (ankle, knee, hip) 10).
  • the weight then moves from the outside of the sole to the inside, from the mid stance to the end of the stance, from the pelvis to the opposite pelvis, to the pelvic rotation, to the pelvic rotation.
  • This is the time of rotation of the torso contrary to the rotation, which is the movement of ankle (Pronation), knee abduction (Adduction + Internal rotation), hip rotation and extension (Internal rotation + Extention), anterior rotation (anterior rotation)
  • the femur causes simultaneous internal rotation, extension, and adduction.
  • the section of weight movement from the inside of the sole to the big toe is the stage of obtaining a propulsive phase, which is the forward and backward movement of the hip, knee, and ankle joints, and the internal rotation of the hip and femur. Accompanied by internal rotation.
  • the correlation between the dynamic plantar pressure changes and the ankle, knee, femur, hip, and pelvis according to the gait can be found to be highly correlated. Can be.
  • a problem occurs at a specific site
  • the problem of a specific site is identified through medical data on the relationship generated by linking a particular problem, it is necessary to confirm the problem at the other site having correlation through dynamic information analysis.
  • the foot problem may be first identified based on information obtained through the plantar pressure sensor, which is relatively more reliable than the 3D sensor, and then the associated upper limb movement may be analyzed.
  • the foot arch has a force against gravity and cushions it. In addition, it generates a driving force when walking and running, the balance of the left and right arch forms an upright joint alignment and a correct posture.
  • Medial longitudinal arch is an important structure that is the center of the foot arch, and from front to back, the first metatarsals, medial cuneiform, navicular, talus, calcaneus, etc. Consists of dog bones.
  • three bones such as a 5th metatarsal, a cubic and a calcanus, constitute an arch.
  • the transverse arch of the foot is composed of five metatarsal bones, and the metatarsal bones do not come into contact with each other to form joints, but rather a kind of virtual interstitial muscle between the metatarsal bones. It can be called an arch.
  • Pes Cavus The higher inner arch of the foot is called Pes Cavus, and the lower inner arch is called Pes planus (Flat foot). This deformation of the arch of the foot affects the pelvis and knee joints and shifts the center and line of gravity of the body, leading to body disorder syndrome.
  • FIG. 8 is a conceptual view illustrating the types and features of flat feet that can be distinguished in an embodiment of the present invention, and shows three types of typical flat feet as shown.
  • Forefoot varus is a condition in which the big toe is higher than the fifth toe.
  • the forefoot varus which is observed in the open kinetic chain & uncompensated, is primarily driven by the lateral side of the foot in the closed kinetic chain & compensated, which reduces the forward thrust when walking.
  • the subtalar joint is excessively pronation, and the metatarsal joint is flattened by taking a foot-flat position. As shown, if you do not support the weight (up) and if you support the weight can be seen inward (down).
  • the foot when supporting the weight through the dynamic pressure analysis unit 137 (bottom), it can be seen that the foot is flat foot through the increased pressure pattern of the front and the inside of the foot as a whole. (propulsive phase), that is, the low pressure of the front and the inner part of the foot can be seen in the full pass.
  • the front, back, inside, and outside of the ankle joint in the case of not supporting the weight and the foot state when supporting the weight and the weight through the dynamic 3D information analysis unit 138
  • the angle can be checked and the forefoot varus can be identified by the left and right body weight imbalance and the difference in the height of the ankle support, the increase of the internal rotation of the femur, the increase of the Q-angle, and the twist of the tibia.
  • Forefoot valgus refers to the fifth toe rising above the big toe, the opposite of the forefoot valgus. For this reason, the forefoot valgus can be seen as if it does not support the weight as shown (upper) and if it supports the weight and collapses outward in the opposite direction (lower).
  • the dynamic 3D information analysis unit 138 can be confirmed through the front, rear and internal and lateral angles of the ankle joint when the weight is not supported and the foot state when supporting the weight and when supporting the weight.
  • the forefoot valgus can be identified by the decrease in weight shift to the opposite side due to the imbalance between the left and right weight shifts, the difference in the height of the foot support, and the reduced propulsion.
  • Rearfoot varus is the inversion of the calcaneus at the back of the foot toward the midline.
  • the subtalar joint is compensated through the subtalar joint pronation during weight support, causing the inner surface of the forefoot to make much contact with the ground during the standing phase. As shown in the figure does not support the weight (up), when supporting the weight is shown to collapse inward (bottom).
  • the dynamic pressure analysis unit 137 when supporting the weight through the dynamic pressure analysis unit 137, the overall pressure after the foot can be confirmed, and thus the pressure on the inner side of the heel (Heel contact) can be confirmed. In addition, the increase in the standing time can be confirmed by the collapse of the medial calf.
  • the dynamic 3D information analysis unit 138 can be confirmed through the front, rear and internal and lateral angles of the ankle joint when the weight is not supported and the foot state when supporting the weight and when supporting the weight. After the imbalance of the left and right body weight shift and the height difference of the ankle support, the lower medial calf due to the pronation of the subtalar joint, the vertical angle of the tibia and the abduction angle of the foot Identify the foot varus.
  • the time-synchronized dynamic 3D information analyzer 138 may be used to identify the flatfoot.
  • the cause when detecting the toe-out through the dynamic pressure change analysis unit 137, the cause may be a problem of the foot, such as flat foot or a forearm, twist of the tibia, rotation of the knee joint, hip joint Shortening of the rotator cuff, excessive foreground of the femur, abnormal Q-angle, etc. may be the cause.
  • a characteristic feature of the foot is the abnormally high medial longitudinal arch. Since the instep of the foot of the foot (Inversion) from the forefoot to compensate for it (Eversion) and the toe becomes a claw toe (Claw toe).
  • Tibia torsion is when the transmalleolar axis connecting medial malleolus and lateral malleolus is rotated by more than 20 degrees. It can be judged to be the cause of the steps.
  • the rotational change of the knee joint is called the tibiofemoral rotation (TFR).
  • TFR tibiofemoral rotation
  • femur and tibia form the knee joint, and at the same time, the femur (Femur) is transferred to the tibia (Tibia) or the problem of the tibia to the femur (Femur).
  • the closed-kinetic or open kinetic chain determines the movement of the tibia-on-femoral and femoral-on-tibial to the femur, and in what way. The type of movement depends on whether you are moving at. Tibial femoral movements include flexion in the sagittal plane, extension movements, and rotation in the horizontal plane.
  • Tensor fascia lata is a two-joint muscle that passes through the hip and knee joints. If the femoral root muscle is overused due to weakening of the gluteus medullus, the femur is rotated internally and the tibia rotates externally. Done. The femoral tibial rotation is different from the tibial torsion, the tibial torsion is the osteogenic change of the tibia itself, and the TFR torsion occurs in the knee joint. This movement causes rotational deformation of the pelvis, hip joints and knee joints, causing complex problems.
  • Shortening of the external rotator is a case in which the external rotator muscles, including the ideal, upper, lower bilateral, internal obstructive, external obstructive, and femoral muscles, are tense or shortened. Will appear.
  • Femoral retrotorsion of the femur means that the hip is deteriorated.
  • the torsion angle of the femur is tilted 15 degrees forward, but if the hip is deceased, the point on the femur is behind the point in the tibia.
  • the normal hip movement does not occur and the femur rotates outward to compensate for the femoral remorse, resulting in a step of the arm.
  • the Q-angle is a relative indicator of the patellar pullover of the quadriceps (Quadriceps femoris) against the patella, and as the centerline of the patella in the ASIS of the pelvis, as shown in FIG. 9. After drawing a straight line and a straight line from the centerline of the patella to the tibial tubercle, the angle between them was measured. The normal angle is 10-15 degrees, and the angle increases with hip adduction, hip internal rotation, and foot over pronation.
  • 3D information may be supplemented through plantar pressure change patterns to identify the state and cause of physical malformation syndrome.
  • the dynamic 3D information analysis unit 138 moves up and down, left and right movements of the body mass, movements of the torso and arms, and shoulder and arm movements, pelvic movements, hip movements, knee joint movements, and ankle joints.
  • the misalignment syndrome diagnosis unit 135 illustrated in FIG. 2 analyzes a walking step that subdivides a walking step according to an analysis result of at least one of the dynamic pressure change analyzer 137 and the dynamic 3D information analyzer 138 described above. After requesting and receiving each of the dynamic pressure change analysis unit 137 and the dynamic 3D information analysis unit 138 or a combination of analysis results based on interoperability based on the detailed walking step information of the unit 133, Identify the association of each site to generate diagnostic information about body malalignment syndrome.
  • Correlation information on flatfoot will be described as an example of such medically studied skeletal, joint and muscle correlation information.
  • the tibia of the pronation foot shows inward rotation
  • the femur shows outward rotation
  • the pelvis increases in the anterior tilt and Q-angle.
  • the tibia of the supped foot shows external rotation
  • the femur shows internal rotation
  • the pelvis decreases the posterior tilt and Q-angle. Therefore, by synthesizing these features in or out of the foot or by measuring the inside and out of the foot can be confirmed whether the other features are generated subsequently.
  • the tibia rotates internally, the tibiofemoral joint flexes, the femur rotates internally, and the hip joint flexes.
  • the pelvis descends forward, only the spine side is created by the pelvis, and the upper side forms only the side in the other direction.
  • the pain and stress caused by the distorted pattern of the load affects the autonomic nervous system, which may cause dysfunction of the genitourinary system and gastrointestinal tract, and misalignment may also cause musculoskeletal dysfunction.
  • the malformation syndrome diagnosis unit 135 detects an abnormality of the foot using the correlation information, the problem of the upper part is checked through 3D information of the human body in each step of the diagnosis and diagnoses the problem.
  • FIG. 11 is a flowchart illustrating a process of diagnosing physical malformation syndrome in the apparatus for diagnosing physical malformation syndrome according to an embodiment of the present invention.
  • FIG. 11 is a space for first diagnosing a human body movement and a virtual space measured by a 3D sensor. The measurement is prepared through an initialization step that maps and quantifies human movement.
  • the body misalignment syndrome diagnosis apparatus calculates and synchronizes the 3D information on the movement of the human body through the 3D sensor and the plantar pressure of the human body following at least two steps of human body walking through the plantar pressure sensor (in the embodiment, the scaffold). It is stored in the internal measurement information storage unit according to the time information.
  • the body misalignment syndrome diagnosis apparatus subdivides the gait step through at least one of analysis of plantar pressure changes stored in the internal measurement information storage unit or analysis of changes in 3D information.
  • the body misalignment syndrome diagnosis device may compensate 3D information according to the human body movement corresponding to the plantar pressure change pattern for each step of walking, and store the compensation information in accordance with the occurrence time of the compensated movement in the internal measurement information storage unit. Can be.
  • the body misalignment syndrome diagnosis apparatus checks the association between the body misalignment parts and each part while checking the foot pressure and the 3D information change according to the walking time stored in the internal measurement information storage unit at the same time or in combination based on the linkage. Analyze In this case, as described above, it is preferable to determine the cause of misalignment in detail in consideration of the correlation of abnormal occurrences.
  • the body misalignment syndrome diagnosis apparatus may provide a diagnosis of the type and cause of misalignment based on the correlation between the analyzed body misalignment parts and each part.
  • body misalignment syndrome diagnostic device 110 plantar pressure sensor
  • pressure measuring unit 132 3D information generating unit
  • gait step analysis unit 134 3D information compensation unit
  • misalignment syndrome diagnosis unit 136 measurement information storage unit
  • control unit 139 control unit

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Dentistry (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Physiology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

The present invention relates to an apparatus and a method for diagnosing a body malalignment syndrome by using a plantar pressure and physical movement information, which can time-synchronize physical movement information and a plantar pressure during natural walking, collect the time-synchronized physical movement information and plantar pressure, and then accurately detect characteristics of a walking motion through independent analysis and linkage analysis according to a walking process, so as to more accurately diagnose a malalignment syndrome. In the present invention, a plantar pressure, movement of a patient's upper and lower body, and movement of the patient's musculoskeletal system related to a pressure change in the patient's foot in a stage-specific process for walking can be linked and analyzed with reference to time on the basis of information obtained by measuring the patient's walking in real time through a plantar pressure sensor and a 3D sensor, and thus a malalignment syndrome can be diagnosed more accurately and quickly and according to quantitative criteria, so that a reliable and objective diagnosis can be achieved. Further, 3D information on movement of a human body according to measurement by the 3D sensor can be compensated on the basis of a plantar pressure change according to a walking stage and a walking stage-specific pattern, through the plantar pressure sensor despite use of the 3D sensor, measurement by which is limited, and thus the reliability of the quantitative size of information necessary to determine a malalignment syndrome can be improved so that equipment enabling a detailed diagnosis of a malalignment syndrome can be manufactured at relatively low cost and can be easily provided to a place where the equipment is needed.

Description

족저 압력과 신체의 움직임 정보를 이용한 신체 부정렬 증후군 진단 장치 및 방법Apparatus and method for diagnosing physical malformation syndrome using plantar pressure and body motion information
본 발명은 족저 압력과 신체의 움직임 정보를 이용한 신체 부정렬 증후군 진단 장치 및 방법에 관한 것으로, 특히 자연스러운 보행의 족저 압력과 신체의 움직임 정보를 시간 동기화하여 수집한 후 보행 과정에 따라 단독 및 연관 분석을 통해 보행 동작의 특징을 정확하게 파악하도록 함으로써 더욱 정확한 부정렬 증후군 진단이 가능하도록 한 족저 압력과 신체의 움직임 정보를 이용한 신체 부정렬 증후군 진단 장치 및 방법에 관한 것이다.The present invention relates to an apparatus and method for diagnosing physical malformation syndrome using plantar pressure and body motion information. In particular, the plantar pressure and body motion information of natural gait are collected by synchronizing time, and according to the walking process alone and associated analysis. The present invention relates to an apparatus and method for diagnosing physical malformation syndrome using plantar pressure and body motion information, which enables accurate diagnosis of malformation syndrome by enabling to accurately grasp characteristics of a walking operation.
인간의 몸은 중력, 자세, 환경, 신체활동, 손상, 반복적인 움직임 등과 같이 다양한 것들로부터 영향을 받고 이에 적응한다. 이 중에서도 인간이 중력에 끊임없이 영향을 받는다는 것은 매우 중요한 사실이다. 중력이 인간에게 미치는 영향으로 인하여 인간의 정상적인 정렬의 척도를 삼을 수 있게 되었으며, 반대로 중력으로 인하여 정상적인 정렬의 기준을 벗어났다고도 한다. The human body is affected and adapts to a variety of things, such as gravity, posture, environment, physical activity, injury, and repetitive movement. Among these, it is very important that human beings are constantly affected by gravity. The influence of gravity on humans makes it possible to measure the normal alignment of human beings, and on the contrary, it is said that gravity is outside the standard of normal alignment.
우리 몸의 기능 중 하나는 중력에 대항하여 안정성을 유지하고 효율적인 움직임을 생산하는 것이다. 인간은 질병, 부상, 환경, 감정, 신체유형, 발육상태, 반복적인 신체활동 등의 비정상적인 움직임의 패턴과 기능부전으로 이어질 수 있다. One of our body's functions is to maintain stability and produce efficient movements against gravity. Humans can lead to abnormal patterns of movement and dysfunction such as disease, injury, environment, emotions, body types, developmental conditions, and repetitive physical activity.
특히 골반과 척추 만곡의 정상적인 정렬은 중력의 영향을 받아들이는데 매우 중요하다. 즉, 체중을 지지하는 관절을 안정시키기 위해서는 중력선이 관절의 회전축을 통과해야 한다. 중력선이 신체 관절의 회전축을 비정상적으로 통과를 할 경우 부정렬 증후군이 발생할 수 있다. In particular, the normal alignment of the pelvis and spinal curvature is very important to accept the effects of gravity. That is, in order to stabilize the joint supporting the weight, the gravity line must pass through the rotation axis of the joint. If the gravitational line passes abnormally through the axis of rotation of the body joint, misalignment syndrome can occur.
부정렬 증후군은 몸의 좌,우 밸런스가 맞지 않게 되면서 발생하고, 발과 다리, 골반 및 척추의 균형이 맞지 않는 것이 특징이다. 그로 인해 근육 및 인대가 비대칭적으로 긴장되어 비정상적인 보행 패턴과 통증을 수반하며, 몸의 좌,우 근육량과 근력의 차이도 발생한다. 이러한 증상들은 다리의 길이가 차이와 발의 변형 등을 포함한다.Misalignment syndrome occurs when the body's left and right balance is out of balance, and the feet and legs, pelvis and spine are out of balance. As a result, muscles and ligaments are asymmetrically tensioned, accompanied by abnormal gait patterns and pains, and a difference in the left and right muscle mass and strength of the body. These symptoms include differences in leg length and deformation of the foot.
인간의 자세는 전후, 좌우 대칭으로 정지된 상태가 아닌 겉으로 보기에는 정지된 것처럼 보이지만 내적으로는 끊임없이 움직이며 역동적인 평형상태(Dynamic Equilibrium State)를 이루고 있다. The human posture seems to be stationary, not seemingly stationary, not symmetrical back and forth, but it is constantly moving internally and forms a dynamic equilibrium state.
따라서, 골격과 근육의 비대칭(Asymmetry), 긴장(Tension) 등의 이유로 특정한 부위에 물리적인 압력이 증가하게 되면 신체의 구조적, 기능적인 변화가 발생하게 되는데, 이 변화에는 척추 측만증(Scoliosis), 거북 목 증후군(Turtle neck syndrome), 상부교차증후군(Upper cross syndrome), 하부교차증후군(Lower cross syndrome), 발목의 과도한 회내(Over-pronation), 일자허리(Flat back) 등이 포함된다.Therefore, when physical pressure increases in a specific area due to skeletal and muscle asymmetry and tension, structural and functional changes of the body occur. These changes include scoliosis and turtles. Turtle neck syndrome, Upper cross syndrome, Lower cross syndrome, Over-pronation of the ankle, Flat back, and the like.
이러한 부정렬 증후군으로 인한 문제는 추가적인 문제들을 발생시키게 되므로 발의 문제가 골반과 목의 문제를 야기하거나, 골반의 문제가 발과 목의 문제를 야기하는 등 복합적이어서 현재까지 신체 부정렬의 문제 원인을 발에서 보는 관점과 골반에서 보는 관점, 목에서 보는 관점의 등의 여러 방법들이 공존하고 있으며 각 방법에 따라 진단 결과가 다를 수 있어 그 기준이 모호한 실정이다. Problems caused by this disorder cause additional problems, so foot problems can cause pelvic and neck problems, or pelvic problems can cause foot and neck problems. Many methods, such as the point of view of the foot, the point of view of the pelvis, and the point of view of the neck, coexist, and the criteria of the diagnosis are ambiguous because the diagnosis results may be different for each method.
따라서, 부정렬 증후군을 효과적으로 진단하고 어떠한 부분에 문제가 있으며, 이러한 문제의 발생 원인은 무엇인 지를 신속하고 정확하게 진단할 수 있는 장치와 방법에 대한 요구가 높아지고 있다. 하지만, 현재까지 제안된 방법들은 단순히 교정 치료를 위한 간단한 자세 분석이나 교정 치료 중 환자가 스스로 자세를 교정할 수 있도록 보완하는 정도의 단순한 측정값 분석에 불과한 실정이다.Therefore, there is an increasing demand for an apparatus and method for effectively diagnosing malalignment syndrome and identifying a problem and what causes the problem. However, the methods proposed up to now are merely a simple posture analysis for orthodontic treatment or a simple measurement analysis to complement the patient to correct his or her posture during orthodontic treatment.
한국등록특허 제10-1238094호는 보행 또는 달리기에 사용되는 트레드밀에 보행교정을 위한 보행교정판과, 발 각도를 교정하는 발각도교정판을 구비하여, 장애 등으로 보행이 불완전한 보행자의 올바른 보행을 유도하고, 반복적인 보행 연습을 통해 올바른 보행으로 교정하게 해 주는 보행 교정기를 제공하고 있고, 한국 공개특허 제10-2015-0113671호, ‘자세 교정 장치 및 그의 운용방법’에서는 환자의 자세를 교정하기 위한 목적으로 환자가 트레드밀 하부에 구성된 두 개의 압력 측정 발판 위를 보행하도록 하고, 이때의 각 발의 압력과 각도 및 보행 속도를 계산하며, 3D 카메라를 통해 환자의 보행 상태를 관절 기반 모형으로 생성하여 정상 모형과 비교하여 환자에게 제공하도록 하여 보행 중 자세를 교정하도록 하는 방식이 제안되었다.Korean Patent No. 10-1238094 has a walking correction plate for walking correction on a treadmill used for walking or running, and an angle correction plate for correcting foot angles to induce correct walking of pedestrians whose walking is incomplete due to obstacles. And, to provide a gait corrector to correct the correct walk through repetitive walk practice, Korean Patent Publication No. 10-2015-0113671, 'Posture Correction device and its operation method' for correcting the patient's posture For this purpose, the patient walks on the two pressure measuring scaffolds at the bottom of the treadmill, calculates the pressure, angle and walking speed of each foot, and generates the patient's walking state as a joint-based model using a 3D camera. Compared with the proposed method for providing the patient to correct the posture during walking was proposed.
이러한 방식은 단순한 보행의 정성적 패턴만 산출하여 표준 영상과 비교하고, 발판의 압력만을 분석하여 치우침 정도를 판단하는 것에 그치고 있다. In this method, only qualitative patterns of walking are calculated and compared with standard images, and only the pressure of the scaffold is analyzed to determine the degree of bias.
환자(피검자)의 신체를 좀 더 효과적으로 분석하기 위하여 한국 등록특허 제10-1852655호, ‘척추 관절 근골격 구조 측정 장치’에서는 압력 발판 상에 환자가 올라가도록 하고 환자에 대한 깊이 영상(모아레, 스테레오 카메라, 레이저 측정 등)을 얻어 정면 3차원 기하 정보를 추출한 후 무게중심과 중심 기준선을 찾고 정면 영상을 분석하는 방법으로 어깨선을 지면과 비교하여 각도를 구하거나, 골격의 대칭성을 판단할 수 있도록 한 것이다.In order to analyze the body of the patient (testee) more effectively, Korean Patent Registration No. 10-1852655, "Spine joint musculoskeletal structure measuring device" allows the patient to rise on the pressure scaffold and the depth image (moiré, stereo camera) of the patient. After obtaining the frontal 3D geometric information by laser measurement, etc., we find the center of gravity and the center reference line and analyze the frontal image to compare the shoulder line with the ground to determine the angle or to determine the symmetry of the skeleton. .
이러한 방식은 얻어진 영상 정보의 가장 기본적이고 표면적인 정보만을 피상적으로 이용한 것으로 정적인 상태에서의 신체 틀어짐을 판단하는 것에 불과하다. 따라서, 결과적인 신체의 틀어짐(척추 측만증) 상태를 파악할 수는 있으나 그 원인이나 관련 질환 상태, 보행 습관과 같은 실질적이고 구체적인 진단은 불가능한 한계가 있다.This method uses only the most basic and superficial information of the obtained image information superficially, and is only to determine the body distortion in the static state. Therefore, it is possible to grasp the resulting state of the body (spine scoliosis), but there is a limit that practical and specific diagnosis such as the cause, related disease state, walking habits is impossible.
따라서, 인체의 부정렬 증후군 상태를 분석함에 있어, 아직까지 의사의 개인적 기준이나 부분적 측정 장치를 통한 결과를 경험칙에 의거하여 분석하여 판단하고 있어 부정렬 증후군의 심층 진단 시 높은 비용과 많은 시간을 요하며 정량적으로 관리하지도 못하고 있는 실정이다.Therefore, in analyzing the state of misalignment syndrome in the human body, the results of the doctor's personal standards or partial measuring devices are still analyzed based on empirical rules, and therefore, high costs and time are required for the in-depth diagnosis of misalignment syndrome. It is not quantitatively managed.
이상적인 방법론으로 환자의 움직임을 3D 센서(스테레오 카메라, 레이저 센서, 적외선 센서, ToF(Time-Of-Flight) 센서, 초음파 센서 등)를 통해 정확하게 실시간 파악한다면 부정렬 증후군의 증상을 좀 더 명확하게 판단할 수 있겠지만, 현실적으로 환자의 움직임을 실시간 수준에서 측정하면서 그 수치의 정량적 정확성을 기대하려면 대단히 고가의 장비와 전문 관리자의 관리가 필요하므로 일선 의료기관이나 운동 치료 기관 등에 보급되기 어렵고 경제성도 낮은 문제가 있다.Ideally, the patient's movements are accurately identified in real time through 3D sensors (stereo cameras, laser sensors, infrared sensors, time-of-flight sensors, ultrasonic sensors, etc.) to more clearly determine the symptoms of misalignment syndrome. Although it is possible to realistically measure the movement of a patient in real time and expect the quantitative accuracy of the numerical value, it is difficult to spread it to the first-line medical institutions or exercise therapy institutions, and the economical efficiency is low because it requires the management of expensive equipment and professional managers. .
즉, 통상적으로 사용되는 3D 센서를 이용하여 움직이는 환자의 실시간 3D 정보를 생성할 경우 정성적인 경향은 어느 정도 일치하지만 정량적 정확도는 오차 발생이 많고, 힙이나 고관절과 같이 실제 진단에 필요한 부분의 움직임 크기를 신뢰할 수 없기 때문에, 이러한 3D 정보를 정확한 관절의 각도나 정량적 움직임이 중요한 부정렬 증후군 진단을 위한 기초 데이터로 사용하기 어렵다. 따라서 대부분의 경우 결과론적인 신체 형상이나 판단 기준의 허용 오차가 큰 수준의 대략적 측정 정도에만 사용되는 한계가 있다.That is, when generating real-time 3D information of a moving patient using a commonly used 3D sensor, the qualitative tendency is somewhat consistent, but the quantitative accuracy is error-prone, and the size of the movement of the part necessary for the actual diagnosis such as the hip or the hip joint Since 3D information is not reliable, it is difficult to use this 3D information as basic data for diagnosing malalignment syndrome in which accurate joint angle or quantitative movement is important. Therefore, in most cases, there is a limitation that the tolerance of the resultant body shape or the criterion is used only for the approximate degree of measurement.
전술한 문제점을 개선하기 위한 본 발명 실시예들의 목적은 환자의 보행을 족저 압력 센서와 3D 센서를 통해 실시간 측정한 정보를 토대로 족저 압력과 상·하지의 움직임, 보행을 위한 단계별 과정에서의 족부 압력 변화와 관련 근골격계의 움직임을 시간을 기준으로 연동 분석함으로써 보다 정확하고 신속하며 정량적 기준에 따라 부정렬 증후군을 진단할 수 있도록 한 족저 압력과 신체의 움직임 정보를 이용한 신체 부정렬 증후군 진단 장치 및 방법을 제공하는 것이다. An object of the embodiments of the present invention for improving the above-mentioned problems is plantar pressure, foot movements of the upper and lower limbs, foot pressure in the step-by-step process for walking based on information measured in real time through the foot pressure sensor and the 3D sensor of the patient walking An apparatus and method for diagnosing physical malformation syndrome using plantar pressure and movement information of the body to diagnose malformation syndrome according to the timely and more precisely by analyzing the change and movement of the musculoskeletal system related to change To provide.
본 발명 실시예들의 다른 목적은 측정에 한계가 있는 3D 센서를 이용하면서도 족저 압력 센서를 통해 보행 단계와 보행 단계별 패턴에 따른 족저 압력과 그에 따른 족저 압력의 구획별 시간의 변화를 토대로 3D 센서의 측정에 따른 인체 움직임에 대한 3D 정보를 보상하도록 함으로써 부정렬 증후군 판단에 필요한 정보의 정략적 크기에 대한 신뢰성을 높일 수 있도록 한 족저 압력과 신체의 움직임 정보를 이용한 신체 부정렬 증후군 진단 장치 및 방법을 제공하는 것이다. Another object of the embodiments of the present invention is to measure the 3D sensor based on the change of the plantar pressure according to the walking step and the walking step pattern and the time according to the plantar pressure through the plantar pressure sensor while using the 3D sensor having a limited measurement. Providing a device and method for diagnosing physical malformation syndrome using plantar pressure and body motion information to compensate for 3D information on human motion according to the present invention, thereby increasing the reliability of the political size of information necessary for judging malalignment syndrome. will be.
본 발명 실시예들의 또 다른 목적은 족저 압력 센서와 3D 센서의 측정값을 동기된 시간 정보에 따라 저장하고, 족저 압력 센서와 3D 센서를 통해 족부의 이상과 원인을 판단하고, 보행 단계에 따른 족저 압력 센서의 측정값과 시간을 기준으로 후속되는 3D 센서의 움직임을 통해 하지와 골반, 몸통의 이상과 원인을 판단하며, 족저 압력 센서와 3D 센서를 통해 보행 단계별 관절의 움직임과 움직임에 대한 시간정보를 측정하여 부정렬 증후군에 대한 진단 정보를 제공하도록 한 족저 압력과 신체의 움직임 정보를 이용한 신체 부정렬 증후군 진단 장치 및 방법을 제공하는 것이다.Still another object of the embodiments of the present invention is to store the measured values of the plantar pressure sensor and the 3D sensor according to the synchronized time information, determine the cause and cause of the foot through the plantar pressure sensor and the 3D sensor, the plantar according to the walking step Based on the measured value and time of the pressure sensor, the motion of the lower limb, pelvis, and torso is judged through the movement of the 3D sensor, and the time information on the movement and movement of the joints in each step of walking is determined by the plantar pressure sensor and the 3D sensor. It is to provide an apparatus and method for diagnosing physical malformation syndrome using plantar pressure and body motion information to provide diagnostic information about malalignment syndrome by measuring the.
본 발명 실시예들의 또 다른 목적은 족저 압력 센서와 3D 센서를 동시에 이용하므로 자연스러운 보행에 대한 정보를 수집할 수 있으며, 양하지 지지기의 움직임을 족저 압력 센서를 통한 체중이동과 3D 센서를 통한 족부와 골반 및 그에 따른 상지의 상관성을 기반으로 분석하도록 한 족저 압력과 신체의 움직임 정보를 이용한 신체 부정렬 증후군 진단 장치 및 방법을 제공하는 것이다. Another object of the embodiments of the present invention is to use the plantar pressure sensor and the 3D sensor at the same time to collect information about the natural gait, the movement of the support of the lower limbs weight movement through the plantar pressure sensor and the foot through the 3D sensor To provide a device and method for diagnosing physical malformation syndrome using plantar pressure and body motion information to be analyzed based on the correlation between the pelvis and the upper limb.
본 발명 실시예들의 또 다른 목적은 자연스러운 보행에 대한 족저 압력 변화 정보와 3D 정보를 시간 동기에 따라 저장한 후, 필요에 따라 다양한 관점에서 부정렬 증후군을 동일 데이터를 통해 분석하고, 이러한 복수 관점에서의 부정렬 증후군 분석 결과를 통합하여 부정렬 상태와 원인들에 대한 실질적 진단이 가능하도록 한 족저 압력과 신체의 움직임 정보를 이용한 신체 부정렬 증후군 진단 장치 및 방법을 제공하는 것이다. Another object of the embodiments of the present invention is to store plantar pressure change information and 3D information for natural gait according to time synchronization, and then analyze the misalignment syndrome through the same data from various viewpoints as necessary, The present invention provides an apparatus and method for diagnosing physical malformation syndrome using plantar pressure and body motion information, which enables the actual diagnosis of misalignment state and causes by integrating the results of misalignment syndrome analysis.
상기와 같은 목적을 달성하기 위하여, 본 발명의 일 실시예에 따른 족저 압력과 신체의 움직임 정보를 이용한 신체 부정렬 증후군 진단 장치는 적어도 2스탭 이상의 인체 보행에 따른 족저 압력을 측정하는 족저 압력 센서와, 보행에 따른 인체의 움직임 정보를 적어도 깊이 정보로 측정하는 3D 센서와, 족저 압력 센서의 측정값과 3D 센서의 측정값을 인체에 대한 족저 압력과 인체 움직임에 대한 3D 정보로 변환하여 각각 동기된 시간에 따라 저장하고, 저장된 족저 압력의 동적 변화와 3D 정보의 동적 변화를 토대로 보행 단계별 족저 상태와 그와 상관성을 가진 하지 이상의 상부 신체의 움직임 패턴을 연동 분석하여 부정렬 증후군을 진단하는 보행 분석부를 포함한다.In order to achieve the above object, the apparatus for diagnosing body distress syndrome using plantar pressure and body motion information according to an embodiment of the present invention includes a plantar pressure sensor that measures plantar pressure according to human walking at least two steps or more; The 3D sensor measures the movement information of the human body according to the walking at least as depth information, and converts the measured values of the plantar pressure sensor and the 3D sensor into 3D information of the plantar pressure and the human body movement. The gait analysis unit that stores malformation syndrome by analyzing the movement pattern of the upper body of the lower limb which is correlated with the stepped foot state based on the dynamic change of the plantar pressure and the dynamic change of the 3D information. Include.
일례로서, 보행 분석부는 보행 단계별 족저 압력 변화 패턴에 대응되는 인체 움직임에 맞추어 3D 센서의 측정값에 따른 인체 움직임 3D 정보를 보상할 수 있다As an example, the gait analyzer may compensate for the human body motion 3D information according to the measured value of the 3D sensor according to the human body motion corresponding to the plantar pressure change pattern for each step.
일례로서, 족저 압력 센서는 압력 센서들이 배치된 발판, 신발, 깔창, 트레드밀 중 적어도 하나일 수 있다.As an example, the plantar pressure sensor may be at least one of a footrest, a shoe, an insole, a treadmill in which the pressure sensors are disposed.
일례로서, 3D 센서는 스테레오 카메라, ToF 센서, 레이저 센서, 초음파 센서, 키넥트 센서 중 적어도 하나일 수 있다.As an example, the 3D sensor may be at least one of a stereo camera, a ToF sensor, a laser sensor, an ultrasonic sensor, and a Kinect sensor.
일례로서, 보행 분석부는 족저 압력의 동적 변화를 통해 각 발의 보행 단계와 단하지,양하지 지지기에 대한 시간 정보, 압력분포와 변화를 획득하고, 족저 압력의 동적 변화에 동기된 3D 정보의 동적 변화를 통해 골반과 상,하지관절의 굴곡과 신전, 내전과 외전의 움직임 또는 회전, 경골의 회전, 몸통의 회전, 신체 질량의 좌우,상하 이동, 무릎의 Q각도, 무릎의 높이, 발의 높이를 포함하는 신체의 움직임 중 적어도 하나에 대한 정보를 연동 정보로서 획득할 수 있다.As an example, the gait analyzer obtains the time step, pressure distribution and change of each step of the foot, the foot and the lower limb supporter through the dynamic change of plantar pressure, and the dynamic change of 3D information synchronized with the dynamic change of plantar pressure. Flexion and extension of the pelvis and upper and lower extremity joints, movement or rotation of adduction and abduction, tibia rotation, torso rotation, body mass left and right, up and down, knee Q angle, knee height, foot height Information on at least one of the body movements can be obtained as the interlocking information.
일례로서, 보행 분석부는 족저 압력 센서의 측정값을 인체에 대한 족저 압력으로 변환하는 압력 측정부와, 3D 센서의 측정값을 인체 움직임에 대한 3D 정보로 변환하는 3D 정보 생성부와, 압력 측정부와 3D 정보 생성부의 변환 값을 동기된 시간에 맞추어 저장하는 측정 정보 저장부와, 측정 정보 저장부에 저장된 족저 압력을 시간의 흐름에 따라 동적으로 분석하는 동적 압력 변화 분석부와, 측정 정보 저장부에 저장된 인체 움직임에 대한 3D 정보를 시간의 흐름에 따라 동적으로 분석하는 동적 3D 정보 분석부와, 동적 압력 변화 분석부나 동적 3D 정보 분석부 중 적어도 하나의 분석 결과에 따라 보행 단계를 세분하는 보행 단계 분석부와, 보행 단계 분석부의 세분된 보행 단계 정보를 기준으로 동적 압력 변화 분석부와 동적 3D 정보 분석부 각각 혹은 연동성에 기반한 분석 결과 조합을 요청 및 수신한 후 신체 부정렬 부위들과 각 부위의 연관성을 파악하여 신체 부정렬 증후군에 대한 진단 정보를 생성하는 부정렬 증후군 진단부를 포함할 수 있다.As an example, the gait analyzer may include a pressure measuring unit that converts the measured value of the plantar pressure sensor into plantar pressure on the human body, a 3D information generating unit converting the measured value of the 3D sensor into 3D information about human movement, and a pressure measuring unit. And a measurement information storage unit for storing the converted values of the 3D information generation unit at a synchronized time, a dynamic pressure change analyzer for dynamically analyzing plantar pressure stored in the measurement information storage unit over time, and a measurement information storage unit A walking step of subdividing a walking step according to an analysis result of at least one of a dynamic 3D information analysis unit and a dynamic pressure change analysis unit or a dynamic 3D information analysis unit which dynamically analyzes 3D information about a human body's movements over time; The dynamic pressure change analyzer and the dynamic 3D information analyzer are linked to each other based on the detailed walking stage information of the analysis unit and the walking stage analysis unit. The analysis results based on a combination can include requesting and receiving one after the body portion alignment region and to identify the relevance of each part of the body portion diagnostic misalignment unit for generating diagnostic information about the alignment syndrome syndrome.
일례로서, 보행 단계 분석부에서 세분된 보행 단계의 대응되는 동적 압력 변화 분석부의 족저 압력 변화 패턴 중 인체 움직임을 특정하는 시점이나 움직임 패턴에 대한 정보를 3D 정보를 보상하기 위한 정보로 생성하여 3D 정보 생성부에 제공하는 3D 정보 보상부를 더 포함할 수 있다.As an example, 3D information is generated by generating information about a time point or movement pattern for identifying a human body movement of the plantar pressure change pattern of the corresponding dynamic pressure change analyzer of the gait step divided by the gait step analyzer as 3D information. The apparatus may further include a 3D information compensation unit provided to the generation unit.
일례로서, 압력 측정부, 3D 정보 생성부, 측정 정보 저장부, 동적 압력 변화 분석부, 동적 3D 정보 분석부, 보행 단계 분석부, 3D 정보 보상부 및 부정렬 증후군 진단부 사이의 구성되어 각 부 간의 정보 교환과 정보 요청을 중개하고 부정렬 증후군 진단부의 진단 과정에 따라 각 부를 제어하는 제어부를 포함할 수 있다.For example, the pressure measuring unit, the 3D information generation unit, the measurement information storage unit, dynamic pressure change analysis unit, dynamic 3D information analysis unit, walking step analysis unit, 3D information compensation unit and misalignment syndrome diagnosis unit is composed of each unit It may include a control unit for mediating information exchange and information requests between the control unit to control each unit according to the diagnosis process of the malaligned syndrome diagnosis unit.
본 발명의 다른 실시예에 따른 족저 압력과 신체의 움직임 정보를 이용한 신체 부정렬 증후군 진단 방법은 족저 압력 센서와 3D 센서를 구비한 신체 부정렬 증후군 진단 장치에서 족저 압력과 족부 이상의 신체에서 발생하는 움직임 정보를 이용하여 신체 부정렬 증후군을 진단하는 방법으로서, 인체의 움직임을 진단할 공간과 3D 센서가 측정하는 가상의 공간을 매핑하여 인체 움직임을 정량화하는 초기화 단계와, 족저 압력 센서를 통해 적어도 2스탭 이상의 인체 보행에 따른 인체의 족저 압력과 3D 센서를 통해 인체 움직임에 대한 3D 정보를 산출하여 동기화된 시간 정보에 따라 측정 정보 저장부에 저장하는 단계와, 측정 정보 저장부에 저장된 족저 압력의 압력분포와 그에 따른 족저 압력의 기 설정된 구획 별 시간의 정보에 대한 분석이나 3D 정보의 변화에 대한 분석 중 적어도 하나를 통해 보행 단계를 세분하는 단계와, 측정 정보 저장부에 저장된 보행 단계별 족저 압력과 3D 정보의 변화를 동기된 시간에 맞추어 각각 또는 연동성에 기반하여 조합하여 확인하면서 신체 부정렬 부위들과 각 부위의 연관성을 분석하는 단계와, 분석된 신체 부정렬 부위들과 각 부위의 연관성을 기반으로 부정렬 종류와 원인에 대한 진단을 제공하는 단계를 포함한다.According to another embodiment of the present invention, a method for diagnosing physical malformation syndrome using plantar pressure and body motion information includes a movement occurring in the body of plantar pressure and foot abnormalities in a body malformation syndrome diagnosis apparatus including a plantar pressure sensor and a 3D sensor. A method of diagnosing physical malformation syndrome using information, comprising: an initialization step of quantifying human movement by mapping a space for diagnosing movement of a human body and a virtual space measured by a 3D sensor; and at least two steps through a plantar pressure sensor Computing the 3D information of the human body movement through the plantar pressure and the 3D sensor of the human body according to the above walking and storing in the measurement information storage unit according to the synchronized time information, the pressure distribution of the plantar pressure stored in the measurement information storage unit Analysis of 3D information or pre-set time information of plantar pressure Subdividing the pedestrian step through at least one of the analysis of the shoes and the change of plantar pressure and the 3D information of the pedestrian step stored in the measurement information storage unit according to the synchronized time, respectively or in combination based on interworking. Analyzing the association of alignment sites with each site and providing a diagnosis of the type and cause of misalignment based on the association of the analyzed body misalignment sites with each site.
일례로서, 보행 단계별 족저 압력 변화 패턴에 대응되는 인체 움직임에 맞추어 3D 정보를 보상하는 단계를 더 포함할 수 있다.As an example, the method may further include compensating for 3D information according to the movement of the human body corresponding to the plantar pressure change pattern for each step of walking.
본 발명 실시예들에 따른 족저 압력과 신체의 움직임 정보를 이용한 신체 부정렬 증후군 진단 장치 및 방법은 환자의 보행을 족저 압력 센서와 3D 센서를 통해 실시간 측정한 정보를 토대로 족저 압력과 상·하지의 움직임, 보행을 위한 단계별 과정에서의 족부 압력 변화와 관련 근골격계의 움직임을 시간을 기준으로 연동 분석함으로써 보다 정확하고 신속하며 정량적 기준에 따라 부정렬 증후군을 진단할 수 있어 신뢰성과 객관성 있는 진단이 가능한 효과가 있다.An apparatus and method for diagnosing physical malformation syndrome using plantar pressure and body motion information according to embodiments of the present invention are based on plantar pressure and upper and lower limbs based on information measured in real time through plantar pressure sensors and 3D sensors. By analyzing the change of foot pressure and related musculoskeletal movements in the step-by-step process for movement and walking based on time, it is possible to diagnose malalignment syndrome according to more accurate, faster and quantitative criteria, so that the reliability and objective diagnosis can be made. There is.
본 발명 실시예들에 따른 족저 압력과 신체의 움직임 정보를 이용한 신체 부정렬 증후군 진단 장치 및 방법은 측정에 한계가 있는 3D 센서를 이용하면서도 족저 압력 센서를 통해 보행 단계와 보행 단계별 패턴에 따른 족저 압력과 그에 따른 족저 압력의 구획별 시간의 변화를 토대로 3D를 센서의 측정에 따른 인체 움직임에 대한 3D 정보를 보상하도록 함으로써 부정렬 증후군 판단에 필요한 정보의 정략적 크기에 대한 신뢰성을 높여 비교적 낮은 가격으로 부정렬 증후군에 대한 세부적 진단이 가능한 장비를 제작할 수 있고, 이러한 장비를 필요한 곳에 용이하게 보급할 수 있는 효과가 있다.An apparatus and method for diagnosing physical malformation syndrome using plantar pressure and body motion information according to embodiments of the present invention utilize plantar pressure sensors while plantar pressure is measured using plantar pressure sensors while limiting measurement. And based on the change of time in each section of plantar pressure, 3D compensates for 3D information about human movement according to sensor measurement, thereby increasing the reliability of the political size of information necessary for judgment of misalignment syndrome. It is possible to manufacture equipment capable of detailed diagnosis of alignment syndrome, and there is an effect of easily distributing such equipment where necessary.
본 발명 실시예들에 따른 족저 압력과 신체의 움직임 정보를 이용한 신체 부정렬 증후군 진단 장치 및 방법은 족저 압력 센서와 3D 센서의 측정값을 동기된 시간 정보에 따라 저장하고, 족저 압력 센서와 3D 센서를 통해 족부의 이상과 원인을 판단하고, 보행 단계에 따른 족저 압력 센서의 측정값과 시간을 기준으로 후속되는 3D 센서의 움직임을 통해 하지와 골반, 몸통의 이상과 원인을 판단하며, 족저 압력 센서와 3D 센서를 통해 보행 단계별 관절의 움직임과 움직임에 대한 시간정보를 측정하여 부정렬 증후군에 대한 진단 정보를 제공함으로써 복합적 상관관계를 가지는 부정렬 증후군의 발생 부위들과 원인에 대한 풍부한 진단 정보를 제공할 수 있는 효과가 있다.An apparatus and method for diagnosing physical malformation syndrome using plantar pressure and body motion information according to embodiments of the present invention store measured values of plantar pressure sensor and 3D sensor according to synchronized time information, and plantar pressure sensor and 3D sensor Determination of abnormalities and causes of the foot through the 3D sensor movement based on the measured value and time of the foot pressure sensor according to the walking step to determine the abnormalities and causes of the lower limbs, pelvis and torso, plantar pressure sensor And 3D sensors measure time information about joint movement and movement by walking and provide diagnostic information about malalignment syndrome, providing rich diagnostic information on the occurrence sites and causes of complex correlation syndrome It can work.
본 발명 실시예들에 따른 족저 압력과 신체의 움직임 정보를 이용한 신체 부정렬 증후군 진단 장치 및 방법은 족저 압력 센서와 3D 센서를 동시에 이용하므로 자연스러운 보행에 대한 정보를 수집할 수 있으며, 양하지 지지기의 움직임을 족저 압력 센서를 통한 체중이동과 3D 센서를 통해 족부와 상지의 상관성 기반으로 분석함으로써 부정렬 증후군 발생 여부와 정도를 신속하게 파악할 수 있는 효과가 있다.The apparatus and method for diagnosing physical malformation syndrome using plantar pressure and body motion information according to embodiments of the present invention may simultaneously collect plantar pressure sensors and 3D sensors to collect information on natural gait, and support the lower limbs. By analyzing the movement of the body weight based on the plantar pressure sensor and the correlation between the foot and the upper limb through the 3D sensor, it is possible to quickly determine the occurrence and extent of malalignment syndrome.
본 발명 실시예들에 따른 족저 압력과 신체의 움직임 정보를 이용한 신체 부정렬 증후군 진단 장치 및 방법은 자연스러운 보행에 대한 족저 압력 변화 정보와 3D 정보를 시간 동기에 따라 저장한 후, 필요에 따라 다양한 관점에서 부정렬 증후군을 동일 데이터를 통해 분석하고, 이러한 복수 관점에서의 부정렬 증후군 분석 결과를 통합하여 부정렬 상태와 원인들에 대한 실질적 진단이 가능하도록 하여 신뢰성을 높일 수 있는 효과가 있다.An apparatus and method for diagnosing physical malformation syndrome using plantar pressure and body motion information according to embodiments of the present invention store plantar pressure change information and 3D information for natural gait according to time synchronization, and then, if necessary, various viewpoints. Analyze misalignment syndrome through the same data, and by integrating the results of misalignment syndrome analysis from multiple perspectives, it is possible to increase the reliability by enabling a substantial diagnosis of the misalignment state and causes.
본 발명 실시예들에 따른 족저 압력과 신체의 움직임 정보를 이용한 신체 부정렬 증후군 진단 장치 및 방법은 정적인 측정과 동적인 측정이 모두 가능하며, 자연스러운 보행의 동적 측정으로 신체의 보상기전을 확인할 수 있는 효과가 있다.The apparatus and method for diagnosing physical malformation syndrome using plantar pressure and body motion information according to the embodiments of the present invention can be used for both static and dynamic measurements, and can confirm the compensation mechanism of the body through dynamic measurement of natural gait. It has an effect.
도 1은 본 발명의 실시예에 따른 신체 부정렬 증후군 진단 장치를 이용한 진단 방식을 보인 개념도.1 is a conceptual diagram showing a diagnosis method using the apparatus for diagnosing physical malformation syndrome according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 신체 부정렬 증후군 진단 장치의 구성을 보인 구성도.Figure 2 is a block diagram showing the configuration of the apparatus for diagnosing physical malformation syndrome according to an embodiment of the present invention.
도 3은 본 발명의 실시예에서 구분하는 보행의 단계를 설명하기 위한 보행 예시도.Figure 3 is an illustration of walking for explaining the steps of walking to distinguish in the embodiment of the present invention.
도 4는 본 발명의 실시예에서 적용하는 보행에 따른 인체의 전반적 움직임 패턴을 설명하기 위한 예시도.Figure 4 is an exemplary view for explaining the overall movement pattern of the human body according to the walking applied in the embodiment of the present invention.
도 5는 보행에 대한 족부 움직임 패턴을 설명하기 위한 예시도.5 is an exemplary diagram for explaining a foot movement pattern for walking.
도 6은 본 발명의 실시예의 통합 분석 과정을 설명하기 위해 발의 입각기 기간 동안의 움직임과 족저 압력 변화를 보인 예시도.6 is an exemplary view showing the movement and plantar pressure change during the standing period of the foot to explain the integrated analysis process of the embodiment of the present invention.
도 7은 본 발명의 실시예에 따른 부정렬 판단을 위해 측정되어야 하는 골반의 움직임을 설명하기 위한 개념도.7 is a conceptual diagram for explaining the movement of the pelvis to be measured for misalignment determination according to an embodiment of the present invention.
도 8은 본 발명의 실시예에서 구분 가능한 평발의 종류와 특징을 설명하기 위한 개념도.8 is a conceptual view for explaining the types and features of flat feet that can be distinguished in an embodiment of the present invention.
도 9는 본 발명의 실시예에서 측정하는 무릎의 Q 각도를 설명하기 위한 예시도.9 is an exemplary view for explaining the Q angle of the knee measured in the embodiment of the present invention.
도 10은 본 발명의 실시예에서 측정하는 골반과 하지 관절의 움직임 패턴을 보인 패턴 그래프.10 is a pattern graph showing the movement pattern of the pelvis and lower extremity joint measured in the embodiment of the present invention.
도 11은 본 발명의 실시예에 따른 신체 부정렬 증후군 진단 과정을 나타낸 순서도.11 is a flowchart illustrating a process for diagnosing physical malformation syndrome according to an embodiment of the present invention.
상기한 바와 같은 본 발명을 첨부된 도면들과 실시예들을 통해 상세히 설명하도록 한다. The present invention as described above will be described in detail with reference to the accompanying drawings and embodiments.
본 발명에서 사용되는 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 발명에서 사용되는 기술적 용어는 본 발명에서 특별히 다른 의미로 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 발명에서 사용되는 기술적인 용어가 본 발명의 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는, 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이다. 또한, 본 발명에서 사용되는 일반적인 용어는 사전에 정의되어 있는 바에 따라, 또는 전후 문맥상에 따라 해석되어야 하며, 과도하게 축소된 의미로 해석되지 않아야 한다.Technical terms used in the present invention are merely used to describe specific embodiments, it should be noted that it is not intended to limit the present invention. In addition, the technical terms used in the present invention should be interpreted as meanings generally understood by those skilled in the art unless the present invention has a special meaning defined in the present invention, and is excessively comprehensive. It should not be interpreted in the sense of or in the sense of being excessively reduced. In addition, when a technical term used in the present invention is an incorrect technical term that does not accurately express the spirit of the present invention, it should be replaced with a technical term that can be properly understood by those skilled in the art. In addition, the general terms used in the present invention should be interpreted as defined in the dictionary or according to the context before and after, and should not be interpreted in an excessively reduced sense.
또한, 본 발명에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 본 발명에서, "구성된다" 또는 "포함한다" 등의 용어는 발명에 기재된 여러 구성 요소들, 또는 여러 단계를 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.Also, the singular forms used in the present invention include plural forms unless the context clearly indicates otherwise. In the present invention, terms such as “consisting of” or “comprising” should not be construed as necessarily including all of the various components or steps described in the invention, and some of the components or some of the steps are included. It should be construed that it may not be, or may further include additional components or steps.
또한, 본 발명에서 사용되는 제 1, 제 2 등과 같이 서수를 포함하는 용어는 구성 요소들을 설명하는데 사용될 수 있지만, 구성 요소들은 용어들에 의해 한정되어서는 안 된다. 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제 1 구성 요소는 제 2 구성 요소로 명명될 수 있고, 유사하게 제 2 구성 요소도 제 1 구성 요소로 명명될 수 있다.In addition, terms including ordinal numbers such as first and second used in the present invention may be used to describe components, but the components should not be limited by the terms. The terms are used only to distinguish one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, and the same or similar components will be given the same reference numerals regardless of the reference numerals, and redundant description thereof will be omitted.
또한, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 발명의 사상을 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 발명의 사상이 제한되는 것으로 해석되어서는 아니 됨을 유의해야 한다.In addition, in describing the present invention, when it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted. In addition, it should be noted that the accompanying drawings are only for easily understanding the spirit of the present invention and should not be construed as limiting the spirit of the present invention by the accompanying drawings.
도 1은 본 발명의 실시예에 따른 신체 부정렬 증후군 진단 장치(100)를 이용한 진단 방식을 보인 개념도로서, 도시된 바와 같이 적어도 2스탭(바람직하게는 3스탭) 이상의 인체 보행에 따른 족저 압력을 측정하는 족저 압력 센서(110)와, 보행에 따른 인체의 움직임 정보를 적어도 깊이 정보로 측정하는 3D 센서(120)와, 족저 압력 센서(110)의 측정값과 3D 센서(120)의 측정값을 인체에 대한 족저 압력과 인체 움직임에 대한 3D 정보로 변환하여 각각 동기된 시간에 따라 저장하고, 저장된 족저 압력의 동적 변화와 3D 정보의 동적 변화를 토대로 보행 단계별 족저 상태와 그와 상관성을 가진 상부 신체의 움직임 패턴을 연동 분석하여 부정렬 증후군을 진단하는 보행 분석부(130)로 이루어진다.1 is a conceptual diagram illustrating a diagnosis method using the apparatus for diagnosing physical malformation syndrome 100 according to an embodiment of the present invention, and as shown in FIG. 1, plantar pressure according to human walking is at least 2 steps (preferably 3 steps). The plantar pressure sensor 110 to measure, the 3D sensor 120 to measure the movement information of the human body according to the walking at least as depth information, the measured value of the plantar pressure sensor 110 and the measured value of the 3D sensor 120 It is converted into 3D information about plantar pressure on the human body and the movement of the human body and stored according to the synchronized time, respectively, and based on the dynamic change of the stored plantar pressure and the dynamic change of 3D information, the plantar state of the walking phase and the upper body having a correlation with it The gait analysis unit 130 for diagnosing malalignment syndrome by interlocking analysis of the movement pattern.
족저 압력 센서(110)는 도시된 바와 같이 압력 센서들이 배치된 발판일 수 있으나, 복수의 압력 센서들이 배치된 신발, 깔창, 트레드밀 등일 수도 있다.The plantar pressure sensor 110 may be a scaffold on which pressure sensors are arranged as shown, but may be a shoe, an insole, a treadmill, or the like, on which a plurality of pressure sensors are disposed.
3D 센서(120)는 스테레오 카메라, ToF(Time Of Flight) 센서, 레이저 센서, 초음파 센서, 키넥트 센서 중 적어도 하나일 수 있으며, 본 발명의 실시예에서는 고해상도 영상과 함께 객체에 대한 깊이 정보를 포인트 클라우드 방식으로 수집하여 인체에 매핑한 후 복수의 관절을 가지는 스켈레톤 정보를 생성하는 키넥트(Kinect™) 센서를 예로 들어 설명한다.The 3D sensor 120 may be at least one of a stereo camera, a time of flight (ToF) sensor, a laser sensor, an ultrasonic sensor, and a Kinect sensor. In an embodiment of the present invention, the 3D sensor 120 may point depth information of an object together with a high resolution image. For example, a Kinect ™ sensor that collects a cloud and maps it to a human body and then generates skeleton information having a plurality of joints will be described.
도시된 예에서 3D 센서(120)는 피검자의 정면 위치에 하나가 배치되어 있으나, 필요에 따라 후면이나 측면에도 추가로 배치될 수 있다.In the illustrated example, one 3D sensor 120 is disposed at the front position of the examinee, but may be additionally disposed on the rear surface or the side surface if necessary.
이와 같은 신체 부정렬 증후군 진단 장치(100)를 통해서 피검자가 족저 압력 센서(110)를 이용하여 통상적인 보행을 하도록 하고, 해당 보행 상태에서 발생하는 압력의 변화 패턴과 압력 변화 시간(족저부를 소정의 구획으로 구분하고 각 구획별 압력에 대한 시간 정보) 및 3D 센서(120)를 통한 인체의 움직임을 실시간 측정하도록 함과 아울러, 포괄적인 입체물이나 사람의 다양한 움직임을 측정할 수 있도록 구성된 3D 센서(120)의 측정 값을 '보행'을 측정하는 것으로 한정하고, 족저 압력 센서(110)의 동적인 측정 정보를 활용하여 보행 주기에 따른 움직임 패턴을 기준으로 측정 결과들을 보상하여 측정 결과에 대한 신뢰성을 높이도록 한다. 이러한 '보행'에 따른 인체의 족저 압력의 동적 변화와 움직임의 동적 변화를 각각 혹은 조합하여 분석하는 것으로 신체 부정렬 부위와 상태를 파악하고, 서로 연관이 있는 것으로 연구된 상관도 정보를 이용하여 부정렬 부위들의 관계성과 상태에 따라 전체적인 신체 부정렬 정도와 원인을 종합적으로 진단할 수 있도록 한다.Through such a body misalignment syndrome diagnosis apparatus 100, the subject walks normally using the plantar pressure sensor 110, and the pressure change pattern and the pressure change time (proximal plantar part) generated in the walking state 3D sensor (120) configured to measure the movement of the human body through the 3D sensor 120 and the time information on the pressure of each compartment) and the 3D sensor 120 in real time, and to measure a comprehensive three-dimensional object or various movements of a person ) Is limited to measuring 'walking' and using the dynamic measurement information of the plantar pressure sensor 110 to compensate the measurement results based on the movement pattern according to the walking cycle to increase the reliability of the measurement results. To do that. Analyze the dynamic changes in plantar pressure and the dynamic changes in movement according to the 'walking', respectively, or in combination, to identify the parts and state of body misalignment, and use the correlation information researched to be related to each other. Depending on the relationship and condition of the alignment sites, the overall degree of body misalignment and the cause can be diagnosed comprehensively.
현재, 국내에서만 수십만 명의 환자가 척추 측만증으로 고생하고 있고, 나라와 문화권마다 움직임과 생활 습관, 체형이 달라 각각 다른 신체 부정렬 패턴을 나타내고 있다. 이들 중 상당수가 신체 부정렬이 심화하기 이전에 운동요법이나 스트레칭, 습관의 개선을 통해 호전될 수 있으나, 신체 부정렬의 부위와 원인 및 그에 따른 운동요법에 대한 정보를 쉽게 진단 및 처방받기가 어려운 실정이다. Currently, hundreds of thousands of patients suffer from scoliosis in Korea alone, and their movements, lifestyles, and body types are different for each country and culture, resulting in different physical misalignment patterns. Many of these can be improved through exercise therapy, stretching, and improved habits before the body's misalignment worsens, but it is difficult to easily diagnose and prescribe information about the site, cause, and exercise therapy. It is true.
이러한 만연한 문제를 해결하기 위하여 본 발명의 실시예에 따른 신체 부정렬 증후군 진단 장치(100)는 비교적 간단한 측정만으로 신체 부정렬 증후군에 대한 상세한 진단이 가능하도록 한다.In order to solve such a widespread problem, the apparatus for diagnosing physical disorder syndrome 100 according to an embodiment of the present invention enables a detailed diagnosis of the physical disorder disorder by only a relatively simple measurement.
본 발명의 실시예에 따른 신체 부정렬 증후군 진단 장치(100)의 동작 방식을 보행 분석부(130) 구성이 도시된 도 2와 피검자의 보행에 따른 신체 부정렬을 판단하기 위하여 고려되어야 하는 인체의 상태들을 나타낸 도 3 내지 도 10의 예시를 참조하여 설명한다.FIG. 2 is a diagram illustrating the operation of the apparatus for diagnosing physical malformation syndrome 100 according to an exemplary embodiment of the present invention, and the body of the human body to be considered in order to determine physical misalignment according to the walking of the subject. This will be described with reference to the example of FIGS. 3 to 10 showing states.
도 2는 본 발명의 실시예에 따른 신체 부정렬 증후군 진단 장치(100)의 구성을 보인 구성도로서, 족저 압력 센서(도시된 예시에서는 발판)(110)와 3D 센서(120)와 연동하여 피검자의 보행을 분석하는 보행 분석부(130)의 내부 구성이 나타나 있다. 2 is a block diagram showing the configuration of the apparatus for diagnosing physical malformation syndrome according to an exemplary embodiment of the present invention, in which the foot pressure sensor (step in the illustrated example) 110 and the 3D sensor 120 are interlocked with each other. An internal configuration of the gait analyzer 130 to analyze the gait of the is shown.
도시된 구성은 설명의 편의를 위해 나타낸 기능적 구성도로서, 실제 각부의 구성은 통합되거나 더 세분화될 수 있으며, 본 발명을 이해하는데 필수적이지 않은 인터페이스부, 전원부, 통신부 등은 생략되었다. 또한, 도시된 구성의 경우 각 기능부들을 구분하고 이들을 상호 연동시키는 구성으로 제어부(139)를 적용하였으나, 실질적으로 각 기능부들은 제어부의 일부로서 구성될 수 있으며, 좀 더 구체적으로 제어부를 통해 실행되는 하드웨어나 소프트웨어 프로그램의 형태를 가질 수도 있다. 즉, 도시된 보행 분석부(130)는 하나 이상의 제어부와 메모리부를 가지는 컴퓨터 장치로서 각 기능부는 소프트웨어 프로그램으로 구현될 수 있고, 기능부 중 일부는 별도의 제어부와 메모리를 가지는 하드웨어로 구현될 수도 있으므로 이러한 하드웨어적인 구성은 다양하게 변형될 수 있으며, 본 발명은 이러한 모든 변형을 포괄한다.The illustrated configuration is a functional configuration diagram for convenience of description, and the actual components may be integrated or further subdivided, and interface units, power units, and communication units, which are not essential for understanding the present invention, are omitted. In addition, in the illustrated configuration, the control unit 139 is applied as a configuration for distinguishing each function unit and interworking them, but in practice, each function unit may be configured as a part of the control unit, and more specifically, executed through the control unit. It may be in the form of a hardware or software program. That is, the illustrated gait analyzer 130 is a computer device having one or more controllers and memory units, and each functional unit may be implemented as a software program, and some of the functional units may be implemented as hardware having separate controllers and memories. This hardware configuration can be variously modified, and the present invention encompasses all such variations.
본 발명 실시예에 따른 보행 분석부(130)는 도시된 바와 같이, 족저 압력 센서(110)의 측정값을 인체에 대한 족저 압력으로 변환하는 압력 측정부(131)와, 3D 센서(120)의 측정값을 인체 움직임에 대한 3D 정보로 변환하는 3D 정보 생성부(132)와, 압력 측정부(131)와 3D 정보 생성부(132)의 변환 값을 동기된 시간에 맞추어 저장하는 측정 정보 저장부(136)와, 측정 정보 저장부(136)에 저장된 족저 압력을 시간의 흐름에 따라 동적으로 분석하는 동적 압력 변화 분석부(137)와, 측정 정보 저장부에 저장된 인체 움직임에 대한 3D 정보를 시간의 흐름에 따라 동적으로 분석하는 동적 3D 정보 분석부(138)와, 동적 압력 변화 분석부(137)나 동적 3D 정보 분석부(138) 중 적어도 하나의 분석 결과에 따라 보행 단계를 세분하는 보행 단계 분석부(133)와, 보행 단계 분석부(133)의 세분된 보행 단계 정보를 기준으로 동적 압력 변화 분석부(137)와 동적 3D 정보 분석부(138) 각각 혹은 연동성에 기반한 분석 결과 조합을 요청 및 수신한 후 신체 부정렬 부위들과 각 부위의 연관성을 파악하여 신체 부정렬 증후군에 대한 진단 정보를 생성하는 부정렬 증후군 진단부(135)를 포함할 수 있다.As shown, the gait analyzer 130 according to an exemplary embodiment of the present invention includes a pressure measuring unit 131 for converting the measured value of the plantar pressure sensor 110 into plantar pressure on the human body, and the 3D sensor 120. 3D information generation unit 132 for converting the measurement value to 3D information about the human body movement, and measurement information storage unit for storing the converted value of the pressure measuring unit 131 and the 3D information generation unit 132 at a synchronized time 136, a dynamic pressure change analyzer 137 that dynamically analyzes plantar pressure stored in the measurement information storage unit 136 over time, and 3D information on human movement stored in the measurement information storage unit. A walking step of subdividing a walking step according to an analysis result of at least one of the dynamic 3D information analysis unit 138 and the dynamic pressure change analysis unit 137 or the dynamic 3D information analysis unit 138 which analyzes dynamically according to the flow of the flow. The analysis unit 133 and the subdivided beam of the walking step analysis unit 133 After requesting and receiving each of the dynamic pressure change analyzer 137 and the dynamic 3D information analyzer 138 or a combination of analysis results based on interoperability based on the row step information, the association between the body misalignment parts and each part is determined. The misalignment syndrome diagnosis unit 135 may generate a diagnosis information about the body misalignment syndrome.
특히, 본 발명의 실시예에 따른 보행 분석부(130)는 보행 단계 분석부(133)에서 세분된 보행 단계의 대응되는 동적 압력 변화 분석부(137)의 족저 압력 변화 패턴 중 인체 움직임을 특정하는 시점이나 움직임 패턴에 대한 정보를 3D 정보를 보상하기 위한 정보로 생성하여 3D 정보 생성부(132)에 제공하는 3D 정보 보상부(134)를 더 포함할 수 있다.In particular, the gait analyzer 130 according to an embodiment of the present invention specifies a human body movement in the plantar pressure change pattern of the corresponding dynamic pressure change analyzer 137 of the gait step subdivided by the gait step analyzer 133. The apparatus may further include a 3D information compensator 134 which generates information about a viewpoint or a movement pattern as information for compensating for 3D information and provides the information to the 3D information generator 132.
더불어, 보행 분석부(130)는 압력 측정부(131), 3D 정보 생성부(132), 측정 정보 저장부(136), 동적 압력 변화 분석부(137), 동적 3D 정보 분석부(138), 보행 단계 분석부(133), 3D 정보 보상부(134) 및 부정렬 증후군 진단부(135) 사이의 구성되어 각 부 간의 정보 교환과 정보 요청을 중개하고 부정렬 증후군 진단부의 진단 과정에 따라 각 부를 제어하는 제어부(139)를 포함할 수 있다.In addition, the gait analyzer 130 may include a pressure measurer 131, a 3D information generator 132, a measurement information storage 136, a dynamic pressure change analyzer 137, a dynamic 3D information analyzer 138, It is composed between the walking step analysis unit 133, the 3D information compensation unit 134 and the misalignment syndrome diagnosis unit 135 to mediate the exchange of information and requests for information between the units, and to determine each unit according to the diagnosis process of the misalignment syndrome diagnosis unit. It may include a control unit 139 for controlling.
이러한 기능부들을 통해서 피검자의 보행 특성을 파악하여 신체 부정렬 증후군을 진단하게 되는데, 이러한 각 기능부의 기능을 구체적으로 설명하기 위하여 도 3 내지 도 5를 통해서 인체의 기본적인 보행 특성에 관하여 먼저 살펴보도록 한다. The functional characteristics of the subject are diagnosed by identifying the walking characteristics of the examinee. In order to explain the functions of each functional part, the basic walking characteristics of the human body will be described first with reference to FIGS. 3 to 5. .
도 3은 본 발명의 실시예에서 구분하는 보행의 단계를 설명하기 위한 보행 예시도이다.Figure 3 is an exemplary walk for explaining the steps of walking to distinguish in the embodiment of the present invention.
일반적으로 인간의 몸은 신경학적으로 패턴화된 움직임과 관절 고유의 각도에 따른 움직임을 지속적으로 생산하는데, 전신의 패턴화된 움직임을 연속적으로 나타내는 것이 보행이며, 도시된 바와 같이 이는 크게 입각기(발이 닿는 기간)와 유각기(발이 떨어지는 기간)로 구분하고, 양하지 지지기(양 발이 닿는 기간)와 단하지 지지기(한 발이 닿는 기간)로 구분할 수도 있으며, 좀 더 정밀하게는 8개의 과정이나 7개의 기간으로 구분할 수 있다.In general, the human body continuously produces neurologically patterned movements and movements according to the inherent angles of the joints. Walking is a continuous representation of the patterned movements of the whole body. The foot contact period) and the oleus period (foot drop period), and the lower supportive period (both foot contact) and the lower support period (one foot contact). Or seven periods.
보행 주기를 7개의 기간으로 나누기 위하여 8개의 과정으로 세분화하면 다음과 같다. In order to divide the walking cycle into seven periods, it is divided into eight steps as follows.
1) 초기 닿기 : 보행주기의 0% 지점에서 발이 처음으로 지면과 접촉할 때 일어나는 입각기의 시작1) Initial touch: start of the stance that occurs when the foot first touches the ground at 0% of the walking cycle.
2) 반대쪽 발가락 떼기 : 보행주기의 10% 지점에서 반대쪽 발이 지면에서 떨어질 때2) Take off the other toe: When the opposite foot falls off the ground at 10% of the walking cycle
3) 발 뒤꿈치 상승 : 보행주기의 약 30% 지점에서 발뒤꿈치가 지면으로부터 들릴 때3) Heel lift: When the heel is lifted from the ground at about 30% of the walking cycle
4) 반대쪽 초기 닿기 : 보행주기의 50% 지점에서 반대쪽 발이 지면을 접촉할 때4) Reverse initial contact: When the opposite foot touches the ground at 50% of the walking cycle.
5) 발가락 떼기 : 보행주기의 60% 지점에서 발이 지면을 떠날 때5) Toe Release: When the foot leaves the ground at 60% of the walking cycle
6) 양발 인접 : 보행주기의 73% 지점에서 유각기에 있는 하지의 발이 입각기에 있는 하지의 발 옆에 왔을 때6) Adjacent feet: When the foot of the lower limb in the stiletto comes next to the foot of the lower leg at 73% of the walking cycle.
7) 경골 수직 : 보행주기의 87% 지점에서 유각기에 있는 하지의 경골이 수직 방향을 향할 때Tibia Vertical: When the tibia of the lower extremity in the skeletal phase is vertical at 87% of the walking cycle.
8) 초기 닿기 : 다음에 일어날 보행주기의 시작8) Initial touch: the start of the next walking cycle
이러한 과정을 통해 보행 주기를 7개의 기간으로 나누면 다음과 같다.In this process, the walking cycle is divided into seven periods as follows.
1)부하반응기 : 하지가 지면과 접촉하기 시작함으로 체중을 수용하는 시기1) Load Reactor: when the lower limbs start to come into contact with the ground
2)중간 입각기 : 반대쪽 발가락 떼기에서부터 발뒤꿈치 상승까지(10-30%)2) Middle stance: From lifting the opposite toe to the heel rise (10-30%)
3)말기 입각기 : 발뒤꿈치가 상승할 때 시작, 반대쪽 하지가 지면과 접촉할 때 끝(30-50%)3) Terminal stance: Start when the heel rises and end when the lower leg contacts the ground (30-50%)
4)전 유각기 : 반대쪽 초기 닿기에서부터 동측 발의 발가락 떼기까지 양하지 지지기 일어남(50-60%)4) Pre-glaciator: Lifting support of the lower limbs from the initial contact of the opposite side to the toe off of the ipsilateral foot (50-60%)
5)초기 유각기 : 발가락 떼기에서부터 양 발 인접, 유각기에 있는 발이 입각기 발 옆에 오는 시기(60-73%)5) Initial stinging period: When the toes are removed, both feet are adjacent, and the foot in the stinging period is next to the staging foot (60-73%).
6)중간 유각기 : 양 발 인접에서부터 유각기에 있는 하지의 경골수직이 일어날 때까지(73-87%)6) Middle stage of declination: from the adjacency of both feet to the tibiae of the lower extremities in the phase of declination (73-87%)
7)말기 유각기 : 경골의 수직 위치에서부터 발 뒤꿈치 닿기 바로 이전까지(87-100%)7) Terminal endure angle: from the vertical position of the tibia to just before touching the heel (87-100%)
또한, 이러한 보행 패턴에 따른 인체의 전반적인 움직임, 즉 질량의 움직임은 도 4에 도시된 바와 같이, 수직 라인에서 두 번의 정현적 움직임과 내외측 라인에서 한 번의 정현적 움직임으로 나타난다. 수직 라인의 경우 개인별 신체 특성에 따라 다르지만 대략 5Cm 범위에서 질량의 이동이 있으며 최고점은 단하지 지지기의 중간지점(30%, 80%)이고, 내외측 라인의 경우 양발의 입각기와 유각기를 거쳐 총 4Cm 정도의 좌우측 질량 이동이 있다.In addition, the overall movement of the human body according to the walking pattern, that is, the movement of the mass, is represented by two sinusoidal movements in the vertical line and one sinusoidal movement in the inner and outer lines as shown in FIG. 4. In the vertical line, there is mass movement in the range of about 5 cm, but the peak is the midpoint of the support of the lower extremity (30%, 80%). There are a total of 4 cm of left and right mass transfer.
이러한 보행에 대한 족부 움직임 패턴을 설명하는 도 5를 보면, 도시된 바와 같이 좌우 대칭인 보폭(Step)이 더해진 한 걸음의 폭(Stride)을 통해서 보행 간격과 양 발의 보폭 특성 및 기간을 알 수 있다. 전진 각도는 뒤꿈치 중앙에서 두 번째 발가락을 기준으로 판단한다.Referring to FIG. 5 illustrating the foot movement pattern for the walking, the walking interval and the stride characteristics and duration of both feet can be known through the step width added with the stepwise symmetry as shown. . The forward angle is determined based on the second toe from the center of the heel.
통상 성인의 보폭은 약 72Cm이고 보행 간격은 10Cm 정도이며, 전진 각도는 대략 7~12도 정도 외회전한다. 통상적 보행 속도는 시속 4~5Km 정도이다.Normally, the stride length of adults is about 72cm and the walking distance is about 10cm, and the forward angle is about 7 ~ 12 degrees. Normal walking speed is about 4 ~ 5km per hour.
앞서 도 3 및 도 4의 도 5의 특성으로 보행을 판단할 경우, 보폭을 통해서 골반의 회전, 고관절 굴곡근(Hip flexor)과 신전근(Hip extensor) 사이의 근육학적 비대칭성과 단·양하지 지지기의 비율 및 압력과 그에 따른 시간적 정보, 양하지의 근력의 차이를 파악할 수 있고, 유통성 보행 여부도 알 수 있다.When the gait is determined based on the characteristics of FIG. 3 and FIG. 5, the rotation of the pelvis, the muscular asymmetry between the hip flexor and the hip extensor, and the support of the monotonic limb supporter The difference between the ratio and pressure, the resulting temporal information, and the muscle strength of the lower limbs can be identified, and the flowability of walking can also be identified.
또한, 보행 간격의 변화를 통해서 고관절의 아탈구, 내전근(Adductor)과 외전근(Abductor)의 불균형, Q-angle의 변화, 경골의 회전, 발 아치의 붕괴, 내,외반슬 시 간격의 차이에 대해 파악할 수 있다.In addition, changes in the gait interval of the hip joint, adductor and abductor imbalance, Q-angle change, tibia rotation, foot arch collapse, and gaps in the inner and outer valgus I can figure it out.
더불어, 전진각도를 통해서 발가락의 외회전이나 내회전 보행 여부와, 이러한 보행에 대한 역학적 요인들을 예측할 수 있다.In addition, the forward angle can predict whether the toe is turning outwardly or inwardly, and the dynamic factors for this walking.
한편, 세부적 보행 단계를 구분할 수 있는 정보로서 인체의 질량 이동과 더불어 족저 압력의 변화를 살펴볼 수 있는데, 도 6은 본 발명의 실시예의 통합 분석 과정을 설명하기 위해 발의 입각기 기간 동안의 움직임과 족저 압력 변화를 보인 예시도이다.On the other hand, it is possible to look at the change in plantar pressure as well as the mass movement of the human body as information to distinguish the detailed gait step, Figure 6 is a movement and foot planter during the standing period of the foot to explain the integrated analysis process of the embodiment of the present invention An illustration showing the pressure change.
도시된 바와 같이 발이 초기 닿기 상태에서 발가락 떼기 직전까지의 과정을 순차적으로 나타낸 것으로 후면(도 6a)과 측면(도 6b)에 대한 움직임과 각 움직임에 따른 족저 압력 변화(도 6c)가 나타나 있다. 이러한 족부의 움직임을 족저 압력의 동적 변화 패턴 중 상태를 통해 파악할 수 있다.As shown, the steps from the initial contact state to the step just before the toe release are sequentially shown, and the movements on the rear surface (FIG. 6A) and the side surface (FIG. 6B) and the plantar pressure change according to each movement (FIG. 6C) are shown. This foot movement can be identified through the state of the dynamic pattern of plantar pressure.
이러한 족저 압력 변화 패턴(즉, 중심 이동 패턴)은 뒤꿈치에서 발바닥의 중심부를 지나 엄지발가락으로 이동하는 과정으로, 뒤꿈치에서 바깥쪽 측면을 따라 이동하다가 바깥쪽에서 안쪽으로 이동한 후 엄지 발가락으로 이동하게 된다. This plantar pressure change pattern (ie, the central movement pattern) is a process of moving from the heel past the center of the sole to the big toe, moving from the heel along the lateral side to the outside to the big toe. .
이러한 족저 압력 변화 패턴을 통해서 평발(Forefoot varus, Forefoot valgus, Rearfoot varus) 여부를 알 수 있다. 이러한 평발이 발생할 경우 골반 무명골(Ilium)의 전방회전(Anterior rotation)으로 인하여 고관절(Hip joint)과 대퇴골의 내회전(Femur Internal rotation)이 발생하며, 동시에 아치의 붕괴(Arch Collapse)로 인한 발등 높이의 낮아짐, 족배 굴곡(Dorsi Flexion)의 증가로 보행시 발이 지면을 누르는 시간이 길어지는 상관적 특성들이 있다. 따라서, 평발 발생에 따라 이러한 상관적 움직임을 파악하거나, 반대로 고관절과 대퇴골의 회전을 통해서 평발 여부와 보행 시 발이 지면을 누르는 시간 등을 파악할 수 있다. The plantar pressure change pattern indicates whether or not flatfoot (Forefoot varus, Forefoot valgus, Rearfoot varus). When this flat foot occurs, hip rotation and femur internal rotation occur due to anterior rotation of the pelvic ilium, and at the same time the instep height due to arch collapse There is a correlation between lowering and increased foot flexion (Dorsi Flexion), which increases the time the foot presses on the ground during walking. Therefore, it is possible to grasp such a relative movement according to the occurrence of flat foot or, on the contrary, to determine whether the flat foot and the time the foot presses the ground during walking through the rotation of the hip and femur.
하지만, 본 발명의 실시예에 따른 신체 부정렬 증후군 진단 장치(100)의 경우 족저 압력 센서가 3D 센서에 비해 해상도나 신뢰성에서 우위에 있으므로 족저 압력 센서의 측정 정보에 가중치를 두어 판단할 수 있다.However, in the apparatus 100 for diagnosing physical malformation syndrome according to an exemplary embodiment of the present invention, since the plantar pressure sensor is superior in resolution or reliability to the 3D sensor, it may be determined by weighting the measurement information of the plantar pressure sensor.
이러한 보행의 패턴은 인체의 관절 고유의 각도와 신경학적 움직임에 따른 것이므로 대부분의 피검자는 이러한 패턴을 크게 벗어나지 않는다. 따라서 이러한 보행 패턴을 기준으로 인체의 움직임을 정밀하게 분석하는 것으로 신체 부정렬 증후군 진단을 수행할 수 있다. Since the pattern of gait is due to the inherent angle and neurological movement of the human body, most of the subjects do not deviate greatly from the pattern. Therefore, the body malformation syndrome can be diagnosed by precisely analyzing the movement of the human body based on the walking pattern.
이러한 보행의 특성을 이용하여 신체 부정렬 진단을 수행하는 도 2의 각 기능부들에 대하여 좀 더 상세히 설명한다.Each of the functional units of FIG. 2 performing the physical misalignment diagnosis using the characteristics of the gait will be described in more detail.
먼저, 압력 측정부(131)는 족저 압력 센서(110)의 측정값을 인체에 대한 족저 압력으로 변환한다. 즉 앞서 도 6을 통해 살펴본 바와 같은 보행의 족저 압력 패턴을 통해서 족저 압력 센서(110)를 통해 측정되는 값이 발의 어느 부위에 대응하는 압력인지를 파악하여 인체의 족저 압력에 대응되는 정보로 변환한다.First, the pressure measuring unit 131 converts the measured value of the plantar pressure sensor 110 into plantar pressure on the human body. That is, through the plantar pressure pattern of the gait as described above with reference to FIG. 6, the part measured by the plantar pressure sensor 110 corresponds to the part of the foot to determine the pressure corresponding to the plantar pressure of the human body and converts the information. .
3D 정보 생성부(132)는 인체의 움직임을 진단할 공간과 3D 센서가 측정하는 가상의 공간을 매핑하여 인체 움직임을 정량화하는 초기화 단계를 먼저 수행하고, 3D 센서(120)의 측정값을 인체 움직임에 대한 3D 정보로 변환하게 되는데, 본 발명의 실시예에 따른 신체 부정렬 진단 장치(100)가 인체의 보행을 측정하는 고정된 장치라는 점에서 측정이 이루어질 공간에 대한 정보와 측정된 정보(이미지 정보, 깊이 정보 등)를 매핑하고 실제 단위 정보를 적용하여 측정되는 움직임 정보에 따른 이동이나 회전에 대한 정량적 수치 정보를 얻을 수 있도록 한다. 이를 위해서는 바닥면에 대한 정보와 측정 객체에 대한 크기 정보 등을 통해서 측정 공간을 가상의 3D 공간과 매핑하는 캘리브레이션하는 과정을 초기화 과정으로 수행함으로써 측정의 정량화에 대한 신뢰성을 높이도록 한다. 또한, 고정된 영역에서 특정 범위 이내에 해당하는 인체를 측정하는 것이기 때문에 측정 범위를 조정하여 해상도를 높일 수 있다.The 3D information generator 132 first performs an initialization step of quantifying the movement of the human body by mapping a space for diagnosing the movement of the human body and a virtual space measured by the 3D sensor, and then measures the measured value of the 3D sensor 120 in the human body movement. It is converted to 3D information about the body misalignment diagnosis apparatus 100 according to an embodiment of the present invention is a fixed device for measuring the walking of the human body information about the space to be measured and the measured information (image Information, depth information, etc.) and apply the actual unit information to obtain quantitative numerical information on the movement or rotation according to the measured motion information. To this end, the calibration process of mapping the measurement space to the virtual 3D space using the information on the bottom surface and the size information on the measurement object is performed as an initialization process to increase the reliability of the quantification of the measurement. In addition, since the measurement of the human body within a specific range in a fixed area can be increased by adjusting the measurement range.
특히 3D 정보 생성부(132)는 영상이나 포인트 클라우드 형식의 깊이 정보를 통해서 인체의 움직임을 측정하는 3D 센서(120)의 측정값을 인체에 대한 것으로 한정하고, 이를 관절을 가지는 스켈레톤 형식으로 변환하게 되는데, 측정 오차나 노이즈, 인체의 측정 각도 등에 의해 보행 단계별 움직임을 벗어난 움직임으로 오인식될 수 있다.In particular, the 3D information generation unit 132 limits the measurement value of the 3D sensor 120 measuring the movement of the human body through the depth information of the image or the point cloud format to the human body, and converts it into a skeleton type having a joint. It may be mistaken as a movement out of the walking step by the measurement error or noise, the measurement angle of the human body.
따라서, 3D 정보 생성부(132)는 3D정보 보상부(134)로부터 족저 압력 변화 패턴 중 인체 움직임을 특정하는 시점이나 움직임 패턴에 대한 정보를 3D 정보를 보상하기 위한 정보로 수신하여 인체 움직임을 보상할 수 있다. 예를 들어, 도 6에 도시된 족저 압력 패턴에 따라 현재 발이 지면에 닿았는지, 떨어졌는지, 뒤꿈치만 닿았는지 발 전체가 닿았는지와 발의 구획별 지면을 누르는 시간 등을 파악할 수 있고, 이러한 입각기 기간에서 이루어지는 상지 근육과 골격계의 패턴화된 움직임 정보를 통해 족저 압력 패턴의 변화에 따라 예상되는 골격계의 움직임 패턴을 과도하게 벗어나는 정보를 필터링하거나 측정 파라미터를 조정하여 움직임 패턴을 추종하도록 인체의 움직임(특히 스켈레톤 움직임)을 보상된 3D 정보로 생성한다.Accordingly, the 3D information generator 132 compensates the human body movement by receiving information from the 3D information compensator 134 as information for compensating for the 3D information or information on the point of time or movement pattern specifying the human body movement among the plantar pressure change patterns. can do. For example, according to the plantar pressure pattern shown in FIG. 6, it is possible to determine whether the foot is currently in contact with the ground, dropped, only the heel, the entire foot, and the time to press the ground for each section of the foot. The patterned movement information of the upper extremity muscles and skeletal system is used to filter the information that is excessively out of the expected movement pattern of the skeletal system according to the change of plantar pressure pattern or to adjust the measurement parameters to follow the movement pattern (especially Skeleton movement) is generated as compensated 3D information.
이러한 3D 정보에는 인체의 자세변화, 인체의 상하 좌우 움직임은 물론이고 측정되는 인체를 설정된 골격과 관절 구조에 대응시켜 각 관절과 골격의 회전과 비틀림 등에 대한 정보를 얻을 수 있는 구체적인 공간상 인체 모형의 각 부분 좌표정보들을 포함할 수 있다.This 3D information includes a detailed spatial model of the human body that can obtain information about the rotation and torsion of each joint and the skeleton by responding to the set skeleton and the structure of the body as well as the posture change of the human body, the vertical movement of the body, and the measured body. Each partial coordinate information may be included.
측정 정보 저장부(136)는 압력 측정부(131)와 3D 정보 생성부(132)의 변환 값을 동기된 시간에 맞추어 저장하는데, 간단하게는 압력 측정부(131)에서 인체의 족저 압력으로서 측정되는 정보(측정된 원시 센서 값, 압력의 면적과 강도 및 각 구획별 압력에 대한 시간적 정보, 단,양하지 지지기의 비교, 발바닥의 부위에 대한 정보 등)를 측정 시간 정보와 함께 저장하고, 3D 정보 생성부(132)에서 인체의 3D 정보로 변환된 정보(측정된 원시 센서 값, 인체에 매핑하여 얻은 각 부분의 값, 스켈레톤으로 매핑하여 얻은 각 관절과 골격의 좌표, 보정된 관절과 골격의 좌표 등)를 측정 시간 정보와 함께 저장할 수 있으며, 두 측정부의 실제 측정 시점이 동일한 시간 정보로 정확하게 동기될 수 있다. 혹은 특정한 시간 정보에 맞추어 일정 주기로 압력 측정부(131)와 3D 정보 생성부(132)의 변환 값을 측정 정보 저장부(136)에 저장할 수도 있다. The measurement information storage unit 136 stores the converted values of the pressure measuring unit 131 and the 3D information generating unit 132 at a synchronized time, and is simply measured as the plantar pressure of the human body in the pressure measuring unit 131. And store the measured information (measured raw sensor values, pressure area and intensity and temporal information on the pressure in each compartment, including comparison of the support of the lower limbs, and information about the area of the sole) with the measurement time information. 3D information generation unit 132 converted into 3D information of the human body (measured raw sensor values, values of each part obtained by mapping to the human body, coordinates of each joint and skeleton obtained by mapping to the skeleton, corrected joints and skeletons) Coordinates, etc.) may be stored together with the measurement time information, and the actual measurement time points of the two measurement units may be accurately synchronized with the same time information. Alternatively, the conversion values of the pressure measuring unit 131 and the 3D information generating unit 132 may be stored in the measurement information storage unit 136 at regular intervals according to specific time information.
이렇게 측정 정보 저장부(136)에 시간 동기화되어 저장된 정보들은 필요에 따라 반복적으로 인출되어 활용될 수 있는데, 정확한 보행 단계별 시점을 구분하거나, 일측의 측정 정보에 연동되는 타측의 측정 정보들을 쉽게 확인할 수 있다.The information stored in synchronization with the time information stored in the measurement information storage unit 136 may be repeatedly drawn out and utilized as needed. The information can be easily identified by identifying the exact walking step-by-step time point or linked to the measurement information of one side. have.
한편, 족저 압력 센서(110)와 3D 센서(120)를 통해 각각 얻을 수 있는 족저 압력 변화의 패턴이나 인체 움직임 패턴을 각각 파악하고 이상이 있는 경우 상관도가 높은 연동 부분에 대한 추가적인 분석을 수행할 수 있는데, 각각의 동적 변화를 필요한 시점이나 기간에 따라 분석할 수 있는 동적 압력 변화 분석부(137)와 동적 3D 정보 분석부(138)를 구성한다. Meanwhile, the plantar pressure sensor 110 and the 3D sensor 120 respectively identify patterns of plantar pressure change or human body movement patterns, and if there is an abnormality, perform additional analysis on a highly correlated linkage. The dynamic pressure change analyzer 137 and the dynamic 3D information analyzer 138 may analyze each dynamic change according to a required time point or period.
동적 압력 변화 분석부(137)는 측정 정보 저장부(136)에 저장된 족저 압력을 시간의 흐름에 따라 동적으로 분석하는데, 압력의 변화에 따라 도 2의 보행 단계나 도 3의 무게 중심 이동, 도 6의 족저 압력 변화와 도 5의 보행에 따른 각 발의 위치 분석이 가능하다.The dynamic pressure change analysis unit 137 dynamically analyzes plantar pressure stored in the measurement information storage unit 136 over time, and according to the change in pressure, the walking step of FIG. 2 or the center of gravity movement of FIG. It is possible to analyze the position of each foot according to the foot pressure change of 6 and the walking of FIG.
동적 3D 정보 분석부(138)는 측정 정보 저장부에 저장된 인체 움직임에 대한 3D 정보를 시간의 흐름에 따라 동적으로 분석하는데, 인체 움직임을 통해서 도 2의 보행 단계나 도 3의 무게 중심 이동, 도 5의 보행에 따른 각 발의 위치, 도 6의 보행에 따른 족부 형상이나 움직임 분석이 가능하며, 그 외에도 인체에 대한 골격 움직임과 관절부 움직임과 회전에 대한 측정 및 분석이 가능하다.The dynamic 3D information analyzing unit 138 dynamically analyzes 3D information about the human body motion stored in the measurement information storage unit over time, and the human body movement includes the walking step of FIG. 2 or the center of gravity movement of FIG. 3. It is possible to analyze the position of each foot according to the walking of 5, foot shape or movement according to the walking of FIG. 6, and also to measure and analyze skeletal movement and joint movement and rotation of the human body.
이제, 이러한 족저 압력과 인체의 3D 정보를 통해 상관성을 가지는 신체 부정렬을 측정하는 방식의 예시들을 도 7 내지 도 10을 통해 설명한다.Now, examples of a method of measuring the body misalignment having correlation through the plantar pressure and the 3D information of the human body will be described with reference to FIGS. 7 to 10.
먼저, 보행에 따른 족부의 상태에 따라 가장 직접적으로 상관성을 가지는 부분은 골반의 움직임이다. 보행에 따라 골반은 3가지 특징적인 움직임을 보이는데, 도 7에 도시된 바와 같이 보행에 따라 각 방향당 4도씩 총 8도의 수평면상 회전성 움직임(A)이 발행하고, x축 상 좌우 5Cm 정도의 병진 운동(B)이 발생하며, y축상 상하 각각 5도 이내의 병진 운동(C)이 발생한다.First, the most directly correlated part of the foot according to the state of the foot is the movement of the pelvis. According to the walking, the pelvis shows three characteristic movements, and as shown in FIG. 7, a total of 8 degrees of horizontal rotational motion (A) is issued by 4 degrees in each direction according to the walking. The translational motion B occurs, and the translational motion C within 5 degrees each up and down occurs on the y axis.
이러한 골반의 움직임은 족부 이상과 직접적으로 연관되는 것이므로 족부에 이상이 발생할 경우 골반의 움직임에 이상이 발생하며, 반대로 골반에 이상이 발생할 경우 족부에 이상이 발생하여 신체 부정렬 증후군이 나타나게 된다. Since the movement of the pelvis is directly related to the abnormality of the foot, abnormalities occur in the movement of the pelvis when abnormalities occur in the foot, and conversely, abnormalities occur in the foot when the abnormal pelvis occurs, resulting in physical disorder syndrome.
예컨대 동적 압력 변화 분석부(137)는 발이 지면을 누르는 시간을 측정하여 한쪽 발이 반대쪽 발보다 지면을 오래 누를 경우 평발과 무릎, 고관절, 골반의 문제를 예측할 수 있다. 특히, 발가락 떼기(Toe-off) 직전에 발이 지면을 미는 시간의 증가는 과도한 아치의 붕괴 또는 정상각도 이상의 족배굴곡(Dorsi flexion), 과도한 고관절과 대퇴골, 무릎관절의 내회전 및 골반 무명골의 전방회전을 동반한다. 또한, 입각기 말기에서 엄지발가락이 발가락 떼기(Toe-off)직전 얼마나 추진력 있게 밀었는지에 따라 반대쪽 골반의 회전이 발생을 하게 된다. 한쪽 발의 엄지발가락의 추진력이 부족할 경우 동측 및 반대쪽 골반의 회전력은 떨어지게 되며, 이는 동작 압력 변화 분석부(137)와 동적 3D 정보 분석부(138)를 연동하여 확인할 수 있다.For example, the dynamic pressure change analyzer 137 measures the time the foot presses the ground, and predicts problems of flat feet, knees, hips, and pelvis when one foot presses the ground longer than the opposite foot. In particular, the increase in the time the foot pushes to the ground just before the toe-off may result in excessive arch collapse or Dorsi flexion above normal angle, excessive hip and femur, internal rotation of the knee joint, and anterior rotation of the pelvic cotton bone. Accompany In addition, the rotation of the opposite pelvis occurs at the end of the standing phase, depending on how far the big toe is pushed just before the toe-off. When the driving force of the big toe of one foot is insufficient, the rotational force of the ipsilateral and opposite pelvis falls, which can be confirmed by linking the operating pressure change analyzer 137 and the dynamic 3D information analyzer 138.
이러한 기본적인 진단 외에 좀 더 정확한 진단을 위해서 인체의 보행에 따른 움직임과 근골격계의 상관성을 살펴볼 필요가 있다.In addition to the basic diagnosis, it is necessary to examine the correlation between the movement of the human body and the musculoskeletal system for a more accurate diagnosis.
통상 보행 시 골반은 시상면(sagittal plane)에서 각 장골(Ilium)의 회전은 고관절 신전면에서 전방회전(Anterior rotation)과 굴곡면에서 후방회전(Poster rotation)이 발생한다. 횡단면에서는 골반의 전체 회전이 발생(앞으로 전진하는 하지쪽의 전방회전)하고, 전면에서 골반전체의 회전 즉, 체중부하가 걸리는 면에서는 상방, 다른쪽에서는 하방 운동이 발생한다. 보행시 이들 면에서 골반의 위치가 변하면서 천골(Sacrum)도 각 보행주기에 따라 수직축(Vertical axis)과 경사축(Oblique axis) 주위에서 교대로 우측과 좌측으로 회전한다. 따라서, 골반의 움직임은 보행의 단계에 따라 특정한 움직임 패턴을 가지며 이러한 패턴이 어긋나는 경우 신체 부정렬 발생을 의심할 수 있다.In general, the pelvis rotates in the sagittal plane, and the rotation of each Ilium occurs in the anterior rotation and posterior rotation in the flexion plane. In the cross section, the entire rotation of the pelvis occurs (forward rotation of the lower limb moving forward), and the rotation of the entire pelvis from the front surface, that is, upward movement on the side where weight load is applied, and downward movement on the other side. As the position of the pelvis changes on these planes during walking, the sacrum also rotates right and left alternately around the vertical and oblique axes according to each walking cycle. Therefore, the movement of the pelvis has a specific movement pattern according to the step of walking, and it is possible to suspect that body misalignment occurs when such a pattern is shifted.
이러한 골반에 연결된 고관절 역시 보행에 따라 움직임 패턴이 나타나게 되는데, 대퇴골(Femur)의 회전은 골반과 동시에 회전을 하게 된다. 우측 발뒤꿈치 닿기(Initial Contact)에서 우측 고관절은 좌측 전상장골극(Anterior Superior Iliac Spine, ASIS)의 상대적인 후방위치에 따라 약간 외회전(External rotation)된 상태에 있게 된다. 우측 하지 입각기(Stance phase)의 대부분 동안, 좌측 전상장골극이 전방으로 움직임에 따라 우측 고관절에서는 내회전(Internal rotation)의 움직임이 발생하는데 최대로 내회전된 위치는 보행주기의 50% 지점에서 일어난다. 보행주기의 50% 지점에서부터 중간 유각기(Mid swing)까지, 우측 하지가 들리면서 전방으로 움직임에 따라 우측 고관절에서는 외회전이 일어나게 된다. 중간 유각기에서 우측 발뒤꿈치 닿기까지 적은 양의 우측 고관절의 내회전이 일어난다.The hip joint connected to the pelvis also appears as a movement pattern as the gait, femur (Femur) is rotated at the same time as the pelvis. In the right heel contact (Initial Contact), the right hip joint is slightly externally rotated depending on the relative posterior position of the left anterior superior iliac spine (ASIS). During most of the right lower stance phase, as the left anterior superior iliac pole moves forward, the movement of the internal rotation occurs in the right hip joint, with the maximum internal rotation occurring at 50% of the walking cycle. From 50% of the walking cycle to the middle mid swing, the right lower limb is lifted and moves forward, resulting in external rotation in the right hip. There is a small amount of internal rotation of the right hip joint from the middle stunt to the contact of the right heel.
이러한 보행에 따른 고관절과 대퇴골의 움직임은 무릎 관절과 연관되는데, 발뒤꿈치 닿기 시점에서 무릎 관절은 2~3도 상대적 외회전 위치에 있게 된다. 입각기 내내 경골의 내회전은 대퇴골에 비해 더 크게 일어나기 때문에, 무릎 관절은 점차 내측으로 회전하게 된다. 발가락 떼기가 끝날 때쯤, 무릎 관절은 약 5도의 상대적 내회전 상태에 이르게 된다. 유각기 동안, 무릎 관절은 다음에 일어날 발뒤꿈치 닿기를 준비하기 위해 외측으로 회전한다.The hip and femur movements associated with the gait are associated with the knee joint. At the heel contact point, the knee joint is in a relative external rotational position of 2-3 degrees. Since the internal rotation of the tibia is greater than the femur throughout the standing phase, the knee joint gradually turns inward. By the end of the toe release, the knee joint is about 5 degrees of relative internal rotation. During the swing phase, the knee joint rotates outward to prepare for the next heel contact.
족부에서의 체중이동과 하지의 운동을 살펴보면, 도 6에서와 같이 발뒤꿈치 닿기 시점에 발뒤꿈치에 걸리는 체중은 바깥쪽 면을 따라 앞쪽으로 이동하게 된다. 해당 구간은 발뒤꿈치 닿기 시점(Initial Contact)부터 입각기 중기(Mid stance)까지이며, 체중의 후방에서 전방으로 이동하는 시기이고, 이는 발목, 무릎, 고관절에서 전,후방(굴곡,신전) 운동(도 10 참조)을 발생시킨다. Looking at the movement of the weight and lower limbs in the foot, as shown in Figure 6 the weight of the heel at the point of heel contact is moved forward along the outer surface. The period is from the initial contact of the heel to the mid stance, the period of movement from the back to the front of the body, which is the anterior, posterior (flexion, extension) exercise (ankle, knee, hip) 10).
그 다음 발바닥의 바깥쪽에서 안쪽으로 체중이 이동하게 되는데, 해당 구간은 입각기 중기(Mid stance)에서 입각기 말기(Terminal Stance)까지이며, 골반에서는 반대쪽 골반으로의 체중이동과 골반의 회전, 골반의 회전과 상반되는 몸통의 회전이 일어나는 시기이며, 이는 발목(Pronation), 무릎 내전(Adduction + Internal rotation), 고관절의 내회전과 신전(Internal rotation + Extention), 무명골의 전방회전(Anterior rotation)의 운동으로 인해 결과적으로 대퇴골은 내회전 (Internal rotation)과 신전 (Extention) 그리고 내전 (Adduction )운동을 동시에 발생시킨다.The weight then moves from the outside of the sole to the inside, from the mid stance to the end of the stance, from the pelvis to the opposite pelvis, to the pelvic rotation, to the pelvic rotation. This is the time of rotation of the torso contrary to the rotation, which is the movement of ankle (Pronation), knee abduction (Adduction + Internal rotation), hip rotation and extension (Internal rotation + Extention), anterior rotation (anterior rotation) As a result, the femur causes simultaneous internal rotation, extension, and adduction.
마지막으로 발바닥의 안쪽에서 엄지발가락으로 체중이 이동하는 구간은 추진력(Propulsive phase)을 얻는 단계로서, 다시 고관절과 무릎관절, 발목관절의 전, 후방(굴곡,신장)운동과 고관절과 대퇴골의 내회전 운동(Internal rotation)을 동반한다.Lastly, the section of weight movement from the inside of the sole to the big toe is the stage of obtaining a propulsive phase, which is the forward and backward movement of the hip, knee, and ankle joints, and the internal rotation of the hip and femur. Accompanied by internal rotation.
이와 같이 보행에 따른 동적인 족저 압력 변화와 그에 따른 발목, 무릎, 대퇴골, 고관절 및 골반까지의 연관성만 보더라도 상호 높은 상관성을 가지는 것을 알 수 있으며, 신체 부정렬 증후군 진단 시 이러한 상관성을 고려해야 함을 알 수 있다. 특히, 특정 부위에 문제가 발생할 경우 상관적으로 특별한 문제가 연동하여 발생하는 관계성에 대한 의학적 데이터를 통해 특정 부위의 문제를 확인하면 상관성이 있는 다른 부위의 문제점을 동적 정보 분석을 통해 확인할 필요가 있다.The correlation between the dynamic plantar pressure changes and the ankle, knee, femur, hip, and pelvis according to the gait can be found to be highly correlated. Can be. In particular, when a problem occurs at a specific site, when the problem of a specific site is identified through medical data on the relationship generated by linking a particular problem, it is necessary to confirm the problem at the other site having correlation through dynamic information analysis.
본 발명 실시예의 경우 3D 센서에 비해 상대적으로 신뢰성이 높은 족저 압력 센서를 통해 얻은 정보를 기준으로 족부 문제를 먼저 파악한 후 연관된 상지 움직임을 분석하는 방식을 이용할 수 있다. In the exemplary embodiment of the present invention, the foot problem may be first identified based on information obtained through the plantar pressure sensor, which is relatively more reliable than the 3D sensor, and then the associated upper limb movement may be analyzed.
족부의 아치(Foot arch)는 중력에 저항하는 힘을 가지고 있으며 완충작용을 한다. 또한, 걷고 뛸 때 추진력을 발생시키며, 좌우아치의 균형은 직립관절의 정렬과 바른 자세를 형성한다. 발의 내측 아치(Medial longitudinal arch)는 발 아치의 중심이 되는 중요한 구조이고 앞에서부터 뒤로 제1중족골, 내측 쐐기골(Medial cuneiform), 발배골(Navicular), 거골(Talus), 종골(Calcaneus) 등 5개의 뼈로 구성되어 있다. 발의 외측 아치(lateral longitudinal arch)는 제 5중족골(5th Metatarsal), 입방골(Cuboid), 종골 (Calcaneus) 등의 3개의 뼈가 아치를 구성한다. 발의 횡아치(transverse arch)는 5개의 중족골(1th- 5th Metatarsal)에 의해 구성되며, 중족골(Metatarsal)들은 서로 접촉하여 관절을 구성하는 것이 아니라 중족골들의 사이에 골간근(Interossei)이 끼어 있는 일종의 가상적인 아치라고 할 수 있다. The foot arch has a force against gravity and cushions it. In addition, it generates a driving force when walking and running, the balance of the left and right arch forms an upright joint alignment and a correct posture. Medial longitudinal arch is an important structure that is the center of the foot arch, and from front to back, the first metatarsals, medial cuneiform, navicular, talus, calcaneus, etc. Consists of dog bones. In the lateral longitudinal arch of the foot, three bones, such as a 5th metatarsal, a cubic and a calcanus, constitute an arch. The transverse arch of the foot is composed of five metatarsal bones, and the metatarsal bones do not come into contact with each other to form joints, but rather a kind of virtual interstitial muscle between the metatarsal bones. It can be called an arch.
이러한 발의 내측 아치가 높아진 것을 요족(Pes Cavus)이라 하고, 내측 아치가 낮아진 것을 평발(Pes planus, Flat foot)이라고 한다. 이러한 발 아치의 변형은 골반과 무릎 관절의 영향을 주고 신체의 중심선(Center and line of gravity)을 이동시켜 신체 부정렬 증후군을 유발하게 된다.The higher inner arch of the foot is called Pes Cavus, and the lower inner arch is called Pes planus (Flat foot). This deformation of the arch of the foot affects the pelvis and knee joints and shifts the center and line of gravity of the body, leading to body disorder syndrome.
이러한 족부 문제들 중 평발을 예로 들어 설명한다. For example, flatfoot is one of these foot problems.
도 8은 본 발명의 실시예에서 구분 가능한 평발의 종류와 특징을 설명하기 위한 개념도로서, 도시된 바와 같이 평발의 대표적인 3가지 종류의 특징을 보인 것이다. FIG. 8 is a conceptual view illustrating the types and features of flat feet that can be distinguished in an embodiment of the present invention, and shows three types of typical flat feet as shown.
전족부 내반(Forefoot varus)은 엄지발가락이 5번째 발가락보다 높아진 상태를 말한다. 열린사슬(Open kinetic chain & Uncompensated)에서 관찰되는 전족부 내반은 체중을 지지하는 닫힌사슬(Closed kinetic chain & compensated)에서 발의 외측면이 주로 닿기 때문에 보행 시 앞으로 나가는 추진력이 떨어진다.Forefoot varus is a condition in which the big toe is higher than the fifth toe. The forefoot varus, which is observed in the open kinetic chain & uncompensated, is primarily driven by the lateral side of the foot in the closed kinetic chain & compensated, which reduces the forward thrust when walking.
또한, 이를 보상하기 위해서 거골하관절(Subtalar joint)은 과도하게 회내(Pronation)되고, 족근골간관절(Midtarsal joint)는 편평발(Foot-flat position)을 취하게 되어 평발이 된다. 도시된 바와 같이 체중을 지지하지 않은 경우(상)와 체중을 지지하면 안쪽으로 무너지는 모습(하)을 볼 수 있다.In addition, in order to compensate for this, the subtalar joint is excessively pronation, and the metatarsal joint is flattened by taking a foot-flat position. As shown, if you do not support the weight (up) and if you support the weight can be seen inward (down).
즉, 동적 압력 분석부(137)를 통해서 체중을 지지하는 경우(하) 전반적으로 발의 전,내측의 높아진 압력 패턴을 통해 평발이라는 것을 알 수 있으며, 보행시 엄지발가락이 지면을 밀어 추진력을 내는 구간(propulsive phase) 즉, 전유각기에서 발의 전,내측 부분의 낮은 압력을 확인할 수 있다.In other words, when supporting the weight through the dynamic pressure analysis unit 137 (bottom), it can be seen that the foot is flat foot through the increased pressure pattern of the front and the inside of the foot as a whole. (propulsive phase), that is, the low pressure of the front and the inner part of the foot can be seen in the full pass.
또한, 그 종류를 확인하기 위하여 동적 3D 정보 분석부(138)를 통해 체중을 지지하지 않을 경우와 체중을 지지하는 경우의 족부 상태와 체중을 지지하는 경우의 발목관절의 전,후면과 내,외측 각도를 통해 확인할 수 있으며 좌우 체중이동의 불균형과 단하지지지기의 신장의 높이의 차이, 대퇴골의 내회전의 증가, Q-angle의 증가, 경골의 비틀림 등으로 전족부 내반을 파악할 수 있다.In addition, in order to check the type, the front, back, inside, and outside of the ankle joint in the case of not supporting the weight and the foot state when supporting the weight and the weight through the dynamic 3D information analysis unit 138 The angle can be checked and the forefoot varus can be identified by the left and right body weight imbalance and the difference in the height of the ankle support, the increase of the internal rotation of the femur, the increase of the Q-angle, and the twist of the tibia.
전족부 외반(Forefoot valgus)은 5번째 발가락이 엄지발가락보다 위로 올라가 형태를 의미하며, 전족부 내반과 반대의 모습을 하고 있다. 이러한 이유로 전족부 외반은 도시된 바와 같이 체중을 지지하지 않은 경우(상)와 체중을 지지하면 반대방향인 바깥쪽으로 무너지는 모습(하)을 볼 수 있다.Forefoot valgus refers to the fifth toe rising above the big toe, the opposite of the forefoot valgus. For this reason, the forefoot valgus can be seen as if it does not support the weight as shown (upper) and if it supports the weight and collapses outward in the opposite direction (lower).
이 경우 역시 동적 압력 분석부(137)를 통해서 체중을 지지하는 경우 전반적으로 발의 전,외측의 높아진 압력을 확인할 수 있으며 이로 인한 보행시 엄지발가락이 지면을 밀어 추진력을 내는 구간(propulsive phase) 즉, 전유각기에서 발의 전,외측 부분의 높아진 압력을 확인할 수 있다.In this case, when the weight is supported through the dynamic pressure analyzer 137, the overall pressure of the front and the outside of the foot can be confirmed, and thus, when the big toe is walking, the driving force (propulsive phase) is pushed to the ground. You can see the increased pressure on the front and the outer part of the foot in the engraver.
또한, 동적 3D 정보 분석부(138)를 통해 체중을 지지하지 않을 경우와 체중을 지지하는 경우의 족부 상태와 체중을 지지하는 경우의 발목관절의 전,후면과 내,외측각도를 통해 확인할 수 있으며, 좌우 체중이동의 불균형과 단하지지지기의 신장의 높이의 차이, 낮아진 추진력으로 인한 반대쪽으로의 체중이동이 감소된 것을 통해 전족부 외반을 파악할 수 있다. In addition, the dynamic 3D information analysis unit 138 can be confirmed through the front, rear and internal and lateral angles of the ankle joint when the weight is not supported and the foot state when supporting the weight and when supporting the weight. In addition, the forefoot valgus can be identified by the decrease in weight shift to the opposite side due to the imbalance between the left and right weight shifts, the difference in the height of the foot support, and the reduced propulsion.
후족부 내반 (Rearfoot varus)은 발의 뒷부분의 종골(Calcaneus)이 정중선(Midline)쪽으로 내번(Inversion)된 것을 말한다. 이 변형의 반응으로 체중 지지시 거골하 관절은 회내(Subtalar joint pronation)를 통해 보상하여 입각기 동안 전족(Forefoot)부의 내측면이 지면과 많이 접촉하게 만든다. 도시된 바와 같이 체중을 지지하지 않은 모습(상), 체중을 지지하면 안쪽으로 무너지는 모습을 보인다(하).Rearfoot varus is the inversion of the calcaneus at the back of the foot toward the midline. In response to this deformation, the subtalar joint is compensated through the subtalar joint pronation during weight support, causing the inner surface of the forefoot to make much contact with the ground during the standing phase. As shown in the figure does not support the weight (up), when supporting the weight is shown to collapse inward (bottom).
이 경우 역시 동적 압력 분석부(137)를 통해서 체중을 지지하는 경우 전반적으로 발의 후,내측의 높아진 압력을 확인할 수 있으며 이로 인한 보행 시 뒤꿈치 닿기(Heel contact)에서 뒤꿈치 내측에 압력이 높아진 것을 확인할 수 있으며, 내측 종아치의 붕괴로 입각기 시간의 증가를 확인할 수 있다. In this case, when supporting the weight through the dynamic pressure analysis unit 137, the overall pressure after the foot can be confirmed, and thus the pressure on the inner side of the heel (Heel contact) can be confirmed. In addition, the increase in the standing time can be confirmed by the collapse of the medial calf.
또한, 동적 3D 정보 분석부(138)를 통해 체중을 지지하지 않을 경우와 체중을 지지하는 경우의 족부 상태와 체중을 지지하는 경우의 발목관절의 전,후면과 내,외측각도를 통해 확인할 수 있으며, 좌우 체중이동의 불균형과 단하지지지기의 신장의 높이 차이, 거골하관절(subtalar joint)의 회내(pronation)로 인한 내측 종아치의 낮아짐과 경골의 수직각도의 변형 및 발의 외전각도 등을 통해서 후족부 내반을 파악할 수 있다.In addition, the dynamic 3D information analysis unit 138 can be confirmed through the front, rear and internal and lateral angles of the ankle joint when the weight is not supported and the foot state when supporting the weight and when supporting the weight. After the imbalance of the left and right body weight shift and the height difference of the ankle support, the lower medial calf due to the pronation of the subtalar joint, the vertical angle of the tibia and the abduction angle of the foot Identify the foot varus.
이와 같이 동적 압력 변화 분석부(137)를 통해서 평발을 파악한 경우에 있어, 그 종류와 원인에 대한 세부적인 진단이 필요하며, 이를 시간 동기된 동적 3D 정보 분석부(138)를 통해 파악할 수 있다.In this case, when the flat foot is detected through the dynamic pressure change analyzer 137, detailed diagnosis of the type and the cause is required, and the time-synchronized dynamic 3D information analyzer 138 may be used to identify the flatfoot.
한편, 동적 압력 변화 분석부(137)를 통해 팔자걸음(Toe-out)을 검출하는 경우, 그 원인은 평발이나 요족과 같은 발의 문제일 수 있으며, 경골의 비틀림, 무릎관절의 회전성 변화, 고관절 외회전근의 단축, 대퇴골의 과도한 전경, 비정상적 Q-각도 등이 원인일 수 있다.On the other hand, when detecting the toe-out through the dynamic pressure change analysis unit 137, the cause may be a problem of the foot, such as flat foot or a forearm, twist of the tibia, rotation of the knee joint, hip joint Shortening of the rotator cuff, excessive foreground of the femur, abnormal Q-angle, etc. may be the cause.
동적 압력 변화 분석부(137)를 통해서 앞서 설명한 평발 여부를 확인할 수 있고, 요족(Supinated foot) 여부를 확인할 수 있다. 요족의 특징은 내측 종아치(Medial longitudinal arch)가 비정상적으로 높아진 경우이다. 발의 후족부터 내번(Inversion)되기 때문에 전족부터 그에 대한 보상작용으로 외번(Eversion)되며 발가락은 갈퀴발가락(Claw toe)이 된다. Through the dynamic pressure change analyzer 137, it is possible to check whether the flat foot is described above, and whether or not the supinated foot is present. A characteristic feature of the foot is the abnormally high medial longitudinal arch. Since the instep of the foot of the foot (Inversion) from the forefoot to compensate for it (Eversion) and the toe becomes a claw toe (Claw toe).
한편, 그 외의 경골 비틀림, 무릎관절의 회전성 변화, 고관절 외회전근의 단축, 대퇴골의 과도한 전경, 비정상적 Q-각도에 대해서는 3D 분석부(138)를 통해서 확인할 수 있다. 예컨대, 단순히 팔자걸음이 진단된다거나, 평발이 진단된다는 것이 아닌, 전족부 외반에 의한 팔자걸음이며, 상관 부정렬로 무릎관절 회전성 변화가 발견되었다는 좀 더 정확한 진단이 가능하게 된다. On the other hand, other tibial torsion, rotational change of the knee joint, shortening of the external rotator muscle of the hip, excessive foreground of the femur, abnormal Q-angle can be confirmed through the 3D analysis unit 138. For example, it is not simply a diagnosis of a limb or a flat foot, but rather a limb by the forefoot valgus and a more accurate diagnosis of a change in knee joint rotation was found due to correlation misalignment.
경골의 비틀림(Tibia torsion)은 내측상과(Medial malleolus)와 외측상과(Lareral malleolus)를 연결한 경골 연점축(transmalleolar axis)이 20도 이상 회전한 경우이며, 이러한 경골(Tibia)의 비틀림을 팔자걸음의 원인이라고 판단할 수 있다.Tibia torsion is when the transmalleolar axis connecting medial malleolus and lateral malleolus is rotated by more than 20 degrees. It can be judged to be the cause of the steps.
무릎관절의 회전성 변화는 대퇴경골의 회전성변화 (Tibiofemoral rotation, TFR)라고 한다. 하지의 움직임에서 대퇴골(Femur)과 경골 (Tibia)은 무릎관절을 이루며 동시에 대퇴골(Femur)의 문제를 경골(Tibia)로 전이시키거나 경골의 문제를 대퇴골 (Femur)로 전이시키는 관계에 있다.The rotational change of the knee joint is called the tibiofemoral rotation (TFR). In the movement of the lower leg, femur and tibia form the knee joint, and at the same time, the femur (Femur) is transferred to the tibia (Tibia) or the problem of the tibia to the femur (Femur).
닫힌 사슬운동 (Closedkinetic chain)인지 열린 사슬운동 (Open kinetic chain)인지에 따라서 대퇴골에 대한 경골(Tabial-on-femoral), 경골에 대한 대퇴골(Femoral-on-tibial)의 움직임이 결정되고, 어떤 면에서 움직이느냐에 따라 움직임의 종류가 결정된다. 경골 대퇴관절의 움직임은 시상면에서의 굴곡, 신전 움직임과 수평면에서의 회전의 움직임이 발생한다.The closed-kinetic or open kinetic chain determines the movement of the tibia-on-femoral and femoral-on-tibial to the femur, and in what way. The type of movement depends on whether you are moving at. Tibial femoral movements include flexion in the sagittal plane, extension movements, and rotation in the horizontal plane.
대퇴근막장근(Tensor fascia lata)은 고관절과 무릎 관절을 지나가는 2관절 근육으로, 중둔근의 약화로 대퇴근막장근이 과사용 되면 대퇴골은 내회전(Internal rotation)시키고 경골을 외회전(External rotation) 시켜서 팔자걸음이 발생하게 된다. 이러한 대퇴경골 회전성 움직임이 경골의 비틀림과는 다른 것은 경골의 비틀림은 경골 자체의 골성변화이고, TFR은 비틀림이 무릎관절에서 일어난다. 이러한 움직임은 골반과 고관절, 무릎관절에 회전성 변형을 주어 복합적인 문제를 야기한다. Tensor fascia lata is a two-joint muscle that passes through the hip and knee joints.If the femoral root muscle is overused due to weakening of the gluteus medullus, the femur is rotated internally and the tibia rotates externally. Done. The femoral tibial rotation is different from the tibial torsion, the tibial torsion is the osteogenic change of the tibia itself, and the TFR torsion occurs in the knee joint. This movement causes rotational deformation of the pelvis, hip joints and knee joints, causing complex problems.
따라서, 팔자걸음이 있는 경우 경골 비틀림은 아니며 무릎관절의 회전성 변화가 있다면 중둔근의 약화에 따른 문제일 수 있다고 진단하고 해당 중둔근 강화를 위한 운동 처방을 할 수도 있다.Therefore, if there is a limb walking, it is not tibial torsion, and if there is a change in rotation of the knee joint, it may be a problem due to weakening of the gluteus maximus and exercise prescription for strengthening the gluteus maximus may be prescribed.
고관절 외회전근(External rotator)의 단축은 이상근, 상쌍자근, 하쌍자근, 내폐쇄근, 외폐쇄근, 대퇴방형근을 포함하는 고관절 외회전근이 긴장하거나 단축되는 경우이며, 이 때 고관절 높이에서 팔자걸음이 나타나게 된다.Shortening of the external rotator is a case in which the external rotator muscles, including the ideal, upper, lower bilateral, internal obstructive, external obstructive, and femoral muscles, are tense or shortened. Will appear.
대퇴골의 과도한 전경(Femoral retrotorsion)은 고관절이 후념된 것을 의미하는데, 대퇴골 염전각(torsion angle)은 전방으로 15도 기울어진 것이 정상이나 고관절이 후념이 된다면 대퇴골두에 있는 점이 관골구에 있는 점보다 뒤에 오게 되어 정상적인 고관절의 움직임이 일어나지 않으며 이에 대퇴골이 외회전하면서 대퇴골 후념을 보상하게 되어 팔자 걸음이 나타나게 된다.Femoral retrotorsion of the femur means that the hip is deteriorated. The torsion angle of the femur is tilted 15 degrees forward, but if the hip is deceased, the point on the femur is behind the point in the tibia. The normal hip movement does not occur and the femur rotates outward to compensate for the femoral remorse, resulting in a step of the arm.
Q-각도는 슬개골(Patella)에 대해 대퇴사두근(Quadriceps femoris)의 가쪽 당김을 알아볼 수 있는 상대적 지표로서, 도 9에 도시된 바와 같이 골반의 전상장골극(ASIS)에서 슬개골(Patella)의 중심선으로 일직선을 그리고 슬개골의 중심선에서 경골조면(Tibial tubercle)까지의 일직선을 그린 후 그 사이의 각도를 측정한 것이다. 정상적인 각도는 10~15도이며, 고관절의 내전(Hip adduction), 고관절의 내회전(Hip internal rotation), 발의 과 회내(Foot over pronation)가 있는 경우 그 각도가 증가하게 된다. The Q-angle is a relative indicator of the patellar pullover of the quadriceps (Quadriceps femoris) against the patella, and as the centerline of the patella in the ASIS of the pelvis, as shown in FIG. 9. After drawing a straight line and a straight line from the centerline of the patella to the tibial tubercle, the angle between them was measured. The normal angle is 10-15 degrees, and the angle increases with hip adduction, hip internal rotation, and foot over pronation.
이와 같이 족저 압력만으로 그 구체적인 원인을 알 수 없는 이상이 측정될 경우 해당 이상과 상관성이 있는 부위의 이상 여부를 3D 정보를 통해서 확인할 수 있고, 이렇게 얻어진 3D 정보를 통해 상관성이 있는 부위에 대한 정보를 확인하면 그에 대하여 상관성이 있는 다른 부분에 대한 정보들도 확인할 수 있다. 또한, 3D 정보를 통해서 판단되는 여러 관련 문제들에 대해서 다시 추가적인 확인이 필요한 경우 족저 압력 변화 패턴을 통해 3D 정보를 보충하여 신체 부정렬 증후군의 상태와 원인에 대해 파악할 수 있다. In this way, when abnormalities are not known whose specific cause is unknown only by plantar pressure, it is possible to confirm whether or not the abnormalities are related to the abnormalities through 3D information, and the information about the correlated sites is obtained through the 3D information thus obtained. If you check, you can see information about other parts that are relevant. In addition, when additional confirmation is required for various related problems determined through 3D information, 3D information may be supplemented through plantar pressure change patterns to identify the state and cause of physical malformation syndrome.
따라서, 동적 3D 정보 분석부(138)는 보행에 따른 신체질량의 상하, 좌우 이동의 움직임, 몸통과 팔의 동작 및 그에 따른 어깨와 팔의 움직임, 골반 동작, 고관절 동작, 무릎관절 동작, 발목 관절 동작을 측정하는데, 도 10에 도시된 바와 같은 세분된 보행 단계에서의 관절 동작 특성 패턴을 기준으로 파악하여 보정하거나, 이상 여부를 판단할 수 있다.Accordingly, the dynamic 3D information analysis unit 138 moves up and down, left and right movements of the body mass, movements of the torso and arms, and shoulder and arm movements, pelvic movements, hip movements, knee joint movements, and ankle joints. In order to measure the motion, it is possible to determine and correct or determine an abnormality based on the joint motion characteristic pattern in the subdivided walking step as shown in FIG. 10.
도 2에 도시된 부정렬 증후군 진단부(135)는 앞서 설명했던 동적 압력 변화 분석부(137)나 동적 3D 정보 분석부(138) 중 적어도 하나의 분석 결과에 따라 보행 단계를 세분하는 보행 단계 분석부(133)의 세분된 보행 단계 정보를 기준으로 동적 압력 변화 분석부(137)와 동적 3D 정보 분석부(138) 각각 혹은 연동성에 기반한 분석 결과 조합을 요청 및 수신한 후 신체 부정렬 부위들과 각 부위의 연관성을 파악하여 신체 부정렬 증후군에 대한 진단 정보를 생성한다. The misalignment syndrome diagnosis unit 135 illustrated in FIG. 2 analyzes a walking step that subdivides a walking step according to an analysis result of at least one of the dynamic pressure change analyzer 137 and the dynamic 3D information analyzer 138 described above. After requesting and receiving each of the dynamic pressure change analysis unit 137 and the dynamic 3D information analysis unit 138 or a combination of analysis results based on interoperability based on the detailed walking step information of the unit 133, Identify the association of each site to generate diagnostic information about body malalignment syndrome.
이를 위해서 의학적으로 연구된 골격과 관절 및 근육의 상관성 정보를 활용할 수 있으며, 진단 정보를 근거로 운동 처방 등을 제시할 수도 있다.For this purpose, medically studied skeletal, joint and muscle correlation information can be used, and exercise prescription can be presented based on the diagnostic information.
이러한 의학적으로 연구된 골격과 관절 및 근육의 상관성 정보의 예시로서 평발에 관한 상관성 정보를 설명한다. Correlation information on flatfoot will be described as an example of such medically studied skeletal, joint and muscle correlation information.
평발은 대퇴근막장근(ITband syndrome)의 과다한 거골하관절 회내(subtalar joint pronation)가 중요한 병리학적인 요소로 작용하게 된다. 경골 (tibia)이 과도하게 내회전(Internal rotation)된 것은 대퇴근막장근 말단(Distal iliotibial band)을 외측대퇴상과(lateral femoral epicondyle) 위로 끌어당겨서 대퇴근막장근 마찰(Iliotibial band friction)을 발생시키고, 무릎관절에서의 Q-angle을 증가시킨다.Flat foot is an important pathological factor due to excessive subtalar joint pronation of the ITband syndrome. Excessive internal rotation of the tibia pulls the distal iliotibial band over the lateral femoral epicondyle, creating an Iliotibial band friction, Increase the Q-angle at the joint.
회내(Pronation)된 발의 경골은 내회전, 대퇴골은 외회전의 모습을 보이고 골반은 전방경사(Pelvic anterior tilt), Q-angle은 증가한다. 회외(Supination)된 발의 경골은 외회전, 대퇴골은 내회전의 모습을 보이고 골반은 후방경사(Pelvic posterior tilt), Q-angle은 감소한다. 따라서, 이러한 특징들을 종합하여 발의 회내나 회외를 진단하거나, 발의 회내와 회외를 측정하면 후속적으로 다른 특징들이 발생하는 지 확인할 수 있다.The tibia of the pronation foot shows inward rotation, the femur shows outward rotation, and the pelvis increases in the anterior tilt and Q-angle. The tibia of the supped foot shows external rotation, the femur shows internal rotation, and the pelvis decreases the posterior tilt and Q-angle. Therefore, by synthesizing these features in or out of the foot or by measuring the inside and out of the foot can be confirmed whether the other features are generated subsequently.
평발 검출 시 중요한 진단 대상은 대퇴골(Femur)이 내회전 (Internal rotation) 하면서 골반에 미치는 영향이다. 대퇴골(Femur)이 안쪽으로 회전하면 대퇴골두(Femur head)가 뒤쪽으로 이동하고 이로 인해서 골반 전체가 앞쪽으로 기울어지게 된다. 이는 연속적으로 몸통의 회전성 변형을 일으킨다.An important diagnostic target for flatfoot detection is the effect of femur on the pelvis with internal rotation. When the femur rotates inward, the femur head moves backwards, which causes the entire pelvis to tilt forward. This in turn causes rotational deformation of the body.
결국, 발의 문제로 인하여 경골은 내회전되고 무릎관절(Tibiofemoral joint) 은 굴곡(Flexion)되며, 대퇴골은 내회전 되고 고관절은 굴곡된다. 이로써 골반은 전방경사되어 요추전만은 과도해진다. 골반이 전방경사 되면서 내려온 골반으로 인해 척추측만이 만들어지고 이를 보상하기 위해 위쪽에서는 다른 방향의 측만을 형성한다. 더하여, 부하의 왜곡된 패턴이 유발하는 통증 및 스트레스가 자율신경에도 영향을 주어 비뇨생식기계, 위장관계 등에 기능장애가 발생할 수도 있으며, 부정렬은 근골격계 기능장애를 보이기도 한다.Eventually, due to foot problems, the tibia rotates internally, the tibiofemoral joint flexes, the femur rotates internally, and the hip joint flexes. This causes the pelvis to tilt forward and the lumbar spine is excessive. As the pelvis descends forward, only the spine side is created by the pelvis, and the upper side forms only the side in the other direction. In addition, the pain and stress caused by the distorted pattern of the load affects the autonomic nervous system, which may cause dysfunction of the genitourinary system and gastrointestinal tract, and misalignment may also cause musculoskeletal dysfunction.
이로써 전족부 내번, 외번, 후족부 내번(Forefoot varus, Forefoot valgus, Rearfoot Varus)과 같은 평발은 발 위쪽의 모든 문제를 유발할 수 있다. This can cause flat feet, such as forefoot varnish, forefoot, and forefoot varus (Forefoot varus, Forefoot valgus, Rearfoot Varus), which can cause all problems above the feet.
따라서, 부정렬 증후군 진단부(135)는 이러한 상관도 정보를 활용하여 족부의 이상이 검출되면 그 상부의 문제들을 보행 단계별 인체의 3D 정보를 통해 확인하면서 문제점을 진단한다.Accordingly, when the malformation syndrome diagnosis unit 135 detects an abnormality of the foot using the correlation information, the problem of the upper part is checked through 3D information of the human body in each step of the diagnosis and diagnoses the problem.
도 11은 본 발명의 실시예에 따른 신체 부정렬 증후군 진단 장치의 신체 부정렬 증후군 진단 과정을 나타낸 순서도로서, 도시된 바와 같이 먼저 인체의 움직임을 진단할 공간과 3D 센서가 측정하는 가상의 공간을 매핑하여 인체 움직임을 정량화하는 초기화 단계를 통해 측정을 준비한다.FIG. 11 is a flowchart illustrating a process of diagnosing physical malformation syndrome in the apparatus for diagnosing physical malformation syndrome according to an embodiment of the present invention. As shown in FIG. 11, FIG. 11 is a space for first diagnosing a human body movement and a virtual space measured by a 3D sensor. The measurement is prepared through an initialization step that maps and quantifies human movement.
측정이 시작되는 경우 신체 부정렬 증후군 진단 장치는 족저 압력 센서(실시예에서는 발판)를 통해 적어도 2스탭 이상의 인체 보행에 따른 인체의 족저 압력과 3D 센서를 통해 인체 움직임에 대한 3D 정보를 산출하여 동기화된 시간 정보에 따라 내부 측정 정보 저장부에 저장한다.When the measurement is started, the body misalignment syndrome diagnosis apparatus calculates and synchronizes the 3D information on the movement of the human body through the 3D sensor and the plantar pressure of the human body following at least two steps of human body walking through the plantar pressure sensor (in the embodiment, the scaffold). It is stored in the internal measurement information storage unit according to the time information.
신체 부정렬 증후군 진단 장치는 내부 측정 정보 저장부에 저장된 족저 압력 변화에 대한 분석이나 3D 정보의 변화에 대한 분석 중 적어도 하나를 통해 보행 단계를 세분한다.The body misalignment syndrome diagnosis apparatus subdivides the gait step through at least one of analysis of plantar pressure changes stored in the internal measurement information storage unit or analysis of changes in 3D information.
필요에 따라 신체 부정렬 증후군 진단 장치는 보행 단계별 족저 압력 변화 패턴에 대응되는 인체 움직임에 맞추어 3D 정보를 보상할 수 있으며, 해당 보상 정보를 내부 측정 정보 저장부에 보상된 움직임의 발생 시간에 맞추어 저장할 수 있다.If necessary, the body misalignment syndrome diagnosis device may compensate 3D information according to the human body movement corresponding to the plantar pressure change pattern for each step of walking, and store the compensation information in accordance with the occurrence time of the compensated movement in the internal measurement information storage unit. Can be.
신체 부정렬 증후군 진단 장치는 내부 측정 정보 저장부에 저장된 보행 단계별 족저 압력과 3D 정보의 변화를 동기된 시간에 맞추어 각각 또는 연동성에 기반하여 조합하여 확인하면서 신체 부정렬 부위들과 각 부위의 연관성을 분석한다. 이 경우 앞서 설명했던 바와 같이 이상 발생의 상관성을 고려하여 부정렬 발생의 원인을 세부적으로 파악하는 것이 바람직하다. The body misalignment syndrome diagnosis apparatus checks the association between the body misalignment parts and each part while checking the foot pressure and the 3D information change according to the walking time stored in the internal measurement information storage unit at the same time or in combination based on the linkage. Analyze In this case, as described above, it is preferable to determine the cause of misalignment in detail in consideration of the correlation of abnormal occurrences.
이러한 분석이 완료되면 신체 부정렬 증후군 진단 장치는 분석된 신체 부정렬 부위들과 각 부위의 연관성을 기반으로 부정렬 종류와 원인에 대한 진단을 제공할 수 있다. When such an analysis is completed, the body misalignment syndrome diagnosis apparatus may provide a diagnosis of the type and cause of misalignment based on the correlation between the analyzed body misalignment parts and each part.
이상에서는 본 발명에 따른 바람직한 실시예들에 대하여 도시하고 또한 설명하였다. 그러나 본 발명은 상술한 실시예에 한정되지 아니하며, 특허 청구의 범위에서 첨부하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능할 것이다.In the above described and illustrated with respect to preferred embodiments according to the present invention. However, the present invention is not limited to the above-described embodiment, and various modifications can be made by those skilled in the art without departing from the gist of the present invention attached to the claims. .
*부호의 설명** Description of the sign *
100: 신체 부정렬 증후군 진단 장치 110: 족저 압력 센서100: body misalignment syndrome diagnostic device 110: plantar pressure sensor
120: 3D 센서 130: 보행 분석부 120: 3D sensor 130: gait analyzer
131: 압력 측정부 132: 3D 정보 생성부131: pressure measuring unit 132: 3D information generating unit
133: 보행 단계 분석부 134: 3D 정보 보상부133: gait step analysis unit 134: 3D information compensation unit
135: 부정렬 증후군 진단부 136: 측정 정보 저장부135: misalignment syndrome diagnosis unit 136: measurement information storage unit
137: 동적 압력 변화 분석부 138: 동적 3D 정보 분석부137: dynamic pressure change analysis unit 138: dynamic 3D information analysis unit
139: 제어부139: control unit

Claims (10)

  1. 적어도 2스탭 이상의 인체 보행에 따른 족저 압력을 측정하는 족저 압력 센서와; Plantar pressure sensor for measuring plantar pressure according to human walking at least two steps;
    보행에 따른 인체의 움직임 정보를 적어도 깊이 정보로 측정하는 3D 센서와; 3D sensor for measuring the movement information of the human body according to the walking at least as depth information;
    상기 족저 압력 센서의 측정값과 상기 3D 센서의 측정값을 인체에 대한 족저 압력과 인체 움직임에 대한 3D 정보로 변환하여 각각 동기된 시간에 따라 저장하고, 상기 저장된 족저 압력의 동적 변화와 3D 정보의 동적 변화를 토대로 보행 단계별 족저 상태와 그와 상관성을 가진 하지 이상의 상부 신체의 움직임 패턴을 연동 분석하여 부정렬 증후군을 진단하는 보행 분석부를 포함하는 족저 압력과 신체의 움직임 정보를 이용한 신체 부정렬 증후군 진단 장치.The measured value of the plantar pressure sensor and the measured value of the 3D sensor are converted into 3D information about plantar pressure and human movement for the human body and stored according to a synchronized time, respectively, and the dynamic change of the stored plantar pressure and 3D information Diagnosis of physical malformation syndrome using plantar pressure and body movement information, including a gait analyzer which diagnoses malalignment syndrome by interlockingly analyzing the plantar status of each step based on the dynamic change and the movement pattern of the upper body of the lower limb which has a correlation with it Device.
  2. 청구항 1에 있어서, 상기 보행 분석부는,The method of claim 1, wherein the gait analyzer,
    보행 단계별 족저 압력 변화 패턴에 대응되는 인체 움직임에 맞추어 상기 3D 센서의 측정값에 따른 인체 움직임 3D 정보를 보상하는 것을 특징으로 하는 족저 압력과 신체의 움직임 정보를 이용한 신체 부정렬 증후군 진단 장치.The apparatus for diagnosing physical disorder syndrome using plantar pressure and body motion information, comprising: compensating for human body motion 3D information according to the measured value of the 3D sensor according to a human body motion corresponding to a foot pressure change pattern during each step of walking.
  3. 청구항 1에 있어서, 상기 족저 압력 센서는,The method of claim 1, wherein the plantar pressure sensor,
    압력 센서들이 배치된 발판, 신발, 깔창, 트레드밀 중 적어도 하나인 것을 특징으로 하는 족저 압력과 신체의 움직임 정보를 이용한 신체 부정렬 증후군 진단 장치.Device for diagnosing physical disorder syndrome using plantar pressure and body motion information, characterized in that the pressure sensor is at least one of a footrest, shoes, insole, treadmill disposed.
  4. 청구항 1에 있어서, 상기 3D 센서는,The method according to claim 1, wherein the 3D sensor,
    스테레오 카메라, ToF 센서, 레이저 센서, 초음파 센서, 키넥트 센서 중 적어도 하나인 것을 특징으로 하는 족저 압력과 신체의 움직임 정보를 이용한 신체 부정렬 증후군 진단 장치.A device for diagnosing physical malformation syndrome using plantar pressure and body motion information, characterized in that at least one of a stereo camera, a ToF sensor, a laser sensor, an ultrasonic sensor, and a Kinect sensor.
  5. 청구항 1에 있어서, 상기 보행 분석부는,The method of claim 1, wherein the gait analyzer,
    족저 압력의 동적 변화를 통해 각 발의 보행 단계와, 보행 단계별 시간 정보, 단하지,양하지 지지기에 대한 시간 정보, 압력분포와 구획별 족저 압력의 시간 정보 중 적어도 하나를 획득하고, 족저 압력의 동적 변화에 동기된 3D 정보의 동적 변화를 통해 골반과 상,하지관절의 굴곡과 신전, 내전과 외전의 움직임 또는 회전, 경골의 회전, 몸통의 회전, 신체 질량의 좌우,상하 이동, 무릎의 Q각도, 무릎의 높이, 발의 높이를 포함하는 신체의 움직임 중 적어도 하나에 대한 정보를 연동 정보로서 획득하는 것을 특징으로 하는 족저 압력과 신체의 움직임 정보를 이용한 신체 부정렬 증후군 진단 장치.Dynamic change of plantar pressure obtains at least one of the walking step of each foot, the time information for each step of walking, the time information about the support of the lower limbs and the lower limbs, the pressure distribution and the time information of the plantar pressure by section, and the dynamic of plantar pressure Dynamic change of 3D information synchronized with change, flexion and extension of pelvis, upper and lower extremity joints, movement or rotation of adduction and abduction, tibia rotation, torso rotation, body mass left and right, up and down movement, Q angle of knee And body information including at least one of movement of the body including height of the knee and height of the foot as linkage information.
  6. 청구항 1에 있어서, 상기 보행 분석부는,The method of claim 1, wherein the gait analyzer,
    상기 족저 압력 센서의 측정값을 인체에 대한 족저 압력으로 변환하는 압력 측정부와; A pressure measuring unit converting the measured value of the plantar pressure sensor into plantar pressure on the human body;
    상기 3D 센서의 측정값을 인체 움직임에 대한 3D 정보로 변환하는 3D 정보 생성부와; 3D information generating unit for converting the measured value of the 3D sensor into 3D information about the human body movement;
    상기 압력 측정부와 상기 3D 정보 생성부의 변환 값을 동기된 시간에 맞추어 저장하는 측정 정보 저장부와; A measurement information storage unit for storing the converted values of the pressure measuring unit and the 3D information generating unit at a synchronized time;
    상기 측정 정보 저장부에 저장된 족저 압력을 시간의 흐름에 따라 동적으로 분석하는 동적 압력 변화 분석부와; A dynamic pressure change analyzer for dynamically analyzing plantar pressure stored in the measurement information storage unit over time;
    상기 측정 정보 저장부에 저장된 인체 움직임에 대한 3D 정보를 시간의 흐름에 따라 동적으로 분석하는 동적 3D 정보 분석부와; A dynamic 3D information analyzer configured to dynamically analyze 3D information of the human body motion stored in the measurement information storage unit over time;
    상기 동적 압력 변화 분석부나 상기 동적 3D 정보 분석부 중 적어도 하나의 분석 결과에 따라 보행 단계를 세분하는 보행 단계 분석부와; A gait step analyzer to subdivide a gait step according to an analysis result of at least one of the dynamic pressure change analyzer and the dynamic 3D information analyzer;
    상기 보행 단계 분석부의 세분된 보행 단계 정보를 기준으로 상기 동적 압력 변화 분석부와 상기 동적 3D 정보 분석부 각각 혹은 연동성에 기반한 분석 결과 조합을 요청 및 수신한 후 신체 부정렬 부위들과 각 부위의 연관성을 파악하여 신체 부정렬 증후군에 대한 진단 정보를 생성하는 부정렬 증후군 진단부를 포함하는 것을 특징으로 하는 족저 압력과 신체의 움직임 정보를 이용한 신체 부정렬 증후군 진단 장치.Correlation between body misalignment parts and each body after requesting and receiving a combination of analysis results based on interworking or each of the dynamic pressure change analyzer and the dynamic 3D information analyzer based on the granular walking step information of the gait step analyzer Device for diagnosing disorder of body disorder using plantar pressure and body motion information, characterized in that it comprises a misalignment syndrome diagnosis unit for generating diagnosis information for body misalignment syndrome.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 보행 단계 분석부에서 세분된 보행 단계의 대응되는 상기 동적 압력 변화 분석부의 족저 압력 변화 패턴 중 인체 움직임을 특정하는 시점이나 움직임 패턴에 대한 정보를 3D 정보를 보상하기 위한 정보로 생성하여 상기 3D 정보 생성부에 제공하는 3D 정보 보상부를 더 포함하는 것을 특징으로 하는 족저 압력과 신체의 움직임 정보를 이용한 신체 부정렬 증후군 진단 장치.The 3D information is generated by generating information about a time or movement pattern for identifying a human body movement of the plantar pressure change pattern of the corresponding dynamic pressure change analyzer of the gait step divided by the gait step analyzer as information for compensating for 3D information. The apparatus for diagnosing physical distress syndrome using plantar pressure and body motion information, further comprising a 3D information compensation unit provided to the generation unit.
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 압력 측정부, 상기 3D 정보 생성부, 상기 측정 정보 저장부, 상기 동적 압력 변화 분석부, 상기 동적 3D 정보 분석부, 상기 보행 단계 분석부, 상기 3D 정보 보상부 및 상기 부정렬 증후군 진단부 사이의 구성되어 상기 각 부 간의 정보 교환과 정보 요청을 중개하고 상기 부정렬 증후군 진단부의 진단 과정에 따라 각 부를 제어하는 제어부를 포함하는 것을 특징으로 하는 족저 압력과 신체의 움직임 정보를 이용한 신체 부정렬 증후군 진단 장치.Between the pressure measuring unit, the 3D information generation unit, the measurement information storage unit, the dynamic pressure change analysis unit, the dynamic 3D information analysis unit, the walking step analysis unit, the 3D information compensation unit and the misalignment syndrome diagnosis unit Physical malalignment syndrome using the plantar pressure and body movement information, characterized in that it comprises a control unit for mediating the information exchange and request for information between the respective parts and controls each part according to the diagnosis process of the misalignment syndrome diagnosis unit Diagnostic device.
  9. 족저 압력 센서와 3D 센서를 구비한 신체 부정렬 증후군 진단 장치에서 족저 압력과 족부 이상의 신체에서 발생하는 움직임 정보를 이용하여 신체 부정렬 증후군을 진단하는 방법으로서,A method of diagnosing physical malformation syndrome by using plantar pressure and movement information generated in the body of a foot or more in a device for diagnosing physical malformation syndrome having a plantar pressure sensor and a 3D sensor,
    인체의 움직임을 진단할 공간과 3D 센서가 측정하는 가상의 공간을 매핑하여 인체 움직임을 정량화하는 초기화 단계와;An initialization step of quantifying the movement of the human body by mapping a space for diagnosing movement of the human body and a virtual space measured by the 3D sensor;
    족저 압력 센서를 통해 적어도 2스탭 이상의 인체 보행에 따른 인체의 족저 압력과 상기 3D 센서를 통해 인체 움직임에 대한 3D 정보를 산출하여 동기화된 시간 정보에 따라 측정 정보 저장부에 저장하는 단계와;Calculating 3D information on the movement of the human body according to the walking of the human body by at least two steps or more through the plantar pressure sensor and the 3D sensor and storing the 3D information on the human body movement according to the synchronized time information;
    상기 측정 정보 저장부에 저장된 족저 압력의 압력분포와 그에 따른 족저 압력의 기 설정된 구획 별 시간의 정보에 대한 분석이나 3D 정보의 변화에 대한 분석 중 적어도 하나를 통해 보행 단계를 세분하는 단계와;Subdividing the walking step through at least one of analysis of pressure distribution of plantar pressure stored in the measurement information storage unit and accordingly analysis of information of preset time for each section of plantar pressure or change of 3D information;
    상기 측정 정보 저장부에 저장된 보행 단계별 족저 압력과 3D 정보의 변화를 동기된 시간에 맞추어 각각 또는 연동성에 기반하여 조합하여 확인하면서 신체 부정렬 부위들과 각 부위의 연관성을 분석하는 단계와;Analyzing the association of the body misalignment parts with each part while checking the foot pressure and the change of 3D information for each step stored in the measurement information storage unit at a synchronized time based on each or a combination thereof;
    분석된 신체 부정렬 부위들과 각 부위의 연관성을 기반으로 부정렬 종류와 원인에 대한 진단을 제공하는 단계를 포함하는 족저 압력과 신체의 움직임 정보를 이용한 신체 부정렬 증후군 진단 방법.A method of diagnosing physical disorder syndrome using plantar pressure and body motion information, comprising providing a diagnosis of the type and cause of the misalignment based on the analyzed physical misalignment regions and the association of each region.
  10. 청구항 9에 있어서,The method according to claim 9,
    보행 단계별 족저 압력 변화 패턴에 대응되는 인체 움직임에 맞추어 3D 정보를 보상하는 단계를 더 포함하는 것을 특징으로 하는 족저 압력과 신체의 움직임 정보를 이용한 신체 부정렬 증후군 진단 방법.Compensating 3D information according to the movement of the human body corresponding to the plantar pressure change pattern for each step of walking, wherein the body malformation syndrome diagnosis method using plantar pressure and body movement information.
PCT/KR2019/002739 2018-06-11 2019-03-08 Apparatus and method for diagnosing body malalignment syndrome by using plantar pressure and physical movement information WO2019240354A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0067045 2018-06-11
KR1020180067045A KR101902551B1 (en) 2018-06-11 2018-06-11 Malalignment syndrome diagnosis apparatus based on plantar pressure and body movement and method thereof

Publications (1)

Publication Number Publication Date
WO2019240354A1 true WO2019240354A1 (en) 2019-12-19

Family

ID=63721570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/002739 WO2019240354A1 (en) 2018-06-11 2019-03-08 Apparatus and method for diagnosing body malalignment syndrome by using plantar pressure and physical movement information

Country Status (2)

Country Link
KR (1) KR101902551B1 (en)
WO (1) WO2019240354A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112370049A (en) * 2020-11-16 2021-02-19 天津市环湖医院(天津市神经外科研究所、天津市脑系科中心医院) Freezing gait acquisition and analysis system and method based on multi-mode signal synchronization
CN112401834A (en) * 2020-10-19 2021-02-26 南方科技大学 Movement-obstructing disease diagnosis device
CN113017603A (en) * 2021-02-26 2021-06-25 刘辰然 Gait recognition device of foot bottom contact pressure sensor
CN115212518A (en) * 2021-04-15 2022-10-21 丰田自动车株式会社 Walking training system, control method thereof, and computer-readable storage medium
CN115428050A (en) * 2020-03-13 2022-12-02 欧特尼斯有限公司 Hybrid gait analysis device for fall prevention and fall prevention management system comprising same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102285632B1 (en) * 2019-01-03 2021-08-04 한국전자기술연구원 Health abnormality detection system and method using gait pattern
KR102285315B1 (en) * 2019-07-29 2021-08-04 (주)아이유웰 Foot pressure analyzer
KR102284779B1 (en) * 2019-07-29 2021-08-04 (주)아이유웰 Method for estmating walk pattern
CN110840459B (en) * 2019-11-19 2022-07-22 京东方科技集团股份有限公司 Human body balance ability obtaining method and system, computer equipment and medium
KR102175573B1 (en) * 2019-12-12 2020-11-09 한국전자기술연구원 pedestrian pattern recognition system based on multimodal sensor in the home environment and method the same
KR102298633B1 (en) * 2020-12-08 2021-09-07 김철준 A gait rehabilitation device for home usage and its method
KR102606355B1 (en) * 2020-12-23 2023-11-29 주식회사 싸이버메딕 Rehabilitation diagnosis training apparatus
KR102277292B1 (en) * 2020-12-24 2021-07-15 근로복지공단 Measuring device for walking state
CN112998694B (en) * 2021-02-03 2022-12-09 上海橙捷健康科技有限公司 Method and system for measuring angles of joints of lower limbs of human body
KR102336728B1 (en) * 2021-03-17 2021-12-08 주식회사 디지털휴먼랩 A system for analyzing gait
KR102529196B1 (en) * 2022-09-20 2023-05-04 솔티드 주식회사 Method for providing partial weight-bearing gait guide based on smart insole and System there of
KR102595805B1 (en) * 2023-05-19 2023-10-31 주식회사 피지오 Mat-based gait analysis system including pressure sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060106907A (en) * 2006-05-29 2006-10-12 경북대학교 산학협력단 Gait training system using motion analysis
KR20090109413A (en) * 2008-04-15 2009-10-20 김용보 Figure diagnosis system and the method thereof
KR20160137698A (en) * 2015-05-20 2016-12-01 주식회사 에이치비티 Rehabilitation analysis system using 3D sensor
KR20170019984A (en) * 2015-08-13 2017-02-22 주식회사 케이티 Apparatus and method for analyzing walking patterns

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101373628B1 (en) 2012-09-28 2014-03-12 주식회사 자세과학 Gait analysis apparatus
JP6660110B2 (en) 2015-07-23 2020-03-04 原田電子工業株式会社 Gait analysis method and gait analysis system
KR101746619B1 (en) 2016-04-19 2017-06-14 경희대학교 산학협력단 Apparatus for analysing gait and method for analysing gait using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060106907A (en) * 2006-05-29 2006-10-12 경북대학교 산학협력단 Gait training system using motion analysis
KR20090109413A (en) * 2008-04-15 2009-10-20 김용보 Figure diagnosis system and the method thereof
KR20160137698A (en) * 2015-05-20 2016-12-01 주식회사 에이치비티 Rehabilitation analysis system using 3D sensor
KR20170019984A (en) * 2015-08-13 2017-02-22 주식회사 케이티 Apparatus and method for analyzing walking patterns

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUNG JI-YOUNG: "Evaluation of the Effect of Location and Direction of the Scoliotic Curve on Postural Balance of Patients with Idiopathic Scoliosis", JOURNAL OF THE KOREA ACADEMIA-INDUSTRIAL COOPERATION SOCIETY, vol. 18, no. 4, 1 January 2017 (2017-01-01), pages 341 - 348, XP055664905, ISSN: 1975-4701, DOI: 10.5762/KAIS.2017.18.4.341 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115428050A (en) * 2020-03-13 2022-12-02 欧特尼斯有限公司 Hybrid gait analysis device for fall prevention and fall prevention management system comprising same
CN115428050B (en) * 2020-03-13 2024-04-19 欧特尼斯有限公司 Mixed gait analysis device for preventing falling and falling prevention management system comprising same
CN112401834A (en) * 2020-10-19 2021-02-26 南方科技大学 Movement-obstructing disease diagnosis device
CN112370049A (en) * 2020-11-16 2021-02-19 天津市环湖医院(天津市神经外科研究所、天津市脑系科中心医院) Freezing gait acquisition and analysis system and method based on multi-mode signal synchronization
CN112370049B (en) * 2020-11-16 2022-07-29 天津市环湖医院(天津市神经外科研究所、天津市脑系科中心医院) Freezing gait acquisition and analysis system and method based on multi-mode signal synchronization
CN113017603A (en) * 2021-02-26 2021-06-25 刘辰然 Gait recognition device of foot bottom contact pressure sensor
CN115212518A (en) * 2021-04-15 2022-10-21 丰田自动车株式会社 Walking training system, control method thereof, and computer-readable storage medium

Also Published As

Publication number Publication date
KR101902551B1 (en) 2018-09-28

Similar Documents

Publication Publication Date Title
WO2019240354A1 (en) Apparatus and method for diagnosing body malalignment syndrome by using plantar pressure and physical movement information
Carson et al. Kinematic analysis of a multi-segment foot model for research and clinical applications: a repeatability analysis
MacWilliams et al. Foot kinematics and kinetics during adolescent gait
Abu-Faraj et al. Human gait and clinical movement analysis
Stebbins et al. Repeatability of a model for measuring multi-segment foot kinematics in children
Nester et al. Foot kinematics during walking measured using bone and surface mounted markers
Wu et al. Gait analysis after ankle arthrodesis
Fuller Center of pressure and its theoretical relationship to foot pathology
Sawacha et al. Integrated kinematics–kinetics–plantar pressure data analysis: A useful tool for characterizing diabetic foot biomechanics
Twomey et al. The effects of low arched feet on lower limb gait kinematics in children
Giacomozzi et al. Correlates between kinematics and baropodometric measurements for an integrated in-vivo assessment of the segmental foot function in gait
Monaghan et al. Forefoot angle determines duration and amplitude of pronation during walking
Selby-Silverstein et al. The effect of foot orthoses on standing foot posture and gait of young children with Down syndrome
Wrbaškić et al. An investigation into the deformable characteristics of the human foot using fluoroscopic imaging
JP2004329280A (en) Floor reaction force estimation device using sole pressure, and estimation system of leg joint moment and leg muscle tension using the device
Schache et al. Differences in lower limb transverse plane joint moments during gait when expressed in two alternative reference frames
Cornwall et al. Influence of rearfoot postural alignment on rearfoot motion during walking
Deleu et al. Intrinsic foot joints adapt a stabilized-resistive configuration during the stance phase
Takabayashi et al. Gender differences in coordination variability between shank and rearfoot during running
Schallig et al. The Amsterdam Foot Model: a clinically informed multi-segment foot model developed to minimize measurement errors in foot kinematics
Kulkarni et al. Enhancing Observational Gait Analysis–Techniques and Tips for Analyzing Gait Without a Gait Lab
Al-Kharaz et al. Reliability of a close-range photogrammetry technique to measure ankle kinematics during active range of motion in place
Ji et al. Biomechanics analysis of the lower limbs in 20 male sprinters using the international society of biomechanics six-degrees-of-freedom model and the conventional gait model
Van Gheluwe et al. Rearfoot kinematics during initial takeoff of elite high jumpers: estimation of spatial position and orientation of subtalar axis
Manley et al. The clinical assessment of the normal and abnormal foot during locomotion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19819516

Country of ref document: EP

Kind code of ref document: A1