WO2019239786A1 - Detection method and detection device configuration method - Google Patents

Detection method and detection device configuration method Download PDF

Info

Publication number
WO2019239786A1
WO2019239786A1 PCT/JP2019/019601 JP2019019601W WO2019239786A1 WO 2019239786 A1 WO2019239786 A1 WO 2019239786A1 JP 2019019601 W JP2019019601 W JP 2019019601W WO 2019239786 A1 WO2019239786 A1 WO 2019239786A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal value
signal values
signal
stored
stage
Prior art date
Application number
PCT/JP2019/019601
Other languages
French (fr)
Japanese (ja)
Inventor
火炎 木焦
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2019239786A1 publication Critical patent/WO2019239786A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/12Detecting, e.g. by using light barriers using one transmitter and one receiver

Definitions

  • the present invention relates to a detection method for detecting the arrival of an object and a method for setting a detection device for detecting the arrival of an object.
  • the object is irradiated with light to detect light transmitted through the object, detection of light shielding by the object, or light reflected by the object The method of detecting is used.
  • a method of applying ultrasonic waves to an object and using reflection of ultrasonic waves is also known.
  • the magnitude of a signal value corresponding to a physical quantity such as the amount of received light or ultrasonic reception intensity is compared with a threshold value to obtain an output signal corresponding to the presence or absence of an object.
  • the arrival of an object is determined.
  • the magnitude of the signal value corresponding to the physical quantity varies depending on the type of the object and the positional relationship between the object and the detection apparatus, the user may have to set a threshold after installing the detection apparatus. Many.
  • the SET key is pressed in a state where the work is arranged in the detection area, the SET key is pressed again in a state where the work is removed from the detection area, and each key is operated according to the operation of each key. It is described that a threshold value is set using two kinds of received light amounts measured in this manner.
  • the light reception amount current value data is constant after the photoelectric sensor determines the incident light.
  • the received light amount fluctuation profile during the period is measured. Then, it is determined whether or not there is a period in which the received light amount is constant at the maximum value, and the received light amount present value data measured when there is a constant period is made valid.
  • the present invention provides a detection method and a detection device setting method that can detect the arrival of an object without the burden of the user setting the threshold value of the detection device in accordance with the use situation.
  • an output value corresponding to the presence or absence of an object at the present time is requested from a control system of the machine, and the machine is rarely operated according to a single output value obtained in response thereto. Therefore, if a sudden change in the signal value corresponding to the arrival of the object, that is, the rise or fall of the signal value waveform is detected, the practical requirement can be satisfied without using the threshold value.
  • a detection method is a detection method for detecting that an object has arrived in a detection range, and a waveform composed of a plurality of time-series signal values is a rising waveform or a falling waveform.
  • the signal value at a certain point in time is compared with a threshold value to detect the presence or absence of an object in the detection range, and it is stored instead of determining whether or not the object has arrived due to a change in the detection result.
  • Whether or not an object has arrived in the detection range can be determined based on whether or not a waveform constituted by a predetermined number of signal values stored in the section satisfies the determination condition. For this reason, the arrival of an object can be detected without the burden on the user who sets the threshold value according to the usage situation.
  • this determination condition is a condition for determining whether the waveform of the signal value corresponds to a rising waveform or a falling waveform, it is common even if the type of object and the installation state of the detection device are different. In many cases, the determination condition can be applied. In this respect as well, the burden on the user at the stage of preparation for detection execution is reduced.
  • the determination condition is a plurality of criteria in which a waveform composed of a plurality of time-series signal values is set as a machine learning data set by execution of a learned model specified by a parameter generated by machine learning. It may be that a positive result is obtained that the waveform has characteristics in common with the characteristics of the waveform. Determining the determination condition may be determining the learned model to be used.
  • the processing load of the detection device is reduced by determining whether the waveform configured by the current signal value has a feature common to the features of the plurality of reference waveforms by executing the learned model. While mitigating, it can be determined with high accuracy whether or not an object has arrived in the detection range.
  • a setting method of a detection device is a setting method of setting a detection device that detects that an object has arrived in the detection range, and the detection device has arrived in the detection range
  • a process for determining whether or not an object has arrived in the detection range based on whether or not the value satisfies the determination condition.
  • a waveform composed of multiple signal values is a rising wave
  • the signal value at a certain point in time is compared with a threshold value to detect the presence or absence of an object in the detection range, and it is stored instead of determining whether or not the object has arrived due to a change in the detection result.
  • Whether or not an object has arrived in the detection range can be determined based on whether or not a waveform constituted by a predetermined number of signal values stored in the section satisfies the determination condition. For this reason, the arrival of an object can be detected without the burden on the user who sets the threshold value according to the usage situation.
  • this determination condition is a condition for determining whether the waveform of the signal value corresponds to a rising waveform or a falling waveform, it is common even if the type of object and the installation state of the detection device are different. In many cases, the determination condition can be applied. In this respect as well, the burden on the user at the stage of preparation for detection execution is reduced.
  • the processing load of the detection device is reduced by determining whether the waveform configured by the current signal value has a feature common to the features of the plurality of reference waveforms by executing the learned model. While mitigating, it can be determined with high accuracy whether or not an object has arrived in the detection range.
  • a physical quantity whose value changes according to whether or not an object has arrived in the detection range is sequentially converted into a signal value, and among the signal values that are sequentially generated, A predetermined number of signal values acquired in order and stored in the order in which they are acquired, and updated with a newly acquired signal value in the first period, and once each time one or more updates are performed Whether the signal values of a plurality of predetermined ranks among the stored signal values correspond to the signal values constituting the rising waveform or the falling waveform. And determining whether or not the object has arrived in the detection range.
  • the signal value at a certain point in time is compared with a threshold value to detect the presence or absence of an object in the detection range, and it is stored instead of determining whether or not the object has arrived due to a change in the detection result.
  • Whether or not an object has arrived in the detection range can be determined based on whether or not a waveform constituted by a predetermined number of signal values stored in the section satisfies the determination condition. For this reason, the arrival of an object can be detected without the burden on the user who sets the threshold value according to the usage situation.
  • this determination condition is a condition for determining whether the waveform of the signal value corresponds to a rising waveform or a falling waveform, it is common even if the type of object and the installation state of the detection device are different. In many cases, the determination condition can be applied. In this respect as well, the burden on the user at the stage of preparation for detection execution is reduced.
  • updating may include deleting the oldest signal value out of a predetermined number of signal values and storing the newly acquired signal value.
  • the FIFO memory as the storage unit, it is possible to read and write at high speed while keeping the hardware scale small.
  • the first period may be changeable.
  • the determination condition is acquired at the second time point that the signal value acquired at the first time point is substantially equal to the signal value acquired at the second time point after the first time point.
  • the absolute value of the difference between the signal value and the signal value acquired at the third time point after the second time point may be greater than a predetermined value.
  • the rising or falling edge of the signal value can be detected stably, and the user who sets the threshold value according to the usage situation The arrival of an object can be detected without a burden.
  • the determination condition is that the signal value acquired at the first time point is substantially equal to the signal value acquired at the second time point after the first time point, and that the signal value acquired after the second time point is The signal value acquired at the third time point is substantially equal to the signal value acquired at the fourth time point after the third time point, the signal value acquired at the first time point, and the signal value acquired at the second time point.
  • the absolute value of the difference between any one of the obtained signal values and any of the signal value obtained at the third time point and the signal value obtained at the fourth time point may be greater than a predetermined value.
  • the rising or falling edge of the signal value can be detected stably, and the user who sets the threshold value according to the usage situation The arrival of an object can be detected without a burden.
  • the determination condition is that a plurality of waveforms configured by a predetermined number of signal values stored in the storage unit as a machine learning data set are determined by a learned model specified by a parameter generated by machine learning. It may be a condition for determining whether or not a feature common to the reference waveform is provided.
  • the determination condition is a plurality of criteria in which a waveform composed of a plurality of time-series signal values is set as a machine learning data set by execution of a learned model specified by a parameter generated by machine learning. It may be that a positive result is obtained that the waveform has characteristics in common with the characteristics of the waveform.
  • the processing load of the detection device is reduced by determining whether the waveform configured by the current signal value has a feature common to the features of the plurality of reference waveforms by executing the learned model. While mitigating, it can be determined with high accuracy whether or not an object has arrived in the detection range.
  • a detection method and a setting method that can detect the arrival of an object without the burden of setting the threshold value of the detection device according to the use situation.
  • a 2nd example it is a figure which shows an example of the predetermined number of signal values memorize
  • a 2nd example it is a figure which shows an example of the predetermined number of signal value memorize
  • a 3rd example it is a figure which shows an example of the predetermined number of signal value memorize
  • a 3rd example it is a figure which shows an example of the predetermined number of signal value memorize
  • a 4th example it is a figure which shows an example of the predetermined number of signal values memorize
  • a 4th example it is a figure which shows an example of the predetermined number of signal values memorize
  • a 5th example it is a figure which shows an example of the predetermined number of signal value memorize
  • a 5th example it is a figure which shows an example of the predetermined number of signal values memorize
  • the object depends on the individual circumstances such as what kind of facility where the sensor is installed, what kind of object the object is, and what physical quantity is measured by the sensor.
  • the signal value measured in a state where there is no object is different from the signal value measured in the state where there is an object, and the speed at which the signal value changes is different.
  • the signal value measured when there is no object and the signal value measured when there is an object may be independent of each other or may be correlated to some extent.
  • the factor that determines the amount of light received without the object is the arrangement of the sensor and the background reflector Or the reflectivity of the background reflector.
  • factors that determine the amount of light received in the presence of an object include the arrangement of the sensor and the object and the reflectance of the object. For this reason, it is difficult to set a threshold value that is compared with a signal value to determine the arrival of an object as a fixed value, and it is necessary to set the threshold according to the use situation.
  • the factor that determines the amount of light received when there is no object is the amount of light emitted or the light projected Or a light receiving portion.
  • the factor that determines the amount of light received when the object is present may be the transmittance of the object. For this reason, it is difficult to set a threshold value that is compared with a signal value to determine the arrival of an object as a fixed value, and it is necessary to set the threshold according to the use situation.
  • the signal value may change over time due to contamination or deterioration of the sensor, or the signal value may change over time due to environmental changes.
  • the sensor when the sensor is a reflection type sensor or a transmission type sensor, dirt is attached to the optical window of the light projecting unit, so that the light projection amount is decreased, and as a result, the light reception amount is decreased. There is.
  • the amount of received light may increase abruptly by removing dirt on the optical window of the light projecting unit.
  • the light projection amount when the light projecting element of the light projecting unit is deteriorated, the light projection amount may be decreased, and the light reception amount may be decreased.
  • the amount of received light may vary due to variations in the brightness of the measurement environment due to the influence of sunlight or the like. Therefore, there is a case where the threshold value compared with the signal value has to be readjusted with time in order to determine the arrival of the object, and it is necessary to set the threshold value according to the use situation.
  • the detection apparatus 10 does not use a threshold value for a signal value in order to determine the presence or absence of an object, thereby eliminating the burden on the user who sets the threshold value according to the usage situation. be able to.
  • setting items unique to the detection apparatus 10 according to the present embodiment may occur.
  • the setting items can be reduced as much as possible, and can often be used without the setting items.
  • the detection apparatus 10 As a setting item unique to the detection apparatus 10 according to the present embodiment, there is a setting for determining whether the signal value rises or falls.
  • the presence or absence of an object is determined by paying attention to the waveform (the rising or falling edge of the signal waveform) indicated by the signal value, resulting in a difference in the speed of movement of the object. It is desired that the user does not need to adjust for fluctuations in the rate of change in the amount of received light.
  • FIG. 1 is a diagram showing an outline of a detection system 1 including a detection device 10 according to an embodiment of the present invention.
  • the detection system 1 includes a detection device 10, a controller 20, a computer 30, a robot 40, and a transport device 50.
  • the detection device 10 is a device that detects that the object 100 has arrived in the detection range 10a of the detection device 10 based on the measured signal value.
  • the detection device 10 may be a reflective photoelectric sensor, for example.
  • the detection device 10 is configured by a reflective photoelectric sensor, the amount of reflected light to be detected increases when the object 100 arrives at the detection region of the detection device 10.
  • an example in which the detection device 10 is configured by a photoelectric sensor will be described in order to make the description more specific. By replacing the factor of variation and the like according to the detection principle of the sensor, it can be generalized when the detection device 10 is composed of an arbitrary sensor.
  • the object 100 is an object to be detected by the detection device 10, and may be, for example, a finished product to be produced or an unfinished product such as a part. Further, in this specification, the “object” may be a part of the object 100 (an end portion of the object 100, a pattern or a defect on the object 100, etc.) in addition to the entire object 100. When the object 100 is smaller than the detection region, as in the case where the object 100 is a particle or a pin, the entire object 100 may be a detection target.
  • the detection apparatus 10 may be used for an application generally called defect inspection. In that case, the detection apparatus 10 may detect that a defective portion of the object 100 has arrived in the detection range 10a. .
  • the controller 20 controls the robot 40 and the transfer device 50.
  • the controller 20 may be composed of, for example, a PLC (Programmable Logic Controller).
  • the controller 20 detects that the object 100 has arrived based on the output from the detection device 10 and controls the robot 40.
  • the computer 30 sets the detection device 10, the controller 20, and the robot 40. In addition, the computer 30 acquires the execution result of the control by the controller 20 from the controller 20. Furthermore, the computer 30 may include a learning device that generates, by machine learning, parameters used in an algorithm (learning model) for determining whether or not the object 100 has arrived at the detection range 10a by the detection device 10. Examples of the algorithm (learning model) include a neural network and a decision tree.
  • the robot 40 operates and processes the object 100 according to the control by the controller 20. For example, the robot 40 may pick up the object 100 and move it to another location, or cut or assemble the object 100.
  • the transport device 50 is a device that transports the object 100 in accordance with control by the controller 20.
  • the transport device 50 may be, for example, a belt conveyor, and may transport the object 100 at a speed set by the controller 20.
  • FIG. 2 is a diagram illustrating a configuration of the detection apparatus 10 according to the present embodiment.
  • the detection device 10 includes a measurement unit 11, a storage unit 12, a determination unit 13, a control unit 14, and an input / output unit 15.
  • the measuring unit 11 sequentially converts a physical quantity whose value changes depending on whether or not the object 100 has arrived in the detection range 10a into a signal value.
  • the measurement unit 11 may measure a physical quantity such as the amount of received light in the second period and output a signal value that is a digital value of three or more values.
  • the signal value may be represented by 8 bits (256 values), for example.
  • the second period may be 0.1 ms (milliseconds), for example.
  • the measurement unit 11 includes a lens that collects incident light on a light receiving element, a light receiving element (for example, a photodiode) that converts light into a current signal, an amplifier that converts a current signal into a voltage signal, and a voltage An A / D converter that converts the signal to a digital value may be included. Furthermore, the measurement unit 11 may include a low-pass filter, a high-pass filter, or the like by analog processing or digital processing, or may include a light projecting element (for example, an LED) that irradiates the object 100 with light.
  • a light receiving element for example, a photodiode
  • the storage unit 12 stores a predetermined number of signal values in the order measured by the measurement unit 11.
  • storage part 12 deletes the oldest signal value among predetermined number of signal values, and may memorize
  • FIFO first-in first-out
  • the storage unit 12 includes an n-stage FIFO memory.
  • the storage unit 12 has addresses of the first stage q0, the first stage q1, the second stage q2, the jth stage qj, the kth stage qk, and the nth stage qn.
  • j ⁇ k ⁇ n, and n may be about 100, for example.
  • the storage unit 12 deletes the signal value sn stored in the n-th stage qn, which is the final stage, in the first cycle, and stores the signal values s0, s1, s2, sj, and sk stored in each stage. Shift to the next stage, and store the newly measured signal value in the first stage q0.
  • the first period may be the same as or different from the second period.
  • the second period may be fixed to a value (for example, 0.1 ms) unique to the sensor constituting the measurement unit 11.
  • the detection device 10 is a photoelectric sensor
  • the light projecting element may perform pulse projection with a second period
  • the output of the light receiving element may be A / D converted with the second period in accordance with the timing of pulse projection.
  • the first period may be settable by the computer 30 via the controller 20.
  • the first period needs to be determined so that the range of the signal value waveform to be processed simultaneously is stored in the storage unit 12.
  • the first period may be set longer than the second period, and the second period may be 1 ms, for example.
  • the average value of the signal values may be stored in the storage unit 12.
  • the determination unit 13 determines whether or not the object 100 has arrived in the detection range 10a based on whether or not a plurality of predetermined signal values among the signal values stored in the FIFO memory satisfy the determination condition. To do.
  • the determination unit 13 may determine whether or not the object 100 has arrived in the detection range 10a in the first period.
  • the measurement part 11 may measure a signal value with the 2nd period below a 1st period. When the first period is equal to or longer than the second period, it is possible to refer to an appropriate number of signal values when determining whether or not an object has arrived in the detection range.
  • the determination unit 13 may refer to signal values stored in a plurality of stages of the storage unit 12, perform determination in the first cycle, and output the determination result to the control unit 14.
  • the determination unit 13 determines whether the object 100 has arrived in the detection range 10a based on whether the predetermined number of signal values stored in the storage unit 12 includes a rising waveform or a falling waveform. It's okay. That is, the determination condition may be a condition indicating that the predetermined number of signal values stored in the storage unit 12 includes a rising waveform or a falling waveform. Note that the determination unit 13 may determine one of the rising waveform and the falling waveform that is necessary for determining the arrival of the object 100.
  • the determination condition such as which signal value stored in which address of the storage unit 12 is used for determination by the determination unit 13 and what determination logic is used for determination may be set from the computer 30 via the controller 20. . Note that the determination condition may be set in the manufacturing stage of the detection apparatus 10.
  • the determination result by the determination unit 13 may be a binary value corresponding to whether the object 100 has arrived in the detection range 10a or whether the object 100 has not arrived in the detection range 10a, but the determination result has three or more values. It may be represented by For example, when the determination result is ternary, in addition to the state in which the object 100 has arrived and the state in which the object 100 has not arrived, a state that has the possibility of arrival but has low accuracy may be added as the third state.
  • the presence or absence of the object 100 in the detection range 10a is detected by comparing a signal value at a certain time point with a threshold value, and whether or not the object 100 has arrived due to a change in the detection result. Rather than determining whether or not the object 100 has arrived in the detection range 10a based on whether or not a predetermined number of signal values stored in the storage unit 12 satisfy the determination condition.
  • the arrival of the object 100 can be detected without burdening the user who sets the threshold according to the usage status. More specifically, based on whether a predetermined number of signal values stored in the storage unit 12 includes a rising waveform or a falling waveform, it is determined whether the object 100 has arrived in the detection range 10a. It is possible to detect the arrival of the object 100 without the burden on the user who sets the threshold value according to the use situation.
  • the control unit 14 controls the operation of the entire detection apparatus 10.
  • the control unit 14 can be configured as, for example, a computer including a microprocessor, a memory, a detection device control program stored in the memory, and the like.
  • the detection device control program may be provided by being stored in a computer-readable storage medium, or may be provided from the computer 30 of the detection system 1 via a communication path.
  • the control unit 14 may make necessary settings for the first cycle, the second cycle, and the determination condition for the determination unit 13 to perform the determination according to the setting by the computer 30.
  • the microprocessor of the control unit 14 functions as the determination unit 13 by executing a detection device control program including a process for determining whether or not the object 100 has arrived in the detection range 10a by the detection device 10. Also good.
  • the control unit 14 may realize a FIFO memory by controlling the memory included in the control unit 14 according to the detection device control program, and may replace the storage unit 12 with the memory included in the control unit 14. In this case, the shift of the signal value to the subsequent stage of the FIFO memory can be performed by updating the access location on the memory, not the physical shift of the stored data.
  • the storage unit 12 may be realized by dedicated hardware.
  • control unit 14 holds an external output state indicating that the object 100 has arrived until a certain period thereafter or until it is reset from the outside. You may do it.
  • the input / output unit 15 outputs at least a signal corresponding to the arrival of the object 100 to the outside.
  • the input / output unit 15 may output a binary voltage signal or current signal corresponding to the arrival and non-arrival of the object 100 through a single signal line. Note that when the detection apparatus 10 does not accept setting by communication from the outside, the input / output unit 15 may have only the output unit regardless of the name of the input / output unit 15.
  • the input / output unit 15 may include a network interface, receive setting information, and output a determination result by the determination unit 13.
  • the input / output unit 15 may accept an input of a determination condition used for determination by the determination unit 13. Thereby, the determination conditions for determining that the target object 100 has arrived in the detection range 10a can be adjusted, and the arrival of the target object 100 can be detected based on the user's desired conditions.
  • the detection device 10 may further include an operation key and an indicator lamp not shown.
  • FIG. 3a is a graph showing an example of signal values measured by the detection apparatus 10 according to the present embodiment.
  • time is shown on the horizontal axis
  • signal values are shown on the vertical axis
  • changes in signal values over time are shown by graphs.
  • the intervals of t0, t1, t2,... T6 shown on the horizontal axis are the first period, and may be, for example, 1 ms intervals.
  • the signal value may be any electrical signal, but may be a voltage signal, for example, in which case the unit is volts.
  • the signal value is shown as a waveform that does not include a polygonal line noise.
  • the waveform actually obtained may be a waveform in which noise is superimposed,
  • the rising part and the falling part may be curved.
  • FIG. 3 b is a diagram illustrating an example of a predetermined number of signal values stored in the detection apparatus 10 according to the present embodiment.
  • the horizontal axis indicates the FIFO stage
  • the vertical axis indicates the signal value
  • the signal value stored in the storage unit 12 is indicated by a graph.
  • Q0, q1, q2,... Q6 shown on the horizontal axis indicate the number of stages of the storage unit 12 (FIFO memory).
  • the number of FIFO memory stages is 7 in total for the sake of simplicity, but the number of stages may be larger, for example 100 It may be about a step.
  • the storage unit 12 stores the seven signal values in the order measured by the measurement unit 11. That is, the signal value “8” measured at time t6 is stored in the first stage q0, and the signal value “8” measured at time t5 is stored in the first stage q1. The same applies to the second stage q2 to the fifth stage q5, and the signal value “4” measured at time t0 is stored in the sixth stage q6.
  • FIG. 4a is a graph showing an example of a predetermined number of signal values stored in the detection apparatus 10 according to the present embodiment in the first case.
  • the horizontal axis indicates the FIFO stage
  • the vertical axis indicates the signal value
  • the signal value stored in the storage unit 12 is indicated by a graph.
  • FIG. 4B is a diagram illustrating an example of a predetermined number of signal values stored in the detection apparatus 10 according to the present embodiment in the first case.
  • the signal values shown in FIG. Hereinafter, the notation “c (n)” (where n is an integer) indicates the nth cycle of FIFO memory update. Which cycle is selected as the 0th cycle is arbitrary.
  • the signal values stored in the FIFO memory in the nth period are collectively referred to as “signal value c (n)”.
  • the signal value c ( ⁇ 5) measured and stored until the object 100 does not arrive in the detection range 10a is indicated by a solid line, and then the oldest signal value is deleted and newly A signal value c ( ⁇ 4) in which the measured signal value is stored is indicated by a broken line.
  • the signal value c ( ⁇ 5) is “4” for the first stage q0 to the sixth stage q6, indicating that the object 100 has not arrived in the detection range 10a.
  • the detection apparatus 10 deletes the oldest signal value stored in the sixth stage q6, shifts the signal value stored in the first stage q0 to the fifth stage q5 by one stage, and newly measures the signal value “ 5 ”is stored in the first stage q0.
  • the signal value c ( ⁇ 4) is “5” for the first stage q0 and “4” for the first stage q1 to the sixth stage q6, indicating that the object 100 has entered the detection range 10a.
  • the oldest signal value “4” stored in the sixth stage q6 is deleted, and the newly measured signal value “6” is stored in the first stage q0.
  • the signal value c (-3) is indicated by a one-dot chain line.
  • the oldest signal value “4” stored in the sixth stage q6 is deleted, and the newly measured signal value “7” is stored in the first stage q0.
  • the value c ( ⁇ 2) is indicated by a two-dot chain line.
  • the oldest signal value “4” stored in the sixth stage q6 is deleted, and the newly measured signal value “8” is stored in the first stage q0.
  • the value c (-1) is indicated by a dotted line.
  • the oldest signal value “4” stored in the sixth stage q6 is deleted, and the newly measured signal value “8” is stored in the first stage q0.
  • the value c (0) is indicated by a solid line. Further, after storing the signal value c (0), the oldest signal value “4” stored in the sixth stage q6 is deleted, and the newly measured signal value “8” is stored in the first stage q0.
  • c (1) is indicated by a broken line. Further, after storing the signal value c (1), the oldest signal value “4” stored in the sixth stage q6 is deleted, and the newly measured signal value “8” is stored in the first stage q0.
  • c (2) is indicated by a one-dot chain line. Further, after storing the signal value c (2), the oldest signal value “5” stored in the sixth stage q6 is deleted, and the newly measured signal value “8” is stored in the first stage q0.
  • c (3) is indicated by a two-dot chain line. In addition, after storing the signal value c (3), the oldest signal value “6” stored in the sixth stage q6 is deleted, and the newly measured signal value “8” is stored in the first stage q0.
  • c (4) is indicated by a dotted line. Finally, after storing the signal value c (4), the oldest signal value “7” stored in the sixth stage q6 is deleted, and the newly measured signal value “8” is stored in the first stage q0.
  • the value c (5) is indicated by a solid line.
  • the determination unit 13 measures the signal value by the measurement unit 11 and whether or not a predetermined number of signal values satisfy the determination condition. Whether or not the object 100 has arrived in the detection range 10a is determined.
  • the determination condition is that the signal value acquired at the first time point is substantially equal to the signal value acquired at the second time point after the first time point, and the signal acquired at the second time point.
  • the signal value acquired at the third time point after the second time point is larger than the value, and the absolute value of the difference may be larger than the predetermined value.
  • this condition is referred to as a first determination condition.
  • the first determination condition is an example of a condition indicating that a predetermined number of signal values include a rising waveform.
  • the signal value pattern sequentially stored in the FIFO memory has a predetermined rising waveform, it is determined that the object 100 has arrived in the detection range 10a.
  • the signal value acquired at the first time point in the first determination condition may be the signal value stored in the sixth stage q6, and the signal value acquired at the second time point is the fifth stage.
  • the signal value stored in q5 may be the signal value acquired at the third time point may be the signal value stored in the fourth stage q4. That is, the first determination condition is that the signal value stored in the sixth stage q6 is substantially equal to the signal value stored in the fifth stage q5, and that the signal value stored in the fifth stage q5 is May include that the signal value stored in the fourth stage q4 is larger and the absolute value of the difference is larger than a predetermined value.
  • the two signal values are substantially equal, not only the two signal values are completely equal, but also the two signal values are not completely equal, but the difference between the signal values is within the range of the influence of noise. It is determined that there is.
  • the signal value stored in the sixth stage q6 when the difference between the signal value stored in the sixth stage q6 and the signal value stored in the fifth stage q5 is within a range of ⁇ 0.2.
  • the signal value stored in the fifth stage q5 may be determined to be substantially equal.
  • the difference between the two signal values being larger than the predetermined value means that the difference between the two signal values is different beyond the range of the influence of noise.
  • the signal value stored in the fifth stage q5 is greater than 0.2, the signal value stored in the fifth stage q5 is It may be determined that the signal value stored in the fourth stage q4 is larger and the absolute value of the difference is larger than a predetermined value.
  • the condition is that the signal value stored in the sixth stage q6 and the signal value stored in the fifth stage q5 are substantially equal.
  • Signal values satisfying the conditions are signal values c ( ⁇ 5) to c (0).
  • the signal value that satisfies the condition that the signal value stored in the fourth stage q4 is larger than the signal value stored in the fifth stage q5 and the absolute value of the difference is larger than a predetermined value The signal values are c (0) to c (3). Therefore, in this example, the signal value that satisfies the first determination condition is only the signal value c (0). Therefore, the determination unit 13 determines that the object 100 has arrived in the detection range 10a in the cycle in which the signal value c (0) is stored.
  • the signal value stored in the sixth stage q6 and the signal stored in the fifth stage q5 are stored.
  • the difference from the signal value is within a range of ⁇ 0.2
  • the signal value stored in the fourth stage q4 is smaller than the signal value stored in the fifth stage q5, and the absolute value of the difference Is determined to be greater than 0.2.
  • the first determination condition is further acquired when the signal value acquired at the third time point is substantially equal to the signal value acquired at the fourth time point after the third time point and at the third time point. It may include a condition that the signal value acquired at the fourth time point is larger than the signal value and that the absolute value of the difference is greater than a predetermined value.
  • the signal value acquired at the fourth time point may be the signal value stored in the third stage q3, and the first determination condition is that the signal value stored in the fourth stage q4 and the third stage The signal value stored in q3 is substantially equal, and the signal value stored in the third stage q3 is larger than the signal value stored in the fourth stage q4, and the absolute value of the difference is predetermined.
  • condition for detecting the rising portion of the waveform may include a condition that three or more signal values are monotonically increasing (monotonically decreasing when the falling portion of the waveform is detected). The same applies to the second to fifth cases described below.
  • the determination condition is that the signal value acquired at the first time point is substantially equal to the signal value acquired at the second time point after the first time point, and acquired at the third time point after the second time point.
  • the signal value acquired at the fourth time point after the third time point is substantially equal to the signal value acquired at the first time point and the signal value acquired at the second time point. Any one of the signal value acquired at the third time point and the signal value acquired at the fourth time point is larger than either, and the absolute value of the difference is larger than the predetermined value. Good.
  • this condition is referred to as a second determination condition.
  • the second determination condition is an example of a condition indicating that a predetermined number of signal values include a rising waveform. In this example, when the signal value pattern sequentially stored in the FIFO memory has a predetermined rising waveform, it is determined that the object 100 has arrived in the detection range 10a.
  • the signal value acquired at the first time point in the second determination condition may be the signal value stored in the sixth stage q6, and the signal value acquired at the second time point is the fifth stage.
  • the signal value acquired at the third time point may be the signal value stored at q5
  • the signal value stored at the first stage q1 may be the signal value acquired at the fourth time point. It may be the signal value stored in q0.
  • the second determination condition is that the signal value stored in the sixth stage q6 is substantially equal to the signal value stored in the fifth stage q5, and the signal value stored in the first stage q1 is In the first stage q1, the signal value stored in the first stage q0 is substantially equal to the signal value stored in the sixth stage q6 and the signal value stored in the fifth stage q5.
  • One of the stored signal value and the signal value stored in the first stage q0 may be larger, and the absolute value of the difference may be greater than a predetermined value.
  • the condition is that the signal value stored in the sixth stage q6 and the signal value stored in the fifth stage q5 are substantially equal.
  • Signal values satisfying the conditions are signal values c ( ⁇ 5) to c (0).
  • the signal values satisfying the condition that the signal value stored in the first stage q1 and the signal value stored in the first stage q0 are substantially equal are signal values c (0) to c (5). Further, any of the signal value stored in the first stage q1 and the signal value stored in the first stage q0 is greater than either the signal value stored in the sixth stage q6 or the signal value stored in the fifth stage q5.
  • the signal values that satisfy the condition that the absolute value of the difference is larger than the predetermined value are signal values c ( ⁇ 4) to c (4). Therefore, in this example, the signal value that satisfies the second determination condition is only the signal value c (0). Therefore, the determination unit 13 determines that the object 100 has arrived in the detection range 10a in the cycle in which the signal value c (0) is stored.
  • the signal value stored in the sixth stage q6 and the signal stored in the fifth stage q5 are stored.
  • the difference between the signal value is within a range of ⁇ 0.2
  • the difference between the signal value stored in the first stage q1 and the signal value stored in the first stage q0 is within a range of ⁇ 0.2.
  • the determination condition may be that the difference is smaller and the absolute value of the difference is greater than 0.2. The same applies to the second to fifth cases described below.
  • signal values acquired at three or more time points are used to determine whether or not the signal values are substantially equal, and the signal values are substantially substantially different from other signal values. Even if unequal signal values occur, such signal values may be excluded. For example, it may be determined whether or not the signal value is an outlier, and the outlier may be excluded. Thereby, malfunction due to noise can be reduced.
  • the detection apparatus 10 may receive an input of the first determination condition or the second determination condition through the input / output unit 15.
  • the data of the signal value actually measured is sent from the detection apparatus 10 to the computer 30, and it is used to confirm whether the determination condition prototyped using the data works well on the actually measured waveform.
  • the simulation may be performed by the computer 30.
  • the determination condition creation procedure performed by the user may be programmed and the determination condition creation using the computer 30 semi-automated.
  • the determination condition thus created may be set in the detection device 10 from the computer 30 via the controller 20 or at the manufacturing stage of the detection device 10.
  • FIG. 5a is a diagram illustrating an example of a predetermined number of signal values stored in the detection device 10 according to the present embodiment in a graph in the second case.
  • the horizontal axis indicates the FIFO stage
  • the vertical axis indicates the signal value
  • the signal value stored in the storage unit 12 is indicated by a graph.
  • FIG. 5b is a diagram illustrating an example of a predetermined number of signal values stored in the detection apparatus 10 according to the present embodiment in the second case. In the same figure, the signal values shown in FIG.
  • the reflectance of the object 100 is larger than that in the first case, and the signal value measured by the measurement unit 11 when the object 100 arrives in the detection range 10a is higher than in the case of the first case.
  • a large example is shown. Specifically, the signal value measured by the measurement unit 11 when the object 100 arrives in the detection range 10a in the second case is 1.25 times that in the first case.
  • FIG. 5a after storing the signal value c ( ⁇ 2), the oldest signal value “4” stored in the sixth stage q6 is deleted, and the newly measured signal value “10” is stored in the first stage q0.
  • the obtained signal value c ( ⁇ 1) is indicated by a broken line.
  • the oldest signal value “4” stored in the sixth stage q6 is deleted, and the newly measured signal value “10” is stored in the first stage q0.
  • the value c (0) is indicated by a solid line.
  • the determination unit 13 measures the signal value by the measurement unit 11 while measuring the predetermined number. Whether or not the object 100 has arrived in the detection range 10a can be determined based on whether or not the signal value satisfies the determination condition.
  • the determination condition may be at least one of the first determination condition and the second determination condition.
  • the condition is that the signal value stored in the sixth stage q6 and the signal value stored in the fifth stage q5 are substantially equal.
  • Signal values satisfying the conditions are signal values c ( ⁇ 5) to c (0).
  • the signal value that satisfies the condition that the signal value stored in the fourth stage q4 is larger than the signal value stored in the fifth stage q5 and the absolute value of the difference is larger than a predetermined value The signal values are c (0) to c (3). Therefore, in this example, the signal value that satisfies the first determination condition is only the signal value c (0). Therefore, the determination unit 13 determines that the object 100 has arrived in the detection range 10a in the cycle in which the signal value c (0) is stored.
  • the signal value stored in the sixth stage q6 is substantially equal to the signal value stored in the fifth stage q5.
  • Signal values satisfying the condition are signal values c ( ⁇ 5) to c (0).
  • the signal values satisfying the condition that the signal value stored in the first stage q1 and the signal value stored in the first stage q0 are substantially equal are signal values c (0) to c (5). Further, any of the signal value stored in the first stage q1 and the signal value stored in the first stage q0 is greater than either the signal value stored in the sixth stage q6 or the signal value stored in the fifth stage q5.
  • the signal values that satisfy the condition that the absolute value of the difference is larger than the predetermined value are signal values c ( ⁇ 4) to c (4). Therefore, in this example, the signal value that satisfies the second determination condition is only the signal value c (0). Therefore, the determination unit 13 determines that the object 100 has arrived in the detection range 10a in the cycle in which the signal value c (0) is stored.
  • FIG. 6 a is a graph showing an example of a predetermined number of signal values stored in the detection apparatus 10 according to the present embodiment in the third case.
  • the horizontal axis indicates the FIFO stage
  • the vertical axis indicates the signal value
  • the signal value stored in the storage unit 12 is indicated by a graph.
  • FIG. 6 b is a diagram illustrating an example of a predetermined number of signal values stored in the detection apparatus 10 according to the present embodiment in the third case. In the same figure, the signal values shown in FIG.
  • the background reflectance is small compared to the first case, and the signal value measured by the measurement unit 11 when the object 100 does not arrive in the detection range 10a is smaller than that in the first case.
  • the signal value measured by the measurement unit 11 when the object 100 does not arrive in the detection range 10a in the third case is 0.5 times that in the first case.
  • FIG. 6a after storing the signal value c ( ⁇ 2), the oldest signal value “2” stored in the sixth stage q6 is deleted, and the newly measured signal value “8” is stored in the first stage q0.
  • the obtained signal value c ( ⁇ 1) is indicated by a broken line.
  • the oldest signal value “2” stored in the sixth stage q6 is deleted, and the newly measured signal value “8” is stored in the first stage q0.
  • the value c (0) is indicated by a solid line.
  • the determination unit 13 measures the signal value by the measurement unit 11 and the predetermined number of signal values. Whether or not the object 100 has arrived in the detection range 10a can be determined based on whether or not the determination condition is satisfied.
  • the determination condition may be at least one of the first determination condition and the second determination condition.
  • the condition is that the signal value stored in the sixth stage q6 and the signal value stored in the fifth stage q5 are substantially equal.
  • Signal values satisfying the conditions are signal values c ( ⁇ 5) to c (0).
  • the signal value that satisfies the condition that the signal value stored in the fourth stage q4 is larger than the signal value stored in the fifth stage q5 and the absolute value of the difference is larger than a predetermined value The signal values are c (0) to c (3). Therefore, in this example, the signal value that satisfies the first determination condition is only the signal value c (0). Therefore, the determination unit 13 determines that the object 100 has arrived in the detection range 10a in the cycle in which the signal value c (0) is stored.
  • the signal value stored in the sixth stage q6 is substantially equal to the signal value stored in the fifth stage q5.
  • Signal values satisfying the condition are signal values c ( ⁇ 5) to c (0).
  • the signal values satisfying the condition that the signal value stored in the first stage q1 and the signal value stored in the first stage q0 are substantially equal are signal values c (0) to c (5). Further, any of the signal value stored in the first stage q1 and the signal value stored in the first stage q0 is greater than either the signal value stored in the sixth stage q6 or the signal value stored in the fifth stage q5.
  • the signal values that satisfy the condition that the absolute value of the difference is larger than the predetermined value are signal values c ( ⁇ 4) to c (4). Therefore, in this example, the signal value that satisfies the second determination condition is only the signal value c (0). Therefore, the determination unit 13 determines that the object 100 has arrived in the detection range 10a in the cycle in which the signal value c (0) is stored.
  • FIG. 7a is a graph showing an example of a predetermined number of signal values stored in the detection apparatus 10 according to the present embodiment in the fourth case.
  • the horizontal axis indicates the FIFO stage
  • the vertical axis indicates the signal value
  • the signal value stored in the storage unit 12 is indicated by a graph.
  • FIG. 7 b is a diagram illustrating an example of a predetermined number of signal values stored in the detection device 10 according to the present embodiment in the fourth case. In the same figure, the signal values shown in FIG.
  • the fourth case shows an example in which the amount of light emitted from the measuring unit 11 is smaller than that in the first case, and the signal value measured by the measuring unit 11 is smaller than that in the first case.
  • the signal value measured by the measurement unit 11 when the object 100 arrives in the detection range 10a in the fourth case is 0.5 times that in the first case, and the target value is in the detection range 10a.
  • the signal value measured by the measurement unit 11 when the object 100 has not arrived is also 0.5 times that in the first case.
  • FIG. 7a after storing the signal value c ( ⁇ 2), the oldest signal value “2” stored in the sixth stage q6 is deleted, and the newly measured signal value “4” is stored in the first stage q0.
  • the obtained signal value c ( ⁇ 1) is indicated by a broken line. Further, after storing the signal value c ( ⁇ 1), the oldest signal value “2” stored in the sixth stage q6 is deleted, and the newly measured signal value “4” is stored in the first stage q0. The value c (0) is indicated by a solid line.
  • the determination unit 13 measures the signal value by the measurement unit 11 while the predetermined number. Whether or not the object 100 has arrived in the detection range 10a can be determined based on whether or not the signal value satisfies the determination condition.
  • the determination condition may be at least one of the first determination condition and the second determination condition.
  • the condition is that the signal value stored in the sixth stage q6 and the signal value stored in the fifth stage q5 are substantially equal.
  • Signal values satisfying the conditions are signal values c ( ⁇ 5) to c (0).
  • the signal value satisfying the condition that the signal value stored in the fourth stage q4 is larger than the signal value stored in the fifth stage q5 and the absolute value of the difference is larger than a predetermined value The signal values are c (0) to c (3). Therefore, in this example, the signal value that satisfies the first determination condition is only the signal value c (0). Therefore, the determination unit 13 determines that the object 100 has arrived in the detection range 10a in the cycle in which the signal value c (0) is stored.
  • the signal value stored in the sixth stage q6 and the signal value stored in the fifth stage q5 are substantially equal.
  • Signal values satisfying the condition are signal values c ( ⁇ 5) to c (0).
  • the signal values satisfying the condition that the signal value stored in the first stage q1 and the signal value stored in the first stage q0 are substantially equal are signal values c (0) to c (5).
  • any of the signal value stored in the first stage q1 and the signal value stored in the first stage q0 is greater than either the signal value stored in the sixth stage q6 or the signal value stored in the fifth stage q5.
  • the signal values satisfying the condition that the absolute value of the difference is larger and the absolute value of the difference is larger than a predetermined value are signal values c ( ⁇ 4) to c (4). Therefore, in this example, the signal value that satisfies the second determination condition is only the signal value c (0). Therefore, the determination unit 13 determines that the object 100 has arrived in the detection range 10a in the cycle in which the signal value c (0) is stored.
  • FIG. 8a is a graph showing an example of a predetermined number of signal values stored in the detection apparatus 10 according to the present embodiment in the fifth case.
  • the horizontal axis indicates the FIFO stage
  • the vertical axis indicates the signal value
  • the signal value stored in the storage unit 12 is indicated by a graph.
  • FIG. 8 b is a diagram illustrating an example of a predetermined number of signal values stored in the detection apparatus 10 according to the present embodiment in the fifth case. In the same figure, the signal values shown in FIG.
  • the fifth case shows an example in which the object 100 moves faster than the first case.
  • the signal value measured by the measurement unit 11 when the object 100 arrives in the detection range 10a in the fifth case is the same size as in the first case, but the signal value changes. fast.
  • the signal value c ( ⁇ 2) after storing the signal value c ( ⁇ 2), the oldest signal value “4” stored in the sixth stage q6 is deleted, and the newly measured signal value “8” is stored in the first stage q0.
  • the obtained signal value c ( ⁇ 1) is indicated by a broken line.
  • the oldest signal value “4” stored in the sixth stage q6 is deleted, and the newly measured signal value “8” is stored in the first stage q0.
  • the value c (0) is indicated by a solid line.
  • the determination unit 13 measures the signal value by the measurement unit 11, Based on whether or not the predetermined number of signal values satisfy the determination condition, it can be determined whether or not the object 100 has arrived in the detection range 10a.
  • the determination condition may be at least one of the first determination condition and the second determination condition.
  • the condition is that the signal value stored in the sixth stage q6 and the signal value stored in the fifth stage q5 are substantially equal.
  • Signal values satisfying the conditions are signal values c ( ⁇ 5) to c (1).
  • the signal value stored in the sixth stage q6 is substantially equal to the signal value stored in the fifth stage q5.
  • Signal values satisfying the condition are signal values c ( ⁇ 5) to c (1).
  • the signal values satisfying the condition that the signal value stored in the first stage q1 and the signal value stored in the first stage q0 are substantially equal are signal values c ( ⁇ 1) to c (5). .
  • any of the signal value stored in the first stage q1 and the signal value stored in the first stage q0 is greater than either the signal value stored in the sixth stage q6 or the signal value stored in the fifth stage q5.
  • the signal values that satisfy the condition that the absolute value of the difference is larger than the predetermined value are signal values c ( ⁇ 3) to c (3). Therefore, in this example, the signal values that satisfy the second determination condition are the signal values c ( ⁇ 1), c (0), and c (1). Therefore, the determination unit 13 determines that the object 100 has arrived in the detection range 10a during the period in which the signal values c ( ⁇ 1), c (0), and c (1) are stored.
  • the signal value fluctuates depending on the usage situation, but nevertheless, the rising or falling of the signal value can be detected stably, and the threshold value is set.
  • the arrival of an object can be detected without the burden on the user set according to the usage situation.
  • the first judgment condition is assumed that the midpoint of the rising portion of the waveform of the signal value c (0) is stored in the third stage q3 of the FIFO stage for easy understanding.
  • both the second determination condition and the second determination condition are examples in which the determination condition is satisfied in the vicinity of the signal value c (0).
  • the signal value satisfying the determination condition may not be stored in the middle stage of the FIFO stage at the midpoint of the rising edge of the waveform.
  • the signal values stored in the fourth stage q4 to the sixth stage q6 or the third stage q3 to the sixth stage q6 of the FIFO stage are used for the determination, and stored in the first stage q0 to the second stage q2.
  • the signal value is not used for determination.
  • the first determination condition is corrected, and the determination condition is corrected to use the first stage q0 to the third stage q3 so that the determination condition is satisfied when the midpoint of the rising portion of the waveform is stored in the first stage q1. Then, the rising edge can be detected three cycles earlier with respect to the first period.
  • the first determination condition is that the signal value stored in the third stage q3 is substantially equal to the signal value stored in the second stage q2, and is stored in the second stage q2.
  • the condition may be that the signal value stored in the first stage q1 is larger than the signal value and the absolute value of the difference is larger than a predetermined value.
  • the signal value stored in the first stage q1 is substantially equal to the signal value stored in the first stage q0 and the signal value stored in the first stage q0 is greater than the signal value stored in the first stage q1.
  • a condition that the value is larger and at least one of the absolute value of the difference is larger than a predetermined value may be added.
  • the signal value that satisfies this determination condition is the signal value c ( ⁇ 3).
  • the signal value c ( ⁇ 3).
  • Whether or not the object 100 has arrived in the detection range 10a is determined by the execution of a learned model specified by a parameter generated by machine learning, and a waveform composed of a plurality of time-series signal values is machine learning data. It can also be determined as a determination condition that a positive result can be obtained for the features common to the features of the plurality of set reference waveforms.
  • FIG. 9 is a diagram illustrating examples of signal values constituting a rising waveform that may be measured in various states of the detection device 10 and the conveyance device 50 by the detection device 10 according to the present embodiment.
  • the same signal value as the signal value c (0) stored in each case from the first case to the fifth case is shown as a signal value constituting a rising waveform that may be measured.
  • the waveform composed of the signal values shown in the figure is an example of a reference waveform prepared as a machine learning data set.
  • the falling waveform is set as a reference waveform.
  • a rising waveform or a falling waveform that may be measured for various types of objects 100 by the detection apparatus 10 may be used as the reference waveform.
  • the determination unit 13 measures the signal value by the measurement unit 11, and the object 100 has arrived in the detection range 10a based on whether or not a predetermined number of signal values stored in the storage unit 12 satisfy the determination condition. It is determined whether or not. As a result, even if the signal value fluctuates according to the use situation, the rising waveform that may be measured when the object 100 arrives in the detection range 10a, that is, a machine learning data set is obtained. It is possible to determine whether or not the detection object 100 has arrived based on whether or not the characteristics common to the characteristics of the plurality of reference waveforms are included, and eliminate the burden on the user of setting the threshold according to the usage situation. Thus, the arrival of the object 100 can be detected.
  • the plurality of signal values constituting the reference waveform are the same signal values as the signal value c (0) stored in the first to fifth cases.
  • the signal values constituting the reference waveform do not have to be actually measured signal values, but may be signal values generated by a person or by some algorithm.
  • FIG. 10 is a flowchart of a learned model setting method executed by the detection apparatus 10 according to the present embodiment.
  • the learned model setting method is a method in which a learned model is generated by a learning device, and the learned model is set (implemented) in the detection device 10.
  • a plurality of signal values constituting each reference waveform are prepared (S30). For example, signal values as shown in FIG. 9 are prepared.
  • a learned model is generated by machine learning (S31).
  • the learned model may be an arbitrary model, but may be a neural network or a decision tree, for example.
  • the algorithm for generating the parameters of the learned model by machine learning may be arbitrary.
  • the parameters are generated by the error back propagation method using a momentum method, Adam, or the like.
  • it may be CART (Classification and Regression Trees) or ID3 (Iterative and Dichotomiser 3).
  • the generated learned model is set (implemented) in the detection apparatus 10 (S32). This completes the setting method.
  • FIG. 11 is a flowchart showing the setting method for setting the detection apparatus 10 according to the present embodiment more comprehensively including the setting method of FIG.
  • the 1st period which determines whether the target object 100 arrived at the detection range 10a is determined (S10).
  • the first period is based on the time required for the rise or fall of the signal value waveform so that the signal value necessary for determining whether or not the object 100 has arrived in the detection range 10a is stored in the storage unit 12. May be determined.
  • the determination condition may be, for example, the first determination condition described above, the second determination condition, or a predetermined result obtained by executing the learned model.
  • the determination condition may include designation of a plurality of time points used for determination among the acquisition time points of the predetermined number of signal values stored in the storage unit 12. For example, three or more FIFO stages storing signal values used for determination among a predetermined number of signal values stored in the storage unit 12 may be designated as time points used for determination.
  • the setting of the first cycle may be performed based on an input by the user in the computer 30 or an input by the user using an operation switch (not shown) provided in the detection apparatus 10.
  • Determination of determination conditions and setting to the detection device 10 are preferably performed by the supplier of the detection device 10.
  • the supplier of the detection device 10 refers to a person other than the final user of the detection device 10 such as a manufacturer, a seller, or a service provider related to the introduction of the detection device 10. Since the determination condition is a condition for determining whether the waveform of the signal value corresponds to the signal value constituting the rising waveform or the falling waveform, the type of the object 100 in the final user of the detection apparatus 10 Even a supplier who does not know the installation state of the detection device 10 can determine the determination condition.
  • the user can detect the situation without performing machine learning or teaching each time in those situations.
  • the device 10 can be used.
  • a plurality of time points used for determination may not be included in settable determination conditions and may not be changed in the detection apparatus 10.
  • the updated version (improved version) of the determination condition is prepared by the supplier of the detection device 10 by re-executing S30 and S31 or S11, the last setting step (S32, Only S12) may be performed by the final user of the detection apparatus 10 that has received the updated determination condition.
  • the memory is stored.
  • the threshold value is set according to the use situation by determining whether or not the object has arrived in the detection range based on whether or not the predetermined number of signal values stored in the section satisfies the determination condition. The arrival of an object can be detected without a burden.
  • FIG. 12 is a flowchart of a detection method executed by the detection apparatus 10 according to this embodiment.
  • the detection method is a method for determining whether or not the object 100 has arrived at the detection range 10 a by the determination unit 13.
  • the detection apparatus 10 uses the measurement unit 11 to sequentially convert physical quantities into signal values in the second period, and waits for the update timing of the storage unit 12 in the first period (S20). Then, the oldest signal value is deleted and the signal value newly acquired by the measurement unit 11 is added to the storage unit 12 that stores the predetermined number of signal values in order of acquisition (S21). .
  • the detection apparatus 10 determines whether or not it is a cycle for determining whether the signal value satisfies the determination condition (S22).
  • the determination unit 13 determines whether or not the signal values of a plurality of predetermined ranks among the signal values stored in the storage unit 12 satisfy the determination condition. Determine (S23).
  • the determination condition may be, for example, the first determination condition described above, the second determination condition, or a predetermined result obtained by executing the learned model. If the predetermined signal values stored in the storage unit 12 satisfy the determination condition (S23: YES), the detection device 10 determines that the object 100 has arrived in the detection range 10a, and the determination The result is output by the input / output unit 15 (S24).
  • the detection apparatus 10 When the output of the determination result is finished, when it is not a cycle for determining whether or not the signal value satisfies the determination condition (S22: NO), and when the predetermined signal values do not satisfy the determination condition (S23: NO), The detection apparatus 10 returns to the process of waiting for the update timing of the storage unit 12 in the first period (S20). The above processing may be repeated continuously.
  • a signal value at a certain time point is compared with a threshold value to detect the presence or absence of an object in the detection range, and it is determined whether or not the object has arrived based on a change in the detection result.
  • determining whether or not an object has arrived in the detection range based on whether or not a waveform constituted by a predetermined number of signal values stored in the storage unit satisfies the determination condition, It is possible to detect the arrival of an object without the burden on the user who sets the value according to the use situation.
  • this determination condition is a condition for determining whether the waveform of the signal value corresponds to a rising waveform or a falling waveform, it is common even if the type of object and the installation state of the detection device are different. In many cases, the determination condition can be applied. In this respect as well, the burden on the user at the stage of preparation for detection execution is reduced.
  • [Appendix 2] A setting method for setting a detection device (10) for detecting that an object (100) has arrived in a detection range (10a),
  • the detection device (10) A process of sequentially converting a physical quantity whose value changes depending on whether or not the object (10) has arrived in the detection range (10a) into a signal value;
  • the detection range based on whether or not the signal values of a plurality of predetermined ranks among the stored signal values satisfy a determination condition at a frequency of once every time the update is performed once or a plurality of times.
  • the setting method is as follows: Determining the determination condition to be a condition for determining whether or not a waveform composed of a plurality of time-series signal values corresponds to a rising waveform or a falling waveform; Setting the determination condition in the detection device (10).
  • [Appendix 3] Sequentially converting a physical quantity whose value changes depending on whether or not the object (100) has arrived in the detection range (10a) into a signal value; Updating a predetermined number of the signal values acquired from the signal values generated sequentially and stored in order in the acquired order, with the newly acquired signal values in a first period; , Each time the update is performed once or a plurality of times, the signal values of a plurality of predetermined ranks among the stored signal values correspond to signal values constituting a rising waveform or a falling waveform. Determining whether or not the object (100) has arrived in the detection range (10a) based on whether or not the determination condition for determining whether or not A detection method comprising:

Abstract

A detection method which enables detecting the arrival of the target without the burden of configuring a detection device threshold value in accordance with the use state, and a configuration method are provided. The determination method is a detection method for detecting the arrival of a target 100 within a detection range 10a, and involves: determining a determination condition for determining whether a waveform configured from multiple time-series signal values corresponds to a rising waveform or a falling waveform; converting to sequential signal values a physical quantity having a value which changes depending on whether or not the target has arrived in the detection range; updating, at a first period, a prescribed number of signal values acquired from among sequentially generated signal values and stored ordered in the order acquired, with newly acquired signal values; and, with a frequency of once every time updating is performed one or multiple times, determining whether or not the target has arrived in the detection range on the basis of whether or not those of the stored values that are in multiple prescribed positions in the ordering satisfy the determination condition.

Description

検出方法及び検出装置の設定方法Detection method and detection device setting method
 本発明は、対象物の到来を検出する検出方法及び対象物の到来を検出する検出装置の設定方法に関する。 The present invention relates to a detection method for detecting the arrival of an object and a method for setting a detection device for detecting the arrival of an object.
 従来、対象物の到来を検出する検出方法として、対象物に光を照射して、対象物を透過する光を検出したり、対象物による光の遮蔽を検出したり、対象物により反射した光を検出したりする方法が用いられている。また、他の検出方法として、対象物に超音波を当て、超音波の反射を用いる方法も知られている。これら既存の検出方法では、受光量、超音波受信強度のような物理量に対応する信号値の大きさを閾値と比較して対象物の有無に対応する出力信号を得、出力信号の変化によって対象物の到来を判定することがある。ここで、物理量に対応する信号値の大きさは、対象物の種類及び対象物と検出装置との位置関係によって変動するため、検出装置を設置した後にユーザが閾値を設定しなければならない場合が多い。 Conventionally, as a detection method for detecting the arrival of an object, the object is irradiated with light to detect light transmitted through the object, detection of light shielding by the object, or light reflected by the object The method of detecting is used. As another detection method, a method of applying ultrasonic waves to an object and using reflection of ultrasonic waves is also known. In these existing detection methods, the magnitude of a signal value corresponding to a physical quantity such as the amount of received light or ultrasonic reception intensity is compared with a threshold value to obtain an output signal corresponding to the presence or absence of an object. Sometimes the arrival of an object is determined. Here, since the magnitude of the signal value corresponding to the physical quantity varies depending on the type of the object and the positional relationship between the object and the detection apparatus, the user may have to set a threshold after installing the detection apparatus. Many.
 ユーザによる閾値の設定について、例えば下記特許文献1には、ワークを検出エリアに配置した状態でSETキーを押し、ワークを検出エリアから取り除いた状態でSETキーを再び押し、各キーの操作に応じて測定された2種類の受光量を用いて閾値を設定することが記載されている。 Regarding the threshold setting by the user, for example, in Patent Document 1 below, the SET key is pressed in a state where the work is arranged in the detection area, the SET key is pressed again in a state where the work is removed from the detection area, and each key is operated according to the operation of each key. It is described that a threshold value is set using two kinds of received light amounts measured in this manner.
 また、下記特許文献2に記載の光電センサでは、環境要因に追従し、光量の判定基準となる閾値を自動調整するにあたり、受光量現在値データとして、光電センサが入光判定をしてから一定期間の受光量変動プロファイルを測定している。そして、受光量が最大値において一定になる期間があるか否かを判定して、一定になる期間がある場合に測定した受光量現在値データを有効なものとしている。 Further, in the photoelectric sensor described in Patent Document 2 below, when the threshold value that is a criterion for determining the amount of light is automatically adjusted to follow environmental factors, the light reception amount current value data is constant after the photoelectric sensor determines the incident light. The received light amount fluctuation profile during the period is measured. Then, it is determined whether or not there is a period in which the received light amount is constant at the maximum value, and the received light amount present value data measured when there is a constant period is made valid.
特開2007-139494号公報JP 2007-139494 A 特開2009-300111号公報JP 2009-300111 A
 特許文献1及び2に記載のように、従来、検出装置の閾値を使用状況に応じて設定することを前提として、ユーザによる閾値設定を容易にしたり、当初設定した閾値を経時的に再調整する負担を軽減したりする、という方向で開発が行われてきた。 As described in Patent Documents 1 and 2, conventionally, on the premise that the threshold value of the detection device is set in accordance with the use situation, the user can easily set the threshold value, or readjust the initially set threshold value over time. Development has been done in the direction of reducing the burden.
 しかしながら、従来の技術では、検出装置の閾値を使用状況に応じて設定するユーザの負担は取り除くことができなかった。 However, with the conventional technology, the burden on the user who sets the threshold value of the detection device according to the usage situation cannot be removed.
 そこで、本発明は、検出装置の閾値を使用状況に応じて設定するユーザの負担を無くして対象物の到来を検出することができる検出方法及び検出装置の設定方法を提供する。 Therefore, the present invention provides a detection method and a detection device setting method that can detect the arrival of an object without the burden of the user setting the threshold value of the detection device in accordance with the use situation.
 対象物の到来を検出する場合に、実際の使用場面で求められるのは、対象物が到来した時点で対象物が到来したことを報知する機能である。一方で、現時点における対象物の有無自体を検出することは、求められることが少ない。すなわち、検出装置の出力値は現時点における対象物の有無に対応しているとしても、ユーザは、短い周期で更新される出力値が時系列に得られることを前提として、出力値が対象物無しに対応する値から対象物有りに対応する値に変化する事象またはその逆に変化する事象をトリガにして機械に所定の動作をさせる場合が多い。そうではなく、たとえば機械の制御システムから現時点における対象物の有無に対応する出力値を要求し、それに応答して得られた単発的な出力値にしたがい機械を動作させることは少ない。従って、対象物の到来に対応する信号値の急な変化、すなわち信号値波形の立ち上がり又は立ち下がりが発生したことを検出すれば、閾値を用いずに実用上の要求を満たすことができる。 When detecting the arrival of an object, what is required in the actual use scene is a function for notifying that the object has arrived when the object arrives. On the other hand, it is rarely required to detect the presence / absence of the object at the present time. That is, even if the output value of the detection device corresponds to the presence / absence of the target object at the present time, the user must assume that the output value updated in a short cycle is obtained in time series, and the output value is no target. In many cases, the machine is caused to perform a predetermined operation triggered by an event that changes from a value corresponding to 1 to a value corresponding to the presence of an object or vice versa. Instead, for example, an output value corresponding to the presence or absence of an object at the present time is requested from a control system of the machine, and the machine is rarely operated according to a single output value obtained in response thereto. Therefore, if a sudden change in the signal value corresponding to the arrival of the object, that is, the rise or fall of the signal value waveform is detected, the practical requirement can be satisfied without using the threshold value.
 そこで、本開示の一態様に係る検出方法は、検出範囲に対象物が到来したことを検出する検出方法であって、時系列の複数の信号値により構成される波形が立ち上がり波形又は立ち下がり波形に該当するか否かを判定するための判定条件を決定することと、検出範囲に対象物が到来したか否かに応じて値が変化する物理量を逐次信号値に変換することと、逐次生成されている信号値の中から取得され、取得された順に順序付けて記憶されている所定数の信号値を、第1周期で、新たに取得された信号値により更新することと、更新を1回または複数回行う毎に一度の頻度で、記憶されている信号値のうちの所定の複数の順位の信号値が判定条件を満たすか否かに基づいて、検出範囲に対象物が到来したか否かを判定することと、を含む。 Therefore, a detection method according to an aspect of the present disclosure is a detection method for detecting that an object has arrived in a detection range, and a waveform composed of a plurality of time-series signal values is a rising waveform or a falling waveform. A determination condition for determining whether or not the object falls within the range, a physical quantity whose value changes depending on whether or not an object has arrived in the detection range, and sequentially generating a signal value Updating a predetermined number of signal values acquired from the acquired signal values and sequentially stored in the acquired order with the newly acquired signal values in the first period, and updating once Alternatively, whether or not an object has arrived in the detection range based on whether or not the signal values of a plurality of predetermined ranks among the stored signal values satisfy the determination condition at a frequency of once every time a plurality of times are performed. Determining.
 この態様によれば、ある時点における信号値と閾値とを比較して検出範囲における対象物の有無を検出し、検出結果の変化によって対象物が到来したか否かを判定するのではなく、記憶部に記憶された所定数の信号値により構成される波形が判定条件を満たすか否かに基づいて、検出範囲に対象物が到来したか否かを判定することができる。このため、閾値を使用状況に応じて設定するユーザの負担を無くして対象物の到来を検出することができる。さらに、この判定条件は、信号値の波形が立ち上がり波形又は立ち下がり波形に該当するか否かを判定するための条件であるから、対象物の種類や検出装置の設置状態が異なっていても共通の判定条件を適用できる場合が多い。この点でも、検出実行の準備をする段階でのユーザの負担は軽減される。 According to this aspect, the signal value at a certain point in time is compared with a threshold value to detect the presence or absence of an object in the detection range, and it is stored instead of determining whether or not the object has arrived due to a change in the detection result. Whether or not an object has arrived in the detection range can be determined based on whether or not a waveform constituted by a predetermined number of signal values stored in the section satisfies the determination condition. For this reason, the arrival of an object can be detected without the burden on the user who sets the threshold value according to the usage situation. Furthermore, since this determination condition is a condition for determining whether the waveform of the signal value corresponds to a rising waveform or a falling waveform, it is common even if the type of object and the installation state of the detection device are different. In many cases, the determination condition can be applied. In this respect as well, the burden on the user at the stage of preparation for detection execution is reduced.
 上記態様において、判定条件は、機械学習により生成されたパラメータにより特定される学習済みモデルの実行により、時系列の複数の信号値により構成される波形が機械学習用データセットとされた複数の基準波形が有する特徴と共通する特徴を備えていることについて肯定的な結果が得られることであってよい。判定条件を決定することは、使用する前記学習済みモデルを決定することであってよい。 In the above aspect, the determination condition is a plurality of criteria in which a waveform composed of a plurality of time-series signal values is set as a machine learning data set by execution of a learned model specified by a parameter generated by machine learning. It may be that a positive result is obtained that the waveform has characteristics in common with the characteristics of the waveform. Determining the determination condition may be determining the learned model to be used.
 この態様によれば、現在の信号値により構成される波形が、複数の基準波形が有する特徴と共通する特徴を備えているかを学習済みモデルの実行により判定することで、検出装置の処理負荷を軽減しつつ、検出範囲に対象物が到来したか否かを高精度で判定することができる。 According to this aspect, the processing load of the detection device is reduced by determining whether the waveform configured by the current signal value has a feature common to the features of the plurality of reference waveforms by executing the learned model. While mitigating, it can be determined with high accuracy whether or not an object has arrived in the detection range.
 本開示の他の態様に係る検出装置の設定方法は、検出範囲に対象物が到来したことを検出する検出装置を設定する設定方法であって、検出装置は、検出範囲に対象物が到来したか否かに応じて値が変化する物理量を逐次信号値に変換する処理と、逐次生成されている信号値の中から取得され、取得された順に順序付けて記憶されている所定数の信号値を、第1周期で、新たに取得された信号値により更新する処理と、更新を1回または複数回行う毎に一度の頻度で、記憶されている信号値のうちの所定の複数の順位の信号値が判定条件を満たすか否かに基づいて、検出範囲に対象物が到来したか否かを判定する処理とを実行するように構成されており、設定方法は、判定条件を、時系列の複数の信号値により構成される波形が立ち上がり波形又は立ち下がり波形に該当するか否かを判定するための条件となるように決定することと、判定条件を検出装置に設定することとを含む。 A setting method of a detection device according to another aspect of the present disclosure is a setting method of setting a detection device that detects that an object has arrived in the detection range, and the detection device has arrived in the detection range A process of converting a physical quantity whose value changes depending on whether or not to a sequential signal value, and a predetermined number of signal values acquired from sequentially generated signal values and stored in order in the acquired order , A process of updating with a newly acquired signal value in the first cycle, and signals of a plurality of predetermined ranks among the stored signal values at a frequency of once every time the update is performed once or a plurality of times And a process for determining whether or not an object has arrived in the detection range based on whether or not the value satisfies the determination condition. A waveform composed of multiple signal values is a rising wave Or includes determining to be a condition for determining whether or not to correspond to the falling waveform, and setting a determination condition in the detection system.
 この態様によれば、ある時点における信号値と閾値とを比較して検出範囲における対象物の有無を検出し、検出結果の変化によって対象物が到来したか否かを判定するのではなく、記憶部に記憶された所定数の信号値により構成される波形が判定条件を満たすか否かに基づいて、検出範囲に対象物が到来したか否かを判定することができる。このため、閾値を使用状況に応じて設定するユーザの負担を無くして対象物の到来を検出することができる。さらに、この判定条件は、信号値の波形が立ち上がり波形又は立ち下がり波形に該当するか否かを判定するための条件であるから、対象物の種類や検出装置の設置状態が異なっていても共通の判定条件を適用できる場合が多い。この点でも、検出実行の準備をする段階でのユーザの負担は軽減される。 According to this aspect, the signal value at a certain point in time is compared with a threshold value to detect the presence or absence of an object in the detection range, and it is stored instead of determining whether or not the object has arrived due to a change in the detection result. Whether or not an object has arrived in the detection range can be determined based on whether or not a waveform constituted by a predetermined number of signal values stored in the section satisfies the determination condition. For this reason, the arrival of an object can be detected without the burden on the user who sets the threshold value according to the usage situation. Furthermore, since this determination condition is a condition for determining whether the waveform of the signal value corresponds to a rising waveform or a falling waveform, it is common even if the type of object and the installation state of the detection device are different. In many cases, the determination condition can be applied. In this respect as well, the burden on the user at the stage of preparation for detection execution is reduced.
 上記態様において、判定条件は、機械学習により生成されたパラメータにより特定される学習済みモデルの実行により、時系列の複数の信号値により構成される波形が機械学習用データセットとされた複数の基準波形が有する特徴と共通する特徴を備えていることについて肯定的な結果が得られることであってよい。判定条件を決定することは、使用する前記学習済みモデルを決定することであってよい。判定条件を検出装置に設定することは、学習済みモデルを検出装置に実装することであってよい。 In the above aspect, the determination condition is a plurality of criteria in which a waveform composed of a plurality of time-series signal values is set as a machine learning data set by execution of a learned model specified by a parameter generated by machine learning. It may be that a positive result is obtained that the waveform has characteristics in common with the characteristics of the waveform. Determining the determination condition may be determining the learned model to be used. Setting the determination condition in the detection device may be mounting the learned model in the detection device.
 この態様によれば、現在の信号値により構成される波形が、複数の基準波形が有する特徴と共通する特徴を備えているかを学習済みモデルの実行により判定することで、検出装置の処理負荷を軽減しつつ、検出範囲に対象物が到来したか否かを高精度で判定することができる。 According to this aspect, the processing load of the detection device is reduced by determining whether the waveform configured by the current signal value has a feature common to the features of the plurality of reference waveforms by executing the learned model. While mitigating, it can be determined with high accuracy whether or not an object has arrived in the detection range.
 本開示の他の態様に係る検出方法は、検出範囲に対象物が到来したか否かに応じて値が変化する物理量を逐次信号値に変換することと、逐次生成されている信号値の中から取得され、取得された順に順序付けて記憶されている所定数の信号値を、第1周期で、新たに取得された信号値により更新することと、更新を1回または複数回行う毎に一度の頻度で、記憶されている信号値のうちの所定の複数の順位の信号値が立ち上がり波形又は立ち下がり波形を構成する信号値に該当するか否かを判定するための判定条件を満たすか否かに基づいて、検出範囲に対象物が到来したか否かを判定することと、を含む。 In the detection method according to another aspect of the present disclosure, a physical quantity whose value changes according to whether or not an object has arrived in the detection range is sequentially converted into a signal value, and among the signal values that are sequentially generated, A predetermined number of signal values acquired in order and stored in the order in which they are acquired, and updated with a newly acquired signal value in the first period, and once each time one or more updates are performed Whether the signal values of a plurality of predetermined ranks among the stored signal values correspond to the signal values constituting the rising waveform or the falling waveform. And determining whether or not the object has arrived in the detection range.
 この態様によれば、ある時点における信号値と閾値とを比較して検出範囲における対象物の有無を検出し、検出結果の変化によって対象物が到来したか否かを判定するのではなく、記憶部に記憶された所定数の信号値により構成される波形が判定条件を満たすか否かに基づいて、検出範囲に対象物が到来したか否かを判定することができる。このため、閾値を使用状況に応じて設定するユーザの負担を無くして対象物の到来を検出することができる。さらに、この判定条件は、信号値の波形が立ち上がり波形又は立ち下がり波形に該当するか否かを判定するための条件であるから、対象物の種類や検出装置の設置状態が異なっていても共通の判定条件を適用できる場合が多い。この点でも、検出実行の準備をする段階でのユーザの負担は軽減される。 According to this aspect, the signal value at a certain point in time is compared with a threshold value to detect the presence or absence of an object in the detection range, and it is stored instead of determining whether or not the object has arrived due to a change in the detection result. Whether or not an object has arrived in the detection range can be determined based on whether or not a waveform constituted by a predetermined number of signal values stored in the section satisfies the determination condition. For this reason, the arrival of an object can be detected without the burden on the user who sets the threshold value according to the usage situation. Furthermore, since this determination condition is a condition for determining whether the waveform of the signal value corresponds to a rising waveform or a falling waveform, it is common even if the type of object and the installation state of the detection device are different. In many cases, the determination condition can be applied. In this respect as well, the burden on the user at the stage of preparation for detection execution is reduced.
 上記態様において、更新することは、所定数の信号値のうち、最も古い信号値を削除することと、新たに取得した信号値を記憶することと、を含んでもよい。 In the above aspect, updating may include deleting the oldest signal value out of a predetermined number of signal values and storing the newly acquired signal value.
 この態様によれば、記憶部をFIFOメモリとすることで、ハードウェアの規模を小さく抑えつつ、高速に読み書き可能とすることができる。 According to this aspect, by using the FIFO memory as the storage unit, it is possible to read and write at high speed while keeping the hardware scale small.
 上記態様において、第1周期は、変更可能であってもよい。 In the above aspect, the first period may be changeable.
 この態様によれば、第1周期を適切に設定することにより、検出範囲に対象物が到来したか否かを判定する際に適切な時間長にわたる信号値を参照することができる。 According to this aspect, by appropriately setting the first period, it is possible to refer to a signal value over an appropriate time length when determining whether or not an object has arrived in the detection range.
 上記態様において、判定条件は、第1時点において取得された信号値と、第1時点より後の第2時点において取得された信号値とが実質的に等しいことと、第2時点において取得された信号値と、第2時点より後の第3時点において取得された信号値との差の絶対値が所定の値よりも大きいことと、を含んでもよい。 In the above aspect, the determination condition is acquired at the second time point that the signal value acquired at the first time point is substantially equal to the signal value acquired at the second time point after the first time point. The absolute value of the difference between the signal value and the signal value acquired at the third time point after the second time point may be greater than a predetermined value.
 この態様によれば、使用状況に応じて信号値が変動する場合であっても、信号値の立ち上がり又は立下りを安定的に検出することができ、閾値を使用状況に応じて設定するユーザの負担を無くして対象物の到来を検出することができる。 According to this aspect, even when the signal value fluctuates according to the usage situation, the rising or falling edge of the signal value can be detected stably, and the user who sets the threshold value according to the usage situation The arrival of an object can be detected without a burden.
 上記態様において、判定条件は、第1時点において取得された信号値と、第1時点より後の第2時点において取得された信号値とが実質的に等しいことと、第2時点より後の第3時点において取得された信号値と、第3時点より後の第4時点において取得された信号値とが実質的に等しいことと、第1時点において取得された信号値及び第2時点において取得された信号値のいずれかと、第3時点において取得された信号値及び第4時点において取得された信号値のいずれかとの差の絶対値が、所定の値よりも大きいことと、を含んでもよい。 In the above aspect, the determination condition is that the signal value acquired at the first time point is substantially equal to the signal value acquired at the second time point after the first time point, and that the signal value acquired after the second time point is The signal value acquired at the third time point is substantially equal to the signal value acquired at the fourth time point after the third time point, the signal value acquired at the first time point, and the signal value acquired at the second time point. The absolute value of the difference between any one of the obtained signal values and any of the signal value obtained at the third time point and the signal value obtained at the fourth time point may be greater than a predetermined value.
 この態様によれば、使用状況に応じて信号値が変動する場合であっても、信号値の立ち上がり又は立下りを安定的に検出することができ、閾値を使用状況に応じて設定するユーザの負担を無くして対象物の到来を検出することができる。 According to this aspect, even when the signal value fluctuates according to the usage situation, the rising or falling edge of the signal value can be detected stably, and the user who sets the threshold value according to the usage situation The arrival of an object can be detected without a burden.
 上記態様において、判定条件は、機械学習により生成されたパラメータにより特定される学習済みモデルにより、記憶部に記憶されている所定数の信号値により構成される波形が機械学習用データセットとしての複数の基準波形が有する特徴と共通する特徴を備えているか否かを判定するための条件であってもよい。
 上記態様において、判定条件は、機械学習により生成されたパラメータにより特定される学習済みモデルの実行により、時系列の複数の信号値により構成される波形が機械学習用データセットとされた複数の基準波形が有する特徴と共通する特徴を備えていることについて肯定的な結果が得られることであってよい。
In the above aspect, the determination condition is that a plurality of waveforms configured by a predetermined number of signal values stored in the storage unit as a machine learning data set are determined by a learned model specified by a parameter generated by machine learning. It may be a condition for determining whether or not a feature common to the reference waveform is provided.
In the above aspect, the determination condition is a plurality of criteria in which a waveform composed of a plurality of time-series signal values is set as a machine learning data set by execution of a learned model specified by a parameter generated by machine learning. It may be that a positive result is obtained that the waveform has characteristics in common with the characteristics of the waveform.
 この態様によれば、現在の信号値により構成される波形が、複数の基準波形が有する特徴と共通する特徴を備えているかを学習済みモデルの実行により判定することで、検出装置の処理負荷を軽減しつつ、検出範囲に対象物が到来したか否かを高精度で判定することができる。 According to this aspect, the processing load of the detection device is reduced by determining whether the waveform configured by the current signal value has a feature common to the features of the plurality of reference waveforms by executing the learned model. While mitigating, it can be determined with high accuracy whether or not an object has arrived in the detection range.
 本発明によれば、検出装置の閾値を使用状況に応じて設定する負担を無くして対象物の到来を検出することができる検出方法及び設定方法が提供される。 According to the present invention, there is provided a detection method and a setting method that can detect the arrival of an object without the burden of setting the threshold value of the detection device according to the use situation.
本発明の実施形態に係る検出装置を含む検出システムの概要を示す図である。It is a figure which shows the outline | summary of the detection system containing the detection apparatus which concerns on embodiment of this invention. 本実施形態に係る検出装置の構成を示す図である。It is a figure which shows the structure of the detection apparatus which concerns on this embodiment. 本実施形態に係る検出装置により測定された信号値の一例をグラフにより示す図である。It is a figure which shows an example of the signal value measured by the detection apparatus which concerns on this embodiment with a graph. 本実施形態に係る検出装置に記憶された所定数の信号値の一例をグラフにより示す図である。It is a figure which shows an example of the predetermined number of signal values memorize | stored in the detection apparatus which concerns on this embodiment with a graph. 第1事例において、本実施形態に係る検出装置に記憶された所定数の信号値の一例をグラフにより示す図である。In a 1st case, it is a figure which shows an example of the predetermined number of signal values memorize | stored in the detection apparatus which concerns on this embodiment with a graph. 第1事例において、本実施形態に係る検出装置に記憶された所定数の信号値の一例を示す図である。It is a figure which shows an example of the predetermined number of signal value memorize | stored in the detection apparatus which concerns on this embodiment in a 1st example. 第2事例において、本実施形態に係る検出装置に記憶された所定数の信号値の一例をグラフにより示す図である。In a 2nd example, it is a figure which shows an example of the predetermined number of signal values memorize | stored in the detection apparatus which concerns on this embodiment with a graph. 第2事例において、本実施形態に係る検出装置に記憶された所定数の信号値の一例を示す図である。In a 2nd example, it is a figure which shows an example of the predetermined number of signal value memorize | stored in the detection apparatus which concerns on this embodiment. 第3事例において、本実施形態に係る検出装置に記憶された所定数の信号値の一例をグラフにより示す図である。In a 3rd example, it is a figure which shows an example of the predetermined number of signal value memorize | stored in the detection apparatus which concerns on this embodiment with a graph. 第3事例において、本実施形態に係る検出装置に記憶された所定数の信号値の一例を示す図である。In a 3rd example, it is a figure which shows an example of the predetermined number of signal value memorize | stored in the detection apparatus which concerns on this embodiment. 第4事例において、本実施形態に係る検出装置に記憶された所定数の信号値の一例をグラフにより示す図である。In a 4th example, it is a figure which shows an example of the predetermined number of signal values memorize | stored in the detection apparatus which concerns on this embodiment with a graph. 第4事例において、本実施形態に係る検出装置に記憶された所定数の信号値の一例を示す図である。In a 4th example, it is a figure which shows an example of the predetermined number of signal values memorize | stored in the detection apparatus which concerns on this embodiment. 第5事例において、本実施形態に係る検出装置に記憶された所定数の信号値の一例をグラフにより示す図である。In a 5th example, it is a figure which shows an example of the predetermined number of signal value memorize | stored in the detection apparatus which concerns on this embodiment with a graph. 第5事例において、本実施形態に係る検出装置に記憶された所定数の信号値の一例を示す図である。In a 5th example, it is a figure which shows an example of the predetermined number of signal values memorize | stored in the detection apparatus which concerns on this embodiment. 本実施形態に係る検出装置により測定されることが想定される信号値の例を示す図である。It is a figure which shows the example of the signal value assumed to be measured by the detection apparatus which concerns on this embodiment. 本実施形態に係る検出装置により実行される学習済みモデルの設定方法のフローチャートである。It is a flowchart of the setting method of the learned model performed by the detection apparatus which concerns on this embodiment. 本実施形態に係る検出装置を設定する設定方法のフローチャートである。It is a flowchart of the setting method which sets the detection apparatus which concerns on this embodiment. 本実施形態に係る検出装置により実行される検出方法のフローチャートである。It is a flowchart of the detection method performed by the detection apparatus which concerns on this embodiment.
 以下、本発明の一側面に係る実施の形態(以下、「本実施形態」と表記する。)を、図面に基づいて説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有する。 Hereinafter, an embodiment according to an aspect of the present invention (hereinafter referred to as “the present embodiment”) will be described with reference to the drawings. In addition, in each figure, what attached | subjected the same code | symbol has the same or similar structure.
 はじめに、従来の検出装置において、対象物の到来を判定するために信号値と比較される閾値を固定値とすることが難しい事情について説明する。センサによって対象物を検出する場合、センサをどのような設備のどこに設置するか、対象物がどのような物であるか、センサによってどのような物理量を測定するかといった個別の事情により、対象物が無い状態に測定される信号値と、対象物が有る状態に測定される信号値とがそれぞれ異なり、また、信号値が変化する速さが異なる。ここで、対象物が無い状態に測定される信号値と、対象物が有る状態に測定される信号値とは、互いに独立している場合もあれば、ある程度相関している場合もある。 First, a description will be given of a situation in which it is difficult for a conventional detection apparatus to use a fixed value as a threshold value to be compared with a signal value in order to determine the arrival of an object. When an object is detected by a sensor, the object depends on the individual circumstances such as what kind of facility where the sensor is installed, what kind of object the object is, and what physical quantity is measured by the sensor. The signal value measured in a state where there is no object is different from the signal value measured in the state where there is an object, and the speed at which the signal value changes is different. Here, the signal value measured when there is no object and the signal value measured when there is an object may be independent of each other or may be correlated to some extent.
 例えば、センサが、対象物に光を照射して、対象物により反射した光を検出する反射型センサの場合、対象物無しの状態の受光量を決める要因は、センサと背景反射物との配置であったり、背景反射物の反射率であったりする。また、対象物有りの状態の受光量を決める要因は、センサと対象物との配置であったり、対象物の反射率であったりする。そのため、対象物の到来を判定するために信号値と比較される閾値を固定値とすることは難しく、使用状況に応じて設定する必要があった。 For example, when the sensor is a reflective sensor that irradiates light on the object and detects the light reflected by the object, the factor that determines the amount of light received without the object is the arrangement of the sensor and the background reflector Or the reflectivity of the background reflector. In addition, factors that determine the amount of light received in the presence of an object include the arrangement of the sensor and the object and the reflectance of the object. For this reason, it is difficult to set a threshold value that is compared with a signal value to determine the arrival of an object as a fixed value, and it is necessary to set the threshold according to the use situation.
 また、センサが、対象物に光を照射して、対象物を透過する光を検出する透過型センサの場合、対象物無しの状態の受光量を決める要因は、投光量であったり、投光部と受光部との配置であったりする。また、対象物有りの状態の受光量を決める要因は、対象物の透過率であったりする。そのため、対象物の到来を判定するために信号値と比較される閾値を固定値とすることは難しく、使用状況に応じて設定する必要があった。 In addition, when the sensor is a transmissive sensor that irradiates light on an object and detects light that passes through the object, the factor that determines the amount of light received when there is no object is the amount of light emitted or the light projected Or a light receiving portion. In addition, the factor that determines the amount of light received when the object is present may be the transmittance of the object. For this reason, it is difficult to set a threshold value that is compared with a signal value to determine the arrival of an object as a fixed value, and it is necessary to set the threshold according to the use situation.
 次に、従来の検出装置において、当初設定した閾値を経時的に再調整しなければならない事情について説明する。センサによって対象物を検出する場合、センサの汚れや劣化により信号値が経時的に変化したり、環境変化によって信号値が経時的に変化したりすることがある。 Next, a description will be given of the circumstances in which the initially set threshold value must be readjusted with time in the conventional detection device. When an object is detected by a sensor, the signal value may change over time due to contamination or deterioration of the sensor, or the signal value may change over time due to environmental changes.
 例えば、センサが、反射型センサであったり、透過型センサであったりする場合、投光部の光学窓に汚れが付着することにより、投光量が低下し、その結果、受光量が低下することがある。それとは反対に、投光部の光学窓の汚れを除去したことにより、受光量が急激に増加することもある。また、投光部の投光素子が劣化することにより投光量が低下し、受光量が低下することがある。さらに、太陽光の影響等により測定環境の明るさが変動することにより、受光量が変動することがある。そのため、対象物の到来を判定するために信号値と比較される閾値を経時的に再調整しなければならない場合があり、閾値を使用状況に応じて設定する必要があった。 For example, when the sensor is a reflection type sensor or a transmission type sensor, dirt is attached to the optical window of the light projecting unit, so that the light projection amount is decreased, and as a result, the light reception amount is decreased. There is. On the other hand, the amount of received light may increase abruptly by removing dirt on the optical window of the light projecting unit. Further, when the light projecting element of the light projecting unit is deteriorated, the light projection amount may be decreased, and the light reception amount may be decreased. Furthermore, the amount of received light may vary due to variations in the brightness of the measurement environment due to the influence of sunlight or the like. Therefore, there is a case where the threshold value compared with the signal value has to be readjusted with time in order to determine the arrival of the object, and it is necessary to set the threshold value according to the use situation.
 以下に説明するように、本実施形態に係る検出装置10では、対象物の有無を判定するために、信号値に対する閾値を用いないため、閾値を使用状況に応じて設定するユーザの負担を無くすことができる。もっとも、本実施形態に係る検出装置10に固有の設定事項は発生し得る。しかしながら、本実施形態に係る検出装置10では、設定事項をできる限り少なくすることができるし、設定事項を無くしても使用できることが多い。 As will be described below, the detection apparatus 10 according to the present embodiment does not use a threshold value for a signal value in order to determine the presence or absence of an object, thereby eliminating the burden on the user who sets the threshold value according to the usage situation. be able to. However, setting items unique to the detection apparatus 10 according to the present embodiment may occur. However, in the detection apparatus 10 according to the present embodiment, the setting items can be reduced as much as possible, and can often be used without the setting items.
 本実施形態に係る検出装置10に固有の設定事項として、信号値の立ち上がり又は立下りを判定するための設定が挙げられる。本実施形態に係る検出装置10では、信号値が示す波形(信号波形の立ち上がり又は立ち下がり)に着目して対象物の有無を判定するため、対象物の運動の速さの違い等に起因する受光量変化の速さの変動に対して、ユーザが調整を必要としないようにすることが望まれる。 As a setting item unique to the detection apparatus 10 according to the present embodiment, there is a setting for determining whether the signal value rises or falls. In the detection apparatus 10 according to the present embodiment, the presence or absence of an object is determined by paying attention to the waveform (the rising or falling edge of the signal waveform) indicated by the signal value, resulting in a difference in the speed of movement of the object. It is desired that the user does not need to adjust for fluctuations in the rate of change in the amount of received light.
 [構成例]
 図1及び2を参照しつつ、本実施形態に係る検出装置10の構成の一例について説明する。図1は、本発明の実施形態に係る検出装置10を含む検出システム1の概要を示す図である。検出システム1は、検出装置10と、コントローラ20と、コンピュータ30と、ロボット40と、搬送装置50とを備える。
[Configuration example]
An example of the configuration of the detection apparatus 10 according to the present embodiment will be described with reference to FIGS. FIG. 1 is a diagram showing an outline of a detection system 1 including a detection device 10 according to an embodiment of the present invention. The detection system 1 includes a detection device 10, a controller 20, a computer 30, a robot 40, and a transport device 50.
 検出装置10は、測定される信号値に基づいて、検出装置10の検出範囲10aに対象物100が到来したことを検出する装置である。検出装置10は、例えば反射型の光電センサであってよい。検出装置10が反射型の光電センサで構成される場合、対象物100が検出装置10の検出領域に到来すると、検出される反射光量が増加する。なお、本実施形態では、説明を具体的にするために検出装置10が光電センサで構成される例について説明するが、以下の説明は、「受光量」をセンサの種類に応じて他の物理量に置き換え、変動要因等をセンサの検出原理に応じて読み替えることにより、検出装置10が任意のセンサで構成される場合に一般化できる。 The detection device 10 is a device that detects that the object 100 has arrived in the detection range 10a of the detection device 10 based on the measured signal value. The detection device 10 may be a reflective photoelectric sensor, for example. When the detection device 10 is configured by a reflective photoelectric sensor, the amount of reflected light to be detected increases when the object 100 arrives at the detection region of the detection device 10. In this embodiment, an example in which the detection device 10 is configured by a photoelectric sensor will be described in order to make the description more specific. By replacing the factor of variation and the like according to the detection principle of the sensor, it can be generalized when the detection device 10 is composed of an arbitrary sensor.
 対象物100は、検出装置10による検出の対象となる物であり、例えば生産される製品の完成品であったり、部品等の未完成品であったりしてよい。また、本明細書において「対象物」とは、対象物100全体のほか、対象物100の部分(対象物100の端部、対象物100上の模様や欠陥等)であってもよい。対象物100が粒子やピンの場合のように、対象物100が検出領域よりも小さい場合は、対象物100全体が検出対象になることもある。 The object 100 is an object to be detected by the detection device 10, and may be, for example, a finished product to be produced or an unfinished product such as a part. Further, in this specification, the “object” may be a part of the object 100 (an end portion of the object 100, a pattern or a defect on the object 100, etc.) in addition to the entire object 100. When the object 100 is smaller than the detection region, as in the case where the object 100 is a particle or a pin, the entire object 100 may be a detection target.
 なお、検出装置10は、一般に欠陥検査と呼ばれる用途に用いられるものであってもよく、その場合、検出装置10は、対象物100の欠陥部分が検出範囲10aに到来したことを検出してよい。 In addition, the detection apparatus 10 may be used for an application generally called defect inspection. In that case, the detection apparatus 10 may detect that a defective portion of the object 100 has arrived in the detection range 10a. .
 コントローラ20は、ロボット40及び搬送装置50を制御する。コントローラ20は、例えばPLC(Programmable Logic Controller)で構成されてよい。コントローラ20は、検出装置10からの出力により対象物100が到来したことを検知し、ロボット40を制御する。 The controller 20 controls the robot 40 and the transfer device 50. The controller 20 may be composed of, for example, a PLC (Programmable Logic Controller). The controller 20 detects that the object 100 has arrived based on the output from the detection device 10 and controls the robot 40.
 コンピュータ30は、検出装置10、コントローラ20及びロボット40の設定を行う。また、コンピュータ30は、コントローラ20から、コントローラ20による制御の実行結果を取得する。さらに、コンピュータ30は、検出装置10により検出範囲10aに対象物100が到来したか否かを判定するためのアルゴリズム(学習モデル)において用いられるパラメータを機械学習により生成する学習装置を含んでよい。アルゴリズム(学習モデル)の種類には、たとえばニューラルネットワークや決定木がある。 The computer 30 sets the detection device 10, the controller 20, and the robot 40. In addition, the computer 30 acquires the execution result of the control by the controller 20 from the controller 20. Furthermore, the computer 30 may include a learning device that generates, by machine learning, parameters used in an algorithm (learning model) for determining whether or not the object 100 has arrived at the detection range 10a by the detection device 10. Examples of the algorithm (learning model) include a neural network and a decision tree.
 ロボット40は、コントローラ20による制御に従って、対象物100を操作したり加工したりする。ロボット40は、例えば対象物100をピックアップして別の場所に移動させたり、対象物100を切削したり、組み立てたりしてよい。 The robot 40 operates and processes the object 100 according to the control by the controller 20. For example, the robot 40 may pick up the object 100 and move it to another location, or cut or assemble the object 100.
 搬送装置50は、コントローラ20による制御に従って、対象物100を搬送する装置である。搬送装置50は、例えばベルトコンベアであってよく、コントローラ20により設定された速度で対象物100を搬送してよい。 The transport device 50 is a device that transports the object 100 in accordance with control by the controller 20. The transport device 50 may be, for example, a belt conveyor, and may transport the object 100 at a speed set by the controller 20.
 図2は、本実施形態に係る検出装置10の構成を示す図である。検出装置10は、測定部11と、記憶部12と、判定部13と、制御部14と、入出力部15とを備える。 FIG. 2 is a diagram illustrating a configuration of the detection apparatus 10 according to the present embodiment. The detection device 10 includes a measurement unit 11, a storage unit 12, a determination unit 13, a control unit 14, and an input / output unit 15.
 <測定部>
 測定部11は、検出範囲10aに対象物100が到来したか否かに応じて値が変化する物理量を逐次信号値に変換する。測定部11は、受光量等の物理量を第2の周期で測定し、3値以上のデジタル値である信号値を出力してよい。信号値は、例えば8ビット(256値)で表されてよい。また、第2の周期は、例えば0.1ms(ミリ秒)であってよい。
<Measurement unit>
The measuring unit 11 sequentially converts a physical quantity whose value changes depending on whether or not the object 100 has arrived in the detection range 10a into a signal value. The measurement unit 11 may measure a physical quantity such as the amount of received light in the second period and output a signal value that is a digital value of three or more values. The signal value may be represented by 8 bits (256 values), for example. The second period may be 0.1 ms (milliseconds), for example.
 検出装置10が光電センサの場合、測定部11は、入射する光を受光素子に集めるレンズ、光を電流信号に変換する受光素子(例えばフォトダイオード)、電流信号を電圧信号に変換するアンプ及び電圧信号をデジタル値に変換するA/D変換器を含んでよい。さらに、測定部11は、アナログ処理又はデジタル処理によるローパスフィルタやハイパスフィルタ等を含んでもよいし、対象物100に光を照射する投光素子(例えばLED)を含んでもよい。 When the detection device 10 is a photoelectric sensor, the measurement unit 11 includes a lens that collects incident light on a light receiving element, a light receiving element (for example, a photodiode) that converts light into a current signal, an amplifier that converts a current signal into a voltage signal, and a voltage An A / D converter that converts the signal to a digital value may be included. Furthermore, the measurement unit 11 may include a low-pass filter, a high-pass filter, or the like by analog processing or digital processing, or may include a light projecting element (for example, an LED) that irradiates the object 100 with light.
 <記憶部>
 記憶部12は、所定数の信号値を、測定部11により測定された順に記憶する。記憶部12は、所定数の信号値のうち、最も古い信号値を削除し、新たに測定された信号値を記憶するものであってよい。このように、記憶部をFIFO(First In First Out)メモリとすることで、ハードウェアの規模を小さく抑えつつ、高速に読み書き可能とすることができる。
<Storage unit>
The storage unit 12 stores a predetermined number of signal values in the order measured by the measurement unit 11. The memory | storage part 12 deletes the oldest signal value among predetermined number of signal values, and may memorize | store the newly measured signal value. In this way, by using a first-in first-out (FIFO) memory as the storage unit, it is possible to read and write at high speed while keeping the hardware scale small.
 本実施形態に係る検出装置10において、記憶部12は、n段のFIFOメモリで構成される。記憶部12は、初段q0、第1段q1、第2段q2、第j段qj、第k段qk及び第n段qnというアドレスを有する。ここで、j<k<nであり、nは例えば100程度であってよい。記憶部12は、第1の周期で、最終段である第n段qnに格納されている信号値snを削除し、各段に格納されている信号値s0,s1,s2,sj,skを1つ後方の段にシフトして、初段q0に新たに測定された信号値を格納する。 In the detection apparatus 10 according to the present embodiment, the storage unit 12 includes an n-stage FIFO memory. The storage unit 12 has addresses of the first stage q0, the first stage q1, the second stage q2, the jth stage qj, the kth stage qk, and the nth stage qn. Here, j <k <n, and n may be about 100, for example. The storage unit 12 deletes the signal value sn stored in the n-th stage qn, which is the final stage, in the first cycle, and stores the signal values s0, s1, s2, sj, and sk stored in each stage. Shift to the next stage, and store the newly measured signal value in the first stage q0.
 ここで、第1の周期は、第2の周期と同じであってもよいし、異なっていてもよい。例えば、第2の周期は、測定部11を構成するセンサに固有の値(例えば0.1ms)に固定されていてもよい。検出装置10が光電センサの場合、投光素子が第2の周期でパルス投光し、受光素子の出力をパルス投光のタイミングに合わせて第2の周期でA/D変換してもよい。一方、第1の周期は、コンピュータ30によって、コントローラ20経由で設定可能であってもよい。第1の周期は、同時に処理したい信号値波形の範囲が記憶部12に収まるように決定される必要がある。第1の周期は、第2の周期よりも長く設定されてもよく、第2の周期は、例えば1msであってよい。第1の周期内に複数の信号値が生成される場合は、それらの信号値の平均値を記憶部12に記憶させる信号値としてもよい。 Here, the first period may be the same as or different from the second period. For example, the second period may be fixed to a value (for example, 0.1 ms) unique to the sensor constituting the measurement unit 11. When the detection device 10 is a photoelectric sensor, the light projecting element may perform pulse projection with a second period, and the output of the light receiving element may be A / D converted with the second period in accordance with the timing of pulse projection. On the other hand, the first period may be settable by the computer 30 via the controller 20. The first period needs to be determined so that the range of the signal value waveform to be processed simultaneously is stored in the storage unit 12. The first period may be set longer than the second period, and the second period may be 1 ms, for example. When a plurality of signal values are generated within the first period, the average value of the signal values may be stored in the storage unit 12.
 <判定部>
 判定部13は、FIFOメモリに記憶されている信号値の内の所定の複数の信号値が判定条件を満たすか否かに基づいて、検出範囲10aに対象物100が到来したか否かを判定する。判定部13は、検出範囲10aに対象物100が到来したか否かの判定を第1周期で行ってよい。ここで、測定部11は、信号値を、第1周期以下の第2周期で測定してよい。第1周期が第2周期以上であることで、検出範囲に対象物が到来したか否かを判定する際に適切な数の信号値を参照することができる。
<Determining unit>
The determination unit 13 determines whether or not the object 100 has arrived in the detection range 10a based on whether or not a plurality of predetermined signal values among the signal values stored in the FIFO memory satisfy the determination condition. To do. The determination unit 13 may determine whether or not the object 100 has arrived in the detection range 10a in the first period. Here, the measurement part 11 may measure a signal value with the 2nd period below a 1st period. When the first period is equal to or longer than the second period, it is possible to refer to an appropriate number of signal values when determining whether or not an object has arrived in the detection range.
 判定部13は、記憶部12の複数の段に格納されている信号値を参照し、第1の周期で判定を行い、判定結果を制御部14に対して出力してよい。判定部13は、記憶部12に記憶された所定数の信号値が、立ち上がり波形又は立ち下がり波形を含むか否かに基づいて、検出範囲10aに対象物100が到来したか否かを判定してよい。すなわち、判定条件は、記憶部12に記憶された所定数の信号値が、立ち上がり波形又は立ち下がり波形を含むことを表す条件であってよい。なお、判定部13は、立ち上がり波形及び立ち下がり波形のうち、対象物100の到来の判定に必要な一方の波形についての判定を行うものであってよい。 The determination unit 13 may refer to signal values stored in a plurality of stages of the storage unit 12, perform determination in the first cycle, and output the determination result to the control unit 14. The determination unit 13 determines whether the object 100 has arrived in the detection range 10a based on whether the predetermined number of signal values stored in the storage unit 12 includes a rising waveform or a falling waveform. It's okay. That is, the determination condition may be a condition indicating that the predetermined number of signal values stored in the storage unit 12 includes a rising waveform or a falling waveform. Note that the determination unit 13 may determine one of the rising waveform and the falling waveform that is necessary for determining the arrival of the object 100.
 判定部13による判定に記憶部12のいずれのアドレスに格納されている信号値を用いるか、どのような判定論理に従って判定を行うかといった判定条件は、コンピュータ30からコントローラ20経由で設定されてよい。なお、判定条件は、検出装置10の製造段階において設定されていてもよい。 The determination condition such as which signal value stored in which address of the storage unit 12 is used for determination by the determination unit 13 and what determination logic is used for determination may be set from the computer 30 via the controller 20. . Note that the determination condition may be set in the manufacturing stage of the detection apparatus 10.
 判定部13による判定結果は、検出範囲10aに対象物100が到来したか、検出範囲10aに対象物100が到来していないかに対応する2値であってよいが、判定結果は、3値以上で表されてもよい。例えば判定結果が3値の場合、対象物100が到来した状態と、到来していない状態の他、到来の可能性があるが確度が低い状態を3つ目の状態として加えてもよい。 The determination result by the determination unit 13 may be a binary value corresponding to whether the object 100 has arrived in the detection range 10a or whether the object 100 has not arrived in the detection range 10a, but the determination result has three or more values. It may be represented by For example, when the determination result is ternary, in addition to the state in which the object 100 has arrived and the state in which the object 100 has not arrived, a state that has the possibility of arrival but has low accuracy may be added as the third state.
 本実施形態に係る検出装置10によれば、ある時点における信号値と閾値とを比較して検出範囲10aにおける対象物100の有無を検出し、検出結果の変化によって対象物100が到来したか否かを判定するのではなく、記憶部12に記憶された所定数の信号値が判定条件を満たすか否かに基づいて、検出範囲10aに対象物100が到来したか否かを判定することで、閾値を使用状況に応じて設定するユーザの負担を無くして対象物100の到来を検出することができる。より具体的には、記憶部12に記憶された所定数の信号値が立ち上がり波形又は立ち下がり波形を含むか否かに基づいて、検出範囲10aに対象物100が到来したか否かを判定することができ、閾値を使用状況に応じて設定するユーザの負担を無くして対象物100の到来を検出することができる。 According to the detection apparatus 10 according to the present embodiment, the presence or absence of the object 100 in the detection range 10a is detected by comparing a signal value at a certain time point with a threshold value, and whether or not the object 100 has arrived due to a change in the detection result. Rather than determining whether or not the object 100 has arrived in the detection range 10a based on whether or not a predetermined number of signal values stored in the storage unit 12 satisfy the determination condition. The arrival of the object 100 can be detected without burdening the user who sets the threshold according to the usage status. More specifically, based on whether a predetermined number of signal values stored in the storage unit 12 includes a rising waveform or a falling waveform, it is determined whether the object 100 has arrived in the detection range 10a. It is possible to detect the arrival of the object 100 without the burden on the user who sets the threshold value according to the use situation.
 <制御部>
 制御部14は、検出装置10全体の動作を制御する。制御部14は、例えば、マイクロプロセッサ、メモリ及びメモリに格納された検出装置制御プログラム等からなるコンピュータとして構成することができる。検出装置制御プログラムは、コンピュータにより読み取り可能な記憶媒体に記憶されて提供されてもよく、検出システム1のコンピュータ30から通信路を介して提供されてもよい。制御部14は、コンピュータ30による設定に従って、第1の周期、第2の周期及び判定部13が判定を行うための判定条件等について必要な設定を行ってよい。また、制御部14のマイクロプロセッサは、検出装置10により検出範囲10aに対象物100が到来したか否かを判定する処理を含む検出装置制御プログラムを実行することで、判定部13として機能してもよい。
<Control unit>
The control unit 14 controls the operation of the entire detection apparatus 10. The control unit 14 can be configured as, for example, a computer including a microprocessor, a memory, a detection device control program stored in the memory, and the like. The detection device control program may be provided by being stored in a computer-readable storage medium, or may be provided from the computer 30 of the detection system 1 via a communication path. The control unit 14 may make necessary settings for the first cycle, the second cycle, and the determination condition for the determination unit 13 to perform the determination according to the setting by the computer 30. Further, the microprocessor of the control unit 14 functions as the determination unit 13 by executing a detection device control program including a process for determining whether or not the object 100 has arrived in the detection range 10a by the detection device 10. Also good.
 制御部14は、制御部14が有するメモリを、検出装置制御プログラムに従って制御することでFIFOメモリを実現して、制御部14が有するメモリによって記憶部12を代替してもよい。この場合、FIFOメモリの後段への信号値のシフトは、格納されているデータの物理的なシフトではなく、メモリ上のアクセス箇所の更新によって行うことができる。なお、記憶部12は、専用のハードウェアによって実現されてもよい。 The control unit 14 may realize a FIFO memory by controlling the memory included in the control unit 14 according to the detection device control program, and may replace the storage unit 12 with the memory included in the control unit 14. In this case, the shift of the signal value to the subsequent stage of the FIFO memory can be performed by updating the access location on the memory, not the physical shift of the stored data. The storage unit 12 may be realized by dedicated hardware.
 制御部14は、判定部13により対象物100が到来したと判定された場合、その後の一定期間又は外部からリセットされるまで、対象物100が到来したことを示す外部への出力状態を保持するようにしてもよい。 When the determination unit 13 determines that the object 100 has arrived, the control unit 14 holds an external output state indicating that the object 100 has arrived until a certain period thereafter or until it is reset from the outside. You may do it.
 <入出力部>
 入出力部15は、少なくとも、対象物100の到来に対応する信号を外部に出力する。入出力部15は、対象物100の到来及び非到来に対応する2値の電圧信号又は電流信号を、1本の信号線により出力するようにしてもよい。なお、検出装置10が外部からの通信による設定を受け付けない場合には、入出力部15という名称に関わらず、入出力部15は、出力部のみを有してもよい。
<Input / output unit>
The input / output unit 15 outputs at least a signal corresponding to the arrival of the object 100 to the outside. The input / output unit 15 may output a binary voltage signal or current signal corresponding to the arrival and non-arrival of the object 100 through a single signal line. Note that when the detection apparatus 10 does not accept setting by communication from the outside, the input / output unit 15 may have only the output unit regardless of the name of the input / output unit 15.
 入出力部15は、ネットワークインタフェースを含んで、設定情報を受信し、判定部13による判定結果を出力するものであってもよい。 The input / output unit 15 may include a network interface, receive setting information, and output a determination result by the determination unit 13.
 入出力部15は、判定部13による判定に用いられる判定条件の入力を受け付けてもよい。これにより、検出範囲10aに対象物100が到来したと判定するための判定条件を調整することができ、ユーザの所望の条件により対象物100の到来を検出することができる。検出装置10は、さらに、図示されない操作キーや表示灯を備えてよい。 The input / output unit 15 may accept an input of a determination condition used for determination by the determination unit 13. Thereby, the determination conditions for determining that the target object 100 has arrived in the detection range 10a can be adjusted, and the arrival of the target object 100 can be detected based on the user's desired conditions. The detection device 10 may further include an operation key and an indicator lamp not shown.
 図3aは、本実施形態に係る検出装置10により測定された信号値の一例をグラフにより示す図である。同図では、横軸に時間を示し、縦軸に信号値を示して、信号値の時間変化をグラフにより示している。 FIG. 3a is a graph showing an example of signal values measured by the detection apparatus 10 according to the present embodiment. In the figure, time is shown on the horizontal axis, signal values are shown on the vertical axis, and changes in signal values over time are shown by graphs.
 横軸に示したt0、t1、t2…t6の間隔は、第1の周期であり、例えば1ms間隔であってよい。また、信号値は、任意の電気的信号であってよいが、例えば電圧信号であってよく、その場合、単位はボルトである。 The intervals of t0, t1, t2,... T6 shown on the horizontal axis are the first period, and may be, for example, 1 ms intervals. The signal value may be any electrical signal, but may be a voltage signal, for example, in which case the unit is volts.
 なお、本例では、説明を簡単化するために、信号値を折れ線状のノイズを含まない波形として示しているが、実際に得られる波形はノイズが重畳した波形であってよいし、波形の立ち上がり部分や立下り部分は曲線状となってよい。 In this example, in order to simplify the explanation, the signal value is shown as a waveform that does not include a polygonal line noise. However, the waveform actually obtained may be a waveform in which noise is superimposed, The rising part and the falling part may be curved.
 図3bは、本実施形態に係る検出装置10に記憶された所定数の信号値の一例をグラフにより示す図である。同図では、横軸にFIFOステージを示し、縦軸に信号値を示して、記憶部12に記憶されている信号値をグラフにより示している。 FIG. 3 b is a diagram illustrating an example of a predetermined number of signal values stored in the detection apparatus 10 according to the present embodiment. In the figure, the horizontal axis indicates the FIFO stage, the vertical axis indicates the signal value, and the signal value stored in the storage unit 12 is indicated by a graph.
 横軸に示したq0、q1、q2…q6は、記憶部12(FIFOメモリ)のステージ数を示す。本例及び以下に説明する第1~5事例では、説明を簡単化するために、FIFOメモリのステージ数を合計7段としているが、ステージ数はより多くの段数であってもよく、例えば100段程度であってもよい。 Q0, q1, q2,... Q6 shown on the horizontal axis indicate the number of stages of the storage unit 12 (FIFO memory). In this example and the first to fifth examples described below, the number of FIFO memory stages is 7 in total for the sake of simplicity, but the number of stages may be larger, for example 100 It may be about a step.
 本例では、記憶部12は、7つの信号値を、測定部11により測定された順に記憶する。すなわち、初段q0に時刻t6に測定された信号値「8」を記憶し、第1段q1に時刻t5に測定された信号値「8」を記憶する。第2段q2~第5段q5についても同様であり、第6段q6に時刻t0に測定された信号値「4」を記憶する。 In this example, the storage unit 12 stores the seven signal values in the order measured by the measurement unit 11. That is, the signal value “8” measured at time t6 is stored in the first stage q0, and the signal value “8” measured at time t5 is stored in the first stage q1. The same applies to the second stage q2 to the fifth stage q5, and the signal value “4” measured at time t0 is stored in the sixth stage q6.
 図4aは、第1事例において、本実施形態に係る検出装置10に記憶された所定数の信号値の一例をグラフにより示す図である。同図では、横軸にFIFOステージを示し、縦軸に信号値を示して、記憶部12に記憶されている信号値をグラフにより示している。 FIG. 4a is a graph showing an example of a predetermined number of signal values stored in the detection apparatus 10 according to the present embodiment in the first case. In the figure, the horizontal axis indicates the FIFO stage, the vertical axis indicates the signal value, and the signal value stored in the storage unit 12 is indicated by a graph.
 図4bは、第1事例において、本実施形態に係る検出装置10に記憶された所定数の信号値の一例を示す図である。同図では、図4aに示す信号値を表形式でまとめて示している。以降、「c(n)」(nは整数)という表記は、FIFOメモリの更新の第n周期であることを示す。どの周期を第0周期に選ぶかは任意である。また、第n周期においてFIFOメモリに記憶されている信号値のことを総称して「信号値c(n)」と表記する。 FIG. 4B is a diagram illustrating an example of a predetermined number of signal values stored in the detection apparatus 10 according to the present embodiment in the first case. In the same figure, the signal values shown in FIG. Hereinafter, the notation “c (n)” (where n is an integer) indicates the nth cycle of FIFO memory update. Which cycle is selected as the 0th cycle is arbitrary. In addition, the signal values stored in the FIFO memory in the nth period are collectively referred to as “signal value c (n)”.
 第1事例では、検出範囲10aに対象物100が到来していない時点までに測定され、記憶された信号値c(-5)を実線で示し、その後に最も古い信号値を削除し、新たに測定された信号値を記憶した信号値c(-4)を破線で示している。信号値c(-5)は、初段q0から第6段q6について「4」であり、検出範囲10aに対象物100が到来していないことを示している。その後、検出装置10は、第6段q6に記憶された最も古い信号値を削除し、初段q0から第5段q5に記憶された信号値を一段シフトして、新たに測定された信号値「5」を初段q0に記憶する。信号値c(-4)は、初段q0について「5」、第1段q1から第6段q6について「4」であり、検出範囲10aに対象物100が進入してきたことを示している。 In the first case, the signal value c (−5) measured and stored until the object 100 does not arrive in the detection range 10a is indicated by a solid line, and then the oldest signal value is deleted and newly A signal value c (−4) in which the measured signal value is stored is indicated by a broken line. The signal value c (−5) is “4” for the first stage q0 to the sixth stage q6, indicating that the object 100 has not arrived in the detection range 10a. Thereafter, the detection apparatus 10 deletes the oldest signal value stored in the sixth stage q6, shifts the signal value stored in the first stage q0 to the fifth stage q5 by one stage, and newly measures the signal value “ 5 ”is stored in the first stage q0. The signal value c (−4) is “5” for the first stage q0 and “4” for the first stage q1 to the sixth stage q6, indicating that the object 100 has entered the detection range 10a.
 同様に、信号値c(-4)を記憶した後に、第6段q6に記憶された最も古い信号値「4」を削除し、新たに測定された信号値「6」を初段q0に記憶した信号値c(-3)を一点鎖線で示している。また、信号値c(-3)を記憶した後に、第6段q6に記憶された最も古い信号値「4」を削除し、新たに測定された信号値「7」を初段q0に記憶した信号値c(-2)を二点鎖線で示している。また、信号値c(-2)を記憶した後に、第6段q6に記憶された最も古い信号値「4」を削除し、新たに測定された信号値「8」を初段q0に記憶した信号値c(-1)を点線で示している。また、信号値c(-1)を記憶した後に、第6段q6に記憶された最も古い信号値「4」を削除し、新たに測定された信号値「8」を初段q0に記憶した信号値c(0)を実線で示している。また、信号値c(0)を記憶した後に、第6段q6に記憶された最も古い信号値「4」を削除し、新たに測定された信号値「8」を初段q0に記憶した信号値c(1)を破線で示している。また、信号値c(1)を記憶した後に、第6段q6に記憶された最も古い信号値「4」を削除し、新たに測定された信号値「8」を初段q0に記憶した信号値c(2)を一点鎖線で示している。また、信号値c(2)を記憶した後に、第6段q6に記憶された最も古い信号値「5」を削除し、新たに測定された信号値「8」を初段q0に記憶した信号値c(3)を二点鎖線で示している。また、信号値c(3)を記憶した後に、第6段q6に記憶された最も古い信号値「6」を削除し、新たに測定された信号値「8」を初段q0に記憶した信号値c(4)を点線で示している。最後に、信号値c(4)を記憶した後に、第6段q6に記憶された最も古い信号値「7」を削除し、新たに測定された信号値「8」を初段q0に記憶した信号値c(5)を実線で示している。 Similarly, after storing the signal value c (−4), the oldest signal value “4” stored in the sixth stage q6 is deleted, and the newly measured signal value “6” is stored in the first stage q0. The signal value c (-3) is indicated by a one-dot chain line. Further, after storing the signal value c (−3), the oldest signal value “4” stored in the sixth stage q6 is deleted, and the newly measured signal value “7” is stored in the first stage q0. The value c (−2) is indicated by a two-dot chain line. Further, after storing the signal value c (−2), the oldest signal value “4” stored in the sixth stage q6 is deleted, and the newly measured signal value “8” is stored in the first stage q0. The value c (-1) is indicated by a dotted line. Further, after storing the signal value c (−1), the oldest signal value “4” stored in the sixth stage q6 is deleted, and the newly measured signal value “8” is stored in the first stage q0. The value c (0) is indicated by a solid line. Further, after storing the signal value c (0), the oldest signal value “4” stored in the sixth stage q6 is deleted, and the newly measured signal value “8” is stored in the first stage q0. c (1) is indicated by a broken line. Further, after storing the signal value c (1), the oldest signal value “4” stored in the sixth stage q6 is deleted, and the newly measured signal value “8” is stored in the first stage q0. c (2) is indicated by a one-dot chain line. Further, after storing the signal value c (2), the oldest signal value “5” stored in the sixth stage q6 is deleted, and the newly measured signal value “8” is stored in the first stage q0. c (3) is indicated by a two-dot chain line. In addition, after storing the signal value c (3), the oldest signal value “6” stored in the sixth stage q6 is deleted, and the newly measured signal value “8” is stored in the first stage q0. c (4) is indicated by a dotted line. Finally, after storing the signal value c (4), the oldest signal value “7” stored in the sixth stage q6 is deleted, and the newly measured signal value “8” is stored in the first stage q0. The value c (5) is indicated by a solid line.
 このように、記憶部12に記憶される信号値が時々刻々と変化する状況で、判定部13は、信号値を測定部11により測定しつつ、所定数の信号値が判定条件を満たすか否かに基づいて、検出範囲10aに対象物100が到来したか否かを判定する。ここで、判定条件は、第1時点において取得された信号値と、第1時点より後の第2時点において取得された信号値とが実質的に等しいことと、第2時点において取得された信号値よりも、第2時点より後の第3時点において取得された信号値の方が大きく、その差の絶対値が所定の値よりも大きいことと、を含んでよい。以下では、この条件を第1判定条件と呼ぶ。第1判定条件は、所定数の信号値が立ち上がり波形を含むことを表す条件の一例である。この例では、FIFOメモリに逐次記憶していく信号値のパターンが所定の立ち上がり波形となった場合に、検出範囲10aに対象物100が到来したものとして判定する。 In this way, in a situation where the signal value stored in the storage unit 12 changes from moment to moment, the determination unit 13 measures the signal value by the measurement unit 11 and whether or not a predetermined number of signal values satisfy the determination condition. Whether or not the object 100 has arrived in the detection range 10a is determined. Here, the determination condition is that the signal value acquired at the first time point is substantially equal to the signal value acquired at the second time point after the first time point, and the signal acquired at the second time point. The signal value acquired at the third time point after the second time point is larger than the value, and the absolute value of the difference may be larger than the predetermined value. Hereinafter, this condition is referred to as a first determination condition. The first determination condition is an example of a condition indicating that a predetermined number of signal values include a rising waveform. In this example, when the signal value pattern sequentially stored in the FIFO memory has a predetermined rising waveform, it is determined that the object 100 has arrived in the detection range 10a.
 本例の場合、第1判定条件における第1時点において取得された信号値は、第6段q6に記憶された信号値であってよく、第2時点において取得された信号値は、第5段q5に記憶された信号値であってよく、第3時点において取得された信号値は、第4段q4に記憶された信号値であってよい。すなわち、第1判定条件は、第6段q6に記憶された信号値と、第5段q5に記憶された信号値とが実質的に等しいことと、第5段q5に記憶された信号値よりも、第4段q4に記憶された信号値の方が大きく、その差の絶対値が所定の値よりも大きいことと、を含んでよい。 In this example, the signal value acquired at the first time point in the first determination condition may be the signal value stored in the sixth stage q6, and the signal value acquired at the second time point is the fifth stage. The signal value stored in q5 may be the signal value acquired at the third time point may be the signal value stored in the fourth stage q4. That is, the first determination condition is that the signal value stored in the sixth stage q6 is substantially equal to the signal value stored in the fifth stage q5, and that the signal value stored in the fifth stage q5 is May include that the signal value stored in the fourth stage q4 is larger and the absolute value of the difference is larger than a predetermined value.
 ここで、2つの信号値が実質的に等しいとは、2つの信号値が完全に等しいことのみならず、2つの信号値が完全に等しくないが、信号値の差がノイズによる影響の範囲であると判定されることをいう。例えば、第6段q6に記憶された信号値と、第5段q5に記憶された信号値との差が、±0.2の範囲に収まる場合に、第6段q6に記憶された信号値と、第5段q5に記憶された信号値とが実質的に等しいと判定してよい。 Here, the two signal values are substantially equal, not only the two signal values are completely equal, but also the two signal values are not completely equal, but the difference between the signal values is within the range of the influence of noise. It is determined that there is. For example, the signal value stored in the sixth stage q6 when the difference between the signal value stored in the sixth stage q6 and the signal value stored in the fifth stage q5 is within a range of ± 0.2. And the signal value stored in the fifth stage q5 may be determined to be substantially equal.
 また、2つの信号値の差が所定の値よりも大きいとは、2つの信号値の差がノイズによる影響の範囲を超えて相違していることをいう。例えば、第4段q4に記憶された信号値から第5段q5に記憶された信号値を引いた値が、0.2より大きい場合に、第5段q5に記憶された信号値よりも、第4段q4に記憶された信号値の方が大きく、その差の絶対値が所定の値よりも大きいと判定してよい。 Also, the difference between the two signal values being larger than the predetermined value means that the difference between the two signal values is different beyond the range of the influence of noise. For example, when the value obtained by subtracting the signal value stored in the fifth stage q5 from the signal value stored in the fourth stage q4 is greater than 0.2, the signal value stored in the fifth stage q5 is It may be determined that the signal value stored in the fourth stage q4 is larger and the absolute value of the difference is larger than a predetermined value.
 本例の場合、信号値c(-5)からc(5)のうち、第6段q6に記憶された信号値と、第5段q5に記憶された信号値とが実質的に等しいという条件を満たす信号値は、信号値c(-5)からc(0)である。また、第5段q5に記憶された信号値よりも、第4段q4に記憶された信号値の方が大きく、その差の絶対値が所定の値よりも大きいという条件を満たす信号値は、信号値c(0)からc(3)である。従って、本例の場合、第1判定条件を満たす信号値は、信号値c(0)のみである。そのため、判定部13は、信号値c(0)が記憶された周期において、検出範囲10aに対象物100が到来したと判定する。 In the case of this example, among the signal values c (−5) to c (5), the condition is that the signal value stored in the sixth stage q6 and the signal value stored in the fifth stage q5 are substantially equal. Signal values satisfying the conditions are signal values c (−5) to c (0). In addition, the signal value that satisfies the condition that the signal value stored in the fourth stage q4 is larger than the signal value stored in the fifth stage q5 and the absolute value of the difference is larger than a predetermined value, The signal values are c (0) to c (3). Therefore, in this example, the signal value that satisfies the first determination condition is only the signal value c (0). Therefore, the determination unit 13 determines that the object 100 has arrived in the detection range 10a in the cycle in which the signal value c (0) is stored.
 なお、本例では波形の立ち上がり部分を検出する場合について説明したが、波形の立ち下がり部分を検出する場合には、第6段q6に記憶された信号値と、第5段q5に記憶された信号値との差が±0.2の範囲に収まることと、第5段q5に記憶された信号値よりも、第4段q4に記憶された信号値の方が小さく、その差の絶対値が0.2より大きいことと、を判定条件とすればよい。このことは、以下に説明する第2~5事例についても同様である。 In this example, the case where the rising part of the waveform is detected has been described. However, when the falling part of the waveform is detected, the signal value stored in the sixth stage q6 and the signal stored in the fifth stage q5 are stored. When the difference from the signal value is within a range of ± 0.2, the signal value stored in the fourth stage q4 is smaller than the signal value stored in the fifth stage q5, and the absolute value of the difference Is determined to be greater than 0.2. The same applies to the second to fifth cases described below.
 なお、第1判定条件は、さらに、第3時点において取得された信号値と、第3時点より後の第4時点において取得された信号値とが実質的に等しいこと及び第3時点において取得された信号値よりも、第4時点において取得された信号値の方が大きく、その差の絶対値が所定の値よりも大きいことの少なくともいずれかという条件を含んでもよい。ここで、第4時点において取得された信号値は、第3段q3に記憶された信号値であってよく、第1判定条件は、第4段q4に記憶された信号値と、第3段q3に記憶された信号値とが実質的に等しいこと及び第4段q4に記憶された信号値よりも、第3段q3に記憶された信号値の方が大きく、その差の絶対値が所定の値よりも大きいことの少なくともいずれかという条件を含んでよい。あるいは、波形の立ち上がり部分を検出する条件は3つ以上の信号値が単調増加(波形の立ち下がり部分を検出するときは単調減少)しているという条件を含んでよい。このことは、以下に説明する第2~5事例についても同様である。 The first determination condition is further acquired when the signal value acquired at the third time point is substantially equal to the signal value acquired at the fourth time point after the third time point and at the third time point. It may include a condition that the signal value acquired at the fourth time point is larger than the signal value and that the absolute value of the difference is greater than a predetermined value. Here, the signal value acquired at the fourth time point may be the signal value stored in the third stage q3, and the first determination condition is that the signal value stored in the fourth stage q4 and the third stage The signal value stored in q3 is substantially equal, and the signal value stored in the third stage q3 is larger than the signal value stored in the fourth stage q4, and the absolute value of the difference is predetermined. It may include a condition that it is at least either greater than the value of. Alternatively, the condition for detecting the rising portion of the waveform may include a condition that three or more signal values are monotonically increasing (monotonically decreasing when the falling portion of the waveform is detected). The same applies to the second to fifth cases described below.
 判定条件は、第1時点において取得された信号値と、第1時点より後の第2時点において取得された信号値とが実質的に等しいことと、第2時点より後の第3時点において取得された信号値と、第3時点より後の第4時点において取得された信号値とが実質的に等しいことと、第1時点において取得された信号値及び第2時点において取得された信号値のいずれかよりも、第3時点において取得された信号値及び第4時点において取得された信号値のいずれかの方が大きく、その差の絶対値が所定の値よりも大きいことと、を含んでよい。以下では、この条件を第2判定条件と呼ぶ。第2判定条件は、所定数の信号値が立ち上がり波形を含むことを表す条件の一例である。この例では、FIFOメモリに逐次記憶していく信号値のパターンが所定の立ち上がり波形となった場合に、検出範囲10aに対象物100が到来したものとして判定する。 The determination condition is that the signal value acquired at the first time point is substantially equal to the signal value acquired at the second time point after the first time point, and acquired at the third time point after the second time point. The signal value acquired at the fourth time point after the third time point is substantially equal to the signal value acquired at the first time point and the signal value acquired at the second time point. Any one of the signal value acquired at the third time point and the signal value acquired at the fourth time point is larger than either, and the absolute value of the difference is larger than the predetermined value. Good. Hereinafter, this condition is referred to as a second determination condition. The second determination condition is an example of a condition indicating that a predetermined number of signal values include a rising waveform. In this example, when the signal value pattern sequentially stored in the FIFO memory has a predetermined rising waveform, it is determined that the object 100 has arrived in the detection range 10a.
 本例の場合、第2判定条件における第1時点において取得された信号値は、第6段q6に記憶された信号値であってよく、第2時点において取得された信号値は、第5段q5に記憶された信号値であってよく、第3時点において取得された信号値は、第1段q1に記憶された信号値であってよく、第4時点において取得された信号値は、初段q0に記憶された信号値であってよい。すなわち、第2判定条件は、第6段q6に記憶された信号値と、第5段q5に記憶された信号値とが実質的に等しいことと、第1段q1に記憶された信号値と、初段q0に記憶された信号値とが実質的に等しいことと、第6段q6に記憶された信号値及び第5段q5に記憶された信号値のいずれかよりも、第1段q1に記憶された信号値及び初段q0に記憶された信号値のいずれかの方が大きく、その差の絶対値が所定の値よりも大きいことと、を含んでよい。 In this example, the signal value acquired at the first time point in the second determination condition may be the signal value stored in the sixth stage q6, and the signal value acquired at the second time point is the fifth stage. The signal value acquired at the third time point may be the signal value stored at q5, and the signal value stored at the first stage q1 may be the signal value acquired at the fourth time point. It may be the signal value stored in q0. That is, the second determination condition is that the signal value stored in the sixth stage q6 is substantially equal to the signal value stored in the fifth stage q5, and the signal value stored in the first stage q1 is In the first stage q1, the signal value stored in the first stage q0 is substantially equal to the signal value stored in the sixth stage q6 and the signal value stored in the fifth stage q5. One of the stored signal value and the signal value stored in the first stage q0 may be larger, and the absolute value of the difference may be greater than a predetermined value.
 本例の場合、信号値c(-5)からc(5)のうち、第6段q6に記憶された信号値と、第5段q5に記憶された信号値とが実質的に等しいという条件を満たす信号値は、信号値c(-5)からc(0)である。また、第1段q1に記憶された信号値と、初段q0に記憶された信号値とが実質的に等しいという条件を満たす信号値は、信号値c(0)からc(5)である。さらに、第6段q6に記憶された信号値及び第5段q5に記憶された信号値のいずれかよりも、第1段q1に記憶された信号値及び初段q0に記憶された信号値のいずれかの方が大きく、その差の絶対値が所定の値よりも大きいという条件を満たす信号値は、信号値c(-4)からc(4)である。従って、本例の場合、第2判定条件を満たす信号値は、信号値c(0)のみである。そのため、判定部13は、信号値c(0)が記憶された周期において、検出範囲10aに対象物100が到来したと判定する。 In the case of this example, among the signal values c (−5) to c (5), the condition is that the signal value stored in the sixth stage q6 and the signal value stored in the fifth stage q5 are substantially equal. Signal values satisfying the conditions are signal values c (−5) to c (0). The signal values satisfying the condition that the signal value stored in the first stage q1 and the signal value stored in the first stage q0 are substantially equal are signal values c (0) to c (5). Further, any of the signal value stored in the first stage q1 and the signal value stored in the first stage q0 is greater than either the signal value stored in the sixth stage q6 or the signal value stored in the fifth stage q5. The signal values that satisfy the condition that the absolute value of the difference is larger than the predetermined value are signal values c (−4) to c (4). Therefore, in this example, the signal value that satisfies the second determination condition is only the signal value c (0). Therefore, the determination unit 13 determines that the object 100 has arrived in the detection range 10a in the cycle in which the signal value c (0) is stored.
 なお、本例では波形の立ち上がり部分を検出する場合について説明したが、波形の立ち下がり部分を検出する場合には、第6段q6に記憶された信号値と、第5段q5に記憶された信号値との差が±0.2の範囲に収まることと、第1段q1に記憶された信号値と、初段q0に記憶された信号値との差が±0.2の範囲に収まることと、第6段q6に記憶された信号値及び第5段q5に記憶された信号値のいずれかよりも、第1段q1に記憶された信号値及び初段q0に記憶された信号値のいずれかの方が小さく、その差の絶対値が0.2より大きいことと、を判定条件とすればよい。このことは、以下に説明する第2~5事例についても同様である。 In this example, the case where the rising part of the waveform is detected has been described. However, when the falling part of the waveform is detected, the signal value stored in the sixth stage q6 and the signal stored in the fifth stage q5 are stored. The difference between the signal value is within a range of ± 0.2, and the difference between the signal value stored in the first stage q1 and the signal value stored in the first stage q0 is within a range of ± 0.2. And any of the signal value stored in the first stage q0 and the signal value stored in the first stage q0, rather than any of the signal value stored in the sixth stage q6 and the signal value stored in the fifth stage q5. The determination condition may be that the difference is smaller and the absolute value of the difference is greater than 0.2. The same applies to the second to fifth cases described below.
 第1判定条件及び第2判定条件において、信号値が実質的に等しいか否かの判定のために3以上の時点において取得された信号値を用い、単発的に他の信号値と実質的に等しくない信号値が生じても、そのような信号値を除外するようにしてもよい。例えば、信号値が外れ値であるか否かを判定し、外れ値を除外することとしてもよい。これにより、ノイズによる誤動作を低減することができる。 In the first determination condition and the second determination condition, signal values acquired at three or more time points are used to determine whether or not the signal values are substantially equal, and the signal values are substantially substantially different from other signal values. Even if unequal signal values occur, such signal values may be excluded. For example, it may be determined whether or not the signal value is an outlier, and the outlier may be excluded. Thereby, malfunction due to noise can be reduced.
 検出装置10は、入出力部15により、第1判定条件又は第2判定条件の入力を受け付けてもよい。また、判定条件を決定する前に、検出装置10からコンピュータ30に実測した信号値のデータを送り、それを用いて試作した判定条件が実測された波形に対してうまく働くかを確認するためのシミュレーションを、コンピュータ30により行ってもよい。また、ユーザが行う判定条件の作成手順をプログラム化して、コンピュータ30を用いて判定条件の作成を半自動化してもよい。そのようにして作成された判定条件は、コンピュータ30からコントローラ20を経由して、又は検出装置10の製造段階で、検出装置10に設定されてよい。 The detection apparatus 10 may receive an input of the first determination condition or the second determination condition through the input / output unit 15. In addition, before determining the determination condition, the data of the signal value actually measured is sent from the detection apparatus 10 to the computer 30, and it is used to confirm whether the determination condition prototyped using the data works well on the actually measured waveform. The simulation may be performed by the computer 30. Alternatively, the determination condition creation procedure performed by the user may be programmed and the determination condition creation using the computer 30 semi-automated. The determination condition thus created may be set in the detection device 10 from the computer 30 via the controller 20 or at the manufacturing stage of the detection device 10.
 図5aは、第2事例において、本実施形態に係る検出装置10に記憶された所定数の信号値の一例をグラフにより示す図である。同図では、横軸にFIFOステージを示し、縦軸に信号値を示して、記憶部12に記憶されている信号値をグラフにより示している。 FIG. 5a is a diagram illustrating an example of a predetermined number of signal values stored in the detection device 10 according to the present embodiment in a graph in the second case. In the figure, the horizontal axis indicates the FIFO stage, the vertical axis indicates the signal value, and the signal value stored in the storage unit 12 is indicated by a graph.
 図5bは、第2事例において、本実施形態に係る検出装置10に記憶された所定数の信号値の一例を示す図である。同図では、図5aに示す信号値を表形式でまとめて示している。 FIG. 5b is a diagram illustrating an example of a predetermined number of signal values stored in the detection apparatus 10 according to the present embodiment in the second case. In the same figure, the signal values shown in FIG.
 第2事例は、第1事例と比較して、対象物100の反射率が大きく、検出範囲10aに対象物100が到来した場合に測定部11により測定される信号値が第1事例の場合より大きい例を示している。具体的には、第2事例において検出範囲10aに対象物100が到来した場合に測定部11により測定される信号値は、第1事例の場合の1.25倍である。図5aでは、信号値c(-2)を記憶した後に、第6段q6に記憶された最も古い信号値「4」を削除し、新たに測定された信号値「10」を初段q0に記憶した信号値c(-1)を破線で示している。また、信号値c(-1)を記憶した後に、第6段q6に記憶された最も古い信号値「4」を削除し、新たに測定された信号値「10」を初段q0に記憶した信号値c(0)を実線で示している。 In the second case, the reflectance of the object 100 is larger than that in the first case, and the signal value measured by the measurement unit 11 when the object 100 arrives in the detection range 10a is higher than in the case of the first case. A large example is shown. Specifically, the signal value measured by the measurement unit 11 when the object 100 arrives in the detection range 10a in the second case is 1.25 times that in the first case. In FIG. 5a, after storing the signal value c (−2), the oldest signal value “4” stored in the sixth stage q6 is deleted, and the newly measured signal value “10” is stored in the first stage q0. The obtained signal value c (−1) is indicated by a broken line. Further, after storing the signal value c (−1), the oldest signal value “4” stored in the sixth stage q6 is deleted, and the newly measured signal value “10” is stored in the first stage q0. The value c (0) is indicated by a solid line.
 このように、対象物100の反射率が大きく、記憶部12に記憶される信号値が比較的大きい場合であっても、判定部13は、信号値を測定部11により測定しつつ、所定数の信号値が判定条件を満たすか否かに基づいて、検出範囲10aに対象物100が到来したか否かを判定することができる。ここで、判定条件は、第1判定条件及び第2判定条件の少なくともいずれかであってよい。 As described above, even when the reflectance of the object 100 is large and the signal value stored in the storage unit 12 is relatively large, the determination unit 13 measures the signal value by the measurement unit 11 while measuring the predetermined number. Whether or not the object 100 has arrived in the detection range 10a can be determined based on whether or not the signal value satisfies the determination condition. Here, the determination condition may be at least one of the first determination condition and the second determination condition.
 本例の場合、信号値c(-5)からc(5)のうち、第6段q6に記憶された信号値と、第5段q5に記憶された信号値とが実質的に等しいという条件を満たす信号値は、信号値c(-5)からc(0)である。また、第5段q5に記憶された信号値よりも、第4段q4に記憶された信号値の方が大きく、その差の絶対値が所定の値よりも大きいという条件を満たす信号値は、信号値c(0)からc(3)である。従って、本例の場合、第1判定条件を満たす信号値は、信号値c(0)のみである。そのため、判定部13は、信号値c(0)が記憶された周期において、検出範囲10aに対象物100が到来したと判定する。 In the case of this example, among the signal values c (−5) to c (5), the condition is that the signal value stored in the sixth stage q6 and the signal value stored in the fifth stage q5 are substantially equal. Signal values satisfying the conditions are signal values c (−5) to c (0). In addition, the signal value that satisfies the condition that the signal value stored in the fourth stage q4 is larger than the signal value stored in the fifth stage q5 and the absolute value of the difference is larger than a predetermined value, The signal values are c (0) to c (3). Therefore, in this example, the signal value that satisfies the first determination condition is only the signal value c (0). Therefore, the determination unit 13 determines that the object 100 has arrived in the detection range 10a in the cycle in which the signal value c (0) is stored.
 また、本例の場合、信号値c(-5)からc(5)のうち、第6段q6に記憶された信号値と、第5段q5に記憶された信号値とが実質的に等しいという条件を満たす信号値は、信号値c(-5)からc(0)である。また、第1段q1に記憶された信号値と、初段q0に記憶された信号値とが実質的に等しいという条件を満たす信号値は、信号値c(0)からc(5)である。さらに、第6段q6に記憶された信号値及び第5段q5に記憶された信号値のいずれかよりも、第1段q1に記憶された信号値及び初段q0に記憶された信号値のいずれかの方が大きく、その差の絶対値が所定の値よりも大きいという条件を満たす信号値は、信号値c(-4)からc(4)である。従って、本例の場合、第2判定条件を満たす信号値は、信号値c(0)のみである。そのため、判定部13は、信号値c(0)が記憶された周期において、検出範囲10aに対象物100が到来したと判定する。 In the case of this example, among the signal values c (−5) to c (5), the signal value stored in the sixth stage q6 is substantially equal to the signal value stored in the fifth stage q5. Signal values satisfying the condition are signal values c (−5) to c (0). The signal values satisfying the condition that the signal value stored in the first stage q1 and the signal value stored in the first stage q0 are substantially equal are signal values c (0) to c (5). Further, any of the signal value stored in the first stage q1 and the signal value stored in the first stage q0 is greater than either the signal value stored in the sixth stage q6 or the signal value stored in the fifth stage q5. The signal values that satisfy the condition that the absolute value of the difference is larger than the predetermined value are signal values c (−4) to c (4). Therefore, in this example, the signal value that satisfies the second determination condition is only the signal value c (0). Therefore, the determination unit 13 determines that the object 100 has arrived in the detection range 10a in the cycle in which the signal value c (0) is stored.
 図6aは、第3事例において、本実施形態に係る検出装置10に記憶された所定数の信号値の一例をグラフにより示す図である。同図では、横軸にFIFOステージを示し、縦軸に信号値を示して、記憶部12に記憶されている信号値をグラフにより示している。 FIG. 6 a is a graph showing an example of a predetermined number of signal values stored in the detection apparatus 10 according to the present embodiment in the third case. In the figure, the horizontal axis indicates the FIFO stage, the vertical axis indicates the signal value, and the signal value stored in the storage unit 12 is indicated by a graph.
 図6bは、第3事例において、本実施形態に係る検出装置10に記憶された所定数の信号値の一例を示す図である。同図では、図5aに示す信号値を表形式でまとめて示している。 FIG. 6 b is a diagram illustrating an example of a predetermined number of signal values stored in the detection apparatus 10 according to the present embodiment in the third case. In the same figure, the signal values shown in FIG.
 第3事例は、第1事例と比較して、背景反射率が小さく、検出範囲10aに対象物100が到来していない場合に測定部11により測定される信号値が第1事例の場合より小さい例を示している。具体的には、第3事例において検出範囲10aに対象物100が到来していない場合に測定部11により測定される信号値は、第1事例の場合の0.5倍である。図6aでは、信号値c(-2)を記憶した後に、第6段q6に記憶された最も古い信号値「2」を削除し、新たに測定された信号値「8」を初段q0に記憶した信号値c(-1)を破線で示している。また、信号値c(-1)を記憶した後に、第6段q6に記憶された最も古い信号値「2」を削除し、新たに測定された信号値「8」を初段q0に記憶した信号値c(0)を実線で示している。 In the third case, the background reflectance is small compared to the first case, and the signal value measured by the measurement unit 11 when the object 100 does not arrive in the detection range 10a is smaller than that in the first case. An example is shown. Specifically, the signal value measured by the measurement unit 11 when the object 100 does not arrive in the detection range 10a in the third case is 0.5 times that in the first case. In FIG. 6a, after storing the signal value c (−2), the oldest signal value “2” stored in the sixth stage q6 is deleted, and the newly measured signal value “8” is stored in the first stage q0. The obtained signal value c (−1) is indicated by a broken line. Further, after storing the signal value c (−1), the oldest signal value “2” stored in the sixth stage q6 is deleted, and the newly measured signal value “8” is stored in the first stage q0. The value c (0) is indicated by a solid line.
 このように、背景反射率が小さく、記憶部12に記憶される信号値が比較的小さい場合であっても、判定部13は、信号値を測定部11により測定しつつ、所定数の信号値が判定条件を満たすか否かに基づいて、検出範囲10aに対象物100が到来したか否かを判定することができる。ここで、判定条件は、第1判定条件及び第2判定条件の少なくともいずれかであってよい。 As described above, even when the background reflectance is small and the signal value stored in the storage unit 12 is relatively small, the determination unit 13 measures the signal value by the measurement unit 11 and the predetermined number of signal values. Whether or not the object 100 has arrived in the detection range 10a can be determined based on whether or not the determination condition is satisfied. Here, the determination condition may be at least one of the first determination condition and the second determination condition.
 本例の場合、信号値c(-5)からc(5)のうち、第6段q6に記憶された信号値と、第5段q5に記憶された信号値とが実質的に等しいという条件を満たす信号値は、信号値c(-5)からc(0)である。また、第5段q5に記憶された信号値よりも、第4段q4に記憶された信号値の方が大きく、その差の絶対値が所定の値よりも大きいという条件を満たす信号値は、信号値c(0)からc(3)である。従って、本例の場合、第1判定条件を満たす信号値は、信号値c(0)のみである。そのため、判定部13は、信号値c(0)が記憶された周期において、検出範囲10aに対象物100が到来したと判定する。 In the case of this example, among the signal values c (−5) to c (5), the condition is that the signal value stored in the sixth stage q6 and the signal value stored in the fifth stage q5 are substantially equal. Signal values satisfying the conditions are signal values c (−5) to c (0). In addition, the signal value that satisfies the condition that the signal value stored in the fourth stage q4 is larger than the signal value stored in the fifth stage q5 and the absolute value of the difference is larger than a predetermined value, The signal values are c (0) to c (3). Therefore, in this example, the signal value that satisfies the first determination condition is only the signal value c (0). Therefore, the determination unit 13 determines that the object 100 has arrived in the detection range 10a in the cycle in which the signal value c (0) is stored.
 また、本例の場合、信号値c(-5)からc(5)のうち、第6段q6に記憶された信号値と、第5段q5に記憶された信号値とが実質的に等しいという条件を満たす信号値は、信号値c(-5)からc(0)である。また、第1段q1に記憶された信号値と、初段q0に記憶された信号値とが実質的に等しいという条件を満たす信号値は、信号値c(0)からc(5)である。さらに、第6段q6に記憶された信号値及び第5段q5に記憶された信号値のいずれかよりも、第1段q1に記憶された信号値及び初段q0に記憶された信号値のいずれかの方が大きく、その差の絶対値が所定の値よりも大きいという条件を満たす信号値は、信号値c(-4)からc(4)である。従って、本例の場合、第2判定条件を満たす信号値は、信号値c(0)のみである。そのため、判定部13は、信号値c(0)が記憶された周期において、検出範囲10aに対象物100が到来したと判定する。 In the case of this example, among the signal values c (−5) to c (5), the signal value stored in the sixth stage q6 is substantially equal to the signal value stored in the fifth stage q5. Signal values satisfying the condition are signal values c (−5) to c (0). The signal values satisfying the condition that the signal value stored in the first stage q1 and the signal value stored in the first stage q0 are substantially equal are signal values c (0) to c (5). Further, any of the signal value stored in the first stage q1 and the signal value stored in the first stage q0 is greater than either the signal value stored in the sixth stage q6 or the signal value stored in the fifth stage q5. The signal values that satisfy the condition that the absolute value of the difference is larger than the predetermined value are signal values c (−4) to c (4). Therefore, in this example, the signal value that satisfies the second determination condition is only the signal value c (0). Therefore, the determination unit 13 determines that the object 100 has arrived in the detection range 10a in the cycle in which the signal value c (0) is stored.
 図7aは、第4事例において、本実施形態に係る検出装置10に記憶された所定数の信号値の一例をグラフにより示す図である。同図では、横軸にFIFOステージを示し、縦軸に信号値を示して、記憶部12に記憶されている信号値をグラフにより示している。 FIG. 7a is a graph showing an example of a predetermined number of signal values stored in the detection apparatus 10 according to the present embodiment in the fourth case. In the figure, the horizontal axis indicates the FIFO stage, the vertical axis indicates the signal value, and the signal value stored in the storage unit 12 is indicated by a graph.
 図7bは、第4事例において、本実施形態に係る検出装置10に記憶された所定数の信号値の一例を示す図である。同図では、図5aに示す信号値を表形式でまとめて示している。 FIG. 7 b is a diagram illustrating an example of a predetermined number of signal values stored in the detection device 10 according to the present embodiment in the fourth case. In the same figure, the signal values shown in FIG.
 第4事例は、第1事例と比較して、測定部11の投光量が小さく、測定部11により測定される信号値が第1事例の場合より小さい例を示している。具体的には、第4事例において検出範囲10aに対象物100が到来した場合に測定部11により測定される信号値は、第1事例の場合の0.5倍であり、検出範囲10aに対象物100が到来していない場合に測定部11により測定される信号値も、第1事例の場合の0.5倍である。図7aでは、信号値c(-2)を記憶した後に、第6段q6に記憶された最も古い信号値「2」を削除し、新たに測定された信号値「4」を初段q0に記憶した信号値c(-1)を破線で示している。また、信号値c(-1)を記憶した後に、第6段q6に記憶された最も古い信号値「2」を削除し、新たに測定された信号値「4」を初段q0に記憶した信号値c(0)を実線で示している。 The fourth case shows an example in which the amount of light emitted from the measuring unit 11 is smaller than that in the first case, and the signal value measured by the measuring unit 11 is smaller than that in the first case. Specifically, the signal value measured by the measurement unit 11 when the object 100 arrives in the detection range 10a in the fourth case is 0.5 times that in the first case, and the target value is in the detection range 10a. The signal value measured by the measurement unit 11 when the object 100 has not arrived is also 0.5 times that in the first case. In FIG. 7a, after storing the signal value c (−2), the oldest signal value “2” stored in the sixth stage q6 is deleted, and the newly measured signal value “4” is stored in the first stage q0. The obtained signal value c (−1) is indicated by a broken line. Further, after storing the signal value c (−1), the oldest signal value “2” stored in the sixth stage q6 is deleted, and the newly measured signal value “4” is stored in the first stage q0. The value c (0) is indicated by a solid line.
 このように、測定部11の投光量が小さく、記憶部12に記憶される信号値が比較的小さい場合であっても、判定部13は、信号値を測定部11により測定しつつ、所定数の信号値が判定条件を満たすか否かに基づいて、検出範囲10aに対象物100が到来したか否かを判定することができる。ここで、判定条件は、第1判定条件及び第2判定条件の少なくともいずれかであってよい。 As described above, even when the light projection amount of the measurement unit 11 is small and the signal value stored in the storage unit 12 is relatively small, the determination unit 13 measures the signal value by the measurement unit 11 while the predetermined number. Whether or not the object 100 has arrived in the detection range 10a can be determined based on whether or not the signal value satisfies the determination condition. Here, the determination condition may be at least one of the first determination condition and the second determination condition.
 本例の場合、信号値c(-5)からc(5)のうち、第6段q6に記憶された信号値と、第5段q5に記憶された信号値とが実質的に等しいという条件を満たす信号値は、信号値c(-5)からc(0)である。また、第5段q5に記憶された信号値よりも、第4段q4に記憶された信号値の方が大きく、その差の絶対値が所定の値よりも大きいという条件を満たす信号値は、信号値c(0)からc(3)である。従って、本例の場合、第1判定条件を満たす信号値は、信号値c(0)のみである。そのため、判定部13は、信号値c(0)が記憶された周期において、検出範囲10aに対象物100が到来したと判定する。 In the case of this example, among the signal values c (−5) to c (5), the condition is that the signal value stored in the sixth stage q6 and the signal value stored in the fifth stage q5 are substantially equal. Signal values satisfying the conditions are signal values c (−5) to c (0). Further, the signal value satisfying the condition that the signal value stored in the fourth stage q4 is larger than the signal value stored in the fifth stage q5 and the absolute value of the difference is larger than a predetermined value, The signal values are c (0) to c (3). Therefore, in this example, the signal value that satisfies the first determination condition is only the signal value c (0). Therefore, the determination unit 13 determines that the object 100 has arrived in the detection range 10a in the cycle in which the signal value c (0) is stored.
 また、本例の場合、信号値c(-5)からc(5)のうち、第6段q6に記憶された信号値と、第5段q5に記憶された信号値とが実質的に等しいという条件を満たす信号値は、信号値c(-5)からc(0)である。また、第1段q1に記憶された信号値と、初段q0に記憶された信号値とが実質的に等しいという条件を満たす信号値は、信号値c(0)からc(5)である。さらに、第6段q6に記憶された信号値及び第5段q5に記憶された信号値のいずれかよりも、第1段q1に記憶された信号値及び初段q0に記憶された信号値のいずれかの方が大きく、その差の絶対値が所定の値よりも大きいという条件を満たす信号値は、信号値c(-4)からc(4)である。従って、本例の場合、第2判定条件を満たす信号値は、信号値c(0)のみである。そのため、判定部13は、信号値c(0)が記憶された周期において、検出範囲10aに対象物100が到来したと判定する。 In the case of the present example, of the signal values c (−5) to c (5), the signal value stored in the sixth stage q6 and the signal value stored in the fifth stage q5 are substantially equal. Signal values satisfying the condition are signal values c (−5) to c (0). The signal values satisfying the condition that the signal value stored in the first stage q1 and the signal value stored in the first stage q0 are substantially equal are signal values c (0) to c (5). Furthermore, any of the signal value stored in the first stage q1 and the signal value stored in the first stage q0 is greater than either the signal value stored in the sixth stage q6 or the signal value stored in the fifth stage q5. The signal values satisfying the condition that the absolute value of the difference is larger and the absolute value of the difference is larger than a predetermined value are signal values c (−4) to c (4). Therefore, in this example, the signal value that satisfies the second determination condition is only the signal value c (0). Therefore, the determination unit 13 determines that the object 100 has arrived in the detection range 10a in the cycle in which the signal value c (0) is stored.
 図8aは、第5事例において、本実施形態に係る検出装置10に記憶された所定数の信号値の一例をグラフにより示す図である。同図では、横軸にFIFOステージを示し、縦軸に信号値を示して、記憶部12に記憶されている信号値をグラフにより示している。 FIG. 8a is a graph showing an example of a predetermined number of signal values stored in the detection apparatus 10 according to the present embodiment in the fifth case. In the figure, the horizontal axis indicates the FIFO stage, the vertical axis indicates the signal value, and the signal value stored in the storage unit 12 is indicated by a graph.
 図8bは、第5事例において、本実施形態に係る検出装置10に記憶された所定数の信号値の一例を示す図である。同図では、図5aに示す信号値を表形式でまとめて示している。 FIG. 8 b is a diagram illustrating an example of a predetermined number of signal values stored in the detection apparatus 10 according to the present embodiment in the fifth case. In the same figure, the signal values shown in FIG.
 第5事例は、第1事例と比較して、対象物100の移動が速い例を示している。具体的には、第5事例において検出範囲10aに対象物100が到来した場合に測定部11により測定される信号値は、第1事例の場合と同じ大きさであるが、信号値の変化が速い。図5aでは、信号値c(-2)を記憶した後に、第6段q6に記憶された最も古い信号値「4」を削除し、新たに測定された信号値「8」を初段q0に記憶した信号値c(-1)を破線で示している。また、信号値c(-1)を記憶した後に、第6段q6に記憶された最も古い信号値「4」を削除し、新たに測定された信号値「8」を初段q0に記憶した信号値c(0)を実線で示している。 The fifth case shows an example in which the object 100 moves faster than the first case. Specifically, the signal value measured by the measurement unit 11 when the object 100 arrives in the detection range 10a in the fifth case is the same size as in the first case, but the signal value changes. fast. In FIG. 5a, after storing the signal value c (−2), the oldest signal value “4” stored in the sixth stage q6 is deleted, and the newly measured signal value “8” is stored in the first stage q0. The obtained signal value c (−1) is indicated by a broken line. Further, after storing the signal value c (−1), the oldest signal value “4” stored in the sixth stage q6 is deleted, and the newly measured signal value “8” is stored in the first stage q0. The value c (0) is indicated by a solid line.
 このように、対象物100の移動が速く、記憶部12に記憶される信号値が比較的急激に変化する場合であっても、判定部13は、信号値を測定部11により測定しつつ、所定数の信号値が判定条件を満たすか否かに基づいて、検出範囲10aに対象物100が到来したか否かを判定することができる。ここで、判定条件は、第1判定条件及び第2判定条件の少なくともいずれかであってよい。 As described above, even when the object 100 moves quickly and the signal value stored in the storage unit 12 changes relatively abruptly, the determination unit 13 measures the signal value by the measurement unit 11, Based on whether or not the predetermined number of signal values satisfy the determination condition, it can be determined whether or not the object 100 has arrived in the detection range 10a. Here, the determination condition may be at least one of the first determination condition and the second determination condition.
 本例の場合、信号値c(-5)からc(5)のうち、第6段q6に記憶された信号値と、第5段q5に記憶された信号値とが実質的に等しいという条件を満たす信号値は、信号値c(-5)からc(1)である。また、第5段q5に記憶された信号値よりも、第4段q4に記憶された信号値の方が大きく、その差の絶対値が所定の値よりも大きいという条件を満たす信号値は、信号値c(1)及びc(2)である。従って、本例の場合、第1判定条件を満たす信号値は、信号値c(1)のみである。そのため、判定部13は、信号値c(1)が記憶された周期において、検出範囲10aに対象物100が到来したと判定する。 In the case of this example, among the signal values c (−5) to c (5), the condition is that the signal value stored in the sixth stage q6 and the signal value stored in the fifth stage q5 are substantially equal. Signal values satisfying the conditions are signal values c (−5) to c (1). In addition, the signal value that satisfies the condition that the signal value stored in the fourth stage q4 is larger than the signal value stored in the fifth stage q5 and the absolute value of the difference is larger than a predetermined value, Signal values c (1) and c (2). Therefore, in this example, the signal value that satisfies the first determination condition is only the signal value c (1). Therefore, the determination unit 13 determines that the object 100 has arrived in the detection range 10a in the cycle in which the signal value c (1) is stored.
 また、本例の場合、信号値c(-5)からc(5)のうち、第6段q6に記憶された信号値と、第5段q5に記憶された信号値とが実質的に等しいという条件を満たす信号値は、信号値c(-5)からc(1)である。また、第1段q1に記憶された信号値と、初段q0に記憶された信号値とが実質的に等しいという条件を満たす信号値は、信号値c(-1)からc(5)である。さらに、第6段q6に記憶された信号値及び第5段q5に記憶された信号値のいずれかよりも、第1段q1に記憶された信号値及び初段q0に記憶された信号値のいずれかの方が大きく、その差の絶対値が所定の値よりも大きいという条件を満たす信号値は、信号値c(-3)からc(3)である。従って、本例の場合、第2判定条件を満たす信号値は、信号値c(-1)、c(0)及びc(1)である。そのため、判定部13は、信号値c(-1)、c(0)及びc(1)が記憶されている期間において、検出範囲10aに対象物100が到来したと判定する。 In the case of this example, among the signal values c (−5) to c (5), the signal value stored in the sixth stage q6 is substantially equal to the signal value stored in the fifth stage q5. Signal values satisfying the condition are signal values c (−5) to c (1). The signal values satisfying the condition that the signal value stored in the first stage q1 and the signal value stored in the first stage q0 are substantially equal are signal values c (−1) to c (5). . Further, any of the signal value stored in the first stage q1 and the signal value stored in the first stage q0 is greater than either the signal value stored in the sixth stage q6 or the signal value stored in the fifth stage q5. The signal values that satisfy the condition that the absolute value of the difference is larger than the predetermined value are signal values c (−3) to c (3). Therefore, in this example, the signal values that satisfy the second determination condition are the signal values c (−1), c (0), and c (1). Therefore, the determination unit 13 determines that the object 100 has arrived in the detection range 10a during the period in which the signal values c (−1), c (0), and c (1) are stored.
 以上の各事例に示すように、使用状況に応じて信号値が変動することが想定されるが、それにもかかわらず、信号値の立ち上がり又は立下りを安定的に検出することができ、閾値を使用状況に応じて設定するユーザの負担を無くして対象物の到来を検出することができる。 As shown in each case above, it is assumed that the signal value fluctuates depending on the usage situation, but nevertheless, the rising or falling of the signal value can be detected stably, and the threshold value is set. The arrival of an object can be detected without the burden on the user set according to the usage situation.
 以上説明した第1~5事例では、理解を容易にするために、信号値c(0)の波形の立ち上がり部分の中点がFIFOステージの第3段q3に記憶されるとして、第1判定条件及び第2判定条件ともに、信号値c(0)付近で判定条件が満たされる例とした。当然ながら、判定条件を満たす信号値は、波形の立ち上がり部分の中点が、FIFOステージの中央の段に記憶されていなくてもよい。 In the first to fifth examples described above, the first judgment condition is assumed that the midpoint of the rising portion of the waveform of the signal value c (0) is stored in the third stage q3 of the FIFO stage for easy understanding. In addition, both the second determination condition and the second determination condition are examples in which the determination condition is satisfied in the vicinity of the signal value c (0). Of course, the signal value satisfying the determination condition may not be stored in the middle stage of the FIFO stage at the midpoint of the rising edge of the waveform.
 第1判定条件では、FIFOステージの第4段q4~第6段q6又は第3段q3~第6段q6に記憶された信号値を判定に用い、初段q0~第2段q2に記憶された信号値を判定に用いていない。ここで、第1判定条件を修正し、波形の立ち上がり部分の中点が第1段q1に記憶されたときに判定条件が満たされるように、初段q0~第3段q3を用いる判定条件に修正すれば、第1周期に関して3サイクル早く立ち上がりを検出することができる。より具体的には、第1判定条件は、第3段q3に記憶された信号値と、第2段q2に記憶された信号値とが実質的に等しいこと、及び第2段q2に記憶された信号値よりも、第1段q1に記憶された信号値の方が大きく、その差の絶対値が所定の値よりも大きいこと、という条件であってよい。さらに、第1段q1に記憶された信号値と、初段q0に記憶された信号値とが実質的に等しいこと及び第1段q1に記憶された信号値よりも、初段q0に記憶された信号値の方が大きく、その差の絶対値が所定の値よりも大きいことの少なくともいずれか、という条件を加えてもよい。例えば第1事例の場合、この判定条件を満たす信号値は、信号値c(-3)となる。第1判定条件に限らず、このように、FIFOメモリのなるべく前段の部分を用いる判定条件を設定することで、より早く信号波形の立ち上がりを検出することができ、検出範囲10aに対象物100が到来したことをより早く検出することができるようになる。 In the first determination condition, the signal values stored in the fourth stage q4 to the sixth stage q6 or the third stage q3 to the sixth stage q6 of the FIFO stage are used for the determination, and stored in the first stage q0 to the second stage q2. The signal value is not used for determination. Here, the first determination condition is corrected, and the determination condition is corrected to use the first stage q0 to the third stage q3 so that the determination condition is satisfied when the midpoint of the rising portion of the waveform is stored in the first stage q1. Then, the rising edge can be detected three cycles earlier with respect to the first period. More specifically, the first determination condition is that the signal value stored in the third stage q3 is substantially equal to the signal value stored in the second stage q2, and is stored in the second stage q2. The condition may be that the signal value stored in the first stage q1 is larger than the signal value and the absolute value of the difference is larger than a predetermined value. Further, the signal value stored in the first stage q1 is substantially equal to the signal value stored in the first stage q0 and the signal value stored in the first stage q0 is greater than the signal value stored in the first stage q1. A condition that the value is larger and at least one of the absolute value of the difference is larger than a predetermined value may be added. For example, in the case of the first case, the signal value that satisfies this determination condition is the signal value c (−3). In this way, not only the first determination condition, but by setting the determination condition using the previous stage of the FIFO memory as much as possible, the rising of the signal waveform can be detected earlier, and the object 100 can be detected in the detection range 10a. It becomes possible to detect the arrival earlier.
 検出範囲10aに対象物100が到来したか否かは、機械学習により生成されたパラメータにより特定される学習済みモデルの実行により、時系列の複数の信号値により構成される波形が機械学習用データセットとされた複数の基準波形が有する特徴と共通する特徴を備えていることについて肯定的な結果が得られることを判定条件として判定することもできる。 Whether or not the object 100 has arrived in the detection range 10a is determined by the execution of a learned model specified by a parameter generated by machine learning, and a waveform composed of a plurality of time-series signal values is machine learning data. It can also be determined as a determination condition that a positive result can be obtained for the features common to the features of the plurality of set reference waveforms.
 図9は、本実施形態に係る検出装置10により、検出装置10や搬送装置50のさまざまな状態において測定される可能性がある、立ち上がり波形を構成する信号値の例を示す図である。同図では、第1事例から第5事例までの各事例において記憶された信号値c(0)と同じ信号値を、測定される可能性がある、立ち上がり波形を構成する信号値として示している。同図に示す信号値により構成される波形は、機械学習用データセットとして用意される基準波形の例である。立ち下がり波形により対象物100の到来を検出する場合には、立ち下がり波形を基準波形とする。検出装置10により、さまざまな種類の対象物100について測定される可能性がある立ち上がり波形又は立ち下がり波形を基準波形としてもよい。 FIG. 9 is a diagram illustrating examples of signal values constituting a rising waveform that may be measured in various states of the detection device 10 and the conveyance device 50 by the detection device 10 according to the present embodiment. In the figure, the same signal value as the signal value c (0) stored in each case from the first case to the fifth case is shown as a signal value constituting a rising waveform that may be measured. . The waveform composed of the signal values shown in the figure is an example of a reference waveform prepared as a machine learning data set. When the arrival of the object 100 is detected from the falling waveform, the falling waveform is set as a reference waveform. A rising waveform or a falling waveform that may be measured for various types of objects 100 by the detection apparatus 10 may be used as the reference waveform.
 判定部13は、信号値を測定部11により測定しつつ、記憶部12に記憶された所定数の信号値が判定条件を満たすか否かに基づいて、検出範囲10aに対象物100が到来したか否かを判定する。これにより、使用状況に応じて信号値が変動する場合であっても、検出範囲10aに対象物100が到来した際に測定される可能性がある立ち上がり波形、すなわち機械学習用データセットとされた複数の基準波形が有する特徴と共通する特徴を備えているか否かに基づき検出対象物100が到来したか否かを判定することができ、閾値を使用状況に応じて設定するユーザの負担を無くして対象物100の到来を検出することができる。 The determination unit 13 measures the signal value by the measurement unit 11, and the object 100 has arrived in the detection range 10a based on whether or not a predetermined number of signal values stored in the storage unit 12 satisfy the determination condition. It is determined whether or not. As a result, even if the signal value fluctuates according to the use situation, the rising waveform that may be measured when the object 100 arrives in the detection range 10a, that is, a machine learning data set is obtained. It is possible to determine whether or not the detection object 100 has arrived based on whether or not the characteristics common to the characteristics of the plurality of reference waveforms are included, and eliminate the burden on the user of setting the threshold according to the usage situation. Thus, the arrival of the object 100 can be detected.
 本例の場合、基準波形を構成する複数の信号値は、第1~5事例において記憶された信号値c(0)と同じ信号値である。もっとも、基準波形を構成する信号値は、実際に測定された信号値でなくてもよく、人により又は何らかのアルゴリズムにより生成された信号値であってよい。 In the case of this example, the plurality of signal values constituting the reference waveform are the same signal values as the signal value c (0) stored in the first to fifth cases. However, the signal values constituting the reference waveform do not have to be actually measured signal values, but may be signal values generated by a person or by some algorithm.
 図10は、本実施形態に係る検出装置10により実行される学習済みモデルの設定方法のフローチャートである。学習済みモデルの設定方法は、学習装置によって学習済みモデルを生成し、学習済みモデルを検出装置10に設定(実装)する方法である。 FIG. 10 is a flowchart of a learned model setting method executed by the detection apparatus 10 according to the present embodiment. The learned model setting method is a method in which a learned model is generated by a learning device, and the learned model is set (implemented) in the detection device 10.
 はじめに、機械学習用データセットとして用いる複数の基準波形について、それぞれの基準波形を構成する複数の信号値を準備する(S30)。例えば、図9に示したような信号値を準備する。 First, for a plurality of reference waveforms used as a machine learning data set, a plurality of signal values constituting each reference waveform are prepared (S30). For example, signal values as shown in FIG. 9 are prepared.
 次に、コンピュータである学習装置によって、記憶部12に記憶されている所定数の信号値により構成される波形が、複数の基準波形が有する特徴と共通する特徴を備えているか否かを判定する学習済みモデルを機械学習により生成する(S31)。ここで、学習済みモデルは、任意のモデルであってよいが、例えばニューラルネットワークや決定木であってよい。そして、機械学習により学習済みモデルのパラメータを生成するアルゴリズムは、任意のものであってよいが、例えばニューラルネットワークであれば、モメンタム法やAdam等を用いた誤差逆伝播法によってパラメータを生成してよいし、例えば決定木であれば、CART(Classification and Regression Trees)やID3(Iterative Dichotomiser 3)であってよい。 Next, it is determined by a learning device that is a computer whether or not a waveform composed of a predetermined number of signal values stored in the storage unit 12 has a feature common to features of a plurality of reference waveforms. A learned model is generated by machine learning (S31). Here, the learned model may be an arbitrary model, but may be a neural network or a decision tree, for example. The algorithm for generating the parameters of the learned model by machine learning may be arbitrary. For example, in the case of a neural network, the parameters are generated by the error back propagation method using a momentum method, Adam, or the like. For example, if it is a decision tree, it may be CART (Classification and Regression Trees) or ID3 (Iterative and Dichotomiser 3).
 最後に、生成された学習済みモデルを検出装置10に設定(実装)する(S32)。以上により、設定方法が終了する。 Finally, the generated learned model is set (implemented) in the detection apparatus 10 (S32). This completes the setting method.
 図11は、本実施形態に係る検出装置10を設定する設定方法を、図10の設定方法の場合を含んでより包括的に示したフローチャートである。はじめに、検出範囲10aに対象物100が到来したか否かを判定する第1周期を決定する(S10)。第1周期は、信号値波形の立ち上がり又は立ち下がりに要する時間に基づき、検出範囲10aに対象物100が到来したか否かを判定するために必要となる信号値が記憶部12に収まるように決定されてよい。 FIG. 11 is a flowchart showing the setting method for setting the detection apparatus 10 according to the present embodiment more comprehensively including the setting method of FIG. First, the 1st period which determines whether the target object 100 arrived at the detection range 10a is determined (S10). The first period is based on the time required for the rise or fall of the signal value waveform so that the signal value necessary for determining whether or not the object 100 has arrived in the detection range 10a is stored in the storage unit 12. May be determined.
 次に、信号値の波形が立ち上がり波形又は立ち下がり波形に該当するか否かを判定するための判定条件を決定する(S11)。判定条件は、例えば、上述した第1判定条件であったり、第2判定条件であったり、学習済みモデルの実行により所定の結果が得られることであったりしてよい。判定条件は、記憶部12に記憶された所定数の信号値の取得時点うち、判定に用いる複数の時点の指定を含んでよい。例えば、記憶部12に記憶された所定数の信号値のうち判定に用いる信号値を記憶している3以上のFIFOステージを、判定に用いる時点として指定してよい。 Next, a determination condition for determining whether the waveform of the signal value corresponds to a rising waveform or a falling waveform is determined (S11). The determination condition may be, for example, the first determination condition described above, the second determination condition, or a predetermined result obtained by executing the learned model. The determination condition may include designation of a plurality of time points used for determination among the acquisition time points of the predetermined number of signal values stored in the storage unit 12. For example, three or more FIFO stages storing signal values used for determination among a predetermined number of signal values stored in the storage unit 12 may be designated as time points used for determination.
 そして、第1周期および判定条件を検出装置10に設定する(S12)。以上により、設定方法が終了する。 Then, the first cycle and determination conditions are set in the detection device 10 (S12). This completes the setting method.
 第1周期の設定は、コンピュータ30におけるユーザによる入力または検出装置10に設けられた図示しない操作スイッチを用いたユーザによる入力に基づいて行ってもよい。 The setting of the first cycle may be performed based on an input by the user in the computer 30 or an input by the user using an operation switch (not shown) provided in the detection apparatus 10.
 判定条件の決定及び検出装置10への設定は、好ましくは、検出装置10の供給者によって実行される。ここで、検出装置10の供給者とは、検出装置10の製造者、販売者、又は検出装置10の導入に関するサービス提供者などの、検出装置10の最終的なユーザ以外の者をいう。判定条件は、信号値の波形が立ち上がり波形又は立ち下がり波形を構成する信号値に該当するか否かを判定するための条件であるから、検出装置10の最終的なユーザにおける対象物100の種類や検出装置10の設置状態を知らない供給者においても、判定条件を決定することができる。さらに、検出装置10の最終的なユーザは、対象物100の種類や検出装置10の設置状態などの状況がさまざまであっても、都度それらの状況において自ら機械学習やティーチングを実行することなく検出装置10を使用することができる。判定に用いる複数の時点については、設定可能な判定条件に含めず、検出装置10における変更できない構成としてもよい。検出装置10の供給者により、S30及びS31又はS11が再実行されるなどにより、判定条件の更新版(改良版)が用意された場合は、設定方法の内、最後の設定するステップ(S32、S12)のみ、更新された判定条件を受領した検出装置10の最終的なユーザが行ってもよい。 Determination of determination conditions and setting to the detection device 10 are preferably performed by the supplier of the detection device 10. Here, the supplier of the detection device 10 refers to a person other than the final user of the detection device 10 such as a manufacturer, a seller, or a service provider related to the introduction of the detection device 10. Since the determination condition is a condition for determining whether the waveform of the signal value corresponds to the signal value constituting the rising waveform or the falling waveform, the type of the object 100 in the final user of the detection apparatus 10 Even a supplier who does not know the installation state of the detection device 10 can determine the determination condition. Furthermore, even if the final user of the detection device 10 has various situations such as the type of the object 100 and the installation state of the detection device 10, the user can detect the situation without performing machine learning or teaching each time in those situations. The device 10 can be used. A plurality of time points used for determination may not be included in settable determination conditions and may not be changed in the detection apparatus 10. When the updated version (improved version) of the determination condition is prepared by the supplier of the detection device 10 by re-executing S30 and S31 or S11, the last setting step (S32, Only S12) may be performed by the final user of the detection apparatus 10 that has received the updated determination condition.
 本実施形態に係る設定方法によれば、信号値と閾値とを比較することによる対象物の有無判定の変化に基づいて検出範囲に対象物が到来したか否かを判定するのではなく、記憶部に記憶された所定数の信号値が判定条件を満たすか否かに基づいて、検出範囲に対象物が到来したか否かを判定することで、閾値を使用状況に応じて設定するユーザの負担を無くして対象物の到来を検出することができる。 According to the setting method according to the present embodiment, instead of determining whether or not an object has arrived in the detection range based on a change in the presence / absence determination of the object by comparing the signal value and the threshold value, the memory is stored. The threshold value is set according to the use situation by determining whether or not the object has arrived in the detection range based on whether or not the predetermined number of signal values stored in the section satisfies the determination condition. The arrival of an object can be detected without a burden.
 図12は、本実施形態に係る検出装置10により実行される検出方法のフローチャートである。検出方法は、判定部13により検出範囲10aに対象物100が到来したか否かを判定する方法である。 FIG. 12 is a flowchart of a detection method executed by the detection apparatus 10 according to this embodiment. The detection method is a method for determining whether or not the object 100 has arrived at the detection range 10 a by the determination unit 13.
 はじめに、検出装置10は、測定部11により、第2周期で物理量を逐次信号値に変換し、第1周期による記憶部12の更新タイミングを待つ(S20)。そして、取得された順に順序付けて所定数の信号値を記憶している記憶部12に対して、最も古い信号値を削除し、測定部11により新たに取得された信号値を追加する(S21)。 First, the detection apparatus 10 uses the measurement unit 11 to sequentially convert physical quantities into signal values in the second period, and waits for the update timing of the storage unit 12 in the first period (S20). Then, the oldest signal value is deleted and the signal value newly acquired by the measurement unit 11 is added to the storage unit 12 that stores the predetermined number of signal values in order of acquisition (S21). .
 その後、検出装置10は、信号値が判定条件を満たすか否かを判定する周期であるか判定する(S22)。ここで、判定する周期である場合(S22:YES)、判定部13は、記憶部12に記憶されている信号値のうちの所定の複数の順位の信号値が判定条件を満たすか否かを判定する(S23)。なお、判定条件は、例えば、上述した第1判定条件であったり、第2判定条件であったり、学習済みモデルの実行により所定の結果が得られることであったりしてよい。そして、記憶部12に記憶されているうちの所定の複数の信号値が判定条件を満たす場合(S23:YES)、検出装置10は、検出範囲10aに対象物100が到来したと判定し、判定結果を入出力部15により出力する(S24)。判定結果の出力を終えた場合、信号値が判定条件を満たすか否かを判定する周期でない場合(S22:NO)及び所定の複数の信号値が判定条件を満たさない場合(S23:NO)、検出装置10は、第1周期による記憶部12の更新タイミングを待つ処理に戻る(S20)。以上の処理を継続的に繰り返し行ってよい。 Thereafter, the detection apparatus 10 determines whether or not it is a cycle for determining whether the signal value satisfies the determination condition (S22). Here, when it is a period to determine (S22: YES), the determination unit 13 determines whether or not the signal values of a plurality of predetermined ranks among the signal values stored in the storage unit 12 satisfy the determination condition. Determine (S23). The determination condition may be, for example, the first determination condition described above, the second determination condition, or a predetermined result obtained by executing the learned model. If the predetermined signal values stored in the storage unit 12 satisfy the determination condition (S23: YES), the detection device 10 determines that the object 100 has arrived in the detection range 10a, and the determination The result is output by the input / output unit 15 (S24). When the output of the determination result is finished, when it is not a cycle for determining whether or not the signal value satisfies the determination condition (S22: NO), and when the predetermined signal values do not satisfy the determination condition (S23: NO), The detection apparatus 10 returns to the process of waiting for the update timing of the storage unit 12 in the first period (S20). The above processing may be repeated continuously.
 本実施形態に係る検出方法によれば、ある時点における信号値と閾値とを比較して検出範囲における対象物の有無を検出し、検出結果の変化によって対象物が到来したか否かを判定するのではなく、記憶部に記憶された所定数の信号値により構成される波形が判定条件を満たすか否かに基づいて、検出範囲に対象物が到来したか否かを判定することで、閾値を使用状況に応じて設定するユーザの負担を無くして対象物の到来を検出することができる。さらに、この判定条件は、信号値の波形が立ち上がり波形又は立ち下がり波形に該当するか否かを判定するための条件であるから、対象物の種類や検出装置の設置状態が異なっていても共通の判定条件を適用できる場合が多い。この点でも、検出実行の準備をする段階でのユーザの負担は軽減される。 According to the detection method according to the present embodiment, a signal value at a certain time point is compared with a threshold value to detect the presence or absence of an object in the detection range, and it is determined whether or not the object has arrived based on a change in the detection result. Instead of determining whether or not an object has arrived in the detection range based on whether or not a waveform constituted by a predetermined number of signal values stored in the storage unit satisfies the determination condition, It is possible to detect the arrival of an object without the burden on the user who sets the value according to the use situation. Furthermore, since this determination condition is a condition for determining whether the waveform of the signal value corresponds to a rising waveform or a falling waveform, it is common even if the type of object and the installation state of the detection device are different. In many cases, the determination condition can be applied. In this respect as well, the burden on the user at the stage of preparation for detection execution is reduced.
 以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。 The embodiment described above is for facilitating the understanding of the present invention, and is not intended to limit the present invention. Each element included in the embodiment and its arrangement, material, condition, shape, size, and the like are not limited to those illustrated, and can be changed as appropriate. In addition, the structures shown in different embodiments can be partially replaced or combined.
 [附記1]
 検出範囲(10a)に対象物(100)が到来したことを検出する検出方法であって、
 時系列の複数の信号値により構成される波形が立ち上がり波形又は立ち下がり波形に該当するか否かを判定するための判定条件を決定することと、
 前記検出範囲(10a)に前記対象物(100)が到来したか否かに応じて値が変化する物理量を逐次信号値に変換することと、
 逐次生成されている前記信号値の中から取得され、取得された順に順序付けて記憶されている所定数の前記信号値を、第1周期で、新たに取得された前記信号値により更新することと、
 前記更新を1回または複数回行う毎に一度の頻度で、記憶されている前記信号値のうちの所定の複数の順位の前記信号値が前記判定条件を満たすか否かに基づいて、前記検出範囲(10a)に前記対象物(100)が到来したか否かを判定することと、
 を含む検出方法。
[Appendix 1]
A detection method for detecting that the object (100) has arrived in the detection range (10a),
Determining a determination condition for determining whether a waveform composed of a plurality of time-series signal values corresponds to a rising waveform or a falling waveform;
Sequentially converting a physical quantity whose value changes depending on whether or not the object (100) has arrived in the detection range (10a) to a signal value;
Updating a predetermined number of the signal values acquired from the signal values generated sequentially and stored in order in the acquired order, with the newly acquired signal values in a first period; ,
The detection based on whether or not the signal values of a predetermined plurality of ranks among the stored signal values satisfy the determination condition at a frequency of once every time the update is performed once or a plurality of times. Determining whether the object (100) has arrived in a range (10a);
A detection method comprising:
 [附記2]
 検出範囲(10a)に対象物(100)が到来したことを検出する検出装置(10)を設定する設定方法であって、
 前記検出装置(10)は、
  前記検出範囲(10a)に前記対象物(10)が到来したか否かに応じて値が変化する物理量を逐次信号値に変換する処理と、
  逐次生成されている前記信号値の中から取得され、取得された順に順序付けて記憶されている所定数の前記信号値を、第1周期で、新たに取得された前記信号値により更新する処理と、
  前記更新を1回または複数回行う毎に一度の頻度で、記憶されている前記信号値のうちの所定の複数の順位の前記信号値が判定条件を満たすか否かに基づいて、前記検出範囲(10a)に前記対象物(100)が到来したか否かを判定する処理とを実行するように構成されており、
 前記設定方法は、
 前記判定条件を、時系列の複数の信号値により構成される波形が立ち上がり波形又は立ち下がり波形に該当するか否かを判定するための条件となるように決定することと、
 前記判定条件を前記検出装置(10)に設定することと
 を含む、設定方法。
[Appendix 2]
A setting method for setting a detection device (10) for detecting that an object (100) has arrived in a detection range (10a),
The detection device (10)
A process of sequentially converting a physical quantity whose value changes depending on whether or not the object (10) has arrived in the detection range (10a) into a signal value;
A process of updating a predetermined number of the signal values that are acquired from the signal values that are sequentially generated and stored in order in the acquired order, with the newly acquired signal values in a first period; ,
The detection range based on whether or not the signal values of a plurality of predetermined ranks among the stored signal values satisfy a determination condition at a frequency of once every time the update is performed once or a plurality of times. (10a) is configured to execute a process for determining whether or not the object (100) has arrived,
The setting method is as follows:
Determining the determination condition to be a condition for determining whether or not a waveform composed of a plurality of time-series signal values corresponds to a rising waveform or a falling waveform;
Setting the determination condition in the detection device (10).
 [附記3]
 検出範囲(10a)に対象物(100)が到来したか否かに応じて値が変化する物理量を逐次信号値に変換することと、
 逐次生成されている前記信号値の中から取得され、取得された順に順序付けて記憶されている所定数の前記信号値を、第1周期で、新たに取得された前記信号値により更新することと、
 前記更新を1回または複数回行う毎に一度の頻度で、記憶されている前記信号値のうちの所定の複数の順位の前記信号値が立ち上がり波形又は立ち下がり波形を構成する信号値に該当するか否かを判定するための判定条件を満たすか否かに基づいて、前記検出範囲(10a)に前記対象物(100)が到来したか否かを判定することと、
 を含む検出方法。
[Appendix 3]
Sequentially converting a physical quantity whose value changes depending on whether or not the object (100) has arrived in the detection range (10a) into a signal value;
Updating a predetermined number of the signal values acquired from the signal values generated sequentially and stored in order in the acquired order, with the newly acquired signal values in a first period; ,
Each time the update is performed once or a plurality of times, the signal values of a plurality of predetermined ranks among the stored signal values correspond to signal values constituting a rising waveform or a falling waveform. Determining whether or not the object (100) has arrived in the detection range (10a) based on whether or not the determination condition for determining whether or not
A detection method comprising:

Claims (10)

  1.  検出範囲に対象物が到来したことを検出する検出方法であって、
     時系列の複数の信号値により構成される波形が立ち上がり波形又は立ち下がり波形に該当するか否かを判定するための判定条件を決定することと、
     前記検出範囲に前記対象物が到来したか否かに応じて値が変化する物理量を逐次信号値に変換することと、
     逐次生成されている前記信号値の中から取得され、取得された順に順序付けて記憶されている所定数の前記信号値を、第1周期で、新たに取得された前記信号値により更新することと、
     前記更新を1回または複数回行う毎に一度の頻度で、記憶されている前記信号値のうちの所定の複数の順位の前記信号値が前記判定条件を満たすか否かに基づいて、前記検出範囲に前記対象物が到来したか否かを判定することと、
     を含む検出方法。
    A detection method for detecting the arrival of an object in a detection range,
    Determining a determination condition for determining whether a waveform composed of a plurality of time-series signal values corresponds to a rising waveform or a falling waveform;
    Sequentially converting a physical quantity whose value changes depending on whether or not the object has arrived in the detection range into a signal value;
    Updating a predetermined number of the signal values acquired from the signal values generated sequentially and stored in order in the acquired order, with the newly acquired signal values in a first period; ,
    The detection based on whether or not the signal values of a predetermined plurality of ranks among the stored signal values satisfy the determination condition at a frequency of once every time the update is performed once or a plurality of times. Determining whether the object has arrived in range;
    A detection method comprising:
  2.  前記判定条件は、機械学習により生成されたパラメータにより特定される学習済みモデルの実行により、時系列の複数の信号値により構成される波形が機械学習用データセットとされた複数の基準波形が有する特徴と共通する特徴を備えていることについて肯定的な結果が得られることであり、
    前記判定条件を決定することは、使用する前記学習済みモデルを決定することである、
     請求項1に記載の検出方法。
    The determination condition includes a plurality of reference waveforms in which a waveform composed of a plurality of time-series signal values is set as a machine learning data set by executing a learned model specified by a parameter generated by machine learning. A positive result about having features in common with features,
    Determining the determination condition is determining the learned model to be used.
    The detection method according to claim 1.
  3.  検出範囲に対象物が到来したことを検出する検出装置を設定する設定方法であって、
     前記検出装置は、
      前記検出範囲に前記対象物が到来したか否かに応じて値が変化する物理量を逐次信号値に変換する処理と、
      逐次生成されている前記信号値の中から取得され、取得された順に順序付けて記憶されている所定数の前記信号値を、第1周期で、新たに取得された前記信号値により更新する処理と、
      前記更新を1回または複数回行う毎に一度の頻度で、記憶されている前記信号値のうちの所定の複数の順位の前記信号値が判定条件を満たすか否かに基づいて、前記検出範囲に前記対象物が到来したか否かを判定する処理とを実行するように構成されており、
     前記設定方法は、
     前記判定条件を、時系列の複数の信号値により構成される波形が立ち上がり波形又は立ち下がり波形に該当するか否かを判定するための条件となるように決定することと、
     前記判定条件を前記検出装置に設定することと
     を含む、設定方法。
    A setting method for setting a detection device that detects the arrival of an object in a detection range,
    The detection device includes:
    A process of sequentially converting a physical quantity whose value changes depending on whether or not the object has arrived in the detection range into a signal value;
    A process of updating a predetermined number of the signal values that are acquired from the signal values that are sequentially generated and stored in order in the acquired order, with the newly acquired signal values in a first period; ,
    The detection range based on whether or not the signal values of a plurality of predetermined ranks among the stored signal values satisfy a determination condition at a frequency of once every time the update is performed once or a plurality of times. And a process for determining whether or not the object has arrived at
    The setting method is as follows:
    Determining the determination condition to be a condition for determining whether or not a waveform composed of a plurality of time-series signal values corresponds to a rising waveform or a falling waveform;
    Setting the determination condition in the detection device.
  4.  前記判定条件は、機械学習により生成されたパラメータにより特定される学習済みモデルの実行により、時系列の複数の信号値により構成される波形が機械学習用データセットとされた複数の基準波形が有する特徴と共通する特徴を備えていることについて肯定的な結果が得られることであり、
    前記判定条件を決定することは、使用する前記学習済みモデルを決定することであり、
    前記判定条件を前記検出装置に設定することは、前記学習済みモデルを前記検出装置に実装することである、
     請求項3に記載の設定方法。
    The determination condition includes a plurality of reference waveforms in which a waveform composed of a plurality of time-series signal values is set as a machine learning data set by executing a learned model specified by a parameter generated by machine learning. A positive result about having features in common with features,
    Determining the determination condition is determining the learned model to be used;
    Setting the determination condition in the detection device is mounting the learned model in the detection device.
    The setting method according to claim 3.
  5.  検出範囲に対象物が到来したか否かに応じて値が変化する物理量を逐次信号値に変換することと、
     逐次生成されている前記信号値の中から取得され、取得された順に順序付けて記憶されている所定数の前記信号値を、第1周期で、新たに取得された前記信号値により更新することと、
     前記更新を1回または複数回行う毎に一度の頻度で、記憶されている前記信号値のうちの所定の複数の順位の前記信号値が立ち上がり波形又は立ち下がり波形を構成する信号値に該当するか否かを判定するための判定条件を満たすか否かに基づいて、前記検出範囲に前記対象物が到来したか否かを判定することと、
     を含む検出方法。
    Sequentially converting a physical quantity whose value changes depending on whether or not an object has arrived in the detection range into a signal value;
    Updating a predetermined number of the signal values acquired from the signal values generated sequentially and stored in order in the acquired order, with the newly acquired signal values in a first period; ,
    Each time the update is performed once or a plurality of times, the signal values of a plurality of predetermined ranks among the stored signal values correspond to signal values constituting a rising waveform or a falling waveform. Determining whether or not the object has arrived in the detection range based on whether or not the determination condition for determining whether or not
    A detection method comprising:
  6.  前記更新することは、
     前記所定数の前記信号値のうち、最も古い前記信号値を削除することと、
     新たに取得した前記信号値を記憶することと、を含む、
     請求項5に記載の検出方法。
    The updating is
    Deleting the oldest signal value of the predetermined number of signal values;
    Storing the newly acquired signal value,
    The detection method according to claim 5.
  7.  前記第1周期は、変更可能である、
     請求項5又は6に記載の検出方法。
    The first period can be changed.
    The detection method according to claim 5 or 6.
  8.  前記判定条件は、
     第1時点において取得された前記信号値と、前記第1時点より後の第2時点において取得された前記信号値とが実質的に等しいことと、
     前記第2時点において取得された前記信号値と、前記第2時点より後の第3時点において取得された前記信号値との差の絶対値が所定の値よりも大きいことと、を含む、
     請求項5から7のいずれか一項に記載の検出方法。
    The determination condition is as follows:
    The signal value acquired at the first time point is substantially equal to the signal value acquired at the second time point after the first time point;
    An absolute value of a difference between the signal value acquired at the second time point and the signal value acquired at a third time point after the second time point is larger than a predetermined value,
    The detection method according to any one of claims 5 to 7.
  9.  前記判定条件は、
     第1時点において取得された前記信号値と、前記第1時点より後の第2時点において取得された前記信号値とが実質的に等しいことと、
     前記第2時点より後の第3時点において取得された前記信号値と、前記第3時点より後の第4時点において取得された前記信号値とが実質的に等しいことと、
     前記第1時点において取得された前記信号値及び前記第2時点において取得された前記信号値のいずれかと、前記第3時点において取得された前記信号値及び前記第4時点において取得された前記信号値のいずれかとの差の絶対値が、所定の値よりも大きいことと、を含む、
     請求項5から7のいずれか一項に記載の検出方法。
    The determination condition is as follows:
    The signal value acquired at the first time point is substantially equal to the signal value acquired at the second time point after the first time point;
    The signal value acquired at a third time point after the second time point is substantially equal to the signal value acquired at a fourth time point after the third time point;
    One of the signal value acquired at the first time point and the signal value acquired at the second time point, the signal value acquired at the third time point, and the signal value acquired at the fourth time point The absolute value of the difference from any one of is greater than a predetermined value,
    The detection method according to any one of claims 5 to 7.
  10.  前記判定条件は、機械学習により生成されたパラメータにより特定される学習済みモデルの実行により、時系列の複数の信号値により構成される波形が機械学習用データセットとされた複数の基準波形が有する特徴と共通する特徴を備えていることについて肯定的な結果が得られることである、
     請求項5から7のいずれか一項に記載の検出方法。
    The determination condition includes a plurality of reference waveforms in which a waveform composed of a plurality of time-series signal values is set as a machine learning data set by executing a learned model specified by a parameter generated by machine learning. A positive result for having a feature in common with a feature,
    The detection method according to any one of claims 5 to 7.
PCT/JP2019/019601 2018-06-12 2019-05-17 Detection method and detection device configuration method WO2019239786A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-112023 2018-06-12
JP2018112023A JP2019215223A (en) 2018-06-12 2018-06-12 Detector and method for setting detector

Publications (1)

Publication Number Publication Date
WO2019239786A1 true WO2019239786A1 (en) 2019-12-19

Family

ID=68843007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019601 WO2019239786A1 (en) 2018-06-12 2019-05-17 Detection method and detection device configuration method

Country Status (3)

Country Link
JP (1) JP2019215223A (en)
TW (1) TWI702380B (en)
WO (1) WO2019239786A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111024147A (en) * 2019-12-26 2020-04-17 玳能科技(杭州)有限公司 Component mounting detection method and device based on CNNs, electronic equipment and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024069959A1 (en) * 2022-09-30 2024-04-04 株式会社Fuji Component mounting machine and component presence/absence determination method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101217A (en) * 2005-09-30 2007-04-19 Sunx Ltd Photoelectric sensor
JP2009236751A (en) * 2008-03-27 2009-10-15 Asahi Kasei Electronics Co Ltd Infrared sensor, and detecting method using infrared sensor
JP2010145323A (en) * 2008-12-22 2010-07-01 Sharp Corp Human body presence detection device and human body presence detection method
JP2017073315A (en) * 2015-10-08 2017-04-13 東急建設株式会社 Seat occupation/vacancy detector and control method therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8373124B2 (en) * 2009-12-24 2013-02-12 Seiko Epson Corporation Infrared detection circuit, sensor device, and electronic instrument

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101217A (en) * 2005-09-30 2007-04-19 Sunx Ltd Photoelectric sensor
JP2009236751A (en) * 2008-03-27 2009-10-15 Asahi Kasei Electronics Co Ltd Infrared sensor, and detecting method using infrared sensor
JP2010145323A (en) * 2008-12-22 2010-07-01 Sharp Corp Human body presence detection device and human body presence detection method
JP2017073315A (en) * 2015-10-08 2017-04-13 東急建設株式会社 Seat occupation/vacancy detector and control method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111024147A (en) * 2019-12-26 2020-04-17 玳能科技(杭州)有限公司 Component mounting detection method and device based on CNNs, electronic equipment and storage medium

Also Published As

Publication number Publication date
TWI702380B (en) 2020-08-21
TW202001204A (en) 2020-01-01
JP2019215223A (en) 2019-12-19

Similar Documents

Publication Publication Date Title
WO2019239786A1 (en) Detection method and detection device configuration method
Zhou et al. Bullwhip and inventory variance in a closed loop supply chain
EP3067764B1 (en) Photoelectric sensor with pulse detection
US20160209834A1 (en) Method and apparatus for advanced control using function blocks in industrial process control and automation systems
US20210333789A1 (en) Method and apparatus for real time model predictive control operator support in industrial process control and automation systems
WO2019239787A1 (en) Detection device
Rajput et al. Optimize the cost of a fuzzy inventory model with shortage using signed distance method
US20180157247A1 (en) Apparatus and method for performing process simulations for embedded multivariable predictive controllers in industrial process control and automation systems
US11852668B2 (en) Method and system for real time outlier detection and product re-binning
KR101929955B1 (en) Analysis method of factory automation system using artificial intelligence-based reverse engineering
Feio et al. Translating IOPT Petri net models into PLC ladder diagrams
Abdollahi et al. An iterative decision rule to minimize cost of acceptance sampling plan in machine replacement problem
JP7021631B2 (en) Photoelectric sensor
US11636586B2 (en) Process control system and process control method
JP7035890B2 (en) Photoelectric sensor
JP7100826B2 (en) Detection device
US20200387792A1 (en) Learning device and learning method
EP4083796A1 (en) Flexible update mechanism for stateful applications
WO2020026833A1 (en) Photoelectric sensor
KR101979632B1 (en) Method and system for qulity of weight type precipitation gauge
EP3483724A1 (en) Configuring or controlling a device
Al-Makhadmee Research Article Diagnosis System for Building Management Network
Brodie et al. On model uncertainty in adaptive controller design

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19818973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19818973

Country of ref document: EP

Kind code of ref document: A1