WO2019240329A1 - Superparamagnetic nanoparticles for hyperthermia therapy - Google Patents

Superparamagnetic nanoparticles for hyperthermia therapy Download PDF

Info

Publication number
WO2019240329A1
WO2019240329A1 PCT/KR2018/010916 KR2018010916W WO2019240329A1 WO 2019240329 A1 WO2019240329 A1 WO 2019240329A1 KR 2018010916 W KR2018010916 W KR 2018010916W WO 2019240329 A1 WO2019240329 A1 WO 2019240329A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
composition
present
cancer
superparamagnetic
Prior art date
Application number
PCT/KR2018/010916
Other languages
French (fr)
Korean (ko)
Inventor
백선하
이주영
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2019240329A1 publication Critical patent/WO2019240329A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to a composition for hyperthermia therapy comprising superparamagnetic nanoparticles as an active ingredient capable of selectively thermally treating tumors without affecting healthy tissues.
  • Magnetic nanoparticles have a self-induced exothermic property when exposed to alternating magnetic fields, and the hyperthermic effect specifically exposed to a desired site can be applied to various tumor treatments. Recently, a new type of treatment method that combines hyperthermia therapy, chemotherapy and radiation chemotherapy has been in the spotlight.
  • magnetic nanoparticles In order to apply the thermal therapy using magnetic nanoparticles in the body. The most important of these is the total amount of strength and frequency of the AC magnetic field applied to the body. Within this range, magnetic nanoparticles must be able to induce temperatures within the range of therapeutic effects and should not affect surrounding normal tissues and organs. In this respect, it can be said that the development of magnetic nanoparticles having sufficient self-induced exothermic characteristics in a magnetic or biologically safe range of magnetic fields is important.
  • An object of the present invention is to provide a composition for treating heat and a method of treating heat, comprising a superparamagnetic nanoparticle as an active ingredient, which is excellent in biocompatibility and enables effective heat treatment.
  • thermotherapy composition comprising the superparamagnetic nanoparticles represented by the following general formula 1 as an active ingredient and a method of preparing the superparamagnetic nanoparticles:
  • X is a number between 0 and 1, for example, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and the like.
  • the superparamagnetic nanoparticles of the present invention are preferably prepared by a modified HTTD method in which the chemical potential of the cation is changed by controlling the temperature in conventional high temperature thermal decomposition (HTTD).
  • This preparation method is characterized by Fe (III) acetylacetonate and Mn (II) acetate tetrahydrate, Zn (II) acetate dihydrate, 1,2-hexadecanediol, oleic acid, oleylamine and benzyl, as shown in FIG.
  • nucleation step After raising the temperature to 296 ° C. or the boiling point of benzyl ether over 8-10 minutes, maintaining the temperature at the temperature for 47 minutes to grow the nanoparticles (growth step), and separating the nanoparticles.
  • the superparamagnetic nanoparticles according to the present invention have an average diameter of 1 to 20 nm, preferably within 10 nm.
  • the size of such superparamagnetic nanoparticles is also important in achieving the thermal treatment desired in the present invention.
  • the term "superparamagnetic nanoparticles” means magnetic nanoparticles having a size of less than 20 nm and a saturation magnetization (MS) value within a certain range.
  • MS saturation magnetization
  • the present invention allows the release of heat using very small magnetic nanoparticles, the small sized nanoparticles reduce the damage (damage) when penetrating cells and / or tissues than the larger nanoparticles, side effects It is more safe because it can be minimized.
  • the superparamagnetic nanoparticles also exhibit the highest exothermic properties in the solid state at 30-370 kHz frequency and 80-160 Oe magnetic field strength applicable to the human body, as shown in one experimental example, Eleven Mn x Zn 1-x Fe 2 O 4 nanoparticles with eight different frequencies (31.9, 47.0, 98.9, 140.0, 168.1, 195.5, 239.9, 360.2 kHz) and five different magnetic field strengths (80,100,120,140,160 Oe) , May have magnetic induction heating properties, in particular, superparamagnetic Mn 0.5 Zn 0.5 Fe 2 O 4 nanoparticles having about X of 0.5 may have the highest magnetic induction heating properties at all frequencies.
  • the superparamagnetic nanoparticles may be coated with a biocompatible polymer.
  • Biocompatible polymer materials useful for the human body that can be used in the present invention are biocompatible polymers that can be easily dissolved in various solvents and have a number average molecular weight, preferably from about 300 Daltons to about 100,000 Daltons, for example polyethylene glycol. , Polypropylene glycol, polyoxyethylene, polytrimethylene glycol, polylactic acid and derivatives thereof, polyacrylic acid and derivatives thereof, polyamino acid, polyvinyl alcohol, polyurethane, polyphosphazine, poly (L-lysine), polyalkyl Non-immunogenic polymeric materials selected from the group consisting of ethylene oxide, polysaccharides, dextran, polyvinyl pyrrolidone, polyacrylamide and two or more copolymers thereof. These biocompatible polymers are intended to include not only linear but also branched polymers.
  • the superparamagnetic nanoparticles may be modified with Methoxy-polyethylene glycol (PEG: Poly Ethyleneglycol) -Silane.
  • PEG Methoxy-polyethylene glycol
  • composition for thermotherapy comprising the superparamagnetic nanoparticles according to the present invention as an active ingredient can achieve therapeutic efficacy in a manner by direct injection.
  • the term “thermotherapy” means exposing body tissues to a temperature slightly above normal temperature to kill lesion cells, including cancer cells, or to make them more susceptible to radiation therapy or anticancer agents.
  • the composition of the present invention is to provide a thermal effect by the superparamagnetic nanoparticles, thereby achieving a therapeutic effect according to the self-induced fever specific to the desired site without affecting normal tissues and organs around can do.
  • composition for thermal treatment of the present invention is usually provided as a pharmaceutical composition. Therefore, the composition for thermal treatment of the present invention includes a pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers are conventionally used in the formulation, such as lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, poly Vinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, mineral oil, and the like. Suitable pharmaceutically acceptable carriers and formulations are described in detail in Remington's Pharmaceutical Sciences, 19th ed., 1995.
  • the composition for treating heat of the present invention is preferably administered parenterally.
  • Parenteral administration may be by intravenous injection, subcutaneous injection, intramuscular injection, intraperitoneal injection, or intralesional injection.
  • Suitable dosages of the compositions of the present invention may be prescribed in various ways depending on factors such as the formulation method, mode of administration, age, weight, sex, morbidity, patient's age, food, time of administration, route of administration, rate of excretion and response to reaction. have.
  • the thermotherapy composition of the present invention comprises superparamagnetic nanoparticles that exhibit a therapeutically effective amount of a self-induced exothermic effect.
  • therapeutically effective amount means an amount sufficient to treat a disease for treatment, generally 0.0001-100 mg / kg.
  • compositions of the present invention may be prepared in unit dose form by formulating with a pharmaceutically acceptable carrier and / or excipient according to methods which can be easily carried out by those skilled in the art. Or it may be prepared by incorporation into a multi-dose container.
  • the formulation may be in the form of a solution, suspension, or emulsion in an oil or an aqueous medium, or may be in the form of extracts, powders, granules, tablets, or capsules, and may further include a dispersing agent or a stabilizing agent.
  • composition for treating heat of the present invention may be administered to a subject (patient) by a suitable route of administration, and then a magnetic field of 30-370 kHz frequency and 80-160 Oe intensity may be used.
  • the disease treated with the composition for treating heat of the present invention is cancer (or tumor).
  • the composition for treating heat of the present invention is particularly useful for treating cancer, for example, glioblastoma, malignant glioma, breast cancer, lung cancer, colon cancer, anal cancer, astrocytoma, leukemia, lymphoma, head and neck cancer, liver cancer, testicular cancer, Cervical cancer, sarcoma, hemangioma, esophageal cancer, eye cancer, laryngeal cancer, oral cancer, mesothelioma, myeloma, oral cancer, rectal cancer, throat cancer, bladder cancer, uterine cancer, ovarian cancer, prostate cancer, colon cancer, pancreatic cancer, kidney cancer, stomach cancer, skin cancer, basal cell It can effectively induce cancer cell death in various cancer diseases such as cancer, melanoma, squamous cell carcinoma, oral squamous cell carcinoma, colorectal cancer, or endo
  • the present invention relates to a thermotherapy comprising administering a composition for treating heat of the present invention to a subject (a subject in need of thermotherapy, including humans, animals, mice, etc.).
  • a method of treating hyperthermia therapy and cancer is provided.
  • thermal therapy has many advantages compared to conventional thermal therapy such as ultrasound, focused ultrasound, microwave, radio frequency probe warming and radio frequency capacitance warming.
  • ultrasound and focused ultrasound can penetrate deep into the trachea, but have the disadvantage of affecting bones due to high energy absorption and excessive reflections from the surrounding air.
  • Heat treatments, such as microwaves, have a weak penetration depth, and radio frequency probe thermal therapy has the disadvantage of insufficient access to deeply located tumors.
  • the composition for thermal treatment containing the nanoparticles according to the present invention as an active ingredient can treat deep-seated tumors.
  • Nanoparticles injected using intratumoral nanoparticle injection methods and heat induced in external magnetic fields enable the treatment of deep tumors such as brain tumors.
  • the composition for treating heat containing the nanoparticles according to the present invention may selectively generate uniformly high temperature because it can continuously react with an external magnetic field when applying the magnetic nanoparticles dispersed in the target organ. That is, since a given external magnetic field can only react with the magnetic compound, it can be selectively focused on the tumor without affecting the surrounding healthy tissue, and can continuously generate the heating temperature.
  • Such methods of treatment may be performed alone or in combination with, or in addition to, conventional anticancer treatments.
  • Nanoparticles according to the present invention has a high magnetic induction heating properties and high biocompatibility in the range of 30-370 kHz and 80-160 Oe of the human body applicable, can be applied to the human body, and useful for heat treatment Can be used.
  • composition for thermal treatment according to the present invention enables the treatment of deep tumors, and has the effect of effectively inhibiting the growth rate of tumors by selectively and uniformly generating high temperature without affecting surrounding healthy tissue.
  • FIG. 1 is a flow chart showing a method for synthesizing superparamagnetic Mn x Zn 1-x Fe 2 O 4 nanoparticles of the present invention.
  • x 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) nano synthesized by an embodiment of the present invention
  • Figure 3 shows the EDS results of manganese and zinc detected after the synthesis of Mn x Zn 1-x Fe 2 O 4 nanoparticles.
  • Figure 4 shows the average diameter of the synthesized Mn x Zn 1-x Fe 2 O 4 nanoparticles.
  • FIG. 5 is a graph showing alternating magnetic induction self-heating characteristics of the solid-state nanoparticles of the superparamagnetic Mn x Zn 1-x Fe 2 O 4 nanoparticles synthesized by the embodiment of the present invention.
  • FIG. 6 is a graph showing cytotoxicity (cell viability) analysis results of PEG-coated Mn 0.5 Zn 0.5 Fe 2 O 4 nanoparticles in various types of human glioblastoma cells and normal cortical cells.
  • Figure 7 is a PEG-coated Mn 0.5 Zn 0.5 Fe 2 O 4 nanoparticles synthesized according to an embodiment of the present invention when treated in the same concentration on different commercial cancer cell lines / patient-derived tumor cells / normal cells The cells absorbed the nanoparticles and analyzed by transmission electron microscopy (TEM).
  • TEM transmission electron microscopy
  • 9 is a graph showing the relative temperature difference between tumor and body temperature during superparamagnetic nanoparticle thermal treatment.
  • FIG. 10 is a graph showing the relative tumor weight and body weight of the mouse tumor model during thermal treatment.
  • Relative tumor amount during heat treatment control (black), tumor with only magnetic nanoparticles (red), heat treated tumors with blue nanoparticles (blue) (top), relative weight during heat treatment, control (black), Tumors with magnetic nanoparticles only (red), thermally treated tumors with blue nanoparticles (blue) (below).
  • 11 is a subcutaneous tumor image during heat treatment.
  • (-) MNP, (-) AMF no treatment attempt, no injection of nanoparticles and no magnetic field, Control Group; (+) MNP, (-) AMF: group injecting only nanoparticles into carcinoma; (+) MNP, (+) AMF: The group that underwent thermal treatment by applying a magnetic field after injection of nanoparticles.
  • a total of 11 kinds of superparamagnetic iron oxide nanoparticles Mn x Zn 1-x Fe 2 O 4 having different compositions (X 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1), 8 different frequencies (31.9, 47.0, 98.9, 140.0, 168.1, 195.5, 239.9, 360.2 kHz) and 5 different magnetic field strengths (80, 100, 120, 140, 160 Oe)
  • the magnetic induction exothermic properties of each nanoparticle were analyzed.
  • Mn 0.5 Zn 0.5 Fe 2 O 4 nanoparticles with the highest self-induced exothermic properties were modified to Methoxy-PEG-Silane to be suitable for living organisms.
  • Various biocompatibility evaluation experiments were conducted to analyze the effects of thermotherapy using magnetic nanoparticles in animal tumor models.
  • the existing HTTD method heats the mixed solution at 200 ° C.-203 ° C. for 30 minutes ( ⁇ 6 ° C./minute, first ascent rate) and holds for another 30 minutes (nucleation step).
  • the solution is then again heated (16 ° C./min to 14.5 ° C./min, second ascent rate) to 296 ° C., the boiling point of benzyl ether, again for 30 minutes (growing step).
  • the initial heating rate and the heat treatment time in the nucleation step are respectively 10 ° C./min to 11.2 ° C./min, 58 in the conventional HTTD method. Adjusted from minutes to 60 minutes.
  • the heat treatment time in the growth stage was adjusted to 46.5 minutes to adjust the average particle diameter of the nanoparticles to 10 nm or less. After removing the heat source, the mixed solution was cooled to room temperature and then ethanol (40 mL) was added to the solution under ambient conditions.
  • the synthesized product (black or brown depending on the material) was washed, precipitated and separated using a centrifuge.
  • the product was dissolved in hexane (15 mL) mixed with ethanol (30 mL) and magnetically stirred again for 30 minutes to remove organic residue. After centrifugation at 6500 rpm for 12.5 minutes, nanoparticles were obtained and dried at room temperature.
  • the synthesized nanoparticles were coated with 500 Da (Dalton) Methoxy-PEG-Silane, a biocompatible polymer.
  • 500 Da (Dalton) Methoxy-PEG-Silane a biocompatible polymer.
  • the surface of the synthesized nanoparticles was first modified with oleic acid.
  • Oleic acid (3 ml) and NH 4 Cl (0.7 ml) were added to the ethanol solution with nanoparticles. After the mixture was stirred vigorously for 2 hours, the nanoparticles were precipitated by a permanent magnet and then washed with acetone to obtain nanoparticles coated with oleic acid.
  • nanoparticles coated with oleic acid were dispersed in toluene (7.5 mL) and then triethylamine (3.75 mL) and methoxy-PEG-silane 500 Da (0.75 mL) were added. The mixed solution was stirred well for 24 hours. The PEG-coated nanoparticles in the solution were washed with pentane and dispersed in water to produce a nanofluidic solution.
  • the superparamagnetic Mn x Zn 1-x Fe 2 O 4 nanoparticles used in the present invention were synthesized by a modified HTTD method in which the chemical potential of the cation was changed by controlling the temperature during the synthesis process.
  • This synthesis method involves the decomposition of a metal precursor in the presence of a hot organic surfactant and a solvent.
  • the basic principle of this method is to initiate a chemical reaction between reagents in a solvent and to control the nucleation and growth steps for synthesis.
  • Mn x Zn 1-x Fe 2 O 4 nanoparticles are produced by changing the thermal energy of a solution.
  • the HTTD method provides important advantages, such as controlling the size and size distribution of the synthesized nanoparticles, helps to generate strong magnetically induced exothermic properties of the nanoparticles, which are explained by the improved magnetic properties, and enables mass production. .
  • the total amount of solid nanoparticles obtained was on average about 130-150 milligrams.
  • the synthesized nanoparticles were stored in an air-tightened vacuum desiccator.
  • each Mn x Zn 1-x Fe 2 O 4 nanoparticles were analyzed by Transmission Electron Microscopy (TEM).
  • TEM Transmission Electron Microscopy
  • each of the synthesized Mn x Zn 1-x Fe 2 O 4 nanoparticles to confirm the doping level of manganese and zinc were analyzed by EDS (Energy-dispersive X-ray Spectroscopy) as shown in Table 3 and FIG.
  • VSM Vibrating Sample Magnetometer
  • the exothermic properties induced by the alternating (AC) magnetic field of solid-state Mn x Zn 1-x Fe 2 O 4 nanoparticles and fluid-state PEG-coated nanoparticles can be transferred to AC coils, capacitors, DC power supplies, wave generators, and PC systems. It was measured using a specially designed AC magnetic field generation system constructed. AC magnetic field generation systems operate over a wide frequency range of 30-370 kHz with magnetic field strengths up to 170 Oe without changing capacitors or AC coils. Since nanoparticles have different AC heating capabilities depending on the material, particle size and size distribution, it is necessary to be able to evaluate the AC heating capacity of various nanoparticles over a wide range of frequencies and magnetic fields.
  • the total amount of solid nanoparticles measured for AC exothermic properties was fixed at 60 mg in an Eppendorf-tube.
  • each sample was placed in an insulating styrofoam in the center of the sample bed.
  • the tip of the optical fiber was placed inside an Eppendorf tube containing Mn x Zn 1-x Fe 2 O 4 nanoparticles in the solid state.
  • Eleven Mn x Zn 1-x Fe 2 O 4 nanoparticles with eight different frequencies (31.9, 47.0, 98.9, 140.0, 168.1, 195.5, 239.9, 360.2 kHz) and five different magnetic field strengths (80,100,120,140,160 Oe) was investigated.
  • the total magnetic field generation time is 600 seconds for each measurement. When the magnetic field was turned on, the AC heating temperature was measured with an optical thermometer and cooled when the magnetic field was turned off.
  • Mn 0.5 Zn 0.5 Fe 2 O 4 particles were used to adjust the proper frequency and the appropriate magnetic field, which are known to be harmless to the human body when performing heat treatment to control or treat human diseases.
  • the frequency and the magnetic field placed from outside Mn 0.5 Zn 0.5 Fe 2 O lesion of particles is present in the 4 generates a thermal effect and around the Mn 0.5 Zn 0.5 Fe 2 of the normal tissue cells, with no particles of the O 4
  • the frequency is 140 kHZ or less, preferably 110 KHz or less
  • the magnetic field is 190 Oe or less, preferably 140 Oe or less in order to be harmless and cause no side effects at all.
  • human glioblastoma cell lines (A172, T98G, U87, U118, U138, U251, U373) obtained from commercially available human glioblastoma cell lines from American Type Culture collection (ATCC) and Korean Cell Line Bank (KCLB), brain tumor ablation Primary cultured human glioblastoma cells (GBL-28 and GBL-37), and primary cultured human normal cortical cells (NSC10, NSC09) obtained in the course of brain tumor lobectomy were used.
  • ATCC American Type Culture collection
  • KCLB Korean Cell Line Bank
  • CCK-8 analysis (WST-8, Dojindolabs, Kumamoto, Japan) was used to assess the effect on the proliferation and viability of PEG-coated Mn 0.5 Zn 0.5 Fe 2 O 4 nanoparticles.
  • CCK-8 analysis was used according to the manufacturer's instructions. A172, T98G, U118, U138, U251, U373, U87, GBL-28, GBL-37, NSC09, NSC10 cells were seeded in a number of 3000 cells / well in 96-well plates. After 24 hours (inoculation time), PEG-coated Mn 0.5 Zn 0.5 Fe 2 O 4 nanoparticles were obtained at 0, 3, 5, 10, 30, 50, 100, 300, and 5% CO 2 , 37 ° C.
  • cytotoxicity assays were performed using eleven different kinds of human derived cells, specifically human glioblastoma cell lines that are commercially available. 7 human glioblastoma cell lines (A172, T98G, U87, U118, U138, U251, U373) obtained from the American Type Culture collection (ATCC) and the Korean Cell Line Bank (KCLB), obtained during a brain tumor lobectomy procedure. Primary cultured human glioblastoma cells (GBL-28 and GBL-37), and primary cultured human normal cortical cells (NSC10, NSC09) were used.
  • the relative cell viability of 11 cells within a nanoparticle concentration of 100 ⁇ g / ml exceeds 70% so that the nanoparticles themselves do not critically affect cell viability, and the nanoparticles It was found to be stable when incubated together.
  • Cells were incubated with 100 ⁇ g / mL nanoparticles for 24 hours. After incubation, the cells are washed and separated with TrypLE solution, followed by a mixture of 2.5% glutaraldehyde in 0.1M phosphate buffer (pH 7.2) and 2% paraformaldehyde in 2% 0.1M phosphate or cacodylate buffer (pH 7.2) Fixed overnight. The cells were post-fixed for 1.5 hours in 2% osmium trioxide in 0.1M phosphate or cacodylate buffer for 1.5 hours at room temperature.
  • Thin sections were made using ultramicrotome (RMC MT-XL) and collected on a copper grid. Appropriate areas for thin incisions were cut at 65 nm and stained with saturated 6% uranyl acetate and 4% lead citric acid before being examined at 80 kV with transmission electron microscopy (JEM-1400; Japan).
  • the absorbed nanoparticles are all located in the cytoplasmic region without disturbing or affecting the nucleus or nuclear membrane.
  • the absorbed nanoparticles can directly destroy the cytoplasmic regions or cell membranes of malignant tumor cells and induce cell death by rising temperatures during magnetic nanoparticle warming treatment. .
  • mice Animal treatment and subcutaneous fibrosarcoma cell infusion and in vivo high temperature increase experiments were performed according to the guidelines approved by the Seoul National University Hospital Animal Testing Committee (IACUC) (IACUC No. SNU-161129-2). All procedures were performed to reduce the amount of pain caused by Balb / c nude mice.
  • IACUC Animal Testing Committee
  • Tumor volume (mm 3 ) 1/2 (length ⁇ width 2 )
  • Tumor size was measured using Vernier caliper and volumetric volume was calculated using tumor volume calculation.
  • the tumor size of the control group and the magnetic nanoparticle-only group increased significantly after the start of treatment, and the size increased more than 15 times.
  • the hyperthermia group using magnetic nanoparticles and alternating magnetic fields showed slower tumor growth and smaller tumors than other groups.
  • the tumor amount in the hyperthermia treatment group shows the slowest increase or the smallest size, through which the present invention has a heat treatment effect .
  • 11 shows a captured image of a subcutaneous tumor during heat treatment according to the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to a composition for hyperthermia therapy, comprising MnxZn1-xFe2O4 (0≤X≤1) superparamagnetic nanoparticles as an active ingredient. Superparamagnetic nanoparticles according to the present invention exhibit high magnetically-induced heat generation ability and biocompatibility, thereby enabling tumor growth to be effectively inhibited.

Description

온열 치료용 초상자성 나노입자Superparamagnetic Nanoparticles for Thermotherapy
본 발명은 건강한 조직에 영향을 주지 않으면서도 선택적으로 종양에 우수한 온열 치료가 가능한 초상자성 나노입자를 유효성분으로 포함하는 온열 치료(Hyperthermia therapy)용 조성물에 관한 것이다. The present invention relates to a composition for hyperthermia therapy comprising superparamagnetic nanoparticles as an active ingredient capable of selectively thermally treating tumors without affecting healthy tissues.
자성 나노입자는 교류 자기장에 노출되었을 시에 자기 유도 발열 특성을 가지게 되며, 원하는 부위에 특이적으로 노출된 고열 효과는 다양한 종양 치료에 응용될 수 있다. 최근에는 온열 치료(Hyperthermia therapy)와 화학적 항암 요법, 방사선 항암 요법을 조합한 새로운 형태의 치료 방법이 각광받고 있다.Magnetic nanoparticles have a self-induced exothermic property when exposed to alternating magnetic fields, and the hyperthermic effect specifically exposed to a desired site can be applied to various tumor treatments. Recently, a new type of treatment method that combines hyperthermia therapy, chemotherapy and radiation chemotherapy has been in the spotlight.
그러나, 자성 나노입자를 이용한 온열 치료를 체내에 적용하기 위해서는 고려해야 할 여러 가지 요소들이 있다. 그 중에서 가장 중요한 것은 체내에 인가되는 교류(AC) 자기장의 세기와 주파수의 총량이다. 이 범위 내에서 자성 나노입자는 치료 효과를 갖는 범위 내의 온도를 유발할 수 있어야 하며, 주변의 정상 조직과 장기에 영향을 미치지 않아야 한다. 이와 같은 관점에서, 생물학적 또는 생리학적으로 안전한 범위의 자기장 내에서 충분한 자기 유도 발열 특성을 가지는 자성 나노입자의 개발이 중요하다고 할 수 있다.However, there are many factors to consider in order to apply the thermal therapy using magnetic nanoparticles in the body. The most important of these is the total amount of strength and frequency of the AC magnetic field applied to the body. Within this range, magnetic nanoparticles must be able to induce temperatures within the range of therapeutic effects and should not affect surrounding normal tissues and organs. In this respect, it can be said that the development of magnetic nanoparticles having sufficient self-induced exothermic characteristics in a magnetic or biologically safe range of magnetic fields is important.
본 발명은 생체 적합성이 우수하고, 효과적으로 온열 치료를 할 수 있도록 하는 초상자성 나노입자를 유효성분으로 포함하는 온열 치료용 조성물 및 온열 치료 방법을 제공하는데 그 목적이 있다. An object of the present invention is to provide a composition for treating heat and a method of treating heat, comprising a superparamagnetic nanoparticle as an active ingredient, which is excellent in biocompatibility and enables effective heat treatment.
상기한 목적을 달성하기 위해, In order to achieve the above object,
본 발명은 하기 일반식 1로 표시되는 초상자성 나노입자를 유효성분으로 포함하는 온열 치료용 조성물 및 상기 초상자성 나노입자의 제조방법을 제공한다:The present invention provides a thermotherapy composition comprising the superparamagnetic nanoparticles represented by the following general formula 1 as an active ingredient and a method of preparing the superparamagnetic nanoparticles:
일반식 1 Formula 1
MnxZn1-xFe2O4 (0≤X≤1)Mn x Zn 1-x Fe 2 O 4 (0≤X≤1)
구체적으로, 상기 X는 0과 1사이의 수로, 예컨대, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 등을 포함한다.Specifically, X is a number between 0 and 1, for example, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and the like.
본 발명의 초상자성 나노입자는 바람직하게는, 기존의 고온열분해법(HTTD, high temperature thermal decomposition)에서 온도를 조절하여 양이온의 화학 포텐셜을 변화시킨 변형된 HTTD 방법으로 제조된다. 이러한 제조방법은 도 1에 나타낸 바와 같이, Fe(III) 아세틸아세토네이트와 Mn (II) 아세테이트테트라하이드레이트, Zn (II) 아세테이트디하이드레이트, 1,2-헥사데칸디올, 올레산, 올레일아민 및 벤질 에테르를 혼합하고 자기적으로 교반하는 단계; 상기 자기적으로 교반된 혼합 용액을 200-203 ℃ 까지 20분에 걸쳐 승온시킨 후, 해당 온도에서 60분간 온도 유지하여 핵을 생성시키는 단계(핵생성단계); 296 ℃ 또는 벤질 에테르의 끓는점까지 8-10분에 걸쳐 승온시킨 후, 해당 온도에서 47분동안 온도를 유지하여 나노입자를 성장시키고(성장단계), 나노입자를 분리하는 단계를 포함한다. The superparamagnetic nanoparticles of the present invention are preferably prepared by a modified HTTD method in which the chemical potential of the cation is changed by controlling the temperature in conventional high temperature thermal decomposition (HTTD). This preparation method is characterized by Fe (III) acetylacetonate and Mn (II) acetate tetrahydrate, Zn (II) acetate dihydrate, 1,2-hexadecanediol, oleic acid, oleylamine and benzyl, as shown in FIG. Mixing ether and stirring magnetically; Heating the magnetically stirred mixed solution to 200-203 ° C. over 20 minutes, and then maintaining the temperature at the temperature for 60 minutes to generate nuclei (nucleation step); After raising the temperature to 296 ° C. or the boiling point of benzyl ether over 8-10 minutes, maintaining the temperature at the temperature for 47 minutes to grow the nanoparticles (growth step), and separating the nanoparticles.
본 발명에 따른 상기 초상자성 나노입자는 평균 직경 1 내지 20 nm, 바람직하게는 10nm 이내의 크기를 갖는다. The superparamagnetic nanoparticles according to the present invention have an average diameter of 1 to 20 nm, preferably within 10 nm.
이러한 초상자성 나노입자의 크기는 본 발명에서 목적하는 온열 치료 달성에 있어서도 중요하다. 본 발명에서 사용된 "초상자성 나노입자 (Superparamagnetic Nanoparticles)"는 크기가 20 nm 미만이며 포화 자화 (Saturation Magnetization, Ms) 값이 일정 범위 이내로 존재하는 자성을 띠는 나노입자를 의미한다. 본 발명은 크기가 매우 작은 자성 나노입자를 이용해서 열을 방출하게 하며, 작은 크기의 나노입자는 크기가 큰 나노입자 보다 세포 및/또는 조직에 침투하였을 때 주는 손상(damage)을 줄여주고, 부작용을 최소화 할 수 있기 때문에 더 안전하다는 장점이 있다.The size of such superparamagnetic nanoparticles is also important in achieving the thermal treatment desired in the present invention. As used herein, the term "superparamagnetic nanoparticles" means magnetic nanoparticles having a size of less than 20 nm and a saturation magnetization (MS) value within a certain range. The present invention allows the release of heat using very small magnetic nanoparticles, the small sized nanoparticles reduce the damage (damage) when penetrating cells and / or tissues than the larger nanoparticles, side effects It is more safe because it can be minimized.
본 발명에 있어서, 상기 초상자성 나노입자는 또한, 고체상태에서, 인체에 적용 가능한 30-370 kHz 주파수 및 80-160 Oe 자기장 세기에서 가장 높은 발열 특성을 나타내며, 일 실험예에서 나타난 바와 같이, 총 11 종의 MnxZn1-xFe2O4 나노입자를 8개의 서로 다른 주파수 (31.9, 47.0, 98.9, 140.0, 168.1, 195.5, 239.9, 360.2 kHz)와 5개의 서로 다른 자기장 세기 (80,100,120,140,160 Oe)에서, 자기 유도 발열 특성을 가질 수 있고, 특히, 약 X가 0.5인 초상자성 Mn0.5Zn0.5Fe2O4 나노입자가 모든 주파수에서 가장 높은 자기 유도 발열 특성을 가질 수 있다. In the present invention, the superparamagnetic nanoparticles also exhibit the highest exothermic properties in the solid state at 30-370 kHz frequency and 80-160 Oe magnetic field strength applicable to the human body, as shown in one experimental example, Eleven Mn x Zn 1-x Fe 2 O 4 nanoparticles with eight different frequencies (31.9, 47.0, 98.9, 140.0, 168.1, 195.5, 239.9, 360.2 kHz) and five different magnetic field strengths (80,100,120,140,160 Oe) , May have magnetic induction heating properties, in particular, superparamagnetic Mn 0.5 Zn 0.5 Fe 2 O 4 nanoparticles having about X of 0.5 may have the highest magnetic induction heating properties at all frequencies.
본 발명에 있어서, 상기 초상자성 나노입자는 생체적합성 고분자로 코팅될 수 있다. In the present invention, the superparamagnetic nanoparticles may be coated with a biocompatible polymer.
본 발명에 사용될 수 있는 인체에 유용한 생체적합성 고분자 물질로는, 다양한 용매에 쉽게 용해될 수 있고 수평균 분자량이, 바람직하게는 약 300 달톤 내지 약 100,000 달톤인 생체적합성 고분자로서, 예를 들면 폴리에틸렌글리콜, 폴리프로필렌글리콜, 폴리옥시에틸렌, 폴리트리메틸렌글리콜, 폴리락트산 및 이들의 유도체, 폴리아크릴산 및 그의 유도체, 폴리아미노산, 폴리비닐 알콜, 폴리우레탄, 폴리포스파진, 폴리(L-라이신), 폴리알킬렌 옥사이드, 폴리사카라이드, 덱스트란, 폴리비닐 피롤리돈, 폴리아크릴아마이드 및 이들의 둘 이상의 공중합체로 이루어진 그룹 중에서 선택된 비면역원성 고분자 물질이 포함되며, 이에 한정되지 않는다. 이들 생체적합성 고분자는 선형(linear) 형태뿐만 아니라 가지 달린(branched) 형태의 고분자도 포함되는 것으로 의도된다. Biocompatible polymer materials useful for the human body that can be used in the present invention are biocompatible polymers that can be easily dissolved in various solvents and have a number average molecular weight, preferably from about 300 Daltons to about 100,000 Daltons, for example polyethylene glycol. , Polypropylene glycol, polyoxyethylene, polytrimethylene glycol, polylactic acid and derivatives thereof, polyacrylic acid and derivatives thereof, polyamino acid, polyvinyl alcohol, polyurethane, polyphosphazine, poly (L-lysine), polyalkyl Non-immunogenic polymeric materials selected from the group consisting of ethylene oxide, polysaccharides, dextran, polyvinyl pyrrolidone, polyacrylamide and two or more copolymers thereof. These biocompatible polymers are intended to include not only linear but also branched polymers.
본 발명의 바람직한 실시예에 있어서, 생체적합성을 높이기 위하여, 상기 초상자성 나노입자는 메톡시(Methoxy)-폴리에틸렌글리콜(PEG: Poly Ethyleneglycol)-실레인(Silane)으로 개질될 수 있다. In a preferred embodiment of the present invention, in order to increase biocompatibility, the superparamagnetic nanoparticles may be modified with Methoxy-polyethylene glycol (PEG: Poly Ethyleneglycol) -Silane.
본 발명에 따른 초상자성 나노입자를 유효성분으로 포함하는 온열 치료용 조성물은 직접 인체 주입에 의한 방식으로 치료 효능을 달성할 수 있다. The composition for thermotherapy comprising the superparamagnetic nanoparticles according to the present invention as an active ingredient can achieve therapeutic efficacy in a manner by direct injection.
본 명세서에서 용어 "온열 치료" 는 신체 조직을 정상체온보다 조금 높은 온도에 노출시킴으로써 암세포를 비롯한 병변세포를 사멸시키거나 또는 이들 세포가 방사선 치료나 항암제 등에 대한 더 높은 민감성을 가지도록 하는 것을 의미한다. 본 발명에 따르면, 본 발명의 조성물은 초상자성 나노입자에 의한 온열효과를 제공하게 됨으로써, 주변에 정상 조직과 장기에 영향을 미치지 않으면서도 원하는 부위에 특이적으로 자기 유도 발열에 따른 치료 효과를 달성할 수 있다. As used herein, the term “thermotherapy” means exposing body tissues to a temperature slightly above normal temperature to kill lesion cells, including cancer cells, or to make them more susceptible to radiation therapy or anticancer agents. . According to the present invention, the composition of the present invention is to provide a thermal effect by the superparamagnetic nanoparticles, thereby achieving a therapeutic effect according to the self-induced fever specific to the desired site without affecting normal tissues and organs around can do.
본 발명의 온열 치료용 조성물은 통상적으로 약제학적 조성물로 제공된다. 따라서, 본 발명의 온열 치료용 조성물은 약제학적으로 허용되는 담체를 포함한다. 약제학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘, 또는 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 적합한 약제학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences, 19th ed., 1995에 상세히 기재되어 있다.The composition for thermal treatment of the present invention is usually provided as a pharmaceutical composition. Therefore, the composition for thermal treatment of the present invention includes a pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers are conventionally used in the formulation, such as lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, poly Vinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, mineral oil, and the like. Suitable pharmaceutically acceptable carriers and formulations are described in detail in Remington's Pharmaceutical Sciences, 19th ed., 1995.
본 발명의 온열 치료용 조성물은 비경구 방식으로 투여되는 것이 바람직하다. 비경구 투여를 하는 경우, 정맥내 주입, 피하 주입, 근육 주입, 복강 주입, 또는 병변내(intralesional) 주입 등으로 투여할 수 있다. 본 발명의 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하게 처방될 수 있다. 본 발명의 온열요법용 조성물은 치료학적 유효량의 자기 유도 발열 효과를 나타내는 초상자성 나노입자를 포함한다. 용어 "치료학적 유효량" 은 치료 목적의 질환을 치료할 수 있는 충분한 양을 의미하며, 일반적으로 0.0001-100 mg/kg이다.The composition for treating heat of the present invention is preferably administered parenterally. Parenteral administration may be by intravenous injection, subcutaneous injection, intramuscular injection, intraperitoneal injection, or intralesional injection. Suitable dosages of the compositions of the present invention may be prescribed in various ways depending on factors such as the formulation method, mode of administration, age, weight, sex, morbidity, patient's age, food, time of administration, route of administration, rate of excretion and response to reaction. have. The thermotherapy composition of the present invention comprises superparamagnetic nanoparticles that exhibit a therapeutically effective amount of a self-induced exothermic effect. The term "therapeutically effective amount" means an amount sufficient to treat a disease for treatment, generally 0.0001-100 mg / kg.
본 발명의 약제학적 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화함으로써 단위 용량 형태로 제조되거나, 또는 다용량 용기내에 내입시켜 제조될 수 있다. 이때 제형은 오일, 또는 수성 매질중의 용액, 현탁액, 또는 유화액 형태이거나 엑스제, 분말제, 과립제, 정제, 또는 캅셀제 형태일 수도 있으며, 분산제, 또는 안정화제를 추가적으로 포함할 수 있다.The pharmaceutical compositions of the present invention may be prepared in unit dose form by formulating with a pharmaceutically acceptable carrier and / or excipient according to methods which can be easily carried out by those skilled in the art. Or it may be prepared by incorporation into a multi-dose container. In this case, the formulation may be in the form of a solution, suspension, or emulsion in an oil or an aqueous medium, or may be in the form of extracts, powders, granules, tablets, or capsules, and may further include a dispersing agent or a stabilizing agent.
본 발명의 온열 치료용 조성물은 적합한 투여경로로 대상(환자)에게 투여된 다음, 30-370 kHz 주파수 및 80-160 Oe 세기의 자기장이 이용될 수 있다. The composition for treating heat of the present invention may be administered to a subject (patient) by a suitable route of administration, and then a magnetic field of 30-370 kHz frequency and 80-160 Oe intensity may be used.
본 발명의 구체적인 구현예에 따르면, 본 발명의 온열 치료용 조성물로 치료되는 질환은 암(또는 종양)이다. 본 발명의 온열 치료용 조성물은 특히, 암 치료에 유용하며, 예를 들어, 교모세포종, 악성뇌교종, 유방암, 폐암, 결장암, 항문암, 성상세포종, 백혈병, 림프종, 두경부암, 간암, 고환암, 자궁경부암, 육종, 혈관종, 식도암, 안암, 후두암, 경구암, 중피종, 골수종, 구강암, 직장암, 인후암, 방광암, 자궁암, 난소암, 전립선암, 대장암, 췌장암, 신장암, 위암, 피부암, 기저세포암, 흑색종, 편평세포암종, 구강편평세포암종, 대장직장암, 또는 자궁내막암 등과 같은 다양한 암 질환에서 암 세포의 사멸을 효과적으로 유도할 수 있다.According to a specific embodiment of the present invention, the disease treated with the composition for treating heat of the present invention is cancer (or tumor). The composition for treating heat of the present invention is particularly useful for treating cancer, for example, glioblastoma, malignant glioma, breast cancer, lung cancer, colon cancer, anal cancer, astrocytoma, leukemia, lymphoma, head and neck cancer, liver cancer, testicular cancer, Cervical cancer, sarcoma, hemangioma, esophageal cancer, eye cancer, laryngeal cancer, oral cancer, mesothelioma, myeloma, oral cancer, rectal cancer, throat cancer, bladder cancer, uterine cancer, ovarian cancer, prostate cancer, colon cancer, pancreatic cancer, kidney cancer, stomach cancer, skin cancer, basal cell It can effectively induce cancer cell death in various cancer diseases such as cancer, melanoma, squamous cell carcinoma, oral squamous cell carcinoma, colorectal cancer, or endometrial cancer.
본 발명의 또 다른 양태에 따르면, 본 발명은 본 발명의 온열 치료용 조성물을 대상(온열치료를 필요로 하는 대상으로, 인간, 동물, 마우스 등을 포함한다.)에 투여하는 단계를 포함하는 온열 치료(hyperthermia therapy) 방법 및 암치료 방법을 제공한다.According to still another aspect of the present invention, the present invention relates to a thermotherapy comprising administering a composition for treating heat of the present invention to a subject (a subject in need of thermotherapy, including humans, animals, mice, etc.). A method of treating hyperthermia therapy and cancer is provided.
본 발명에 있어서, 온열 치료는, 초음파, 집속 초음파, 마이크로파, 라디오 주파수 프로브 온열 및 라디오 주파수 커패시턴스 온열 등과 같은 기존 온열 치료와 비교하여 많은 장점을 갖는다. 예를 들어, 초음파와 집속 초음파는 기관에 깊숙이 침투 할 수는 있지만 주변 공기와의 높은 에너지 흡수 및 과도한 반사로 뼈에 영향을 줄 수 있는 단점이 있다. 마이크로파와 같은 열처리는 침투 깊이가 약하며, 라디오 주파수 프로브 온열 치료는 깊게 위치한 종양에 대한 접근이 불충분하다는 단점이 있다. In the present invention, thermal therapy has many advantages compared to conventional thermal therapy such as ultrasound, focused ultrasound, microwave, radio frequency probe warming and radio frequency capacitance warming. For example, ultrasound and focused ultrasound can penetrate deep into the trachea, but have the disadvantage of affecting bones due to high energy absorption and excessive reflections from the surrounding air. Heat treatments, such as microwaves, have a weak penetration depth, and radio frequency probe thermal therapy has the disadvantage of insufficient access to deeply located tumors.
그러나 본 발명에 따른 나노입자를 유효성분으로 포함하는 온열 치료용 조성물은 특히, 심층부 종양(deep-seated tumor)을 치료할 수 있다. 종양 내 나노입자 주입 방법을 사용하여 주입된 나노입자 및 외부 자기장에서 유도된 열이 뇌 종양과 같은 심층부 종양의 치료를 가능하게 한다. 또한 본 발명에 따른 나노입자를 포함하는 온열 치료용 조성물은, 표적 기관에 분산되어있는 자성 나노입자 적용시 외부 자기장과 지속적으로 반응 할 수 있기 때문에 고온을 선택적으로 균일하게 발생시킬 수 있다. 즉, 주어진 외부 자기장은 자기 화합물과만 반응 할 수 있기 때문에, 주위의 건강한 조직에 영향을 주지 않고 선택적으로 종양에 집중시킬 수 있고 가열 온도를 지속적으로 생성 할 수 있는 것을 특징으로 한다.However, the composition for thermal treatment containing the nanoparticles according to the present invention as an active ingredient, in particular, can treat deep-seated tumors. Nanoparticles injected using intratumoral nanoparticle injection methods and heat induced in external magnetic fields enable the treatment of deep tumors such as brain tumors. In addition, the composition for treating heat containing the nanoparticles according to the present invention may selectively generate uniformly high temperature because it can continuously react with an external magnetic field when applying the magnetic nanoparticles dispersed in the target organ. That is, since a given external magnetic field can only react with the magnetic compound, it can be selectively focused on the tumor without affecting the surrounding healthy tissue, and can continuously generate the heating temperature.
이러한 치료 방법은 단독의 치료 방법으로서 또는 종래의 항암 치료 방법과 병행하여, 또는 보조적으로 수행될 수 있다.Such methods of treatment may be performed alone or in combination with, or in addition to, conventional anticancer treatments.
본 발명에 따른 나노입자는 인체 적용가능 주파수 30-370 kHz 및 자기장 80-160 Oe 범위에서 높은 자기 유도 발열 특성 및 높은 생체적합성을 가지고 있어, 인체에 주입을 통한 적용이 가능하고, 온열 치료에 유용하게 사용될 수 있다. Nanoparticles according to the present invention has a high magnetic induction heating properties and high biocompatibility in the range of 30-370 kHz and 80-160 Oe of the human body applicable, can be applied to the human body, and useful for heat treatment Can be used.
또한, 본 발명에 따른 온열 치료용 조성물은 심층부 종양의 치료를 가능하게 하고, 주위의 건강한 조직에 영향을 주지 않으면서 고온을 선택적으로 균일하게 생성하여 종양의 성장률을 효과적으로 저해시키는 효과가 있다. In addition, the composition for thermal treatment according to the present invention enables the treatment of deep tumors, and has the effect of effectively inhibiting the growth rate of tumors by selectively and uniformly generating high temperature without affecting surrounding healthy tissue.
한편, 앞서 기재된 효과는 예시적인 것에 불과하며 당업자의 관점에서 본 발명의 세부 구성으로부터 예측되거나 기대되는 효과들 또한 본원발명 고유의 효과에 추가될 수 있을 것이다. On the other hand, the effects described above are merely exemplary, and effects predicted or expected from the detailed configuration of the present invention may be added to the effects unique to the present invention from the viewpoint of those skilled in the art.
도 1은 본 발명의 초상자성 MnxZn1-xFe2O4 나노입자의 합성방법을 나타내는 플로우 차트이다.1 is a flow chart showing a method for synthesizing superparamagnetic Mn x Zn 1-x Fe 2 O 4 nanoparticles of the present invention.
도 2는 본 발명의 실시예에 의해 합성된 초상자성 MnxZn1-xFe2O4(x=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) 나노입자의 합성 후 검출 된 망간과 아연의 TEM 및 EDS 결과를 나타내는 그래프이다. (왼쪽부터 순서대로, 합성된 ZnFe2O4 (X = 0)의 TEM 및 EDS 결과, 합성된 Mn0.1Zn0.9Fe2O4 (X = 0.1)의 TEM 및 EDS 결과, 합성된 Mn0.2Zn0.8Fe2O4 (X = 0.2)의 TEM 및 EDS 결과, 합성된 Mn0.3Zn0.7Fe2O4 (X = 0.3)의 TEM 및 EDS 결과, 합성된 Mn0.4Zn0.6Fe2O4 (X = 0.4)의 TEM 및 EDS 결과, 합성된 Mn0.5Zn0.5Fe2O4 (X = 0.5)의 TEM 및 EDS 결과, 합성된 Mn0.6Zn0.4Fe2O4 (X = 0.6)의 TEM 및 EDS 결과, 합성된 Mn0.7Zn0.3Fe2O4 (X = 0.7)의 TEM 및 EDS 결과, 합성된 Mn0.8Zn0.2Fe2O4 (X = 0.8)의 TEM 및 EDS 결과, 합성된 Mn0.9Zn0.1Fe2O4 (X = 0.9)의 TEM 및 EDS 결과, 합성된 MnFe2O4 (X = 1) 의 TEM 및 EDS 결과를 나타낸 것이다.)Figure 2 is a superparamagnetic Mn x Zn 1-x Fe 2 O 4 (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) nano synthesized by an embodiment of the present invention A graph showing the TEM and EDS results of manganese and zinc detected after the synthesis of the particles. (TEM and EDS results of synthesized ZnFe 2 O 4 (X = 0), TEM and EDS results of synthesized Mn 0.1 Zn 0.9 Fe 2 O 4 (X = 0.1), synthesized Mn 0.2 Zn 0.8 TEM and EDS results of Fe 2 O 4 (X = 0.2), synthesized Mn 0.3 Zn 0.7 TEM and EDS results of Fe 2 O 4 (X = 0.3), synthesized Mn 0.4 Zn 0.6 Fe 2 O 4 (X = 0.4) TEM and EDS results of), synthesized TEM and EDS results of synthesized Mn 0.5 Zn 0.5 Fe 2 O 4 (X = 0.5), TEM and EDS results of synthesized Mn 0.6 Zn 0.4 Fe 2 O 4 (X = 0.6), synthesis TEM and EDS results of Mn 0.7 Zn 0.3 Fe 2 O 4 (X = 0.7), TEM and EDS results of Mn 0.8 Zn 0.2 Fe 2 O 4 (X = 0.8), Mn 0.9 Zn 0.1 Fe 2 O TEM and EDS results of 4 (X = 0.9), and TEM and EDS results of synthesized MnFe 2 O 4 (X = 1).)
도 3은 MnxZn1-xFe2O4 나노입자의 합성 후 검출된 망간 및 아연의 EDS 결과를 나타낸 것이다.Figure 3 shows the EDS results of manganese and zinc detected after the synthesis of Mn x Zn 1-x Fe 2 O 4 nanoparticles.
도 4는 합성된 MnxZn1-xFe2O4 나노입자의 평균 직경을 나타낸 것이다.Figure 4 shows the average diameter of the synthesized Mn x Zn 1-x Fe 2 O 4 nanoparticles.
도 5는 본 발명의 실시예에 의해 합성된 초상자성 MnxZn1-xFe2O4 나노입자의 고체 상태 나노입자의 교류 자기 유도 자기 발열 특성을 나타낸 그래프이다. (왼쪽부터 순서대로, 고정된 80 Oe에서의 Mn 농도에 따른 MnxZn1-xFe2O4 고체 상태 나노입자의 자기 유도 자기 발열 특성(t = 600 초), 고정된 100 Oe에서의 Mn 농도에 따른 MnxZn1-xFe2O4 고체 상태 나노입자의 자기 유도 자기 발열 특성(t = 600 초), 고정된 120 Oe에서의 Mn 농도에 따른 MnxZn1-xFe2O4 고체 상태 나노입자의 자기 유도 자기 발열 특성(t = 600 초), 고정된 140 Oe에서의 Mn 농도에 따른 MnxZn1-xFe2O4 고체 상태 나노입자의 자기 유도 자기 발열 특성(t = 600 초), 고정된 160 Oe에서 Mn 농도에 따른 MnxZn1-xFe2O4 고체 상태 나노입자의 자기 유도 자기 발열 특성(t = 600 초), 고정된 80 Oe에서의 주파수에 따른 MnxZn1-xFe2O4 고체 상태 나노입자의 자기 유도 자기 발열 특성(t = 600 초), 고정된 100 Oe에서의 주파수에 따른 MnxZn1-xFe2O4 고체 상태 나노입자의 자기 적으로 유도 된 자기 발열 특성(t = 600 초), 고정된 120 Oe에서의 주파수에 따른 MnxZn1-xFe2O4 고체 상태 나노입자의 자기 적으로 유도 된 자기 발열 특성(t = 600 초), 고정된 140 Oe에서의 Mn 농도에 따른 MnxZn1-xFe2O4 고체 상태 나노입자의 자기 유도 자기 발열 특성(t = 600 초) 및 고정된 160 Oe에서의 주파수에 따른 MnxZn1-xFe2O4 고체 상태 나노입자의 자기 유도 자기 발열 특성(t = 600 초)을 나타낸 것이다.)5 is a graph showing alternating magnetic induction self-heating characteristics of the solid-state nanoparticles of the superparamagnetic Mn x Zn 1-x Fe 2 O 4 nanoparticles synthesized by the embodiment of the present invention. (Sequential from left, self-induced self-exothermic properties of Mn x Zn 1-x Fe 2 O 4 solid-state nanoparticles with Mn concentration at fixed 80 Oe (t = 600 seconds), Mn at fixed 100 Oe Mn x Zn 1-x Fe 2 O 4 Depending on the concentration of self-induced self-heating (t = 600 seconds) of solid-state nanoparticles, Mn x Zn 1-x Fe 2 O 4 according to Mn concentration at a fixed 120 Oe Self-induced self-heating properties of solid-state nanoparticles (t = 600 seconds), Mn x Zn 1-x Fe 2 O 4 self-induced self-heating properties of solid state nanoparticles with fixed Mn concentration at 140 Oe (t = 600 seconds), Mn x Zn 1-x Fe 2 O 4 solid-state nanoparticles with fixed Mn concentrations at fixed 160 Oe (t = 600 seconds), Mn with frequency at fixed 80 Oe Magnetically Induced Self-heating Characteristics of x Zn 1-x Fe 2 O 4 Solid State Nanoparticles (t = 600 sec), Mn x Zn 1-x Fe 2 O 4 Solid State Nanoparticles with Frequency at Fixed 100 Oe character Typically the self-heating characteristic induction (t = 600 sec.), With respect to the frequency at a fixed 120 Oe Mn x Zn 1-x Fe 2 O 4 the self-heating characteristic magnetically guided to a solid-state nanoparticles (t = 600 Sec), Mn x Zn 1-x Fe 2 O 4 solid-state nanoparticles with Mn concentration at fixed 140 Oe (t = 600 seconds) and Mn with frequency at fixed 160 Oe x Zn 1-x Fe 2 O 4 shows the self-induced self-heating characteristics (t = 600 seconds) of solid-state nanoparticles.)
도 6은 여러 종류의 인간 아교모세포종 세포와 정상 피질 세포에서 PEG-코팅된 Mn0.5Zn0.5Fe2O4 나노입자의 세포 독성 (세포 생존력) 분석 결과를 나타내는 그래프이다.FIG. 6 is a graph showing cytotoxicity (cell viability) analysis results of PEG-coated Mn 0.5 Zn 0.5 Fe 2 O 4 nanoparticles in various types of human glioblastoma cells and normal cortical cells.
도 7은 본 발명의 실시예에 의해 합성된 PEG-코팅된 Mn0.5Zn0.5Fe2O4 나노입자를 각각 다른 상업암세포주/환자유래배양된 종양세포/정상세포 에 같은 농도로 처리하였을 경우에 세포가 나노입자를 흡수시켜 투과전자현미경 (TEM)으로 분석한 사진이다. ((a): PEG-코팅된 Mn0.5Zn0.5Fe2O4 나노입자를 갖는 U87의 TEM 이미지, (b): PEG-코팅된 Mn0.5Zn0.5Fe2O4 나노 입자를 갖는 U118의 TEM 이미지, (c): PEG-코팅된 Mn0.5Zn0.5Fe2O4 나노 입자를 갖는 U138의 TEM 이미지, (d): PEG-코팅된 Mn0.5Zn0.5Fe2O4 나노 입자를 갖는 U251의 TEM 이미지, (e): PEG-코팅된 Mn0.5Zn0.5Fe2O4 나노 입자를 갖는 U373의 TEM 이미지, (f): PEG-코팅된 Mn0.5Zn0.5Fe2O4 나노 입자를 갖는 T98G의 TEM 이미지, (g): PEG-코팅된 Mn0.5Zn0.5Fe2O4 나노 입자를 갖는 A172의 TEM 이미지, (h): PEG-코팅된 Mn0.5Zn0.5Fe2O4 나노 입자를 갖는 GBL-28의 TEM 이미지, (i): PEG-코팅된 Mn0.5Zn0.5Fe2O4 나노 입자를 갖는 GBL-37의 TEM 이미지, (j): PEG-코팅된 Mn0.5Zn0.5Fe2O4 나노 입자를 갖는 NSC10의 TEM 이미지 및 (k): PEG-코팅된 Mn0.5Zn0.5Fe2O4 나노 입자를 갖는 NSC09의 TEM 이미지를 나타낸 것이다.)Figure 7 is a PEG-coated Mn 0.5 Zn 0.5 Fe 2 O 4 nanoparticles synthesized according to an embodiment of the present invention when treated in the same concentration on different commercial cancer cell lines / patient-derived tumor cells / normal cells The cells absorbed the nanoparticles and analyzed by transmission electron microscopy (TEM). ((a): TEM image of U87 with PEG-coated Mn 0.5 Zn 0.5 Fe 2 O 4 nanoparticles, (b): TEM image of U118 with PEG-coated Mn 0.5 Zn 0.5 Fe 2 O 4 nanoparticles (c): TEM image of U138 with PEG-coated Mn 0.5 Zn 0.5 Fe 2 O 4 nanoparticles, (d): TEM image of U251 with PEG-coated Mn 0.5 Zn 0.5 Fe 2 O 4 nanoparticles (e): TEM image of U373 with PEG-coated Mn 0.5 Zn 0.5 Fe 2 O 4 nanoparticles, (f): TEM image of T98G with PEG-coated Mn 0.5 Zn 0.5 Fe 2 O 4 nanoparticles , (g): TEM image of A172 with PEG-coated Mn 0.5 Zn 0.5 Fe 2 O 4 nanoparticles, (h): GBL-28 with PEG-coated Mn 0.5 Zn 0.5 Fe 2 O 4 nanoparticles TEM images, (i): PEG- coated Mn 0.5 Zn 0.5 Fe 2 O 4 nano GBL-37 TEM image of a particle, (j): PEG- having a coating Mn 0.5 Zn 0.5 Fe 2 O 4 nanoparticles PEG- showing a TEM image of NSC09 having a coating Mn 0.5 Zn 0.5 Fe 2 O 4 nanoparticles: TEM images, and (k) of NSC10 A.)
도 8은 본 발명의 실시예에 의해 합성된 PEG-코팅된 Mn0.5Zn0.5Fe2O4나노입자의 주입 후 20분 동안 AC 자기장에 노출된 마우스 종양 모델의 열 화상 사진이다.8 is a thermal image of a mouse tumor model exposed to AC magnetic field for 20 minutes after injection of PEG-coated Mn 0.5 Zn 0.5 Fe 2 O 4 nanoparticles synthesized by an embodiment of the present invention.
도 9는 초상자성 나노입자 온열 치료 중 종양과 체온의 상대 온도차를 나타내는 그래프이다.9 is a graph showing the relative temperature difference between tumor and body temperature during superparamagnetic nanoparticle thermal treatment.
도 10은 온열 치료 중 마우스 종양 모델의 상대적 종양 체중 및 체중을 나타내는 그래프이다. (온열 치료 동안 상대 종양 양, 대조군 (검정), 자성 나노 입자만 있는 종양 (적색), 자성 나노입자를 사용한 온열 치료 종양 (파란색)을 (위), 온열 치료 동안 상대 체중, 대조군 (흑색), 자성 나노 입자만 있는 종양 (적색), 자성 나노입자를 사용한 온열 치료 종양 (파란색)을 (아래) 나타낸 것이다.)10 is a graph showing the relative tumor weight and body weight of the mouse tumor model during thermal treatment. (Relative tumor amount during heat treatment, control (black), tumor with only magnetic nanoparticles (red), heat treated tumors with blue nanoparticles (blue) (top), relative weight during heat treatment, control (black), Tumors with magnetic nanoparticles only (red), thermally treated tumors with blue nanoparticles (blue) (below).)
도 11은 온열 치료 동안 피하 종양 이미지이다. (-)MNP, (-)AMF: 나노입자를 주사하지 않고 자기장을 가하지도 않은, 아무런 치료 시도가 없는 군으로, Control Group; (+)MNP, (-)AMF: 나노입자만을 암종에 주사한 군; (+)MNP, (+)AMF: 나노입자를 주사한 후 자기장을 가하여 열치료를 진행한 군을 나타낸다.11 is a subcutaneous tumor image during heat treatment. (-) MNP, (-) AMF: no treatment attempt, no injection of nanoparticles and no magnetic field, Control Group; (+) MNP, (-) AMF: group injecting only nanoparticles into carcinoma; (+) MNP, (+) AMF: The group that underwent thermal treatment by applying a magnetic field after injection of nanoparticles.
본 발명은 서로 다른 조성을 가지는 총 11 종류의 초상자성 산화 철 나노입자 MnxZn1-xFe2O4 (X=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1)를 합성하였고, 서로 다른 8 가지의 주파수(31.9, 47.0, 98.9, 140.0, 168.1, 195.5, 239.9, 360.2 kHz)와 서로 다른 5 가지의 자기장 세기(80, 100, 120, 140, 160 Oe) 내에서 각각의 나노입자가 가지는 자기 유도 발열 특성을 분석하였다. 또한, 자기 유도 발열 특성이 가장 높은 Mn0.5Zn0.5Fe2O4 나노입자를 Methoxy-PEG-Silane으로 개질하여 생체에 적합하도록 고안하였으며 세포 수준에서 나노입자가 가지는 세포 독성 검사를 시행하였다. 여러 종류의 생체적합성 평가 실험을 거쳐 동물 종양 모델에서 자성 나노입자를 이용한 온열 치료 효과 분석 시험을 수행하였다.In the present invention, a total of 11 kinds of superparamagnetic iron oxide nanoparticles Mn x Zn 1-x Fe 2 O 4 having different compositions (X = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1), 8 different frequencies (31.9, 47.0, 98.9, 140.0, 168.1, 195.5, 239.9, 360.2 kHz) and 5 different magnetic field strengths (80, 100, 120, 140, 160 Oe) The magnetic induction exothermic properties of each nanoparticle were analyzed. In addition, Mn 0.5 Zn 0.5 Fe 2 O 4 nanoparticles with the highest self-induced exothermic properties were modified to Methoxy-PEG-Silane to be suitable for living organisms. Various biocompatibility evaluation experiments were conducted to analyze the effects of thermotherapy using magnetic nanoparticles in animal tumor models.
이하 본 발명을 실시예를 통해 보다 상세하게 설명한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. .
실시예Example
[실시예 1] 화합물의 준비 및 방법Example 1 Preparation and Method of Compound
본 발명에 따른 초상자성 나노입자의 합성을 위해서 재료는 표 1에 기재된 물질들을 준비하였다. For the synthesis of the superparamagnetic nanoparticles according to the invention the material prepared the materials listed in Table 1.
[표 1]TABLE 1
Figure PCTKR2018010916-appb-I000001
Figure PCTKR2018010916-appb-I000001
Fe (III) 아세틸아세토네이트(>99.9%), Mn (II) 아세테이트테트라하이드레이트(99.99%), Zn (II) 아세테이트디하이드레이트(99.999%), 올레산(90%), 올레일아민(70%), 벤질 에테르(99%)는 Aldrich Chemical Co.에서 구입하였고, 1,2-hexadecanediol(>98%)는 Tokyo Chemical Industries Co.에서 구입하였다.Fe (III) acetylacetonate (> 99.9%), Mn (II) acetate tetrahydrate (99.99%), Zn (II) acetate dihydrate (99.999%), oleic acid (90%), oleylamine (70%) , Benzyl ether (99%) was purchased from Aldrich Chemical Co., 1,2-hexadecanediol (> 98%) was purchased from Tokyo Chemical Industries Co.
[실시예 2] 나노입자의 합성 및 표면 개질Example 2 Synthesis and Surface Modification of Nanoparticles
2-1. 고체 상태 MnxZn1-xFe2O4 나노입자의 합성2-1. Synthesis of Solid State Mn x Zn 1-x Fe 2 O 4 Nanoparticles
고체 상태 MnxZn1-xFe2O4 나노입자의 합성을 위해, 아래 표 2에 기재된 바와 같이, Fe(2mmol), Mn(0.1~0.9mmol), Zn(0.1~0.9mmol), 1,2-헥사데칸디올(10mmol), 올레산(6mmol), 올레일아민(6mmol) 및 벤질 에테르(20mL)를 혼합하고 3구 둥근 바닥 플라스크에서 자기적으로 교반하였다.For the synthesis of solid state Mn x Zn 1-x Fe 2 O 4 nanoparticles, as shown in Table 2 below, Fe (2 mmol), Mn (0.1 ~ 0.9 mmol), Zn (0.1 ~ 0.9 mmol), 1, 2-hexadecanediol (10 mmol), oleic acid (6 mmol), oleylamine (6 mmol) and benzyl ether (20 mL) were mixed and magnetically stirred in a three necked round bottom flask.
[표 2]TABLE 2
Figure PCTKR2018010916-appb-I000002
Figure PCTKR2018010916-appb-I000002
기존의 HTTD 방법은 혼합 용액을 200 ℃ ~ 203 ℃에서 30분 동안 가열 (~6 ℃/분, 첫 번째 상승 속도)하고 30분간 더 유지시킨다(핵 생성 단계). 그 후, 용액을 다시 벤질 에테르의 끓는점인 296 ℃까지 6분 ~ 8분 동안 다시 가열 (16 ℃/분 ~ 14.5 ℃/분, 두 번째 상승 속도)하고 30분간 유지시킨다(성장 단계). The existing HTTD method heats the mixed solution at 200 ° C.-203 ° C. for 30 minutes (˜6 ° C./minute, first ascent rate) and holds for another 30 minutes (nucleation step). The solution is then again heated (16 ° C./min to 14.5 ° C./min, second ascent rate) to 296 ° C., the boiling point of benzyl ether, again for 30 minutes (growing step).
그러나 본 발명에서 수행된 수정된 HTTD 방법의 경우 핵 생성 단계 (공정 온도: 200 ℃ ~ 203 ℃)에서 초기 승온 속도 및 열처리 시간은 각각 종래의 HTTD 방법에서 10 ℃/min ~ 11.2 ℃/min, 58분 ~ 60분으로 조절되었다. 성장 단계 (공정 온도: 296 ℃)에서의 열처리 시간은 나노입자의 평균 입경을 10nm 이하로 조절하기 위해 46.5분으로 조절되었다. 열원을 제거한 후, 혼합 용액을 실온으로 냉각시키고, 이어서 에탄올(40mL)을 주변 조건하에서 용액에 첨가하였다. 합성된 생성물 (물질에 따라 흑색 또는 갈색)을 세정하고 침전시킨 후 원심 분리기를 사용하여 분리하였다. 생성물을 에탄올(30mL)과 혼합된 헥산(15mL)에 용해시키고, 30분 동안 다시 자기적으로 교반하여 유기 잔류물을 제거하였다. 6500rpm으로 원심 분리를 12.5분 동안 가한 후, 나노입자를 수득하고 실온에서 건조시켰다. However, in the modified HTTD method performed in the present invention, the initial heating rate and the heat treatment time in the nucleation step (process temperature: 200 ° C. to 203 ° C.) are respectively 10 ° C./min to 11.2 ° C./min, 58 in the conventional HTTD method. Adjusted from minutes to 60 minutes. The heat treatment time in the growth stage (process temperature: 296 ° C.) was adjusted to 46.5 minutes to adjust the average particle diameter of the nanoparticles to 10 nm or less. After removing the heat source, the mixed solution was cooled to room temperature and then ethanol (40 mL) was added to the solution under ambient conditions. The synthesized product (black or brown depending on the material) was washed, precipitated and separated using a centrifuge. The product was dissolved in hexane (15 mL) mixed with ethanol (30 mL) and magnetically stirred again for 30 minutes to remove organic residue. After centrifugation at 6500 rpm for 12.5 minutes, nanoparticles were obtained and dried at room temperature.
2-2. 합성된 초상자성 나노입자의 표면 변형2-2. Surface Deformation of Synthetic Superparamagnetic Nanoparticles
합성된 나노입자는 생체 적합성 고분자인 500 Da(Dalton)의 메톡시-PEG-실레인(Methoxy-PEG-Silane)으로 코팅되었다. PEG 층을 코팅하기 위해, 합성된 나노입자의 표면을 올레산에 의해 먼저 변형시켰다. 올레산(3ml)과 NH4Cl(0.7ml)을 에탄올 용액에 나노입자들과 함께 첨가 하였다. 혼합물을 2시간 동안 격렬하게 교반 한 다음, 나노입자가 영구 자석에 의해 침전된 후 아세톤으로 세척하여 올레산으로 코팅된 나노입자를 얻었다. 올레산으로 코팅된 나노입자를 톨루엔(7.5mL)에 분산시킨 후 트리에틸아민(3.75mL)과 메톡시-PEG-실레인 500 Da(0.75mL)을 첨가하였다. 혼합 용액을 24 시간 동안 잘 교반하였다. 용액에 PEG 코팅된 나노입자를 펜테인으로 세척하고 물에 분산시켜 나노유체 용액을 생성시켰다.The synthesized nanoparticles were coated with 500 Da (Dalton) Methoxy-PEG-Silane, a biocompatible polymer. To coat the PEG layer, the surface of the synthesized nanoparticles was first modified with oleic acid. Oleic acid (3 ml) and NH 4 Cl (0.7 ml) were added to the ethanol solution with nanoparticles. After the mixture was stirred vigorously for 2 hours, the nanoparticles were precipitated by a permanent magnet and then washed with acetone to obtain nanoparticles coated with oleic acid. The nanoparticles coated with oleic acid were dispersed in toluene (7.5 mL) and then triethylamine (3.75 mL) and methoxy-PEG-silane 500 Da (0.75 mL) were added. The mixed solution was stirred well for 24 hours. The PEG-coated nanoparticles in the solution were washed with pentane and dispersed in water to produce a nanofluidic solution.
[실시예 3] 합성된 나노입자의 특성 확인Example 3 Characterization of Synthesized Nanoparticles
3-1. 초상자성 MnxZn1-xFe2O4 나노입자의 합성 결과3-1. Synthesis Results of Superparamagnetic Mn x Zn 1-x Fe 2 O 4 Nanoparticles
본 발명에서 사용된 초상자성 MnxZn1-xFe2O4 나노입자는 합성 과정에서 온도를 조절하여 양이온의 화학 포텐셜을 변화시킨 변형된 HTTD 방법으로 합성하였다. 이 합성 방법은 고온의 유기 계면 활성제 및 용매의 존재 하에서 금속 전구체의 분해를 포함한다. 이 방법의 기본 원리는 용매에서 시약들 간의 화학 반응을 개시하고 합성을 위한 핵 생성 및 성장 단계를 제어하는 것이다. MnxZn1-xFe2O4 나노입자는 용액의 열에너지를 변화시킴으로써 생성된다. HTTD 방법은 합성된 나노입자의 크기 및 크기 분포를 제어하는 것과 같은 중요한 이점을 제공하며, 향상된 자기 특성으로 설명되는 나노입자의 강력한 자기 유도 발열 특성을 생성하는데 도움이 되며, 대량 생산을 가능하게 한다. MnxZn1-xFe2O4 의 합성 후, 얻어진 고체 나노입자의 총량은 평균 약 130-150 밀리그램이었다. 화학적 변화 또는 댐핑(damping)을 방지하기 위해, 합성된 나노입자는 공압 진공 데시케이터(air-tightened vacuum desiccator)에 저장되었다.The superparamagnetic Mn x Zn 1-x Fe 2 O 4 nanoparticles used in the present invention were synthesized by a modified HTTD method in which the chemical potential of the cation was changed by controlling the temperature during the synthesis process. This synthesis method involves the decomposition of a metal precursor in the presence of a hot organic surfactant and a solvent. The basic principle of this method is to initiate a chemical reaction between reagents in a solvent and to control the nucleation and growth steps for synthesis. Mn x Zn 1-x Fe 2 O 4 nanoparticles are produced by changing the thermal energy of a solution. The HTTD method provides important advantages, such as controlling the size and size distribution of the synthesized nanoparticles, helps to generate strong magnetically induced exothermic properties of the nanoparticles, which are explained by the improved magnetic properties, and enables mass production. . After the synthesis of Mn x Zn 1-x Fe 2 O 4 , the total amount of solid nanoparticles obtained was on average about 130-150 milligrams. To prevent chemical changes or damping, the synthesized nanoparticles were stored in an air-tightened vacuum desiccator.
3-2. 합성된 MnxZn1-xFe2O4 나노입자의 초전자 특성 확인3-2. Confirmation of Pyroelectric Properties of Synthesized Mn x Zn 1-x Fe 2 O 4 Nanoparticles
합성된 나노입자가 초상자성임을 확인하기 위해 각 MnxZn1-xFe2O4 나노입자를 TEM(Transmission Electron Microscopy)으로 분석하였다. TEM으로 11 종의 합성된 MnxZn1-xFe2O4 나노입자 (X = 0-1)를 측정하였고, 도 4 에 나타낸 바와 같이 각각의 MnxZn1-xFe2O4 나노입자의 평균 직경은 10 나노 미터 이하였다. 또한 망간과 아연의 도핑 수준을 확인하기 위해 합성된 MnxZn1-xFe2O4 나노입자 각각을 표 3과 도 3에서와 같이 EDS(Energy-dispersive X-ray Spectroscopy)로 분석하였다. EDS로 분석된 각 시료는 X50k 배율 정상 TEM 모드에서 3개의 상이한 부위에서 측정되었으며, 망간과 아연의 검출된 원자 중량 %는 첨가된 시약에 따라 도펀트가 성공적으로 도핑된 것으로 확인되었다. 마지막으로, 주요 자기 히스테리시스 루프 및 작은 자기 히스테리시스 루프, 초기 자화 기울기, 보자력 및 포화 자화 값과 같은 자기 특성이 VSM(Vibrating Sample Magnetometer)으로 측정되었으며, 이는 합성된 모든 MnxZn1-xFe2O4 나노입자가 초전자 특성을 가짐을 나타낸다.In order to confirm that the synthesized nanoparticles are superparamagnetic, each Mn x Zn 1-x Fe 2 O 4 nanoparticles were analyzed by Transmission Electron Microscopy (TEM). The synthesis of 11 as a TEM Mn x Zn 1-x Fe 2 O 4 was measured nanoparticles (X = 0-1), each of Mn x Zn 1-x Fe 2 O 4 nanoparticles As shown in FIG. 4 The average diameter of was less than 10 nanometers. In addition, each of the synthesized Mn x Zn 1-x Fe 2 O 4 nanoparticles to confirm the doping level of manganese and zinc were analyzed by EDS (Energy-dispersive X-ray Spectroscopy) as shown in Table 3 and FIG. Each sample analyzed by EDS was measured at three different sites in X50k magnification normal TEM mode, and the detected atomic weight percentages of manganese and zinc were found to be successfully doped with the dopant depending on the reagent added. Finally, magnetic properties such as major magnetic hysteresis loops and small magnetic hysteresis loops, initial magnetization slope, coercivity, and saturation magnetization values were measured with a Vibrating Sample Magnetometer (VSM), which means that all synthesized Mn x Zn 1-x Fe 2 O 4 nanoparticles have pyroelectric properties.
[표 3]TABLE 3
Figure PCTKR2018010916-appb-I000003
Figure PCTKR2018010916-appb-I000003
MnxZn1-xFe2O4 나노 입자의 합성 후 검출 된 망간 및 아연의 EDS 결과 (원자 중량 %)EDS results of manganese and zinc detected after synthesis of Mn x Zn 1-x Fe 2 O 4 nanoparticles (atomic weight%)
3-3. 자기적으로 유도된 발열 특성 측정3-3. Magnetically Induced Exothermic Measurement
고체 상태 MnxZn1-xFe2O4 나노입자 및 유체 상태 PEG-코팅된 나노입자의 교류(AC) 자기장에 의해 유도된 발열 특성은 AC 코일, 커패시터, DC 전원, 웨이브 생성기 및 PC 시스템으로 구성된 특수 설계된 AC 자기장 생성 시스템을 사용하여 측정되었다. AC 자기장 생성 시스템은 커패시터 또는 AC 코일을 변경하지 않고 최대 170 Oe의 자기장 강도로 30-370 kHz의 넓은 주파수 범위에서 작동한다. 나노입자는 물질, 입자 크기 및 크기 분포에 따라 다른 AC 발열 능력을 갖기 때문에 광범위한 주파수 및 자기장에 걸쳐 다양한 나노입자의 AC 발열 용량을 평가할 수 있어야 한다. The exothermic properties induced by the alternating (AC) magnetic field of solid-state Mn x Zn 1-x Fe 2 O 4 nanoparticles and fluid-state PEG-coated nanoparticles can be transferred to AC coils, capacitors, DC power supplies, wave generators, and PC systems. It was measured using a specially designed AC magnetic field generation system constructed. AC magnetic field generation systems operate over a wide frequency range of 30-370 kHz with magnetic field strengths up to 170 Oe without changing capacitors or AC coils. Since nanoparticles have different AC heating capabilities depending on the material, particle size and size distribution, it is necessary to be able to evaluate the AC heating capacity of various nanoparticles over a wide range of frequencies and magnetic fields.
AC 발열 특성에 대해 측정된 고체 나노입자의 총량은 에펜도르프 튜브 (Eppendorf-tube)에서 60mg으로 고정되었다. 격리된 시스템으로 측정 환경을 설계하기 위해 (주변 대기로부터의 AC 가열 측정 간섭을 방지하기 위해) 각각의 샘플은 샘플 베드 중앙의 절연 스티로폼에 위치되었다. 광섬유의 팁은 고체 상태의 MnxZn1-xFe2O4 나노입자를 함유하는 에펜도르프 튜브의 내부에 위치되었다. 11 종의 MnxZn1-xFe2O4 나노입자를 8개의 서로 다른 주파수 (31.9, 47.0, 98.9, 140.0, 168.1, 195.5, 239.9, 360.2 kHz)와 5개의 서로 다른 자기장 세기 (80,100,120,140,160 Oe)로 조사하였다. 총 자기장 발생 시간은 각 측정에서 600 초이다. 자기장이 켜지면, 광학 온도계로 AC 가열 온도를 측정하고 자기장이 꺼지면 냉각시켰다.The total amount of solid nanoparticles measured for AC exothermic properties was fixed at 60 mg in an Eppendorf-tube. To design the measurement environment in an isolated system (to prevent AC heating measurement interference from the ambient atmosphere), each sample was placed in an insulating styrofoam in the center of the sample bed. The tip of the optical fiber was placed inside an Eppendorf tube containing Mn x Zn 1-x Fe 2 O 4 nanoparticles in the solid state. Eleven Mn x Zn 1-x Fe 2 O 4 nanoparticles with eight different frequencies (31.9, 47.0, 98.9, 140.0, 168.1, 195.5, 239.9, 360.2 kHz) and five different magnetic field strengths (80,100,120,140,160 Oe) Was investigated. The total magnetic field generation time is 600 seconds for each measurement. When the magnetic field was turned on, the AC heating temperature was measured with an optical thermometer and cooled when the magnetic field was turned off.
상대적으로 낮은 자기장 세기 (80, 100 Oe)에서 11 종류의 MnxZn1-xFe2O4 나노입자의 최대 델타 온도 값 dTmax 편차는 망간과 아연의 도핑 수준과 주파수에서 거의 차이가 없는 것처럼 보였다. 그러나 상대적으로 높은 자기장 세기 (120, 140, 160 Oe)에서 Mn0.5Zn0.5Fe2O4 나노입자 (도 5의 세번째 그래프에서 X 축의 중앙에서 X = 0.5)는 가장 높은 dTmax 값을 나타내며 Mn0.5Zn0.5Fe2O4 나노입자는 모든 주파수에서 가장 높은 AC 가열 특성을 생성하였다. 또한, 140.0 kHz 및 360.2 kHz의 주파수에서의 AC 가열 특성의 dTmax 값은 비교적 높았으며, 본 발명에서 사용된 나노입자는 다른 그룹에 비해 매우 낮은 주파수로 반응한다는 것을 알 수 있었다.The maximum delta temperature value dTmax deviation of 11 kinds of Mn x Zn 1-x Fe 2 O 4 nanoparticles at relatively low magnetic field strength (80, 100 Oe) seemed to be little difference in doping level and frequency of manganese and zinc. . However, at relatively high magnetic field strengths (120, 140, 160 Oe), Mn 0.5 Zn 0.5 Fe 2 O 4 nanoparticles (X = 0.5 at the center of the X axis in the third graph of FIG. 5) exhibit the highest dTmax values and Mn 0.5 Zn The 0.5 Fe 2 O 4 nanoparticles produced the highest AC heating properties at all frequencies. In addition, the dTmax value of the AC heating characteristics at the frequencies of 140.0 kHz and 360.2 kHz was relatively high, and it was found that the nanoparticles used in the present invention reacted at a very low frequency compared to other groups.
Mn0.5Zn0.5Fe2O4의 입자를 이용하여 인체의 질병을 조절 또는 치료하기 위한 온열치료를 시행할 때 인체에 무해하다고 알려진 적정 주파수와 적정 자장을 조절하였다. 본 발명에서는 외부에서 거는 주파수와 자장이 Mn0.5Zn0.5Fe2O4의 입자가 존재하는 병소부위에는 온열 효과를 발생하고 주변에 Mn0.5Zn0.5Fe2O4의 입자가 없는 정상 조직의 세포에는 무해하여 전혀 부작용을 일으키지 않도록 하기 위하여 주파수는 140kHZ 이하, 바람직하게는, 110KHz 이하이며, 자장은 190 Oe 이하, 바람직하게는 140 Oe 이하이다.Mn 0.5 Zn 0.5 Fe 2 O 4 particles were used to adjust the proper frequency and the appropriate magnetic field, which are known to be harmless to the human body when performing heat treatment to control or treat human diseases. In the present invention, the frequency and the magnetic field placed from outside Mn 0.5 Zn 0.5 Fe 2 O lesion of particles is present in the 4, generates a thermal effect and around the Mn 0.5 Zn 0.5 Fe 2 of the normal tissue cells, with no particles of the O 4 The frequency is 140 kHZ or less, preferably 110 KHz or less, and the magnetic field is 190 Oe or less, preferably 140 Oe or less in order to be harmless and cause no side effects at all.
[실시예 4] 나노입자의 생체 적합성 확인Example 4 Checking Biocompatibility of Nanoparticles
4-1. 세포 배양 및 시험관 내 세포 독성 분석4-1. Cell Culture and In Vitro Cytotoxicity Analysis
상업적으로 이용가능한 인간 교모세포종 세포주들을 ATCC(American Type Culture collection) 및 KCLB(Korean Cell Line Bank)로부터 얻은 인간 교모세포종 세포주 (A172, T98G, U87, U118, U138, U251, U373) 7 종, 뇌종양 절제(brain tumor lobectomy) 과정에서 얻어진, 일차 배양된 인간 교모세포종 세포 (GBL-28 및 GBL-37), 및 일차 배양된 인간 정상 피질 세포 (NSC10, NSC09)를 사용하였다. Seven human glioblastoma cell lines (A172, T98G, U87, U118, U138, U251, U373) obtained from commercially available human glioblastoma cell lines from American Type Culture collection (ATCC) and Korean Cell Line Bank (KCLB), brain tumor ablation Primary cultured human glioblastoma cells (GBL-28 and GBL-37), and primary cultured human normal cortical cells (NSC10, NSC09) obtained in the course of brain tumor lobectomy were used.
모든 세포들은 10% FBS 및 100U/ml 페니실린/스트렙토마이신 함유한 DMEM (Dulbecco Modified Eagled Medium, WelGENE, LM001-05, Korea)으로 5% CO2, 37℃ 의 습한 인큐베이터에서 배양하고, TrypLETM 을 이용하여 매 7-8일마다 트립신화에 의하여 액세스하였다. All cells were cultured in 10% FBS and 100U / ml penicillin / streptomycin-containing DMEM humidified incubator at 5% CO2, 37 ℃ to (Dulbecco Modified Eagled Medium, WelGENE, LM001-05, Korea), using TrypLE TM Accessed by trypsinization every 7-8 days.
CCK-8 분석 (WST-8, Dojindolabs, Kumamoto, Japan)은 PEG-코팅된 Mn0.5Zn0.5Fe2O4 나노입자의 증식 및 생존력에 미치는 영향을 평가하기 위해 사용되었다. CCK-8 분석은 제조사의 지침에 따라 사용되었다. A172, T98G, U118, U138, U251, U373, U87, GBL-28, GBL-37, NSC09, NSC10 세포는 96-웰 플레이트에 3000 세포/웰의 개수로 시딩되었다. 24시간 후 (접종 시간), PEG-코팅된 Mn0.5Zn0.5Fe2O4 나노입자는 5% CO2, 37 ℃ 습도 배양기에서 0, 3, 5, 10, 30, 50, 100, 300, 및 500μg/mL의 농도로 24시간 동안 처리되었다. PEG-코팅된 Mn0.5Zn0.5Fe2O4 나노입자의 배양 후, 각 웰을 인산 완충 식염수(PBS)로 세척하고, CCK-8 용액으로 새로운 배지를 96-웰 플레이트의 각 웰에 첨가 하였다. 플레이트를 CCK-8 용액과 세포의 반응을 위해 2시간 더 배양 하였다. 마지막으로 Multiscan MS 분광 광도계 (Labsystems, Stockholm, Sweden)를 사용하여 450nm에서의 흡광도를 평가 하였다.CCK-8 analysis (WST-8, Dojindolabs, Kumamoto, Japan) was used to assess the effect on the proliferation and viability of PEG-coated Mn 0.5 Zn 0.5 Fe 2 O 4 nanoparticles. CCK-8 analysis was used according to the manufacturer's instructions. A172, T98G, U118, U138, U251, U373, U87, GBL-28, GBL-37, NSC09, NSC10 cells were seeded in a number of 3000 cells / well in 96-well plates. After 24 hours (inoculation time), PEG-coated Mn 0.5 Zn 0.5 Fe 2 O 4 nanoparticles were obtained at 0, 3, 5, 10, 30, 50, 100, 300, and 5% CO 2 , 37 ° C. humidity incubator. Treatment was performed for 24 hours at a concentration of 500 μg / mL. After incubation of PEG-coated Mn 0.5 Zn 0.5 Fe 2 O 4 nanoparticles, each well was washed with phosphate buffered saline (PBS) and fresh medium was added to each well of a 96-well plate with CCK-8 solution. Plates were further incubated for 2 hours for reaction of the cells with CCK-8 solution. Finally, the absorbance at 450 nm was evaluated using a Multiscan MS spectrophotometer (Labsystems, Stockholm, Sweden).
4-2. PEG-코팅된 Mn0.5Zn0.5Fe2O4 나노입자의 시험관 내 세포 독성 분석 결과4-2. In Vitro Cytotoxicity Assay of PEG-Coated Mn 0.5 Zn 0.5 Fe 2 O 4 Nanoparticles
시험관내 자성 나노입자 Mn0.5Zn0.5Fe2O4를 이용한 온열 치료 적용을 위해, 세포 독성 분석은 11 가지 다른 종류의 인간 유래 세포를 사용하여 수행되었으며, 구체적으로는 상업적으로 이용가능한 인간 교모세포종 세포주들을 ATCC(American Type Culture collection) 및 KCLB(Korean Cell Line Bank)로부터 얻은 인간 교모세포종 세포주 (A172, T98G, U87, U118, U138, U251, U373) 7 종, 뇌종양 절제(brain tumor lobectomy) 과정에서 얻어진, 일차 배양된 인간 교모세포종 세포 (GBL-28 및 GBL-37), 및 일차 배양된 인간 정상 피질 세포 (NSC10, NSC09)를 사용하였다. For thermotherapy applications with in vitro magnetic nanoparticles Mn 0.5 Zn 0.5 Fe 2 O 4 , cytotoxicity assays were performed using eleven different kinds of human derived cells, specifically human glioblastoma cell lines that are commercially available. 7 human glioblastoma cell lines (A172, T98G, U87, U118, U138, U251, U373) obtained from the American Type Culture collection (ATCC) and the Korean Cell Line Bank (KCLB), obtained during a brain tumor lobectomy procedure. Primary cultured human glioblastoma cells (GBL-28 and GBL-37), and primary cultured human normal cortical cells (NSC10, NSC09) were used.
도 6에 나타난 바와 같이, 100μg/ml의 나노입자 농도 내에서 11 종의 세포의 상대 세포 생존율이 70 %를 초과하여 나노입자 자체가 세포 생존 능력에 결정적으로 영향을 미치지 않으며, 나노입자가 세포와 함께 항온 처리될 때 안정적임을 알 수 있었다.As shown in FIG. 6, the relative cell viability of 11 cells within a nanoparticle concentration of 100 μg / ml exceeds 70% so that the nanoparticles themselves do not critically affect cell viability, and the nanoparticles It was found to be stable when incubated together.
4-3. PEG-코팅된 Mn0.5Zn0.5Fe2O4 나노입자의 세포 내 흡수4-3. Intracellular Uptake of PEG-Coated Mn 0.5 Zn 0.5 Fe 2 O 4 Nanoparticles
PEG-코팅된 Mn0.5Zn0.5Fe2O4 나노입자에 의해 처리된 세포에 대한 TEM 분석은 세포 내로의 나노입자 침투 정도, 세포 사멸 및 핵분열을 포함한 세포 변형을 조사하기 위해 수행되었다. TEM analysis of cells treated with PEG-coated Mn 0.5 Zn 0.5 Fe 2 O 4 nanoparticles was performed to investigate cellular modifications, including degree of nanoparticle penetration into cells, cell death and nuclear fission.
세포들을 100μg/mL의 나노입자와 함께 24시간 동안 배양 하였다. 배양 후 세포를 세척하고 TrypLE 용액으로 분리 한 후, 0.1M 인산염 완충액 (pH 7.2) 중 2.5 % 글루타르알데히드와 2 % 0.1 M 인산염 또는 카코딜레이트 완충액 (pH 7.2) 중 2 % 파라포름알데히드의 혼합물에서 하룻밤 고정시켰다. 이 세포는 실온에서 1.5 시간 동안 0.1M 인산염 또는 카코딜레이트 완충액 중 2 % 오스뮴 삼산화물에 1.5 시간 동안 사후 고정시켰다. 이어서, 프로필렌 옥사이드 및 EPON 에폭시 수지를 혼합하여 침투시킨 50, 60, 70, 80, 90, 95 및 100 % 에탄올 (X2) 시리즈를 통해 탈수된 중수소화된 H2O2로 간단히 세척하였고(Embed 812, Nadic 폴리베드 812, 도데세닐숙신 무수물, 디메틸아미노 메틸 페놀, Electron Microscopy Polysciences, USA), 마지막으로 에폭시 수지만으로 매립시켰다. 에폭시 수지 혼합 시료를 캡슐에 넣고 37 ℃에서 12시간, 60 ℃에서 48시간 중합하였다. 광학 현미경 검사를 위한 섹션을 500nm에서 자르고 80 ℃의 핫 플레이트에서 1 % 톨루이딘 블루로 45 초 동안 염색하였다. 얇은 절편은 ultramicrotome (RMC MT-XL)을 사용하여 만들고 구리 격자에 수집되었다. 얇은 절개를 위한 적절한 영역을 65 nm에서 절단하고, 투과 전자 현미경 (JEM-1400; Japan)으로 80 kV에서 검사하기 전에 포화 6 % 우라닐 아세테이트 및 4 % 리드 시트르산으로 염색하였다.Cells were incubated with 100 μg / mL nanoparticles for 24 hours. After incubation, the cells are washed and separated with TrypLE solution, followed by a mixture of 2.5% glutaraldehyde in 0.1M phosphate buffer (pH 7.2) and 2% paraformaldehyde in 2% 0.1M phosphate or cacodylate buffer (pH 7.2) Fixed overnight. The cells were post-fixed for 1.5 hours in 2% osmium trioxide in 0.1M phosphate or cacodylate buffer for 1.5 hours at room temperature. It was then simply washed with deuterated deuterated H2O2 through 50, 60, 70, 80, 90, 95, and 100% ethanol (X2) series in which propylene oxide and EPON epoxy resins were mixed and permeated (Embed 812, Nadic Poly Bed 812, dodecenylsuccinic anhydride, dimethylamino methyl phenol, Electron Microscopy Polysciences, USA), and finally only embedded with epoxy resin. The epoxy resin mixed sample was put in a capsule and polymerized at 37 ° C. for 12 hours and at 60 ° C. for 48 hours. Sections for optical microscopy were cut at 500 nm and stained for 45 seconds with 1% toluidine blue on a hot plate at 80 ° C. Thin sections were made using ultramicrotome (RMC MT-XL) and collected on a copper grid. Appropriate areas for thin incisions were cut at 65 nm and stained with saturated 6% uranyl acetate and 4% lead citric acid before being examined at 80 kV with transmission electron microscopy (JEM-1400; Japan).
4-4. PEG-코팅된 Mn0.5Zn0.5Fe2O4 나노입자의 세포 내 흡수 거동4-4. Intracellular Uptake Behavior of PEG-Coated Mn 0.5 Zn 0.5 Fe 2 O 4 Nanoparticles
11 종류의 인간 유래 세포에 의한 PEG-코팅된 Mn0.5Zn0.5Fe2O4 나노입자의 세포 내 흡수 거동 및 PEG-코팅된 Mn0.5Zn0.5Fe2O4 나노입자에 의한 형태 변화를 100μg/mL의 나노유체 농도로 조사하였다. 자성 나노입자를 사용한 고열을 성공적으로 형성하기 위해서는 염증, 핵분열 또는 세포 변형과 같은 부작용 없이 세포 내에서 흡수되거나 흡수된 나노입자가 국지화 되어야 한다. 100μg / mL PEG- the shape change caused by the intracellular absorption behavior of the coated Mn 0.5 Zn 0.5 Fe 2 O 4 nanoparticles and PEG- coated Mn 0.5 Zn 0.5 Fe 2 O 4 nano-particles by 11 kinds of human-derived cells The nanofluid concentration of was investigated. Successful formation of high fever using magnetic nanoparticles requires localization of the absorbed or absorbed nanoparticles within cells without side effects such as inflammation, fission or cellular transformation.
도 7에서 알 수 있듯이, 흡수된 나노입자는 모두 핵 또는 핵막을 방해하거나 영향을 주지 않으면서 세포질 영역에 위치한다. PEG-코팅된 나노입자가 종양 영역에 주입되어 AC 자기장에 노출되면 흡수된 나노입자는 악성 종양 세포의 세포질 영역이나 세포막을 직접 파괴 할 수 있으며 자성 나노입자 온열 치료 중 온도 상승으로 세포 사멸을 유도한다.As can be seen in FIG. 7, the absorbed nanoparticles are all located in the cytoplasmic region without disturbing or affecting the nucleus or nuclear membrane. When PEG-coated nanoparticles are injected into the tumor area and exposed to AC magnetic fields, the absorbed nanoparticles can directly destroy the cytoplasmic regions or cell membranes of malignant tumor cells and induce cell death by rising temperatures during magnetic nanoparticle warming treatment. .
4-5. 마우스 종양 모델4-5. Mouse tumor model
동물 치료 및 피하 섬유 육종 세포 주입 및 생체 내 고온 증체 실험은 서울대학교 병원 동물 실험위원회(IACUC) (IACUC No. SNU-161129-2)의 승인을 받은 지침에 따라 수행되었다. 모든 절차는 Balb/c 누드 마우스로 인한 통증의 양을 줄이기 위해 수행되었다. 피하 마우스 종양 모델의 경우, 본 실험에서 사용된 마우스를 마취시키고 FSaLL 세포 (Massachusetts General Hospital의 Dr. Herman Suit laboratory에서 만든 C3H 마우스의 radiation-induced fibrosarcoma으로, Early generation cells 을 Dr. Suit로부터 기증받아 사용함) (5 x 106 세포 50 μL)를 Balb/c 누드 마우스 근위 대퇴 부위에 피하 주사하여 투여하였다.Animal treatment and subcutaneous fibrosarcoma cell infusion and in vivo high temperature increase experiments were performed according to the guidelines approved by the Seoul National University Hospital Animal Testing Committee (IACUC) (IACUC No. SNU-161129-2). All procedures were performed to reduce the amount of pain caused by Balb / c nude mice. For subcutaneous mouse tumor models, anesthetize the mice used in this experiment and use FSaLL cells (radiation-induced fibrosarcoma of C3H mice from Dr. Herman Suit laboratory at Massachusetts General Hospital, using early generation cells donated from Dr. Suit). ) (50 μL of 5 × 10 6 cells) was administered by subcutaneous injection into the proximal thigh site of Balb / c nude mice.
4-6. 생체 내 자성 나노입자의 온열 치료4-6. Thermal treatment of magnetic nanoparticles in vivo
피하 FSALL 주사 마우스를 무작위로 4 군으로 나누어 (n = 5, 대조군, n = 5, 교류 자기장 없는 나노입자 치료, n = 5, 나노입자 없는 교류 자기장 치료, n = 5, 교류 자기장을 이용한 나노입자 치료, 즉 온열 치료군) 마우스의 건강 상태를 매일 확인하였다. 생체 내 온열 치료는 FSaLL 세포 주입 10일 후에 시작되었다. 고형 종양 유도된 마우스 모델을 마취시키고 PEG-코팅된 Mn0.5Zn0.5Fe2O4 나노입자 100μL를 유도된 종양의 중심에 주사 하였다. 마우스는 자기 고열을 위해 AC 코일 시스템의 중앙에 놓였다. 인가된 자기장 세기 및 주파수는 140 Oe 및 99.0 kHz이었다(140 Oe는 11.14 kA/m이고 주어진 자기장의 총량은 1.103x109A/m·s 임). Subcutaneous FSALL injection mice were randomly divided into four groups (n = 5, control, n = 5, nanoparticle therapy without alternating magnetic field, n = 5, alternating magnetic field treatment without nanoparticles, n = 5, nanoparticles with alternating magnetic field) Treatment, ie thermotherapy group) The health status of the mice was checked daily. In vivo thermotherapy started 10 days after FSaLL cell injection. Solid tumor induced mouse models were anesthetized and injected 100 μL of PEG-coated Mn 0.5 Zn 0.5 Fe 2 O 4 nanoparticles into the center of the induced tumor. Mice were placed in the center of the AC coil system for magnetic hyperthermia. The applied magnetic field strength and frequency were 140 Oe and 99.0 kHz (140 Oe is 11.14 kA / m and the total amount of magnetic field given is 1.103 × 10 9 A / m · s).
온열 치료를 위해 2주간의 온열 치료 6회, 각 회당 20분 동안 교류 자기장을 가했다. 마우스 종양 크기 및 체중을 2일마다 확인하였다. 이종 이식 종양의 부피 측정은 Vernier caliper에 의해 측정되었으며 방정식은 다음과 같다.An alternating magnetic field was applied for 6 minutes of heat therapy for 20 minutes each time for 2 weeks of heat therapy. Mouse tumor size and body weight were checked every two days. Volume measurements of xenograft tumors were measured by Vernier caliper and the equation is:
종양 체적 (mm3) = 1/2 (길이 Х 넓이2)Tumor volume (mm 3 ) = 1/2 (length Х width 2 )
4-7. 생체 내 자성 나노입자의 온열 치료 효능 분석4-7. Analysis of Thermal Therapy Efficacy of Magnetic Nanoparticles in Vivo
생체 내 자성 나노입자의 온열 치료 효능을 조사하기 위해, PEG-코팅된 Mn0.5Zn0.5Fe2O4 나노유체를 FSaLL 세포에 의해 유도된 피하 이종 이식 종양의 중앙에 주입하였다. 마우스에 교류 자기장을 조사하고 자성 나노입자 온열 치료 중 표면 온도를 열 화상 카메라를 이용하여 모니터링하였다 (도 8). 자기 고열시 종양의 피부 표면 온도는 38.3 ℃를 초과하였으며, 고온 치료 중 종양의 내부 온도 또는 중심 온도가 피부 온도보다 높을 수 있음을 알 수 있다. 또한 종양 부위와 정상 체온의 온도차를 ResearchIR (FLIR, Wilsonville, USA)라는 열 화상 카메라 소프트웨어로 분석하여 종양과 체온의 온도차가 도 9와 같이 5 ℃ 이상임을 알 수 있었다.To investigate the thermal therapeutic efficacy of magnetic nanoparticles in vivo, PEG-coated Mn 0.5 Zn 0.5 Fe 2 O 4 nanofluids were injected in the center of subcutaneous xenograft tumors induced by FSaLL cells. The alternating magnetic field was irradiated to mice and the surface temperature during magnetic nanoparticle thermal treatment was monitored using a thermal imaging camera (FIG. 8). The skin surface temperature of the tumor at self-heating exceeded 38.3 ° C., and it can be seen that the internal temperature or the center temperature of the tumor during the high temperature treatment may be higher than the skin temperature. In addition, the temperature difference between the tumor site and the normal body temperature was analyzed by a thermal imaging camera software called ResearchIR (FLIR, Wilsonville, USA). The temperature difference between the tumor and the body temperature was 5 ° C. or more as shown in FIG. 9.
AC 자기장 노출 6분 후에, 종양에서 고열 온도가 얻어졌고 온열 치료 중에 온도가 유지되었다. 또한 Vernier caliper를 이용하여 종양의 크기를 측정하였고 종양 체적 계산식을 이용하여 용적 측정을 하였다. 대조군 및 자성 나노입자만 투여한 군의 종양 크기는 치료 시작 후 유의하게 증가하였으며, 크기는 15 배 이상 증가 하였다. 그러나 자성 나노입자와 교류 자기장을 이용한 고열 치료군은 다른 군에 비해 종양의 크기 증가 속도가 느렸으며, 종양 크기도 다른 그룹보다 작았다. 도 10에 나타낸 바와 같이, 종양의 양(Tumor Volume)에 있어서도 고열 치료군에서 종양의 양이 가장 더디게 증가 혹은 가장 작은 크기를 보임을 알 수 있고, 이를 통해 본 발명이 온열 치료 효과가 있음을 확인하였다. 도 11은 본 발명에 따른 온열 치료 중 피하 종양의 캡처된 이미지를 나타낸다.After 6 minutes of AC magnetic field exposure, a high fever temperature was obtained in the tumor and the temperature was maintained during the thermotherapy. Tumor size was measured using Vernier caliper and volumetric volume was calculated using tumor volume calculation. The tumor size of the control group and the magnetic nanoparticle-only group increased significantly after the start of treatment, and the size increased more than 15 times. However, the hyperthermia group using magnetic nanoparticles and alternating magnetic fields showed slower tumor growth and smaller tumors than other groups. As shown in Figure 10, even in the tumor volume (Tumor Volume) it can be seen that the tumor amount in the hyperthermia treatment group shows the slowest increase or the smallest size, through which the present invention has a heat treatment effect . 11 shows a captured image of a subcutaneous tumor during heat treatment according to the present invention.
이상에서 본 발명에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.Although the present invention has been described in detail above, the scope of the present invention is not limited thereto, and various modifications and changes can be made without departing from the technical spirit of the present invention described in the claims. It will be self-evident to those who have knowledge of.

Claims (9)

  1. 하기 일반식 1로 표시되는 초상자성 나노입자를 유효성분으로 포함하는 온열 치료용 조성물:Thermal treatment composition comprising a superparamagnetic nanoparticle represented by the general formula 1 as an active ingredient:
    일반식 1Formula 1
    MnxZn1-xFe2O4 (0≤X≤1).Mn x Zn 1-x Fe 2 O 4 (0 ≦ X ≦ 1).
  2. 제 1항에 있어서,The method of claim 1,
    상기 초상자성 나노입자가 10 nm 미만의 평균 입경을 갖는 것을 특징으로 하는 온열 치료용 조성물.The superparamagnetic nanoparticles have an average particle diameter of less than 10 nm, the composition for thermal treatment.
  3. 제 1항에 있어서,The method of claim 1,
    상기 초상자성 나노입자는 30 내지 370 kHz 주파수 및 80 내지 160 Oe 자기장 세기에서 자기 유도 발열 특성을 갖는 것을 특징으로 하는 온열 치료용 조성물. The superparamagnetic nanoparticles have a composition for thermal treatment, characterized in that it has a magnetic induction fever at 30 to 370 kHz frequency and 80 to 160 Oe magnetic field strength.
  4. 제 1항에 있어서,The method of claim 1,
    상기 초상자성 나노입자가 생체적합성 고분자로 코팅된 것임을 특징으로 하는 온열 치료용 조성물.The superparamagnetic nanoparticles are heat treatment compositions, characterized in that the coating with a biocompatible polymer.
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 생체적합성 고분자는 폴리에틸렌글리콜인 것을 특징으로 하는 온열 치료용 조성물. The biocompatible polymer is a composition for thermal treatment, characterized in that the polyethylene glycol.
  6. 제 1항에 있어서, The method of claim 1,
    암 치료용인 것을 특징으로 하는 온열 치료용 조성물.A composition for treating heat, characterized in that for treating cancer.
  7. 제 6항에 있어서,The method of claim 6,
    암의 성장을 억제하는 것을 특징으로 하는 온열 치료용 조성물. A composition for treating heat, characterized in that to inhibit the growth of cancer.
  8. 제 1항 내지 제 7항 중 어느 한 항의 조성물을 투여하는 단계를 포함하는 온열 치료 방법.A method of thermal treatment comprising administering the composition of any one of claims 1 to 7.
  9. 제 1항 내지 제 7항 중 어느 한 항의 조성물을 투여하는 단계를 포함하는 암 치료 방법. A method of treating cancer, comprising administering the composition of any one of claims 1 to 7.
PCT/KR2018/010916 2018-06-14 2018-09-17 Superparamagnetic nanoparticles for hyperthermia therapy WO2019240329A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180068233A KR102238816B1 (en) 2018-06-14 2018-06-14 Superparamagnetic Nanoparticles for Hyperthermia Therapy
KR10-2018-0068233 2018-06-14

Publications (1)

Publication Number Publication Date
WO2019240329A1 true WO2019240329A1 (en) 2019-12-19

Family

ID=68843404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010916 WO2019240329A1 (en) 2018-06-14 2018-09-17 Superparamagnetic nanoparticles for hyperthermia therapy

Country Status (2)

Country Link
KR (1) KR102238816B1 (en)
WO (1) WO2019240329A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114404655A (en) * 2022-01-28 2022-04-29 洛阳市中医院 Porous scaffold with photo-thermal effect and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240024457A (en) * 2022-08-17 2024-02-26 서울대학교산학협력단 Method for producing Superparamagnetic Iron Oxide Nanoparticles[SPIONs] for immunotherapy
KR20240024448A (en) * 2022-08-17 2024-02-26 서울대학교산학협력단 Superparamagnetic Iron Oxide Nanoparticles[SPIONs] for immunotherapy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100099941A1 (en) * 2004-05-10 2010-04-22 Florida State University Research Foundation Method of hyperthemia treatment
CN104623658A (en) * 2014-12-29 2015-05-20 上海师范大学 Water-soluble ferrate composite nano-particle as well as preparation method and application thereof
US20170216463A1 (en) * 2010-05-26 2017-08-03 The General Hospital Corporation Magnetic Nanoparticles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100099941A1 (en) * 2004-05-10 2010-04-22 Florida State University Research Foundation Method of hyperthemia treatment
US20170216463A1 (en) * 2010-05-26 2017-08-03 The General Hospital Corporation Magnetic Nanoparticles
CN104623658A (en) * 2014-12-29 2015-05-20 上海师范大学 Water-soluble ferrate composite nano-particle as well as preparation method and application thereof

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JADHAV, S.V.: "Induction heating and in vitro cytotoxicity studies of MnZnFe204 nanoparticles for self-controlled magnetic particle hyperthermia", JOURNAL OF ALLOYS AND COMPOUNDS, 15 May 2018 (2018-05-15), pages 282 - 291, XP055664938, ISSN: 0925-8388, DOI: 10.1016/j.jallcom.2018.02.174 *
LEE JOOYOUNG: "A Study of MnxZnl-xFe204 superparamagnetic iron oxide nanoparticles and its therapeutic efficacy for magnetic nanoparticle hyperthermia applications", MASTER'S THESIS, 2017, pages 1 - 101 *
LIN, MEI ET AL: "The anti-hepatoma effect of nanosized Mn-Zn ferrite magnetic fluid hyperthermia associated with radiation in vitro and in vivo", NANOTECHNOLOGY, vol. 24, no. 25, 2013, pages 1 - 8, XP020246468, ISSN: 0957-4484, DOI: 10.1088/0957-4484/24/25/255101 *
PINEIRO, YOLANDA: "Iron oxide based nanoparticles for magnetic hyperthermia strategies in biological applications", EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, vol. 2015, no. 27, 1 September 2015 (2015-09-01), pages 4495 - 4509, XP055664929, ISSN: 1434-1948, DOI: 10.1002/ejic.201500598 *
RALAND, R D: "Efficacy of heat generation in CTAB coated Mn doped ZnFe204 nanoparticles for magnetic hyperthermia", JOURNAL OF PHYSICS D: APPLIED PHYSICS, vol. 50, no. 3, 9 December 2016 (2016-12-09), pages 1 - 17, XP020312454, ISSN: 0022-3727, DOI: 10.1088/1361-6463/aa4e9a *
RIOS-HURTADO, J.C.: "Facile synthesis and characterization of MnxZn1-xFe204/activated carbon composites for biomedical applications", JOURNAL OF CERAMIC SCIENCE AND TECHNOLOGY, 1 January 2016 (2016-01-01), pages 289 - 294, XP055664915, DOI: 10.4416/JCST2016-00020 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114404655A (en) * 2022-01-28 2022-04-29 洛阳市中医院 Porous scaffold with photo-thermal effect and preparation method thereof
CN114404655B (en) * 2022-01-28 2022-12-20 洛阳市中医院 Porous scaffold with photo-thermal effect and preparation method thereof

Also Published As

Publication number Publication date
KR20190141446A (en) 2019-12-24
KR102238816B1 (en) 2021-04-09

Similar Documents

Publication Publication Date Title
WO2019240329A1 (en) Superparamagnetic nanoparticles for hyperthermia therapy
Li et al. Enhanced synergism of thermo-chemotherapy for liver cancer with magnetothermally responsive nanocarriers
Yadavalli et al. Dual responsive PNIPAM–chitosan targeted magnetic nanopolymers for targeted drug delivery
CN109276721B (en) Targeting mesoporous polydopamine multifunctional nano diagnosis and treatment agent and preparation method and application thereof
Nafiujjaman et al. Ternary graphene quantum dot–polydopamine–Mn 3 O 4 nanoparticles for optical imaging guided photodynamic therapy and T 1-weighted magnetic resonance imaging
Wang et al. Nanosized As2O3/Fe2O3 complexes combined with magnetic fluid hyperthermia selectively target liver cancer cells
WO2014163222A1 (en) Metal oxide nanoparticle-based magnetic resonance imaging contrast agent with a central cavity
KR102175449B1 (en) Iron Oxide/Heavy atom-Halogen Compound Core/Shell Magnetic Nanoparticles
Wydra et al. Synthesis and characterization of PEG-iron oxide core-shell composite nanoparticles for thermal therapy
CN106729773A (en) The magnetic nanoparticle and preparation method and application of the load adriamycin of targeting modification
WO2010074539A2 (en) Method for preparing engineered mg doped ferrite superparamagnetic nano particle exhibiting ac magnetic induction heating at high temperature and mg doped ferrite superparamagnetic nano particles engineered by the method
Deng et al. 808 nm light responsive nanotheranostic agents based on near-infrared dye functionalized manganese ferrite for magnetic-targeted and imaging-guided photodynamic/photothermal therapy
CN110893237B (en) Application of copper-palladium alloy nanoparticles and autophagy inhibitor in preparation of medicine or kit for killing tumors based on photothermal effect
Yang et al. An effective thermal therapy against cancer using an E‐jet 3D‐printing method to prepare implantable magnetocaloric mats
Li et al. Enhancing the effects of transcranial magnetic stimulation with intravenously injected magnetic nanoparticles
Chen et al. Controlling dielectric loss of biodegradable black phosphorus nanosheets by iron-ion-modification for imaging-guided microwave thermoacoustic therapy
Morita et al. Nanocarriers for drug-delivery systems using a ureido-derivatized polymer gatekeeper for temperature-controlled spatiotemporal on–off drug release
WO2022145970A1 (en) Iron oxide magnetic particles
Tang et al. Study of the therapeutic effect of 188Re labeled folate targeting albumin nanoparticle coupled with cis-diamminedichloroplatinum cisplatin on human ovarian cancer
CN106798921A (en) A kind of functional magnetic nano material to ultra low frequency magnetic field sensitive and preparation method thereof
Kirubha et al. Enhancement of thermal imaging by iron oxide nanoparticle–Preliminary study
WO2024039151A1 (en) Superparamagnetic iron oxide nanoparticles for immunotherapy
CN104984358B (en) A kind of temperature sensitive glue of single-walled carbon nanotube and preparation method thereof and purposes
Peng et al. Fe3O4@ MnO2@ PAA nanoparticles for magnetically targeted microwave-thermal therapy guided by thermoacoustic imaging
WO2024039148A1 (en) Method for preparing superparamagnetic iron oxide nanoparticles for immunotherapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922530

Country of ref document: EP

Kind code of ref document: A1