WO2019240311A1 - Hydrogen generating device - Google Patents

Hydrogen generating device Download PDF

Info

Publication number
WO2019240311A1
WO2019240311A1 PCT/KR2018/006763 KR2018006763W WO2019240311A1 WO 2019240311 A1 WO2019240311 A1 WO 2019240311A1 KR 2018006763 W KR2018006763 W KR 2018006763W WO 2019240311 A1 WO2019240311 A1 WO 2019240311A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive
plate
negative
positive electrode
Prior art date
Application number
PCT/KR2018/006763
Other languages
French (fr)
Korean (ko)
Inventor
김종만
오광진
고해훈
Original Assignee
다온기전 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 다온기전 주식회사 filed Critical 다온기전 주식회사
Publication of WO2019240311A1 publication Critical patent/WO2019240311A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/75Assemblies comprising two or more cells of the filter-press type having bipolar electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a hydrogen generating device, and more particularly to a hydrogen generating device for generating hydrogen by electrolysis of water.
  • Hydrogen generating apparatus using electrolysis is an apparatus in which oxygen gas is generated on the anode side and hydrogen gas is generated on the cathode side as water molecules are decomposed by applying electrical energy to water containing an electrolyte or the like.
  • Such hydrogen generators are developed and used in a variety of devices.
  • a pair of cases are provided with inlets and outlets through which water is introduced and discharged, a cathode plate and a cathode plate are disposed in the case, and an ion membrane is disposed between the anode plate and the cathode plate.
  • water molecules may be decomposed by electric energy to generate hydrogen and oxygen.
  • the conventional hydrogen generating apparatus as described above uses a case made of an insulator such as a synthetic resin, and arranges the ion membrane, the positive electrode plate, and the negative electrode plate in close contact with the case formed of the insulator.
  • the problem to be solved by the present invention is to provide a hydrogen generating device that can maximize the efficiency of generating hydrogen.
  • the first and second positive electrode accommodating portion each formed with a water flow path is formed therein, the first and second positive electrode plate electrically connected to the positive electrode;
  • a negative electrode plate disposed between the first and second positive electrode plates, a negative electrode accommodating part being formed on both surfaces thereof, and a negative electrode electrically connected to the negative electrode;
  • a first insulating plate disposed between the first positive electrode plate and the negative electrode plate and insulating the first positive electrode plate and the negative electrode plate;
  • a second insulating plate disposed between the second positive electrode plate and the negative electrode plate to insulate the second positive electrode plate and the negative electrode plate;
  • a first diaphragm disposed between the first positive electrode accommodating part and the negative electrode accommodating part formed on one surface of the negative electrode plate such that the first positive accommodating part and the negative accommodating part are separated;
  • a second diaphragm disposed between the second positive electrode accommodating part and the negative electrode accommodating part formed on the other surface of the negative electrode plate such that the second positive electrode accommodating part and the negative electrode accommodating part are separated
  • the negative electrode accommodating part may be formed on both surfaces of the shape, and an exhaust port through which hydrogen gas is discharged from the negative accommodating part may be formed.
  • first to third anode path portions are formed in the first and second anode receiving portions formed on the first and second anode plates, respectively, and the first anode path portion is one direction from the first and second inlets.
  • Each of the second anode path portions extends in the other direction from the first and second outlets, and the third anode path portions are connected to each other.
  • One or more may be formed between the first and second anode path portions.
  • first to third negative electrode path parts are formed in the negative electrode accommodating part formed on the negative electrode plate, the first negative electrode path part extends in one direction, and the second negative electrode path part is parallel to the first negative electrode path part.
  • the third cathode path part may be formed to be spaced apart from each other, and the first and second cathode path parts may be formed at least one between the first and second cathode path parts.
  • the first and second positive electrode plates may further include first and second positive electrode connection parts to which positive electrodes of DC power supplied from the outside are connected, respectively, and the negative plate may be connected to the DC power supplied from the outside to the upper end.
  • a negative electrode connector to which the negative electrode is connected may be formed.
  • the cathode plate one or more path holes for connecting the cathode receiving portion formed on both sides may be formed.
  • an area in contact with water and a positive electrode plate is formed by forming a path through which water can flow in the positive electrode plate and the negative electrode plate, without using a separate positive electrode plate and negative electrode plate in the case of an insulating insulator. Since it can be maximized, there is an effect that can maximize the amount of hydrogen that can occur at the same time.
  • the speed at which the diaphragm is in contact with the water because water is introduced into the positive and negative receiving portions while the power is connected to the positive and negative plates is quick to minimize the damage to the diaphragm by applying power to the diaphragm in the absence of water.
  • FIG. 1 is a perspective view showing a hydrogen generator according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view showing a hydrogen generator according to an embodiment of the present invention.
  • FIG 3 is a perspective view illustrating a first anode plate of a hydrogen generator according to an embodiment of the present invention.
  • FIG. 4 is a perspective view illustrating a negative electrode plate of the hydrogen generator according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view taken along the line AA ′ of FIG. 4.
  • FIG. 6 is a schematic view showing a hydrogen collecting device using a hydrogen generating device according to an embodiment of the present invention.
  • FIG. 1 is a perspective view showing a hydrogen generating apparatus according to an embodiment of the present invention
  • Figure 2 is an exploded perspective view showing a hydrogen generating apparatus according to an embodiment of the present invention
  • 3 is a perspective view illustrating a first anode plate of a hydrogen generator according to an embodiment of the present invention
  • 4 is a perspective view illustrating a negative electrode plate of the hydrogen generator according to the exemplary embodiment of the present invention
  • FIG. 5 is a cross-sectional view taken along the line AA ′ of FIG. 4.
  • a hydrogen generator 100 includes a first positive electrode plate 110, a second positive electrode plate 120, a negative electrode plate 130, and a first insulating layer.
  • the plate 140, the second insulating plate 150, the first diaphragm 160, and the second diaphragm 170 are included.
  • the first anode plate 110 may be formed in a rectangular or square shape. And the positive electrode connecting portion 118 for connecting the electrode in the upper direction may be formed to protrude.
  • the first anode plate 110 may include a first anode body 111, a first inlet 112, a first outlet 114, a first anode receiver 116, and a first positive electrode connector 118. It includes.
  • the first anode body 111 is formed in a rectangular or square shape.
  • the first anode body 111 may be made of metal, and in this embodiment, may be manufactured using titanium, and may be manufactured by plating platinum on titanium. Accordingly, the first anode body 111 may increase corrosion resistance and chemical resistance, and may prevent contamination of water, which is an electrolyte, even when water is ionized.
  • the metal used for the first positive electrode body 111 and the material to be plated may use other types of materials as necessary.
  • a plurality of coupling holes C1 may be formed in the first anode body 111. As shown in FIG. 2, the plurality of coupling holes C1 may be formed along the edge of the first anode body 111, and in this embodiment, twelve pieces are arranged to surround the first anode receiving portion 116. Can be formed.
  • the first inlet part 112 may be provided to supply water to the inside of the first anode body 111 and may be disposed outside the first anode body 111. In the present embodiment, as will be described later, when the position where the first positive electrode connecting portion 118 is formed on the first positive electrode body 111 is defined as an upper portion, the first inlet portion 112 is an outer upper portion of the first positive electrode body 111. Can be placed in a biased position. Accordingly, as shown in FIG. 2, the first inlet 112a may be formed inside the first inlet 112.
  • the first discharge part 114 may be provided to discharge water supplied to the inside of the first anode body 111, and may be disposed outside the first anode body 111.
  • the first inlet 112 may be disposed at a position biased to the outer lower portion of the anode matrix. Accordingly, as shown in FIG. 2, the first outlet 114a may be formed inside the first outlet 114.
  • the position where the first inlet 112 and the first outlet 114 are disposed is diagonally directed to the edge side in the first anode body 111 having a rectangular or square shape as shown in FIG. 2.
  • the water discharged through the first discharge unit 114 may include oxygen generated by electrolysis.
  • the first anode receiving portion 116 may be formed inside the first anode body 111, and as shown in FIGS. 2 and 3, may be formed in a predetermined groove shape on the inner surface.
  • the first anode receiving portion 116 is a space in which water introduced through the first inlet 112a can be filled, and the first anode so that the water can be filled in the entire first anode receiving portion 116.
  • the path portion 116a, the second anode path portion 116b, and the third anode path portion 161c may be formed.
  • the first anode path portion 116a may be formed in a straight line shape having a predetermined length in the downward direction at the first inlet 112a, and may be formed to have a predetermined width and a predetermined depth.
  • the second anode path portion 116b may be formed in a straight line shape having a predetermined length in an upward direction at the first outlet 114a, and may be formed to have a predetermined width and a predetermined depth.
  • the lengths, widths, and depths of the first anode path portion 116a and the second anode path portion 116b may be the same, and may be disposed side by side at positions spaced apart from each other.
  • a plurality of third anode path portions 116c may be formed to connect the first anode path portions 116a and the second anode path portions 116b with each other.
  • the third anode path portion 116c is formed in a direction perpendicular to the first anode path portion 116a and the second anode path portion 116b, as shown in FIGS. 2 and 3, It may be formed in a horizontal direction.
  • the third anode path portion 116c may be formed to have a predetermined width and a predetermined depth, and the width and depth of the third anode path portion 116c may be the first anode path portion 116a and the second anode. It may be smaller than the width and depth of the path portion 116b, respectively.
  • the first positive electrode connecting portion 118 is disposed on an upper side of the first positive electrode body 111.
  • the first positive electrode connector 118 is provided to connect an external power source to the first positive electrode plate 110, and a first positive electrode connector E1 may be formed to connect the external power source.
  • the first positive electrode connecting portion 118 is provided to connect the positive power of the external power.
  • the second anode plate 120 includes a second anode body 121, a second inlet 122, a second outlet 124, a second anode receiving portion and a second anode connecting portion 128.
  • the second positive electrode plate 120 has the same structure as the first positive electrode plate 110 and is rotated by 180 degrees with respect to the vertical axis passing through the center of the first positive electrode plate 110. That is, although not shown in the drawing, the second positive electrode accommodating part is formed inside the second positive electrode plate 120, and the second positive accommodating part is formed in the same shape as the first positive accommodating part 116. In this case, as illustrated in FIGS. 1 and 2, the second positive electrode connecting portion 128 may be disposed at an upper side of the upper portion at the same position as the first positive electrode connecting portion 118.
  • a second positive electrode connector E2 may be formed in the second positive electrode connector 128. As shown in the drawing, a second positive electrode connector 128 may be formed at a position corresponding to the plurality of coupling holes C1 formed in the first positive electrode body 111. A plurality of coupling holes C2 may be formed in the anode body 121.
  • the negative electrode plate 130 may be formed in a rectangular or square shape, as shown in FIGS. 1, 2, and 4.
  • the negative electrode plate 130 includes a negative electrode body 131, an exhaust part 132, and a negative electrode receiving part 136.
  • a negative electrode connector (E3) for connecting the electrode in the upper direction can be formed.
  • the negative electrode connector E3 is formed in the shape of a groove on the top surface of the negative electrode body 131. Accordingly, the negative electrode of the external power source can be connected through the negative electrode connector E3.
  • the cathode body 131 is formed in a rectangular or square shape, as shown.
  • the negative electrode body 131 like the first positive electrode body 111, a metal may be used, in the present embodiment, may be manufactured using titanium, platinum may be plated on titanium. Accordingly, the negative electrode body 131 may increase corrosion resistance and chemical resistance, and may prevent contamination of water that is an electrolyte even when water is ionized. If necessary, the metal used for the cathode body 131 and the material to be plated may be used with other kinds of materials as necessary.
  • a plurality of coupling holes C3 may be formed in the cathode body 131. As shown in FIGS. 1 and 2, the plurality of couplers C3 may be formed along the edge of the negative electrode body 131, and the plurality of couplers C1 may be formed on the first positive electrode body 111. It may be arranged at a corresponding position. In the present embodiment, twelve coupling holes C3 may be formed to surround the cathode receiving portion 136.
  • the exhaust part 132 is provided to exhaust hydrogen gas, which is a gas generated in the negative electrode accommodating part 136, formed inside the negative electrode body 131 to the outside, and may be disposed at an upper end of the negative electrode body 131.
  • the exhaust part 132 may be disposed at a position biased to the upper end of the negative electrode body 131. Accordingly, as shown in FIG. 3, an exhaust port 132a may be formed in the exhaust part 132.
  • the exhaust part 132 may be disposed at the upper end of the cathode body 131 having a rectangular or square shape, as shown in FIGS. 1 and 2.
  • the exhaust part 132 is disposed at the upper end in this way, referring to FIG. 4, since the hydrogen gas is moved upward through the negative accommodating part 136 formed in the negative electrode body 131, the upper part may be disposed at the upper part.
  • the negative accommodating part 136 may be formed on the inner side of the negative electrode body 131, and may be formed in a predetermined groove shape on the inner side as shown in FIG. 4.
  • the negative electrode accommodating part 136 may be formed at a position corresponding to the first positive electrode accommodating part 116, and the first negative electrode path part 136a, the second negative electrode path part 136b, and the third The cathode path portion 136c may be formed.
  • the negative electrode accommodating part 136 may be formed on both sides of the negative electrode body 131, and the negative electrode accommodating part 136 formed on both sides of the negative electrode body may be formed in the same shape.
  • the first cathode path part 136a may be formed in a straight line shape having a predetermined length in the horizontal direction, and have a predetermined width and a predetermined depth. Can be formed.
  • the exhaust part 132 may be disposed in the center of the first cathode path part 136a.
  • the second cathode path part 136b may be formed in parallel with the first cathode path part 136a at a position spaced apart from each other, and may have a predetermined width and a predetermined depth.
  • the first cathode path part 136a and the second cathode path part 136b may have the same length, width, and depth.
  • the third cathode path part 136c may be formed in plural to connect the first cathode path part 136a and the second cathode path part 136b with each other.
  • the third cathode path portion 136c is formed to connect the first cathode path portion 136a and the second cathode path portion 136b, and is formed in the vertical direction as shown in FIG. 2.
  • the third cathode path part 136c may be formed to have a predetermined width and a predetermined depth, and the width and depth of the third cathode path part 136c may be the first cathode path part 136a and the second cathode. It may be smaller than the width and depth of the path portion 136b, respectively.
  • the first insulating plate 140 may have a rectangular or square shape, and a diaphragm insertion hole 142 may be formed inside the first insulating plate 140.
  • the first insulating plate 140 may be disposed between the first positive electrode body 111 and the negative electrode body 131, and may be made of an insulating material to insulate the first positive electrode body 111 and the negative electrode body 131 from each other. have.
  • the first insulating plate 140 may be made of silicon, synthetic resin, or the like, and may be made of any material as long as it is a material capable of insulating between the first positive electrode body 111 and the negative electrode body 131. Do.
  • the first insulating plate 140 may be formed relatively thinner than the first positive electrode body 111 and the negative electrode body 131, the first positive electrode plate 110 and the negative electrode plate 130. It may vary depending on the power required, but is not limited thereto.
  • the first insulating plate 140 is disposed between the first positive electrode body 111 and the negative electrode body 131 so that the first positive electrode body 111 and the negative electrode body 131 are coupled to each other by a bolt B or the like. In this state, the water flowing into the first positive electrode accommodating part 116 or the hydrogen gas generated in the negative electrode accommodating part 136 is prevented from being discharged through the space between the first positive electrode body 111 and the negative electrode body 131. can do. Accordingly, as shown in FIG.
  • a plurality of couplers C4 may be formed in the first insulating plate 140, and the plurality of couplers C4 may include the first positive electrode body 111 and the negative electrode body ( It may be formed at positions corresponding to the coupling sphere (C1, C3) formed in each of the 131.
  • the second insulating plate 150 is disposed between the second positive electrode body 121 and the negative electrode body 131 and is formed in the same structure as the first insulating plate 140.
  • the first positive electrode plate 110 and the negative electrode plate 130 are disposed, and the second insulating plate 150 is the second positive plate 120 and the negative electrode.
  • the plate 130 is disposed, in this embodiment, the first positive electrode plate 110, the first insulating plate 140, the negative electrode plate 130, the second insulating plate 150 and the second positive plate 120. Are arranged in sequence, can be coupled using a coupling means such as bolt (B).
  • Couplings C1, C2, C3, and C4 formed in the first anode plate 110, the first insulation plate 140, the cathode plate 130, the second insulation plate 150, and the second anode plate 120, respectively. , C5) may be disposed through the insulating tube (S).
  • the insulating tube S is configured to electrically insulate the first positive electrode plate 110, the negative electrode plate 130, and the second positive electrode plate 120, and may be made of silicon, rubber, synthetic resin, or the like.
  • a first diaphragm insertion hole 142 and a second diaphragm insertion hole 152 are formed in each of the first insulating plate 140 and the second insulating plate 150.
  • the size of the second diaphragm insertion hole 152 may be formed to correspond to the size of the first positive electrode accommodating part 116, the second positive electrode accommodating part, and the negative electrode accommodating part 136.
  • the first diaphragm insertion hole 142 and the second diaphragm are formed.
  • the shape of the insertion hole 152 may also be formed in a rectangular or square shape.
  • the first diaphragm 160 and the second diaphragm 170 are inserted into the first diaphragm insertion hole 142 of the first insulating plate 140 and the second diaphragm insertion hole 152 of the second insulating plate 150, respectively.
  • the first diaphragm insertion hole 142 and the second diaphragm insertion hole 152 are inserted to be completely covered. Accordingly, the first positive electrode accommodating part 116 formed on the first positive electrode body 111 and the negative electrode accommodating part 136 formed on the negative electrode body 131 may be separated into different spaces by the first diaphragm 160.
  • the second positive electrode accommodating part formed in the second positive electrode body 121 and the negative electrode accommodating part 136 formed in the negative electrode body 131 may be separated into different spaces by the second diaphragm 170.
  • the first diaphragm 150 and the second diaphragm 170 are used to separate hydrogen and oxygen generated through electrolysis, and may use a nafion-based thin film.
  • platinum may be coated on a thin film of Nafion series.
  • the coating of platinum on the Nafion-based thin film may be coated by decomposing platinum using electricity, and if necessary, the Nafion-based thin film may be coated with platinum.
  • the coating of platinum on a Nafion-based thin film by electroless may be performed by a method of depositing platinum on a Nafion-based thin film by stirring while a Nafion-based thin film is immersed in a liquid containing platinum. have.
  • the resistance of the first diaphragm 150 and the second diaphragm 170 may be about 400 kPa to 500 kPa.
  • the first positive electrode connecting portion 118 of the first positive electrode plate 110 and the second positive electrode connecting portion 128 of the second positive electrode plate 120 The positive pole of the direct current power source is connected, and the negative pole of the direct current power source is connected to the negative electrode connector E3 of the negative electrode plate 130.
  • the electrolyzed hydrogen gas is collected at the negative electrode accommodating part 136 side, which is the negative electrode, and the oxygen gas is collected at the first positive electrode accommodating part 116 and the second positive electrode accommodating side, which are positive electrodes.
  • the water flowing into the first anode receiving portion 116 through the first inlet 112a is connected to the first anode path portion 116a, the second anode path portion 116b and the third anode path portion 116c.
  • the first anode receiving portion 116 through the spread it can be discharged to the outside through the first outlet 114a with the generated oxygen gas.
  • the water introduced into the second anode receiving part through the second inlet 122 may be discharged to the outside through the second outlet 124.
  • the hydrogen gas collected on the side of the negative accommodating part 136 formed on both sides of the negative electrode body 131 may be discharged through the exhaust port 132a formed at the upper portion thereof.
  • the water introduced into the first positive electrode accommodating part 116 through the first inlet 112a does not pass over to the negative accommodating part 136 by the first diaphragm 160, but through the first outlet 114a. Since it is discharged to the outside, only hydrogen gas may be collected on the negative electrode accommodating part 136 side.
  • water introduced into the second positive electrode accommodating part through the second inlet formed in the second positive electrode body 121 may not be transferred to the negative accommodating part 136 by the second diaphragm 170, and thus the second positive electrode body ( It may be discharged to the outside through the second outlet formed in 121, only hydrogen gas can be collected on the cathode receiving portion 136 side.
  • direct current power is applied to the first positive electrode plate 110, the second positive electrode plate 20, and the negative electrode plate 130, and a direct current power supply having a voltage of 12 V and a current of 20 A is supplied. Accordingly, as the current of 20A is supplied, about 320 ml of hydrogen gas may be discharged through the exhaust part 132.
  • the first positive electrode is compared with a case in which water is accommodated in a case provided separately from the positive electrode plate or the negative electrode plate.
  • Water may be rapidly introduced into the first positive electrode accommodating part 116 and the second positive electrode accommodating part respectively formed on the plate 110 and the second positive electrode plate 120. Accordingly, when power is applied before the first diaphragm 160 and the second diaphragm 170 contact with water, the first diaphragm 160 and the second diaphragm 170 may be damaged.
  • the first diaphragm 160 and the second diaphragm 170 may quickly contact the water, and thus, the first diaphragm 160 And the time that the second diaphragm 170 is in contact with water can be reduced, it is possible to prevent the first and second diaphragms 160 and 170 are damaged.
  • the negative electrode accommodating part 136 formed on the negative electrode plate 130 will be described in more detail.
  • the negative electrode accommodating part 136 may be formed on both sides of the negative electrode body 131, respectively.
  • the cathode accommodating part 136 includes a first cathode path part 136a, a second cathode path part 136b, and a third cathode path part 136c.
  • the first cathode path part 136a, the second cathode path part 136b, and the third cathode path part 136c may be formed in the shape of a groove formed on the inner surface of the cathode body 131, respectively.
  • the first cathode path part 136a and the second cathode path part 136b are formed at positions spaced apart from each other in parallel to each other, as shown in the vertical direction.
  • a plurality of third cathode path parts 136c may be provided between the first cathode path part 136a and the second cathode path part 136b in a horizontal direction.
  • the third cathode path portions 136c are formed to be spaced apart from each other at regular intervals, and the plurality of third cathode path portions 136c are disposed on the same plane as the inner surface of the cathode body 131.
  • the plurality of third cathode path portions 136c may be formed with holes for connecting between adjacent third cathode path portions 136c. These holes may be formed in the vertical direction to connect adjacent third cathode path portions 136c formed in the horizontal direction to each other. Such a plurality of holes may be arranged regularly according to a predetermined rule as shown, but is not limited thereto, and may be arranged irregularly.
  • the widths of the first cathode path part 136a and the second cathode path part 136b may be greater than the width of the third cathode path part 136c.
  • the third cathode path part 136c is provided.
  • the width of may be about 60% (error range 10%) of the widths of the first cathode path portion 136a and the second cathode path portion 136b.
  • the depths of the first cathode path part 136a and the second cathode path part 136b may be deeper than the depth of the third cathode path part 136c.
  • the hydrogen formed by electrolysis is formed in the first part. Movement along the cathode path part 136a, the second cathode path part 136b, and the third cathode path part 136c may be discharged to the outside through the exhaust port 132a.
  • the exhaust port 132a may be disposed at the center of the third cathode path portion 136c disposed at the top thereof and may be formed through the cathode body 131. And it may be formed to be connected to the upper portion from the center of the exhaust port 132a penetrating through the cathode body 131 to the exhaust portion 132.
  • the hydrogen gas collected in the negative electrode accommodating part 136 formed on both surfaces of the negative electrode body 131 may be discharged to the outside through the exhaust port 132a.
  • a plurality of path holes 136d may be formed in the first cathode path part 136a and the second cathode path part 136b.
  • the plurality of path holes 136d are provided to connect the negative electrode accommodating part 136 formed on both sides of the negative electrode body 131, and are formed such that hydrogen gas collected in each negative electrode accommodating part 136 may move with each other.
  • FIG. 6 is a schematic view showing a hydrogen collecting device using a hydrogen generating device according to an embodiment of the present invention.
  • a hydrogen collecting device 200 for capturing hydrogen generated by the hydrogen generating device 100 according to the present embodiment will be described.
  • the hydrogen collecting device 200 includes a hydrogen generating device 100, a water storage unit 210, and a hydrogen gas purification unit 220.
  • the water reservoir 210 is connected to the first inlet 112 and the second inlet 122 of the hydrogen generator 100 through the water supply pipe 212.
  • the first discharge part 114 and the second discharge part 124 of the hydrogen generator 100 are connected to the water discharge pipe 214, and the water discharged through the water discharge pipe 214 is stored in a separate storage unit. It may be, or may be recovered to the water storage unit 210 as needed.
  • the water discharged through the water discharge pipe 214 is water containing oxygen gas.
  • the exhaust part 132 of the hydrogen generator 100 is connected to the hydrogen gas exhaust pipe 222, and the hydrogen gas exhausted through the exhaust part 132 is hydrogen gas purification part 220 through the hydrogen gas exhaust pipe 222. Supplied to.
  • the hydrogen gas purification unit 220 may be partially filled with water, and the hydrogen gas supplied through the hydrogen gas exhaust pipe 222 is supplied into the water filled in the hydrogen gas purification unit 220 to be purified by water. May be discharged through the refinery gas exhaust pipe 224. Hydrogen gas discharged to the refinery gas exhaust pipe 224 may be supplied to an external device.
  • the positive electrode terminal 232 may be electrically connected to the first positive electrode connector 118 and the second positive electrode connector 128, and the negative electrode terminal 234 may be electrically connected to the negative electrode connector E3.
  • the power supplied to the hydrogen generator 100 through the positive electrode terminal 232 and the negative electrode terminal 234 is DC power.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

A hydrogen generating device according to an embodiment of the present invention may comprise: first and second positive-electrode plates having first and second positive-electrode containing portions formed thereon, respectively, the first and second positive-electrode containing portions having water-flowing paths formed therein, respectively, a positive electrode being electrically connected to the first and second positive-electrode plates; a negative-electrode plate arranged between the first and second positive-electrode plates, the negative-electrode plate having negative-electrode containing portions formed on both surfaces thereof, respectively, a negative electrode being electrically connected to the negative-electrode plate; a first insulating plate arranged between the first positive-electrode plate and the negative-electrode plate so as to insulate the first positive-electrode plate and the negative-electrode plate from each other; a second insulating plate arranged between the second positive-electrode plate and the negative-electrode plate so as to insulate the second positive-electrode plate and the negative-electrode plate from each other; a first barrier arranged between the first positive-electrode containing portion and the negative-electrode containing portion formed on one surface of the negative-electrode plate such that the first positive-electrode containing portion and the negative-electrode containing portion are separated from each other; and a second barrier arranged between the second positive-electrode containing portion and the negative-electrode containing portion formed on the other surface of the negative-electrode plate such that the second positive-electrode containing portion and the negative-electrode containing portion are separated from each other. The first and second positive-electrode plates may have first and second inflow ports formed therein such that water is supplied to the first and second positive-electrode containing portions, respectively, and may have first and second discharge ports formed therein such that water is discharged from the first and second positive-electrode containing portions, respectively. The negative-electrode plate may have the negative-electrode containing portions formed on both plate-shaped surfaces thereof, respectively, and may have an exhaust port formed therein such that hydrogen gas is discharged from the negative-electrode containing portions.

Description

수소 발생 장치Hydrogen generator
본 발명은 수소 발생 장치에 관한 것으로, 더욱 상세하게는 물을 전기분해하여 수소를 발생시키는 수소 발생 장치에 관한 것이다.The present invention relates to a hydrogen generating device, and more particularly to a hydrogen generating device for generating hydrogen by electrolysis of water.
전기 분해를 이용한 수소 발생 장치는, 전해질 등이 함유된 물에 전기에너지를 가하여, 물 분자가 분해됨에 따라 양극 측에 산소 기체가 발생하고, 음극 측에 수소 기체가 발생하는 장치이다.Hydrogen generating apparatus using electrolysis is an apparatus in which oxygen gas is generated on the anode side and hydrogen gas is generated on the cathode side as water molecules are decomposed by applying electrical energy to water containing an electrolyte or the like.
이러한 수소 발생 장치는, 다양한 종류의 장치들이 개발되어 사용된다. 대체로, 한 쌍으로 이루어진 케이스에 물이 유입되고 배출되는 유입구와 배출구가 구비되고, 케이스 내에 양극판 및 음극판이 배치되고, 양극판 및 음극판의 사이에 이온막이 배치된 구조를 가진다. 그리고 이온막, 양극판 및 음극판을 기준으로 케이스의 양측에 형성된 공간에 물이 통과하면서 전기에너지에 의해 물 분자가 분해되어 수소 및 산소가 발생할 수 있다.Such hydrogen generators are developed and used in a variety of devices. In general, a pair of cases are provided with inlets and outlets through which water is introduced and discharged, a cathode plate and a cathode plate are disposed in the case, and an ion membrane is disposed between the anode plate and the cathode plate. In addition, as water passes through spaces formed at both sides of the case based on the ion membrane, the positive electrode plate, and the negative electrode plate, water molecules may be decomposed by electric energy to generate hydrogen and oxygen.
상기와 같은 종래의 수소 발생 장치는, 합성수지 등과 같은 절연체로 제조된 케이스를 이용하고, 절연체로 형성된 케이스 내부에 이온막, 양극판 및 음극판을 밀착한 상태로 배치한다.The conventional hydrogen generating apparatus as described above uses a case made of an insulator such as a synthetic resin, and arranges the ion membrane, the positive electrode plate, and the negative electrode plate in close contact with the case formed of the insulator.
이때, 대체로 수소 발생 장치에서 물이 이온막, 양극판 및 음극판과의 접촉시간을 연장하기 위한 다양한 연구들이 이루어진고 있다. 종래에는 대체로, 케이스의 내측에 물이 특정 경로를 따라 진행할 수 있도록 수로를 형성하고, 케이스 내로 유입된 물의 경로를 복잡하게 하여 물의 흐름을 늦추는 방법이 이용되고 있다.In this case, various studies have been made to extend the contact time of water with the ion membrane, the positive electrode plate and the negative electrode plate in the hydrogen generator. Conventionally, a method of forming a water channel so that water can travel along a specific path inside the case and complicating the path of water introduced into the case has been used to slow the flow of water.
상기와 같은 종래의 수소 발생 장치는, 케이스에 물이 흐르는 경로를 형성하여 물이 흐르는 속도를 지연시키더라도 물이 양극판 및 음극판과 접촉되는 시간만 제어하기 때문에 물을 분해하여 수소를 발생시키는 효율에 한계가 있는 문제가 있다.Conventional hydrogen generating apparatus as described above, even if the water flow path is formed in the case to delay the flow rate of the water, only the time that the water is in contact with the positive electrode plate and the negative electrode plate control the efficiency of generating hydrogen by decomposing water There is a problem with limitations.
본 발명이 해결하고자 하는 과제는, 수소를 발생시키는 효율을 극대화할 수 있는 수소 발생 장치를 제공하는 것이다.The problem to be solved by the present invention is to provide a hydrogen generating device that can maximize the efficiency of generating hydrogen.
본 발명의 일 실시예에 따른 수소 발생 장치는, 내부에 물이 흐르는 경로가 형성된 제1 및 제2 양극 수용부가 각각 형성되며, 양전극이 전기적으로 연결되는 제1 및 제2 양극 플레이트; 상기 제1 및 제2 양극 플레이트 사이에 배치되며, 양면에 음극 수용부가 형성되고, 음전극이 전기적으로 연결되는 음극 플레이트; 상기 제1 양극 플레이트 및 음극 플레이트 사이에 배치되고, 상기 제1 양극 플레이트와 음극 플레이트를 절연시키는 제1 절연 플레이트; 상기 제2 양극 플레이트 및 음극 플레이트 사이에 배치되며, 상기 제2 양극 플레이트와 음극 플레이트를 절연시키는 제2 절연 플레이트; 상기 제1 양극 수용부 및 음극 수용부가 분리되도록 상기 제1 양극 수용부 및 상기 음극 플레이트의 일면에 형성된 음극 수용부 사이에 배치된 제1 격막; 및 상기 제2 양극 수용부 및 음극 수용부가 분리되도록 상기 제2 양극 수용부 및 상기 음극 플레이트의 타면에 형성된 음극 수용부 사이에 배치된 제2 격막을 포함하고, 상기 제1 및 제2 양극 플레이트에는 각각 상기 제1 및 제2 양극 수용부로 물이 공급되는 제1 및 제2 유입구와 상기 제1 및 제2 양극 수용부에서 물이 배출되는 제1 및 제2 배출구가 형성되며, 상기 음극 플레이트는 플레이트 형상의 양면에 각각 상기 음극 수용부가 형성되고, 상기 음극 수용부에서 수소 가스가 배출되는 배기구가 형성될 수 있다.Hydrogen generating apparatus according to an embodiment of the present invention, the first and second positive electrode accommodating portion each formed with a water flow path is formed therein, the first and second positive electrode plate electrically connected to the positive electrode; A negative electrode plate disposed between the first and second positive electrode plates, a negative electrode accommodating part being formed on both surfaces thereof, and a negative electrode electrically connected to the negative electrode; A first insulating plate disposed between the first positive electrode plate and the negative electrode plate and insulating the first positive electrode plate and the negative electrode plate; A second insulating plate disposed between the second positive electrode plate and the negative electrode plate to insulate the second positive electrode plate and the negative electrode plate; A first diaphragm disposed between the first positive electrode accommodating part and the negative electrode accommodating part formed on one surface of the negative electrode plate such that the first positive accommodating part and the negative accommodating part are separated; And a second diaphragm disposed between the second positive electrode accommodating part and the negative electrode accommodating part formed on the other surface of the negative electrode plate such that the second positive electrode accommodating part and the negative electrode accommodating part are separated from each other. First and second inlets through which water is supplied to the first and second anode receivers, respectively, and first and second outlets through which water is discharged from the first and second anode receivers, respectively, and the cathode plate is a plate. The negative electrode accommodating part may be formed on both surfaces of the shape, and an exhaust port through which hydrogen gas is discharged from the negative accommodating part may be formed.
이때, 상기 제1 및 제2 양극 플레이트에 형성된 제1 및 제2 양극 수용부에는 제1 내지 제3 양극 경로부가 각각 형성되고, 상기 제1 양극 경로부는, 상기 제1 및 제2 유입구에서 일 방향으로 연장되어 각각 형성되고, 상기 제2 양극 경로부는, 상기 제1 및 제2 배출구에서 타 방향으로 연장되어 각각 형성되며, 상기 제3 양극 경로부는, 상기 제1 및 제2 양극 경로부가 서로 연결되도록 상기 제1 및 제2 양극 경로부의 사이에 하나 이상 형성될 수 이다.In this case, first to third anode path portions are formed in the first and second anode receiving portions formed on the first and second anode plates, respectively, and the first anode path portion is one direction from the first and second inlets. Each of the second anode path portions extends in the other direction from the first and second outlets, and the third anode path portions are connected to each other. One or more may be formed between the first and second anode path portions.
그리고 상기 음극 플레이트에 형성된 음극 수용부에는 제1 내지 제3 음극 경로부가 형성되고, 상기 제1 음극 경로부는 일 방향으로 연장되어 형성되고, 상기 제2 음극 경로부는 상기 제1 음극 경로부와 나란한 위치에 이격되어 형성되며, 상기 제3 음극 경로부는 상기 제1 및 제2 음극 경로부가 연결되도록 상기 제1 및 제2 음극 경로부의 사이에 하나 이상 형성될 수 있다.In addition, first to third negative electrode path parts are formed in the negative electrode accommodating part formed on the negative electrode plate, the first negative electrode path part extends in one direction, and the second negative electrode path part is parallel to the first negative electrode path part. The third cathode path part may be formed to be spaced apart from each other, and the first and second cathode path parts may be formed at least one between the first and second cathode path parts.
또한, 상기 제1 및 제2 양극 플레이트는 각각 상부에 외부에서 공급되는 직류 전원의 양전극이 연결되는 제1 및 제2 양전극 연결부를 더 포함하고, 상기 음극 플레이트는 상단부에 외부에서 공급되는 직류 전원의 음전극이 연결되는 음전극 연결구가 형성될 수 있다.The first and second positive electrode plates may further include first and second positive electrode connection parts to which positive electrodes of DC power supplied from the outside are connected, respectively, and the negative plate may be connected to the DC power supplied from the outside to the upper end. A negative electrode connector to which the negative electrode is connected may be formed.
여기서, 상기 음극 플레이트에는, 상기 양면에 형성된 음극 수용부를 연결하는 하나 이상의 경로홀이 형성될 수 있다.Here, the cathode plate, one or more path holes for connecting the cathode receiving portion formed on both sides may be formed.
본 발명에 의하면, 절연성을 가지는 절연체인 케이스의 내부에 별도의 양극판 및 음극판을 이용하지 않고, 양극 플레이트 및 음극 플레이트의 내부에 물이 흐를 수 있는 경로를 형성함으로써, 물과 양극 플레이트와 접촉되는 면적을 극대화할 수 있어, 동일 시간에 발생할 수 있는 수소의 양을 극대화할 수 있는 효과가 있다.According to the present invention, an area in contact with water and a positive electrode plate is formed by forming a path through which water can flow in the positive electrode plate and the negative electrode plate, without using a separate positive electrode plate and negative electrode plate in the case of an insulating insulator. Since it can be maximized, there is an effect that can maximize the amount of hydrogen that can occur at the same time.
양극 플레이트에 형성된 양극 수용부에 물이 유입되는 유입구에서 물이 배출되는 배출구까지 제1 내지 제3 양극 경로부가 지그재그의 형상으로 복잡한 경로가 형성됨에 따라 물이 양극 수용부에 머무는 시간을 극대화할 수 있다.As the first to third anode path portions are formed in a zigzag form, a complicated path is formed from the inlet port in which water is introduced to the anode receiver formed in the anode plate to the outlet port through which water is discharged. have.
또한, 본 발명에 의하면, 양극 플레이트 및 음극 플레이트에 각각 양극 수용부 및 음극 수용부가 형성됨에 따라, 양극 플레이트 및 음극 플레이트에 전원이 연결되면서 물이 양극 수용부로 유입되기 때문에 격막이 물과 접촉되는 속도 빨라, 물이 없는 상태에서 격막에 전원이 걸려 격막이 손상되는 것을 최소화할 수 있다.In addition, according to the present invention, as the positive and negative receiving portions are formed in the positive and negative plates, respectively, the speed at which the diaphragm is in contact with the water because water is introduced into the positive and negative receiving portions while the power is connected to the positive and negative plates. It is quick to minimize the damage to the diaphragm by applying power to the diaphragm in the absence of water.
도 1은 본 발명의 일 실시예에 따른 수소 발생 장치를 도시한 사시도이다.1 is a perspective view showing a hydrogen generator according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 수소 발생 장치를 도시한 분해 사시도이다.2 is an exploded perspective view showing a hydrogen generator according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 수소 발생 장치의 제1 양극 플레이트를 도시한 사시도이다.3 is a perspective view illustrating a first anode plate of a hydrogen generator according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 수소 발생 장치의 음극 플레이트를 도시한 사시도이다.4 is a perspective view illustrating a negative electrode plate of the hydrogen generator according to an embodiment of the present invention.
도 5는 도 4의 절취선 AA'를 따라 취한 단면도이다.5 is a cross-sectional view taken along the line AA ′ of FIG. 4.
도 6은 본 발명의 일 실시예에 따른 수소 발생 장치를 이용한 수소 포집 장치를 도시한 개략도이다.6 is a schematic view showing a hydrogen collecting device using a hydrogen generating device according to an embodiment of the present invention.
본 발명의 바람직한 실시예에 대하여 첨부된 도면을 참조하여 더 구체적으로 설명한다.Preferred embodiments of the present invention will be described in more detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 수소 발생 장치를 도시한 사시도이고, 도 2는 본 발명의 일 실시예에 따른 수소 발생 장치를 도시한 분해 사시도이다. 도 3은 본 발명의 일 실시예에 따른 수소 발생 장치의 제1 양극 플레이트를 도시한 사시도이다. 그리고 도 4는 본 발명의 일 실시예에 따른 수소 발생 장치의 음극 플레이트를 도시한 사시도이며, 도 5는 도 4의 절취선 AA'를 따라 취한 단면도이다.1 is a perspective view showing a hydrogen generating apparatus according to an embodiment of the present invention, Figure 2 is an exploded perspective view showing a hydrogen generating apparatus according to an embodiment of the present invention. 3 is a perspective view illustrating a first anode plate of a hydrogen generator according to an embodiment of the present invention. 4 is a perspective view illustrating a negative electrode plate of the hydrogen generator according to the exemplary embodiment of the present invention, and FIG. 5 is a cross-sectional view taken along the line AA ′ of FIG. 4.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 수소 발생 장치(100)는, 제1 양극 플레이트(110), 제2 양극 플레이트(120), 음극 플레이트(130), 제1 절연 플레이트(140), 제2 절연 플레이트(150), 제1 격막(160) 및 제2 격막(170)을 포함한다.1 and 2, a hydrogen generator 100 according to an embodiment of the present invention includes a first positive electrode plate 110, a second positive electrode plate 120, a negative electrode plate 130, and a first insulating layer. The plate 140, the second insulating plate 150, the first diaphragm 160, and the second diaphragm 170 are included.
제1 양극 플레이트(110)는, 도 1 및 도 2에 도시된 바와 같이, 직사각형 또는 정사각형 형상으로 형성될 수 있다. 그리고 상부 방향으로 전극을 연결하기 위한 양전극 연결부(118)가 돌출되어 형성될 수 있다.As illustrated in FIGS. 1 and 2, the first anode plate 110 may be formed in a rectangular or square shape. And the positive electrode connecting portion 118 for connecting the electrode in the upper direction may be formed to protrude.
이러한 제1 양극 플레이트(110)는, 제1 양극 몸체(111), 제1 유입부(112), 제1 배출부(114), 제1 양극 수용부(116) 및 제1 양전극 연결부(118)를 포함한다.The first anode plate 110 may include a first anode body 111, a first inlet 112, a first outlet 114, a first anode receiver 116, and a first positive electrode connector 118. It includes.
제1 양극 몸체(111)는, 도시된 바와 같이, 직사각형 또는 정사각형 형상으로 형성된다. 그리고 제1 양극 몸체(111)는, 금속이 이용될 수 있으며, 본 실시예에서, 티타늄(titanium)을 이용하여 제조될 수 있으며, 티타늄에 백금(platinum)이 도금되어 제조될 수 있다. 그에 따라 제1 양극 몸체(111)는 내식성 및 내화학성을 높일 수 있으며, 물이 이온화되더라도 전해액인 물의 오염을 방지할 수 있다. 이때, 필요에 따라 제1 양극 몸체(111)에 이용되는 금속 및 도금되는 물질은 필요에 따라 다른 종류의 재질이 이용될 수 있다.As shown in the drawing, the first anode body 111 is formed in a rectangular or square shape. The first anode body 111 may be made of metal, and in this embodiment, may be manufactured using titanium, and may be manufactured by plating platinum on titanium. Accordingly, the first anode body 111 may increase corrosion resistance and chemical resistance, and may prevent contamination of water, which is an electrolyte, even when water is ionized. At this time, the metal used for the first positive electrode body 111 and the material to be plated may use other types of materials as necessary.
또한, 제1 양극 몸체(111)에는 다수의 결합구(C1)가 형성될 수 있다. 다수의 결합구(C1)는 도 2에 도시된 바와 같이, 제1 양극 몸체(111)의 테두리를 따라 형성될 수 있으며, 본 실시예에서, 제1 양극 수용부(116)를 둘러싸도록 열두 개가 형성될 수 있다.In addition, a plurality of coupling holes C1 may be formed in the first anode body 111. As shown in FIG. 2, the plurality of coupling holes C1 may be formed along the edge of the first anode body 111, and in this embodiment, twelve pieces are arranged to surround the first anode receiving portion 116. Can be formed.
제1 유입부(112)는 물이 제1 양극 몸체(111)의 내부에 공급되기 위해 구비되며, 제1 양극 몸체(111)의 외측에 배치될 수 있다. 본 실시예에서, 후술하겠지만, 제1 양극 몸체(111)에 제1 양전극 연결부(118)가 형성된 위치를 상부로 정의하면, 제1 유입부(112)는 제1 양극 몸체(111)의 외측 상부에 치우친 위치에 배치될 수 있다. 그에 따라 도 2에 도시된 바와 같이, 제1 유입부(112)의 내부에 제1 유입구(112a)가 형성될 수 있다.The first inlet part 112 may be provided to supply water to the inside of the first anode body 111 and may be disposed outside the first anode body 111. In the present embodiment, as will be described later, when the position where the first positive electrode connecting portion 118 is formed on the first positive electrode body 111 is defined as an upper portion, the first inlet portion 112 is an outer upper portion of the first positive electrode body 111. Can be placed in a biased position. Accordingly, as shown in FIG. 2, the first inlet 112a may be formed inside the first inlet 112.
제1 배출부(114)는 물이 제1 양극 몸체(111)의 내부에 공급된 물이 배출되기 위해 구비되고, 제1 양극 몸체(111)의 외측에 배치될 수 있다. 그리고 제1 유입부(112)가 양극 모체의 외측 하부에 치우친 위치에 배치될 수 있다. 그에 따라 도 2에 도시된 바와 같이, 제1 배출부(114)의 내부에 제1 배출구(114a)가 형성될 수 있다.The first discharge part 114 may be provided to discharge water supplied to the inside of the first anode body 111, and may be disposed outside the first anode body 111. In addition, the first inlet 112 may be disposed at a position biased to the outer lower portion of the anode matrix. Accordingly, as shown in FIG. 2, the first outlet 114a may be formed inside the first outlet 114.
본 실시예에서, 제1 유입부(112)와 제1 배출부(114)가 배치되는 위치는 도 2를 통해 확인할 수 있듯이, 직사각형 또는 정사각형 형상의 제1 양극 몸체(111)에서 모서리 측으로 대각 방향에 배치될 수 있다. 여기서, 제1 배출부(114)를 통해 배출되는 물에는 전기 분해에 의해 생성된 산소가 포함될 수 있다.In this embodiment, the position where the first inlet 112 and the first outlet 114 are disposed is diagonally directed to the edge side in the first anode body 111 having a rectangular or square shape as shown in FIG. 2. Can be placed in. Here, the water discharged through the first discharge unit 114 may include oxygen generated by electrolysis.
제1 양극 수용부(116)는 제1 양극 몸체(111)의 내측에 형성될 수 있으며, 도 2 및 도 3에 도시된 바와 같이, 내측면에 소정의 홈 형상으로 형성될 수 있다. 본 실시예에서, 제1 양극 수용부(116)는 제1 유입구(112a)를 통해 유입된 물이 채워질 수 있는 공간이며, 제1 양극 수용부(116) 전체에 물이 채워질 수 있도록 제1 양극 경로부(116a), 제2 양극 경로부(116b) 및 제3 양극 경로부(161c)가 형성될 수 있다.The first anode receiving portion 116 may be formed inside the first anode body 111, and as shown in FIGS. 2 and 3, may be formed in a predetermined groove shape on the inner surface. In the present embodiment, the first anode receiving portion 116 is a space in which water introduced through the first inlet 112a can be filled, and the first anode so that the water can be filled in the entire first anode receiving portion 116. The path portion 116a, the second anode path portion 116b, and the third anode path portion 161c may be formed.
제1 양극 경로부(116a)는 제1 유입구(112a)에서 하부 방향으로 소정의 길이를 가지는 직선의 형상으로 형성될 수 있고, 소정의 폭 및 소정의 깊이를 가지도록 형성될 수 있다. 그리고 제2 양극 경로부(116b)는 제1 배출구(114a)에서 상부 방향으로 소정의 길이를 가지는 직선의 형상으로 형성될 수 있으며, 소정의 폭 및 소정의 깊이를 가지도록 형성될 수 있다. 이때, 제1 양극 경로부(116a) 및 제2 양극 경로부(116b)의 길이, 폭 및 깊이는 서로 동일할 수 있으며, 서로 이격된 위치에 나란하게 배치될 수 있다.The first anode path portion 116a may be formed in a straight line shape having a predetermined length in the downward direction at the first inlet 112a, and may be formed to have a predetermined width and a predetermined depth. The second anode path portion 116b may be formed in a straight line shape having a predetermined length in an upward direction at the first outlet 114a, and may be formed to have a predetermined width and a predetermined depth. In this case, the lengths, widths, and depths of the first anode path portion 116a and the second anode path portion 116b may be the same, and may be disposed side by side at positions spaced apart from each other.
제3 양극 경로부(116c)는 제1 양극 경로부(116a) 및 제2 양극 경로부(116b)를 서로 연결하도록 다수 개가 형성될 수 있다. 본 실시예에서, 제3 양극 경로부(116c)는 제1 양극 경로부(116a) 및 제2 양극 경로부(116b)와 수직한 방향으로 형성되어, 도 2 및 도 3에 도시된 바와 같이, 수평 방향으로 형성될 수 있다. 그리고 제3 양극 경로부(116c)는 소정의 폭 및 소정의 깊이를 가지도록 형성될 수 있는데, 제3 양극 경로부(116c)의 폭 및 깊이는 제1 양극 경로부(116a) 및 제2 양극 경로부(116b)의 폭 및 깊이보다 각각 작을 수 있다.A plurality of third anode path portions 116c may be formed to connect the first anode path portions 116a and the second anode path portions 116b with each other. In this embodiment, the third anode path portion 116c is formed in a direction perpendicular to the first anode path portion 116a and the second anode path portion 116b, as shown in FIGS. 2 and 3, It may be formed in a horizontal direction. The third anode path portion 116c may be formed to have a predetermined width and a predetermined depth, and the width and depth of the third anode path portion 116c may be the first anode path portion 116a and the second anode. It may be smaller than the width and depth of the path portion 116b, respectively.
제1 양전극 연결부(118)는, 제1 양극 몸체(111)의 상부 일 측에 배치된다. 제1 양전극 연결부(118)는 제1 양극 플레이트(110)에 외부 전원을 연결하기 위해 구비되며, 외부 전원을 연결하기 위해 제1 양전극 연결구(E1)가 형성될 수 있다. 본 실시예에서, 제1 양전극 연결부(118)는 외부 전원의 양극 전원이 연결되기 위해 구비된다.The first positive electrode connecting portion 118 is disposed on an upper side of the first positive electrode body 111. The first positive electrode connector 118 is provided to connect an external power source to the first positive electrode plate 110, and a first positive electrode connector E1 may be formed to connect the external power source. In this embodiment, the first positive electrode connecting portion 118 is provided to connect the positive power of the external power.
제2 양극 플레이트(120)는, 제2 양극 몸체(121), 제2 유입부(122), 제2 배출부(124), 제2 양극 수용부 및 제2 양극 연결부(128)를 포함한다. 이때, 제2 양극 플레이트(120)는, 제1 양극 플레이트(110)와 동일한 구조를 가지며, 제1 양극 플레이트(110)의 중심을 지나는 세로축을 기준으로 180도 회전된 구조이다. 즉, 도면에 도시되지 않았지만, 제2 양극 플레이트(120)의 내측에는 제2 양극 수용부가 형성되며, 제2 양극 수용부는 제1 양극 수용부(116)와 동일한 형상으로 형성된다. 이때, 제2 양전극 연결부(128)는 도 1 및 도 2에 도시된 바와 같이, 제1 양전극 연결부(118)와 동일한 위치인 상부 일 측에 배치될 수 있다.The second anode plate 120 includes a second anode body 121, a second inlet 122, a second outlet 124, a second anode receiving portion and a second anode connecting portion 128. In this case, the second positive electrode plate 120 has the same structure as the first positive electrode plate 110 and is rotated by 180 degrees with respect to the vertical axis passing through the center of the first positive electrode plate 110. That is, although not shown in the drawing, the second positive electrode accommodating part is formed inside the second positive electrode plate 120, and the second positive accommodating part is formed in the same shape as the first positive accommodating part 116. In this case, as illustrated in FIGS. 1 and 2, the second positive electrode connecting portion 128 may be disposed at an upper side of the upper portion at the same position as the first positive electrode connecting portion 118.
그리고 제2 양극 연결부(128)에는 제2 양전극 연결구(E2)가 형성될 수 있으며, 도시된 바와 같이, 제1 양극 몸체(111)에 형성된 다수의 결합구(C1)에 대응되는 위치에 제2 양극 몸체(121)에도 다수의 결합구(C2)가 형성될 수 있다.In addition, a second positive electrode connector E2 may be formed in the second positive electrode connector 128. As shown in the drawing, a second positive electrode connector 128 may be formed at a position corresponding to the plurality of coupling holes C1 formed in the first positive electrode body 111. A plurality of coupling holes C2 may be formed in the anode body 121.
음극 플레이트(130)는, 도 1, 도 2 및 도 4에 도시된 바와 같이, 직사각형 또는 정사각형 형상으로 형성될 수 있다. 이러한 음극 플레이트(130)는, 음극 몸체(131), 배기부(132) 및 음극 수용부(136)를 포함한다.The negative electrode plate 130 may be formed in a rectangular or square shape, as shown in FIGS. 1, 2, and 4. The negative electrode plate 130 includes a negative electrode body 131, an exhaust part 132, and a negative electrode receiving part 136.
그리고 상부 방향으로 전극을 연결하기 위한 음전극 연결구(E3)가 형성될 수 있다. 음전극 연결구(E3)는 음극 몸체(131)의 상단면에 홈의 형상으로 형성된다. 그에 따라 외부 전원의 음 전극이 음전극 연결구(E3)를 통해 연결될 수 있다.And a negative electrode connector (E3) for connecting the electrode in the upper direction can be formed. The negative electrode connector E3 is formed in the shape of a groove on the top surface of the negative electrode body 131. Accordingly, the negative electrode of the external power source can be connected through the negative electrode connector E3.
음극 몸체(131)는, 도시된 바와 같이, 직사각형 또는 정사각형 형상으로 형성된다. 그리고 음극 몸체(131)는, 제1 양극 몸체(111)와 같이, 금속이 이용될 수 있고, 본 실시예에서, 티타늄을 이용하여 제조될 수 있고, 티타늄에 백금이 도금되어 제조될 수 있다. 그에 따라 음극 몸체(131)는 내식성 및 내화학성을 높일 수 있고, 물이 이온화되더라도 전해액인 물의 오염을 방지할 수 있다. 그리고 필요에 따라 음극 몸체(131)에도 이용되는 금속 및 도금되는 물질은 필요에 따라 다른 종류의 재질이 이용될 수 있다.The cathode body 131 is formed in a rectangular or square shape, as shown. And the negative electrode body 131, like the first positive electrode body 111, a metal may be used, in the present embodiment, may be manufactured using titanium, platinum may be plated on titanium. Accordingly, the negative electrode body 131 may increase corrosion resistance and chemical resistance, and may prevent contamination of water that is an electrolyte even when water is ionized. If necessary, the metal used for the cathode body 131 and the material to be plated may be used with other kinds of materials as necessary.
또한, 음극 몸체(131)에도 다수의 결합구(C3)가 형성될 수 있다. 다수의 결합구(C3)는 도 1 및 도 2에 도시된 바와 같이, 음극 몸체(131)의 테두리를 따라 형성될 수 있고, 제1 양극 몸체(111)에 형성된 다수의 결합구(C1)에 대응되는 위치에 배치될 수 있다. 본 실시예에서, 다수의 결합구(C3)는 음극 수용부(136)를 둘러싸도록 열두 개가 형성될 수 있다.In addition, a plurality of coupling holes C3 may be formed in the cathode body 131. As shown in FIGS. 1 and 2, the plurality of couplers C3 may be formed along the edge of the negative electrode body 131, and the plurality of couplers C1 may be formed on the first positive electrode body 111. It may be arranged at a corresponding position. In the present embodiment, twelve coupling holes C3 may be formed to surround the cathode receiving portion 136.
배기부(132)는 음극 몸체(131)의 내부에 형성된 음극 수용부(136)에서 발생된 기체인 수소 가스가 외부로 배기되기 위해 구비되며, 음극 몸체(131)의 상단부에 배치될 수 있다. 본 실시예에서, 배기부(132)는 음극 몸체(131)의 상단부에 치우친 위치에 배치될 수 있다. 그에 따라 도 3에 도시된 바와 같이, 배기부(132)의 내부에 배기구(132a)가 형성될 수 있다.The exhaust part 132 is provided to exhaust hydrogen gas, which is a gas generated in the negative electrode accommodating part 136, formed inside the negative electrode body 131 to the outside, and may be disposed at an upper end of the negative electrode body 131. In the present embodiment, the exhaust part 132 may be disposed at a position biased to the upper end of the negative electrode body 131. Accordingly, as shown in FIG. 3, an exhaust port 132a may be formed in the exhaust part 132.
본 실시예에서, 배기부(132)는 도 1 및 도 2에 도시된 바와 같이, 직사각형 또는 정사각형 형상의 음극 몸체(131)에서 상단부에 배치될 수 있다. 이렇게 배기부(132)가 상단부에 배치되는 것은, 도 4를 참조하면, 음극 몸체(131)에 형성된 음극 수용부(136)를 통해 수소 가스가 상부로 이동되기 때문에 되도록 상부에 배치되는 것이 좋다.In the present embodiment, the exhaust part 132 may be disposed at the upper end of the cathode body 131 having a rectangular or square shape, as shown in FIGS. 1 and 2. The exhaust part 132 is disposed at the upper end in this way, referring to FIG. 4, since the hydrogen gas is moved upward through the negative accommodating part 136 formed in the negative electrode body 131, the upper part may be disposed at the upper part.
음극 수용부(136)는 음극 몸체(131)의 내측에 형성될 수 있고, 도 4에 도시된 바와 같이, 내측면에 소정의 홈 형상으로 형성될 수 있다. 본 실시예에서, 음극 수용부(136)는 제1 양극 수용부(116)와 대응되는 위치에 형성될 수 있으며, 제1 음극 경로부(136a), 제2 음극 경로부(136b) 및 제3 음극 경로부(136c)가 형성될 수 있다. 여기서, 음극 수용부(136)는 음극 몸체(131)의 양면에 형성될 수 있으며, 음극 몸체의 양면에 형성된 음극 수용부(136)는 서로 동일한 형상으로 형성될 수 있다.The negative accommodating part 136 may be formed on the inner side of the negative electrode body 131, and may be formed in a predetermined groove shape on the inner side as shown in FIG. 4. In the present embodiment, the negative electrode accommodating part 136 may be formed at a position corresponding to the first positive electrode accommodating part 116, and the first negative electrode path part 136a, the second negative electrode path part 136b, and the third The cathode path portion 136c may be formed. Here, the negative electrode accommodating part 136 may be formed on both sides of the negative electrode body 131, and the negative electrode accommodating part 136 formed on both sides of the negative electrode body may be formed in the same shape.
제1 음극 경로부(136a)는 본 실시예에서, 제1 음극 경로부(136a)는 수평 방향으로 소정의 길이를 가지는 직선의 형상으로 형성될 수 있고, 소정의 폭 및 소정의 깊이를 가지도록 형성될 수 있다. 이때, 제1 음극 경로부(136a)의 중앙에 배기부(132)가 배치될 수 있다.In the present exemplary embodiment, the first cathode path part 136a may be formed in a straight line shape having a predetermined length in the horizontal direction, and have a predetermined width and a predetermined depth. Can be formed. In this case, the exhaust part 132 may be disposed in the center of the first cathode path part 136a.
그리고 제2 음극 경로부(136b)는 제1 음극 경로부(136a)와 이격된 위치에 나란하게 형성될 수 있으며, 소정의 폭 및 소정의 깊이를 가지도록 형성될 수 있다. 이때, 제1 음극 경로부(136a) 및 제2 음극 경로부(136b)는 길이, 폭 및 깊이가 서로 동일할 수 있다.The second cathode path part 136b may be formed in parallel with the first cathode path part 136a at a position spaced apart from each other, and may have a predetermined width and a predetermined depth. In this case, the first cathode path part 136a and the second cathode path part 136b may have the same length, width, and depth.
제3 음극 경로부(136c)는 제1 음극 경로부(136a) 및 제2 음극 경로부(136b)를 서로 연결하도록 다수 개가 형성될 수 있다. 본 실시예에서, 제3 음극 경로부(136c)는 제1 음극 경로부(136a) 및 제2 음극 경로부(136b)를 연결하기 위해 형성되어, 도 2에 도시된 바와 같이, 수직 방향으로 형성될 수 있다. 그리고 제3 음극 경로부(136c)는 소정의 폭 및 소정의 깊이를 가지도록 형성될 수 있으며, 제3 음극 경로부(136c)의 폭 및 깊이는 제1 음극 경로부(136a) 및 제2 음극 경로부(136b)의 폭 및 깊이보다 각각 작을 수 있다.The third cathode path part 136c may be formed in plural to connect the first cathode path part 136a and the second cathode path part 136b with each other. In this embodiment, the third cathode path portion 136c is formed to connect the first cathode path portion 136a and the second cathode path portion 136b, and is formed in the vertical direction as shown in FIG. 2. Can be. The third cathode path part 136c may be formed to have a predetermined width and a predetermined depth, and the width and depth of the third cathode path part 136c may be the first cathode path part 136a and the second cathode. It may be smaller than the width and depth of the path portion 136b, respectively.
제1 절연 플레이트(140)는, 제1 양극 몸체(111) 및 음극 몸체(131)의 형상과 마찬가지로 직사각형 또는 정사각형 형상을 가질 수 있고, 내측에 격막 삽입공(142)이 형성될 수 있다. 제1 절연 플레이트(140)는 제1 양극 몸체(111) 및 음극 몸체(131)의 사이에 배치되며, 제1 양극 몸체(111) 및 음극 몸체(131)가 서로 절연되도록 절연 물질로 제조될 수 있다. 본 실시예에서, 제1 절연 플레이트(140)는 실리콘이나 합성수지 등으로 제조될 수 있으며, 제1 양극 몸체(111) 및 음극 몸체(131) 사이에서 절연할 수 있는 물질이면 어떤 물질로 제조되어도 무관하다.Like the shapes of the first positive electrode body 111 and the negative electrode body 131, the first insulating plate 140 may have a rectangular or square shape, and a diaphragm insertion hole 142 may be formed inside the first insulating plate 140. The first insulating plate 140 may be disposed between the first positive electrode body 111 and the negative electrode body 131, and may be made of an insulating material to insulate the first positive electrode body 111 and the negative electrode body 131 from each other. have. In the present embodiment, the first insulating plate 140 may be made of silicon, synthetic resin, or the like, and may be made of any material as long as it is a material capable of insulating between the first positive electrode body 111 and the negative electrode body 131. Do.
그리고 제1 절연 플레이트(140)는 도시된 바와 같이, 제1 양극 몸체(111) 및 음극 몸체(131)에 비해 상대적으로 얇게 형성될 수 있으며, 제1 양극 플레이트(110) 및 음극 플레이트(130)에 걸리는 전력에 따라 달라질 수 있지만, 이에 한정되지 않는다.And, as shown, the first insulating plate 140 may be formed relatively thinner than the first positive electrode body 111 and the negative electrode body 131, the first positive electrode plate 110 and the negative electrode plate 130. It may vary depending on the power required, but is not limited thereto.
제1 절연 플레이트(140)는 제1 양극 몸체(111) 및 음극 몸체(131)의 사이에 배치되어, 제1 양극 몸체(111) 및 음극 몸체(131)가 서로 볼트(B) 등에 의해 결합된 상태에서 제1 양극 몸체(111)와 음극 몸체(131)의 사이를 통해 제1 양극 수용부(116)에 유입된 물이나 음극 수용부(136)에 생성된 수소 가스가 외부로 배출되는 것을 방지할 수 있다. 그에 따라 제1 절연 플레이트(140)에는 도 2에 도시된 바와 같이, 다수의 결합구(C4)가 형성될 수 있으며, 다수의 결합구(C4)는 제1 양극 몸체(111) 및 음극 몸체(131)에 각각 형성된 결합구(C1, C3)에 대응되는 위치에 형성될 수 있다.The first insulating plate 140 is disposed between the first positive electrode body 111 and the negative electrode body 131 so that the first positive electrode body 111 and the negative electrode body 131 are coupled to each other by a bolt B or the like. In this state, the water flowing into the first positive electrode accommodating part 116 or the hydrogen gas generated in the negative electrode accommodating part 136 is prevented from being discharged through the space between the first positive electrode body 111 and the negative electrode body 131. can do. Accordingly, as shown in FIG. 2, a plurality of couplers C4 may be formed in the first insulating plate 140, and the plurality of couplers C4 may include the first positive electrode body 111 and the negative electrode body ( It may be formed at positions corresponding to the coupling sphere (C1, C3) formed in each of the 131.
제2 절연 플레이트(150)는 제2 양극 몸체(121) 및 음극 몸체(131)의 사이에 배치되며, 제1 절연 플레이트(140)와 동일한 구조로 형성된다.The second insulating plate 150 is disposed between the second positive electrode body 121 and the negative electrode body 131 and is formed in the same structure as the first insulating plate 140.
그리고 제1 절연 플레이트(140)가 사이에 개재된 상태에서, 제1 양극 플레이트(110) 및 음극 플레이트(130)가 배치되고, 제2 절연 플레이트(150)가 제2 양극 플레이트(120) 및 음극 플레이트(130)가 배치되는데, 본 실시예에서, 제1 양극 플레이트(110), 제1 절연 플레이트(140), 음극 플레이트(130), 제2 절연 플레이트(150) 및 제2 양극 플레이트(120)는 차례로 배치되어, 볼트(B) 등의 결합수단을 이용하여 결합될 수 있다.In a state where the first insulating plate 140 is interposed therebetween, the first positive electrode plate 110 and the negative electrode plate 130 are disposed, and the second insulating plate 150 is the second positive plate 120 and the negative electrode. The plate 130 is disposed, in this embodiment, the first positive electrode plate 110, the first insulating plate 140, the negative electrode plate 130, the second insulating plate 150 and the second positive plate 120. Are arranged in sequence, can be coupled using a coupling means such as bolt (B).
이때, 볼트(B)에 의해 제1 양극 플레이트(110) 및 음극 플레이트(130)가 서로 단락되는 것을 방지하고, 제2 양극 플레이트(120) 및 음극 플레이트(130)가 서로 단락되는 것을 방지하기 위해 제1 양극 플레이트(110), 제1 절연 플레이트(140) 음극 플레이트(130), 제2 절연 플레이트(150) 및 제2 양극 플레이트(120)에 형성된 각각의 결합구(C1, C2, C3, C4, C5)에 절연관(S)이 관통하여 배치될 수 있다. 절연관(S)은 제1 양극 플레이트(110), 음극 플레이트(130) 및 제2 양극 플레이트(120)를 전기적으로 절연하기 위한 구성으로, 실리콘이나 고무 또는 합성수지 재질 등으로 제조될 수 있다.At this time, in order to prevent the first positive electrode plate 110 and the negative electrode plate 130 from being shorted to each other by the bolt B, and to prevent the second positive electrode plate 120 and the negative electrode plate 130 from being shorted to each other. Couplings C1, C2, C3, and C4 formed in the first anode plate 110, the first insulation plate 140, the cathode plate 130, the second insulation plate 150, and the second anode plate 120, respectively. , C5) may be disposed through the insulating tube (S). The insulating tube S is configured to electrically insulate the first positive electrode plate 110, the negative electrode plate 130, and the second positive electrode plate 120, and may be made of silicon, rubber, synthetic resin, or the like.
또한, 제1 절연 플레이트(140) 및 제2 절연 플레이트(150) 각각에는 제1 격막 삽입공(142) 및 제2 격막 삽입공(152)이 형성되는데, 제1 격막 삽입공(142) 및 제2 격막 삽입공(152)의 크기는 제1 양극 수용부(116), 제2 양극 수용부 및 음극 수용부(136)의 크기에 대응되는 크기로 형성될 수 있다. 본 실시예에서, 제1 양극 수용부(116), 제2 양극 수용부 및 음극 수용부(136)의 전체적인 형상이 직사각형 또는 정사각형 형상으로 형성됨에 따라 제1 격막 삽입공(142) 및 제2 격막 삽입공(152)의 형상도 직사각형 또는 정사각형 형상으로 형성될 수 있다.In addition, a first diaphragm insertion hole 142 and a second diaphragm insertion hole 152 are formed in each of the first insulating plate 140 and the second insulating plate 150. The size of the second diaphragm insertion hole 152 may be formed to correspond to the size of the first positive electrode accommodating part 116, the second positive electrode accommodating part, and the negative electrode accommodating part 136. In this embodiment, as the overall shape of the first positive electrode accommodating part 116, the second positive electrode accommodating part and the negative electrode accommodating part 136 is formed in a rectangular or square shape, the first diaphragm insertion hole 142 and the second diaphragm are formed. The shape of the insertion hole 152 may also be formed in a rectangular or square shape.
제1 격막(160) 및 제2 격막(170)은 각각 제1 절연 플레이트(140)의 제1 격막 삽입공(142) 및 제2 절연 플레이트(150)의 제2 격막 삽입공(152)에 끼워져 삽입되는데, 제1 격막 삽입공(142) 및 제2 격막 삽입공(152)이 완전히 덮이도록 삽입된다. 그에 따라 제1 격막(160)에 의해 제1 양극 몸체(111)에 형성된 제1 양극 수용부(116)와 음극 몸체(131)에 형성된 음극 수용부(136)가 서로 다른 공간으로 분리될 수 있고, 제2 격막(170)에 의해 제2 양극 몸체(121)에 형성된 제2 양극 수용부와 음극 몸체(131)에 형성된 음극 수용부(136)가 서로 다른 공간으로 분리될 수 있다.The first diaphragm 160 and the second diaphragm 170 are inserted into the first diaphragm insertion hole 142 of the first insulating plate 140 and the second diaphragm insertion hole 152 of the second insulating plate 150, respectively. The first diaphragm insertion hole 142 and the second diaphragm insertion hole 152 are inserted to be completely covered. Accordingly, the first positive electrode accommodating part 116 formed on the first positive electrode body 111 and the negative electrode accommodating part 136 formed on the negative electrode body 131 may be separated into different spaces by the first diaphragm 160. In addition, the second positive electrode accommodating part formed in the second positive electrode body 121 and the negative electrode accommodating part 136 formed in the negative electrode body 131 may be separated into different spaces by the second diaphragm 170.
제1 격막(150) 및 제2 격막(170)은, 본 실시예에서, 전기분해를 통해 발생된 수소와 산소를 분리하기 위핸 것으로, 나피온(nafion) 계열의 얇은 막(membrane)을 이용할 수 있다. 또는 나피온 계열의 얇은 막에 백금을 코팅하여 이용할 수도 있다. 이때, 나피온 계열의 얇은 막에 백금을 코팅하는 것은, 전기를 이용하여 백금을 분해하여 코팅할 수 있으며, 필요에 따라 무전해로 나피온 계열의 얇은 막은 백금을 코팅할 수 있다. 여기서, 무전해로 나피온 계열의 얇은 막에 백금을 코팅하는 것은, 백금이 포함된 액체에 나피온 계열의 얇은 막을 담근 상태에서 교반하여 나피온 계열의 얇은 막에 백금을 증착시키는 방법을 이용할 수 있다.The first diaphragm 150 and the second diaphragm 170, in this embodiment, are used to separate hydrogen and oxygen generated through electrolysis, and may use a nafion-based thin film. have. Alternatively, platinum may be coated on a thin film of Nafion series. In this case, the coating of platinum on the Nafion-based thin film may be coated by decomposing platinum using electricity, and if necessary, the Nafion-based thin film may be coated with platinum. Here, the coating of platinum on a Nafion-based thin film by electroless may be performed by a method of depositing platinum on a Nafion-based thin film by stirring while a Nafion-based thin film is immersed in a liquid containing platinum. have.
본 실시예에서, 제1 격막(150) 및 제2 격막(170)의 저항은 약 400Ω 내지 500Ω일 수 있다.In this embodiment, the resistance of the first diaphragm 150 and the second diaphragm 170 may be about 400 kPa to 500 kPa.
본 실시예에 따른 수소 발생 장치(100)의 작동되는 것을 설명하면, 제1 양극 플레이트(110)의 제1 양전극 연결부(118) 및 제2 양극 플레이트(120)의 제2 양전극 연결부(128)에 직류 전원의 (+)극이 연결되고, 음극 플레이트(130)의 음전극 연결구(E3)에 직류 전원의 (-)극이 연결된다. 그리고 제1 양극 플레이트(110)에 형성된 제1 유입부(112)를 통해 물이 공급되면, 제1 유입구(112a)를 통해 제1 양극 수용부(116)에 물이 채워지면서 물과 제1 양극 플레이트(110)가 접촉하여 물이 전기 분해되면서 수소 가스와 산소 가스가 생성된다. 또한, 제2 양극 플레이트(120)에 형성된 제2 유입부(122)를 통해 물이 공급되면, 제2 유입구(122a)를 통해 제2 양극 수용부에 물이 채워지면서 물과 제2 양극 플레이트(120)가 접촉하여 물이 전기 분해되면서 수소 가스와 산소 가스가 생성된다.Referring to the operation of the hydrogen generating apparatus 100 according to the present embodiment, the first positive electrode connecting portion 118 of the first positive electrode plate 110 and the second positive electrode connecting portion 128 of the second positive electrode plate 120 The positive pole of the direct current power source is connected, and the negative pole of the direct current power source is connected to the negative electrode connector E3 of the negative electrode plate 130. When water is supplied through the first inlet 112 formed in the first positive electrode plate 110, the water is filled in the first positive electrode receiving unit 116 through the first inlet 112a, and the water and the first positive electrode are filled. As the plate 110 comes into contact with water to electrolyze, hydrogen gas and oxygen gas are generated. In addition, when water is supplied through the second inlet 122 formed in the second positive electrode plate 120, the water and the second positive electrode plate ( 120 is brought into contact with the electrolysis of water to produce hydrogen gas and oxygen gas.
이렇게 전기 분해된 수소 가스는 (-)극인 음극 수용부(136) 측에 모이고, 산소 가스는 (+)극인 제1 양극 수용부(116) 및 제2 양극 수용부 측에 모인다. 이때, 제1 유입구(112a)를 통해 제1 양극 수용부(116)로 유입된 물은 제1 양극 경로부(116a), 제2 양극 경로부(116b) 및 제3 양극 경로부(116c)를 통해 제1 양극 수용부(116) 전체에 걸쳐 퍼지고, 생성된 산소 가스와 함께 제1 배출구(114a)를 통해 외부로 배출될 수 있다. 그리고 제2 유입부(122)를 통해 제2 양극 수용부에 유입된 물은 제2 배출부(124)를 통해 외부로 배출될 수 있다. 또한, 음극 몸체(131)의 양면에 형성된 음극 수용부(136) 측에 모인 수소 가스는 상부에 형성된 배기구(132a)를 통해 배출될 수 있다.The electrolyzed hydrogen gas is collected at the negative electrode accommodating part 136 side, which is the negative electrode, and the oxygen gas is collected at the first positive electrode accommodating part 116 and the second positive electrode accommodating side, which are positive electrodes. At this time, the water flowing into the first anode receiving portion 116 through the first inlet 112a is connected to the first anode path portion 116a, the second anode path portion 116b and the third anode path portion 116c. Through the first anode receiving portion 116 through the spread, it can be discharged to the outside through the first outlet 114a with the generated oxygen gas. In addition, the water introduced into the second anode receiving part through the second inlet 122 may be discharged to the outside through the second outlet 124. In addition, the hydrogen gas collected on the side of the negative accommodating part 136 formed on both sides of the negative electrode body 131 may be discharged through the exhaust port 132a formed at the upper portion thereof.
여기서, 제1 유입구(112a)를 통해 제1 양극 수용부(116)에 유입된 물은 제1 격막(160)에 의해 음극 수용부(136)로 넘어가지 못하고, 제1 배출구(114a)를 통해 외부로 배출되므로, 음극 수용부(136) 측에는 수소 가스만 모일 수 있다. 마찬가지로, 제2 양극 몸체(121)에 형성된 제2 유입구를 통해 제2 양극 수용부에 유입된 물은 제2 격막(170)에 의해 음극 수용부(136) 측으로 넘어가지 못하고, 제2 양극 몸체(121)에 형성된 제2 배출구를 통해 외부로 배출될 수 있어, 음극 수용부(136) 측에는 수소 가스만 모일 수 있다.Here, the water introduced into the first positive electrode accommodating part 116 through the first inlet 112a does not pass over to the negative accommodating part 136 by the first diaphragm 160, but through the first outlet 114a. Since it is discharged to the outside, only hydrogen gas may be collected on the negative electrode accommodating part 136 side. Similarly, water introduced into the second positive electrode accommodating part through the second inlet formed in the second positive electrode body 121 may not be transferred to the negative accommodating part 136 by the second diaphragm 170, and thus the second positive electrode body ( It may be discharged to the outside through the second outlet formed in 121, only hydrogen gas can be collected on the cathode receiving portion 136 side.
본 실시예에서 직류 전원을 제1 양극 플레이트(110), 제2 양극 플레이트(20) 및 음극 플레이트(130)에 인가하는데, 12V의 전압과 20A의 전류를 갖는 직류 전원을 공급한다. 그에 따라 20A의 전류가 공급됨에 따라 배기부(132)를 통해 약 320㎖의 수소 가스가 배출될 수 있다.In this embodiment, direct current power is applied to the first positive electrode plate 110, the second positive electrode plate 20, and the negative electrode plate 130, and a direct current power supply having a voltage of 12 V and a current of 20 A is supplied. Accordingly, as the current of 20A is supplied, about 320 ml of hydrogen gas may be discharged through the exhaust part 132.
또한, 제1 양극 플레이트(110) 및 제2 양극 플레이트(120)를 통해 물이 빠르게 유입되므로, 종래에 양극판이나 음극판과 별도로 구비된 케이스에 물이 수용되는 공간이 형성된 경우에 비해, 제1 양극 플레이트(110) 및 제2 양극 플레이트(120)에 각각 형성된 제1 양극 수용부(116) 및 제2 양극 수용부로 물이 빠르게 유입될 수 있다. 그에 따라 제1 격막(160) 및 제2 격막(170)이 물과 접촉하기 전에 전원이 걸리는 경우에, 제1 격막(160) 및 제2 격막(170)이 손상될 수 있는데, 본 실시예에서는, 제1 양극 수용부(116) 및 제2 양극 수용부에 물이 직접 수용됨에 따라 제1 격막(160) 및 제2 격막(170)이 물과 빠르게 접촉할 수 있어, 제1 격막(160) 및 제2 격막(170)이 물과 접촉하는 시간을 줄일 수 있어, 제1 격막(160) 및 제2 격막(170)이 손상되는 것을 방지할 수 있다.In addition, since water is rapidly introduced through the first positive electrode plate 110 and the second positive electrode plate 120, the first positive electrode is compared with a case in which water is accommodated in a case provided separately from the positive electrode plate or the negative electrode plate. Water may be rapidly introduced into the first positive electrode accommodating part 116 and the second positive electrode accommodating part respectively formed on the plate 110 and the second positive electrode plate 120. Accordingly, when power is applied before the first diaphragm 160 and the second diaphragm 170 contact with water, the first diaphragm 160 and the second diaphragm 170 may be damaged. As the water is directly received in the first anode receiving portion 116 and the second anode receiving portion, the first diaphragm 160 and the second diaphragm 170 may quickly contact the water, and thus, the first diaphragm 160 And the time that the second diaphragm 170 is in contact with water can be reduced, it is possible to prevent the first and second diaphragms 160 and 170 are damaged.
도 4 및 도 5를 참조하여, 음극 플레이트(130)에 형성된 음극 수용부(136)에 대해 보다 상세하게 설명한다. 앞서 설명한 바와 같이, 음극 수용부(136)는 음극 몸체(131)의 양면에 각각 형성될 수 있다.4 and 5, the negative electrode accommodating part 136 formed on the negative electrode plate 130 will be described in more detail. As described above, the negative electrode accommodating part 136 may be formed on both sides of the negative electrode body 131, respectively.
음극 수용부(136)는 앞서 설명한 바와 같이, 제1 음극 경로부(136a), 제2 음극 경로부(136b) 및 제3 음극 경로부(136c)를 포함한다. 제1 음극 경로부(136a), 제2 음극 경로부(136b) 및 제3 음극 경로부(136c)는 각각 음극 몸체(131)의 내측면에 형성된 홈의 형상으로 형성될 수 있다.As described above, the cathode accommodating part 136 includes a first cathode path part 136a, a second cathode path part 136b, and a third cathode path part 136c. The first cathode path part 136a, the second cathode path part 136b, and the third cathode path part 136c may be formed in the shape of a groove formed on the inner surface of the cathode body 131, respectively.
제1 음극 경로부(136a) 및 제2 음극 경로부(136b)는 수직 방향으로, 도시된 바와 같이, 서로 나란하게 이격된 위치에 형성된다. 그리고 제1 음극 경로부(136a) 및 제2 음극 경로부(136b)의 사이에 수평 방향으로 다수 개의 제3 음극 경로부(136c)가 구비될 수 있다. 제3 음극 경로부(136c)는 서로 일정 간격으로 이격된 상태로 형성되며, 다수의 제3 음극 경로부(136c)의 사이는 음극 몸체(131)의 내측면과 동일한 평면상에 배치된다.The first cathode path part 136a and the second cathode path part 136b are formed at positions spaced apart from each other in parallel to each other, as shown in the vertical direction. In addition, a plurality of third cathode path parts 136c may be provided between the first cathode path part 136a and the second cathode path part 136b in a horizontal direction. The third cathode path portions 136c are formed to be spaced apart from each other at regular intervals, and the plurality of third cathode path portions 136c are disposed on the same plane as the inner surface of the cathode body 131.
그리고 다수의 제3 음극 경로부(136c)는 도 4에 도시된 바와 같이, 인접한 제3 음극 경로부(136c) 사이를 연결하기 위한 각각 홀이 형성될 수 있다. 이러한 홀은 수평 방향으로 형성된 인접한 제3 음극 경로부(136c)를 서로 연결하기 위해 수직 방향으로 형성될 수 있다. 이러한 다수의 홀은 도시된 바와 같이, 소정의 룰을 따라 규칙적으로 배치될 수 있으나, 이에 한정되지 않고, 불규칙적으로 배치될 수도 있다.In addition, as illustrated in FIG. 4, the plurality of third cathode path portions 136c may be formed with holes for connecting between adjacent third cathode path portions 136c. These holes may be formed in the vertical direction to connect adjacent third cathode path portions 136c formed in the horizontal direction to each other. Such a plurality of holes may be arranged regularly according to a predetermined rule as shown, but is not limited thereto, and may be arranged irregularly.
이때, 제1 음극 경로부(136a) 및 제2 음극 경로부(136b)의 폭은 제3 음극 경로부(136c)의 폭보다 클 수 있으며, 본 실시예에서, 제3 음극 경로부(136c)의 폭은 제1 음극 경로부(136a) 및 제2 음극 경로부(136b)의 폭의 약 60%(오차 범위 10%)일 수 있다. 또한, 제1 음극 경로부(136a) 및 제2 음극 경로부(136b)의 깊이는 제3 음극 경로부(136c)의 깊이보다 깊을 수 있다.In this case, the widths of the first cathode path part 136a and the second cathode path part 136b may be greater than the width of the third cathode path part 136c. In the present embodiment, the third cathode path part 136c is provided. The width of may be about 60% (error range 10%) of the widths of the first cathode path portion 136a and the second cathode path portion 136b. In addition, the depths of the first cathode path part 136a and the second cathode path part 136b may be deeper than the depth of the third cathode path part 136c.
음극 수용부(136)에 제1 음극 경로부(136a), 제2 음극 경로부(136b) 및 제3 음극 경로부(136c)가 상기에서 설명한 바와 같이 형성됨에 따라 전기 분해되어 형성된 수소는 제1 음극 경로부(136a), 제2 음극 경로부(136b) 및 제3 음극 경로부(136c)를 따라 이동하여 배기구(132a)를 통해 외부로 배출될 수 있다.As the first cathode path part 136a, the second cathode path part 136b, and the third cathode path part 136c are formed in the negative electrode accommodating part 136 as described above, the hydrogen formed by electrolysis is formed in the first part. Movement along the cathode path part 136a, the second cathode path part 136b, and the third cathode path part 136c may be discharged to the outside through the exhaust port 132a.
여기서, 배기구(132a)는 도 4에 도시된 바와 같이, 최상단에 배치된 제3 음극 경로부(136c)의 중앙에 배치될 수 있고, 음극 몸체(131)를 관통하여 형성될 수 있다. 그리고 음극 몸체(131)를 관통하는 배기구(132a)의 중앙에서 상부로 연결되어 배기부(132)로 연결되도록 형성될 수 있다.Here, as illustrated in FIG. 4, the exhaust port 132a may be disposed at the center of the third cathode path portion 136c disposed at the top thereof and may be formed through the cathode body 131. And it may be formed to be connected to the upper portion from the center of the exhaust port 132a penetrating through the cathode body 131 to the exhaust portion 132.
그에 따라 음극 몸체(131)의 양면에 각각 형성된 음극 수용부(136)에서 모인 수소 가스가 배기구(132a)를 통해 외부로 배출될 수 있다.Accordingly, the hydrogen gas collected in the negative electrode accommodating part 136 formed on both surfaces of the negative electrode body 131 may be discharged to the outside through the exhaust port 132a.
그리고 도 4 및 도 5에 도시된 바와 같이, 제1 음극 경로부(136a) 및 제2 음극 경로부(136b)에는 다수의 경로 홀(136d)이 형성될 수 있다. 다수의 경로 홀(136d)은 음극 몸체(131)의 양면에 형성된 음극 수용부(136)를 연결하기 위해 구비되며, 각 음극 수용부(136)에 모인 수소 가스가 서로 이동할 수 있도록 형성된다.4 and 5, a plurality of path holes 136d may be formed in the first cathode path part 136a and the second cathode path part 136b. The plurality of path holes 136d are provided to connect the negative electrode accommodating part 136 formed on both sides of the negative electrode body 131, and are formed such that hydrogen gas collected in each negative electrode accommodating part 136 may move with each other.
도 6은 본 발명의 일 실시예에 따른 수소 발생 장치를 이용한 수소 포집 장치를 도시한 개략도이다.6 is a schematic view showing a hydrogen collecting device using a hydrogen generating device according to an embodiment of the present invention.
도 6을 참조하여 본 실시예에 따른 수소 발생 장치(100)에서 발생된 수소를 포집하기 위한 수소 포집 장치(200)에 대해 설명한다.Referring to FIG. 6, a hydrogen collecting device 200 for capturing hydrogen generated by the hydrogen generating device 100 according to the present embodiment will be described.
수소 포집 장치(200)는, 도시된 바와 같이, 수소 발생 장치(100), 물 저장부(210) 및 수소 가스 정제부(220)를 포함한다. 물 저장부(210)는 물 공급관(212)을 통해 수소 발생 장치(100)의 제1 유입부(112) 및 제2 유입부(122)와 연결된다. 그리고 수소 발생 장치(100)의 제1 배출부(114) 및 제2 배출부(124)는 물 배출관(214)과 연결되며, 물 배출관(214)을 통해 배출된 물은 별도의 저장부에 저장될 수 있으며, 필요에 따라 물 저장부(210)로 회수될 수도 있다. 여기서, 물 배출관(214)을 통해 배출되는 물은 산소 가스가 포함된 물이다.As illustrated, the hydrogen collecting device 200 includes a hydrogen generating device 100, a water storage unit 210, and a hydrogen gas purification unit 220. The water reservoir 210 is connected to the first inlet 112 and the second inlet 122 of the hydrogen generator 100 through the water supply pipe 212. The first discharge part 114 and the second discharge part 124 of the hydrogen generator 100 are connected to the water discharge pipe 214, and the water discharged through the water discharge pipe 214 is stored in a separate storage unit. It may be, or may be recovered to the water storage unit 210 as needed. Here, the water discharged through the water discharge pipe 214 is water containing oxygen gas.
수소 발생 장치(100)의 배기부(132)는 수소 가스 배기관(222)과 연결되며, 배기부(132)를 통해 배기되는 수소 가스는 수소 가스 배기관(222)을 통해 수소 가스 정제부(220)에 공급된다. 수소 가스 정제부(220)는 내부에 물이 일부 채워질 수 있으며, 수소 가스 배기관(222)을 통해 공급된 수소 가스가 수소 가스 정제부(220)에 채워진 물속으로 공급되어 물에 의해 정제된 수소 가스가 정제 가스 배기관(224)을 통해 배출될 수 있다. 정제 가스 배기관(224)으로 배출된 수소 가스는 외부 장치에 공급될 수 있다.The exhaust part 132 of the hydrogen generator 100 is connected to the hydrogen gas exhaust pipe 222, and the hydrogen gas exhausted through the exhaust part 132 is hydrogen gas purification part 220 through the hydrogen gas exhaust pipe 222. Supplied to. The hydrogen gas purification unit 220 may be partially filled with water, and the hydrogen gas supplied through the hydrogen gas exhaust pipe 222 is supplied into the water filled in the hydrogen gas purification unit 220 to be purified by water. May be discharged through the refinery gas exhaust pipe 224. Hydrogen gas discharged to the refinery gas exhaust pipe 224 may be supplied to an external device.
양전극 단자(232)는 제1 양전극 연결부(118) 및 제2 양전극 연결부(128)에 전기적으로 연결되고, 음전극 단자(234)는 음전극 연결구(E3)에 전기적으로 연결될 수 있다. 이때, 양전극 단자(232) 및 음전극 단자(234)를 통해 수소 발생 장치(100)에 공급되는 전력은 직류 전력이다.The positive electrode terminal 232 may be electrically connected to the first positive electrode connector 118 and the second positive electrode connector 128, and the negative electrode terminal 234 may be electrically connected to the negative electrode connector E3. In this case, the power supplied to the hydrogen generator 100 through the positive electrode terminal 232 and the negative electrode terminal 234 is DC power.
위에서 설명한 바와 같이 본 발명에 대한 구체적인 설명은 첨부된 도면을 참조한 실시예에 의해서 이루어졌지만, 상술한 실시예는 본 발명의 바람직한 예를 들어 설명하였을 뿐이므로, 본 발명이 상기 실시예에만 국한되는 것으로 이해돼서는 안 되며, 본 발명의 권리범위는 후술하는 청구범위 및 그 등가개념으로 이해되어야 할 것이다.As described above, the detailed description of the present invention has been made by the embodiments with reference to the accompanying drawings. However, since the above-described embodiments have only been described by way of example, the present invention is limited to the above embodiments. It should not be understood, the scope of the present invention will be understood by the claims and equivalent concepts described below.

Claims (5)

  1. 내부에 물이 흐르는 경로가 형성된 제1 및 제2 양극 수용부가 각각 형성되며, 양전극이 전기적으로 연결되는 제1 및 제2 양극 플레이트;First and second positive electrode plates each having first and second positive electrode accommodating parts formed therein with a flow path of water therein, and having positive electrodes electrically connected thereto;
    상기 제1 및 제2 양극 플레이트 사이에 배치되며, 양면에 음극 수용부가 형성되고, 음전극이 전기적으로 연결되는 음극 플레이트;A negative electrode plate disposed between the first and second positive electrode plates, a negative electrode accommodating part being formed on both surfaces thereof, and a negative electrode electrically connected to the negative electrode;
    상기 제1 양극 플레이트 및 음극 플레이트 사이에 배치되고, 상기 제1 양극 플레이트와 음극 플레이트를 절연시키는 제1 절연 플레이트;A first insulating plate disposed between the first positive electrode plate and the negative electrode plate and insulating the first positive electrode plate and the negative electrode plate;
    상기 제2 양극 플레이트 및 음극 플레이트 사이에 배치되며, 상기 제2 양극 플레이트와 음극 플레이트를 절연시키는 제2 절연 플레이트;A second insulating plate disposed between the second positive electrode plate and the negative electrode plate to insulate the second positive electrode plate and the negative electrode plate;
    상기 제1 양극 수용부 및 음극 수용부가 분리되도록 상기 제1 양극 수용부 및 상기 음극 플레이트의 일면에 형성된 음극 수용부 사이에 배치된 제1 격막; 및A first diaphragm disposed between the first positive electrode accommodating part and the negative electrode accommodating part formed on one surface of the negative electrode plate such that the first positive accommodating part and the negative accommodating part are separated; And
    상기 제2 양극 수용부 및 음극 수용부가 분리되도록 상기 제2 양극 수용부 및 상기 음극 플레이트의 타면에 형성된 음극 수용부 사이에 배치된 제2 격막을 포함하고,A second diaphragm disposed between the second positive electrode accommodating part and the negative electrode accommodating part formed on the other surface of the negative electrode plate to separate the second positive accommodating part and the negative accommodating part,
    상기 제1 및 제2 양극 플레이트에는 각각 상기 제1 및 제2 양극 수용부로 물이 공급되는 제1 및 제2 유입구와 상기 제1 및 제2 양극 수용부에서 물이 배출되는 제1 및 제2 배출구가 형성되며,First and second inlets through which water is supplied to the first and second anode receivers, respectively, and first and second outlets through which water is discharged from the first and second anode receivers, respectively. Is formed,
    상기 음극 플레이트는 플레이트 형상의 양면에 각각 상기 음극 수용부가 형성되고, 상기 음극 수용부에서 수소 가스가 배출되는 배기구가 형성된 수소 발생 장치.The negative electrode plate is a hydrogen generating device having an exhaust port through which the negative electrode accommodating portion is formed on both sides of the plate shape, the hydrogen gas is discharged from the negative electrode accommodating portion.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 및 제2 양극 플레이트에 형성된 제1 및 제2 양극 수용부에는 제1 내지 제3 양극 경로부가 각각 형성되고,First and third anode path portions are formed in the first and second anode receiving portions formed on the first and second anode plates, respectively.
    상기 제1 양극 경로부는, 상기 제1 및 제2 유입구에서 일 방향으로 연장되어 각각 형성되고,The first anode path portion extends in one direction from the first and second inlets, respectively,
    상기 제2 양극 경로부는, 상기 제1 및 제2 배출구에서 타 방향으로 연장되어 각각 형성되며,The second anode path portion is formed to extend in the other direction from the first and second outlet, respectively,
    상기 제3 양극 경로부는, 상기 제1 및 제2 양극 경로부가 서로 연결되도록 상기 제1 및 제2 양극 경로부의 사이에 하나 이상 형성된 수소 발생 장치.The hydrogen generator of claim 3, wherein at least one of the third anode path portion is formed between the first and second anode path portions such that the first and second anode path portions are connected to each other.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 음극 플레이트에 형성된 음극 수용부에는 제1 내지 제3 음극 경로부가 형성되고,First to third negative electrode path portion is formed in the negative electrode accommodating portion formed on the negative electrode plate,
    상기 제1 음극 경로부는 일 방향으로 연장되어 형성되고,The first cathode path portion is formed extending in one direction,
    상기 제2 음극 경로부는 상기 제1 음극 경로부와 나란한 위치에 이격되어 형성되며,The second cathode path portion is formed spaced apart in parallel with the first cathode path portion,
    상기 제3 음극 경로부는 상기 제1 및 제2 음극 경로부가 연결되도록 상기 제1 및 제2 음극 경로부의 사이에 하나 이상 형성된 수소 발생 장치.At least one hydrogen generating device is formed between the first and second cathode path portion so that the third cathode path portion is connected.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 및 제2 양극 플레이트는 각각 상부에 외부에서 공급되는 직류 전원의 양전극이 연결되는 제1 및 제2 양전극 연결부를 더 포함하고,Each of the first and second positive electrode plates further includes first and second positive electrode connection parts to which positive electrodes of DC power supplied from the outside are connected, respectively.
    상기 음극 플레이트는 상단부에 외부에서 공급되는 직류 전원의 음전극이 연결되는 음전극 연결구가 형성된 수소 발생 장치.The negative electrode plate is a hydrogen generating device having a negative electrode connector is connected to the negative electrode of the DC power supplied from the outside at the upper end.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 음극 플레이트에는, 상기 양면에 형성된 음극 수용부를 연결하는 하나 이상의 경로홀이 형성된 수소 발생 장치.Hydrogen generating device is formed in the negative electrode plate, at least one path hole for connecting the negative electrode receiving portion formed on both sides.
PCT/KR2018/006763 2018-06-14 2018-06-15 Hydrogen generating device WO2019240311A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180068243A KR102228564B1 (en) 2018-06-14 2018-06-14 Hydrogen generating device
KR10-2018-0068243 2018-06-14

Publications (1)

Publication Number Publication Date
WO2019240311A1 true WO2019240311A1 (en) 2019-12-19

Family

ID=68842254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006763 WO2019240311A1 (en) 2018-06-14 2018-06-15 Hydrogen generating device

Country Status (2)

Country Link
KR (1) KR102228564B1 (en)
WO (1) WO2019240311A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090071838A1 (en) * 2000-06-20 2009-03-19 Lynntech, Inc. Electrochemical apparatus with retractable electrode
US20140174915A1 (en) * 2012-12-20 2014-06-26 Bruce J. Trott Hydrogen/oxygen generator apparatus and system
US20160002798A1 (en) * 2013-02-08 2016-01-07 Ird Fuel Cells A/S Composite flow plate for electrolytic cell
KR101848292B1 (en) * 2017-04-10 2018-04-12 주식회사 라이트브릿지 High-area, porous-type channel-embedded electrochemical electrodes and stacked electrolysis system having the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567138A (en) 1979-06-29 1981-01-24 Bunshiyuushiya:Kk Character board of light pen type input device for photocomposition of electronic computer
JPS6053816B2 (en) 1980-06-03 1985-11-27 株式会社東芝 High frequency heating device
JP3035483B2 (en) * 1995-11-27 2000-04-24 スガ試験機株式会社 Oxygen / hydrogen electrolysis gas generator
JP2003328169A (en) 2002-05-14 2003-11-19 Takeshi Shinpo Gaseous hydrogen producing method
JP4142039B2 (en) 2005-10-26 2008-08-27 島崎電機株式会社 Electrolyzed water generator
KR100704955B1 (en) 2006-02-02 2007-04-09 주식회사 제이앤스테크 A water purifier
JP3126047U (en) 2006-07-28 2006-10-12 大同メタル工業株式会社 Oxygen gas treatment equipment using water electrolysis equipment
JP2009114498A (en) 2007-11-06 2009-05-28 Kemitsukusu:Kk Hydrogen-producing apparatus, and cover for positive pole side
KR20150101696A (en) 2014-02-27 2015-09-04 현대아쿠아텍주식회사 Generation device of hydrogen water
KR101630165B1 (en) 2015-02-12 2016-06-14 주식회사 웨스피 Cathode Feeding Type Hydrogen Generation Device
KR101695675B1 (en) * 2015-04-16 2017-01-12 주식회사 파이노 Module for manufacturing ionic water
KR20170036228A (en) 2015-09-24 2017-04-03 김영규 Non-Catalytic Water Fuel Cellulose Cell
KR101773022B1 (en) 2015-11-30 2017-08-30 김길재 Generating unit of hydrogen/oxygen water
KR102053637B1 (en) 2016-10-26 2019-12-09 하이젠월드 주식회사 Exhaust gases and fuel reduction device for an internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090071838A1 (en) * 2000-06-20 2009-03-19 Lynntech, Inc. Electrochemical apparatus with retractable electrode
US20140174915A1 (en) * 2012-12-20 2014-06-26 Bruce J. Trott Hydrogen/oxygen generator apparatus and system
US20160002798A1 (en) * 2013-02-08 2016-01-07 Ird Fuel Cells A/S Composite flow plate for electrolytic cell
KR101848292B1 (en) * 2017-04-10 2018-04-12 주식회사 라이트브릿지 High-area, porous-type channel-embedded electrochemical electrodes and stacked electrolysis system having the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AHMED, AL JUMLAT ET AL.: "Developing Prototype and Performance Evaluation of a Hydrogen Generator", 2018 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMPUTERS, COMMUNICATION, MECHANICAL AND COMPUTING (EECCMC, 28 January 2018 (2018-01-28), Vellore, Tamil Nadu, India, Retrieved from the Internet <URL:https://www.researchgate.net/publication/326395889_Developing_Prototype_and_Performance_Evaluation_of_a_Hydrogen_Generator> *

Also Published As

Publication number Publication date
KR102228564B1 (en) 2021-03-15
KR20190141452A (en) 2019-12-24

Similar Documents

Publication Publication Date Title
WO2016167473A1 (en) Functional water generation module
GB2085475A (en) Reduction of shunt current in bipolar electrochemical cell assemblies
WO2010128791A2 (en) Voltage balancing device for battery cell
WO2012086934A2 (en) Electrolysis device integrating rectifier
WO2019225796A1 (en) Hydrogen generating device
WO2019240313A1 (en) Hydrogen generating device
WO2013103236A1 (en) Stacked fluidized capacitive deionization apparatus
WO2019240311A1 (en) Hydrogen generating device
WO2019231007A1 (en) Hydrogen generator
WO2019240312A1 (en) Brown&#39;s gas generating device
WO2019231005A1 (en) Hydrogen generator
WO2019231008A1 (en) Brown gas generating device
WO2019240314A1 (en) Brown&#39;s gas generating device
WO2012015113A1 (en) Flat tubular solid oxide cell stack
WO2019225797A1 (en) Apparatus for generating brown&#39;s gas
WO2013100554A1 (en) Fuel cell stack using branch flow path
WO2019231006A1 (en) Brown gas generating device
WO2012115485A2 (en) Flat tubular solid-oxide fuel cell, and flat tubular solid-oxide water electrolysis apparatus
WO2020004676A1 (en) Apparatus for generating brown gas
WO2018216847A1 (en) Cell for measuring ion conductivity of ion exchange membrane and method for measuring ion conductivity by using same
WO2022182028A1 (en) Hydrogen and oxygen generating apparatus
WO2016104934A1 (en) Electrolysis module
WO2016104935A1 (en) Pipe-type electrolysis cell
WO2011074892A2 (en) Biological electricity creating device
KR102062986B1 (en) Hydrogen generating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18922360

Country of ref document: EP

Kind code of ref document: A1