WO2019240118A1 - Sound acquisition device - Google Patents

Sound acquisition device Download PDF

Info

Publication number
WO2019240118A1
WO2019240118A1 PCT/JP2019/023058 JP2019023058W WO2019240118A1 WO 2019240118 A1 WO2019240118 A1 WO 2019240118A1 JP 2019023058 W JP2019023058 W JP 2019023058W WO 2019240118 A1 WO2019240118 A1 WO 2019240118A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
acquisition device
sound acquisition
detection
unit
Prior art date
Application number
PCT/JP2019/023058
Other languages
French (fr)
Japanese (ja)
Inventor
俊一 里見
清水 勇治
隆徳 垣内
長谷部 剛
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2020525580A priority Critical patent/JP7112489B2/en
Publication of WO2019240118A1 publication Critical patent/WO2019240118A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • A61B7/04Electric stethoscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/46Special adaptations for use as contact microphones, e.g. on musical instrument, on stethoscope

Definitions

  • the present invention relates to a sound acquisition device.
  • Patent Document 1 discloses a biological sound in which a microphone that acquires biological noise including environmental noise and a microphone that acquires environmental noise are provided in a chest piece, and signals from those microphones are processed to reduce environmental noise. Obtaining a signal is described.
  • Patent Document 1 requires high-order algorithm processing to reduce environmental noise. As a result, the processing required time and power.
  • An example of a problem to be solved by the present invention is to provide a sound acquisition device capable of reducing noise while suppressing time delay and energy consumption.
  • a vibration detecting unit including one or more sensor elements and having a plurality of detection axes;
  • a support member for supporting the vibration detection unit,
  • the plurality of detection axes are non-parallel to each other, and are sound acquisition devices that are inclined with respect to a first surface facing the target portion.
  • FIG. 1 is a block diagram illustrating a functional configuration of a sound acquisition device according to Embodiment 1.
  • FIG. It is a figure which illustrates the structure of the sound acquisition apparatus which concerns on Example 1.
  • FIG. It is sectional drawing which expands and illustrates the supporting member and vibration detection part vicinity of a sound acquisition apparatus. It is a figure for demonstrating operation
  • (A) And (b) is a figure which illustrates the relationship between (theta) and the directivity of a vibration detection part.
  • FIG. 10 is a schematic diagram for explaining a processing method of a processing unit according to the second embodiment.
  • 7 is a cross-sectional view illustrating the structure of a sound acquisition device according to Example 3.
  • FIG. It is a figure for demonstrating the relationship between the structure of a sound acquisition apparatus, and the detection sensitivity of an absorption component. It is a figure which shows the modification of the support member and pressure sensor of a sound acquisition apparatus.
  • (A) to (c) is a diagram illustrating a plurality of detection axes according to the fourth embodiment.
  • the processing unit 110 of the sound acquisition device 10 is not a hardware unit configuration but a functional unit block.
  • the processing unit 110 of the sound acquisition apparatus 10 includes hardware and software mainly for a CPU of a computer, a memory, a program loaded in the memory, a storage device such as a flash memory for storing the program, and a network connection interface. Realized by any combination. There are various modifications of the implementation method and apparatus.
  • the sound acquisition device 10 is a device that selectively acquires sound from the target unit 90 by pressing the first surface 101 against the target unit 90. Sound from the target unit 90 is transmitted to the support member 140 via the first surface 101 and detected by the vibration detection unit 120. On the other hand, external sound other than the target unit 90 is transmitted to the housing 130 of the sound acquisition device 10. This external sound can also be detected by the vibration detection unit 120 as noise. Examples of external sounds include peripheral environment sounds such as equipment operation sounds, talking voices and footsteps, and user-derived sounds such as operation sounds and user's body sounds. Ambient environmental sound mainly propagates in the air and reaches the housing 130. On the other hand, the user-derived sound is generated directly on the surface of the housing 130 by gripping or rubbing the housing 130.
  • the vibration detection unit 120 includes sensor elements 122 a and sensor elements 122 b as a plurality of sensor elements 122.
  • the detection axis 123 a of the sensor element 122 a and the detection axis 123 b of the sensor element 122 b are non-parallel to each other and are inclined with respect to the first surface 101.
  • FIG. 2 is a diagram for explaining detection of sound from the target unit 90
  • FIG. 3 is a diagram for explaining detection of external sound.
  • the vibration direction of the target sound from the target unit 90 is perpendicular to the first surface 101 as indicated by a white arrow in FIG. And the vibration of the direction perpendicular
  • part of the external sound is absorbed by the housing 130 and propagates through the housing 130 as indicated by the black arrows in FIG.
  • the external sound absorbed by the housing 130 becomes a vibration in a direction parallel to the first surface 101 in the support member 140, as indicated by white arrows in the figure.
  • the vibration of the horizontal direction with respect to the 1st surface 101 appears with an antiphase in the detection signal of the detection axis 123a, and the detection signal of the detection axis 123b, as shown by the waveform of a and b in this figure.
  • the component of the target sound is amplified and the component of the external sound is attenuated. That is, the S / N ratio obtained by dividing the target sound component by the external sound component is improved.
  • the plurality of detection axes 123 are non-parallel to each other and are inclined with respect to the first surface 101 facing the target portion 90. Therefore, noise can be reduced by suppressing the time delay and energy consumption by simple processing of the detection signal.
  • FIG. 4 is a block diagram illustrating the functional configuration of the sound acquisition device 10 according to the first embodiment.
  • the sound acquisition device 10 according to the present example has the same configuration as the sound acquisition device 10 according to the embodiment.
  • the sound acquisition apparatus 10 further includes a processing unit 110 that generates sound data by processing the output from the vibration detection unit 120.
  • the sound acquisition device 10 is an electronic stethoscope, for example, and further includes an output unit 192 that outputs sound based on the sound data generated by the processing unit 110.
  • the sound acquisition device 10 may be a device that outputs the signal acquired by the vibration detection unit 120 to the outside of the sound acquisition device 10 in a wired or wireless manner.
  • sound data generated by the processing unit 110 of the sound acquisition device 10 or outside the sound acquisition device 10 is not limited to being output as sound, but may be used for analysis or displayed on a display as a waveform. May be.
  • the sound acquisition device 10 it is possible to convert the acquired sound into an electrical signal once, and to convert it into data by, for example, AD conversion and record it.
  • the target unit 90 is not particularly limited, but may be a part of a structure such as a bridge, a building, a tunnel, a machine, or a living body.
  • FIG. 5 is a diagram illustrating the structure of the sound acquisition device 10 according to the first embodiment.
  • the grip part 100 has shown the cross section.
  • FIG. 6 is an enlarged cross-sectional view illustrating the vicinity of the support member 140 and the vibration detection unit 120 of the sound acquisition device 10.
  • the detection axis 123a and the detection axis 123b are indicated by broken lines.
  • the sound acquisition device 10 includes a grip unit 100, an earphone unit 190, and a cable 180.
  • the grip unit 100 is a chest piece.
  • the earphone unit 190 is provided with an output unit 192.
  • the output unit 192 is a speaker.
  • the cable 180 connects the grip unit 100 and the earphone unit 190 physically and electrically.
  • the sound acquisition device 10 does not include the cable 180, and the grip unit 100 and the output unit 192 may be connected by wireless communication.
  • the user of the sound acquisition device 10 wears the earphone unit 190, grasps the grip unit 100, and presses the first surface 101 against the target unit 90. Then, in the grip unit 100, the vibration detection unit 120 detects sound as vibration, and the processing unit 110 processes the output of the vibration detection unit 120 to generate sound data.
  • the sound data is input to the earphone unit 190 via the cable 180, and a sound based on the sound data is output from the output unit 192. Thus, the user can hear the sound from the target unit 90.
  • the outer shell of the grip part 100 is mainly composed of a housing 130.
  • the housing 130 is provided with an opening for capturing the target sound from the target unit 90. This opening is covered with a diaphragm 150.
  • the housing 130 is provided with an opening for arranging the switch 112.
  • the circuit board 113 includes a circuit capable of driving the sensor element 122 and performing signal processing.
  • the circuit board 113 is driven by the power supplied from the battery 111 and functions as the processing unit 110.
  • the switch 112 controls the operation of the processing unit 110 and the like.
  • each sensor element 122 is electrically connected to the circuit board 113 in a state where the vibration of the sensor element 122 is not hindered. Then, the output signal of each sensor element 122 is input to the circuit board 113. Further, an output signal from the circuit board 113 is input to the earphone unit 190.
  • the output signal from the circuit board 113 includes sound data or a sound signal based on the sound data.
  • the processing unit 110 is realized by a digital signal processor (DSP) or a central processing unit (CPU), for example.
  • DSP digital signal processor
  • CPU central processing unit
  • the processing unit 110 generates sound data by adding detection signals for two detection axes 123 constituting a pair described later.
  • the processing unit 110 can generate sound data by a simple process. Therefore, output from the output unit 192 can be performed with a short delay time from the acquisition of sound in the target unit 90.
  • the sound acquisition device 10 is an electronic stethoscope
  • a large delay causes a sense of incongruity during use, and thus it is important to realize a short delay time.
  • the simplicity of the process contributes to suppression of erroneous signal processing.
  • the energy consumption of the DSP can be kept low, which contributes to a reduction in power consumption of the apparatus.
  • processing such as digital / analog conversion, analog / digital conversion, filtering, and amplification may be appropriately performed.
  • the processing unit 110 may have a filter function that can switch the auscultation frequency band and a correction function that corrects individual performance variation of the sensor element 122.
  • the switch 112 is a power switch for starting the sound acquisition device 10, a switch for auscultation frequency mode switching of the sound acquisition device 10, or the like.
  • the earphone unit 190 may further include a digital / analog conversion circuit, a filter, an amplifier, and the like as necessary. Sound is output from the output unit 192 based on the output signal from the circuit board 113 input to the earphone unit 190.
  • the housing 130 is made of metal or resin. When the housing 130 is made of metal, it is suitable for noise reduction because of high rigidity and high sound insulation. On the other hand, when the target part 90 is a part of a living body, the housing 130 is particularly preferably a resin. When used for a living body, it is necessary to avoid the generation of static electricity. However, if the housing 130 is made of resin, static electricity is hardly generated. Therefore, no special countermeasures against static electricity are required. Further, according to the present embodiment, since the noise can be reduced by the processing unit 110, the casing 130 does not require special high rigidity and sound insulation. Therefore, the resin casing 130 can be suitably used.
  • the diaphragm 150 has a cap shape, is fixed to the housing 130, and covers an opening for capturing the target sound of the housing 130.
  • the first surface 101 is a part of the outer surface of the sound acquisition device 10. In the present embodiment, the first surface 101 is a surface facing the target portion 90 of the diaphragm 150.
  • the diaphragm 150 When acquiring sound, the diaphragm 150 is brought into contact with or close to the target portion 90.
  • the diaphragm 150 is exposed to the outside of the sound acquisition device 10 and is a vibrating body for transmitting vibration caused by the target sound to the support member 140 and the vibration detection unit 120.
  • the diaphragm 150 is preferably made of a material having biocompatibility. Examples of the material having biocompatibility include silicone.
  • the diaphragm 150 may have a multilayer structure including a protective film or the like.
  • pressing the first surface 101 against the target portion 90 means bringing the first surface 101 into contact with or approaching the target portion 90.
  • clothes or the like may be interposed between the first surface 101 and the target unit 90 at the time of sound acquisition.
  • the diaphragm 150 is pressed toward the support member 140 so that the target sound is transmitted to the support member 140.
  • the diaphragm 150 may be integrated with the support member 140.
  • the support member 140 is a member that supports the vibration detection unit 120.
  • the vibration detection unit 120 includes a plurality of sensor elements 122.
  • the support member 140 is provided with a support surface 145 that supports each of the plurality of sensor elements 122.
  • the plurality of support surfaces 145 are oblique with respect to the first surface 101 and face different directions.
  • the detection axis 123 of the sensor element 122 supported by the support surface 145 may be perpendicular or parallel to the support surface 145.
  • FIG. 6 shows an example in which the detection shaft 123 is perpendicular to the support surface 145.
  • the support member 140 has a base portion 142 and a convex portion 144 that protrudes from the base portion 142 to the side opposite to the first surface 101 side.
  • a support surface 145 is provided on the side surface of the convex portion 144.
  • the outer peripheral part of the base part 142 is physically connected to the housing
  • the support member 140 is a resin member, for example.
  • a concave portion is provided on the surface of the outer edge portion of the base portion 142 on the diaphragm 150 side.
  • the convex part inserted in the recessed part is provided in the part connected with the supporting member 140 of the housing
  • the housing 130 and the support member 140 are connected by joining the concave and convex portions. With such a structure, lateral vibration from the housing 130 is transmitted to the support member 140.
  • the housing 130 may be provided with a recess, and the support member 140 may be provided with a protrusion that fits into the recess. Further, the support member 140 and the housing 130 may be connected by screws, or the support member 140 and the housing 130 may be integrated members.
  • the base portion 142 has a disk shape with a non-uniform thickness.
  • the base portion 142 is provided with a recess in which a part of the sensor element 122 is disposed.
  • the convex portion 144 has a shape in which one side surface of a triangular prism having a right isosceles triangle as a bottom surface is joined to the base portion 142.
  • the two side surfaces of the triangular prism perpendicular to each other face the side opposite to the first surface 101 and function as the support surface 145.
  • the support member 140 has a plane-symmetric structure.
  • the symmetry plane is perpendicular to the first surface 101 and passes between the sensor element 122a and the sensor element 122b.
  • the sensor element 122a and the sensor element 122b are also arranged symmetrically with respect to this symmetry plane.
  • the sound acquisition device 10 further includes a pressure sensor 152 that detects the pressure from the target portion 90 to the diaphragm 150 between the diaphragm 150 and the support member 140. Then, the processing unit 110 controls the generation timing of the sound data using the output of the pressure sensor 152.
  • the surface of the support member 140 on the diaphragm 150 side is in close contact with the pressure sensor 152, and the surface of the pressure sensor 152 opposite to the support member 140 is in close contact with the diaphragm 150.
  • the pressure sensor 152 is provided between the support member 140 and the pressure sensor 152 as a whole, and the support member 140 and the diaphragm 150 are not in direct contact with each other.
  • the pressure sensor 152 is, for example, a contact sensor. Indirect or direct contact of the diaphragm 150 with the target portion 90 can be detected by the pressure sensor 152.
  • the processing unit 110 can determine that the grip unit 100 is pressed against the target unit 90. Information indicating the reference is held in the storage unit 115 provided on the circuit board 113 of the sound acquisition device 10, and can be read and used by the processing unit 110.
  • the pressure sensor 152 may output a signal indicating the presence or absence of pressure instead of outputting a signal indicating the pressure value. In this case, the processing unit 110 can determine that the grip unit 100 is pressed against the target unit 90 when a signal with pressure is output from the pressure sensor 152.
  • the processing unit 110 generates sound data while the grip unit 100 is pressed against the target unit 90, and stops generating sound data while the grip unit 100 is not pressed against the target unit 90. In this way, power consumption of the battery 111 can be suppressed. Note that generation of sound data may be continued for a predetermined time (for example, several seconds) even after the grip unit 100 is separated from the target unit 90.
  • Each sensor element 122 is fixed to the support member 140, but is not directly fixed to the housing 130. Therefore, the vibration of the support member 140 is detected by the sensor element 122.
  • the diaphragm 150 is pressed toward the surface of the support member 140 on the diaphragm 150 side, and sound (vibration) from the target portion 90 is transmitted to the support member 140. Is transmitted to.
  • the target sound from the target portion 90 is vibration in a direction perpendicular to the first surface 101 in the support member 140.
  • the outer peripheral portion of the base portion 142 is physically connected to the casing 130 of the grip portion 100 that is touched by the user. Therefore, sound (vibration) from the housing 130 is vibration in a direction parallel to the first surface 101 in the support member 140. Since the external sound is acquired through the housing 130 and the support member 140 in the sound acquisition device 10, it is not necessary to separately provide a microphone for external sound acquisition and a sound capturing hole. As a result, the grip of the grip 100 is maintained and the durability is enhanced, and the grip 100 is easy to clean and clean.
  • the sensor element 122 is, for example, an acceleration sensor. That is, when the entire sensor element 122 is shaken, the shake is detected as vibration.
  • the detection axis 123 of the sensor element 122 is an axis that is principally detected by the sensor element 122 in principle, and is the axis with the highest sensitivity.
  • the detection shaft 123 is predetermined for each sensor element 122.
  • Each sensor element 122 may have one or more detection axes 123 depending on the internal structure.
  • the vibration detection unit 120 is realized using a plurality of sensor elements 122.
  • the sound acquisition device 10 can be configured by freely setting the directions of the plurality of detection axes 123. 5 and 6 show examples in which each sensor element 122 has one detection axis 123 as described above.
  • the vibration detection unit 120 may be configured by one sensor element 122.
  • the sensor element 122 is, for example, a 2-axis sensor or a 3-axis sensor, and the detection axes 123 are orthogonal to each other.
  • the support member 140 may support the sensor element 122 so that the plurality of detection shafts 123 are all inclined with respect to the first surface 101.
  • the plurality of detection axes 123 of the vibration detection unit 120 and the processing of the processing unit 110 will be described in detail below. As described above, the plurality of detection axes 123 are not parallel to each other and are oblique to the first surface 101. That is, the detection axis 123 is inclined with respect to the normal line of the first surface 101.
  • the plurality of detection axes 123 preferably include a pair of two detection axes 123 whose projections onto the first surface 101 are parallel to each other. Moreover, it is preferable that the angle with respect to the 1st surface 101 of the two detection axes 123 which comprise a pair is mutually equal. In such a pair, the vibration component in the direction parallel to the first surface 101 acts on the sensor element 122 as a vibration component having an opposite phase and the same strength. Therefore, the vibration component in the direction parallel to the first surface 101, that is, the component of the external sound can be effectively reduced by simply adding the detection signals for the two detection axes 123.
  • the directions of the two detection axes 123 constituting the pair are opposite to each other in the projection onto the first surface 101.
  • the projections of the two detection axes 123 constituting the pair on the first surface 101 are preferably on the same straight line, but may not necessarily be on the same straight line.
  • the vibration detection unit 120 has an even number of detection shafts 123.
  • FIG. 6 shows an example in which the detection axis 123a and the detection axis 123b are two detection axes 123 constituting a pair, and the angles with respect to the first surface 101 are equal to each other.
  • the angle ⁇ formed by the two detection axes 123 constituting the pair is not particularly limited, but is preferably 60 ° or more and 120 ° or less, and preferably 75 ° or more and 105 ° from the viewpoint of the balance between sensitivity to the target sound and directivity. More preferably, it is 85 degrees or more and 95 degrees or less.
  • FIG. 8A and 8B are diagrams illustrating the relationship between ⁇ and the directivity of the vibration detection unit 120.
  • is larger than that in the example of FIG.
  • the larger the ⁇ the higher the directivity. That is, it is possible to acquire sound from a limited angle range.
  • the directivity of the vibration detector 120 can be adjusted by the directivity of the sensor element 122 itself and the setting of ⁇ .
  • the target sound from the target portion 90 that is, the vibration component perpendicular to the first surface 101, can be acquired with higher sensitivity.
  • the processing unit 110 may further perform necessary processing in addition to adding the detection signals for the two detection axes 123 constituting the pair.
  • the processing unit 110 can perform processing for correcting characteristic variations such as sensitivity and frequency characteristics of the sensor element 122. Further, it is possible to perform processing for correcting a phase shift corresponding to the distance and frequency between the sensor elements 122, that is, a time shift.
  • these processes are not dynamic signal processes but processes using fixed parameters, and the processes are not excessively complicated.
  • the distance between the plurality of sensor elements 122 is short. This is because in the noise cancellation by adding the detection signals, the residual error in the obtained sound data can be reduced by reducing the phase difference between the plurality of 122 detection signals.
  • the distance between the center of the sensor element 122a and the center of the sensor element 122b is preferably 10 mm or less.
  • the plurality of detection axes 123 are non-parallel to each other and are inclined with respect to the first surface 101 facing the target unit 90. Therefore, noise can be reduced by suppressing the time delay and energy consumption by simple processing of the detection signal.
  • FIG. 9 is a schematic diagram for explaining the processing method of the processing unit 110 according to the second embodiment.
  • the sound acquisition device 10 according to the present embodiment is the same as the sound acquisition device 10 according to the first embodiment except for the processing content performed by the processing unit 110.
  • the processing unit 110 generates sound data using the first transfer function G 1 , the second transfer function G 2 , and the output from the vibration detection unit 120.
  • the first transfer function G 1 is a transfer function when the sound S N external to the sound acquisition device 10 is input and the sound component S pN in the direction parallel to the first surface 101 in the vibration detection unit 120 is output. is there.
  • the second transfer function G 2 is a transfer when the sound SN outside the sound acquisition device 10 is input and the sound component S vN in the direction perpendicular to the first surface 101 in the vibration detection unit 120 is output. It is a function.
  • the sound component in the direction parallel to the first surface 101 is a sound detected as a vibration component parallel to the first surface 101 by the vibration detection unit 120, that is, a detection signal of the first detection axis 123a. It is a sound detected as an antiphase component with respect to the detection signal of the second detection axis 123b.
  • the sound component in the direction perpendicular to the first surface 101 is sound detected as a vibration component perpendicular to the first surface 101 in the vibration detection unit 120, that is, the detection signal of the first detection axis 123a. It is a sound detected as an in-phase component with the detection signal of the second detection axis 123b.
  • the components of the external sound 80 transmitted from the outside of the sound acquisition device 10 to the vibration detection unit 120 are absorbed by the housing 130 and transmitted to the vibration detection unit 120 via the support member 140, and are transmitted through the housing 130. And a transmission component 82 that is directly transmitted to the vibration detection unit 120.
  • the absorption component 81 becomes the sound component Sp1 in the direction parallel to the first surface 101 in the support member 140, and adds the detection signal of the detection axis 123a and the detection signal of the detection axis 123b. Countered by matching.
  • the transmitted component 82 is the sum of the sound component S v2 in the direction perpendicular to the first surface 101 and the sound component S p2 in the direction parallel to the first surface 101.
  • the sound component Sp2 in the direction parallel to the first surface 101 is summed with the sound component Sp1 by adding the detection signal of the detection shaft 123a and the detection signal of the detection shaft 123b. It will be canceled as well.
  • the sound component Sv2 in the direction perpendicular to the first surface 101 cannot be removed by simple signal addition.
  • the sound source of the absorption component 81 and the transmission component 82 is common to the external sound 80.
  • the absorption component 81 is expressed by “sound source” ⁇ “the transfer function of vibration of the casing 130”
  • the transmission component 82 is expressed by “sound source” ⁇ “the transfer function of transmission of the casing 130”. Therefore, if the “transfer function of the vibration of the casing 130” is known, the “sound source” can be specified by back calculation.
  • the transmission component 82 can be identified by multiplying the identified “sound source” by the “transmission transfer function of the casing 130”. This will be described in more detail below.
  • the acquisition of the sound from the target portion 90, the vibration detection unit 120, a sound component S p direction parallel to the first surface 101, a sound component S v in a direction perpendicular to the first surface 101 can be detected separately . That is, the sound component S p is obtained from the reverse phase component of the detection signal of the detection signal and the second detection axis 123b of the first detection axis 123a, a sound component S v is a detection signal of the first detection axis 123a It is obtained from the same phase component as the detection signal of the second detection axis 123b.
  • the sound component S p is obtained as a difference between the detection signal of the detection signal and the second detection axis 123b of the first detection axis 123a
  • a sound component S v is the detection signal of the first detection axis 123a
  • the sum of the detection signal of the second detection shaft 123b is obtained as a difference between the detection signal of the detection signal and the second detection axis 123b of the first detection axis 123a.
  • the transfer functions G 1 and the transfer function G 2 can use the sound component obtained S v and sound components S p, extracts a target sound S o. Specifically, from the sound component S v, by subtracting the component multiplied by G 2 / G 1 to the sound component S p, it is possible to generate sound data with reduced noise by a transmission component 82.
  • Each transfer functions G 1 and the transfer function G 2 is dependent on the material and shape of the housing 130.
  • the transfer function G 1 and the transfer function G 2 is can be obtained in advance in the following manner. First, a sound source is arranged outside the sound acquisition device 10, specifically, outside the housing 130 of the grip unit 100. Then, a known sound is generated from the sound source and detected by the vibration detection unit 120. At this time, the first surface 101 is pressed against a stationary rigid body so that no sound is input from the first surface 101. Further, as the detection result of the vibration detection unit 120, as described above, a sound component S p direction parallel to the first surface 101, to derive respectively a direction of the sound component S v parallel to the first surface 101 .
  • Transmitting from the relationship between known sound and sound component S p from the sound source function G 1 is obtained. Further, the transfer function G 2 is obtained from the relationship between known sound and sound component S v from the sound source. The resulting transfer function G 1 and the transfer function G 2 is allowed to hold in the storage unit 115, processing unit 110 can be used for processing by reading them.
  • the processing of the processing unit 110 according to this embodiment described above can also be expressed as follows.
  • the plurality of detection axes 123 include a first detection axis 123a and a second detection axis 123b. Then, the processing unit 110 uses the detection signal of the first detection axis 123a and the second detection axis using the opposite phase components of the detection signal of the first detection axis 123a and the detection signal of the second detection axis 123b. Sound data is generated by processing the same phase component as the detection signal 123b.
  • the plurality of detection axes 123 are non-parallel to each other and are inclined with respect to the first surface 101 facing the target unit 90. Therefore, noise can be reduced by suppressing the time delay and energy consumption by simple processing of the detection signal.
  • the processing unit 110 generates sound data using the first transfer function G 1 , the second transfer function G 2 , and the output from the vibration detection unit 120. Therefore, noise due to sound components transmitted through the housing 130 can be reduced, and sound data with fewer noise components can be generated.
  • FIG. 10 is a cross-sectional view illustrating the structure of the sound acquisition device 10 according to the third embodiment. This figure corresponds to FIG. 6 of the first embodiment.
  • the sound acquisition device 10 according to the present embodiment includes the first embodiment and the first embodiment except that a plane 146 that passes through a plurality of connecting portions of the support member 140 with respect to the housing 130 passes near the center of the plurality of sensor elements 122. 2 is the same as the sound acquisition device 10 according to at least one of the above. This will be described in detail below.
  • the surface of the support member 140 on the side opposite to the diaphragm 150 of the base portion 142 is provided with a recess at the center as viewed from the direction perpendicular to the first surface 101.
  • the convex portion 144 rises from the bottom of the concave portion.
  • the support member 140 is connected to the housing 130 outside the concave portion of the base portion 142.
  • the plane 146 passing through the plurality of connecting portions of the support member 140 with respect to the casing 130 passes through the vicinity of the centers (intersections of dotted lines in the drawing) of the plurality of sensor elements 122. By doing so, the loss of the noise reduction effect can be minimized without being influenced by the angle ⁇ formed by the two detection axes 123.
  • FIG. 11 is a diagram for explaining the relationship between the structure of the sound acquisition device 10 and the detection sensitivity of the absorption component 81.
  • the noise absorption component 81 is transmitted from the connection portion between the housing 130 and the support member 140 and propagates toward the vibration detection unit 120, but the propagation is radial.
  • the absorption component 81 is vector-decomposed in the direction of each sensitivity axis (detection axis 123) of the sensor element 122a and the sensor element 122b, and detected by each sensitivity axis of the sensor element 122. As a result, a difference occurs in the detection level.
  • is an angle formed by the straight line 125 and the straight line 127
  • is an angle formed by the straight line 126 and the straight line 127.
  • the straight line 125 passes through the center of the sensor element 122a and the center of the sensor element 122b and is perpendicular to the first surface 101, and the center of the sensor element 122a that is the sensor element 122 farthest from the connection part.
  • the straight line 126 is a straight line that connects the connecting portion and the center of the sensor element 122 b that is the sensor element 122 closest to the connecting portion in a cross section perpendicular to the first surface 101.
  • the straight line 127 is a straight line connecting the center of the sensor element 122a and the center of the sensor element 122b in a cross section perpendicular to the first surface 101.
  • the connecting portion is the center of the convex portion for fitting the support member 140 and the housing 130 in a cross section perpendicular to the first surface 101.
  • the distance between the connecting portions at both ends of the support member 140 is A
  • the distance between the plane 146 and the straight line 127 is H
  • L be the distance.
  • tan ⁇ 1 (H / (A / 2 + L / 2)) ⁇ 180 / ⁇ holds
  • tan ⁇ 1 (H / (A / 2 ⁇ L / 2)) ⁇ 180 / ⁇ holds.
  • the relationship between ⁇ and ⁇ is not particularly limited, but it is preferable that
  • FIG. 12 is a diagram illustrating a modification of the support member 140 and the pressure sensor 152 of the sound acquisition device 10.
  • FIG. 10 shows an example in which the pressure sensor 152 is provided between the surface of the support member 140 facing the diaphragm 150 and the diaphragm 150.
  • the pressure sensor 152 is the support member 140. It is provided only in a part of the area between the surface facing the diaphragm 150 and the diaphragm 150.
  • the support member 140 is in direct contact with the diaphragm 150 in a partial region of the surface on the diaphragm 150 side.
  • positioning of the pressure sensor 152 may be employ
  • the plurality of detection axes 123 are non-parallel to each other and are inclined with respect to the first surface 101 facing the target unit 90. Therefore, noise can be reduced by suppressing the time delay and energy consumption by simple processing of the detection signal.
  • the planes 146 that pass through the plurality of fixed ends of the support member 140 with respect to the housing 130 pass through the vicinity of the centers of the plurality of sensor elements 122. Therefore, noise can be reduced more effectively by the processing of the processing unit 110.
  • FIG. 13A to FIG. 13C are diagrams illustrating a plurality of detection axes 123 according to the fourth embodiment. These drawings show a state in which the plurality of detection axes 123 are viewed from a direction perpendicular to the first surface 101.
  • the sound acquisition device 10 according to the present embodiment is the same as the sound acquisition device 10 according to at least one of the first to third embodiments, except that the plurality of detection axes 123 include a plurality of pairs. This will be described in detail below.
  • each of the plurality of pairs is a pair of two detection axes 123 whose projections onto the first surface 101 are parallel to each other as described in the first embodiment.
  • FIG. 13A shows an example in which a plurality of detection axes 123 are composed of two pairs.
  • the vibration detection unit 120 has four detection axes 123 whose directions are different by 90 degrees.
  • the convex part 144 may be a quadrangular pyramid shape, for example.
  • FIG. 13B shows an example in which a plurality of detection axes 123 are composed of three pairs.
  • the vibration detection unit 120 has six detection axes 123 whose directions are different by 60 °.
  • the convex part 144 may be a hexagonal pyramid shape, for example.
  • FIG. 13C shows an example in which a plurality of detection axes 123 are composed of four pairs.
  • the vibration detection unit 120 has eight detection axes 123 whose directions are different by 45 °.
  • the convex part 144 may be an octagonal pyramid shape, for example.
  • the processing unit 110 performs the processing described in the first or second embodiment for each pair, and obtains data for each pair. Then, the sound data is obtained by adding the obtained pairs of data. By doing so, data with reduced noise is obtained for each pair, and the target sound can be increased by adding them together. As a result, sound data with an improved S / N ratio can be obtained.
  • the positional relationship between the plurality of detection axes 123 is not limited to the examples in FIGS. 13A to 13C.
  • the plurality of detection axes 123 may include five or more pairs.
  • the plurality of detection axes 123 are non-parallel to each other and are inclined with respect to the first surface 101 facing the target unit 90. Therefore, noise can be reduced by suppressing the time delay and energy consumption by simple processing of the detection signal.
  • the plurality of detection axes 123 include a plurality of pairs. Therefore, sound data with further improved S / N ratio based on the detection results of four or more detection axes 123 can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

Provided is, for example, a sound acquisition device capable of reducing noise while suppressing time delay and energy consumption. This sound acquisition device (10) comprises a vibration detection unit (120) and support member (140). The vibration detection unit (120) comprises one or more sensor elements (122) and has a plurality of detection axes (123). The support member (140) supports the vibration detection unit (120). The plurality of detection axes (123) are not parallel to each other and are inclined in relation to a first surface (101) facing a subject part (90).

Description

音取得装置Sound acquisition device
 本発明は、音取得装置に関する。 The present invention relates to a sound acquisition device.
 電子聴診器等、対象からの音を電気的に取得する装置においては、対象以外からのノイズ音の低減が求められる。 In devices that electrically acquire sound from a target such as an electronic stethoscope, it is required to reduce noise noise from other than the target.
 特許文献1には、環境雑音を含む生体音を取得するマイクロホンと、環境雑音を取得するマイクロホンとをチェストピース内に設け、それらのマイクロホンからの信号を処理して環境雑音を低減させた生体音信号を得ることが記載されている。 Patent Document 1 discloses a biological sound in which a microphone that acquires biological noise including environmental noise and a microphone that acquires environmental noise are provided in a chest piece, and signals from those microphones are processed to reduce environmental noise. Obtaining a signal is described.
特開2016-67857号公報Japanese Unexamined Patent Publication No. 2016-67857
 しかし、特許文献1の技術では、環境雑音の低減のために高次なアルゴリズム処理が必要であった。その結果、処理に時間と電力を要していた。 However, the technique of Patent Document 1 requires high-order algorithm processing to reduce environmental noise. As a result, the processing required time and power.
 本発明が解決しようとする課題としては、時間遅延およびエネルギー消費を抑えつつ、ノイズを低減可能な音取得装置を提供することが一例として挙げられる。 An example of a problem to be solved by the present invention is to provide a sound acquisition device capable of reducing noise while suppressing time delay and energy consumption.
 請求項1に記載の発明は、
 一以上のセンサ素子を含み、複数の検出軸を有する振動検出部と、
 前記振動検出部を支持する支持部材とを備え、
 前記複数の検出軸は、互いに非平行であり、対象部に対向する第1面に対して斜めである音取得装置である。
The invention described in claim 1
A vibration detecting unit including one or more sensor elements and having a plurality of detection axes;
A support member for supporting the vibration detection unit,
The plurality of detection axes are non-parallel to each other, and are sound acquisition devices that are inclined with respect to a first surface facing the target portion.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
実施形態に係る音取得装置の構成を模式的に例示する図である。It is a figure which illustrates typically the composition of the sound acquisition device concerning an embodiment. 対象部からの音の検出について説明するための図である。It is a figure for demonstrating the detection of the sound from a target part. 外部音の検出について説明するための図である。It is a figure for demonstrating the detection of an external sound. 実施例1に係る音取得装置の機能構成を例示するブロック図である。1 is a block diagram illustrating a functional configuration of a sound acquisition device according to Embodiment 1. FIG. 実施例1に係る音取得装置の構造を例示する図である。It is a figure which illustrates the structure of the sound acquisition apparatus which concerns on Example 1. FIG. 音取得装置の支持部材および振動検出部近傍を拡大して例示する断面図である。It is sectional drawing which expands and illustrates the supporting member and vibration detection part vicinity of a sound acquisition apparatus. センサ素子の動作を説明するための図である。It is a figure for demonstrating operation | movement of a sensor element. (a)および(b)は、θと振動検出部の指向性との関係を例示する図である。(A) And (b) is a figure which illustrates the relationship between (theta) and the directivity of a vibration detection part. 実施例2に係る処理部の処理方法を説明するための模式図である。FIG. 10 is a schematic diagram for explaining a processing method of a processing unit according to the second embodiment. 実施例3に係る音取得装置の構造を例示する断面図である。7 is a cross-sectional view illustrating the structure of a sound acquisition device according to Example 3. FIG. 音取得装置の構造と吸収成分の検出感度との関係について説明するための図である。It is a figure for demonstrating the relationship between the structure of a sound acquisition apparatus, and the detection sensitivity of an absorption component. 音取得装置の支持部材および圧力センサの変形例を示す図である。It is a figure which shows the modification of the support member and pressure sensor of a sound acquisition apparatus. (a)から(c)は、実施例4に係る複数の検出軸を例示する図である。(A) to (c) is a diagram illustrating a plurality of detection axes according to the fourth embodiment.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
 以下に示す説明において、音取得装置10の処理部110は、ハードウエア単位の構成ではなく、機能単位のブロックを示している。音取得装置10の処理部110は、任意のコンピュータのCPU、メモリ、メモリにロードされたプログラム、そのプログラムを格納するフラッシュメモリなどの記憶デバイス、ネットワーク接続用インタフェースを中心にハードウエアとソフトウエアの任意の組合せによって実現される。そして、その実現方法、装置には様々な変形例がある。 In the following description, the processing unit 110 of the sound acquisition device 10 is not a hardware unit configuration but a functional unit block. The processing unit 110 of the sound acquisition apparatus 10 includes hardware and software mainly for a CPU of a computer, a memory, a program loaded in the memory, a storage device such as a flash memory for storing the program, and a network connection interface. Realized by any combination. There are various modifications of the implementation method and apparatus.
 図1は、実施形態に係る音取得装置10の構成を模式的に例示する図である。本実施形態に係る音取得装置10は、振動検出部120および支持部材140を備える。振動検出部120は、一以上のセンサ素子122を含み、複数の検出軸123を有する。支持部材140は、振動検出部120を支持する。複数の検出軸123は、互いに非平行であり、対象部90に対向する第1面101に対して斜めである。以下に詳しく説明する。 FIG. 1 is a diagram schematically illustrating the configuration of a sound acquisition device 10 according to the embodiment. The sound acquisition device 10 according to the present embodiment includes a vibration detection unit 120 and a support member 140. The vibration detection unit 120 includes one or more sensor elements 122 and has a plurality of detection axes 123. The support member 140 supports the vibration detection unit 120. The plurality of detection axes 123 are non-parallel to each other and are inclined with respect to the first surface 101 facing the target portion 90. This will be described in detail below.
 本実施形態に係る音取得装置10は、第1面101を対象部90に押し当てることにより、対象部90からの音を選択的に取得しようとする装置である。対象部90からの音は第1面101を介して支持部材140に伝達され、振動検出部120で検出される。一方、音取得装置10の筐体130には対象部90以外の外部からの音が伝わる。この外部音もまた、ノイズとして振動検出部120で検出されうる。外部音としてはたとえば、設備動作音、話し声、足音等の周辺環境音、および、操作音、利用者の生体音等の利用者由来音がある。周辺環境音は主に空気中を伝搬して筐体130に至る。一方、利用者由来音は、筐体130を握ったりこすったりすることにより、直接筐体130の表面で生じる。 The sound acquisition device 10 according to the present embodiment is a device that selectively acquires sound from the target unit 90 by pressing the first surface 101 against the target unit 90. Sound from the target unit 90 is transmitted to the support member 140 via the first surface 101 and detected by the vibration detection unit 120. On the other hand, external sound other than the target unit 90 is transmitted to the housing 130 of the sound acquisition device 10. This external sound can also be detected by the vibration detection unit 120 as noise. Examples of external sounds include peripheral environment sounds such as equipment operation sounds, talking voices and footsteps, and user-derived sounds such as operation sounds and user's body sounds. Ambient environmental sound mainly propagates in the air and reaches the housing 130. On the other hand, the user-derived sound is generated directly on the surface of the housing 130 by gripping or rubbing the housing 130.
 ここで、振動検出部120には複数のセンサ素子122としてセンサ素子122aおよびセンサ素子122bが含まれる。そして、センサ素子122aの検出軸123aとセンサ素子122bの検出軸123bとが互いに非平行であり、かつ第1面101に対して斜めとなるように構成されている。こうすることで、以下に説明する様に、対象部90からの対象音と外部音とが機械的に切り分けられ、簡単な信号処理でノイズの低減が可能となる。 Here, the vibration detection unit 120 includes sensor elements 122 a and sensor elements 122 b as a plurality of sensor elements 122. The detection axis 123 a of the sensor element 122 a and the detection axis 123 b of the sensor element 122 b are non-parallel to each other and are inclined with respect to the first surface 101. By doing so, as described below, the target sound from the target unit 90 and the external sound are mechanically separated, and noise can be reduced by simple signal processing.
 図2は、対象部90からの音の検出について説明するための図であり、図3は、外部音の検出について説明するための図である。 FIG. 2 is a diagram for explaining detection of sound from the target unit 90, and FIG. 3 is a diagram for explaining detection of external sound.
 対象部90からの対象音の振動方向は、図2中、白矢印で示すように第1面101に対して垂直である。そして、第1面101に対して垂直な方向の振動は、本図中a,bの波形で示すように、検出軸123aの検出信号と検出軸123bの検出信号とにおいて、同位相で現れる。 The vibration direction of the target sound from the target unit 90 is perpendicular to the first surface 101 as indicated by a white arrow in FIG. And the vibration of the direction perpendicular | vertical with respect to the 1st surface 101 appears in the same phase in the detection signal of the detection axis 123a, and the detection signal of the detection axis 123b, as shown by the waveform of a and b in this figure.
 一方、外部音の一部は、筐体130に吸収され、図3中黒矢印で示すように筐体130を伝搬し、支持部材140の外周から内側に向かって伝わる。その結果、筐体130に吸収された外部音は、本図中白矢印で示すように、支持部材140において第1面101に平行な方向の振動となる。そして、第1面101に対して水平な方向の振動は、本図中a,bの波形で示すように、検出軸123aの検出信号と検出軸123bの検出信号とにおいて、逆位相で現れる。 On the other hand, part of the external sound is absorbed by the housing 130 and propagates through the housing 130 as indicated by the black arrows in FIG. As a result, the external sound absorbed by the housing 130 becomes a vibration in a direction parallel to the first surface 101 in the support member 140, as indicated by white arrows in the figure. And the vibration of the horizontal direction with respect to the 1st surface 101 appears with an antiphase in the detection signal of the detection axis 123a, and the detection signal of the detection axis 123b, as shown by the waveform of a and b in this figure.
 以上より、たとえば検出軸123aの検出信号と検出軸123bの検出信号とを足し合わせることにより、対象音の成分は増幅され、外部音の成分は減衰される。すなわち、対象音成分を外部音成分で割って得られるS/N比が、向上する。 From the above, for example, by adding the detection signal of the detection shaft 123a and the detection signal of the detection shaft 123b, the component of the target sound is amplified and the component of the external sound is attenuated. That is, the S / N ratio obtained by dividing the target sound component by the external sound component is improved.
 以上、本実施形態によれば、複数の検出軸123が、互いに非平行であり、対象部90に対向する第1面101に対して斜めである。したがって、検出信号の簡単な処理により、時間遅延およびエネルギー消費を抑えつつ、ノイズを低減できる。 As described above, according to the present embodiment, the plurality of detection axes 123 are non-parallel to each other and are inclined with respect to the first surface 101 facing the target portion 90. Therefore, noise can be reduced by suppressing the time delay and energy consumption by simple processing of the detection signal.
(実施例1)
 図4は、実施例1に係る音取得装置10の機能構成を例示するブロック図である。本実施例に係る音取得装置10は、実施形態に係る音取得装置10と同様の構成を有する。
(Example 1)
FIG. 4 is a block diagram illustrating the functional configuration of the sound acquisition device 10 according to the first embodiment. The sound acquisition device 10 according to the present example has the same configuration as the sound acquisition device 10 according to the embodiment.
 本実施例に係る音取得装置10は振動検出部120からの出力を処理することにより、音データを生成する処理部110をさらに備える。 The sound acquisition apparatus 10 according to the present embodiment further includes a processing unit 110 that generates sound data by processing the output from the vibration detection unit 120.
 また、音取得装置10はたとえば電子聴診器であり、処理部110で生成された音データに基づいた音を、出力する出力部192をさらに備える。 The sound acquisition device 10 is an electronic stethoscope, for example, and further includes an output unit 192 that outputs sound based on the sound data generated by the processing unit 110.
 ただし、音取得装置10は振動検出部120で取得された信号を音取得装置10の外部に有線または無線で出力する装置であっても良い。また、音取得装置10の処理部110で、または音取得装置10の外部で生成された音データは、音として出力されるに限らず、解析に用いられたり、波形としてディスプレイに表示されたりしても良い。音取得装置10では、取得した音を一度電気信号に変換し、たとえばさらにAD変換することでデータ化し、記録することが可能である。 However, the sound acquisition device 10 may be a device that outputs the signal acquired by the vibration detection unit 120 to the outside of the sound acquisition device 10 in a wired or wireless manner. In addition, sound data generated by the processing unit 110 of the sound acquisition device 10 or outside the sound acquisition device 10 is not limited to being output as sound, but may be used for analysis or displayed on a display as a waveform. May be. In the sound acquisition device 10, it is possible to convert the acquired sound into an electrical signal once, and to convert it into data by, for example, AD conversion and record it.
 たとえばこのように取得したデータに特定の演算処理を施すことで、生体や構造物に関する高精度な診断の可能性が見いだせる。ここで、解析においては取得したデータが全てであり、そのデータが正しいデータであるか否かは判断が困難である。そのため、ノイズを含んだデータの解析では、診断精度が損なわれる虞もある。したがって、電気的な処理によってノイズを低減しておく必要性が特に高いといえる。 For example, by performing specific arithmetic processing on the data acquired in this way, it is possible to find a possibility of highly accurate diagnosis regarding a living body or a structure. Here, in the analysis, the acquired data is all, and it is difficult to determine whether the data is correct data. Therefore, in the analysis of data including noise, there is a possibility that the diagnostic accuracy is impaired. Therefore, it can be said that the necessity of reducing noise by electrical processing is particularly high.
 対象部90は特に限定されないが、橋、建物、トンネル等の構造物や、機械、生体等の一部であり得る。 The target unit 90 is not particularly limited, but may be a part of a structure such as a bridge, a building, a tunnel, a machine, or a living body.
 図5は、実施例1に係る音取得装置10の構造を例示する図である。本図において、グリップ部100は断面を示している。また、図6は、音取得装置10の支持部材140および振動検出部120近傍を拡大して例示する断面図である。本図において、検出軸123aおよび検出軸123bが破線で示されている。 FIG. 5 is a diagram illustrating the structure of the sound acquisition device 10 according to the first embodiment. In this figure, the grip part 100 has shown the cross section. FIG. 6 is an enlarged cross-sectional view illustrating the vicinity of the support member 140 and the vibration detection unit 120 of the sound acquisition device 10. In this figure, the detection axis 123a and the detection axis 123b are indicated by broken lines.
 音取得装置10は、グリップ部100、イヤホン部190、およびケーブル180を含む。音取得装置10が電子聴診器である場合、グリップ部100はチェストピースである。イヤホン部190には出力部192が設けられている。出力部192はスピーカーである。そして、ケーブル180は、グリップ部100とイヤホン部190とを物理的、および電気的に接続している。ただし、音取得装置10はケーブル180を含まず、グリップ部100と出力部192とが無線通信によって接続されていても良い。 The sound acquisition device 10 includes a grip unit 100, an earphone unit 190, and a cable 180. When the sound acquisition device 10 is an electronic stethoscope, the grip unit 100 is a chest piece. The earphone unit 190 is provided with an output unit 192. The output unit 192 is a speaker. The cable 180 connects the grip unit 100 and the earphone unit 190 physically and electrically. However, the sound acquisition device 10 does not include the cable 180, and the grip unit 100 and the output unit 192 may be connected by wireless communication.
 音取得装置10の利用者は、イヤホン部190を装着し、グリップ部100を握って第1面101を対象部90に押し当てる。するとグリップ部100では、振動検出部120で音が振動として検出され、振動検出部120の出力が処理部110で処理されて音データが生成される。音データはケーブル180を介してイヤホン部190に入力され、出力部192から音データに基づく音が出力される。こうして、利用者は、対象部90からの音を聞くことができる。 The user of the sound acquisition device 10 wears the earphone unit 190, grasps the grip unit 100, and presses the first surface 101 against the target unit 90. Then, in the grip unit 100, the vibration detection unit 120 detects sound as vibration, and the processing unit 110 processes the output of the vibration detection unit 120 to generate sound data. The sound data is input to the earphone unit 190 via the cable 180, and a sound based on the sound data is output from the output unit 192. Thus, the user can hear the sound from the target unit 90.
 グリップ部100の外殻は主に筐体130で構成されている。筐体130には対象部90からの対象音を取り込むための開口が設けられている。この開口はダイヤフラム150で覆われている。また、筐体130にはスイッチ112を配置するための開口が設けられている。 The outer shell of the grip part 100 is mainly composed of a housing 130. The housing 130 is provided with an opening for capturing the target sound from the target unit 90. This opening is covered with a diaphragm 150. The housing 130 is provided with an opening for arranging the switch 112.
 筐体130とダイヤフラム150で構成されたグリップ部100の内部空間には、振動検出部120、支持部材140、電池111、および回路基板113が配置されている。回路基板113はセンサ素子122の駆動や信号処理が可能な回路を含む。回路基板113は電池111から供給される電力によって駆動され、処理部110として機能する。スイッチ112は処理部110等の動作を制御する。 In the internal space of the grip part 100 constituted by the housing 130 and the diaphragm 150, a vibration detection part 120, a support member 140, a battery 111, and a circuit board 113 are arranged. The circuit board 113 includes a circuit capable of driving the sensor element 122 and performing signal processing. The circuit board 113 is driven by the power supplied from the battery 111 and functions as the processing unit 110. The switch 112 controls the operation of the processing unit 110 and the like.
 電池111、スイッチ112、および回路基板113は筐体130に固定されている。また、回路基板113には各センサ素子122が、センサ素子122の振動を妨げない状態で電気的に接続されている。そして、回路基板113には各センサ素子122の出力信号が入力される。また、回路基板113からの出力信号がイヤホン部190に入力される。回路基板113からの出力信号は、音データ、または音データに基づく音信号を含む。 The battery 111, the switch 112, and the circuit board 113 are fixed to the housing 130. In addition, each sensor element 122 is electrically connected to the circuit board 113 in a state where the vibration of the sensor element 122 is not hindered. Then, the output signal of each sensor element 122 is input to the circuit board 113. Further, an output signal from the circuit board 113 is input to the earphone unit 190. The output signal from the circuit board 113 includes sound data or a sound signal based on the sound data.
 処理部110はたとえばデジタルシグナルプロセッサ(DSP)またはセントラルプロセッシングユニット(CPU)により実現される。DSPを用いることで、高速な処理が可能である。処理部110は、たとえば、後述する対を構成する二つの検出軸123についての検出信号を足し合わせることにより、音データを生成する。このように処理部110は、簡単な処理で音データを生成することができる。したがって、対象部90における音の取得から、短い遅延時間で出力部192における出力を行える。特に音取得装置10が電子聴診器である場合、遅延が大きいことは使用に際して違和感の一因となるため、短い遅延時間の実現は重要である。また、処理が簡単であることは、信号の誤処理の抑制にも寄与する。さらに、処理が簡単であることからDSPのエネルギー消費を低く抑えることができ、装置の低消費電力化にも寄与する。 The processing unit 110 is realized by a digital signal processor (DSP) or a central processing unit (CPU), for example. By using a DSP, high-speed processing is possible. For example, the processing unit 110 generates sound data by adding detection signals for two detection axes 123 constituting a pair described later. As described above, the processing unit 110 can generate sound data by a simple process. Therefore, output from the output unit 192 can be performed with a short delay time from the acquisition of sound in the target unit 90. In particular, when the sound acquisition device 10 is an electronic stethoscope, a large delay causes a sense of incongruity during use, and thus it is important to realize a short delay time. In addition, the simplicity of the process contributes to suppression of erroneous signal processing. Furthermore, since the processing is simple, the energy consumption of the DSP can be kept low, which contributes to a reduction in power consumption of the apparatus.
 なお、処理部110ではさらに、デジタルアナログ変換、アナログデジタル変換、フィルタリング、増幅等の処理が適宜行われてもよい。たとえば処理部110は、聴診周波数帯域を切り替え可能なフィルタ機能や、センサ素子122の個体性能バラツキを補正する補正機能を有してもよい。 In the processing unit 110, processing such as digital / analog conversion, analog / digital conversion, filtering, and amplification may be appropriately performed. For example, the processing unit 110 may have a filter function that can switch the auscultation frequency band and a correction function that corrects individual performance variation of the sensor element 122.
 スイッチ112は、音取得装置10の起動のための電源スイッチや、音取得装置10の聴診周波数モード切替のスイッチ等である。 The switch 112 is a power switch for starting the sound acquisition device 10, a switch for auscultation frequency mode switching of the sound acquisition device 10, or the like.
 イヤホン部190には、必要に応じてデジタルアナログ変換回路、フィルタ、増幅器等がさらに含まれても良い。イヤホン部190に入力された、回路基板113からの出力信号に基づいて、出力部192から音が出力される。 The earphone unit 190 may further include a digital / analog conversion circuit, a filter, an amplifier, and the like as necessary. Sound is output from the output unit 192 based on the output signal from the circuit board 113 input to the earphone unit 190.
 筐体130は、金属または樹脂である。筐体130が金属である場合、剛性が高く、遮音性が高いためノイズ低減に好適である。一方、対象部90が生体の一部である場合、筐体130は特に樹脂であることが好ましい。生体に対して用いる場合、静電気の発生を避ける必要があるが、筐体130が樹脂であれば元々静電気が発生しにくい。したがって静電気への対策を特に要しない。また、本実施例によれば、処理部110によりノイズの低減が可能であるため、筐体130に特別高い剛性や遮音性を要しない。よって、樹脂の筐体130を好適に用いることができる。 The housing 130 is made of metal or resin. When the housing 130 is made of metal, it is suitable for noise reduction because of high rigidity and high sound insulation. On the other hand, when the target part 90 is a part of a living body, the housing 130 is particularly preferably a resin. When used for a living body, it is necessary to avoid the generation of static electricity. However, if the housing 130 is made of resin, static electricity is hardly generated. Therefore, no special countermeasures against static electricity are required. Further, according to the present embodiment, since the noise can be reduced by the processing unit 110, the casing 130 does not require special high rigidity and sound insulation. Therefore, the resin casing 130 can be suitably used.
 ダイヤフラム150はキャップ状であり、筐体130に対して固定されて、筐体130の対象音を取り込むための開口を覆っている。第1面101は音取得装置10の外面の一部であり、本実施例において第1面101はダイヤフラム150の対象部90に対向する面である。 The diaphragm 150 has a cap shape, is fixed to the housing 130, and covers an opening for capturing the target sound of the housing 130. The first surface 101 is a part of the outer surface of the sound acquisition device 10. In the present embodiment, the first surface 101 is a surface facing the target portion 90 of the diaphragm 150.
 音の取得時には、ダイヤフラム150を対象部90に接触または接近させる。ダイヤフラム150は、音取得装置10の外部に露出しており、対象音に起因する振動を支持部材140および振動検出部120に伝達するための振動体である。対象部90が生体の一部である場合、ダイヤフラム150は生体適合性を有する材料からなることが好ましい。生体適合性を有する材料としては、たとえばシリコーン(silicone)が挙げられる。なお、ダイヤフラム150は保護膜等を含む多層構造を有していても良い。 When acquiring sound, the diaphragm 150 is brought into contact with or close to the target portion 90. The diaphragm 150 is exposed to the outside of the sound acquisition device 10 and is a vibrating body for transmitting vibration caused by the target sound to the support member 140 and the vibration detection unit 120. When the target part 90 is a part of a living body, the diaphragm 150 is preferably made of a material having biocompatibility. Examples of the material having biocompatibility include silicone. Note that the diaphragm 150 may have a multilayer structure including a protective film or the like.
 なお、第1面101を対象部90に押し当てるとは、第1面101を対象部90に接触または接近させることをいう。たとえば、音の取得時に第1面101と対象部90との間には服などが介在していても良い。ただし、音の取得時に、ダイヤフラム150は対象音が支持部材140へ伝達されるように、支持部材140に向けて押しつけられる。また、ダイヤフラム150は、支持部材140と一体であってもよい。 It should be noted that pressing the first surface 101 against the target portion 90 means bringing the first surface 101 into contact with or approaching the target portion 90. For example, clothes or the like may be interposed between the first surface 101 and the target unit 90 at the time of sound acquisition. However, when the sound is acquired, the diaphragm 150 is pressed toward the support member 140 so that the target sound is transmitted to the support member 140. Further, the diaphragm 150 may be integrated with the support member 140.
 支持部材140は、振動検出部120を支持する部材である。図6の例において、振動検出部120は、複数のセンサ素子122を含む。また、支持部材140には、複数のセンサ素子122のそれぞれを支持する支持面145が設けられている。そして複数の支持面145は、第1面101に対して斜めであり、互いに異なる方向を向いている。ここで、支持面145に支持されるセンサ素子122の検出軸123は支持面145に垂直または平行でありえる。図6は、検出軸123が支持面145に垂直な例を示している。 The support member 140 is a member that supports the vibration detection unit 120. In the example of FIG. 6, the vibration detection unit 120 includes a plurality of sensor elements 122. The support member 140 is provided with a support surface 145 that supports each of the plurality of sensor elements 122. The plurality of support surfaces 145 are oblique with respect to the first surface 101 and face different directions. Here, the detection axis 123 of the sensor element 122 supported by the support surface 145 may be perpendicular or parallel to the support surface 145. FIG. 6 shows an example in which the detection shaft 123 is perpendicular to the support surface 145.
 さらに詳しくは、支持部材140はベース部142とベース部142から第1面101側とは反対側に突出した凸部144を有する。そして、凸部144の側面に支持面145が設けられている。また、ベース部142の外周部は、利用者が触れるグリップ部100の筐体130に物理的に接続されている。支持部材140はたとえば樹脂部材である。 More specifically, the support member 140 has a base portion 142 and a convex portion 144 that protrudes from the base portion 142 to the side opposite to the first surface 101 side. A support surface 145 is provided on the side surface of the convex portion 144. Moreover, the outer peripheral part of the base part 142 is physically connected to the housing | casing 130 of the grip part 100 which a user touches. The support member 140 is a resin member, for example.
 図6の例において、ベース部142の外縁部のダイヤフラム150側の面には、凹部が設けられている。そして、筐体130の支持部材140と接続される部分にはその凹部に嵌め込まれる凸部が設けられている。この凹部と凸部の接合により、筐体130と支持部材140が接続される。このような構造により、筐体130からの横振動が支持部材140に伝わる。なお、筐体130に凹部が設けられ、支持部材140にその凹部に嵌め込まれる凸部が設けられても良い。また、支持部材140と筐体130とはネジで接続されてもよいし、支持部材140と筐体130は一体化された部材であっても良い。 In the example of FIG. 6, a concave portion is provided on the surface of the outer edge portion of the base portion 142 on the diaphragm 150 side. And the convex part inserted in the recessed part is provided in the part connected with the supporting member 140 of the housing | casing 130. As shown in FIG. The housing 130 and the support member 140 are connected by joining the concave and convex portions. With such a structure, lateral vibration from the housing 130 is transmitted to the support member 140. The housing 130 may be provided with a recess, and the support member 140 may be provided with a protrusion that fits into the recess. Further, the support member 140 and the housing 130 may be connected by screws, or the support member 140 and the housing 130 may be integrated members.
 図6の例において、ベース部142は厚さが非一様な円板状である。ベース部142には、センサ素子122の一部を配置する凹部が設けられている。また、凸部144は直角二等辺三角形を底面とする三角柱の一側面がベース部142と接合した形状により構成されている。そして、この三角柱の互いに直交する二側面が、第1面101とは反対側に向いて支持面145として機能する。また、支持部材140は面対称の構造を有する。ここで、対称面は第1面101に垂直であり、センサ素子122aとセンサ素子122bとの間を通る。また、センサ素子122aおよびセンサ素子122bもこの対称面に対して対称に配置される。 In the example of FIG. 6, the base portion 142 has a disk shape with a non-uniform thickness. The base portion 142 is provided with a recess in which a part of the sensor element 122 is disposed. The convex portion 144 has a shape in which one side surface of a triangular prism having a right isosceles triangle as a bottom surface is joined to the base portion 142. The two side surfaces of the triangular prism perpendicular to each other face the side opposite to the first surface 101 and function as the support surface 145. The support member 140 has a plane-symmetric structure. Here, the symmetry plane is perpendicular to the first surface 101 and passes between the sensor element 122a and the sensor element 122b. The sensor element 122a and the sensor element 122b are also arranged symmetrically with respect to this symmetry plane.
 本図の例において、音取得装置10は、ダイヤフラム150と支持部材140との間に、ダイヤフラム150への対象部90からの圧力を検知する圧力センサ152をさらに備える。そして、処理部110は圧力センサ152の出力を用いて音データの生成タイミングを制御する。 In the example of this figure, the sound acquisition device 10 further includes a pressure sensor 152 that detects the pressure from the target portion 90 to the diaphragm 150 between the diaphragm 150 and the support member 140. Then, the processing unit 110 controls the generation timing of the sound data using the output of the pressure sensor 152.
 本図の例において、支持部材140のダイヤフラム150側の面は圧力センサ152に密着し、圧力センサ152の支持部材140とは反対側の面はダイヤフラム150に密着している。そして、支持部材140と圧力センサ152との間には全体に圧力センサ152が設けられており、支持部材140とダイヤフラム150とは直接は接していない。 In the example of this figure, the surface of the support member 140 on the diaphragm 150 side is in close contact with the pressure sensor 152, and the surface of the pressure sensor 152 opposite to the support member 140 is in close contact with the diaphragm 150. The pressure sensor 152 is provided between the support member 140 and the pressure sensor 152 as a whole, and the support member 140 and the diaphragm 150 are not in direct contact with each other.
 圧力センサ152はたとえば接触センサである。圧力センサ152によりダイヤフラム150の対象部90への間接、または直接の接触を検知することができる。圧力センサ152が予め定められた基準以上の圧力を検知しているとき、処理部110は、グリップ部100が対象部90に押し当てられていると判断することができる。基準を示す情報は、音取得装置10の回路基板113に設けられた記憶部115に保持されており、処理部110がそれを読み出して用いることができる。なお、圧力センサ152は圧力値を示す信号を出力する代わりに、圧力の有無を示す信号を出力してもよい。その場合、処理部110は、圧力センサ152から圧力有りの信号が出力されているとき、グリップ部100が対象部90に押し当てられていると判断することができる。 The pressure sensor 152 is, for example, a contact sensor. Indirect or direct contact of the diaphragm 150 with the target portion 90 can be detected by the pressure sensor 152. When the pressure sensor 152 detects a pressure equal to or higher than a predetermined reference, the processing unit 110 can determine that the grip unit 100 is pressed against the target unit 90. Information indicating the reference is held in the storage unit 115 provided on the circuit board 113 of the sound acquisition device 10, and can be read and used by the processing unit 110. Note that the pressure sensor 152 may output a signal indicating the presence or absence of pressure instead of outputting a signal indicating the pressure value. In this case, the processing unit 110 can determine that the grip unit 100 is pressed against the target unit 90 when a signal with pressure is output from the pressure sensor 152.
 たとえば処理部110は、グリップ部100が対象部90に押し当てられている間、音データを生成し、グリップ部100が対象部90に押し当てられていない間、音データの生成を停止する。こうすることで、電池111の電力の消耗を抑制することができる。なお、グリップ部100が対象部90から離された後も、予め定められた時間(たとえば数秒間)、音データの生成を継続するようにしてもよい。 For example, the processing unit 110 generates sound data while the grip unit 100 is pressed against the target unit 90, and stops generating sound data while the grip unit 100 is not pressed against the target unit 90. In this way, power consumption of the battery 111 can be suppressed. Note that generation of sound data may be continued for a predetermined time (for example, several seconds) even after the grip unit 100 is separated from the target unit 90.
 支持部材140についてさらに詳しく説明する。各センサ素子122は、支持部材140に対して固定されている一方、筐体130には直接固定されていない。したがって、支持部材140の振動がセンサ素子122によって検出される。 The support member 140 will be described in more detail. Each sensor element 122 is fixed to the support member 140, but is not directly fixed to the housing 130. Therefore, the vibration of the support member 140 is detected by the sensor element 122.
 上記した通り、第1面101が対象部90に押し当てられることにより、ダイヤフラム150が支持部材140のダイヤフラム150側の面に向かって押しつけられ、対象部90からの音(振動)は支持部材140に伝達される。実施形態で説明した通り、対象部90からの対象音は支持部材140において、第1面101に垂直な方向の振動である。 As described above, when the first surface 101 is pressed against the target portion 90, the diaphragm 150 is pressed toward the surface of the support member 140 on the diaphragm 150 side, and sound (vibration) from the target portion 90 is transmitted to the support member 140. Is transmitted to. As described in the embodiment, the target sound from the target portion 90 is vibration in a direction perpendicular to the first surface 101 in the support member 140.
 一方、ベース部142の外周部は、利用者が触れるグリップ部100の筐体130に物理的に接続されている。したがって、筐体130からの音(振動)は、支持部材140において第1面101に平行な方向の振動である。音取得装置10では筐体130および支持部材140を通じて外部音が取得されるため、外部音取得用のマイクや音取り込み穴を別途設ける必要がない。ひいては、グリップ部100の密閉性が保たれ耐久性が高まるとともに、グリップ部100の清掃が容易であり清潔さが保たれる。 On the other hand, the outer peripheral portion of the base portion 142 is physically connected to the casing 130 of the grip portion 100 that is touched by the user. Therefore, sound (vibration) from the housing 130 is vibration in a direction parallel to the first surface 101 in the support member 140. Since the external sound is acquired through the housing 130 and the support member 140 in the sound acquisition device 10, it is not necessary to separately provide a microphone for external sound acquisition and a sound capturing hole. As a result, the grip of the grip 100 is maintained and the durability is enhanced, and the grip 100 is easy to clean and clean.
 センサ素子122は、たとえば加速度センサである。すなわち、センサ素子122全体が揺さぶられた場合に、その揺れが振動として検出される。センサ素子122の検出軸123は、センサ素子122で原理上主に検出される軸であり、最も感度が大きい軸である。検出軸123は各センサ素子122において、予め定められている。 The sensor element 122 is, for example, an acceleration sensor. That is, when the entire sensor element 122 is shaken, the shake is detected as vibration. The detection axis 123 of the sensor element 122 is an axis that is principally detected by the sensor element 122 in principle, and is the axis with the highest sensitivity. The detection shaft 123 is predetermined for each sensor element 122.
 図7は、センサ素子122の動作を説明するための図である。本図では、センサ素子122の断面模式図と、センサ素子122の移動に対する出力波形の関係を示している。センサ素子122の内部には振動板124が設けられている。振動板124の一端または両端はセンサ素子122の筐体に対して固定されており、センサ素子122の振動に応じて振動板124が軸方向に撓む。この撓み量がたとえば静電容量や圧電等により電気信号に変換される。その結果、センサ素子122からは、センサ素子122の振動(加速度)に応じた信号が出力される。なお、センサ素子122の出力の極性は、検出軸123を基準とした加速度の方向に対応している。本図の例において、検出軸123は振動板124の撓み方向に平行である。 FIG. 7 is a diagram for explaining the operation of the sensor element 122. In this figure, the cross-sectional schematic diagram of the sensor element 122 and the relationship of the output waveform with respect to the movement of the sensor element 122 are shown. A diaphragm 124 is provided inside the sensor element 122. One end or both ends of the diaphragm 124 are fixed to the housing of the sensor element 122, and the diaphragm 124 bends in the axial direction according to the vibration of the sensor element 122. This amount of deflection is converted into an electric signal by, for example, electrostatic capacity or piezoelectricity. As a result, a signal corresponding to the vibration (acceleration) of the sensor element 122 is output from the sensor element 122. The polarity of the output of the sensor element 122 corresponds to the direction of acceleration with the detection axis 123 as a reference. In the example of this figure, the detection shaft 123 is parallel to the bending direction of the diaphragm 124.
 各センサ素子122は、内部の構造によって、一または二以上の検出軸123を有することができる。各センサ素子122が一の検出軸123を有する場合、振動検出部120は複数のセンサ素子122を用いて実現される。この場合特に、複数の検出軸123の方向を自由に設定して音取得装置10を構成することができる。図5および図6は、このように各センサ素子122が一の検出軸123を有する例を示している。 Each sensor element 122 may have one or more detection axes 123 depending on the internal structure. When each sensor element 122 has one detection axis 123, the vibration detection unit 120 is realized using a plurality of sensor elements 122. In this case, in particular, the sound acquisition device 10 can be configured by freely setting the directions of the plurality of detection axes 123. 5 and 6 show examples in which each sensor element 122 has one detection axis 123 as described above.
 一方、二以上の検出軸123を有するセンサ素子122を用いる場合、振動検出部120は一つのセンサ素子122により構成されてもよい。この場合、センサ素子122はたとえば2軸センサ、または3軸センサであり、検出軸123は互いに直交する。そして、複数の検出軸123がいずれも第1面101に対して斜めとなるように、支持部材140がセンサ素子122を支持すればよい。 On the other hand, when the sensor element 122 having two or more detection axes 123 is used, the vibration detection unit 120 may be configured by one sensor element 122. In this case, the sensor element 122 is, for example, a 2-axis sensor or a 3-axis sensor, and the detection axes 123 are orthogonal to each other. Then, the support member 140 may support the sensor element 122 so that the plurality of detection shafts 123 are all inclined with respect to the first surface 101.
 振動検出部120の複数の検出軸123と、処理部110の処理について、以下に詳しく説明する。上記した通り、複数の検出軸123は、互いに非平行であり、第1面101に対して斜めである。すなわち検出軸123は第1面101の法線に対して斜めである。 The plurality of detection axes 123 of the vibration detection unit 120 and the processing of the processing unit 110 will be described in detail below. As described above, the plurality of detection axes 123 are not parallel to each other and are oblique to the first surface 101. That is, the detection axis 123 is inclined with respect to the normal line of the first surface 101.
 ここで、複数の検出軸123は、第1面101への投影が互いに平行である二つの検出軸123からなる対を含むことが好ましい。また、対を構成する二つの検出軸123の、第1面101に対する角度は互いに等しいことが好ましい。このような対では、第1面101に平行な方向の振動成分が逆位相かつ同じ強さの振動成分としてセンサ素子122に作用する。したがって、二つの検出軸123についての検出信号を足し合わせるだけで、第1面101に平行な方向の振動成分、すなわち、外部音の成分を効果的に低減できる。 Here, the plurality of detection axes 123 preferably include a pair of two detection axes 123 whose projections onto the first surface 101 are parallel to each other. Moreover, it is preferable that the angle with respect to the 1st surface 101 of the two detection axes 123 which comprise a pair is mutually equal. In such a pair, the vibration component in the direction parallel to the first surface 101 acts on the sensor element 122 as a vibration component having an opposite phase and the same strength. Therefore, the vibration component in the direction parallel to the first surface 101, that is, the component of the external sound can be effectively reduced by simply adding the detection signals for the two detection axes 123.
 なお、対を構成する二つの検出軸123の方向、すなわち検出の極性は、第1面101への投影において、互いに逆向きである。また、対を構成する二つの検出軸123の第1面101への投影は、同一直線上にあることが好ましいが、必ずしも同一直線上に無くても良い。 Note that the directions of the two detection axes 123 constituting the pair, that is, the detection polarities, are opposite to each other in the projection onto the first surface 101. The projections of the two detection axes 123 constituting the pair on the first surface 101 are preferably on the same straight line, but may not necessarily be on the same straight line.
 複数の検出軸123が一以上の対からなる場合、振動検出部120は偶数個の検出軸123を有する。 When the plurality of detection shafts 123 are composed of one or more pairs, the vibration detection unit 120 has an even number of detection shafts 123.
 図6は、検出軸123aと検出軸123bとが、対を構成する二つの検出軸123であり、第1面101に対する角度が互いに等しい例を示している。 FIG. 6 shows an example in which the detection axis 123a and the detection axis 123b are two detection axes 123 constituting a pair, and the angles with respect to the first surface 101 are equal to each other.
 対を構成する二つの検出軸123の成す角θは特に限定されないが、対象音に対する感度と指向性とのバランスの観点から、60°以上120°以下であることが好ましく、75°以上105°以下であることがより好ましく、85°以上95°以下であることがさらに好ましい。 The angle θ formed by the two detection axes 123 constituting the pair is not particularly limited, but is preferably 60 ° or more and 120 ° or less, and preferably 75 ° or more and 105 ° from the viewpoint of the balance between sensitivity to the target sound and directivity. More preferably, it is 85 degrees or more and 95 degrees or less.
 図8(a)および図8(b)は、θと振動検出部120の指向性との関係を例示する図である。図8(a)の例では図8(b)の例よりもθが大きい。これらの図で示すように、θが大きいほど、より指向性が高い。すなわち、限られた角度範囲からの音を取得できる。このように、振動検出部120の指向性はセンサ素子122自体の指向性と、θの設定によって調整できる。一方、θが小さいほど、対象部90からの対象音、すなわち第1面101に垂直な振動成分を、高い感度で取得することができる。 8A and 8B are diagrams illustrating the relationship between θ and the directivity of the vibration detection unit 120. FIG. In the example of FIG. 8A, θ is larger than that in the example of FIG. As shown in these figures, the larger the θ, the higher the directivity. That is, it is possible to acquire sound from a limited angle range. Thus, the directivity of the vibration detector 120 can be adjusted by the directivity of the sensor element 122 itself and the setting of θ. On the other hand, as θ is smaller, the target sound from the target portion 90, that is, the vibration component perpendicular to the first surface 101, can be acquired with higher sensitivity.
 なお、処理部110は、対を構成する二つの検出軸123についての検出信号を足し合わせるほか、必要な処理をさらに行ってもよい。たとえば、処理部110は、センサ素子122の感度や周波数特性等の特性ばらつきを補正する処理を行うことができる。また、センサ素子122間の距離および周波数に応じた位相ずれ、すなわち時間的なずれを補正する処理を行うことができる。ただし、これらの処理も動的な信号処理ではなく、固定パラメータを利用した処理であり、処理は過度に複雑化することはない。 The processing unit 110 may further perform necessary processing in addition to adding the detection signals for the two detection axes 123 constituting the pair. For example, the processing unit 110 can perform processing for correcting characteristic variations such as sensitivity and frequency characteristics of the sensor element 122. Further, it is possible to perform processing for correcting a phase shift corresponding to the distance and frequency between the sensor elements 122, that is, a time shift. However, these processes are not dynamic signal processes but processes using fixed parameters, and the processes are not excessively complicated.
 複数のセンサ素子122の距離は短いことが好ましい。検出信号の加算によるノイズキャンセルでは、複数の122の検出信号間の位相差を小さくすることで、得られる音データにおける残留誤差を小さくすることができるからである。たとえば、生体音など比較的周波数が低い成分(たとえば3kHz以下)に対する効果を想定すると、センサ素子122aの中心とセンサ素子122bの中心との距離は10mm以下であることが好ましい。 It is preferable that the distance between the plurality of sensor elements 122 is short. This is because in the noise cancellation by adding the detection signals, the residual error in the obtained sound data can be reduced by reducing the phase difference between the plurality of 122 detection signals. For example, assuming an effect on a component having a relatively low frequency (for example, 3 kHz or less) such as a body sound, the distance between the center of the sensor element 122a and the center of the sensor element 122b is preferably 10 mm or less.
 以上、本実施例によれば、実施形態と同様、複数の検出軸123が、互いに非平行であり、対象部90に対向する第1面101に対して斜めである。したがって、検出信号の簡単な処理により、時間遅延およびエネルギー消費を抑えつつ、ノイズを低減できる。 As described above, according to the present example, as in the embodiment, the plurality of detection axes 123 are non-parallel to each other and are inclined with respect to the first surface 101 facing the target unit 90. Therefore, noise can be reduced by suppressing the time delay and energy consumption by simple processing of the detection signal.
(実施例2)
 図9は、実施例2に係る処理部110の処理方法を説明するための模式図である。本実施例に係る音取得装置10は、処理部110が行う処理内容を除いて実施例1に係る音取得装置10と同じである。
(Example 2)
FIG. 9 is a schematic diagram for explaining the processing method of the processing unit 110 according to the second embodiment. The sound acquisition device 10 according to the present embodiment is the same as the sound acquisition device 10 according to the first embodiment except for the processing content performed by the processing unit 110.
 本実施例において、処理部110は、第1の伝達関数G、第2の伝達関数G、および振動検出部120からの出力を用いて音データを生成する。第1の伝達関数Gは、音取得装置10の外部の音Sを入力とし、振動検出部120における第1面101に平行な方向の音成分SpNを出力としたときの伝達関数である。そして、第2の伝達関数Gは、音取得装置10の外部の音Sを入力とし、振動検出部120における第1面101に垂直な方向の音成分SvNを出力としたときの伝達関数である。 In the present embodiment, the processing unit 110 generates sound data using the first transfer function G 1 , the second transfer function G 2 , and the output from the vibration detection unit 120. The first transfer function G 1 is a transfer function when the sound S N external to the sound acquisition device 10 is input and the sound component S pN in the direction parallel to the first surface 101 in the vibration detection unit 120 is output. is there. The second transfer function G 2 is a transfer when the sound SN outside the sound acquisition device 10 is input and the sound component S vN in the direction perpendicular to the first surface 101 in the vibration detection unit 120 is output. It is a function.
 なお、第1面101に平行な方向の音成分とは、振動検出部120において第1面101に平行な振動成分として検出される音であり、すなわち、第1の検出軸123aの検出信号と第2の検出軸123bの検出信号との逆位相成分として検出される音である。また、第1面101に垂直な方向の音成分とは、振動検出部120において第1面101に垂直な振動成分として検出される音であり、すなわち、第1の検出軸123aの検出信号と第2の検出軸123bの検出信号との同位相成分として検出される音である。 Note that the sound component in the direction parallel to the first surface 101 is a sound detected as a vibration component parallel to the first surface 101 by the vibration detection unit 120, that is, a detection signal of the first detection axis 123a. It is a sound detected as an antiphase component with respect to the detection signal of the second detection axis 123b. The sound component in the direction perpendicular to the first surface 101 is sound detected as a vibration component perpendicular to the first surface 101 in the vibration detection unit 120, that is, the detection signal of the first detection axis 123a. It is a sound detected as an in-phase component with the detection signal of the second detection axis 123b.
 音取得装置10の外部から振動検出部120へ伝わる外部音80の成分としては、筐体130へ吸収され支持部材140を介して振動検出部120へ伝わる吸収成分81と、筐体130を透過して直接振動検出部120へ伝わる透過成分82とがある。 The components of the external sound 80 transmitted from the outside of the sound acquisition device 10 to the vibration detection unit 120 are absorbed by the housing 130 and transmitted to the vibration detection unit 120 via the support member 140, and are transmitted through the housing 130. And a transmission component 82 that is directly transmitted to the vibration detection unit 120.
 吸収成分81は、実施形態および実施例1で説明した通り、支持部材140において第1面101に平行な方向の音成分Sp1となり、検出軸123aの検出信号と検出軸123bの検出信号を足し合わせることにより打ち消される。一方、透過成分82は、第1面101に垂直な方向の音成分Sv2と第1面101に平行な方向の音成分Sp2との足し合わせである。振動検出部120に至った透過成分82のうち、第1面101に平行な方向の音成分Sp2は検出軸123aの検出信号と検出軸123bの検出信号を足し合わせにより、音成分Sp1と同様に打ち消される。一方、第1面101に垂直な方向の音成分Sv2は、単なる信号の足し合わせでは除去することができない。 As described in the embodiment and Example 1, the absorption component 81 becomes the sound component Sp1 in the direction parallel to the first surface 101 in the support member 140, and adds the detection signal of the detection axis 123a and the detection signal of the detection axis 123b. Countered by matching. On the other hand, the transmitted component 82 is the sum of the sound component S v2 in the direction perpendicular to the first surface 101 and the sound component S p2 in the direction parallel to the first surface 101. Of the transmitted component 82 reaching the vibration detection unit 120, the sound component Sp2 in the direction parallel to the first surface 101 is summed with the sound component Sp1 by adding the detection signal of the detection shaft 123a and the detection signal of the detection shaft 123b. It will be canceled as well. On the other hand, the sound component Sv2 in the direction perpendicular to the first surface 101 cannot be removed by simple signal addition.
 ここで、吸収成分81と透過成分82の音源は、いずれも外部音80で共通である。そして、吸収成分81は「音源」×「筐体130の振動の伝達関数」で表され、透過成分82は「音源」×「筐体130の透過の伝達関数」で表される。したがって、「筐体130の振動の伝達関数」が既知であれば、逆算して「音源」を特定することができる。さらに、特定した「音源」に対し、「筐体130の透過の伝達関数」を掛け合わされることで、透過成分82を特定することができる。以下に、さらに詳しく説明する。 Here, the sound source of the absorption component 81 and the transmission component 82 is common to the external sound 80. The absorption component 81 is expressed by “sound source” × “the transfer function of vibration of the casing 130”, and the transmission component 82 is expressed by “sound source” × “the transfer function of transmission of the casing 130”. Therefore, if the “transfer function of the vibration of the casing 130” is known, the “sound source” can be specified by back calculation. Furthermore, the transmission component 82 can be identified by multiplying the identified “sound source” by the “transmission transfer function of the casing 130”. This will be described in more detail below.
 上記した各伝達関数の定義から、SpN=S×GおよびSvN=S×Gが成り立つ。したがって、SvN=(G/G)×SpNの関係が得られる。なお上記した通り、吸収成分81はSpNにしか含まれないことから、SpN=Sp1+Sp2およびSvN=Sv2である。 From the definition of each transfer function described above, S pN = S N × G 1 and S vN = S N × G 2 hold. Therefore, a relationship of S vN = (G 2 / G 1 ) × S pN is obtained. Note as described above, the absorbent component 81 since only contains the S pN, a S pN = S p1 + S p2 and S vN = S v2.
 対象部90からの音の取得において、振動検出部120では、第1面101に平行な方向の音成分Sと、第1面101に垂直な方向の音成分Sとが別々に検出できる。すなわち、音成分Sは第1の検出軸123aの検出信号と第2の検出軸123bの検出信号との逆位相成分から得られ、音成分Sは第1の検出軸123aの検出信号と第2の検出軸123bの検出信号との同位相成分から得られる。より具体的には、音成分Sは第1の検出軸123aの検出信号と第2の検出軸123bの検出信号の差として得られ、音成分Sは第1の検出軸123aの検出信号と第2の検出軸123bの検出信号との和として得られる。 The acquisition of the sound from the target portion 90, the vibration detection unit 120, a sound component S p direction parallel to the first surface 101, a sound component S v in a direction perpendicular to the first surface 101 can be detected separately . That is, the sound component S p is obtained from the reverse phase component of the detection signal of the detection signal and the second detection axis 123b of the first detection axis 123a, a sound component S v is a detection signal of the first detection axis 123a It is obtained from the same phase component as the detection signal of the second detection axis 123b. More specifically, the sound component S p is obtained as a difference between the detection signal of the detection signal and the second detection axis 123b of the first detection axis 123a, a sound component S v is the detection signal of the first detection axis 123a And the sum of the detection signal of the second detection shaft 123b.
 ここで、対象音Sは音成分Sにしか含まれないことから、S=SpNおよびS=SvN+Sである。よって、So=S-SvN=S-(G/G)×Sが成り立つ。 Here, since the target sound S o is included only in the sound component S v , S p = S pN and S v = S vN + S o . Therefore, So = S v −S vN = S v − (G 2 / G 1 ) × S p holds.
 以上の通り、伝達関数Gおよび伝達関数Gが既知であれば、取得された音成分Sおよび音成分Sを用いて、対象音Sを抽出することができる。具体的には、音成分Sから、音成分SにG/Gを乗じた成分を差し引くことにより、透過成分82によるノイズを低減した音データを生成することができる。 As described above, if the transfer functions G 1 and the transfer function G 2 is known, it can use the sound component obtained S v and sound components S p, extracts a target sound S o. Specifically, from the sound component S v, by subtracting the component multiplied by G 2 / G 1 to the sound component S p, it is possible to generate sound data with reduced noise by a transmission component 82.
 伝達関数Gおよび伝達関数Gはそれぞれ筐体130の材質や形状に依存する。伝達関数Gおよび伝達関数Gは以下の様にして予め得ることができる。まず、音取得装置10の外部、具体的にはグリップ部100の筐体130の外部に音源を配置する。そして、その音源から既知の音を発生させ、振動検出部120で検出する。このとき、第1面101を静止した剛体に押し当てるなどすることにより、第1面101からは音の入力が無い状態とする。また、振動検出部120の検出結果としては、上記したように、第1面101に平行な方向の音成分Sと、第1面101に平行な方向の音成分Sとをそれぞれ導出する。 Each transfer functions G 1 and the transfer function G 2 is dependent on the material and shape of the housing 130. The transfer function G 1 and the transfer function G 2 is can be obtained in advance in the following manner. First, a sound source is arranged outside the sound acquisition device 10, specifically, outside the housing 130 of the grip unit 100. Then, a known sound is generated from the sound source and detected by the vibration detection unit 120. At this time, the first surface 101 is pressed against a stationary rigid body so that no sound is input from the first surface 101. Further, as the detection result of the vibration detection unit 120, as described above, a sound component S p direction parallel to the first surface 101, to derive respectively a direction of the sound component S v parallel to the first surface 101 .
 音源からの既知の音と音成分Sとの関係から伝達関数Gが得られる。また、音源からの既知の音と音成分Sとの関係から伝達関数Gが得られる。得られた伝達関数Gおよび伝達関数Gは記憶部115に保持させておき、処理部110がそれらを読み出して処理に用いることができる。 Transmitting from the relationship between known sound and sound component S p from the sound source function G 1 is obtained. Further, the transfer function G 2 is obtained from the relationship between known sound and sound component S v from the sound source. The resulting transfer function G 1 and the transfer function G 2 is allowed to hold in the storage unit 115, processing unit 110 can be used for processing by reading them.
 上記した本実施例に係る処理部110の処理は、以下の様に表現することもできる。複数の検出軸123は、第1の検出軸123aと第2の検出軸123bを含む。そして、処理部110は、第1の検出軸123aの検出信号と第2の検出軸123bの検出信号との逆位相成分を用いて、第1の検出軸123aの検出信号と第2の検出軸123bの検出信号との同位相成分を処理することにより、音データを生成する。 The processing of the processing unit 110 according to this embodiment described above can also be expressed as follows. The plurality of detection axes 123 include a first detection axis 123a and a second detection axis 123b. Then, the processing unit 110 uses the detection signal of the first detection axis 123a and the second detection axis using the opposite phase components of the detection signal of the first detection axis 123a and the detection signal of the second detection axis 123b. Sound data is generated by processing the same phase component as the detection signal 123b.
 以上、本実施例によれば、実施形態と同様、複数の検出軸123が、互いに非平行であり、対象部90に対向する第1面101に対して斜めである。したがって、検出信号の簡単な処理により、時間遅延およびエネルギー消費を抑えつつ、ノイズを低減できる。 As described above, according to the present example, as in the embodiment, the plurality of detection axes 123 are non-parallel to each other and are inclined with respect to the first surface 101 facing the target unit 90. Therefore, noise can be reduced by suppressing the time delay and energy consumption by simple processing of the detection signal.
 くわえて、本実施例によれば、処理部110が、第1の伝達関数G、第2の伝達関数G、および振動検出部120からの出力を用いて音データを生成する。したがって、筐体130を透過した音成分によるノイズを低減でき、よりノイズ成分の少ない音データを生成することができる。 In addition, according to the present embodiment, the processing unit 110 generates sound data using the first transfer function G 1 , the second transfer function G 2 , and the output from the vibration detection unit 120. Therefore, noise due to sound components transmitted through the housing 130 can be reduced, and sound data with fewer noise components can be generated.
(実施例3)
 図10は、実施例3に係る音取得装置10の構造を例示する断面図である。本図は、実施例1の図6に対応する。本実施例に係る音取得装置10は、支持部材140の筐体130に対する複数の連結部を通る平面146が、複数のセンサ素子122の中心の近傍を通る点を除いて実施例1および実施例2の少なくともいずれかに係る音取得装置10と同じである。以下に詳しく説明する。
Example 3
FIG. 10 is a cross-sectional view illustrating the structure of the sound acquisition device 10 according to the third embodiment. This figure corresponds to FIG. 6 of the first embodiment. The sound acquisition device 10 according to the present embodiment includes the first embodiment and the first embodiment except that a plane 146 that passes through a plurality of connecting portions of the support member 140 with respect to the housing 130 passes near the center of the plurality of sensor elements 122. 2 is the same as the sound acquisition device 10 according to at least one of the above. This will be described in detail below.
 本実施例において、支持部材140のベース部142のダイヤフラム150とは反対側の面には、第1面101に垂直な方向から見て中心部に凹部が設けられている。そして凸部144は、凹部の底から立ち上がっている。また、ベース部142の凹部の外側において、支持部材140は筐体130に接続されている。その結果、支持部材140の筐体130に対する複数の連結部を通る平面146が、複数のセンサ素子122の中心(本図中の点線の交点)の近傍を通ることとなる。そうすることで、二つの検出軸123のなす角θに左右されず、ノイズ低減効果の損失を最小限に抑えることができる。 In this embodiment, the surface of the support member 140 on the side opposite to the diaphragm 150 of the base portion 142 is provided with a recess at the center as viewed from the direction perpendicular to the first surface 101. The convex portion 144 rises from the bottom of the concave portion. Further, the support member 140 is connected to the housing 130 outside the concave portion of the base portion 142. As a result, the plane 146 passing through the plurality of connecting portions of the support member 140 with respect to the casing 130 passes through the vicinity of the centers (intersections of dotted lines in the drawing) of the plurality of sensor elements 122. By doing so, the loss of the noise reduction effect can be minimized without being influenced by the angle θ formed by the two detection axes 123.
 図11は、音取得装置10の構造と吸収成分81の検出感度との関係について説明するための図である。本図では、音取得装置10の筐体130、支持部材140、センサ素子122aおよびセンサ素子122bの関係を示している。ノイズの吸収成分81は、筐体130と支持部材140との連結部から伝達され、振動検出部120に向けて伝搬するが、その伝搬は放射状である。このとき、吸収成分81はセンサ素子122aとセンサ素子122bの各感度軸(検出軸123)方向にベクトル分解され、センサ素子122の各感度軸で検出される。その結果、検出レベルに差異が生じる。 FIG. 11 is a diagram for explaining the relationship between the structure of the sound acquisition device 10 and the detection sensitivity of the absorption component 81. In this figure, the relationship between the housing 130, the support member 140, the sensor element 122a, and the sensor element 122b of the sound acquisition device 10 is illustrated. The noise absorption component 81 is transmitted from the connection portion between the housing 130 and the support member 140 and propagates toward the vibration detection unit 120, but the propagation is radial. At this time, the absorption component 81 is vector-decomposed in the direction of each sensitivity axis (detection axis 123) of the sensor element 122a and the sensor element 122b, and detected by each sensitivity axis of the sensor element 122. As a result, a difference occurs in the detection level.
 より詳しくは、以下に説明するαとβとの差が、センサ素子122aとセンサ素子122bの吸収成分81に対する検出感度の差となって現れる。αは直線125と直線127とのなす角であり、βは直線126と直線127との成す角である。ここで、直線125は、センサ素子122aの中心およびセンサ素子122bの中心を通り第1面101に垂直な断面において、連結部と、その連結部から最も遠いセンサ素子122であるセンサ素子122aの中心とを結ぶ直線である。なお、本実施例において、以下、「センサ素子122aの中心およびセンサ素子122bの中心を通り第1面101に垂直な断面」を単に「第1面101に垂直な断面」と呼ぶ。直線126は、第1面101に垂直な断面において、連結部とその連結部から最も近いセンサ素子122であるセンサ素子122bの中心とを結ぶ直線である。そして、直線127は、第1面101に垂直な断面において、センサ素子122aの中心とセンサ素子122bの中心とを結ぶ直線である。なお、本図の例において、連結部は、第1面101に垂直な断面において、支持部材140と筐体130とが嵌め合うための凸部の中心である。 More specifically, the difference between α and β described below appears as a difference in detection sensitivity with respect to the absorption component 81 of the sensor element 122a and the sensor element 122b. α is an angle formed by the straight line 125 and the straight line 127, and β is an angle formed by the straight line 126 and the straight line 127. Here, the straight line 125 passes through the center of the sensor element 122a and the center of the sensor element 122b and is perpendicular to the first surface 101, and the center of the sensor element 122a that is the sensor element 122 farthest from the connection part. Is a straight line connecting In the present embodiment, hereinafter, “a section perpendicular to the first surface 101 passing through the center of the sensor element 122a and the center of the sensor element 122b” is simply referred to as “a section perpendicular to the first surface 101”. The straight line 126 is a straight line that connects the connecting portion and the center of the sensor element 122 b that is the sensor element 122 closest to the connecting portion in a cross section perpendicular to the first surface 101. The straight line 127 is a straight line connecting the center of the sensor element 122a and the center of the sensor element 122b in a cross section perpendicular to the first surface 101. In the example of this figure, the connecting portion is the center of the convex portion for fitting the support member 140 and the housing 130 in a cross section perpendicular to the first surface 101.
 ここで、第1面101に垂直な断面において、支持部材140の両端の連結部間の距離をA、平面146と直線127との距離をH、センサ素子122aの中心とセンサ素子122bの中心との距離をLとする。すると、α=tan-1(H/(A/2+L/2))×180/πが成り立ち、β=tan-1(H/(A/2-L/2))×180/πが成り立つ。 Here, in the cross section perpendicular to the first surface 101, the distance between the connecting portions at both ends of the support member 140 is A, the distance between the plane 146 and the straight line 127 is H, the center of the sensor element 122a and the center of the sensor element 122b. Let L be the distance. Then, α = tan −1 (H / (A / 2 + L / 2)) × 180 / π holds, and β = tan −1 (H / (A / 2−L / 2)) × 180 / π holds.
 αおよびβの関係について、特に限定されないが、上記の観点から|α-β|<1が成り立つことが好ましい。 The relationship between α and β is not particularly limited, but it is preferable that | α−β | <1 holds from the above viewpoint.
 図12は、音取得装置10の支持部材140および圧力センサ152の変形例を示す図である。図10では、支持部材140のダイヤフラム150に対向する面とダイヤフラム150との間の全体に圧力センサ152が設けられている例を示したが、本図の例において、圧力センサ152は支持部材140のダイヤフラム150に対向する面とダイヤフラム150との間の一部の領域にのみ設けられている。そして、支持部材140はダイヤフラム150側の面の一部の領域において、ダイヤフラム150と直接密着している。なお、実施例1で説明した図6の構造において、この様な圧力センサ152の配置を採用してもよい。 FIG. 12 is a diagram illustrating a modification of the support member 140 and the pressure sensor 152 of the sound acquisition device 10. FIG. 10 shows an example in which the pressure sensor 152 is provided between the surface of the support member 140 facing the diaphragm 150 and the diaphragm 150. However, in the example of this drawing, the pressure sensor 152 is the support member 140. It is provided only in a part of the area between the surface facing the diaphragm 150 and the diaphragm 150. The support member 140 is in direct contact with the diaphragm 150 in a partial region of the surface on the diaphragm 150 side. In addition, in the structure of FIG. 6 demonstrated in Example 1, such arrangement | positioning of the pressure sensor 152 may be employ | adopted.
 以上、本実施例によれば、実施形態と同様、複数の検出軸123が、互いに非平行であり、対象部90に対向する第1面101に対して斜めである。したがって、検出信号の簡単な処理により、時間遅延およびエネルギー消費を抑えつつ、ノイズを低減できる。 As described above, according to the present example, as in the embodiment, the plurality of detection axes 123 are non-parallel to each other and are inclined with respect to the first surface 101 facing the target unit 90. Therefore, noise can be reduced by suppressing the time delay and energy consumption by simple processing of the detection signal.
 くわえて、本実施例によれば、支持部材140の筐体130に対する複数の固定端を通る平面146が、複数のセンサ素子122の中心の近傍を通る。したがって、処理部110の処理によって、より効果的にノイズを低減できる。 In addition, according to the present embodiment, the planes 146 that pass through the plurality of fixed ends of the support member 140 with respect to the housing 130 pass through the vicinity of the centers of the plurality of sensor elements 122. Therefore, noise can be reduced more effectively by the processing of the processing unit 110.
(実施例4)
 図13(a)から図13(c)は、実施例4に係る複数の検出軸123を例示する図である。これらの図は、複数の検出軸123を第1面101に垂直な方向から見た状態を示している。本実施例に係る音取得装置10は、複数の検出軸123が複数の対を含む点を除いて実施例1から実施例3の少なくともいずれかに係る音取得装置10と同じである。以下に詳しく説明する。
(Example 4)
FIG. 13A to FIG. 13C are diagrams illustrating a plurality of detection axes 123 according to the fourth embodiment. These drawings show a state in which the plurality of detection axes 123 are viewed from a direction perpendicular to the first surface 101. The sound acquisition device 10 according to the present embodiment is the same as the sound acquisition device 10 according to at least one of the first to third embodiments, except that the plurality of detection axes 123 include a plurality of pairs. This will be described in detail below.
 本実施例において、複数の対のそれぞれは、実施例1で説明した様に第1面101への投影が互いに平行である二つの検出軸123からなる対である。 In this embodiment, each of the plurality of pairs is a pair of two detection axes 123 whose projections onto the first surface 101 are parallel to each other as described in the first embodiment.
 図13(a)は、複数の検出軸123が2つの対からなる例を示している。本図の例において、振動検出部120は向きが90°ずつ異なる4つの検出軸123を有する。本図の例の場合、凸部144はたとえば四角錐形状であり得る。 FIG. 13A shows an example in which a plurality of detection axes 123 are composed of two pairs. In the example of this figure, the vibration detection unit 120 has four detection axes 123 whose directions are different by 90 degrees. In the case of the example of this figure, the convex part 144 may be a quadrangular pyramid shape, for example.
 図13(b)は、複数の検出軸123が3つの対からなる例を示している。本図の例において、振動検出部120は向きが60°ずつ異なる6つの検出軸123を有する。本図の例の場合、凸部144はたとえば六角錐形状であり得る。 FIG. 13B shows an example in which a plurality of detection axes 123 are composed of three pairs. In the example of this figure, the vibration detection unit 120 has six detection axes 123 whose directions are different by 60 °. In the case of the example of this figure, the convex part 144 may be a hexagonal pyramid shape, for example.
 図13(c)は、複数の検出軸123が4つの対からなる例を示している。本図の例において、振動検出部120は向きが45°ずつ異なる8つの検出軸123を有する。本図の例の場合、凸部144はたとえば八角錐形状であり得る。 FIG. 13C shows an example in which a plurality of detection axes 123 are composed of four pairs. In the example of this figure, the vibration detection unit 120 has eight detection axes 123 whose directions are different by 45 °. In the case of the example of this figure, the convex part 144 may be an octagonal pyramid shape, for example.
 本実施例において、処理部110は、各対について、実施例1または実施例2で説明した処理を行い、対ごとのデータを得る。そして、得られた複数の対のデータを足し合わせることで、音データを得る。こうすることで、対ごとにノイズを低減させたデータが得られ、さらにそれらの足し合わせにより対象音を増大させることができる。結果的に、S/N比をより向上させた音データが得られる。 In the present embodiment, the processing unit 110 performs the processing described in the first or second embodiment for each pair, and obtains data for each pair. Then, the sound data is obtained by adding the obtained pairs of data. By doing so, data with reduced noise is obtained for each pair, and the target sound can be increased by adding them together. As a result, sound data with an improved S / N ratio can be obtained.
 なお、複数の検出軸123の位置関係は図13(a)~図13(c)の例に限定されない。また、複数の検出軸123は、5つ以上の対を含んでも良い。 Note that the positional relationship between the plurality of detection axes 123 is not limited to the examples in FIGS. 13A to 13C. The plurality of detection axes 123 may include five or more pairs.
 以上、本実施例によれば、実施形態と同様、複数の検出軸123が、互いに非平行であり、対象部90に対向する第1面101に対して斜めである。したがって、検出信号の簡単な処理により、時間遅延およびエネルギー消費を抑えつつ、ノイズを低減できる。 As described above, according to the present example, as in the embodiment, the plurality of detection axes 123 are non-parallel to each other and are inclined with respect to the first surface 101 facing the target unit 90. Therefore, noise can be reduced by suppressing the time delay and energy consumption by simple processing of the detection signal.
 くわえて、本実施例によれば、複数の検出軸123が複数の対を含む。したがって、4つ以上の検出軸123の検出結果に基づきS/N比をさらに向上させた音データが得られる。 In addition, according to the present embodiment, the plurality of detection axes 123 include a plurality of pairs. Therefore, sound data with further improved S / N ratio based on the detection results of four or more detection axes 123 can be obtained.
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment and the Example were described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.
 この出願は、2018年6月15日に出願された日本出願特願2018-114213号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2018-114213 filed on June 15, 2018, the entire disclosure of which is incorporated herein.

Claims (17)

  1.  一以上のセンサ素子を含み、複数の検出軸を有する振動検出部と、
     前記振動検出部を支持する支持部材とを備え、
     前記複数の検出軸は、互いに非平行であり、対象部に対向する第1面に対して斜めである音取得装置。
    A vibration detecting unit including one or more sensor elements and having a plurality of detection axes;
    A support member for supporting the vibration detection unit,
    The sound acquisition device, wherein the plurality of detection axes are non-parallel to each other and are inclined with respect to a first surface facing the target portion.
  2.  請求項1に記載の音取得装置において、
     前記振動検出部からの出力を処理することにより、音データを生成する処理部をさらに備える音取得装置。
    The sound acquisition device according to claim 1,
    A sound acquisition apparatus further comprising a processing unit that generates sound data by processing an output from the vibration detection unit.
  3.  請求項2に記載の音取得装置において、
     前記複数の検出軸は、前記第1面への投影が互いに平行である二つの前記検出軸からなる対を含む音取得装置。
    The sound acquisition device according to claim 2,
    The plurality of detection axes includes a pair of two detection axes whose projections on the first surface are parallel to each other.
  4.  請求項3に記載の音取得装置において、
     前記対を構成する前記二つの検出軸の、前記第1面に対する角度は互いに等しい音取得装置。
    The sound acquisition device according to claim 3,
    A sound acquisition device in which the angles of the two detection axes constituting the pair with respect to the first surface are equal to each other.
  5.  請求項4に記載の音取得装置において、
     前記処理部は、前記対を構成する前記二つの検出軸についての検出信号を足し合わせることにより、前記音データを生成する音取得装置。
    The sound acquisition device according to claim 4,
    The processing unit is a sound acquisition device that generates the sound data by adding detection signals for the two detection axes constituting the pair.
  6.  請求項3~5のいずれか一項に記載の音取得装置において、
     前記対を構成する前記二つの検出軸の成す角は、60°以上120°以下である音取得装置。
    The sound acquisition device according to any one of claims 3 to 5,
    The sound acquisition device in which an angle formed by the two detection axes constituting the pair is not less than 60 ° and not more than 120 °.
  7.  請求項3~6のいずれか一項に記載の音取得装置において、
     前記複数の検出軸は、複数の前記対を含む音取得装置。
    The sound acquisition device according to any one of claims 3 to 6,
    The plurality of detection axes are sound acquisition devices including a plurality of the pairs.
  8.  請求項2~7のいずれか一項に記載の音取得装置において、
     前記振動検出部は、複数の前記センサ素子を含み、
     前記支持部材には、前記複数のセンサ素子のそれぞれを支持する支持面が設けられており、
     前記複数の支持面は、前記第1面に対して斜めであり、互いに異なる方向を向いている音取得装置。
    The sound acquisition device according to any one of claims 2 to 7,
    The vibration detection unit includes a plurality of the sensor elements,
    The support member is provided with a support surface that supports each of the plurality of sensor elements,
    The sound acquisition device, wherein the plurality of support surfaces are inclined with respect to the first surface and face different directions.
  9.  請求項8に記載の音取得装置において、
     前記支持部材はベース部と前記ベース部から前記第1面側とは反対側に突出した凸部を有し、
     前記凸部の側面に前記支持面が設けられている音取得装置。
    The sound acquisition device according to claim 8,
    The support member has a base portion and a convex portion protruding from the base portion to the side opposite to the first surface side,
    A sound acquisition device in which the support surface is provided on a side surface of the convex portion.
  10.  請求項9に記載の音取得装置において、
     前記ベース部の外周部は、利用者が触れるグリップ部の筐体に物理的に接続されている音取得装置。
    The sound acquisition device according to claim 9,
    The sound acquisition device in which the outer peripheral portion of the base portion is physically connected to a housing of a grip portion that a user touches.
  11.  請求項10に記載の音取得装置において、
     前記処理部は、第1の伝達関数、第2の伝達関数、および前記振動検出部からの出力を用いて前記音データを生成し、
     前記第1の伝達関数は、当該音取得装置の外部の音を入力とし、前記振動検出部における前記第1面に平行な方向の音成分を出力としたときの伝達関数であり、
     前記第2の伝達関数は、当該音取得装置の外部の音を入力とし、前記振動検出部における前記第1面に垂直な方向の音成分を出力としたときの伝達関数である音取得装置。
    The sound acquisition device according to claim 10,
    The processing unit generates the sound data using a first transfer function, a second transfer function, and an output from the vibration detection unit,
    The first transfer function is a transfer function when an external sound of the sound acquisition device is input and a sound component in a direction parallel to the first surface in the vibration detection unit is output.
    The second transfer function is a sound acquisition device that is a transfer function when a sound external to the sound acquisition device is input and a sound component in a direction perpendicular to the first surface of the vibration detection unit is output.
  12.  請求項10に記載の音取得装置において、
     前記複数の検出軸は、第1の検出軸と第2の検出軸を含み、
     前記処理部は、前記第1の検出軸の検出信号と前記第2の検出軸の検出信号との逆位相成分を用いて、前記第1の検出軸の検出信号と前記第2の検出軸の検出信号との同位相成分を処理することにより、前記音データを生成する音取得装置。
    The sound acquisition device according to claim 10,
    The plurality of detection axes include a first detection axis and a second detection axis,
    The processing unit uses the opposite phase component of the detection signal of the first detection axis and the detection signal of the second detection axis to detect the detection signal of the first detection axis and the second detection axis. A sound acquisition device that generates the sound data by processing an in-phase component with a detection signal.
  13.  請求項8~12のいずれか一項に記載の音取得装置において、
     前記センサ素子は、加速度センサである音取得装置。
    The sound acquisition device according to any one of claims 8 to 12,
    The sound acquisition device, wherein the sensor element is an acceleration sensor.
  14.  請求項2~13のいずれか一項に記載の音取得装置において、
     前記対象部に接触または接近させるダイヤフラムをさらに備え、
     前記第1面は、前記ダイヤフラムの前記対象部に対向する面である音取得装置。
    The sound acquisition device according to any one of claims 2 to 13,
    It further comprises a diaphragm for contacting or approaching the target part,
    The sound acquisition device, wherein the first surface is a surface facing the target portion of the diaphragm.
  15.  請求項14に記載の音取得装置において、
     前記ダイヤフラムと前記支持部材との間に、前記ダイヤフラムへの前記対象部からの圧力を検知する圧力センサをさらに備え、
     前記処理部は前記圧力センサの出力を用いて前記音データの生成タイミングを制御する音取得装置。
    The sound acquisition device according to claim 14,
    A pressure sensor for detecting a pressure from the target portion to the diaphragm between the diaphragm and the support member;
    The processing unit is a sound acquisition device that controls generation timing of the sound data using an output of the pressure sensor.
  16.  請求項2~15のいずれか一項に記載の音取得装置において、
     当該音取得装置は、電子聴診器であり、
     前記音データに基づいた音を出力する出力部をさらに備える音取得装置。
    The sound acquisition device according to any one of claims 2 to 15,
    The sound acquisition device is an electronic stethoscope,
    A sound acquisition apparatus further comprising an output unit that outputs a sound based on the sound data.
  17.  請求項1~16のいずれか一項に記載の音取得装置において、
     前記対象部は生体の一部である音取得装置。
    The sound acquisition device according to any one of claims 1 to 16,
    The target acquisition unit is a sound acquisition device that is a part of a living body.
PCT/JP2019/023058 2018-06-15 2019-06-11 Sound acquisition device WO2019240118A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020525580A JP7112489B2 (en) 2018-06-15 2019-06-11 sound acquisition device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-114213 2018-06-15
JP2018114213 2018-06-15

Publications (1)

Publication Number Publication Date
WO2019240118A1 true WO2019240118A1 (en) 2019-12-19

Family

ID=68841991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023058 WO2019240118A1 (en) 2018-06-15 2019-06-11 Sound acquisition device

Country Status (2)

Country Link
JP (1) JP7112489B2 (en)
WO (1) WO2019240118A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022158436A1 (en) * 2021-01-19 2022-07-28 京セラ株式会社 Gyro vibrometer, electronic device, and electronic system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06160166A (en) * 1992-11-13 1994-06-07 Rion Co Ltd Vibration meter
WO1994025835A1 (en) * 1993-04-29 1994-11-10 Kari Hannu Kallio Method for suppression of interferences and detector construction for measuring signals from the surface of solid substance
WO2016143116A1 (en) * 2015-03-12 2016-09-15 パイオニア株式会社 Stethoscope
JP2017175335A (en) * 2016-03-23 2017-09-28 パイオニア株式会社 Vibration detector
JP2017176269A (en) * 2016-03-28 2017-10-05 パイオニア株式会社 Biological sound acquisition apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3908379B2 (en) * 1998-04-03 2007-04-25 株式会社東芝 Vibration detector and vibration inspection device
JP4028562B2 (en) 2005-08-26 2007-12-26 本田技研工業株式会社 Vibration / sound pressure transfer characteristic analysis apparatus and method
WO2014202286A1 (en) 2013-06-21 2014-12-24 Brüel & Kjær Sound & Vibration Measurement A/S Method of determining noise sound contributions of noise sources of a motorized vehicle
JP2017037052A (en) 2015-08-14 2017-02-16 富士通株式会社 Vibration detection device, vibration detection method and vibration detection program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06160166A (en) * 1992-11-13 1994-06-07 Rion Co Ltd Vibration meter
WO1994025835A1 (en) * 1993-04-29 1994-11-10 Kari Hannu Kallio Method for suppression of interferences and detector construction for measuring signals from the surface of solid substance
WO2016143116A1 (en) * 2015-03-12 2016-09-15 パイオニア株式会社 Stethoscope
JP2017175335A (en) * 2016-03-23 2017-09-28 パイオニア株式会社 Vibration detector
JP2017176269A (en) * 2016-03-28 2017-10-05 パイオニア株式会社 Biological sound acquisition apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022158436A1 (en) * 2021-01-19 2022-07-28 京セラ株式会社 Gyro vibrometer, electronic device, and electronic system
JP7132460B1 (en) * 2021-01-19 2022-09-06 京セラ株式会社 Gyroscopic vibrometers, electronics, and electronic systems
JP2022180374A (en) * 2021-01-19 2022-12-06 京セラ株式会社 Vibrometer, electronic device, and electronic system
JP7431293B2 (en) 2021-01-19 2024-02-14 京セラ株式会社 Vibrometers, electronics, and electronic systems

Also Published As

Publication number Publication date
JP7112489B2 (en) 2022-08-03
JPWO2019240118A1 (en) 2021-07-26

Similar Documents

Publication Publication Date Title
JP4426912B2 (en) Microphone device
US9872113B2 (en) Measurement device and measurement system
US20110182443A1 (en) Electronic device having a contact microphone
JP4293378B2 (en) Microphone unit, close-talking voice input device, and information processing system
CN113170264A (en) Electronic device comprising an acoustic module
JP5914426B2 (en) Electronics
WO2019240118A1 (en) Sound acquisition device
WO2021181735A1 (en) Bioacoustic sensor and stethoscope equipped therewith
JP7272613B2 (en) earphones and electronics
JP2017023595A (en) Bioacoustic stethoscope apparatus
JPWO2012060046A1 (en) Electronics
US20240064474A1 (en) Sound and vibration sensor
US20150078602A1 (en) Hearing loss compensation apparatus including external microphone
WO2021192863A1 (en) Wheeze detection device
WO2021192862A1 (en) Wheeze detection device
JP2012074805A (en) Headphone device
CN219699957U (en) Auscultation equipment
JP2016180775A (en) Sensor device and attachment structure of sensor device
CN114007154B (en) Portable electronic component and attached earphone structure thereof
JP2020069280A (en) Sound acquisition device
WO2021229978A1 (en) Detection device
JP6266249B2 (en) Measuring system
US10575079B2 (en) Speaker device
WO2023029205A1 (en) Hearing aid and intra-oral device thereof, external device, control method and control apparatus, and storage medium
JPH029767Y2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819070

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525580

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19819070

Country of ref document: EP

Kind code of ref document: A1