WO2019239913A1 - Method for manufacturing biodegradable laminate - Google Patents

Method for manufacturing biodegradable laminate Download PDF

Info

Publication number
WO2019239913A1
WO2019239913A1 PCT/JP2019/021569 JP2019021569W WO2019239913A1 WO 2019239913 A1 WO2019239913 A1 WO 2019239913A1 JP 2019021569 W JP2019021569 W JP 2019021569W WO 2019239913 A1 WO2019239913 A1 WO 2019239913A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
pressure
resin material
resin
parts
Prior art date
Application number
PCT/JP2019/021569
Other languages
French (fr)
Japanese (ja)
Inventor
宏司 刀禰
大倉 徹雄
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2020525433A priority Critical patent/JP7353280B2/en
Publication of WO2019239913A1 publication Critical patent/WO2019239913A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/02Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/08Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the cooling method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/26Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer which influences the bonding during the lamination process, e.g. release layers or pressure equalising layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones

Definitions

  • the present invention relates to a method for producing a biodegradable laminate comprising a paper base and a resin layer, a method for improving the surface state of the resin layer, and a biodegradable laminate.
  • Poly (3-hydroxyalkanoate) resin (Poly (3-hydroxyalkanoate); hereinafter abbreviated as “P3HA”) is a heat produced and stored as an energy storage substance in cells of many microbial species. It is a plastic polyester. P3HA is completely biodegraded by microorganisms in the soil and water, and is easily biodegraded in the natural environment such as the ocean and is taken into the natural carbon cycle process. Therefore, it can be said that P3HA is an environmentally friendly plastic that has almost no adverse effect on the ecosystem.
  • Such a laminated paper produced by laminating P3HA on a paper base material is an extremely promising laminated paper from the viewpoint of environmental protection because both paper and P3HA are environmentally degradable materials.
  • laminated paper is manufactured by laminating a paper base material and a resin material by extrusion lamination or heat lamination.
  • P3HA tends to adhere to the cooling roll during laminating, and a large force is applied when peeling from the roll to form fine irregularities on the surface of the resin layer, resulting in white turbidity and deterioration of the appearance of the resin layer. was there.
  • the peelability from the roll is poor, there is also a problem that continuous lamination over a long time becomes difficult.
  • a P3HA and a polyolefin resin are coextruded on a paper base material to form a three-layer laminate
  • a method for producing a laminated paper composed of a paper base material and a P3HA layer by peeling a polyolefin resin layer from a laminate is known.
  • this method since the polyolefin resin film peeled from the laminate is discarded, there is a problem in terms of waste treatment.
  • cooling is achieved by producing a three-layer biodegradable laminate by coextruding P3HA, a polycondensation polyester of dicarboxylic acid and glycol having good processability on a paper base material. It describes preventing blocking to rolls. Patent Document 2 describes that a blocking of a cooling roll is prevented by extruding a mixture of P3HA and a polycondensation polyester or polylactic acid on a paper base material.
  • Patent Document 1 and Patent Document 2 are resins having low environmental degradability, they were undesirable components for providing laminated paper having environmental degradability. .
  • the present invention can produce a biodegradable laminate by laminating a paper base material and P3HA, without using a resin material with low environmental degradability.
  • An object of the present invention is to produce a biodegradable laminate that improves the peelability of the resin layer, has a good surface condition, and has high environmental degradability.
  • the inventors of the present invention blended a predetermined amount of glycerin ester compound with P3HA, and constituted a resin layer with this blend, so that from a pressure bonding surface such as a cooling roll. It has been found that a biodegradable laminate having a good surface state can be produced by improving the peelability of the resin layer of the present invention.
  • the present invention provides a biodegradable laminate composed of the paper base material and the resin layer by pressure-bonding the resin material to the paper base material using the pressure-bonding surface and then peeling the resin material from the pressure-bonding surface.
  • the resin material has the formula (A): [—CHR—CH 2 —CO—O—] (wherein R is an alkyl group represented by C n H 2n + 1 , n Is a resin material containing 100 parts by weight of a polyhydroxyalkanoate containing a repeating unit represented by (1) to 15 parts by weight, and (B) 1 to 20 parts by weight of a glycerin ester compound.
  • the present invention relates to a method for manufacturing a laminate.
  • the resin composition further contains 0.1 to 5 parts by weight of (C) an aliphatic amide compound.
  • the polyhydroxyalkanoate is a copolymer of 3-hydroxybutyric acid and 3-hydroxyhexanoic acid.
  • the step of pressure-bonding the resin material to the paper substrate using the pressure-bonding surface is performed by extruding the molten resin material into a film shape by an extrusion laminating method and then cooling and pressure-bonding to the separately-rolled paper substrate with a cooling roller. It is a process.
  • the take-off force when peeling the resin material from the pressure-bonding surface is 25 N or less.
  • the pressure-bonding surface is used to select [—CHR—CH 2 —CO—O—] (wherein R is an alkyl group represented by C n H 2n + 1 , and n is an integer of 1 or more and 15 or less.
  • the paper substrate and the resin produced by peeling the resin material from the pressure-bonding surface after pressure-bonding the resin material containing the polyhydroxyalkanoate containing the repeating unit represented by A method for improving the surface state of the resin layer in a biodegradable laminate composed of layers, comprising 1 to 20 parts by weight of glycerin ester per 100 parts by weight of the polyhydroxyalkanoate relative to the resin material
  • the present invention also relates to a method for improving the surface state of a resin layer, which comprises blending a compound.
  • the present invention is a biodegradable laminate in which a resin layer is laminated on one side or both sides of a paper substrate, wherein the resin layer is represented by the formula (A): [—CHR—CH 2 —CO—O—] ( In the formula, R is an alkyl group represented by C n H 2n + 1 , and n is an integer of 1 or more and 15 or less.) 100 parts by weight of a polyhydroxyalkanoate including a repeating unit represented by: and (B) glycerin
  • the present invention also relates to a biodegradable laminate containing 1 to 20 parts by weight of an ester compound.
  • the biodegradable laminate has a form wound in a roll shape.
  • the resin layer when a biodegradable laminate is produced by laminating a paper base material and P3HA, the resin layer can be peeled from the pressure-bonding surface such as a cooling roll without using other resin materials. It is possible to produce a biodegradable laminate that is improved and has a good surface condition and high environmental degradability. Furthermore, according to the present invention, it is possible to stably carry out a continuous laminating process for a long time.
  • the main resin material constituting the resin layer is a poly (3-hydroxyalkanoate) resin, specifically, a formula : Containing a repeating unit represented by [—CHR—CH 2 —CO—O—] (wherein R is an alkyl group represented by C n H 2n + 1 , and n is an integer of 1 or more and 15 or less).
  • Polyhydroxyalkanoate is a poly (3-hydroxyalkanoate) resin, specifically, a formula : Containing a repeating unit represented by [—CHR—CH 2 —CO—O—] (wherein R is an alkyl group represented by C n H 2n + 1 , and n is an integer of 1 or more and 15 or less).
  • the repeating unit represented by the formula contained in the P3HA may be only one type or two or more types.
  • the type of copolymerization is not particularly limited and may be random copolymerization, alternating copolymerization, block copolymerization, graft copolymerization, or the like, but random copolymerization is preferred because it is easily available.
  • the repeating unit constituting the P3HA may be only the repeating unit represented by the above formula, or may contain other repeating units in addition to the repeating unit represented by the above formula.
  • Other repeating units include 4-hydroxyalkanoate units such as 4-hydroxybutyrate units.
  • P3HA examples include poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyhexanoate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate) Poly (3-hydroxybutyrate-co-4-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyoctanoate), poly (3-hydroxybutyrate-co-3-hydroxyoctanoate) Decanoate) and the like.
  • poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyhexanoate), poly (3-hydroxybutyrate-co-) 3-hydroxyvalerate) and poly (3-hydroxybutyrate-co-4-hydroxybutyrate) are preferred.
  • the melting point and crystallinity can be changed, and physical properties such as Young's modulus and heat resistance can be changed, and physical properties between polypropylene and polyethylene can be imparted.
  • poly (3) which is a copolymer of 3-hydroxybutyric acid and 3-hydroxyhexanoic acid is used. 3-hydroxybutyrate-co-3-hydroxyhexanoate) is preferred.
  • the poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) has poor peelability from the pressure-bonding surface at the time of laminating among P3HA, and the surface state of the resin layer of the resulting laminated paper is deteriorated. Although the problem of being easy is remarkable, the application of the present invention can improve the surface condition of a laminated paper using poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) as a resin material. it can.
  • a specific method for producing poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) is described in, for example, International Publication No. 2010/013483.
  • Examples of commercially available products of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) include Kaneka Corporation “Kaneka Biodegradable Polymer PHBH” (registered trademark).
  • composition ratio of the repeating unit of poly is determined from the viewpoint of the balance between flexibility and strength, 3-hydroxybutyrate unit / 3-hydroxyhexanoate
  • the composition ratio of units is preferably 80/20 to 99/1 (mol / mol), and more preferably 85/15 to 97/3 (mo1 / mo1). The reason is that 99/1 or less is preferable from the viewpoint of flexibility, and 80/20 or more is preferable in that the resin has an appropriate hardness.
  • the weight average molecular weight of P3HA used in the present invention (hereinafter sometimes referred to as Mw) is not particularly limited, but is preferably 100,000 to 2.5 million, more preferably 150,000 to 2 million, and further preferably 200,000 to 1 million. preferable. If the weight average molecular weight is less than 100,000, the mechanical properties and the like may be inferior, and if it exceeds 2.5 million, molding may be difficult.
  • the weight average molecular weight of P3HA is determined by gel permeation chromatography (GPC) (“Shodex GPC-101” manufactured by Showa Denko KK) and polystyrene gel (“Shodex K-804” manufactured by Showa Denko KK) as a column. It can be determined as the molecular weight when converted to polystyrene using chloroform as the mobile phase.
  • GPC gel permeation chromatography
  • P3HA in the resin layer constituting the biodegradable laminate of the present invention, P3HA can be used alone or in combination of two or more.
  • an aliphatic polyester resin such as polybutylene succinate adipate, polybutylene succinate, and polylactic acid, and an aliphatic aromatic polyester type such as polybutylene adipate terephthalate, as long as the effects of the present invention are not impaired.
  • One or more biodegradable resins other than P3HA, such as a resin, may be contained.
  • the content of the resin other than P3HA is preferably as small as possible so as not to inhibit the environmental degradability of P3HA.
  • the content of the resin other than P3HA is preferably 50 parts by weight or less, more preferably 30 parts by weight or less, and still more preferably 10 parts by weight or less with respect to 100 parts by weight of P3HA.
  • the resin layer which comprises the biodegradable laminated body of this invention may contain only P3HA as a resin component, ie, may not contain resin other than P3HA at all.
  • the resin layer constituting the biodegradable laminate is composed of a resin composition in which a glycerin ester compound is blended with P3HA, thereby improving the peelability from the pressure-bonding surface such as a cooling roll in lamination.
  • the resin layer hardly adheres to the pressure-bonding surface, and the resin layer can be smoothly peeled off from the pressure-bonding surface, so that a biodegradable laminate having a good surface condition can be produced.
  • the glycerin ester compound is a compound in which a hydroxyl group of glycerin forms an ester bond with a compound having a carboxyl group, for example.
  • the ester compound may be a glycerol monoester, a glycerol diester, or a glycerol triester. From the viewpoint of improving peelability from the pressure-bonding surface, a triester of glycerin is preferred, and glycerin diacetate monoester is more preferred.
  • glycerol diacetomonoester examples include glycerol diacetomonolaurate, glycerol diacetomonooleate, glycerol diacetomonostearate, glycerol diacetomonocaprylate, glycerol diacetomonodecanoate and the like. Only one type of glycerin ester compound may be used, or a plurality may be used in combination.
  • the blending amount of the glycerin ester compound in the resin composition is 1 to 20 parts by weight with respect to 100 parts by weight of P3HA.
  • the blending amount of the glycerin ester compound is less than 1 part by weight, it becomes difficult to obtain the effect of improving the peelability from the crimping surface.
  • the blending amount is more than 20 parts by weight, the glycerin ester compound bleeds during crimping, and the cooling roll There is a problem that it becomes difficult to perform continuous processing for a long time because it adheres to the pressure-bonding surface.
  • the blending amount of the glycerin ester compound is preferably 1 to 10 parts by weight, more preferably 2 to 5 parts by weight.
  • the resin composition constituting the biodegradable laminate of the present invention may contain an aliphatic amide compound in addition to P3HA and a glycerin ester compound.
  • the aliphatic amide compound is an optional component, and the resin composition may not contain an aliphatic amide compound.
  • An aliphatic amide compound is a kind of additive conventionally known as a lubricant added to a resin.
  • the aliphatic amide compound is not particularly limited, and examples thereof include saturated or unsaturated fatty acid amides such as lauric acid amide, myristic acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, oleic acid amide, and erucic acid amide.
  • alkylene fatty acid amides such as methylene bis stearic acid amide and methylene bis stearic acid amide. Of these, fatty acid amides are preferred from the viewpoint of improving the peelability from the crimping surface. Only one type of aliphatic amide compound may be used, or a plurality of types may be used in combination.
  • the blending amount of the aliphatic amide compound in the resin layer is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of P3HA.
  • the blending amount of the aliphatic amide compound is more preferably 0.3 to 4 parts by weight, still more preferably 0.5 to 3 parts by weight.
  • the resin layer constituting the biodegradable laminate of the present invention may contain pentaerythritol in addition to P3HA and a glycerin ester compound. By blending pentaerythritol, the peelability from the pressure-bonded surface can be further improved. However, pentaerythritol is an optional component, and the resin layer may not contain pentaerythritol.
  • the blend amount of pentaerythritol in the resin layer is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of P3HA.
  • the blending amount of pentaerythritol is more preferably 0.3 to 4 parts by weight, still more preferably 0.5 to 3 parts by weight.
  • the resin layer in addition to the glycerin ester compound, the optional component aliphatic amide compound, and the optional component pentaerythritol, other additives usually added to the resin material as long as the effects of the present invention are not impaired.
  • inorganic fillers colorants such as pigments and dyes, odor absorbers such as activated carbon and zeolite, fragrances such as vanillin and dextrin, plasticizers, antioxidants, antioxidants, weather resistance improvers, ultraviolet absorbers
  • one or more kinds of crystal nucleating agents, lubricants, mold release agents, water repellents, antibacterial agents, slidability improving agents, and other secondary additives may be added. The content of these additives can be set as appropriate.
  • the thickness of the resin layer in the biodegradable laminate of the present invention is not particularly limited, but prevents water absorption to paper. However, from the viewpoint of ensuring sufficient flexibility, the thickness is preferably 5 to 300 ⁇ m, more preferably 10 to 200 ⁇ m.
  • the paper base material which comprises the biodegradable laminated body of this invention is not specifically limited, What is necessary is just to be able to form the resin layer in the single side
  • a surface treatment such as a corona treatment, a frame treatment, or an anchor coat treatment.
  • surface or both surfaces is manufactured by the lamination method.
  • the laminating method is a method in which a resin material is pressure-bonded to a paper substrate using a pressure-bonding surface such as a cooling roll, and then a resin layer composed of the resin material is peeled off from the pressure-bonding surface, whereby a biodegradable laminate is obtained. It is a manufacturing method.
  • the laminating method is not particularly limited as long as it is a method in which a resin material and a paper base material are pressure-bonded using a pressure-bonding surface.
  • the molten resin material is extruded from a T-die into a film shape, it is separately fed out.
  • examples thereof include an extrusion laminating method in which a paper base is cooled and pressure-bonded using a cooling roll, and a heat laminating method in which a resin film prepared in advance is heated and pressure-bonded to the paper base.
  • the pressure-bonding surface is not particularly limited as long as the resin and the paper base material can be pressure-bonded, and examples thereof include a plate-shaped surface and a roll surface.
  • the extrusion laminating method is carried out continuously, and a melted resin material is cooled and pressure-bonded to a paper substrate, and immediately thereafter, the resin layer is peeled off from the cooling roll. Therefore, in the conventional method, when P3HA is used as the resin material, the resin layer is not easily peeled off from the cooling roll, and the phenomenon that the resin layer is temporarily attached to the cooling roll is likely to occur. As a result, the problem that the force applied when the adhesion location peeled from the roll and the cloudy nonuniformity (fine unevenness
  • the present invention even in the extrusion laminating method, it is possible to improve the peelability from the cooling roll and produce a biodegradable laminate having a good surface state of the resin layer. According to the present invention, it is possible to reduce the take-up force when peeling a resin material containing P3HA from a pressure-bonding surface such as a cooling roll, preferably to 25 N or less, more preferably to 20 N or less.
  • the surface temperature of the cooling roll is not particularly limited as long as it is a temperature at which the resin layer can be cooled and pressure-bonded, and can be appropriately determined, but may be in the range of 10 to 60 ° C., for example.
  • this invention is also a biodegradable laminated body containing the paper base material and the resin layer formed in the single side
  • the resin layer is a resin layer containing the above-described P3HA and a glycerin ester compound as essential components.
  • the biodegradable laminate of the present invention is laminated so that the resin layer is in contact with the paper substrate, and an adhesive layer and other resin layers are interposed between the resin layer and the paper substrate. It is preferable that it is not.
  • the biodegradable laminate of the present invention has a resin layer other than the resin layer mainly composed of P3HA in the present invention (for example, a polyolefin resin layer or a layer composed of a polycondensation polyester of dicarboxylic acid and glycol). It is preferable that it does not contain.
  • the biodegradable laminate of the present invention is preferably a long biodegradable laminate continuously produced by the above-described laminating method, and is wound around a winding roll after pressure bonding and peeling by the laminating method. It is preferable that it is a biodegradable laminated body which has the form wound by roll shape which can be manufactured by.
  • biodegradable laminate of the present invention is not particularly limited, and examples thereof include paper cups, paper bags, cartons, trays, and interior wallpaper.
  • Tanehaha medium 1w / v% Meat-extract, 1w / v% Bacto-Tryptone, 0.2w / v% Yeast-extract, 0.9w / v% Na 2 HPO 4 ⁇ 12H 2 O, 0.15w / V% KH 2 PO 4 (pH 6.8).
  • the composition of the preculture medium is 1.1 w / v% Na 2 HPO 4 ⁇ 12H 2 O, 0.19 w / v% KH 2 PO 4 , 1.29 w / v% (NH 4 ) 2 SO 4 , 0.1 w / v% MgSO 4 ⁇ 7H 2 O , 0.5v / v% trace metal salt solution (1.6 w in 0.1N HCl / v% FeCl 3 ⁇ 6H 2 O, 1w / v% CaCl 2 ⁇ 2H 2 O, 0 0.02 w / v% CoCl 2 .6H 2 O, 0.016 w / v% CuSO 4 .5H 2 O, 0.012 w / v% NiCl 2 .6H 2 O).
  • palm kernel oil was added all at a concentration of 10 g / L.
  • the composition of the P3HA production medium is 0.385 w / v% Na 2 HPO 4 ⁇ 12H 2 O, 0.067 w / v% KH 2 PO 4 , 0.291 w / v% (NH 4 ) 2 SO 4 , 0.1 w / v% MgSO 4 .7H 2 O, 0.5 v / v% trace metal salt solution (1.6 W / v% FeCl 3 .6H 2 O in 0.1N hydrochloric acid, 1 w / v% CaCl 2 .2H 2 O, 0 0.02 w / v% CoCl 2 ⁇ 6H 2 O, 0.016 w / v% CuSO 4 ⁇ 5H 2 O, 0.012 w / v% NiCl 2 ⁇ 6H 2 O), 0.05 w / v% BIOSPUREX 200K (Antifoamer: manufactured by Cognis Japan).
  • a glycerol stock (50 ⁇ l) of KNK-631 strain was inoculated into a seed medium (10 ml) and cultured for 24 hours to perform seed culture.
  • 1.0 v / v% of the seed mother culture solution was inoculated into a 3 L jar fermenter (MDL-300 type, manufactured by Maruhishi Bioengine) containing 1.8 L of a preculture medium.
  • the operating conditions were a culture temperature of 33 ° C., a stirring speed of 500 rpm, an aeration rate of 1.8 L / min, and the culture was performed for 28 hours while controlling the pH between 6.7 and 6.8.
  • a 14% aqueous ammonium hydroxide solution was used for pH control.
  • the preculture solution was inoculated at 1.0 v / v% into a 10 L jar fermenter (MDS-1000, manufactured by Marubishi Bioengineer) containing 6 L of P3HA production medium.
  • the operating conditions were a culture temperature of 28 ° C., a stirring speed of 400 rpm, an aeration rate of 6.0 L / min, and a pH controlled between 6.7 and 6.8.
  • a 14% aqueous ammonium hydroxide solution was used for pH control. Palm kernel oil was used as the carbon source. Culturing was carried out for 64 hours. After completion of the cultivation, the cells were collected by centrifugation, washed with methanol, freeze-dried, and the weight of the obtained dried cells was measured.
  • the 3HH composition analysis of the obtained P3HA was measured by gas chromatography as follows. To 20 mg of dry P3HA, 2 ml of a sulfuric acid-methanol mixture (15:85) and 2 ml of chloroform were added and sealed, and heated at 100 ° C. for 140 minutes to obtain a methyl ester of a P3HA decomposition product. After cooling, 1.5 g of sodium bicarbonate was added little by little to neutralize it, and the mixture was allowed to stand until the generation of carbon dioxide gas stopped. After adding 4 ml of diisopropyl ether and mixing well, the mixture was centrifuged and the monomer unit composition of the polyester degradation product in the supernatant was analyzed by capillary gas chromatography.
  • the gas chromatograph used was Shimadzu GC-17A, and the capillary column used was GL Science's Neutra Bond-1 (column length 25 m, column inner diameter 0.25 mm, liquid film thickness 0.4 ⁇ m). He was used as the carrier gas, the column inlet pressure was set to 100 kPa, and 1 ⁇ l of the sample was injected. As temperature conditions, the temperature was raised from an initial temperature of 100 to 200 ° C. at a rate of 8 ° C./min, and further from 200 to 290 ° C. at a rate of 30 ° C./min.
  • P3HA A1 was poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (P (3HB-co-3HH)).
  • the weight average molecular weight Mw measured by GPC was 740,000.
  • the 3-hydroxyhexanoate (3HH) composition was 11.4 mol%.
  • P3HA A1 obtained in Production Example 1 was treated at 120 ° C. and 100% humidity for 2 hours using a highly accelerated life test apparatus (PC-422R5E manufactured by Hirayama Seisakusho), so that P3HA A2 was treated as P (3HB-co -3HH).
  • the weight average molecular weight Mw of P3HA A2 was 540,000, and the 3HH composition was 11.4 mol%.
  • P (3HB-co-3HH) was obtained as P3HA A3 in the same manner as in Production Example 1, except that KNK-005 strain (see US Pat. No. 7,384,766) and palm oil were used as the carbon source.
  • the weight average molecular weight Mw of P3HA A3 was 570,000, and the 3HH composition was 5.6 mol%.
  • P3HA A3 obtained in Production Example 3 was treated at 120 ° C. and 100% humidity for 2 hours using a high acceleration life test apparatus (PC-422R5E manufactured by Hirayama Seisakusho), so that P (3HB- co-3HH) was obtained.
  • the weight average molecular weight Mw of P3HA A4 was 440,000, and the 3HH composition was 5.6 mol%.
  • a single-screw extruder (Toyo Seiki Seisakusho Co., Ltd.) equipped with a T-type die having a width of 150 mm and a lip width of 0.25 mm
  • a laminator roll diameter: 100 mm
  • screw rotation speed 30 rpm
  • the temperature of the cooling roll was adjusted to 30 ° C.
  • a biodegradable laminate was obtained by laminating at a thickness of 100 ⁇ m on one side of unbleached kraft paper having a basis weight of 150 g / m 2 .
  • glycerin ester compound B1 glycerin diacetomonolaurate (manufactured by Riken Vitamin Co., Ltd., “Riquemar PL012”) was used.
  • erucic acid amide manufactured by Nippon Seika Co., Ltd., “Nutron-S” was used.
  • pentaerythritol D pentaerythritol (manufactured by Nippon Synthetic Chemical Co., Ltd., “Neulizer P”) was used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Laminated Bodies (AREA)

Abstract

A method in which a pressure-bonding surface is used to pressure-bond a resin material to a paper substrate, and then the resin material is removed from the pressure-bonding surface, whereby a biodegradable laminate configured from the paper substrate and a resin layer is manufactured, wherein the resin material contains (A) 100 parts by weight of polyhydroxyalkanoate that includes repeating units represented by the following formula: (-CHR-CH2-CO-O) (in the formula, R is an alkyl group represented by CnH2n+1, and n is an integer of 1-15), and (B) 1-20 parts by weight of a glycerol ester compound.

Description

生分解性積層体の製造方法Method for producing biodegradable laminate
 本発明は、紙基材と樹脂層から構成される生分解性積層体の製造方法、該樹脂層の表面状態の改善方法、及び、生分解性積層体に関する。 The present invention relates to a method for producing a biodegradable laminate comprising a paper base and a resin layer, a method for improving the surface state of the resin layer, and a biodegradable laminate.
 ポリ(3-ヒドロキシアルカノエート)系樹脂[Poly(3-hydroxyalkanoate);以下、「P3HA」と略する場合がある)は、多くの微生物種の細胞内にエネルギー貯蔵物質として生産、蓄積される熱可塑性ポリエステルである。P3HAは、土中や水中の微生物により完全に生分解され、また、海洋などの自然環境でも容易に生分解されて、自然界の炭素循環プロセスに取り込まれる。したがって、P3HAは生態系への悪影響がほとんどない環境調和型のプラスチックであると言える。 Poly (3-hydroxyalkanoate) resin (Poly (3-hydroxyalkanoate); hereinafter abbreviated as “P3HA”) is a heat produced and stored as an energy storage substance in cells of many microbial species. It is a plastic polyester. P3HA is completely biodegraded by microorganisms in the soil and water, and is easily biodegraded in the natural environment such as the ocean and is taken into the natural carbon cycle process. Therefore, it can be said that P3HA is an environmentally friendly plastic that has almost no adverse effect on the ecosystem.
 このようなP3HAを紙の基材にラミネート加工して製造されるラミネート紙は、紙とP3HAの双方が環境分解性の材料であるため、環境保護の観点から極めて有望なラミネート紙である。 Such a laminated paper produced by laminating P3HA on a paper base material is an extremely promising laminated paper from the viewpoint of environmental protection because both paper and P3HA are environmentally degradable materials.
 一般にラミネート紙は、紙基材と樹脂材料を押出ラミネートや熱ラミネートなどでラミネート加工することにより製造される。しかしP3HAは、ラミネート加工時に、冷却ロールに付着しやすく、ロールから剥離する際に大きな力がかかって樹脂層表面に微細な凹凸が形成され、白濁したムラが生じ樹脂層の外観が悪化する問題があった。また、ロールからの剥離性が悪いために、長時間にわたる連続的なラミネート加工が難しくなる問題もあった。 Generally, laminated paper is manufactured by laminating a paper base material and a resin material by extrusion lamination or heat lamination. However, P3HA tends to adhere to the cooling roll during laminating, and a large force is applied when peeling from the roll to form fine irregularities on the surface of the resin layer, resulting in white turbidity and deterioration of the appearance of the resin layer. was there. Moreover, since the peelability from the roll is poor, there is also a problem that continuous lamination over a long time becomes difficult.
 このような問題を解決するためにP3HAと冷却ロールの接触を回避することを目的として、紙基材の上に、P3HAと、ポリオレフィン樹脂を共押出して三層の積層体を作成した後、該積層体からポリオレフィン樹脂層を剥離することで紙基材とP3HA層からなるラミネート紙を製造する方法が知られている。しかし、この方法では、積層体から剥離したポリオレフィン樹脂フィルムを廃棄することになるので、廃棄物処理の点で問題があった。 In order to solve such a problem, for the purpose of avoiding contact between P3HA and the cooling roll, a P3HA and a polyolefin resin are coextruded on a paper base material to form a three-layer laminate, A method for producing a laminated paper composed of a paper base material and a P3HA layer by peeling a polyolefin resin layer from a laminate is known. However, in this method, since the polyolefin resin film peeled from the laminate is discarded, there is a problem in terms of waste treatment.
 特許文献1では、紙基材の上に、P3HAと、加工適性の良好なジカルボン酸とグリコールの重縮合ポリエステルを共押出することで、三層の生分解性積層体を製造することで、冷却ロールへのブロッキングを防止することが記載されている。また、特許文献2では、紙基材の上に、P3HAと重縮合ポリエステル又はポリ乳酸の混合物を押出することで冷却ロールへのブロッキングを防止することが記載されている。 In Patent Document 1, cooling is achieved by producing a three-layer biodegradable laminate by coextruding P3HA, a polycondensation polyester of dicarboxylic acid and glycol having good processability on a paper base material. It describes preventing blocking to rolls. Patent Document 2 describes that a blocking of a cooling roll is prevented by extruding a mixture of P3HA and a polycondensation polyester or polylactic acid on a paper base material.
 しかし、特許文献1や特許文献2で使用されている重縮合ポリエステルやポリ乳酸は、環境分解性が低い樹脂であるため、環境分解性を有するラミネート紙を提供するには望ましくない成分であった。 However, since the polycondensation polyester and polylactic acid used in Patent Document 1 and Patent Document 2 are resins having low environmental degradability, they were undesirable components for providing laminated paper having environmental degradability. .
特開平10-6444号公報Japanese Patent Laid-Open No. 10-6444 特開平10-6445号公報Japanese Patent Laid-Open No. 10-6445
 本発明は、上記現状に鑑みて、紙基材とP3HAをラミネートして生分解性積層体を製造する際に、環境分解性が低い樹脂材料を使用しなくとも、冷却ロール等の圧着面からの樹脂層の剥離性を改善し、表面状態が良好で、環境分解性の高い生分解性積層体を製造することを目的とするものである。 In view of the above situation, the present invention can produce a biodegradable laminate by laminating a paper base material and P3HA, without using a resin material with low environmental degradability. An object of the present invention is to produce a biodegradable laminate that improves the peelability of the resin layer, has a good surface condition, and has high environmental degradability.
 本発明者らは上記課題を解決するために鋭意研究を重ねた結果、P3HAに所定量のグリセリンエステル化合物を配合し、この配合物によって樹脂層を構成することで、冷却ロール等の圧着面からの樹脂層の剥離性を改善して、表面状態が良好な生分解性積層体を製造できることを見出し、本発明に至った。 As a result of intensive studies to solve the above problems, the inventors of the present invention blended a predetermined amount of glycerin ester compound with P3HA, and constituted a resin layer with this blend, so that from a pressure bonding surface such as a cooling roll. It has been found that a biodegradable laminate having a good surface state can be produced by improving the peelability of the resin layer of the present invention.
 すなわち、本発明は、圧着面を用いて樹脂材料を紙基材に圧着した後、前記圧着面から前記樹脂材料を剥離することにより、前記紙基材と樹脂層から構成される生分解性積層体を製造する方法であって、前記樹脂材料が、(A)式:[-CHR-CH-CO-O-](式中、RはC2n+1で表されるアルキル基で、nは1以上15以下の整数である。)で示される繰り返し単位を含むポリヒドロキシアルカノエート100重量部、及び、(B)グリセリンエステル化合物1~20重量部を含有する樹脂材料である、生分解性積層体の製造方法に関する。好ましくは、前記樹脂組成物が、さらに、(C)脂肪族アミド化合物0.1~5重量部を含有する。好ましくは、前記ポリヒドロキシアルカノエートが、3-ヒドロキシ酪酸と3-ヒドロキシへキサン酸の共重合体である。好ましくは、圧着面を用いて樹脂材料を紙基材に圧着する工程が、押出ラミネート法により、溶融した樹脂材料をフィルム状に押し出した後、別途繰り出した紙基材に冷却ローラーで冷却圧着する工程である。好ましくは、前記圧着面から前記樹脂材料を剥離する際の引取力が、25N以下である。 That is, the present invention provides a biodegradable laminate composed of the paper base material and the resin layer by pressure-bonding the resin material to the paper base material using the pressure-bonding surface and then peeling the resin material from the pressure-bonding surface. In which the resin material has the formula (A): [—CHR—CH 2 —CO—O—] (wherein R is an alkyl group represented by C n H 2n + 1 , n Is a resin material containing 100 parts by weight of a polyhydroxyalkanoate containing a repeating unit represented by (1) to 15 parts by weight, and (B) 1 to 20 parts by weight of a glycerin ester compound. The present invention relates to a method for manufacturing a laminate. Preferably, the resin composition further contains 0.1 to 5 parts by weight of (C) an aliphatic amide compound. Preferably, the polyhydroxyalkanoate is a copolymer of 3-hydroxybutyric acid and 3-hydroxyhexanoic acid. Preferably, the step of pressure-bonding the resin material to the paper substrate using the pressure-bonding surface is performed by extruding the molten resin material into a film shape by an extrusion laminating method and then cooling and pressure-bonding to the separately-rolled paper substrate with a cooling roller. It is a process. Preferably, the take-off force when peeling the resin material from the pressure-bonding surface is 25 N or less.
 また、本発明は、圧着面を用いて、[-CHR-CH-CO-O-](式中、RはC2n+1で表されるアルキル基で、nは1以上15以下の整数である。)で示される繰り返し単位を含むポリヒドロキシアルカノエートを含む樹脂材料を紙基材に圧着した後、前記圧着面から前記樹脂材料を剥離することにより製造される、前記紙基材と樹脂層から構成される生分解性積層体において、前記樹脂層の表面状態を改善する方法であって、前記樹脂材料に対して、前記ポリヒドロキシアルカノエート100重量部あたり1~20重量部のグリセリンエステル化合物を配合することを特徴とする、樹脂層の表面状態の改善方法にも関する。 In the present invention, the pressure-bonding surface is used to select [—CHR—CH 2 —CO—O—] (wherein R is an alkyl group represented by C n H 2n + 1 , and n is an integer of 1 or more and 15 or less. The paper substrate and the resin produced by peeling the resin material from the pressure-bonding surface after pressure-bonding the resin material containing the polyhydroxyalkanoate containing the repeating unit represented by A method for improving the surface state of the resin layer in a biodegradable laminate composed of layers, comprising 1 to 20 parts by weight of glycerin ester per 100 parts by weight of the polyhydroxyalkanoate relative to the resin material The present invention also relates to a method for improving the surface state of a resin layer, which comprises blending a compound.
 さらに本発明は、紙基材の片面または両面に樹脂層を積層した生分解性積層体であって、前記樹脂層が、(A)式:[-CHR-CH-CO-O-](式中、RはC2n+1で表されるアルキル基で、nは1以上15以下の整数である。)で示される繰り返し単位を含むポリヒドロキシアルカノエート100重量部、及び、(B)グリセリンエステル化合物1~20重量部を含有する、生分解性積層体にも関する。好ましくは、前記生分解性積層体は、ロール状に巻かれた形態を有する。 Furthermore, the present invention is a biodegradable laminate in which a resin layer is laminated on one side or both sides of a paper substrate, wherein the resin layer is represented by the formula (A): [—CHR—CH 2 —CO—O—] ( In the formula, R is an alkyl group represented by C n H 2n + 1 , and n is an integer of 1 or more and 15 or less.) 100 parts by weight of a polyhydroxyalkanoate including a repeating unit represented by: and (B) glycerin The present invention also relates to a biodegradable laminate containing 1 to 20 parts by weight of an ester compound. Preferably, the biodegradable laminate has a form wound in a roll shape.
 本発明によれば、紙基材とP3HAをラミネートして生分解性積層体を製造する際に、他の樹脂材料を使用しなくとも、冷却ロール等の圧着面からの樹脂層の剥離性を改善し、表面状態が良好で、環境分解性の高い生分解性積層体を製造することができる。さらに、本発明によれば、長時間にわたる連続的なラミネート加工を安定的に実施することも可能となる。 According to the present invention, when a biodegradable laminate is produced by laminating a paper base material and P3HA, the resin layer can be peeled from the pressure-bonding surface such as a cooling roll without using other resin materials. It is possible to produce a biodegradable laminate that is improved and has a good surface condition and high environmental degradability. Furthermore, according to the present invention, it is possible to stably carry out a continuous laminating process for a long time.
 以下に本発明の実施形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 (ポリヒドロキシアルカノエート(A))
 本発明に係る紙基材と樹脂層から構成される生分解性積層体において、該樹脂層を構成する主要な樹脂材料は、ポリ(3-ヒドロキシアルカノエート)系樹脂、具体的には、式:[-CHR-CH-CO-O-](式中、RはC2n+1で表されるアルキル基で、nは1以上15以下の整数である。)で示される繰り返し単位を含むポリヒドロキシアルカノエートである。
(Polyhydroxyalkanoate (A))
In the biodegradable laminate composed of the paper base material and the resin layer according to the present invention, the main resin material constituting the resin layer is a poly (3-hydroxyalkanoate) resin, specifically, a formula : Containing a repeating unit represented by [—CHR—CH 2 —CO—O—] (wherein R is an alkyl group represented by C n H 2n + 1 , and n is an integer of 1 or more and 15 or less). Polyhydroxyalkanoate.
 当該P3HAに含まれる前記式で表される繰り返し単位は1種類のみであってもよいし、2種類以上であってもよい。後者の場合、共重合の形式としては特に限定されず、ランダム共重合、交互共重合、ブロック共重合、グラフト共重合等であってよいが、入手が容易であるためランダム共重合が好ましい。 The repeating unit represented by the formula contained in the P3HA may be only one type or two or more types. In the latter case, the type of copolymerization is not particularly limited and may be random copolymerization, alternating copolymerization, block copolymerization, graft copolymerization, or the like, but random copolymerization is preferred because it is easily available.
 当該P3HAを構成する繰り返し単位は、前記式で表される繰り返し単位のみであってもよいし、前記式で表される繰り返し単位に加えて、他の繰り返し単位を含んでもよい。他の繰り返し単位としては、4-ヒドロキシブチレート単位等の4-ヒドロキシアルカノエート単位を挙げることができる。 The repeating unit constituting the P3HA may be only the repeating unit represented by the above formula, or may contain other repeating units in addition to the repeating unit represented by the above formula. Other repeating units include 4-hydroxyalkanoate units such as 4-hydroxybutyrate units.
 P3HAの具体例としては、ポリ(3-ヒドロキシブチレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバリレート)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタデカノエート)等が挙げられる。中でも、工業的に生産が容易であることから、ポリ(3-ヒドロキシブチレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバリレート)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)が好ましい。 Specific examples of P3HA include poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyhexanoate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate) Poly (3-hydroxybutyrate-co-4-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyoctanoate), poly (3-hydroxybutyrate-co-3-hydroxyoctanoate) Decanoate) and the like. Among them, since production is easy industrially, poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyhexanoate), poly (3-hydroxybutyrate-co-) 3-hydroxyvalerate) and poly (3-hydroxybutyrate-co-4-hydroxybutyrate) are preferred.
 更には、繰り返し単位の組成比を変えることで、融点、結晶化度を変化させ、ヤング率、耐熱性などの物性を変化させることができ、ポリプロピレンとポリエチレンとの間の物性を付与することが可能であること、また、上記したように工業的に生産が容易であり、物性的に有用なプラスチックであるという観点から、3-ヒドロキシ酪酸と3-ヒドロキシヘキサン酸の共重合体であるポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)が好ましい。該ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)は、P3HAの中でも、ラミネート加工時の圧着面からの剥離性が悪く、得られるラミネート紙の樹脂層の表面状態が悪化しやすいという問題が顕著であったが、本発明を適用することにより、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)を樹脂材料とするラミネート紙の表面状態を改善することができる。 Furthermore, by changing the composition ratio of the repeating units, the melting point and crystallinity can be changed, and physical properties such as Young's modulus and heat resistance can be changed, and physical properties between polypropylene and polyethylene can be imparted. From the viewpoint that it is possible to produce and industrially easy to produce and is a physically useful plastic as described above, poly (3) which is a copolymer of 3-hydroxybutyric acid and 3-hydroxyhexanoic acid is used. 3-hydroxybutyrate-co-3-hydroxyhexanoate) is preferred. The poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) has poor peelability from the pressure-bonding surface at the time of laminating among P3HA, and the surface state of the resin layer of the resulting laminated paper is deteriorated. Although the problem of being easy is remarkable, the application of the present invention can improve the surface condition of a laminated paper using poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) as a resin material. it can.
 ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)の具体的な製造方法は、例えば、国際公開第2010/013483号に記載されている。また、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)の市販品としては、株式会社カネカ「カネカ生分解性ポリマーPHBH」(登録商標)などが挙げられる。 A specific method for producing poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) is described in, for example, International Publication No. 2010/013483. Examples of commercially available products of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) include Kaneka Corporation “Kaneka Biodegradable Polymer PHBH” (registered trademark).
 また、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)の繰り返し単位の組成比は、柔軟性と強度のバランスの観点から、3-ヒドロキシブチレート単位/3-ヒドロキシヘキサノエート単位の組成比が80/20~99/1(mol/mol)であることが好ましく、85/15~97/3(mo1/mo1)であることがより好ましい。その理由は、柔軟性の点から99/1以下が好ましく、また樹脂が適度な硬度を有する点で80/20以上が好ましいからである。 The composition ratio of the repeating unit of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) is determined from the viewpoint of the balance between flexibility and strength, 3-hydroxybutyrate unit / 3-hydroxyhexanoate The composition ratio of units is preferably 80/20 to 99/1 (mol / mol), and more preferably 85/15 to 97/3 (mo1 / mo1). The reason is that 99/1 or less is preferable from the viewpoint of flexibility, and 80/20 or more is preferable in that the resin has an appropriate hardness.
 本発明で使用するP3HAの重量平均分子量(以下、Mwと称する場合がある)は特に限定されないが、10万~250万が好ましく、15万~200万がより好ましく、20万~100万がさらに好ましい。重量平均分子量が10万未満では、機械物性等が劣る場合があり、250万を超えると、成形加工が困難となる場合がある。本願において、P3HAの重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)(昭和電工社製「Shodex GPC-101」)によって、カラムにポリスチレンゲル(昭和電工社製「Shodex K-804」)を用い、クロロホルムを移動相とし、ポリスチレン換算した場合の分子量として求めることができる。 The weight average molecular weight of P3HA used in the present invention (hereinafter sometimes referred to as Mw) is not particularly limited, but is preferably 100,000 to 2.5 million, more preferably 150,000 to 2 million, and further preferably 200,000 to 1 million. preferable. If the weight average molecular weight is less than 100,000, the mechanical properties and the like may be inferior, and if it exceeds 2.5 million, molding may be difficult. In the present application, the weight average molecular weight of P3HA is determined by gel permeation chromatography (GPC) (“Shodex GPC-101” manufactured by Showa Denko KK) and polystyrene gel (“Shodex K-804” manufactured by Showa Denko KK) as a column. It can be determined as the molecular weight when converted to polystyrene using chloroform as the mobile phase.
 本発明の生分解性積層体を構成する樹脂層においてP3HAは、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。 In the resin layer constituting the biodegradable laminate of the present invention, P3HA can be used alone or in combination of two or more.
 前記樹脂層には、本発明の効果を損なわない範囲で、ポリブチレンサクシネートアジペート、ポリブチレンサクシネート、ポリ乳酸などの脂肪族ポリエステル系樹脂や、ポリブチレンアジペートテレフタレートなどの脂肪族芳香族ポリエステル系樹脂など、P3HA以外の生分解性樹脂が1種または2種以上含まれていてもよい。 In the resin layer, an aliphatic polyester resin such as polybutylene succinate adipate, polybutylene succinate, and polylactic acid, and an aliphatic aromatic polyester type such as polybutylene adipate terephthalate, as long as the effects of the present invention are not impaired. One or more biodegradable resins other than P3HA, such as a resin, may be contained.
 しかし、P3HA以外の生分解性樹脂は土中や海洋など通常環境での環境分解性が低いため、これらを用いると、生分解性積層体の環境分解性を低下させる可能性がある。そのため、P3HA以外の樹脂の含有量は、P3HAが有する環境分解性を阻害しないように、少ないほど好ましい。具体的には、P3HA以外の樹脂の含有量は、P3HA100重量部に対して、50重量部以下が好ましく、30重量部以下がより好ましく、10重量部以下がさらに好ましい。また、本発明の生分解性積層体を構成する樹脂層は、樹脂成分としてはP3HAのみを含有し、すなわち、P3HA以外の樹脂をまったく含有しないものであってよい。 However, since biodegradable resins other than P3HA have low environmental degradability in normal environments such as soil and ocean, the use of these may reduce the environmental degradability of the biodegradable laminate. For this reason, the content of the resin other than P3HA is preferably as small as possible so as not to inhibit the environmental degradability of P3HA. Specifically, the content of the resin other than P3HA is preferably 50 parts by weight or less, more preferably 30 parts by weight or less, and still more preferably 10 parts by weight or less with respect to 100 parts by weight of P3HA. Moreover, the resin layer which comprises the biodegradable laminated body of this invention may contain only P3HA as a resin component, ie, may not contain resin other than P3HA at all.
 (グリセリンエステル化合物(B))
 本発明では、生分解性積層体を構成する樹脂層を、P3HAにグリセリンエステル化合物を配合した樹脂組成物で構成することによって、ラミネート加工における冷却ロール等の圧着面からの剥離性を改善して、樹脂層が圧着面に付着しにくく、圧着面から樹脂層がスムーズに剥離されるようにし、表面状態が良好な生分解性積層体の製造を実現することができる。
(Glycerin ester compound (B))
In the present invention, the resin layer constituting the biodegradable laminate is composed of a resin composition in which a glycerin ester compound is blended with P3HA, thereby improving the peelability from the pressure-bonding surface such as a cooling roll in lamination. The resin layer hardly adheres to the pressure-bonding surface, and the resin layer can be smoothly peeled off from the pressure-bonding surface, so that a biodegradable laminate having a good surface condition can be produced.
 グリセリンエステル化合物とは、グリセリンが有する水酸基が、例えばカルボキシル基を有する化合物とエステル結合を形成した化合物である。該エステル化合物は、グリセリンのモノエステル、グリセリンのジエステル、又はグリセリンのトリエステルのいずれであってもよい。圧着面からの剥離性改善の観点から、グリセリンのトリエステルが好ましく、グリセリンジアセトモノエステルがより好ましい。グリセリンジアセトモノエステルの具体例としては、グリセリンジアセトモノラウレート、グリセリンジアセトモノオレエート、グリセリンジアセトモノステアレート、グリセリンジアセトモノカプリレート、グリセリンジアセトモノデカノエート等を挙げることができる。グリセリンエステル化合物は、1種類のみを使用してもよいし、複数を併用してもよい。 The glycerin ester compound is a compound in which a hydroxyl group of glycerin forms an ester bond with a compound having a carboxyl group, for example. The ester compound may be a glycerol monoester, a glycerol diester, or a glycerol triester. From the viewpoint of improving peelability from the pressure-bonding surface, a triester of glycerin is preferred, and glycerin diacetate monoester is more preferred. Specific examples of glycerol diacetomonoester include glycerol diacetomonolaurate, glycerol diacetomonooleate, glycerol diacetomonostearate, glycerol diacetomonocaprylate, glycerol diacetomonodecanoate and the like. Only one type of glycerin ester compound may be used, or a plurality may be used in combination.
 前記樹脂組成物におけるグリセリンエステル化合物の配合量は、P3HA100重量部に対して1~20重量部である。グリセリンエステル化合物の配合量が1重量部より少ないと、圧着面からの剥離性改善効果を得ることが難しくなり、また、20重量部より多いと、圧着時にグリセリンエステル化合物がブリードして、冷却ロール等の圧着面に付着して、長時間の連続加工が困難になる問題がある。グリセリンエステル化合物の配合量は、好ましくは1~10重量部であり、より好ましくは2~5重量部である。 The blending amount of the glycerin ester compound in the resin composition is 1 to 20 parts by weight with respect to 100 parts by weight of P3HA. When the blending amount of the glycerin ester compound is less than 1 part by weight, it becomes difficult to obtain the effect of improving the peelability from the crimping surface. When the blending amount is more than 20 parts by weight, the glycerin ester compound bleeds during crimping, and the cooling roll There is a problem that it becomes difficult to perform continuous processing for a long time because it adheres to the pressure-bonding surface. The blending amount of the glycerin ester compound is preferably 1 to 10 parts by weight, more preferably 2 to 5 parts by weight.
 (脂肪族アミド化合物(C))
 本発明の生分解性積層体を構成する樹脂組成物は、P3HAとグリセリンエステル化合物に加えて、脂肪族アミド化合物を含有してもよい。脂肪族アミド化合物を配合することによって、圧着面からの剥離性をさらに改善することができる。ただし、脂肪族アミド化合物は任意の成分であり、前記樹脂組成物は脂肪族アミド化合物を含有しないものであってもよい。
(Aliphatic amide compound (C))
The resin composition constituting the biodegradable laminate of the present invention may contain an aliphatic amide compound in addition to P3HA and a glycerin ester compound. By mix | blending an aliphatic amide compound, the peelability from a crimping | compression-bonding surface can further be improved. However, the aliphatic amide compound is an optional component, and the resin composition may not contain an aliphatic amide compound.
 脂肪族アミド化合物は、従来、樹脂に対して添加される滑剤として知られている添加剤の一種である。脂肪族アミド化合物としては特に限定されず、例えば、ラウリン酸アミド、ミリスチン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、オレイン酸アミド、エルカ酸アミド等の飽和または不飽和の脂肪酸アミドや、メチレンビスステアリン酸アミド、メチレンビスステアリン酸アミド等のアルキレン脂肪酸アミド等が挙げられる。このうち、圧着面からの剥離性改善の観点から、脂肪酸アミドが好ましい。脂肪族アミド化合物は、1種類のみを使用してもよいし、複数を併用してもよい。 An aliphatic amide compound is a kind of additive conventionally known as a lubricant added to a resin. The aliphatic amide compound is not particularly limited, and examples thereof include saturated or unsaturated fatty acid amides such as lauric acid amide, myristic acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, oleic acid amide, and erucic acid amide. And alkylene fatty acid amides such as methylene bis stearic acid amide and methylene bis stearic acid amide. Of these, fatty acid amides are preferred from the viewpoint of improving the peelability from the crimping surface. Only one type of aliphatic amide compound may be used, or a plurality of types may be used in combination.
 前記樹脂層における脂肪族アミド化合物の配合量は、P3HA100重量部に対して0.1~5重量部であることが好ましい。脂肪族アミド化合物の配合量を0.1重量部以上とすることにより、脂肪族アミド化合物配合による剥離性改善効果を得ることができる。しかし、脂肪族アミド化合物の配合量が5重量部を超えると、圧着時に脂肪族アミド化合物がブリードして冷却ロール等の圧着面に付着し、長時間の連続加工が困難になる問題がある。脂肪族アミド化合物の配合量は、より好ましくは0.3~4重量部であり、さらに好ましくは0.5~3重量部である。 The blending amount of the aliphatic amide compound in the resin layer is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of P3HA. By setting the blending amount of the aliphatic amide compound to 0.1 parts by weight or more, the effect of improving the peelability by blending the aliphatic amide compound can be obtained. However, when the blending amount of the aliphatic amide compound exceeds 5 parts by weight, the aliphatic amide compound bleeds at the time of pressure bonding and adheres to the pressure-bonding surface such as a cooling roll, which makes it difficult to perform continuous processing for a long time. The blending amount of the aliphatic amide compound is more preferably 0.3 to 4 parts by weight, still more preferably 0.5 to 3 parts by weight.
 (ペンタエリスリトール(D))
 本発明の生分解性積層体を構成する樹脂層は、P3HAとグリセリンエステル化合物に加えて、ペンタエリスリトールを含有してもよい。ペンタエリスリトールを配合することによって、圧着面からの剥離性をさらに改善することができる。ただし、ペンタエリスリトールは任意の成分であり、前記樹脂層はペンタエリスリトールを含有しないものであってもよい。
(Pentaerythritol (D))
The resin layer constituting the biodegradable laminate of the present invention may contain pentaerythritol in addition to P3HA and a glycerin ester compound. By blending pentaerythritol, the peelability from the pressure-bonded surface can be further improved. However, pentaerythritol is an optional component, and the resin layer may not contain pentaerythritol.
 前記樹脂層におけるペンタエリスリトールの配合量は、P3HA100重量部に対して0.1~5重量部であることが好ましい。ペンタエリスリトールの配合量を0.1重量部以上とすることにより、ペンタエリスリトール配合による剥離性改善効果を得ることができる。しかし、ペンタエリスリトールの配合量が5重量部を超えると、圧着時にペンタエリスリトールがブリードして冷却ロール等の圧着面に付着し、長時間の連続加工が困難になる問題がある。ペンタエリスリトールの配合量は、より好ましくは0.3~4重量部であり、さらに好ましくは0.5~3重量部である。 The blend amount of pentaerythritol in the resin layer is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of P3HA. By setting the blending amount of pentaerythritol to 0.1 parts by weight or more, it is possible to obtain an effect of improving peelability by blending pentaerythritol. However, when the blending amount of pentaerythritol exceeds 5 parts by weight, there is a problem that pentaerythritol bleeds at the time of pressure bonding and adheres to the pressure-bonding surface such as a cooling roll, making long-time continuous processing difficult. The blending amount of pentaerythritol is more preferably 0.3 to 4 parts by weight, still more preferably 0.5 to 3 parts by weight.
 前記樹脂層には、グリセリンエステル化合物、任意成分の脂肪族アミド化合物、及び、任意成分のペンタエリスリトールに加えて、本発明の効果を阻害しない範囲で、樹脂材料に通常添加される他の添加剤、例えば、無機充填剤、顔料、染料などの着色剤、活性炭、ゼオライト等の臭気吸収剤、バニリン、デキストリン等の香料、可塑剤、酸化防止剤、抗酸化剤、耐候性改良剤、紫外線吸収剤、結晶核剤、滑剤、離型剤、撥水剤、抗菌剤、摺動性改良剤、その他の副次的添加剤を1種または2種以上添加してもよい。これら添加剤の含有量は、適宜設定可能である。 In the resin layer, in addition to the glycerin ester compound, the optional component aliphatic amide compound, and the optional component pentaerythritol, other additives usually added to the resin material as long as the effects of the present invention are not impaired. For example, inorganic fillers, colorants such as pigments and dyes, odor absorbers such as activated carbon and zeolite, fragrances such as vanillin and dextrin, plasticizers, antioxidants, antioxidants, weather resistance improvers, ultraviolet absorbers In addition, one or more kinds of crystal nucleating agents, lubricants, mold release agents, water repellents, antibacterial agents, slidability improving agents, and other secondary additives may be added. The content of these additives can be set as appropriate.
 本発明の生分解性積層体における樹脂層(生分解性積層体が2層以上の樹脂層を有する場合には各樹脂層)の厚さは、特に限定されないが、紙への吸水を防止しながら、充分な柔軟性を確保する観点から、5~300μmが好ましく、より好ましくは10~200μmである。 The thickness of the resin layer in the biodegradable laminate of the present invention (each resin layer in the case where the biodegradable laminate has two or more resin layers) is not particularly limited, but prevents water absorption to paper. However, from the viewpoint of ensuring sufficient flexibility, the thickness is preferably 5 to 300 μm, more preferably 10 to 200 μm.
 (紙基材)
 本発明の生分解性積層体を構成する紙基材は特に限定されず、その片面または両面に樹脂層を形成できるものであればよい。具体例としては、クラフト紙、上質紙、コート紙、薄葉紙、グラシン紙、板紙、グラシン紙、セロファン等が挙げられる。生分解性積層体の用途に応じて、紙基材の種類を選択すればよい。また、紙の基材の表面は、コロナ処理、フレーム処理、アンカーコート処理等の表面処理が施されたものであってもよい。
(Paper substrate)
The paper base material which comprises the biodegradable laminated body of this invention is not specifically limited, What is necessary is just to be able to form the resin layer in the single side | surface or both surfaces. Specific examples include kraft paper, fine paper, coated paper, thin paper, glassine paper, paperboard, glassine paper, cellophane, and the like. What is necessary is just to select the kind of paper base material according to the use of a biodegradable laminated body. Further, the surface of the paper base material may be subjected to a surface treatment such as a corona treatment, a frame treatment, or an anchor coat treatment.
 (ラミネート法)
 本発明では、ラミネート法により、紙基材と、その片面または両面に形成された樹脂層とから構成される生分解性積層体を製造する。ラミネート法とは、冷却ロール等の圧着面を用いて樹脂材料を紙基材に圧着した後、該樹脂材料から構成される樹脂層を前記圧着面から剥離することで、生分解性積層体を製造する方法である。ラミネート法としては、圧着面を用いて樹脂材料と紙基材を圧着させる方法であれば特に限定されないが、具体的には、Tダイから溶融した樹脂材料をフィルム状に押し出した後、別途繰り出した紙基材に冷却ロールを用いて冷却圧着する押出ラミネート法や、予め作製しておいた樹脂フィルムを加熱して紙基材に圧着する熱ラミネート法を挙げることができる。ここで圧着面とは、樹脂と紙基材を圧着できるものであればよく、板状の面や、ロールの表面等が挙げられる。
(Lamination method)
In this invention, the biodegradable laminated body comprised from the paper base material and the resin layer formed in the single side | surface or both surfaces is manufactured by the lamination method. The laminating method is a method in which a resin material is pressure-bonded to a paper substrate using a pressure-bonding surface such as a cooling roll, and then a resin layer composed of the resin material is peeled off from the pressure-bonding surface, whereby a biodegradable laminate is obtained. It is a manufacturing method. The laminating method is not particularly limited as long as it is a method in which a resin material and a paper base material are pressure-bonded using a pressure-bonding surface. Specifically, after the molten resin material is extruded from a T-die into a film shape, it is separately fed out. Examples thereof include an extrusion laminating method in which a paper base is cooled and pressure-bonded using a cooling roll, and a heat laminating method in which a resin film prepared in advance is heated and pressure-bonded to the paper base. Here, the pressure-bonding surface is not particularly limited as long as the resin and the paper base material can be pressure-bonded, and examples thereof include a plate-shaped surface and a roll surface.
 前記押出ラミネート法は、連続的に実施され、溶融した樹脂材料を紙基材に冷却圧着し、その直後に冷却ロールから樹脂層を剥離するものである。そのため、従来法では樹脂材料としてP3HAを用いた場合、冷却ロールから樹脂層がスムーズに剥離しにくく、冷却ロールに樹脂層が一時的に付着したようになる現象が生じやすかった。その結果、その付着箇所がロールから剥離する際に力がかかって、当該箇所で樹脂層表面に白濁したムラ(微細な凹凸)が生じるという問題が特に顕著に発生していた。しかし、本発明を適用することで、押出ラミネート法においても、冷却ロールからの剥離性を改善して、樹脂層の表面状態が良好な生分解性積層体を製造することができる。本発明によると、冷却ロール等の圧着面から、P3HAを含む樹脂材料を剥離する際の引取力を、好ましくは25N以下、より好ましくは20N以下に低減することができる。 The extrusion laminating method is carried out continuously, and a melted resin material is cooled and pressure-bonded to a paper substrate, and immediately thereafter, the resin layer is peeled off from the cooling roll. Therefore, in the conventional method, when P3HA is used as the resin material, the resin layer is not easily peeled off from the cooling roll, and the phenomenon that the resin layer is temporarily attached to the cooling roll is likely to occur. As a result, the problem that the force applied when the adhesion location peeled from the roll and the cloudy nonuniformity (fine unevenness | corrugation) produced on the resin layer surface in the said location had generate | occur | produced especially notably. However, by applying the present invention, even in the extrusion laminating method, it is possible to improve the peelability from the cooling roll and produce a biodegradable laminate having a good surface state of the resin layer. According to the present invention, it is possible to reduce the take-up force when peeling a resin material containing P3HA from a pressure-bonding surface such as a cooling roll, preferably to 25 N or less, more preferably to 20 N or less.
 また、本発明によると、P3HA層と圧着面の接触を回避するために従来法のように、P3HA層の上に、ポリオレフィン樹脂層や、ジカルボン酸とグリコールの重縮合ポリエステル層など、他の樹脂層を別途設ける必要がない。そのため、上述した廃棄物処理の問題や、環境分解性が低い樹脂材料が生分解性積層体に含まれる問題を回避することもできる。 In addition, according to the present invention, other resins such as a polyolefin resin layer and a polycondensation polyester layer of dicarboxylic acid and glycol are formed on the P3HA layer as in the conventional method in order to avoid contact between the P3HA layer and the pressure-bonding surface. There is no need to provide a separate layer. Therefore, the problem of the waste treatment mentioned above and the problem that the resin material having low environmental degradability is included in the biodegradable laminate can also be avoided.
 押出ラミネート法において、冷却ロールの表面温度は、樹脂層を冷却圧着できる温度であれば特に限定されず、適宜決定することができるが、例えば10~60℃の範囲であってよい。 In the extrusion laminating method, the surface temperature of the cooling roll is not particularly limited as long as it is a temperature at which the resin layer can be cooled and pressure-bonded, and can be appropriately determined, but may be in the range of 10 to 60 ° C., for example.
 (生分解性積層体)
 また本発明は、紙基材と、その片面または両面に形成された樹脂層を含む生分解性積層体でもある。前記樹脂層は、上述したP3HAとグリセリンエステル化合物を必須成分とする樹脂層である。本発明の生分解性積層体は、当該樹脂層が紙基材に接するように積層されており、当該樹脂層と紙基材の間に、接着剤層や、他の樹脂層は介在していないものであることが好ましい。また、本発明の生分解性積層体は、本発明におけるP3HAを主体とする樹脂層以外の樹脂層(例えば、ポリオレフィン樹脂層や、ジカルボン酸とグリコールの重縮合ポリエステルより構成される層など)を含まないものであることが好ましい。
(Biodegradable laminate)
Moreover, this invention is also a biodegradable laminated body containing the paper base material and the resin layer formed in the single side | surface or both surfaces. The resin layer is a resin layer containing the above-described P3HA and a glycerin ester compound as essential components. The biodegradable laminate of the present invention is laminated so that the resin layer is in contact with the paper substrate, and an adhesive layer and other resin layers are interposed between the resin layer and the paper substrate. It is preferable that it is not. Further, the biodegradable laminate of the present invention has a resin layer other than the resin layer mainly composed of P3HA in the present invention (for example, a polyolefin resin layer or a layer composed of a polycondensation polyester of dicarboxylic acid and glycol). It is preferable that it does not contain.
 本発明の生分解性積層体は、上述したラミネート法によって連続的に製造される長尺の生分解性積層体であることが好ましく、ラミネート法による圧着及び剥離後に巻取りロールに巻き取られることで製造可能な、ロール状に巻かれた形態を有する生分解性積層体であることが好ましい。 The biodegradable laminate of the present invention is preferably a long biodegradable laminate continuously produced by the above-described laminating method, and is wound around a winding roll after pressure bonding and peeling by the laminating method. It is preferable that it is a biodegradable laminated body which has the form wound by roll shape which can be manufactured by.
 本発明の生分解性積層体を使用する用途は特に限定されないが、例えば、紙コップ、紙袋、カートン、トレイ、内装用の壁紙等が挙げられる。 The use of the biodegradable laminate of the present invention is not particularly limited, and examples thereof include paper cups, paper bags, cartons, trays, and interior wallpaper.
 以下に実施例を掲げて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
 <製造例1>
 培養生産にはKNK-631株(国際公開第2009/145164号参照)を用いた。
<Production Example 1>
For culture production, the KNK-631 strain (see International Publication No. 2009/145164) was used.
 種母培地の組成は1w/v% Meat-extract、1w/v% Bacto-Tryptone、0.2w/v% Yeast-extract、0.9w/v% NaHPO・12HO、0.15w/v% KHPO、(pH6.8)とした。 The composition of Tanehaha medium 1w / v% Meat-extract, 1w / v% Bacto-Tryptone, 0.2w / v% Yeast-extract, 0.9w / v% Na 2 HPO 4 · 12H 2 O, 0.15w / V% KH 2 PO 4 (pH 6.8).
 前培養培地の組成は1.1w/v% NaHPO・12HO、0.19w/v% KHPO、1.29w/v% (NHSO、0.1w/v% MgSO・7HO、0.5v/v% 微量金属塩溶液(0.1N塩酸に1.6w/v% FeCl・6HO、1w/v% CaCl・2HO、0.02w/v% CoCl・6HO、0.016w/v% CuSO・5HO、0.012w/v% NiCl・6HOを溶かしたもの)、とした。炭素源はパーム核油を10g/Lの濃度で一括添加した。 The composition of the preculture medium is 1.1 w / v% Na 2 HPO 4 · 12H 2 O, 0.19 w / v% KH 2 PO 4 , 1.29 w / v% (NH 4 ) 2 SO 4 , 0.1 w / v% MgSO 4 · 7H 2 O , 0.5v / v% trace metal salt solution (1.6 w in 0.1N HCl / v% FeCl 3 · 6H 2 O, 1w / v% CaCl 2 · 2H 2 O, 0 0.02 w / v% CoCl 2 .6H 2 O, 0.016 w / v% CuSO 4 .5H 2 O, 0.012 w / v% NiCl 2 .6H 2 O). As a carbon source, palm kernel oil was added all at a concentration of 10 g / L.
 P3HA生産培地の組成は0.385w/v% NaHPO・12HO、0.067w/v% KHPO、0.291w/v% (NHSO、0.1w/v% MgSO・7HO、0.5v/v% 微量金属塩溶液(0.1N 塩酸に1.6w/v% FeCl・6HO、1w/v% CaCl・2HO、0.02w/v% CoCl・6HO、0.016w/v% CuSO・5HO、0.012w/v% NiCl・6HOを溶かしたもの)、0.05w/v% BIOSPUREX200K(消泡剤:コグニスジャパン社製)とした。 The composition of the P3HA production medium is 0.385 w / v% Na 2 HPO 4 · 12H 2 O, 0.067 w / v% KH 2 PO 4 , 0.291 w / v% (NH 4 ) 2 SO 4 , 0.1 w / v% MgSO 4 .7H 2 O, 0.5 v / v% trace metal salt solution (1.6 W / v% FeCl 3 .6H 2 O in 0.1N hydrochloric acid, 1 w / v% CaCl 2 .2H 2 O, 0 0.02 w / v% CoCl 2 · 6H 2 O, 0.016 w / v% CuSO 4 · 5H 2 O, 0.012 w / v% NiCl 2 · 6H 2 O), 0.05 w / v% BIOSPUREX 200K (Antifoamer: manufactured by Cognis Japan).
 まず、KNK-631株のグリセロールストック(50μl)を種母培地(10ml)に接種して24時間培養し種母培養を行なった。次に種母培養液を1.8Lの前培養培地を入れた3Lジャーファーメンター(丸菱バイオエンジ製MDL-300型)に1.0v/v%接種した。運転条件は、培養温度33℃、攪拌速度500rpm、通気量1.8L/minとし、pHは6.7~6.8の間でコントロールしながら28時間培養し、前培養を行なった。pHコントロールには14%水酸化アンモニウム水溶液を使用した。 First, a glycerol stock (50 μl) of KNK-631 strain was inoculated into a seed medium (10 ml) and cultured for 24 hours to perform seed culture. Next, 1.0 v / v% of the seed mother culture solution was inoculated into a 3 L jar fermenter (MDL-300 type, manufactured by Maruhishi Bioengine) containing 1.8 L of a preculture medium. The operating conditions were a culture temperature of 33 ° C., a stirring speed of 500 rpm, an aeration rate of 1.8 L / min, and the culture was performed for 28 hours while controlling the pH between 6.7 and 6.8. A 14% aqueous ammonium hydroxide solution was used for pH control.
 次に、前培養液を、6LのP3HA生産培地を入れた10Lジャーファーメンター(丸菱バイオエンジ製MDS-1000型)に1.0v/v%接種した。運転条件は、培養温度28℃、攪拌速度400rpm、通気量6.0L/minとし、pHは6.7から6.8の間でコントロールした。pHコントロールには14%水酸化アンモニウム水溶液を使用した。炭素源としてパーム核油を使用した。培養は64時間行い、培養終了後、遠心分離によって菌体を回収、メタノールで洗浄、凍結乾燥し、得られた乾燥菌体の重量を測定した。 Next, the preculture solution was inoculated at 1.0 v / v% into a 10 L jar fermenter (MDS-1000, manufactured by Marubishi Bioengineer) containing 6 L of P3HA production medium. The operating conditions were a culture temperature of 28 ° C., a stirring speed of 400 rpm, an aeration rate of 6.0 L / min, and a pH controlled between 6.7 and 6.8. A 14% aqueous ammonium hydroxide solution was used for pH control. Palm kernel oil was used as the carbon source. Culturing was carried out for 64 hours. After completion of the cultivation, the cells were collected by centrifugation, washed with methanol, freeze-dried, and the weight of the obtained dried cells was measured.
 得られた乾燥菌体1gに100mlのクロロホルムを加え、室温で一昼夜攪拌して、菌体内のP3HAを抽出した。菌体残渣をろ別後、エバポレーターで総容量が30mlになるまで濃縮後、90mlのヘキサンを徐々に加え、ゆっくり攪拌しながら、1時間放置した。析出したP3HAをろ別後、50℃で3時間真空乾燥し、P3HA A1を得た。 100 ml of chloroform was added to 1 g of the obtained dried microbial cells and stirred overnight at room temperature to extract P3HA in the microbial cells. The bacterial cell residue was filtered off, concentrated with an evaporator until the total volume reached 30 ml, 90 ml of hexane was gradually added, and the mixture was allowed to stand for 1 hour with slow stirring. The precipitated P3HA was filtered off and vacuum dried at 50 ° C. for 3 hours to obtain P3HA A1.
 得られたP3HAの3HH組成分析は以下のようにガスクロマトグラフィーによって測定した。乾燥P3HA20mgに2mlの硫酸-メタノール混液(15:85)と2mlのクロロホルムを添加して密栓し、100℃で140分間加熱して、P3HA分解物のメチルエステルを得た。冷却後、これに1.5gの炭酸水素ナトリウムを少しずつ加えて中和し、炭酸ガスの発生がとまるまで放置した。4mlのジイソプロピルエーテルを添加してよく混合した後、遠心して、上清中のポリエステル分解物のモノマーユニット組成をキャピラリーガスクロマトグラフィーにより分析した。ガスクロマトグラフは島津製作所GC-17A、キャピラリーカラムはGLサイエンス社製NEUTRA BOND-1(カラム長25m、カラム内径0.25mm、液膜厚0.4μm)を用いた。キャリアガスとしてHeを用い、カラム入口圧100kPaとし、サンプルは1μlを注入した。温度条件は、初発温度100から200℃まで8℃/分の速度で昇温、さらに200から290℃まで30℃/分の速度で昇温した。 The 3HH composition analysis of the obtained P3HA was measured by gas chromatography as follows. To 20 mg of dry P3HA, 2 ml of a sulfuric acid-methanol mixture (15:85) and 2 ml of chloroform were added and sealed, and heated at 100 ° C. for 140 minutes to obtain a methyl ester of a P3HA decomposition product. After cooling, 1.5 g of sodium bicarbonate was added little by little to neutralize it, and the mixture was allowed to stand until the generation of carbon dioxide gas stopped. After adding 4 ml of diisopropyl ether and mixing well, the mixture was centrifuged and the monomer unit composition of the polyester degradation product in the supernatant was analyzed by capillary gas chromatography. The gas chromatograph used was Shimadzu GC-17A, and the capillary column used was GL Science's Neutra Bond-1 (column length 25 m, column inner diameter 0.25 mm, liquid film thickness 0.4 μm). He was used as the carrier gas, the column inlet pressure was set to 100 kPa, and 1 μl of the sample was injected. As temperature conditions, the temperature was raised from an initial temperature of 100 to 200 ° C. at a rate of 8 ° C./min, and further from 200 to 290 ° C. at a rate of 30 ° C./min.
 上記条件にて分析した結果、得られたP3HA A1が、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)(P(3HB-co-3HH))であることを確認した。GPCで測定した重量平均分子量Mwは74万であった。3-ヒドロキシヘキサノエート(3HH)組成は11.4モル%であった。 As a result of analysis under the above conditions, it was confirmed that the obtained P3HA A1 was poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (P (3HB-co-3HH)). The weight average molecular weight Mw measured by GPC was 740,000. The 3-hydroxyhexanoate (3HH) composition was 11.4 mol%.
 <製造例2>
 製造例1で得られたP3HA A1を高加速寿命試験装置(平山製作所製PC-422R5E)を用いて、120℃、湿度100%で2時間処理することで、P3HA A2として、P(3HB-co-3HH)を得た。P3HA A2の重量平均分子量Mwは54万、3HH組成は11.4モル%であった。
<Production Example 2>
P3HA A1 obtained in Production Example 1 was treated at 120 ° C. and 100% humidity for 2 hours using a highly accelerated life test apparatus (PC-422R5E manufactured by Hirayama Seisakusho), so that P3HA A2 was treated as P (3HB-co -3HH). The weight average molecular weight Mw of P3HA A2 was 540,000, and the 3HH composition was 11.4 mol%.
 <製造例3>
 KNK-005株(米国特許第7384766号明細書参照)および炭素源としてパーム油を用いた以外は製造例1と同様の方法で、P3HA A3として、P(3HB-co-3HH)を得た。P3HA A3の重量平均分子量Mwは57万、3HH組成は5.6モル%であった。
<Production Example 3>
P (3HB-co-3HH) was obtained as P3HA A3 in the same manner as in Production Example 1, except that KNK-005 strain (see US Pat. No. 7,384,766) and palm oil were used as the carbon source. The weight average molecular weight Mw of P3HA A3 was 570,000, and the 3HH composition was 5.6 mol%.
 <製造例4>
 製造例3で得られたP3HA A3を、高加速寿命試験装置(平山製作所製PC-422R5E)を用いて、120℃、湿度100%で2時間処理することで、P3HA A4として、P(3HB-co-3HH)を得た。P3HA A4の重量平均分子量Mwは44万、3HH組成は5.6モル%であった。
<Production Example 4>
P3HA A3 obtained in Production Example 3 was treated at 120 ° C. and 100% humidity for 2 hours using a high acceleration life test apparatus (PC-422R5E manufactured by Hirayama Seisakusho), so that P (3HB- co-3HH) was obtained. The weight average molecular weight Mw of P3HA A4 was 440,000, and the 3HH composition was 5.6 mol%.
 <実施例1~11>
 (生分解性積層体の製造)
 各成分を、表1に示した配合比(表中の配合比は、重量部で示す)で、同方向噛合型2軸押出機(日本製鋼社製:TEX30)を用いて、設定温度100~140℃(出口樹脂温度160℃)、スクリュー回転数100rpmで溶融混練し、生分解性樹脂組成物を得た。樹脂温度は、ダイスから出てくる溶融した樹脂を直接K型熱電対で測定した。当該生分解性樹脂組成物をダイスからストランド状に引き取り、ペレット状にカットした。
<Examples 1 to 11>
(Manufacture of biodegradable laminates)
Each component was blended at the blending ratio shown in Table 1 (the blending ratio in the table is expressed in parts by weight) using a same-direction meshing twin screw extruder (manufactured by Nippon Steel Co., Ltd .: TEX30) at a set temperature of 100 to It was melt-kneaded at 140 ° C. (exit resin temperature 160 ° C.) and a screw rotation speed of 100 rpm to obtain a biodegradable resin composition. The resin temperature was determined by directly measuring the molten resin coming out of the die with a K-type thermocouple. The biodegradable resin composition was drawn into a strand from the die and cut into a pellet.
 続いて、得られた生分解性樹脂組成物のペレットを60℃で十分に乾燥させた後、横幅:150mm、リップ幅:0.25mmのT型ダイスを装着した単軸押出機(東洋精機製作所製「20C200型」ラボプラストミル)を用いて、成形温度:130~160℃、スクリュー回転数:30rpmの条件で押出し、冷却ロールを30℃に温調したラミネーター(ロール径100mm)を用いて、坪量150g/mの未晒クラフト紙の片面に厚さ100μmでラミネートして、生分解性積層体を得た。 Subsequently, after the pellets of the obtained biodegradable resin composition were sufficiently dried at 60 ° C., a single-screw extruder (Toyo Seiki Seisakusho Co., Ltd.) equipped with a T-type die having a width of 150 mm and a lip width of 0.25 mm Using a laminator (roll diameter: 100 mm) that was extruded under the conditions of molding temperature: 130 to 160 ° C., screw rotation speed: 30 rpm, and the temperature of the cooling roll was adjusted to 30 ° C. A biodegradable laminate was obtained by laminating at a thickness of 100 μm on one side of unbleached kraft paper having a basis weight of 150 g / m 2 .
 P3HAとしては、製造例1で得られたA1、製造例2で得られたA2、製造例3で得られたA3、又は、製造例4で得られたA4を使用した。 As P3HA, A1 obtained in Production Example 1, A2 obtained in Production Example 2, A3 obtained in Production Example 3, or A4 obtained in Production Example 4 was used.
 グリセリンエステル化合物B1としては、グリセリンジアセトモノラウレート(理研ビタミン社製、「リケマールPL012」)を用いた。 As the glycerin ester compound B1, glycerin diacetomonolaurate (manufactured by Riken Vitamin Co., Ltd., “Riquemar PL012”) was used.
 脂肪族アミド化合物C1としては、エルカ酸アミド(日本精化社製、「ニュートロン-S」)を用いた。 As the aliphatic amide compound C1, erucic acid amide (manufactured by Nippon Seika Co., Ltd., “Nutron-S”) was used.
 ペンタエリスリトールD1としては、ペンタエリスリトール(日本合成化学社製、「ノイライザーP」)を用いた。 As the pentaerythritol D1, pentaerythritol (manufactured by Nippon Synthetic Chemical Co., Ltd., “Neulizer P”) was used.
 (ロール剥離性)
 ラミネート加工時の冷却ロールからの剥離性は、冷却ロールから積層体を引取る力(引取力)をフォースゲージ(イマダ社製、メカニカルフォースゲージFB-100N)で測定することによって評価した。引取力が小さいほど冷却ロールからの剥離性が良いことを意味する。結果を表1に示した。
(Roll peelability)
The peelability from the cooling roll at the time of laminating was evaluated by measuring the force (pulling force) for pulling the laminate from the cooling roll with a force gauge (manufactured by IMADA, mechanical force gauge FB-100N). The smaller the take-off force, the better the peelability from the cooling roll. The results are shown in Table 1.
 (積層体の表面性)
 ラミネート加工後の生分解性積層体の表面性は、ラミネート樹脂層の表面状態を目視により観察することによって評価した。樹脂層の表面に白濁したムラが生じている場合は不良と判断し、そのようなムラがなく、平滑で透明な樹脂表面となっている場合は良好と判断した。結果を表1に示した。
(Surface properties of the laminate)
The surface property of the biodegradable laminate after lamination was evaluated by visually observing the surface state of the laminate resin layer. If the surface of the resin layer had cloudy unevenness, it was judged as bad, and if there was no such unevenness and the surface was smooth and transparent, it was judged good. The results are shown in Table 1.
 <比較例1~7>
 表1に示した配合比に従ったこと以外は実施例1~11と同様の方法で、生分解性積層体を得、ラミネート加工時のロール剥離性及び積層体の表面性を評価し、結果を表1に示した。
<Comparative Examples 1 to 7>
A biodegradable laminate was obtained in the same manner as in Examples 1 to 11 except that the blending ratio shown in Table 1 was followed, and the roll peelability during lamination and the surface properties of the laminate were evaluated. Is shown in Table 1.
 <参考例1>
 表1に示した配合比に従ったこと以外は実施例1~11と同様の方法で、生分解性積層体を得、ラミネート加工時のロール剥離性及び積層体の表面性を評価し、結果を表1に示した。
<Reference Example 1>
A biodegradable laminate was obtained in the same manner as in Examples 1 to 11 except that the blending ratio shown in Table 1 was followed, and the roll peelability during lamination and the surface properties of the laminate were evaluated. Is shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1に示すように、グリセリンエステル化合物を配合した実施例1~11では、ラミネート加工時の引取力が小さく、冷却ロールからの剥離性が良かった。また、得られた各生分解性積層体の表面性は良好であった。
 これに対して、グリセリンエステル化合物を使用しなかった比較例1~7では、ラミネート加工時の引取力が大きく、冷却ロールからの剥離性が悪かった。そのため、長時間の連続加工は不可能であった。また、得られた各生分解性積層体の表面性は悪く、製品として使用できないものであった。
As shown in Table 1, in Examples 1 to 11 in which the glycerin ester compound was blended, the take-up force at the time of lamination was small, and the peelability from the cooling roll was good. Moreover, the surface property of each obtained biodegradable laminated body was favorable.
On the other hand, in Comparative Examples 1 to 7 in which no glycerin ester compound was used, the take-up force at the time of lamination was large and the peelability from the cooling roll was poor. Therefore, long-time continuous processing was impossible. Moreover, the surface property of each obtained biodegradable laminate was poor and could not be used as a product.
 これらの結果より明らかなように、グリセリンエステル化合物をP3HAへ添加することによって、紙へのラミネート加工時の冷却ロールからの剥離性が向上し、得られる生分解性積層体の表面性が良好なものとなる。特に比較例1及び3~7は、アミド化合物及び/又はペンタエリスリトールを配合したものの、グリセリンエステル化合物を配合しなかったので、冷却ロールからの剥離性および生分解性積層体の表面性は改善されなかった。このことより、剥離性および表面性を改善する効果が、グリセリンエステル化合物に特有のものであることが分かる。 As is clear from these results, by adding the glycerin ester compound to P3HA, the peelability from the cooling roll at the time of laminating to paper is improved, and the surface property of the resulting biodegradable laminate is good. It will be a thing. In particular, Comparative Examples 1 and 3 to 7 were blended with an amide compound and / or pentaerythritol, but were not blended with a glycerin ester compound, so that the peelability from the cooling roll and the surface property of the biodegradable laminate were improved. There wasn't. From this, it can be seen that the effect of improving peelability and surface property is unique to the glycerin ester compound.
 一方、P3HA100重量部に対してグリセリンエステル化合物を30重量部配合した参考例1では、ラミネート加工時の引取力が小さく、得られる生分解性積層体の表面性も良好であったが、ラミネート加工時にグリセリンエステル化合物が冷却ロールにブリードし、長時間の連続加工が不可能であった。
 
On the other hand, in Reference Example 1 in which 30 parts by weight of the glycerin ester compound was blended with 100 parts by weight of P3HA, the take-up power at the time of laminating was small and the surface property of the resulting biodegradable laminate was good. Occasionally, the glycerin ester compound bleeds into the cooling roll, and continuous processing for a long time was impossible.

Claims (8)

  1.  圧着面を用いて樹脂材料を紙基材に圧着した後、前記圧着面から前記樹脂材料を剥離することにより、前記紙基材と樹脂層から構成される生分解性積層体を製造する方法であって、
     前記樹脂材料が、
    (A)式:[-CHR-CH-CO-O-](式中、RはC2n+1で表されるアルキル基で、nは1以上15以下の整数である。)で示される繰り返し単位を含むポリヒドロキシアルカノエート100重量部、及び、
    (B)グリセリンエステル化合物1~20重量部を含有する樹脂材料である、生分解性積層体の製造方法。
    A method of manufacturing a biodegradable laminate composed of the paper base material and the resin layer by peeling the resin material from the pressure-bonding surface after the resin material is pressure-bonded to the paper base material using the pressure-bonding surface. There,
    The resin material is
    (A) Formula: [—CHR—CH 2 —CO—O—] (wherein R is an alkyl group represented by C n H 2n + 1 , and n is an integer of 1 to 15). 100 parts by weight of polyhydroxyalkanoate containing repeating units, and
    (B) A method for producing a biodegradable laminate, which is a resin material containing 1 to 20 parts by weight of a glycerin ester compound.
  2.  前記樹脂組成物が、さらに、(C)脂肪族アミド化合物0.1~5重量部を含有する、請求項1に記載の製造方法。 The production method according to claim 1, wherein the resin composition further comprises 0.1 to 5 parts by weight of (C) an aliphatic amide compound.
  3.  前記ポリヒドロキシアルカノエートが、3-ヒドロキシ酪酸と3-ヒドロキシへキサン酸の共重合体である、請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2, wherein the polyhydroxyalkanoate is a copolymer of 3-hydroxybutyric acid and 3-hydroxyhexanoic acid.
  4.  圧着面を用いて樹脂材料を紙基材に圧着する工程が、押出ラミネート法により、溶融した樹脂材料をフィルム状に押し出した後、別途繰り出した紙基材に冷却ローラーで冷却圧着する工程である、請求項1~3のいずれか1項に記載の製造方法。 The step of pressing the resin material to the paper base using the pressure-bonding surface is a step of extruding the molten resin material into a film shape by an extrusion laminating method and then cooling and press-bonding it to the paper base separately fed with a cooling roller. The production method according to any one of claims 1 to 3.
  5.  前記圧着面から前記樹脂材料を剥離する際の引取力が、25N以下である、請求項1~4のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 4, wherein a take-off force when the resin material is peeled from the pressure-bonding surface is 25 N or less.
  6.  圧着面を用いて、[-CHR-CH-CO-O-](式中、RはC2n+1で表されるアルキル基で、nは1以上15以下の整数である。)で示される繰り返し単位を含むポリヒドロキシアルカノエートを含む樹脂材料を紙基材に圧着した後、前記圧着面から前記樹脂材料を剥離することにより製造される、前記紙基材と樹脂層から構成される生分解性積層体において、前記樹脂層の表面状態を改善する方法であって、
     前記樹脂材料に対して、前記ポリヒドロキシアルカノエート100重量部あたり1~20重量部のグリセリンエステル化合物を配合することを特徴とする、樹脂層の表面状態の改善方法。
    [-CHR—CH 2 —CO—O—] (wherein R is an alkyl group represented by C n H 2n + 1 , and n is an integer of 1 or more and 15 or less). A resin material comprising a paper base material and a resin layer, which is produced by pressure-bonding a resin material containing a polyhydroxyalkanoate containing repeating units to a paper base material and then peeling the resin material from the pressure-bonding surface. In the decomposable laminate, a method for improving the surface state of the resin layer,
    A method for improving the surface state of a resin layer, wherein 1 to 20 parts by weight of a glycerin ester compound per 100 parts by weight of the polyhydroxyalkanoate is blended with the resin material.
  7.  紙基材の片面または両面に樹脂層を積層した生分解性積層体であって、
     前記樹脂層が、(A)式:[-CHR-CH-CO-O-](式中、RはC2n+1で表されるアルキル基で、nは1以上15以下の整数である。)で示される繰り返し単位を含むポリヒドロキシアルカノエート100重量部、及び、
    (B)グリセリンエステル化合物1~20重量部を含有する、生分解性積層体。
    A biodegradable laminate in which a resin layer is laminated on one or both sides of a paper substrate,
    The resin layer has the formula (A): [—CHR—CH 2 —CO—O—] (wherein R is an alkyl group represented by C n H 2n + 1 , and n is an integer of 1 or more and 15 or less. And 100 parts by weight of a polyhydroxyalkanoate containing a repeating unit represented by:
    (B) A biodegradable laminate comprising 1 to 20 parts by weight of a glycerin ester compound.
  8.  ロール状に巻かれた形態を有する、請求項7に記載の生分解性積層体。
     
    The biodegradable laminate according to claim 7, which has a form wound in a roll.
PCT/JP2019/021569 2018-06-14 2019-05-30 Method for manufacturing biodegradable laminate WO2019239913A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020525433A JP7353280B2 (en) 2018-06-14 2019-05-30 Method for manufacturing biodegradable laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-113396 2018-06-14
JP2018113396 2018-06-14

Publications (1)

Publication Number Publication Date
WO2019239913A1 true WO2019239913A1 (en) 2019-12-19

Family

ID=68842147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021569 WO2019239913A1 (en) 2018-06-14 2019-05-30 Method for manufacturing biodegradable laminate

Country Status (2)

Country Link
JP (1) JP7353280B2 (en)
WO (1) WO2019239913A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021161434A (en) * 2020-04-01 2021-10-11 アイ‐コンポロジー株式会社 Marine material
WO2022059592A1 (en) * 2020-09-17 2022-03-24 株式会社カネカ Laminate and molded body
CN115023469A (en) * 2020-01-29 2022-09-06 株式会社钟化 Biodegradable polyester solution and use thereof
WO2022264944A1 (en) * 2021-06-16 2022-12-22 株式会社カネカ Biodegradable laminate and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10128920A (en) * 1996-10-29 1998-05-19 Kanegafuchi Chem Ind Co Ltd Biodegradable laminate
JP2003535996A (en) * 2000-06-09 2003-12-02 ザ プロクター アンド ギャンブル カンパニー Biodegradable coated substrate
WO2009122673A1 (en) * 2008-04-02 2009-10-08 株式会社カネカ Resin composition
WO2013147139A1 (en) * 2012-03-30 2013-10-03 株式会社カネカ Biodegradable polyester resin composition
JP2016049630A (en) * 2014-08-28 2016-04-11 三菱化学株式会社 Production method of laminate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6573094B2 (en) 2012-09-11 2019-09-11 パナソニックIpマネジメント株式会社 Washing machine control system
ES2782197T3 (en) * 2012-10-05 2020-09-11 Kaneka Corp Composition of polyester resin and procedure to produce it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10128920A (en) * 1996-10-29 1998-05-19 Kanegafuchi Chem Ind Co Ltd Biodegradable laminate
JP2003535996A (en) * 2000-06-09 2003-12-02 ザ プロクター アンド ギャンブル カンパニー Biodegradable coated substrate
WO2009122673A1 (en) * 2008-04-02 2009-10-08 株式会社カネカ Resin composition
WO2013147139A1 (en) * 2012-03-30 2013-10-03 株式会社カネカ Biodegradable polyester resin composition
JP2016049630A (en) * 2014-08-28 2016-04-11 三菱化学株式会社 Production method of laminate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115023469A (en) * 2020-01-29 2022-09-06 株式会社钟化 Biodegradable polyester solution and use thereof
EP4098699A4 (en) * 2020-01-29 2024-01-24 Kaneka Corporation Biodegradable polyester solution and use thereof
JP2021161434A (en) * 2020-04-01 2021-10-11 アイ‐コンポロジー株式会社 Marine material
JP7030315B2 (en) 2020-04-01 2022-03-07 アイ‐コンポロジー株式会社 Marine materials
WO2022059592A1 (en) * 2020-09-17 2022-03-24 株式会社カネカ Laminate and molded body
WO2022264944A1 (en) * 2021-06-16 2022-12-22 株式会社カネカ Biodegradable laminate and method for manufacturing same

Also Published As

Publication number Publication date
JPWO2019239913A1 (en) 2021-07-08
JP7353280B2 (en) 2023-09-29

Similar Documents

Publication Publication Date Title
WO2019239913A1 (en) Method for manufacturing biodegradable laminate
JP7322463B2 (en) biodegradable laminate
US20100330382A1 (en) Biaxially oriented polylactic acid film with improved moisture barrier
JP5728442B2 (en) Multilayer sealant film
JP3537274B2 (en) Biodegradable laminate
US9371445B2 (en) Biodegradable polyester resin composition
JP5185407B2 (en) Biodegradable wrap film
EP2480710A1 (en) Multi-layer high moisture barrier polylactic acid film
CN102257068A (en) Biodegradable packaging film
JP2002513449A (en) Polylactide coated paper
US20080102272A1 (en) Adhesive wrapping film
WO2021100733A1 (en) Laminate and use thereof
WO2014103587A1 (en) Wrap film
JP2004315659A (en) Biodegradable polyester film and method for producing the same
JP5736685B2 (en) Biodegradable resin laminate and method for producing the same
KR101116668B1 (en) An aliphatic polyester coating sheet and its manufacturing process
JP7218650B2 (en) Polyester resin composition and molded article
JP2022182524A (en) Method for manufacturing laminate, and laminate
JP2007106996A (en) Wrap film and its manufacturing method
JP7271964B2 (en) Resin composition and laminate using the resin composition
WO2023153277A1 (en) Biodegradable laminated body, method for producing same, and molded body
JP2005125803A (en) Multilayer biodegradable plastic film
WO2024117006A1 (en) Resin composition and molded body
JP2023107291A (en) Biodegradable film and biodegradable laminate
JP2006247876A (en) Laminate having biodegradability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819231

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525433

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19819231

Country of ref document: EP

Kind code of ref document: A1