WO2019239732A1 - Electrode for redox flow battery, and redox flow battery - Google Patents

Electrode for redox flow battery, and redox flow battery Download PDF

Info

Publication number
WO2019239732A1
WO2019239732A1 PCT/JP2019/017589 JP2019017589W WO2019239732A1 WO 2019239732 A1 WO2019239732 A1 WO 2019239732A1 JP 2019017589 W JP2019017589 W JP 2019017589W WO 2019239732 A1 WO2019239732 A1 WO 2019239732A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
redox flow
flow battery
catalyst
substrate
Prior art date
Application number
PCT/JP2019/017589
Other languages
French (fr)
Japanese (ja)
Inventor
雄大 池上
雍容 董
正幸 大矢
良潤 關根
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US17/056,777 priority Critical patent/US20210126263A1/en
Priority to DE112019003004.3T priority patent/DE112019003004T5/en
Priority to JP2020525320A priority patent/JP7226443B2/en
Priority to CN201980037550.1A priority patent/CN112236892A/en
Publication of WO2019239732A1 publication Critical patent/WO2019239732A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a redox flow battery electrode and a redox flow battery.
  • an electrolytic solution (a positive electrode electrolyte and a negative electrode electrolyte) is supplied to a pair of electrodes (a positive electrode and a negative electrode) disposed on both sides of a diaphragm, respectively, and an electrochemical reaction (electrode) on the electrodes is performed.
  • a redox flow battery that charges and discharges by reaction
  • an aggregate of carbon fibers having chemical resistance, conductivity, and liquid permeability is used.
  • An electrode for a redox flow battery is: A substrate and a catalyst portion supported on the substrate;
  • the substrate contains one or more elements selected from the group consisting of C, Ti, Sn, Ta, Ce, In, W, and Zn,
  • the catalyst portion contains one or more elements selected from the group consisting of Fe, Si, Mo, Ce, Mn, Cu, and W.
  • the redox flow battery according to the present disclosure is: A redox flow battery for supplying and discharging a positive electrode electrolyte and a negative electrode electrolyte to a battery cell comprising a positive electrode, a negative electrode, and a diaphragm interposed between the positive electrode and the negative electrode.
  • the positive electrode is a redox flow battery electrode according to the present disclosure.
  • FIG. 1A is a schematic diagram illustrating an electrode for a redox flow battery according to an embodiment.
  • FIG. 1B is an enlarged view showing the redox flow battery electrode according to the embodiment.
  • 1C is a partial cross-sectional view taken along line (C)-(C) of FIG. 1B.
  • FIG. 2 is a cross-sectional view showing another example of a catalyst portion supported on a substrate in the redox flow battery electrode according to the embodiment.
  • FIG. 3 is a cross-sectional view showing still another example of the support form of the catalyst portion with respect to the substrate in the redox flow battery electrode according to the embodiment.
  • FIG. 4 is an explanatory diagram of the operating principle of the redox flow battery according to the embodiment.
  • FIG. 1B is an enlarged view showing the redox flow battery electrode according to the embodiment.
  • 1C is a partial cross-sectional view taken along line (C)-(C) of FIG. 1B.
  • FIG. 2 is a cross-sectional view
  • FIG. 5 is a schematic configuration diagram of the redox flow battery according to the embodiment.
  • FIG. 6 is a schematic configuration diagram of a cell stack provided in the redox flow battery according to the embodiment.
  • FIG. 7 is a cyclic voltammogram in Test Example 1.
  • FIG. 8 is a linear sweep voltammogram in Test Example 2.
  • the electrode for a redox flow battery of the present disclosure can build a redox flow battery having high battery reactivity on the electrode and low cell resistivity.
  • the redox flow battery of the present disclosure has high battery reactivity on the electrode and low cell resistivity.
  • An electrode for a redox flow battery is: A substrate and a catalyst portion supported on the substrate;
  • the substrate contains one or more elements selected from the group consisting of C, Ti, Sn, Ta, Ce, In, W, and Zn,
  • the catalyst portion contains one or more elements selected from the group consisting of Fe, Si, Mo, Ce, Mn, Cu, and W.
  • the elements of the above-described element group (hereinafter referred to as element group A) as elements constituting the substrate are elements that are not easily oxidized and deteriorated.
  • the elements of the above-described element group (hereinafter referred to as element group B) as elements constituting the catalyst portion are elements that are easily supported on the substrate composed of the elements of element group A.
  • the element of the element group B is an element that exhibits a catalytic function effectively by being supported on a substrate composed of the element of the element group A.
  • the element of the element group B is a non-noble metal element, and is an inexpensive element as compared with a noble metal element generally used as a catalyst.
  • the electrode for the redox flow battery of the present disclosure can suppress deterioration over time in the operation of the redox flow battery over a long period of time because the substrate contains the element of the element group A, and is excellent in durability. Moreover, the electrode for redox flow batteries of this indication can construct a redox flow battery with high battery reactivity on an electrode and small cell resistivity because a catalyst part contains the element of the said element group B. FIG. Furthermore, the redox flow battery electrode of the present disclosure can be reduced in cost compared to the case where the catalyst portion is made of a noble metal element.
  • the mass ratio of the catalyst part in the redox flow battery electrode is 0.01% or more and 70% or less.
  • the mass ratio of the catalyst portion in the redox flow battery electrode (hereinafter referred to as the ratio of the catalyst portion) is 0.01% or more, so that the battery reactivity on the electrode can be easily increased, and the cell resistivity is increased. Smaller redox flow batteries can be constructed.
  • the larger the catalyst portion abundance the easier it is to increase the cell reactivity on the electrode, but the substrate abundance is relatively reduced and the durability of the redox flow battery electrode is lowered. Therefore, when the abundance ratio of the catalyst portion is 70% or less, it is easy to obtain a redox flow battery electrode having higher battery reactivity on the electrode and excellent durability.
  • the catalyst portion Since the catalyst portion has a portion embedded in the substrate, the catalyst portion is firmly supported on the substrate. Therefore, in the operation of the redox flow battery over a long period of time, it is easy to suppress the catalyst part from falling off the base. On the other hand, when the catalyst portion has a portion exposed from the substrate, the catalytic action can be exerted from the initial use of the redox flow battery electrode of the present disclosure.
  • the catalyst part is A first catalyst portion having a portion exposed from the substrate; And a second catalyst part embedded in the substrate without being exposed from the substrate.
  • the first catalyst portion having a portion exposed from the substrate can exert a catalytic action from the initial use of the redox flow battery electrode of the present disclosure.
  • the second catalyst portion embedded in the substrate without being exposed from the substrate is exposed when the electrode is deteriorated in the operation of the redox flow battery over a long period of time, and can exhibit a catalytic action from the exposed time. Therefore, by providing both the first catalyst portion and the second catalyst portion, the catalytic action can be exhibited over a long period from the initial use of the redox flow battery electrode of the present disclosure. This is because the second catalyst portion is supported on the substrate even if the first catalyst portion falls off the substrate due to electrode deterioration in the operation of the redox flow battery over a long period of time.
  • redox flow battery electrode of the present disclosure It is possible to include a binder that covers at least a part of the catalyst portion.
  • the catalyst part is firmly supported on the substrate. Therefore, in the operation of the redox flow battery over a long period of time, it is easy to suppress the catalyst part from falling off the base.
  • a redox flow battery for supplying and discharging a positive electrode electrolyte and a negative electrode electrolyte to a battery cell comprising a positive electrode, a negative electrode, and a diaphragm interposed between the positive electrode and the negative electrode.
  • the positive electrode is the redox flow battery electrode according to any one of (1) to (5) above.
  • the redox flow battery of the present disclosure uses the redox flow battery electrode of the present disclosure as the positive electrode, and therefore has high battery reactivity on the electrode and low cell resistivity.
  • the positive electrode is oxidatively deteriorated due to side reactions accompanying charge and discharge, and the cell resistivity is likely to increase. Therefore, the cell resistivity can be effectively reduced by using the redox flow battery electrode of the present disclosure for the positive electrode.
  • the negative electrode may be a redox flow battery electrode according to any one of (1) to (5) above.
  • the cell resistivity can be further reduced by using the redox flow battery electrode of the present disclosure also for the negative electrode.
  • the positive electrode electrolyte contains manganese ions as a positive electrode active material
  • the said negative electrode electrolyte solution contains a titanium ion as a negative electrode active material.
  • the positive electrode In the case of a manganese-titanium-based electrolyte containing manganese ions as the positive electrode active material and titanium ions as the negative electrode active material, the positive electrode is likely to be oxidized and deteriorated. Therefore, in the case of a manganese-titanium-based electrolytic solution, the cell resistivity can be effectively reduced by using the redox flow battery electrode of the present disclosure as the positive electrode.
  • the concentration of the manganese ions and the concentration of the titanium ions may be 0.3 mol / L or more and 5 mol / L or less, respectively.
  • FIG. 1A is an overall view of the electrode 10.
  • FIG. 1B is a partially enlarged view of the electrode 10.
  • the electrode 10 is composed of a fiber assembly mainly composed of a plurality of fibers that are intertwined with each other.
  • the some fiber which comprises the electrode 10 is shown typically.
  • FIG. 1C is a cross-sectional view of each fiber (base 110) constituting the electrode 10 cut along a plane parallel to the longitudinal direction of the fiber.
  • the electrode 10 includes a base 110 and a catalyst unit 111 supported on the base 110.
  • One feature of the electrode 10 according to the embodiment is that each of the elements constituting the substrate 110 and the catalyst part 111 contains a specific element.
  • the substrate 110 is selected from the group consisting of carbon (C), titanium (Ti), tin (Sn), tantalum (Ta), cerium (Ce), indium (In), tungsten (W), and zinc (Zn). Containing one or more elements.
  • the substrate 110 may be a material made of a single element or a material made of an alloy or compound containing the above element.
  • the substrate 110 may contain an element other than the elements listed above.
  • the base 110 constitutes the base of the electrode 10. As for the base
  • the base 110 has a different proportion of fibers in the fiber assembly (electrode 10) depending on its structure (fiber combination form). Examples of the combination form of the fibers of the fiber assembly include nonwoven fabric, woven fabric, and paper.
  • the equivalent circle diameter is 3 ⁇ m or more and 100 ⁇ m or less.
  • the cross section of the fiber mentioned here is a cross section cut along a plane parallel to the direction orthogonal to the longitudinal direction of the fiber.
  • the equivalent circle diameter of the fiber is 3 ⁇ m or more, the strength of the fiber assembly can be ensured.
  • the equivalent circle diameter of the fiber is 100 ⁇ m or less, the surface area of the fiber per unit weight can be increased, and a sufficient battery reaction can be performed.
  • the equivalent circle diameter of the fiber is further 5 ⁇ m or more and 50 ⁇ m or less, particularly 7 ⁇ m or more and 20 ⁇ m or less.
  • the equivalent circle diameter referred to here is the diameter of a perfect circle having the cross-sectional area of the fiber.
  • the average diameter of the cross section of the fiber constituting the substrate 110 is obtained by cutting the electrode 10 to expose the cross section of the fiber, and averaging the results measured under a microscope for five or more fields and three or more fibers per field. Is required.
  • the porosity of the fiber assembly by the substrate 110 is more than 40% by volume and less than 98% by volume.
  • the porosity of the fiber assembly is more than 40% by volume, the flowability of the electrolytic solution can be improved.
  • the porosity of the fiber assembly is less than 98% by volume, the density of the fiber assembly can be increased, the conductivity can be improved, and a sufficient battery reaction can be performed.
  • the porosity of the fiber aggregate by the substrate 110 is 60% by volume to 95% by volume, particularly 70% by volume to 93% by volume.
  • the catalyst unit 111 is one or more selected from the group consisting of iron (Fe), silicon (Si), molybdenum (Mo), cerium (Ce), manganese (Mn), copper (Cu), and tungsten (W). Contains the elements.
  • the catalyst part 111 is preferably made of a non-noble metal element containing the elements listed above. When the catalyst unit 111 contains one element selected from the element group listed above, the catalyst part 111 contains the element simple substance, the oxide of the element, or both the element simple substance and the oxide of the same element. Is mentioned.
  • the catalyst unit 111 contains a plurality of types of elements selected from the element group listed above, a plurality of types of elements, a plurality of types of oxides of each element, a compound containing a plurality of types of each element, It may be contained in a solid solution containing a plurality of types, or a combination thereof.
  • a plurality of kinds of elements selected from the element group listed above are X and Y, two kinds of element simple substance: X + Y, two kinds of oxides of each element: X n O m + Y p O q , A compound containing two kinds of each element (composite oxide): (X s , Y t ) O and the like.
  • the catalyst part 111 is often contained in the form of an oxide of an element selected from the element group listed above (each element in the case where a plurality of kinds are included). Although the catalyst part 111 may contain elements other than the element enumerated above, it is preferable that the element is also a non-noble metal element.
  • the catalyst unit 111 is supported on the substrate 110 and improves battery reactivity on the electrode 10.
  • the base 110 and the catalyst part 111 may contain the same element.
  • the base 110 is made of a single element
  • the catalyst part 111 is made of a compound of the element.
  • An oxide is mentioned as a compound.
  • a form in which the catalyst part 111 made of W oxide is supported on the base 110 made of W alone is exemplified.
  • both the base 110 and the catalyst part 111 contain Ce
  • a form in which the catalyst part 111 made of Ce oxide is supported on the base 110 made of Ce alone can be cited.
  • TEM transmission electron microscope
  • the catalyst unit 111 is supported on the base 110.
  • the term “supporting” as used herein means that the catalyst unit 111 is fixed in a state of being electrically connected to the base 110.
  • As a form in which the catalyst part 111 is fixed to the base 110 there are a form in which the catalyst part 111 is directly fixed to the base 110 and a form in which the catalyst part 111 is indirectly fixed to the base 110.
  • As a form in which the catalyst unit 111 is directly fixed to the base 110 as shown in FIG. 1C, the catalyst unit 111 is attached to the surface of the base 110. Further, as a form in which the catalyst unit 111 is directly fixed to the base 110, at least a part of the catalyst unit 111 is embedded in the base 110 as shown in FIG.
  • the catalyst part 111 has a part exposed from the base 110 and a part embedded in the base 110 can be mentioned.
  • the catalyst portion 111 has a portion embedded in the base 110, so that the catalyst portion 111 is firmly supported on the base 110, and the catalyst portion 111 becomes a base in the operation of the redox flow battery 1 (FIG. 4) for a long time. It is easy to suppress dropping from 110.
  • the catalyst unit 111 may be embedded in the base 110 without being exposed from the base 110.
  • the catalyst part 111 When the catalyst part 111 is completely embedded in the base 110, the catalyst part 111 is exposed when the electrode 10 deteriorates with time. The exposed catalyst portion 111 exhibits a catalytic action.
  • the catalyst portion 111 (FIG. 1C) attached to the surface of the substrate 110, the catalyst portion 111 (FIG. 2) partially embedded in the substrate 110, and the catalyst portion 111 completely embedded in the substrate 110. (FIG. 2) may be mixed.
  • the catalyst portion 111 that is completely embedded in the substrate 110 cannot exert a catalytic action in the initial use of the electrode 10. Therefore, the catalyst part 111 having a portion exposed from the base 110 is necessarily included.
  • the electrode 10 can be provided with a binder 112 that covers at least a part of the catalyst part 111 as shown in FIG. It is mentioned that the binder 112 is provided so as to cover the both 110 and 111 from the base 110 to the catalyst part 111.
  • the binder 112 is provided so as to cover the both 110 and 111 from the base 110 to the catalyst part 111.
  • the catalyst unit 111 is indirectly fixed to the substrate 110, the catalyst unit 111 is not attached to the substrate 110, and the catalyst unit 111 is fixed in contact with the substrate 110 by the binder 112.
  • the binder 112 When the binder 112 is provided, the base 110 and the catalyst part 111 may not be in contact with each other, and the binder 112 may be interposed between the base 110 and the catalyst part 111.
  • the catalyst part 111 and the base 110 cannot be electrically connected. Therefore, when the binder 112 is provided, the catalyst part 111 in a state of being in direct contact with the substrate 110 is necessarily included.
  • the catalyst unit 111 is directly fixed to the base 110, and may be further fixed by the binder 112. That is, the catalyst part 111 attached to the base 110 and the catalyst part 111 having a portion embedded in the base 110 may be included, and the binder 112 may be further provided.
  • the catalyst unit 111 is firmly supported on the base 110 by including the binder 112.
  • the catalyst portion 111 that is completely covered with the binder 112 cannot exert a catalytic action in the initial use of the electrode 10. Therefore, the catalyst part 111 having a part exposed from the binder 112 is necessarily included.
  • the binder 112 contains one or more elements selected from the group consisting of carbon (C), aluminum (Al), and phosphorus (P). It can be mentioned that the mass ratio of the binder 112 in the electrode 10 is 1% or more and 50% or less, and further 20% or more and 40% or less. The said mass ratio is a mass ratio of the total content of the element which comprises the binder 112 when the total content of the base
  • TG thermogravimetry
  • the catalyst unit 111 is typically a solid. As a solid substance, a granular material, a needle-shaped body, a rectangular parallelepiped, a short fiber, a long fiber, etc. are mentioned. Typically, as shown in FIG. 1C, the catalyst part 111 is present almost uniformly dispersed over the entire region of the substrate 110.
  • the catalyst unit 111 may include a portion that is in direct contact with and in contact with the substrate 110. This is because the catalyst part 111 containing the above-mentioned specific element is easily supported on the substrate 110 containing the above-mentioned specific element, thereby easily exerting a catalytic effect effectively.
  • the catalyst part 111 containing the specific element is easily supported directly on the substrate 110 containing the specific element.
  • the mass ratio of the catalyst part 111 occupying the electrode 10 (existence ratio of the catalyst part 111) is 0.01% or more and 70% or less.
  • the abundance ratio of the catalyst part 111 is a mass ratio of the total content of elements constituting the catalyst part 111 when the electrode 10 is 100 mass%.
  • the electrode 10 includes the base 110 and the catalyst part 111
  • the total content of the base 110 and the catalyst part 111 is 100% by mass.
  • the electrode 10 is comprised by the base
  • substrate 110, the catalyst part 111, and the binder 112 shall be 100 mass%.
  • the presence ratio of the catalyst part 111 is 0.01% or more, so that the battery reactivity on the electrode 10 can be easily improved and the redox flow battery 1 having a smaller cell resistivity can be constructed.
  • the abundance ratio of the catalyst portion 111 is further 0.1% to 70%, 1% to 70%, particularly 10% to 50%, 10% to 30%.
  • the abundance ratio of the catalyst part 111 is obtained by TG.
  • Electrode 10 is mentioned that the basis weight (weight per unit area) of 50 g / m 2 or more 10000 g / m 2 or less.
  • the basis weight of the electrode 10 is 50 g / m 2 or more, a sufficient battery reaction can be performed.
  • the basis weight is 10000 g / m 2 or less, it is possible to suppress the voids from becoming excessively small, and to easily suppress an increase in the flow resistance of the electrolytic solution.
  • the basis weight of the electrode 10 is further 100 g / m 2 or more and 2000 g / m 2 or less, particularly 200 g / m 2 or more and 700 g / m 2 or less.
  • the electrode 10 preferably has a thickness of 0.1 mm or more and 5 mm or less when no external force is applied.
  • a battery reaction field for performing a battery reaction with the electrolytic solution can be increased.
  • the thickness of the electrode 10 is 5 mm or less, the redox flow battery 1 using the electrode 10 can be made thin.
  • the said thickness of the electrode 10 is further 0.2 mm or more and 2.5 mm or less, Especially 0.3 mm or more and 1.5 mm or less are mentioned.
  • the electrode 10 described above is obtained by preparing a base 110 and a coating solution containing the constituent elements of the catalyst unit 111, applying the coating solution to the surface of the base 110, and performing a heat treatment.
  • a fiber assembly in which fibers containing one or more elements selected from the group consisting of C, Ti, Sn, Ta, Ce, In, W, and Zn are intertwined with each other is prepared. What is necessary is just to select suitably the magnitude
  • the prepared fiber aggregate may be subjected to blasting, etching treatment or the like, and the one subjected to surface area expansion and surface roughening is used. After blasting or etching, the surface is selectively etched to clean and activate.
  • acids used for acid cleaning in cleaning there are typically sulfuric acid, hydrochloric acid, hydrofluoric acid, etc., and activation can be performed by immersing the fiber assembly in these liquids and dissolving a part of the surface. it can.
  • a coating solution containing a raw material for the element constituting the catalyst unit 111 and a solvent is prepared.
  • raw materials for elements constituting the catalyst unit 111 include metal alkoxides, chlorides, acetates, and organometallic compounds. Specific examples include ammonium tungstate pentahydrate, tungsten chloride, sodium tungstate hydrate, and the like. In addition, iron chloride, hexaammonium hexamolybdate tetrahydrate, cerium carbonate, manganese sulfate, copper sulfate and the like can be mentioned.
  • the solvent water or an organic solvent can be used.
  • the organic solvent examples include methanol, ethanol, propyl alcohol, isopropanol, butanol, pentanol, hexanol and the like.
  • the solvent examples include 70% by mass to 95% by mass with respect to the entire coating solution.
  • the coating liquid can contain acetylacetone as a stabilizer. It is mentioned that a stabilizer contains 1 to 10 mass% with respect to the whole coating liquid.
  • the coating method include a brush coating method, a spray method, a dipping method, a flow coating method, and a roll coating method.
  • the coating solution is applied to the fiber assembly, it is dried.
  • the fiber assembly to which the coating solution has been applied is subjected to a heat treatment at 300 ° C. to 700 ° C. for 10 minutes to 5 hours in an oxygen-containing atmosphere.
  • the atmosphere containing oxygen includes an oxidizing atmosphere and an atmosphere in which the oxidation state is adjusted in a gas containing a reducing gas, and examples thereof include air.
  • the catalyst part 111 can be adhered while being dispersed almost uniformly over the entire region of the substrate 110.
  • the heat treatment temperature may be 400 ° C. or more and 600 ° C. or less, particularly 450 ° C. or more and 550 ° C. or less.
  • the heat treatment time is further set to 15 minutes to 2 hours, particularly 30 minutes to 1 hour.
  • the constituent elements of the catalyst unit 111 penetrate into the fiber assembly by thermal diffusion, and the catalyst unit 111 is dispersed and adhered to the outer peripheral surface of each fiber (base 110) constituting the fiber assembly.
  • the catalyst portion 111 is mainly attached to the surface of the substrate 110. Further, in the electrode 10 obtained by performing the heat treatment, a part of the catalyst part 111 may be embedded in the base 110.
  • the catalyst unit 111 can be supported on the substrate 110 using physical vapor deposition (PVD) or chemical vapor deposition (CVD).
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • the PVD method include a sputtering method.
  • a single element constituting the catalyst unit 111 or an oxide of the element is attached to the prepared substrate 110 by a PVD method or a CVD method.
  • the heat treatment condition may be 300 ° C. or more and 700 ° C. or less ⁇ 15 minutes or more and 2 hours or less in an oxygen-containing atmosphere, for example, air.
  • the catalyst part 111 is mainly in a state where a part of the catalyst part 111 is embedded in the base 110.
  • the catalyst unit 111 When the catalyst unit 111 is supported on the substrate 110 using the PVD method or the CVD method, the catalyst unit 111 can be completely embedded in the substrate 110 by melting the surface of the prepared substrate 110.
  • the electrode 10 including the binder 112 is obtained by applying a heat treatment by applying a binder liquid containing the constituent elements of the catalyst unit 111 to the surface of the substrate 110.
  • the binder liquid contains a raw material for the element constituting the catalyst part 111, a raw material for the element constituting the binder 112, and a solvent.
  • the raw material for the element constituting the catalyst part 111 and the raw material for the element constituting the binder 112 include the use of a single element.
  • the solvent water or an organic solvent can be used.
  • Examples of the method for applying the binder liquid to the substrate 110 include a brush coating method, a spraying method, a dipping method, a flow coating method, and a roll coating method.
  • the binder liquid is applied to the substrate 110, it is dried. Thereafter, the substrate 110 coated with the binder liquid is subjected to heat treatment in an atmosphere containing oxygen, for example, in air, for example, at 300 ° C. to 700 ° C. ⁇ 15 minutes to 2 hours.
  • an atmosphere containing oxygen for example, in air, for example, at 300 ° C. to 700 ° C. ⁇ 15 minutes to 2 hours.
  • a redox flow battery 1 (RF battery) according to the embodiment will be described with reference to FIGS.
  • the RF battery 1 is typically connected to a power generation unit and a load such as a power system or a consumer via an AC / DC converter, a transformer facility, and the like.
  • the RF battery 1 performs charging using the power generation unit as a power supply source, and performs discharging using the load as a power consumption target.
  • Examples of the power generation unit include a solar power generator, a wind power generator, and other general power plants.
  • the RF battery 1 includes a battery cell 100 and a circulation mechanism (a positive electrode circulation mechanism 100 ⁇ / b> P and a negative electrode circulation mechanism 100 ⁇ / b> N) that circulates and supplies an electrolytic solution to the battery cell 100.
  • the battery cell 100 is separated into a positive electrode cell 12 and a negative electrode cell 13 by a diaphragm 11.
  • the positive electrode cell 12 includes a positive electrode 14 to which a positive electrode electrolyte is supplied
  • the negative electrode cell 13 includes a negative electrode 15 to which a negative electrode electrolyte is supplied.
  • the positive electrode 14 includes the electrode 10 according to the above-described embodiment.
  • the negative electrode 15 is also composed of the electrode 10 according to the above-described embodiment.
  • the battery cell 100 is configured to be sandwiched between a set of cell frames 16 and 16 as shown in FIG.
  • the cell frame 16 includes a bipolar plate 161 on which the positive electrode 14 and the negative electrode 15 are disposed on the front and back surfaces, and a frame 162 that surrounds the periphery of the bipolar plate 161.
  • the diaphragm 11 is a separation member that separates the positive electrode 14 and the negative electrode 15 and transmits predetermined ions.
  • the bipolar plate 161 is made of a conductive member that allows current to flow but does not allow electrolyte to pass through.
  • the bipolar plate 161 is disposed so that the positive electrode 14 is in contact with one surface (front surface) side, and the negative electrode 15 is disposed on the opposite surface (back surface) side of the bipolar plate 161.
  • the frame body 162 forms a region to be the battery cell 100 inside. Specifically, the thickness of the frame body 162 is larger than the thickness of the bipolar plate 161.
  • the frame body 162 surrounds the periphery of the bipolar plate 161, thereby forming a step between the front surface (back surface) of the bipolar plate 161 and the front surface (back surface) of the frame body 162.
  • a space in which the positive electrode 14 (negative electrode 15) is disposed is formed inside the step.
  • the positive electrode circulation mechanism 100 ⁇ / b> P that circulates and supplies the positive electrode electrolyte to the positive electrode cell 12 includes a positive electrode electrolyte tank 18, conduits 20 and 22, and a pump 24.
  • the positive electrode electrolyte tank 18 stores a positive electrode electrolyte.
  • the conduits 20 and 22 connect between the positive electrode electrolyte tank 18 and the positive electrode cell 12.
  • the pump 24 is provided in the conduit 20 on the upstream side (supply side).
  • the negative electrode circulation mechanism 100 ⁇ / b> N that circulates and supplies the negative electrode electrolyte to the negative electrode cell 13 includes a negative electrode electrolyte tank 19, conduits 21 and 23, and a pump 25.
  • the negative electrode electrolyte tank 19 stores a negative electrode electrolyte.
  • the conduits 21 and 23 connect between the negative electrode electrolyte tank 19 and the negative electrode cell 13.
  • the pump 25 is provided in the conduit 21 on the upstream side (supply side).
  • the positive electrolyte solution is supplied from the positive electrode electrolyte tank 18 to the positive electrode 14 via the upstream conduit 20 and returned from the positive electrode 14 to the positive electrolyte tank 18 via the downstream (discharge side) conduit 22.
  • the negative electrode electrolyte is supplied from the negative electrode electrolyte tank 19 to the negative electrode 15 through the upstream conduit 21, and from the negative electrode 15 to the negative electrolyte tank 19 through the downstream (discharge side) conduit 23. Returned. 4 and 5, manganese (Mn) ions and titanium (Ti) ions shown in the positive electrode electrolyte tank 18 and the negative electrode electrolyte tank 19 are ions contained as active materials in the positive electrode electrolyte and the negative electrode electrolyte.
  • FIG. 4 An example of a species is shown.
  • a solid line arrow means charging, and a broken line arrow means discharging.
  • the positive electrode electrolyte includes, for example, at least one selected from manganese ions, vanadium ions, iron ions, polyacids, quinone derivatives, and amines as a positive electrode active material.
  • the negative electrode electrolyte includes one or more selected from titanium ions, vanadium ions, chromium ions, polyacids, quinone derivatives, and amines as the negative electrode active material.
  • the concentration of the positive electrode active material and the concentration of the negative electrode active material can be appropriately selected. For example, at least one of the concentration of the positive electrode active material and the concentration of the negative electrode active material may be 0.3 mol / L or more and 5 mol / L or less.
  • the concentration is 0.3 mol / L or more, it can have sufficient energy density (for example, about 10 kWh / m ⁇ 3 >) as a large capacity storage battery. Since the energy density is increased as the concentration is higher, the concentration can be set to 0.5 mol / L or more, further 1.0 mol / L or more, 1.2 mol / L or more, or 1.5 mol / L or more. Considering the solubility in a solvent, the concentration is 5 mol / L or less, more preferably 2 mol / L or less, and the electrolyte solution is excellent in productivity.
  • an aqueous solution containing one or more acids or acid salts selected from sulfuric acid, phosphoric acid, nitric acid, and hydrochloric acid can be used.
  • the RF battery 1 is typically used in a form called a cell stack 200 in which a plurality of battery cells 100 are stacked.
  • the cell stack 200 includes a laminated body in which a certain cell frame 16, a positive electrode 14, a diaphragm 11, a negative electrode 15, and another cell frame 16 are repeatedly laminated, and a pair of end plates that sandwich the laminated body.
  • the cell stack 200 is used in a form in which a predetermined number of battery cells 100 are sub-stacks 200S and a plurality of sub-stacks 200S are stacked.
  • Supply and discharge plates (not shown) are disposed in place of the bipolar plates 161 on the cell frames 16 positioned at both ends of the sub stack 200S and the battery stack 100 in the cell stack 200 in the stacking direction.
  • the supply of the electrolyte solution of each electrode to the positive electrode 14 and the negative electrode 15 is performed by supplying a liquid supply manifold 163 formed on one piece (a liquid supply side piece, the lower side in FIG. 6) of the frame body 162 in the cell frame 16. 164, liquid supply slits 163s and 164s, and a liquid supply rectification unit (not shown).
  • the electrolyte solution of each electrode from the positive electrode 14 and the negative electrode 15 is discharged from a drainage rectification unit (not shown) formed on the other piece (drainage side piece, upper side in FIG. 6) facing the frame 162. ), Drainage slits 165s and 166s, and drainage manifolds 165 and 166.
  • the positive electrode electrolyte is supplied from the liquid supply manifold 163 to the positive electrode 14 through a liquid supply slit 163s formed on one side (the front side of the paper) of the frame 162.
  • the positive electrode electrolyte flows from the lower side to the upper side of the positive electrode 14 as indicated by the arrow in the upper diagram of FIG. 6, and passes through the drain slit 165 s formed on one side (the front side of the paper) of the frame 162. It is discharged to the drainage manifold 165.
  • the supply and discharge of the negative electrode electrolyte are the same as those of the positive electrode electrolyte except that the negative electrode electrolyte is supplied and discharged on the opposite side of the frame 162 (the back side of the paper).
  • An annular seal member 167 (FIGS. 5 and 6) such as an O-ring or a flat packing is disposed between the frame bodies 162 in order to suppress leakage of the electrolytic solution from the battery cell 100.
  • a seal groove (not shown) for arranging the annular seal member 167 is formed in the frame body 162 in the circumferential direction.
  • the electrode 10 for a redox flow battery includes one or more kinds selected from an element group B consisting of specific elements on a base 110 containing one or more elements selected from an element group A consisting of specific elements.
  • a catalyst part 111 containing an element is supported.
  • the electrode 10 can construct the RF battery 1 that is excellent in reactivity with the electrolytic solution and has a low cell resistivity.
  • the element group A is composed of C, Ti, Sn, Ta, Ce, In, W, and Zn.
  • the element group B includes Fe, Si, Mo, Ce, Mn, Cu, and W.
  • the elements of the element group B are easily supported on the substrate 110 composed of the elements of the element group A, and are effectively supported on the substrate 110 composed of the elements of the element group A, thereby effectively improving the catalytic function. It is because it demonstrates. Particularly, in the electrode 10, the mass ratio of the catalyst portion 111 occupying the electrode 10 is 0.01% or more, so that the battery reactivity on the electrode 10 can be easily increased, and the RF battery 1 having a smaller cell resistivity. Can be built.
  • a part of the catalyst part 111 is embedded in the base 110, or a part of the catalyst part 111 is covered with the binder 112, so that the catalyst part 111 is easily supported firmly on the base 110. Since the catalyst unit 111 is firmly supported on the base 110, it is easy to suppress the catalyst unit 111 from dropping from the base 110 in the operation of the RF battery 1 over a long period of time.
  • the second catalyst part 111 that is not exposed from the base 110 and is embedded in the base 110 is provided. Catalytic action can be exerted.
  • the reactivity between the electrode 10 and the electrolyte can be favorably maintained over a long period of time.
  • the second catalyst unit 111 is exposed when the electrode 10 is deteriorated in the operation of the RF battery 1 over a long period of time, and can exhibit a catalytic action from the exposed time. That is, even if the first catalyst unit 111 falls off the base 110 due to the deterioration of the electrode 10 in the operation of the RF battery 1 over a long period of time, the second catalyst unit 111 is supported on the base 110.
  • the electrode 10 is less susceptible to oxidative degradation because the base 110 contains the element of the element group A, can suppress deterioration over time in the operation of the RF battery 1 over a long period of time, and is excellent in durability. Furthermore, the electrode 10 can reduce cost compared with the case where only the noble metal element generally used as a catalyst is used because the catalyst part 111 contains the element of the element group B.
  • the RF battery 1 uses the redox flow battery electrode 10 according to the embodiment as the positive electrode 14, so that the battery reactivity on the electrode is high and the cell resistivity is low.
  • the positive electrode 14 is oxidized and deteriorated due to a side reaction accompanying charging and discharging, and the cell resistivity is likely to increase. Therefore, the cell resistivity can be effectively reduced by using the electrode 10 as the positive electrode 14.
  • the electrolytic solution of the RF battery 1 is a manganese-titanium-based electrolytic solution containing manganese ions as the positive electrode active material and titanium ions as the negative electrode active material
  • the positive electrode is likely to be oxidized and deteriorated. Therefore, the cell resistivity can be effectively reduced by using the electrode 10 as the positive electrode 14.
  • the RF battery 1 is a large-capacity storage battery for the purpose of stabilizing fluctuations in power generation output, storing power when surplus generated power, leveling load, etc., with respect to natural power generation such as solar power generation and wind power generation. Available to: Further, the RF battery 1 can be suitably used as a large-capacity storage battery that is installed in a general power plant and is intended for measures against instantaneous voltage drop, power failure, and load leveling.
  • Test Example 1 An electrode including a catalyst part containing a non-noble metal element was produced, and the battery reactivity on the electrode and the cell resistivity of an RF battery using the electrode were examined.
  • Sample preparation ⁇ Sample No. 1-1 An electrode including a substrate and a catalyst portion supported on the substrate was produced. Using a carbon paper made of a plurality of carbon fibers as a substrate, a fiber assembly having a size of 3.3 mm ⁇ 2.7 mm and a thickness of 0.45 mm was produced. In this fiber assembly, the fiber diameter of each carbon fiber was 10 ⁇ m in terms of equivalent circle diameter, and the porosity was 85% by volume.
  • As a coating solution containing the constituent elements of the catalyst unit was prepared an aqueous solution containing ammonium tungstate pentahydrate ((NH 4) 10 W 12 O 41 ⁇ 5H 2 O). The solvent (water) was 1% by mass with respect to the entire coating solution.
  • substrate was immersed in the said coating liquid, and the said coating liquid was made to adhere to the outer peripheral surface of a base
  • the obtained electrode (Sample No. 1-1) was examined for a cross section using a scanning electron microscope and an analyzer (SEM-EDX) using energy dispersive X-ray spectroscopy. As a result, sample no. In the electrode 1-1, it was confirmed that the catalyst portion was present in a substantially uniformly dispersed manner on the outer peripheral surface of the substrate (each carbon fiber). Moreover, it was confirmed that the catalyst part attached to the outer peripheral surface of the substrate (each carbon fiber) and the catalyst part partially embedded in the substrate (each carbon fiber) were mixed. The crystal structure was measured by an X-ray diffraction method (XRD), and the element composition was measured by an X-ray microanalyzer (EPMA) to examine the existence state of the catalyst part. As a result, it was found that the catalyst portion was present in the form of tungsten oxide (WO 3 ). The mass proportion of the catalyst portion in the electrode was 20%.
  • XRD X-ray diffraction method
  • EPMA X-ray microan
  • Sample No. 1-11 As an electrode, Sample No. A substrate similar to the substrate of 1-1 was produced. Sample No. The electrode 1-11 is composed only of a substrate and does not include a catalyst portion.
  • Sample No. 1-1 is Sample No. It can be seen that the absolute value of the current value is larger than that of 1-11. Sample No. The reason why the absolute value of the current value 1-1 is large is that the catalyst part made of tungsten oxide is supported on the base made of carbon fiber, so that the catalytic function of the catalyst part was effectively exhibited. Conceivable. The battery reactivity on the electrode can be improved by effectively exerting the catalytic function of the catalyst portion.
  • sample no. 1-1 is Sample No. It can be seen that the potential difference is small compared to 1-11. Sample No. The reason why the potential difference of 1-1 is small is considered that the catalytic function of the catalyst part was effectively exhibited because the catalyst part made of tungsten oxide was supported on the base made of carbon fiber. The battery reactivity on the electrode can be improved by effectively exerting the catalytic function of the catalyst portion.
  • the battery cell was charged / discharged with the constant current whose current density is 256 mA / cm ⁇ 2 >.
  • the cell resistivity ( ⁇ ⁇ cm 2 ) was determined for each sample.
  • the cell resistivity is obtained by calculating an average voltage during charging and an average voltage during discharging in any one of a plurality of cycles, and ⁇ (difference between average voltage during charging and average voltage during discharging) / (average current / 2) ⁇ ⁇
  • the cell effective area was determined.
  • the cell resistivity of the electrode immediately after the start of immersion in the electrolyte (0 days of immersion) was determined.
  • the cell resistivity was measured as Sample No. 1-1, 0.76 ⁇ ⁇ cm 2 . 1-11 was 0.83 ⁇ ⁇ cm 2 .
  • the reason why the cell resistivity of 1-1 was reduced is that the catalyst part made of tungsten oxide is supported on the base made of carbon fiber, so that the catalytic function of the catalyst part is effectively exhibited, and the electrode This is thought to be due to the improved battery reactivity.
  • Test Example 2 As an electrode provided with a catalyst part containing a non-noble metal element, a simulated electrode in which the mass ratio occupied by the catalyst part in the electrode (existence ratio of the catalyst part) was changed was produced, and the cell reactivity in the catalyst part was examined.
  • Sample preparation ⁇ Sample No. 2-1 to 2-5 A simulated electrode including a conductive material and a catalyst portion held inside the conductive material was produced. To manufacture the simulated electrode, first, a cylindrical member made of plastic is prepared. Next, rod-shaped brass is inserted into the hollow portion on one end side of the cylindrical member, carbon paste oil (conductive material) is inserted into the hollow portion on the other end side, and the powder (tungsten oxide (WO 3 ) powder). These powders are pressed to obtain a simulated electrode. In each sample, the abundance ratio between the carbon paste oil and the catalyst part (the above powder) was changed. Specifically, the abundance ratio of the catalyst portion is the sample No. 2-1, 0% by mass, sample no. In 2-2, 17% by mass, sample no.
  • the abundance ratio of the catalyst part is a mass ratio of the content of the catalyst part when the total content of the carbon paste oil and the catalyst part (the above powder) is 100% by mass.
  • Test Example 3 As an electrode provided with a catalyst part containing a non-noble metal element, a simulated electrode in which the constituent elements of the catalyst part were changed was produced, and the cell reactivity in the catalyst part was examined.
  • Sample preparation ⁇ Sample No. 3-1 to 3-6, 3-11 Similar to Test Example 2, a simulated electrode including a conductive material and a catalyst portion held inside the conductive material was produced. In each sample, the constituent elements of the powder constituting the catalyst part were changed.
  • Sample No. In 3-1 a powder of manganese oxide (MnO 2 ) was used.
  • Sample No. For 3-2 a powder of copper oxide (CuO 2 ) was used.
  • Sample No. For 3-3 cerium oxide (CeO 2 ) powder was used.
  • Sample No. For 3-4 powder of silicon oxide (SiO 2 ) was used.
  • Sample No. For No. 3-5 molybdenum oxide (MoO 3 ) powder was used.
  • sample No. 3-11 is composed only of carbon paste oil. That is, sample no. 3-11 is composed of 100% by mass of carbon paste oil, and the catalyst part (the above powder) is 0% by mass.
  • sample no. Samples Nos. 3-1 to 3-6 are sample Nos. Compared to 3-11, the peak potential is large and the cell reaction rate is fast. In addition, fee No. Samples Nos. 3-1 to 3-6 are sample Nos. It can be seen that the absolute value of the peak current value is large and the battery reactivity is large compared to 3-11. The reason for this tendency is considered that the catalytic function of the catalyst portion was effectively exhibited and the cell reactivity on the electrode could be improved.
  • Sample preparation ⁇ Sample No. 4-1 An electrode including a substrate and a catalyst portion supported on the substrate was produced. Using a carbon paper made of a plurality of carbon fibers as a substrate, a fiber assembly having a size of 3.3 mm ⁇ 2.7 mm and a thickness of 0.45 mm was produced. In this fiber assembly, the fiber diameter of each carbon fiber was 10 ⁇ m in terms of equivalent circle diameter, and the porosity was 85% by volume. An aqueous solution containing manganese sulfate (MnSO 4 ) was prepared as a coating solution containing the constituent elements of the catalyst part. The solvent (water) was 1% by mass with respect to the entire coating solution.
  • MnSO 4 manganese sulfate
  • substrate was immersed in the said coating liquid, and the said coating liquid was made to adhere to the outer peripheral surface of a base
  • the obtained electrode (Sample No. 4-1) was examined for a cross section using a scanning electron microscope and an analyzer (SEM-EDX) using energy dispersive X-ray spectroscopy. As a result, sample no. In the electrode of 4-1, it was confirmed that the catalyst portion was present almost uniformly dispersed on the outer peripheral surface of the substrate (each carbon fiber).
  • the crystal structure was measured by an X-ray diffraction method (XRD), and the element composition was measured by an X-ray microanalyzer (EPMA) to examine the existence state of the catalyst part. As a result, it was found that the catalyst portion exists in the form of manganese oxide (MnO 3 ). The mass proportion of the catalyst portion in the electrode was 20%.
  • Sample No. 4-11 As an electrode, Sample No. A substrate similar to the substrate of 4-1 was produced. Sample No. The electrode 4-11 is composed only of the substrate and does not include a catalyst portion.
  • sample No. 4-1 Sample No. It can be seen that the peak potential is larger and the battery reaction rate is faster than 4-11.
  • Sample No. 4-1 Sample No. It can be seen that the absolute value of the peak current value is large and the battery reactivity is large compared to 4-11. The reason for this tendency is considered that the catalytic function of the catalyst portion was effectively exhibited and the cell reactivity on the electrode could be improved.
  • the present invention is not limited to these exemplifications, is shown by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
  • the composition of the substrate and the catalyst part can be changed within a specific element and a specific range, or the type of the electrolytic solution can be changed.
  • Redox flow battery (RF battery) DESCRIPTION OF SYMBOLS 100 Battery cell 11 Diaphragm 10 Electrode 110 Base body, 111 Catalyst part, 112 Binder 12 Positive electrode cell, 13 Negative electrode cell 14 Positive electrode, 15 Negative electrode 16 Cell frame 161 Bipolar plate, 162 Frame body 163,164 Supply manifold, 165,166 Drainage manifold 163s, 164s Supply slit, 165s, 166s Drain slit 167 Seal member 100P Positive electrode circulation mechanism, 100N Negative electrode circulation mechanism 18 Positive electrode electrolyte tank, 19 Negative electrode electrolyte tank 20, 21, 22, 23 Conduit, 24, 25 Pump 200 Cell stack 200S Sub stack 210, 220 End plate, 230 Connecting member

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

An electrode for a redox flow battery, provided with a base and a catalyst part supported by the base. The base contains one or more elements selected from the group consisting of C, Ti, Sn, Ta, Ce, In, W, and Zn. The catalyst part contains one or more elements selected from the group consisting of Fe, Si, Mo, Ce, Mn, Cu, and W.

Description

レドックスフロー電池用電極、及びレドックスフロー電池Redox flow battery electrode and redox flow battery
 本開示は、レドックスフロー電池用電極、及びレドックスフロー電池に関する。 The present disclosure relates to a redox flow battery electrode and a redox flow battery.
 特許文献1には、隔膜の両側に配置される一対の電極(正極電極と負極電極)にそれぞれ電解液(正極電解液と負極電解液)を供給して、電極上での電気化学反応(電極反応)により充放電を行うレドックスフロー電池が開示されている。電極には、耐薬品性があり、導電性を有し、かつ通液性を有する炭素繊維の集合体が用いられている。 In Patent Document 1, an electrolytic solution (a positive electrode electrolyte and a negative electrode electrolyte) is supplied to a pair of electrodes (a positive electrode and a negative electrode) disposed on both sides of a diaphragm, respectively, and an electrochemical reaction (electrode) on the electrodes is performed. A redox flow battery that charges and discharges by reaction) is disclosed. For the electrode, an aggregate of carbon fibers having chemical resistance, conductivity, and liquid permeability is used.
特開2002-246035号公報Japanese Patent Laid-Open No. 2002-246035
 本開示に係るレドックスフロー電池用電極は、
 基体と、前記基体に担持される触媒部とを備え、
 前記基体は、C,Ti,Sn,Ta,Ce,In,W,及びZnからなる群より選択される1種以上の元素を含有し、
 前記触媒部は、Fe,Si,Mo,Ce,Mn,Cu,及びWからなる群より選択される1種以上の元素を含有する。
An electrode for a redox flow battery according to the present disclosure is:
A substrate and a catalyst portion supported on the substrate;
The substrate contains one or more elements selected from the group consisting of C, Ti, Sn, Ta, Ce, In, W, and Zn,
The catalyst portion contains one or more elements selected from the group consisting of Fe, Si, Mo, Ce, Mn, Cu, and W.
 本開示に係るレドックスフロー電池は、
 正極電極と、負極電極と、前記正極電極と前記負極電極との間に介在される隔膜とを備える電池セルに正極電解液及び負極電解液を供給して充放電を行うレドックスフロー電池であって、
 前記正極電極は、上記本開示に係るレドックスフロー電池用電極である。
The redox flow battery according to the present disclosure is:
A redox flow battery for supplying and discharging a positive electrode electrolyte and a negative electrode electrolyte to a battery cell comprising a positive electrode, a negative electrode, and a diaphragm interposed between the positive electrode and the negative electrode. ,
The positive electrode is a redox flow battery electrode according to the present disclosure.
図1Aは、実施形態に係るレドックスフロー電池用電極を示す模式図である。FIG. 1A is a schematic diagram illustrating an electrode for a redox flow battery according to an embodiment. 図1Bは、実施形態に係るレドックスフロー電池用電極を示す拡大図である。FIG. 1B is an enlarged view showing the redox flow battery electrode according to the embodiment. 図1Cは、図1Bの(C)-(C)線で切断した部分断面図である。1C is a partial cross-sectional view taken along line (C)-(C) of FIG. 1B. 図2は、実施形態に係るレドックスフロー電池用電極において、基体に対する触媒部の担持形態の別の一例を示す断面図である。FIG. 2 is a cross-sectional view showing another example of a catalyst portion supported on a substrate in the redox flow battery electrode according to the embodiment. 図3は、実施形態に係るレドックスフロー電池用電極において、基体に対する触媒部の担持形態の更に別の一例を示す断面図である。FIG. 3 is a cross-sectional view showing still another example of the support form of the catalyst portion with respect to the substrate in the redox flow battery electrode according to the embodiment. 図4は、実施形態に係るレドックスフロー電池の動作原理の説明図である。FIG. 4 is an explanatory diagram of the operating principle of the redox flow battery according to the embodiment. 図5は、実施形態に係るレドックスフロー電池の概略構成図である。FIG. 5 is a schematic configuration diagram of the redox flow battery according to the embodiment. 図6は、実施形態に係るレドックスフロー電池に備わるセルスタックの概略構成図である。FIG. 6 is a schematic configuration diagram of a cell stack provided in the redox flow battery according to the embodiment. 図7は、試験例1におけるサイクリックボルタモグラムである。FIG. 7 is a cyclic voltammogram in Test Example 1. 図8は、試験例2におけるリニアスイープボルタモグラムである。FIG. 8 is a linear sweep voltammogram in Test Example 2.
 [本開示が解決しようとする課題]
 レドックスフロー電池の更なる電池性能の向上が求められており、更なる電極反応の向上が強く望まれている。
[Problems to be solved by the present disclosure]
There is a demand for further improvement of the battery performance of the redox flow battery, and further improvement of the electrode reaction is strongly desired.
 そこで、本開示は、電極上での電池反応性が高く、セル抵抗率が小さいレドックスフロー電池を構築できるレドックスフロー電池用電極を提供することを目的の一つとする。また、本開示は、電極上での電池反応性が高く、セル抵抗率が小さいレドックスフロー電池を提供することを別の目的の一つとする。 Therefore, an object of the present disclosure is to provide a redox flow battery electrode that can build a redox flow battery with high battery reactivity on the electrode and low cell resistivity. Another object of the present disclosure is to provide a redox flow battery having high battery reactivity on an electrode and low cell resistivity.
 [本開示の効果]
 本開示のレドックスフロー電池用電極は、電極上での電池反応性が高く、セル抵抗率が小さいレドックスフロー電池を構築できる。また、本開示のレドックスフロー電池は、電極上での電池反応性が高く、セル抵抗率が小さい。
[Effects of the present disclosure]
The electrode for a redox flow battery of the present disclosure can build a redox flow battery having high battery reactivity on the electrode and low cell resistivity. The redox flow battery of the present disclosure has high battery reactivity on the electrode and low cell resistivity.
 [本開示の実施形態の説明]
 最初に本開示の実施形態の内容を列記して説明する。
[Description of Embodiment of Present Disclosure]
First, the contents of the embodiment of the present disclosure will be listed and described.
 (1)本開示の実施形態に係るレドックスフロー電池用電極は、
 基体と、前記基体に担持される触媒部とを備え、
 前記基体は、C,Ti,Sn,Ta,Ce,In,W,及びZnからなる群より選択される1種以上の元素を含有し、
 前記触媒部は、Fe,Si,Mo,Ce,Mn,Cu,及びWからなる群より選択される1種以上の元素を含有する。
(1) An electrode for a redox flow battery according to an embodiment of the present disclosure is:
A substrate and a catalyst portion supported on the substrate;
The substrate contains one or more elements selected from the group consisting of C, Ti, Sn, Ta, Ce, In, W, and Zn,
The catalyst portion contains one or more elements selected from the group consisting of Fe, Si, Mo, Ce, Mn, Cu, and W.
 基体を構成する元素として上記に列挙する元素群(以下、元素群Aと呼ぶ)の元素は、酸化劣化し難い元素である。触媒部を構成する元素として上記に列挙する元素群(以下、元素群Bと呼ぶ)の元素は、上記元素群Aの元素で構成される基体に対して担持され易い元素である。また、上記元素群Bの元素は、上記元素群Aの元素で構成される基体に担持されることで、触媒機能を効果的に発揮する元素である。更に、上記元素群Bの元素は、非貴金属元素であり、一般的に触媒として用いられる貴金属元素に比較して、安価な元素である。 The elements of the above-described element group (hereinafter referred to as element group A) as elements constituting the substrate are elements that are not easily oxidized and deteriorated. The elements of the above-described element group (hereinafter referred to as element group B) as elements constituting the catalyst portion are elements that are easily supported on the substrate composed of the elements of element group A. In addition, the element of the element group B is an element that exhibits a catalytic function effectively by being supported on a substrate composed of the element of the element group A. Furthermore, the element of the element group B is a non-noble metal element, and is an inexpensive element as compared with a noble metal element generally used as a catalyst.
 本開示のレドックスフロー電池用電極は、基体が上記元素群Aの元素を含有することで、長期にわたるレドックスフロー電池の運転における経時的な劣化を抑制でき、耐久性に優れる。また、本開示のレドックスフロー電池用電極は、触媒部が上記元素群Bの元素を含有することで、電極上での電池反応性が高く、セル抵抗率が小さいレドックスフロー電池を構築できる。更に、本開示のレドックスフロー電池用電極は、触媒部が貴金属元素で構成される場合に比較して、低コスト化を図ることができる。 The electrode for the redox flow battery of the present disclosure can suppress deterioration over time in the operation of the redox flow battery over a long period of time because the substrate contains the element of the element group A, and is excellent in durability. Moreover, the electrode for redox flow batteries of this indication can construct a redox flow battery with high battery reactivity on an electrode and small cell resistivity because a catalyst part contains the element of the said element group B. FIG. Furthermore, the redox flow battery electrode of the present disclosure can be reduced in cost compared to the case where the catalyst portion is made of a noble metal element.
 (2)本開示のレドックスフロー電池用電極の一例として、
 前記レドックスフロー電池用電極に占める前記触媒部の質量割合が、0.01%以上70%以下であることが挙げられる。
(2) As an example of the redox flow battery electrode of the present disclosure,
The mass ratio of the catalyst part in the redox flow battery electrode is 0.01% or more and 70% or less.
 レドックスフロー電池用電極のうち触媒部の占める質量割合(以下、触媒部の存在比率と呼ぶ)が0.01%以上であることで、電極上での電池反応性を高め易く、セル抵抗率がより小さいレドックスフロー電池を構築できる。触媒部の存在比率は、大きいほど電極上での電池反応性を高め易いが、相対的に基体の存在比率が減少し、レドックスフロー電池用電極の耐久性が低下する。よって、触媒部の存在比率が70%以下であることで、電極上での電池反応性がより高く、耐久性に優れるレドックスフロー電池用電極を得易い。 The mass ratio of the catalyst portion in the redox flow battery electrode (hereinafter referred to as the ratio of the catalyst portion) is 0.01% or more, so that the battery reactivity on the electrode can be easily increased, and the cell resistivity is increased. Smaller redox flow batteries can be constructed. The larger the catalyst portion abundance, the easier it is to increase the cell reactivity on the electrode, but the substrate abundance is relatively reduced and the durability of the redox flow battery electrode is lowered. Therefore, when the abundance ratio of the catalyst portion is 70% or less, it is easy to obtain a redox flow battery electrode having higher battery reactivity on the electrode and excellent durability.
 (3)本開示のレドックスフロー電池用電極の一例として、
 前記基体から露出される部分と、前記基体に埋設される部分とを有する前記触媒部を備えることが挙げられる。
(3) As an example of the redox flow battery electrode of the present disclosure,
It is mentioned that the catalyst part having a part exposed from the base and a part embedded in the base is provided.
 触媒部が基体に埋設される部分を有することで、触媒部が基体に強固に担持される。よって、長期にわたるレドックスフロー電池の運転において、触媒部が基体から脱落することを抑制し易い。一方、触媒部が基体から露出される部分を有することで、本開示のレドックスフロー電池用電極の使用初期から触媒作用を発揮できる。 Since the catalyst portion has a portion embedded in the substrate, the catalyst portion is firmly supported on the substrate. Therefore, in the operation of the redox flow battery over a long period of time, it is easy to suppress the catalyst part from falling off the base. On the other hand, when the catalyst portion has a portion exposed from the substrate, the catalytic action can be exerted from the initial use of the redox flow battery electrode of the present disclosure.
 (4)本開示のレドックスフロー電池用電極の一例として、
 前記触媒部は、
  前記基体から露出される部分を有する第一の触媒部と、
  前記基体から露出されずに前記基体に埋設される第二の触媒部とを備えることが挙げられる。
(4) As an example of the redox flow battery electrode of the present disclosure,
The catalyst part is
A first catalyst portion having a portion exposed from the substrate;
And a second catalyst part embedded in the substrate without being exposed from the substrate.
 基体から露出される部分を有する第一の触媒部は、本開示のレドックスフロー電池用電極の使用初期から触媒作用を発揮できる。一方、基体から露出されずに基体に埋設される第二の触媒部は、長期にわたるレドックスフロー電池の運転において電極が劣化した際に露出され、その露出されたときから触媒作用を発揮できる。よって、第一の触媒部と第二の触媒部の双方を備えることで、本開示のレドックスフロー電池用電極の使用初期から長期にわたって触媒作用を発揮できる。長期にわたるレドックスフロー電池の運転における電極の劣化によって、第一の触媒部が基体から脱落したとしても、第二の触媒部が基体に担持されているからである。 The first catalyst portion having a portion exposed from the substrate can exert a catalytic action from the initial use of the redox flow battery electrode of the present disclosure. On the other hand, the second catalyst portion embedded in the substrate without being exposed from the substrate is exposed when the electrode is deteriorated in the operation of the redox flow battery over a long period of time, and can exhibit a catalytic action from the exposed time. Therefore, by providing both the first catalyst portion and the second catalyst portion, the catalytic action can be exhibited over a long period from the initial use of the redox flow battery electrode of the present disclosure. This is because the second catalyst portion is supported on the substrate even if the first catalyst portion falls off the substrate due to electrode deterioration in the operation of the redox flow battery over a long period of time.
 (5)本開示のレドックスフロー電池用電極の一例として、
 前記触媒部の少なくとも一部を覆うバインダーを備えることが挙げられる。
(5) As an example of the redox flow battery electrode of the present disclosure,
It is possible to include a binder that covers at least a part of the catalyst portion.
 触媒部を覆うバインダーを備えることで、触媒部が基体に強固に担持される。よって、長期にわたるレドックスフロー電池の運転において、触媒部が基体から脱落することを抑制し易い。 By providing a binder that covers the catalyst part, the catalyst part is firmly supported on the substrate. Therefore, in the operation of the redox flow battery over a long period of time, it is easy to suppress the catalyst part from falling off the base.
 (6)本開示の実施形態に係るレドックスフロー電池は、
 正極電極と、負極電極と、前記正極電極と前記負極電極との間に介在される隔膜とを備える電池セルに正極電解液及び負極電解液を供給して充放電を行うレドックスフロー電池であって、
 前記正極電極は、上記(1)から(5)のいずれか1つに記載のレドックスフロー電池用電極である。
(6) A redox flow battery according to an embodiment of the present disclosure is provided.
A redox flow battery for supplying and discharging a positive electrode electrolyte and a negative electrode electrolyte to a battery cell comprising a positive electrode, a negative electrode, and a diaphragm interposed between the positive electrode and the negative electrode. ,
The positive electrode is the redox flow battery electrode according to any one of (1) to (5) above.
 本開示のレドックスフロー電池は、本開示のレドックスフロー電池用電極を正極電極に用いているため、電極上での電池反応性が高く、セル抵抗率が小さい。レドックスフロー電池では、充放電に伴う副反応によって正極電極が酸化劣化し、セル抵抗率の増加を招き易い。そのため、本開示のレドックスフロー電池用電極を正極電極に用いることで、効果的にセル抵抗率を小さくできるからである。 The redox flow battery of the present disclosure uses the redox flow battery electrode of the present disclosure as the positive electrode, and therefore has high battery reactivity on the electrode and low cell resistivity. In a redox flow battery, the positive electrode is oxidatively deteriorated due to side reactions accompanying charge and discharge, and the cell resistivity is likely to increase. Therefore, the cell resistivity can be effectively reduced by using the redox flow battery electrode of the present disclosure for the positive electrode.
 (7)上記レドックスフロー電池の一例として、
 前記負極電極は、上記(1)から(5)のいずれか1つに記載のレドックスフロー電池用電極であることが挙げられる。
(7) As an example of the redox flow battery,
The negative electrode may be a redox flow battery electrode according to any one of (1) to (5) above.
 本開示のレドックスフロー電池用電極を負極電極にも用いることで、セル抵抗率をより小さくできる。 The cell resistivity can be further reduced by using the redox flow battery electrode of the present disclosure also for the negative electrode.
 (8)上記レドックスフロー電池の一例として、
 前記正極電解液は、正極活物質としてマンガンイオンを含有し、
 前記負極電解液は、負極活物質としてチタンイオンを含有することが挙げられる。
(8) As an example of the redox flow battery,
The positive electrode electrolyte contains manganese ions as a positive electrode active material,
The said negative electrode electrolyte solution contains a titanium ion as a negative electrode active material.
 正極活物質としてマンガンイオンを含有し、負極活物質としてチタンイオンを含有するマンガン-チタン系電解液の場合、正極電極が酸化劣化し易い。そのため、マンガン-チタン系電解液の場合に、本開示のレドックスフロー電池用電極を正極電極に用いることで、効果的にセル抵抗率を小さくできる。 In the case of a manganese-titanium-based electrolyte containing manganese ions as the positive electrode active material and titanium ions as the negative electrode active material, the positive electrode is likely to be oxidized and deteriorated. Therefore, in the case of a manganese-titanium-based electrolytic solution, the cell resistivity can be effectively reduced by using the redox flow battery electrode of the present disclosure as the positive electrode.
 (9)正極活物質としてマンガンイオンを含有し、負極活物質としてチタンイオンを含有する上記レドックスフロー電池の一例として、
 前記マンガンイオンの濃度及び前記チタンイオンの濃度はそれぞれ、0.3mol/L以上5mol/L以下であることが挙げられる。
(9) As an example of the redox flow battery containing manganese ions as the positive electrode active material and titanium ions as the negative electrode active material,
The concentration of the manganese ions and the concentration of the titanium ions may be 0.3 mol / L or more and 5 mol / L or less, respectively.
 マンガンイオンの濃度及びチタンイオンの濃度がそれぞれ0.3mol/L以上であることで、価数変化反応を行う金属元素を十分に含み、エネルギー密度が高いマンガン-チタン系のレドックスフロー電池を得ることができる。一方、マンガンイオンの濃度及びチタンイオンの濃度がそれぞれ5mol/L以下であることで、電解液を酸の水溶液とする場合でも良好に溶解でき、電解液の製造性に優れる。 Obtaining a manganese-titanium redox flow battery having a high energy density and containing a sufficient amount of a metal element that undergoes a valence change reaction when the manganese ion concentration and the titanium ion concentration are each 0.3 mol / L or more. Can do. On the other hand, when the concentration of manganese ions and the concentration of titanium ions are each 5 mol / L or less, even when the electrolytic solution is an aqueous acid solution, it can be dissolved well, and the productivity of the electrolytic solution is excellent.
 [本開示の実施形態の詳細]
 本開示の実施形態に係るレドックスフロー電池用電極、及びレドックスフロー電池の詳細を、以下に図面を参照しつつ説明する。図中の同一符号は、同一名称物を示す。
[Details of Embodiment of the Present Disclosure]
Details of the redox flow battery electrode and the redox flow battery according to the embodiment of the present disclosure will be described below with reference to the drawings. The same code | symbol in a figure shows the same name thing.
 ≪レドックスフロー電池用電極≫
 図1~図3を参照して、実施形態に係るレドックスフロー電池用電極10(以下、単に「電極」と呼ぶ場合がある)を説明する。実施形態に係る電極10は、レドックスフロー電池1(図4)の構成要素に利用され、電解液に含まれる活物質が電池反応を行う反応場である。図1Aは、電極10の全体図である。図1Bは、電極10の一部拡大図である。電極10は、図1Bに示すように、互いに絡み合う複数の繊維を主体とする繊維集合体で構成される。図1Bでは、電極10を構成する複数の繊維を模式的に示す。図1Cは、電極10を構成する各繊維(基体110)において、繊維の長手方向に平行な平面で切断した断面図である。電極10は、図1Cに示すように、基体110と、基体110に担持される触媒部111とを備える。実施形態に係る電極10は、基体110を構成する元素、及び触媒部111を構成する元素として、それぞれ特定元素を含有する点を特徴の一つとする。
≪Redox flow battery electrode≫
With reference to FIG. 1 to FIG. 3, a redox flow battery electrode 10 (hereinafter, simply referred to as an “electrode”) according to an embodiment will be described. The electrode 10 according to the embodiment is used as a constituent element of the redox flow battery 1 (FIG. 4), and is a reaction field where an active material contained in an electrolytic solution performs a battery reaction. FIG. 1A is an overall view of the electrode 10. FIG. 1B is a partially enlarged view of the electrode 10. As shown in FIG. 1B, the electrode 10 is composed of a fiber assembly mainly composed of a plurality of fibers that are intertwined with each other. In FIG. 1B, the some fiber which comprises the electrode 10 is shown typically. FIG. 1C is a cross-sectional view of each fiber (base 110) constituting the electrode 10 cut along a plane parallel to the longitudinal direction of the fiber. As shown in FIG. 1C, the electrode 10 includes a base 110 and a catalyst unit 111 supported on the base 110. One feature of the electrode 10 according to the embodiment is that each of the elements constituting the substrate 110 and the catalyst part 111 contains a specific element.
 〔基体〕
 基体110は、炭素(C)、チタン(Ti)、スズ(Sn)、タンタル(Ta)、セリウム(Ce)、インジウム(In)、タングステン(W)、及び亜鉛(Zn)からなる群より選択される1種以上の元素を含有する。基体110は、単一元素からなる材料又は上記元素を含む合金や化合物からなる材料であることが挙げられる。基体110は、上記に列挙した元素以外の元素を含む場合もあり得る。基体110は、電極10のベースを構成する。基体110は、電極10に占める割合が30質量%以上99質量%以下であることが挙げられる。基体110は、その構造(繊維の組み合わせ形態)によって繊維集合体(電極10)に占める繊維の割合が異なる。繊維集合体の繊維の組み合わせ形態は、例えば、不織布や織布、ペーパー等が挙げられる。
[Substrate]
The substrate 110 is selected from the group consisting of carbon (C), titanium (Ti), tin (Sn), tantalum (Ta), cerium (Ce), indium (In), tungsten (W), and zinc (Zn). Containing one or more elements. The substrate 110 may be a material made of a single element or a material made of an alloy or compound containing the above element. The substrate 110 may contain an element other than the elements listed above. The base 110 constitutes the base of the electrode 10. As for the base | substrate 110, it is mentioned that the ratio which occupies for the electrode 10 is 30 to 99 mass%. The base 110 has a different proportion of fibers in the fiber assembly (electrode 10) depending on its structure (fiber combination form). Examples of the combination form of the fibers of the fiber assembly include nonwoven fabric, woven fabric, and paper.
 基体110を構成する繊維の横断面の平均径は、円相当径が3μm以上100μm以下であることが挙げられる。ここで言う繊維の横断面とは、繊維の長手方向と直交する方向に平行な平面で切断した断面である。繊維の円相当径が3μm以上であることで、繊維の集合体の強度を確保することができる。一方、繊維の円相当径が100μm以下であることで、単位重量当たりの繊維の表面積を大きくでき、十分な電池反応を行うことができる。繊維の円相当径は、更に5μm以上50μm以下、特に7μm以上20μm以下であることが挙げられる。ここで言う円相当径とは、上記繊維の横断面の面積を有する真円の直径である。基体110を構成する繊維の横断面の平均径は、電極10を切断して繊維の横断面を露出させ、顕微鏡下で5視野以上、1視野につき3本以上の繊維について測定した結果を平均することで求められる。 As for the average diameter of the cross section of the fibers constituting the substrate 110, the equivalent circle diameter is 3 μm or more and 100 μm or less. The cross section of the fiber mentioned here is a cross section cut along a plane parallel to the direction orthogonal to the longitudinal direction of the fiber. When the equivalent circle diameter of the fiber is 3 μm or more, the strength of the fiber assembly can be ensured. On the other hand, when the equivalent circle diameter of the fiber is 100 μm or less, the surface area of the fiber per unit weight can be increased, and a sufficient battery reaction can be performed. The equivalent circle diameter of the fiber is further 5 μm or more and 50 μm or less, particularly 7 μm or more and 20 μm or less. The equivalent circle diameter referred to here is the diameter of a perfect circle having the cross-sectional area of the fiber. The average diameter of the cross section of the fiber constituting the substrate 110 is obtained by cutting the electrode 10 to expose the cross section of the fiber, and averaging the results measured under a microscope for five or more fields and three or more fibers per field. Is required.
 基体110による繊維集合体の空隙率は、40体積%超98体積%未満であることが挙げられる。繊維集合体の空隙率が40体積%超であることで、電解液の流通性を向上できる。一方、繊維集合体の空隙率が98体積%未満であることで、繊維集合体の密度が大きくなって導電性を向上でき、十分な電池反応を行うことができる。基体110による繊維集合体の空隙率は、更に60体積%以上95体積%以下、特に70体積%以上93体積%以下であることが挙げられる。 It can be mentioned that the porosity of the fiber assembly by the substrate 110 is more than 40% by volume and less than 98% by volume. When the porosity of the fiber assembly is more than 40% by volume, the flowability of the electrolytic solution can be improved. On the other hand, when the porosity of the fiber assembly is less than 98% by volume, the density of the fiber assembly can be increased, the conductivity can be improved, and a sufficient battery reaction can be performed. It can be mentioned that the porosity of the fiber aggregate by the substrate 110 is 60% by volume to 95% by volume, particularly 70% by volume to 93% by volume.
 〔触媒部〕
 触媒部111は、鉄(Fe)、ケイ素(Si)、モリブデン(Mo)、セリウム(Ce)、マンガン(Mn)、銅(Cu)、及びタングステン(W)からなる群より選択される1種以上の元素を含有する。触媒部111は、上記に列挙する元素を含有する非貴金属元素からなることが好ましい。触媒部111は、上記に列挙する元素群より選択される1種の元素を含有する場合、その元素単体、その元素の酸化物、又はその元素単体及び同元素の酸化物の双方を含有することが挙げられる。触媒部111は、上記に列挙する元素群より選択される複数種の元素を含有する場合、複数種の元素単体、各元素の酸化物の複数種、各元素を複数種含む化合物、各元素を複数種含む固溶体、又はそれらの組み合わせで含有することが挙げられる。例えば、上記に列挙する元素群より選択される複数種の元素をX,Yとしたとき、二種の元素単体:X+Y、各元素の酸化物の二種:X+Y、各元素を二種含む化合物(複合酸化物):(X,Y)O等が挙げられる。特に、触媒部111は、上記に列挙する元素群より選択される元素(複数種含む場合は、各元素)の酸化物の形態で含有することが多い。触媒部111は、上記に列挙した元素以外の元素を含む場合もあり得るが、その元素も非貴金属元素であることが好ましい。触媒部111は、基体110に担持され、電極10上での電池反応性を向上する。
(Catalyst part)
The catalyst unit 111 is one or more selected from the group consisting of iron (Fe), silicon (Si), molybdenum (Mo), cerium (Ce), manganese (Mn), copper (Cu), and tungsten (W). Contains the elements. The catalyst part 111 is preferably made of a non-noble metal element containing the elements listed above. When the catalyst unit 111 contains one element selected from the element group listed above, the catalyst part 111 contains the element simple substance, the oxide of the element, or both the element simple substance and the oxide of the same element. Is mentioned. When the catalyst unit 111 contains a plurality of types of elements selected from the element group listed above, a plurality of types of elements, a plurality of types of oxides of each element, a compound containing a plurality of types of each element, It may be contained in a solid solution containing a plurality of types, or a combination thereof. For example, when a plurality of kinds of elements selected from the element group listed above are X and Y, two kinds of element simple substance: X + Y, two kinds of oxides of each element: X n O m + Y p O q , A compound containing two kinds of each element (composite oxide): (X s , Y t ) O and the like. In particular, the catalyst part 111 is often contained in the form of an oxide of an element selected from the element group listed above (each element in the case where a plurality of kinds are included). Although the catalyst part 111 may contain elements other than the element enumerated above, it is preferable that the element is also a non-noble metal element. The catalyst unit 111 is supported on the substrate 110 and improves battery reactivity on the electrode 10.
 基体110及び触媒部111が同一元素を含有していてもよい。この場合、基体110は、元素単体からなり、触媒部111は、その元素の化合物からなることが挙げられる。化合物としては、酸化物が挙げられる。例えば、基体110及び触媒部111が共にWを含有する場合、W単体からなる基体110に、W酸化物からなる触媒部111が担持される形態が挙げられる。また、基体110及び触媒部111が共にCeを含有する場合、Ce単体からなる基体110に、Ce酸化物からなる触媒部111が担持される形態が挙げられる。基体110及び触媒部111が同一元素を含有していた場合であっても、いずれに含有される元素であるかは、透過型電子顕微鏡(TEM)により結晶構造を観察することで判別可能である。元素単体と元素の化合物とは、結晶構造が異なるからである。 The base 110 and the catalyst part 111 may contain the same element. In this case, the base 110 is made of a single element, and the catalyst part 111 is made of a compound of the element. An oxide is mentioned as a compound. For example, when both the base 110 and the catalyst part 111 contain W, a form in which the catalyst part 111 made of W oxide is supported on the base 110 made of W alone is exemplified. Further, when both the base 110 and the catalyst part 111 contain Ce, a form in which the catalyst part 111 made of Ce oxide is supported on the base 110 made of Ce alone can be cited. Even when the base 110 and the catalyst part 111 contain the same element, it can be determined by observing the crystal structure with a transmission electron microscope (TEM). . This is because elemental elements and elemental compounds have different crystal structures.
 触媒部111は、基体110に担持される。ここで言う担持とは、触媒部111が基体110に導通した状態で固定されることを言う。触媒部111が基体110に固定される形態としては、触媒部111が基体110に直接的に固定される形態と、基体110に間接的に固定される形態とがある。触媒部111が基体110に直接的に固定される形態として、図1Cに示すように、触媒部111が基体110の表面に付着することが挙げられる。また、触媒部111が基体110に直接的に固定される形態として、図2に示すように、触媒部111の少なくとも一部分が基体110に埋設されることが挙げられる。具体的には、触媒部111が、基体110から露出される部分と、基体110に埋設される部分とを有する形態が挙げられる。触媒部111が基体110から露出される部分を有することで、電極10の使用初期から触媒作用を発揮できる。一方で、触媒部111が基体110に埋設される部分を有することで、触媒部111が基体110に強固に担持され、長期にわたるレドックスフロー電池1(図4)の運転において、触媒部111が基体110から脱落することを抑制し易い。他に、触媒部111は、図2に示すように、基体110から露出されずに基体110に埋設される形態が挙げられる。触媒部111が完全に基体110に埋設されている場合、この触媒部111は、電極10が経時的に劣化した際に露出される。その露出された触媒部111が、触媒作用を発揮する。基体110の表面に付着した状態の触媒部111(図1C)と、一部分が基体110に埋設された状態の触媒部111(図2)と、完全に基体110に埋設された状態の触媒部111(図2)とが混在していてもよい。完全に基体110に埋設された状態の触媒部111は、電極10の使用初期には触媒作用を発揮できない。そのため、基体110から露出される部分を有する触媒部111は必ず含まれる。 The catalyst unit 111 is supported on the base 110. The term “supporting” as used herein means that the catalyst unit 111 is fixed in a state of being electrically connected to the base 110. As a form in which the catalyst part 111 is fixed to the base 110, there are a form in which the catalyst part 111 is directly fixed to the base 110 and a form in which the catalyst part 111 is indirectly fixed to the base 110. As a form in which the catalyst unit 111 is directly fixed to the base 110, as shown in FIG. 1C, the catalyst unit 111 is attached to the surface of the base 110. Further, as a form in which the catalyst unit 111 is directly fixed to the base 110, at least a part of the catalyst unit 111 is embedded in the base 110 as shown in FIG. Specifically, a form in which the catalyst part 111 has a part exposed from the base 110 and a part embedded in the base 110 can be mentioned. By having the catalyst portion 111 exposed from the base 110, the catalytic action can be exerted from the beginning of use of the electrode 10. On the other hand, the catalyst portion 111 has a portion embedded in the base 110, so that the catalyst portion 111 is firmly supported on the base 110, and the catalyst portion 111 becomes a base in the operation of the redox flow battery 1 (FIG. 4) for a long time. It is easy to suppress dropping from 110. In addition, as shown in FIG. 2, the catalyst unit 111 may be embedded in the base 110 without being exposed from the base 110. When the catalyst part 111 is completely embedded in the base 110, the catalyst part 111 is exposed when the electrode 10 deteriorates with time. The exposed catalyst portion 111 exhibits a catalytic action. The catalyst portion 111 (FIG. 1C) attached to the surface of the substrate 110, the catalyst portion 111 (FIG. 2) partially embedded in the substrate 110, and the catalyst portion 111 completely embedded in the substrate 110. (FIG. 2) may be mixed. The catalyst portion 111 that is completely embedded in the substrate 110 cannot exert a catalytic action in the initial use of the electrode 10. Therefore, the catalyst part 111 having a portion exposed from the base 110 is necessarily included.
 電極10は、図3に示すように、触媒部111の少なくとも一部を覆うバインダー112を備えることができる。バインダー112は、基体110から触媒部111にわたって両者110,111を覆うように設けられることが挙げられる。触媒部111が基体110に間接的に固定される形態として、触媒部111が基体110に付着されず、バインダー112により触媒部111が基体110に接触した状態に固定されることが挙げられる。バインダー112を備える場合、基体110と触媒部111とが非接触であり、基体110と触媒部111との間にバインダー112が介在していてもよい。基体110と触媒部111とが非接触の場合、触媒部111と基体110とは導通できない。そのため、バインダー112を備える場合、基体110に直接的に接触した状態の触媒部111は必ず含まれる。触媒部111が基体110に直接的に固定されており、更にバインダー112でも固定されていてもよい。つまり、基体110に付着した状態の触媒部111や、基体110に埋設された部分を有する触媒部111を含み、更にバインダー112を備えていてもよい。いずれであっても、バインダー112を備えることで、触媒部111が基体110に強固に担持される。完全にバインダー112に覆われた状態の触媒部111は、電極10の使用初期には触媒作用を発揮できない。そのため、バインダー112から露出される部分を有する触媒部111は必ず含まれる。 The electrode 10 can be provided with a binder 112 that covers at least a part of the catalyst part 111 as shown in FIG. It is mentioned that the binder 112 is provided so as to cover the both 110 and 111 from the base 110 to the catalyst part 111. As a form in which the catalyst unit 111 is indirectly fixed to the substrate 110, the catalyst unit 111 is not attached to the substrate 110, and the catalyst unit 111 is fixed in contact with the substrate 110 by the binder 112. When the binder 112 is provided, the base 110 and the catalyst part 111 may not be in contact with each other, and the binder 112 may be interposed between the base 110 and the catalyst part 111. When the base 110 and the catalyst part 111 are not in contact with each other, the catalyst part 111 and the base 110 cannot be electrically connected. Therefore, when the binder 112 is provided, the catalyst part 111 in a state of being in direct contact with the substrate 110 is necessarily included. The catalyst unit 111 is directly fixed to the base 110, and may be further fixed by the binder 112. That is, the catalyst part 111 attached to the base 110 and the catalyst part 111 having a portion embedded in the base 110 may be included, and the binder 112 may be further provided. In any case, the catalyst unit 111 is firmly supported on the base 110 by including the binder 112. The catalyst portion 111 that is completely covered with the binder 112 cannot exert a catalytic action in the initial use of the electrode 10. Therefore, the catalyst part 111 having a part exposed from the binder 112 is necessarily included.
 バインダー112は、炭素(C)、アルミニウム(Al)、及びリン(P)からなる群より選択される1種以上の元素を含有する。電極10のうちバインダー112の占める質量割合は、1%以上50%以下、更に20%以上40%以下であることが挙げられる。上記質量割合は、基体110と触媒部111とバインダー112との合計含有量を100質量%としたときのバインダー112を構成する元素の合計含有量の質量割合である。バインダー112の質量割合は、熱重量測定(TG)により求められる。 The binder 112 contains one or more elements selected from the group consisting of carbon (C), aluminum (Al), and phosphorus (P). It can be mentioned that the mass ratio of the binder 112 in the electrode 10 is 1% or more and 50% or less, and further 20% or more and 40% or less. The said mass ratio is a mass ratio of the total content of the element which comprises the binder 112 when the total content of the base | substrate 110, the catalyst part 111, and the binder 112 is 100 mass%. The mass ratio of the binder 112 is obtained by thermogravimetry (TG).
 触媒部111は、代表的には、固形物である。固形物としては、粒状体、針状体、直方体、短繊維、長繊維等が挙げられる。触媒部111は、代表的には、図1Cに示すように、基体110の全領域に亘ってほぼ均一的に分散して存在する。触媒部111は、基体110に直接的に密着して接触する部分を有することが挙げられる。上記の特定元素を含有する触媒部111は、上記の特定元素を含有する基体110に直接的に担持されることで、触媒効果を効果的に発揮し易いからである。なお、上記の特定元素を含有する触媒部111は、上記の特定元素を含有する基体110に対して直接的に担持され易い。 The catalyst unit 111 is typically a solid. As a solid substance, a granular material, a needle-shaped body, a rectangular parallelepiped, a short fiber, a long fiber, etc. are mentioned. Typically, as shown in FIG. 1C, the catalyst part 111 is present almost uniformly dispersed over the entire region of the substrate 110. The catalyst unit 111 may include a portion that is in direct contact with and in contact with the substrate 110. This is because the catalyst part 111 containing the above-mentioned specific element is easily supported on the substrate 110 containing the above-mentioned specific element, thereby easily exerting a catalytic effect effectively. The catalyst part 111 containing the specific element is easily supported directly on the substrate 110 containing the specific element.
 電極10に占める触媒部111の質量割合(触媒部111の存在比率)は、0.01%以上70%以下であることが挙げられる。触媒部111の存在比率は、電極10を100質量%としたときの触媒部111を構成する元素の合計含有量の質量割合である。例えば、電極10が基体110と触媒部111とで構成される場合、基体110と触媒部111との合計含有量を100質量%とする。また、電極10が基体110と触媒部111とバインダー112(図3)とで構成される場合、基体110と触媒部111とバインダー112との合計含有量を100質量%とする。触媒部111の存在比率が0.01%以上であることで、電極10上での電池反応性を高め易く、セル抵抗率がより小さいレドックスフロー電池1を構築できる。触媒部111の存在比率は、大きいほど電極10上での電池反応性を高め易いが、相対的に基体110の存在比率が減少し、電極10の耐久性が低下する。よって、触媒部111の存在比率が70%以下であることで、電極10上での電池反応性がより高く、耐久性に優れる電極10を得易い。触媒部111の存在比率は、更に0.1%以上70%以下、1%以上70%以下、特に10%以上50%以下、10%以上30%以下であることが挙げられる。触媒部111の存在比率は、TGにより求められる。 The mass ratio of the catalyst part 111 occupying the electrode 10 (existence ratio of the catalyst part 111) is 0.01% or more and 70% or less. The abundance ratio of the catalyst part 111 is a mass ratio of the total content of elements constituting the catalyst part 111 when the electrode 10 is 100 mass%. For example, when the electrode 10 includes the base 110 and the catalyst part 111, the total content of the base 110 and the catalyst part 111 is 100% by mass. Moreover, when the electrode 10 is comprised by the base | substrate 110, the catalyst part 111, and the binder 112 (FIG. 3), the sum total content of the base | substrate 110, the catalyst part 111, and the binder 112 shall be 100 mass%. The presence ratio of the catalyst part 111 is 0.01% or more, so that the battery reactivity on the electrode 10 can be easily improved and the redox flow battery 1 having a smaller cell resistivity can be constructed. The larger the abundance ratio of the catalyst part 111 is, the easier it is to improve the cell reactivity on the electrode 10, but the abundance ratio of the substrate 110 is relatively reduced, and the durability of the electrode 10 is lowered. Therefore, when the abundance ratio of the catalyst portion 111 is 70% or less, it is easy to obtain the electrode 10 having higher battery reactivity on the electrode 10 and excellent durability. The abundance ratio of the catalyst portion 111 is further 0.1% to 70%, 1% to 70%, particularly 10% to 50%, 10% to 30%. The abundance ratio of the catalyst part 111 is obtained by TG.
 〔目付量〕
 電極10は、目付量(単位面積当たりの重量)が50g/m以上10000g/m以下であることが挙げられる。電極10の目付量が50g/m以上であることで、十分な電池反応を行うことができる。一方、目付量が10000g/m以下であることで、空隙が過度に小さくなることを抑制でき、電解液の流通抵抗の上昇を抑制し易い。電極10の目付量は、更に100g/m以上2000g/m以下、特に200g/m以上700g/m以下であることが挙げられる。
[Weight per unit]
Electrode 10 is mentioned that the basis weight (weight per unit area) of 50 g / m 2 or more 10000 g / m 2 or less. When the basis weight of the electrode 10 is 50 g / m 2 or more, a sufficient battery reaction can be performed. On the other hand, when the basis weight is 10000 g / m 2 or less, it is possible to suppress the voids from becoming excessively small, and to easily suppress an increase in the flow resistance of the electrolytic solution. The basis weight of the electrode 10 is further 100 g / m 2 or more and 2000 g / m 2 or less, particularly 200 g / m 2 or more and 700 g / m 2 or less.
 〔厚み〕
 電極10は、外力の作用しない状態での厚みが0.1mm以上5mm以下であることが好ましい。電極10の上記厚みが0.1mm以上であることで、電解液との間で電池反応を行う電池反応場を増大できる。一方、電極10の上記厚みが5mm以下であることで、この電極10を用いたレドックスフロー電池1を薄型とできる。電極10の上記厚みは、更に0.2mm以上2.5mm以下、特に0.3mm以上1.5mm以下であることが挙げられる。
[Thickness]
The electrode 10 preferably has a thickness of 0.1 mm or more and 5 mm or less when no external force is applied. When the thickness of the electrode 10 is 0.1 mm or more, a battery reaction field for performing a battery reaction with the electrolytic solution can be increased. On the other hand, when the thickness of the electrode 10 is 5 mm or less, the redox flow battery 1 using the electrode 10 can be made thin. The said thickness of the electrode 10 is further 0.2 mm or more and 2.5 mm or less, Especially 0.3 mm or more and 1.5 mm or less are mentioned.
 ≪レドックスフロー電池用電極の製造方法≫
 上述した電極10は、基体110と、触媒部111の構成元素を含有する塗布液とを準備し、塗布液を基体110の表面に塗布して熱処理を施すことで得られる。
≪Method for manufacturing electrode for redox flow battery≫
The electrode 10 described above is obtained by preparing a base 110 and a coating solution containing the constituent elements of the catalyst unit 111, applying the coating solution to the surface of the base 110, and performing a heat treatment.
 基体110として、C,Ti,Sn,Ta,Ce,In,W,及びZnからなる群より選択される1種以上の元素を含有する繊維が互いに絡み合った繊維集合体を準備する。この繊維集合体の大きさや形状は、所望の電極10の大きさや形状となるように適宜選択すればよい。この準備した繊維集合体は、ブラストやエッチング処理等を行い、表面積拡大、表面粗化を行ったものを利用することが挙げられる。ブラストやエッチング処理後、表面の選択エッチングを行い清浄化及び活性化を行う。清浄化における酸清浄に用いる酸として、代表的には、硫酸、塩酸、フッ酸等があり、これらの液に繊維集合体を浸漬し表面の一部を溶解することにより活性化を行うことができる。 As the substrate 110, a fiber assembly in which fibers containing one or more elements selected from the group consisting of C, Ti, Sn, Ta, Ce, In, W, and Zn are intertwined with each other is prepared. What is necessary is just to select suitably the magnitude | size and shape of this fiber assembly so that it may become the magnitude | size and shape of a desired electrode 10. FIG. The prepared fiber aggregate may be subjected to blasting, etching treatment or the like, and the one subjected to surface area expansion and surface roughening is used. After blasting or etching, the surface is selectively etched to clean and activate. As acids used for acid cleaning in cleaning, there are typically sulfuric acid, hydrochloric acid, hydrofluoric acid, etc., and activation can be performed by immersing the fiber assembly in these liquids and dissolving a part of the surface. it can.
 触媒部111を構成する元素の原料と溶媒とを含有する塗布液を準備する。触媒部111を構成する元素の原料としては、金属アルコキシド、塩化物、酢酸塩、有機金属化合物がある。具体的には、タングステン酸アンモニウム五水和物、塩化タングステン、タングステン酸ナトリウム水和物等が挙げられる。他に、塩化鉄、七モリブデン酸六アンモニウム四水和物、炭酸セリウム、硫酸マンガン、硫酸銅等が挙げられる。溶媒としては、水や有機溶媒を利用できる。有機溶媒としては、メタノール、エタノール、プロピルアルコール、イソプロパノール、ブタノール、ペンタノール、ヘキサノール等が挙げられる。溶媒は、塗布液全体に対して70質量%以上95質量%以下含有することが挙げられる。塗布液には、安定化剤として、アセチルアセトン等を含有することができる。安定化剤は、塗布液全体に対して1質量%以上10質量%以下含有することが挙げられる。これら原料と溶媒、更には安定化剤を含有した含有物を、窒素雰囲気で1時間以上5時間以下程度撹拌することで、所望の触媒部111の構成元素を含有する塗布液が得られる。 A coating solution containing a raw material for the element constituting the catalyst unit 111 and a solvent is prepared. Examples of raw materials for elements constituting the catalyst unit 111 include metal alkoxides, chlorides, acetates, and organometallic compounds. Specific examples include ammonium tungstate pentahydrate, tungsten chloride, sodium tungstate hydrate, and the like. In addition, iron chloride, hexaammonium hexamolybdate tetrahydrate, cerium carbonate, manganese sulfate, copper sulfate and the like can be mentioned. As the solvent, water or an organic solvent can be used. Examples of the organic solvent include methanol, ethanol, propyl alcohol, isopropanol, butanol, pentanol, hexanol and the like. Examples of the solvent include 70% by mass to 95% by mass with respect to the entire coating solution. The coating liquid can contain acetylacetone as a stabilizer. It is mentioned that a stabilizer contains 1 to 10 mass% with respect to the whole coating liquid. By stirring the contents containing these raw materials, solvent, and further stabilizer in a nitrogen atmosphere for about 1 hour to 5 hours, a coating solution containing the desired constituent elements of the catalyst portion 111 can be obtained.
 得られた繊維集合体の表面に得られた塗布液を塗布する。塗布方法としては、刷毛塗法、噴霧法、浸漬法、フローコート法、ロールコート法等が挙げられる。繊維集合体に塗布液を塗布した後は、乾燥する。その後、塗布液を塗布した繊維集合体に、酸素を含む雰囲気中、300℃以上700℃以下×10分以上5時間以下の熱処理を行う。酸素を含む雰囲気は、酸化性雰囲気や、還元ガスが含まれるガス中で酸化状態を調整した雰囲気が含まれ、例えば空気中が挙げられる。熱処理温度を300℃以上、熱処理時間を10分以上とすることで、基体110の全領域に亘ってほぼ均一的に分散して触媒部111を付着させることができる。一方、熱処理温度を700℃以下、熱処理時間を5時間以下とすることで、基体110に対する触媒部111の存在比率が大きくなり過ぎることを抑制できる。熱処理温度は、更に400℃以上600℃以下、特に450℃以上550℃以下とすることが挙げられる。また、熱処理時間は、更に15分以上2時間以下、特に30分以上1時間以下とすることが挙げられる。 Apply the obtained coating solution to the surface of the obtained fiber assembly. Examples of the coating method include a brush coating method, a spray method, a dipping method, a flow coating method, and a roll coating method. After the coating solution is applied to the fiber assembly, it is dried. Thereafter, the fiber assembly to which the coating solution has been applied is subjected to a heat treatment at 300 ° C. to 700 ° C. for 10 minutes to 5 hours in an oxygen-containing atmosphere. The atmosphere containing oxygen includes an oxidizing atmosphere and an atmosphere in which the oxidation state is adjusted in a gas containing a reducing gas, and examples thereof include air. By setting the heat treatment temperature to 300 ° C. or more and the heat treatment time to 10 minutes or more, the catalyst part 111 can be adhered while being dispersed almost uniformly over the entire region of the substrate 110. On the other hand, by setting the heat treatment temperature to 700 ° C. or less and the heat treatment time to 5 hours or less, it is possible to suppress the existence ratio of the catalyst part 111 with respect to the base 110 from becoming too large. The heat treatment temperature may be 400 ° C. or more and 600 ° C. or less, particularly 450 ° C. or more and 550 ° C. or less. Further, the heat treatment time is further set to 15 minutes to 2 hours, particularly 30 minutes to 1 hour.
 上記熱処理によって、繊維集合体の内部に触媒部111の構成元素が熱拡散によって浸透し、繊維集合体を構成する各繊維(基体110)の外周面に触媒部111が分散して密着される。上記塗布液を基体110の表面に塗布した後に熱処理を施して得られた電極10では、触媒部111は、主に、基体110の表面に付着した状態となる。また、上記熱処理を施して得られた電極10では、触媒部111の一部分が基体110に埋設された状態となることもある。 By the heat treatment, the constituent elements of the catalyst unit 111 penetrate into the fiber assembly by thermal diffusion, and the catalyst unit 111 is dispersed and adhered to the outer peripheral surface of each fiber (base 110) constituting the fiber assembly. In the electrode 10 obtained by applying a heat treatment after applying the coating solution on the surface of the substrate 110, the catalyst portion 111 is mainly attached to the surface of the substrate 110. Further, in the electrode 10 obtained by performing the heat treatment, a part of the catalyst part 111 may be embedded in the base 110.
 他に、物理的気相成長法(PVD)や化学的気相成長(CVD)法を用いて、触媒部111を基体110に担持することもできる。PVD法としては、スパッタ法が挙げられる。具体的には、準備した基体110に、触媒部111を構成する元素単体又はその元素の酸化物をPVD法やCVD法で付着する。触媒部111を構成する元素単体を基体110に付着した場合、付着後に、熱処理を行うことが挙げられる。この熱処理により、基体110に付着した元素を酸化する。熱処理条件は、酸素を含む雰囲気中、例えば空気中で、300℃以上700℃以下×15分以上2時間以下とすることが挙げられる。PVD法やCVD法を用いて得られた電極10では、触媒部111は、主に、触媒部111の一部分が基体110に埋設された状態となる。 In addition, the catalyst unit 111 can be supported on the substrate 110 using physical vapor deposition (PVD) or chemical vapor deposition (CVD). Examples of the PVD method include a sputtering method. Specifically, a single element constituting the catalyst unit 111 or an oxide of the element is attached to the prepared substrate 110 by a PVD method or a CVD method. When the element simple substance which comprises the catalyst part 111 adheres to the base | substrate 110, heat processing is mentioned after adhesion. By this heat treatment, the elements attached to the substrate 110 are oxidized. The heat treatment condition may be 300 ° C. or more and 700 ° C. or less × 15 minutes or more and 2 hours or less in an oxygen-containing atmosphere, for example, air. In the electrode 10 obtained by using the PVD method or the CVD method, the catalyst part 111 is mainly in a state where a part of the catalyst part 111 is embedded in the base 110.
 PVD法やCVD法を用いて、触媒部111を基体110に担持するにあたり、準備した基体110の表面を溶融させることで、触媒部111を完全に基体110に埋設することもできる。 When the catalyst unit 111 is supported on the substrate 110 using the PVD method or the CVD method, the catalyst unit 111 can be completely embedded in the substrate 110 by melting the surface of the prepared substrate 110.
 バインダー112を備える電極10は、触媒部111の構成元素を含有するバインダー液を基体110の表面に塗布して熱処理を施すことで得られる。バインダー液は、触媒部111を構成する元素の原料と、バインダー112を構成する元素の原料と、溶媒とを含有する。触媒部111を構成する元素の原料、及びバインダー112を構成する元素の原料としては、元素単体を用いることが挙げられる。溶媒としては、水や有機溶媒を利用できる。基体110に対するバインダー液の塗布方法としては、刷毛塗法、噴霧法、浸漬法、フローコート法、ロールコート法等が挙げられる。基体110にバインダー液を塗布した後は、乾燥する。その後、バインダー液を塗布した基体110に、酸素を含む雰囲気中、例えば空気中で、300℃以上700℃以下×15分以上2時間以下の熱処理を行う。 The electrode 10 including the binder 112 is obtained by applying a heat treatment by applying a binder liquid containing the constituent elements of the catalyst unit 111 to the surface of the substrate 110. The binder liquid contains a raw material for the element constituting the catalyst part 111, a raw material for the element constituting the binder 112, and a solvent. Examples of the raw material for the element constituting the catalyst part 111 and the raw material for the element constituting the binder 112 include the use of a single element. As the solvent, water or an organic solvent can be used. Examples of the method for applying the binder liquid to the substrate 110 include a brush coating method, a spraying method, a dipping method, a flow coating method, and a roll coating method. After the binder liquid is applied to the substrate 110, it is dried. Thereafter, the substrate 110 coated with the binder liquid is subjected to heat treatment in an atmosphere containing oxygen, for example, in air, for example, at 300 ° C. to 700 ° C. × 15 minutes to 2 hours.
 ≪レドックスフロー電池≫
 図4~図6を参照して、実施形態に係るレドックスフロー電池1(RF電池)を説明する。RF電池1は、代表的には、図4に示すように、交流/直流変換器や変電設備等を介して、発電部と、電力系統や需要家等の負荷とに接続される。RF電池1は、発電部を電力供給源として充電を行い、負荷を電力消費対象として放電を行う。発電部は、例えば、太陽光発電機、風力発電機、その他一般の発電所等が挙げられる。
≪Redox flow battery≫
A redox flow battery 1 (RF battery) according to the embodiment will be described with reference to FIGS. As shown in FIG. 4, the RF battery 1 is typically connected to a power generation unit and a load such as a power system or a consumer via an AC / DC converter, a transformer facility, and the like. The RF battery 1 performs charging using the power generation unit as a power supply source, and performs discharging using the load as a power consumption target. Examples of the power generation unit include a solar power generator, a wind power generator, and other general power plants.
 RF電池1は、図4に示すように、電池セル100と、電池セル100に電解液を循環供給する循環機構(正極循環機構100P及び負極循環機構100N)とを備える。電池セル100は、隔膜11で正極セル12と負極セル13とに分離されている。正極セル12には、正極電解液が供給される正極電極14が内蔵され、負極セル13には、負極電解液が供給される負極電極15が内蔵されている。実施形態に係るRF電池1は、正極電極14が上述した実施形態に係る電極10で構成される点を特徴の一つとする。この例では、負極電極15も上述した実施形態に係る電極10で構成される。 As shown in FIG. 4, the RF battery 1 includes a battery cell 100 and a circulation mechanism (a positive electrode circulation mechanism 100 </ b> P and a negative electrode circulation mechanism 100 </ b> N) that circulates and supplies an electrolytic solution to the battery cell 100. The battery cell 100 is separated into a positive electrode cell 12 and a negative electrode cell 13 by a diaphragm 11. The positive electrode cell 12 includes a positive electrode 14 to which a positive electrode electrolyte is supplied, and the negative electrode cell 13 includes a negative electrode 15 to which a negative electrode electrolyte is supplied. One of the features of the RF battery 1 according to the embodiment is that the positive electrode 14 includes the electrode 10 according to the above-described embodiment. In this example, the negative electrode 15 is also composed of the electrode 10 according to the above-described embodiment.
 電池セル100は、図6に示すように、一組のセルフレーム16,16に挟まれて構成される。セルフレーム16は、表裏面に正極電極14及び負極電極15がそれぞれ配置される双極板161と、双極板161の周縁を囲む枠体162とを備える。 The battery cell 100 is configured to be sandwiched between a set of cell frames 16 and 16 as shown in FIG. The cell frame 16 includes a bipolar plate 161 on which the positive electrode 14 and the negative electrode 15 are disposed on the front and back surfaces, and a frame 162 that surrounds the periphery of the bipolar plate 161.
 隔膜11は、正極電極14と負極電極15とを分離すると共に、所定のイオンを透過する分離部材である。双極板161は、電流を流すが電解液を通さない導電部材で構成される。双極板161の片面(表面)側には正極電極14が接触するように配置され、双極板161の反対面(裏面)側には負極電極15が接触するように配置される。枠体162は、内側に電池セル100となる領域を形成する。具体的には、枠体162の厚みは、双極板161の厚みよりも大きい。枠体162は、双極板161の周縁を囲むことで、双極板161の表面(裏面)と枠体162の表面(裏面)との間に段差を形成する。この段差の内部に正極電極14(負極電極15)が配置される空間が形成される。 The diaphragm 11 is a separation member that separates the positive electrode 14 and the negative electrode 15 and transmits predetermined ions. The bipolar plate 161 is made of a conductive member that allows current to flow but does not allow electrolyte to pass through. The bipolar plate 161 is disposed so that the positive electrode 14 is in contact with one surface (front surface) side, and the negative electrode 15 is disposed on the opposite surface (back surface) side of the bipolar plate 161. The frame body 162 forms a region to be the battery cell 100 inside. Specifically, the thickness of the frame body 162 is larger than the thickness of the bipolar plate 161. The frame body 162 surrounds the periphery of the bipolar plate 161, thereby forming a step between the front surface (back surface) of the bipolar plate 161 and the front surface (back surface) of the frame body 162. A space in which the positive electrode 14 (negative electrode 15) is disposed is formed inside the step.
 正極セル12に正極電解液を循環供給する正極循環機構100Pは、正極電解液タンク18と、導管20,22と、ポンプ24とを備える。正極電解液タンク18は、正極電解液を貯留する。導管20,22は、正極電解液タンク18と正極セル12との間を繋ぐ。ポンプ24は、上流側(供給側)の導管20に設けられる。負極セル13に負極電解液を循環供給する負極循環機構100Nは、負極電解液タンク19と、導管21,23と、ポンプ25とを備える。負極電解液タンク19は、負極電解液を貯留する。導管21,23は、負極電解液タンク19と負極セル13との間を繋ぐ。ポンプ25は、上流側(供給側)の導管21に設けられる。 The positive electrode circulation mechanism 100 </ b> P that circulates and supplies the positive electrode electrolyte to the positive electrode cell 12 includes a positive electrode electrolyte tank 18, conduits 20 and 22, and a pump 24. The positive electrode electrolyte tank 18 stores a positive electrode electrolyte. The conduits 20 and 22 connect between the positive electrode electrolyte tank 18 and the positive electrode cell 12. The pump 24 is provided in the conduit 20 on the upstream side (supply side). The negative electrode circulation mechanism 100 </ b> N that circulates and supplies the negative electrode electrolyte to the negative electrode cell 13 includes a negative electrode electrolyte tank 19, conduits 21 and 23, and a pump 25. The negative electrode electrolyte tank 19 stores a negative electrode electrolyte. The conduits 21 and 23 connect between the negative electrode electrolyte tank 19 and the negative electrode cell 13. The pump 25 is provided in the conduit 21 on the upstream side (supply side).
 正極電解液は、正極電解液タンク18から上流側の導管20を介して正極電極14に供給され、正極電極14から下流側(排出側)の導管22を介して正極電解液タンク18に戻される。また、負極電解液は、負極電解液タンク19から上流側の導管21を介して負極電極15に供給され、負極電極15から下流側(排出側)の導管23を介して負極電解液タンク19に戻される。図4及び図5において、正極電解液タンク18内及び負極電解液タンク19内に示すマンガン(Mn)イオン及びチタン(Ti)イオンは、正極電解液中及び負極電解液中に活物質として含むイオン種の一例を示す。図4において、実線矢印は充電、破線矢印は放電を意味する。正極電解液の循環及び負極電解液の循環によって、正極電極14に正極電解液を循環供給すると共に、負極電極15に負極電解液を循環供給しながら、各極の電解液中の活物質イオンの価数変化反応に伴って充放電を行う。 The positive electrolyte solution is supplied from the positive electrode electrolyte tank 18 to the positive electrode 14 via the upstream conduit 20 and returned from the positive electrode 14 to the positive electrolyte tank 18 via the downstream (discharge side) conduit 22. . Further, the negative electrode electrolyte is supplied from the negative electrode electrolyte tank 19 to the negative electrode 15 through the upstream conduit 21, and from the negative electrode 15 to the negative electrolyte tank 19 through the downstream (discharge side) conduit 23. Returned. 4 and 5, manganese (Mn) ions and titanium (Ti) ions shown in the positive electrode electrolyte tank 18 and the negative electrode electrolyte tank 19 are ions contained as active materials in the positive electrode electrolyte and the negative electrode electrolyte. An example of a species is shown. In FIG. 4, a solid line arrow means charging, and a broken line arrow means discharging. By circulating the positive electrode electrolyte and the negative electrode electrolyte, the positive electrode electrolyte is circulated and supplied to the positive electrode 14 and the negative electrode electrolyte is circulated and supplied to the negative electrode 15 while the active material ions in the electrolyte of each electrode are circulated. Charge / discharge is performed with the valence change reaction.
 正極電解液は、例えば、正極活物質としてマンガンイオン、バナジウムイオン、鉄イオン、ポリ酸、キノン誘導体、及びアミンから選択される1種以上を含有することが挙げられる。また、負極電解液は、負極活物質としてチタンイオン、バナジウムイオン、クロムイオン、ポリ酸、キノン誘導体、及びアミンから選択される1種以上を含有することが挙げられる。正極活物質の濃度、及び負極活物質の濃度は適宜選択できる。例えば、正極活物質の濃度、及び負極活物質の濃度の少なくとも一方は、0.3mol/L以上5mol/L以下であることが挙げられる。上記濃度が0.3mol/L以上であれば、大容量の蓄電池として十分なエネルギー密度(例えば、10kWh/m程度)を有することができる。上記濃度が高いほどエネルギー密度が高められることから、0.5mol/L以上、更に1.0mol/L以上、1.2mol/L以上、1.5mol/L以上とすることができる。溶媒に対する溶解度を考慮すると、上記濃度は、5mol/L以下、更に2mol/L以下が利用し易く、電解液の製造性に優れる。電解液は、活物質に加えて、硫酸、リン酸、硝酸、塩酸から選択される1種以上の酸又は酸塩を含む水溶液等を利用できる。 The positive electrode electrolyte includes, for example, at least one selected from manganese ions, vanadium ions, iron ions, polyacids, quinone derivatives, and amines as a positive electrode active material. In addition, the negative electrode electrolyte includes one or more selected from titanium ions, vanadium ions, chromium ions, polyacids, quinone derivatives, and amines as the negative electrode active material. The concentration of the positive electrode active material and the concentration of the negative electrode active material can be appropriately selected. For example, at least one of the concentration of the positive electrode active material and the concentration of the negative electrode active material may be 0.3 mol / L or more and 5 mol / L or less. If the said density | concentration is 0.3 mol / L or more, it can have sufficient energy density (for example, about 10 kWh / m < 3 >) as a large capacity storage battery. Since the energy density is increased as the concentration is higher, the concentration can be set to 0.5 mol / L or more, further 1.0 mol / L or more, 1.2 mol / L or more, or 1.5 mol / L or more. Considering the solubility in a solvent, the concentration is 5 mol / L or less, more preferably 2 mol / L or less, and the electrolyte solution is excellent in productivity. As the electrolytic solution, in addition to the active material, an aqueous solution containing one or more acids or acid salts selected from sulfuric acid, phosphoric acid, nitric acid, and hydrochloric acid can be used.
 RF電池1は、代表的には、複数の電池セル100が積層されたセルスタック200と呼ばれる形態で利用される。セルスタック200は、図6に示すように、あるセルフレーム16、正極電極14、隔膜11、負極電極15、別のセルフレーム16が繰り返し積層された積層体と、積層体を挟む一対のエンドプレート210,220と、エンドプレート210,220間を繋ぐ長ボルト等の連結部材230及びナット等の締結部材とを備える。締結部材によってエンドプレート210,220間が締め付けられると、積層体は、その積層方向の締付力によって積層状態が保持される。セルスタック200は、所定数の電池セル100をサブスタック200Sとし、複数のサブスタック200Sを積層した形態で利用される。サブスタック200Sやセルスタック200における電池セル100の積層方向の両端に位置するセルフレーム16には、双極板161に代えて給排板(図示せず)が配置される。 The RF battery 1 is typically used in a form called a cell stack 200 in which a plurality of battery cells 100 are stacked. As shown in FIG. 6, the cell stack 200 includes a laminated body in which a certain cell frame 16, a positive electrode 14, a diaphragm 11, a negative electrode 15, and another cell frame 16 are repeatedly laminated, and a pair of end plates that sandwich the laminated body. 210, 220, a connecting member 230 such as a long bolt connecting the end plates 210, 220, and a fastening member such as a nut. When the end plates 210 and 220 are tightened by the fastening member, the stacked body is maintained in the stacked state by the tightening force in the stacking direction. The cell stack 200 is used in a form in which a predetermined number of battery cells 100 are sub-stacks 200S and a plurality of sub-stacks 200S are stacked. Supply and discharge plates (not shown) are disposed in place of the bipolar plates 161 on the cell frames 16 positioned at both ends of the sub stack 200S and the battery stack 100 in the cell stack 200 in the stacking direction.
 正極電極14及び負極電極15への各極の電解液の供給は、セルフレーム16における枠体162の対向する一片(給液側片、図6の紙面下側)に形成される給液マニホールド163,164、給液スリット163s,164s、及び給液整流部(図示せず)により行われる。正極電極14及び負極電極15からの各極の電解液の排出は、枠体162の対向する他片(排液側片、図6の紙面上側)に形成される排液整流部(図示せず)、排液スリット165s,166s、及び排液マニホールド165,166により行われる。正極電解液は、給液マニホールド163から枠体162の片面側(紙面表側)に形成された給液スリット163sを介して正極電極14に供給される。そして、正極電解液は、図6上図の矢印に示すように正極電極14の下側から上側へ流通し、枠体162の片面側(紙面表側)に形成された排液スリット165sを介して排液マニホールド165に排出される。負極電解液の供給及び排出は、枠体162の反対面側(紙面裏側)で行われる点を除き、正極電解液と同じである。各枠体162間には、電池セル100からの電解液の漏洩を抑制するために、Oリングや平パッキン等の環状のシール部材167(図5及び図6)が配置されている。枠体162には、環状のシール部材167を配置するためのシール溝(図示せず)が周方向にわたって形成されている。 The supply of the electrolyte solution of each electrode to the positive electrode 14 and the negative electrode 15 is performed by supplying a liquid supply manifold 163 formed on one piece (a liquid supply side piece, the lower side in FIG. 6) of the frame body 162 in the cell frame 16. 164, liquid supply slits 163s and 164s, and a liquid supply rectification unit (not shown). The electrolyte solution of each electrode from the positive electrode 14 and the negative electrode 15 is discharged from a drainage rectification unit (not shown) formed on the other piece (drainage side piece, upper side in FIG. 6) facing the frame 162. ), Drainage slits 165s and 166s, and drainage manifolds 165 and 166. The positive electrode electrolyte is supplied from the liquid supply manifold 163 to the positive electrode 14 through a liquid supply slit 163s formed on one side (the front side of the paper) of the frame 162. The positive electrode electrolyte flows from the lower side to the upper side of the positive electrode 14 as indicated by the arrow in the upper diagram of FIG. 6, and passes through the drain slit 165 s formed on one side (the front side of the paper) of the frame 162. It is discharged to the drainage manifold 165. The supply and discharge of the negative electrode electrolyte are the same as those of the positive electrode electrolyte except that the negative electrode electrolyte is supplied and discharged on the opposite side of the frame 162 (the back side of the paper). An annular seal member 167 (FIGS. 5 and 6) such as an O-ring or a flat packing is disposed between the frame bodies 162 in order to suppress leakage of the electrolytic solution from the battery cell 100. A seal groove (not shown) for arranging the annular seal member 167 is formed in the frame body 162 in the circumferential direction.
 上述したRF電池1の基本構成は、公知の構成を適宜利用できる。 As the basic configuration of the RF battery 1 described above, a known configuration can be used as appropriate.
 〔効果〕
 実施形態に係るレドックスフロー電池用電極10は、特定元素からなる元素群Aより選択される1種以上の元素を含有する基体110に、特定元素からなる元素群Bより選択される1種以上の元素を含有する触媒部111が担持される。この構成により、上記電極10は、電解液との反応性に優れ、セル抵抗率が小さいRF電池1を構築できる。元素群Aは、C,Ti,Sn,Ta,Ce,In,W,及びZnからなる。元素群Bは、Fe,Si,Mo,Ce,Mn,Cu,及びWからなる。元素群Bの元素は、元素群Aの元素で構成される基体110に対して担持され易く、かつ元素群Aの元素で構成される基体110に担持されることで、触媒機能を効果的に発揮するからである。特に、上記電極10は、電極10に占める触媒部111の占める質量割合が0.01%以上であることで、電極10上での電池反応性を高め易く、セル抵抗率がより小さいRF電池1を構築できる。
〔effect〕
The electrode 10 for a redox flow battery according to the embodiment includes one or more kinds selected from an element group B consisting of specific elements on a base 110 containing one or more elements selected from an element group A consisting of specific elements. A catalyst part 111 containing an element is supported. With this configuration, the electrode 10 can construct the RF battery 1 that is excellent in reactivity with the electrolytic solution and has a low cell resistivity. The element group A is composed of C, Ti, Sn, Ta, Ce, In, W, and Zn. The element group B includes Fe, Si, Mo, Ce, Mn, Cu, and W. The elements of the element group B are easily supported on the substrate 110 composed of the elements of the element group A, and are effectively supported on the substrate 110 composed of the elements of the element group A, thereby effectively improving the catalytic function. It is because it demonstrates. Particularly, in the electrode 10, the mass ratio of the catalyst portion 111 occupying the electrode 10 is 0.01% or more, so that the battery reactivity on the electrode 10 can be easily increased, and the RF battery 1 having a smaller cell resistivity. Can be built.
 電極10の一形態として、触媒部111の一部分が基体110に埋設されたり、触媒部111の一部分がバインダー112に覆われたりすることで、触媒部111が基体110に強固に担持され易い。触媒部111が基体110に強固に担持されることで、長期にわたるRF電池1の運転において、触媒部111が基体110から脱落することを抑制し易い。基体110から露出された部分を有する第一の触媒部111に加えて、基体110から露出されずに基体110に埋設された第二の触媒部111を備えることで、電極10の使用初期から長期にわたって触媒作用を発揮できる。長期にわたる触媒作用の発揮によって、長期にわたって電極10と電解液との反応性を良好に維持できる。第二の触媒部111は、長期にわたるRF電池1の運転において電極10が劣化した際に露出され、その露出されたときから触媒作用を発揮できるからである。つまり、長期にわたるRF電池1の運転における電極10の劣化によって、第一の触媒部111が基体110から脱落したとしても、第二の触媒部111が基体110に担持されているからである。 As a form of the electrode 10, a part of the catalyst part 111 is embedded in the base 110, or a part of the catalyst part 111 is covered with the binder 112, so that the catalyst part 111 is easily supported firmly on the base 110. Since the catalyst unit 111 is firmly supported on the base 110, it is easy to suppress the catalyst unit 111 from dropping from the base 110 in the operation of the RF battery 1 over a long period of time. In addition to the first catalyst part 111 having a portion exposed from the base 110, the second catalyst part 111 that is not exposed from the base 110 and is embedded in the base 110 is provided. Catalytic action can be exerted. By exhibiting the catalytic action over a long period of time, the reactivity between the electrode 10 and the electrolyte can be favorably maintained over a long period of time. This is because the second catalyst unit 111 is exposed when the electrode 10 is deteriorated in the operation of the RF battery 1 over a long period of time, and can exhibit a catalytic action from the exposed time. That is, even if the first catalyst unit 111 falls off the base 110 due to the deterioration of the electrode 10 in the operation of the RF battery 1 over a long period of time, the second catalyst unit 111 is supported on the base 110.
 上記電極10は、基体110が上記元素群Aの元素を含有することで、酸化劣化し難く、長期にわたるRF電池1の運転における経時的な劣化を抑制でき、耐久性に優れる。更に、上記電極10は、触媒部111が上記元素群Bの元素を含有することで、一般的に触媒として用いられる貴金属元素のみを用いる場合に比較して、低コスト化を図ることができる。 The electrode 10 is less susceptible to oxidative degradation because the base 110 contains the element of the element group A, can suppress deterioration over time in the operation of the RF battery 1 over a long period of time, and is excellent in durability. Furthermore, the electrode 10 can reduce cost compared with the case where only the noble metal element generally used as a catalyst is used because the catalyst part 111 contains the element of the element group B.
 実施形態に係るRF電池1は、実施形態に係るレドックスフロー電池用電極10を正極電極14に用いることで、電極上での電池反応性が高く、セル抵抗率が小さい。RF電池1は、充放電に伴う副反応によって正極電極14が酸化劣化し、セル抵抗率の増加を招き易い。そのため、上記電極10を正極電極14に用いることで、効果的にセル抵抗率を小さくできるからである。特に、RF電池1の電解液が、正極活物質としてマンガンイオンを含有し、負極活物質としてチタンイオンを含有するマンガン-チタン系電解液の場合、正極電極が酸化劣化し易い。そのため、上記電極10を正極電極14に用いることで、効果的にセル抵抗率を小さくできる。 The RF battery 1 according to the embodiment uses the redox flow battery electrode 10 according to the embodiment as the positive electrode 14, so that the battery reactivity on the electrode is high and the cell resistivity is low. In the RF battery 1, the positive electrode 14 is oxidized and deteriorated due to a side reaction accompanying charging and discharging, and the cell resistivity is likely to increase. Therefore, the cell resistivity can be effectively reduced by using the electrode 10 as the positive electrode 14. In particular, in the case where the electrolytic solution of the RF battery 1 is a manganese-titanium-based electrolytic solution containing manganese ions as the positive electrode active material and titanium ions as the negative electrode active material, the positive electrode is likely to be oxidized and deteriorated. Therefore, the cell resistivity can be effectively reduced by using the electrode 10 as the positive electrode 14.
 上記RF電池1は、太陽光発電、風力発電等の自然エネルギーの発電に対して、発電出力の変動の安定化、発電電力の余剰時の蓄電、負荷平準化等を目的とした大容量の蓄電池に利用できる。また、上記RF電池1は、一般的な発電所に併設されて、瞬低・停電対策や負荷平準化を目的とした大容量の蓄電池としても好適に利用できる。 The RF battery 1 is a large-capacity storage battery for the purpose of stabilizing fluctuations in power generation output, storing power when surplus generated power, leveling load, etc., with respect to natural power generation such as solar power generation and wind power generation. Available to: Further, the RF battery 1 can be suitably used as a large-capacity storage battery that is installed in a general power plant and is intended for measures against instantaneous voltage drop, power failure, and load leveling.
 [試験例1]
 非貴金属元素を含有する触媒部を備える電極を作製し、その電極上での電池反応性、及びその電極を用いたRF電池のセル抵抗率を調べた。
[Test Example 1]
An electrode including a catalyst part containing a non-noble metal element was produced, and the battery reactivity on the electrode and the cell resistivity of an RF battery using the electrode were examined.
 〔試料の作製〕
 ・試料No.1-1
 基体と、基体に担持される触媒部とを備える電極を作製した。
 基体として、複数の炭素繊維からなるカーボンペーパーを用いて、大きさが3.3mm×2.7mmで厚みが0.45mmの繊維集合体を作製した。この繊維集合体は、各炭素繊維の繊維径が円相当径で10μmであり、空隙率が85体積%であった。
 触媒部の構成元素を含有する塗布液として、タングステン酸アンモニウム五水和物((NH101241・5HO)を含有する水溶液を作製した。溶媒(水)は、塗布液全体に対して1質量%とした。
 上記基体を上記塗布液に浸漬し、基体(各炭素繊維)の外周面に上記塗布液を付着させた。その塗布液が付着した基体を乾燥させた後、480℃×1時間の熱処理を施した。
[Sample preparation]
・ Sample No. 1-1
An electrode including a substrate and a catalyst portion supported on the substrate was produced.
Using a carbon paper made of a plurality of carbon fibers as a substrate, a fiber assembly having a size of 3.3 mm × 2.7 mm and a thickness of 0.45 mm was produced. In this fiber assembly, the fiber diameter of each carbon fiber was 10 μm in terms of equivalent circle diameter, and the porosity was 85% by volume.
As a coating solution containing the constituent elements of the catalyst unit was prepared an aqueous solution containing ammonium tungstate pentahydrate ((NH 4) 10 W 12 O 41 · 5H 2 O). The solvent (water) was 1% by mass with respect to the entire coating solution.
The said base | substrate was immersed in the said coating liquid, and the said coating liquid was made to adhere to the outer peripheral surface of a base | substrate (each carbon fiber). After drying the substrate to which the coating solution adhered, heat treatment was performed at 480 ° C. for 1 hour.
 得られた電極(試料No.1-1)について、断面を走査型電子顕微鏡及びエネルギー分散型X線分光法を利用した分析装置(SEM-EDX)を用いて調べた。その結果、試料No.1-1の電極は、基体(各炭素繊維)の外周面に触媒部がほぼ均一的に分散して存在することが確認された。また、基体(各炭素繊維)の外周面に付着した状態の触媒部と、一部分が基体(各炭素繊維)に埋設された状態の触媒部とが混在していることが確認された。X線回析法(XRD)で結晶構造を測定し、X線マイクロアナライザー(EPMA)で元素組成を測定することで触媒部の存在状態を調べた。その結果、触媒部は、酸化タングステン(WO)の形態で存在することがわかった。電極に占める触媒部の質量割合は20%であった。 The obtained electrode (Sample No. 1-1) was examined for a cross section using a scanning electron microscope and an analyzer (SEM-EDX) using energy dispersive X-ray spectroscopy. As a result, sample no. In the electrode 1-1, it was confirmed that the catalyst portion was present in a substantially uniformly dispersed manner on the outer peripheral surface of the substrate (each carbon fiber). Moreover, it was confirmed that the catalyst part attached to the outer peripheral surface of the substrate (each carbon fiber) and the catalyst part partially embedded in the substrate (each carbon fiber) were mixed. The crystal structure was measured by an X-ray diffraction method (XRD), and the element composition was measured by an X-ray microanalyzer (EPMA) to examine the existence state of the catalyst part. As a result, it was found that the catalyst portion was present in the form of tungsten oxide (WO 3 ). The mass proportion of the catalyst portion in the electrode was 20%.
 ・試料No.1-11
 電極として、試料No.1-1の基体と同様の基体を作製した。試料No.1-11の電極は、基体のみで構成され、触媒部を備えない。
・ Sample No. 1-11
As an electrode, Sample No. A substrate similar to the substrate of 1-1 was produced. Sample No. The electrode 1-11 is composed only of a substrate and does not include a catalyst portion.
 〔電池反応性〕
 上記の試料No.1-1及び試料No.1-11の電極をそれぞれ、事前に充電した電解液中に浸漬し、電位走査を行った。この電解液は、濃度1.0mol/Lのマンガンイオンを含む。電位走査は、銀/塩化銀電極を参照電極として、定常的なサイクリックボルタモグラムが得られるまで、0.5Vから1.6Vの範囲を3mV/sで繰り返し行った。その結果を図7に示す。図7において、横軸は印加した電位であり、縦軸は応答電流値である。図7におけるサイクリックボルタモグラム曲線は、上側の曲線が酸化波を示し、下側の曲線が還元波を示す。また、図7では、試料No.1-1を実線で示し、試料No.1-11を破線で示す。
[Battery reactivity]
In the above sample No. 1-1 and Sample No. Each of the electrodes 1-11 was immersed in a previously charged electrolyte solution, and potential scanning was performed. This electrolytic solution contains manganese ions having a concentration of 1.0 mol / L. The potential scan was repeated in the range of 0.5 V to 1.6 V at 3 mV / s until a steady cyclic voltammogram was obtained using a silver / silver chloride electrode as a reference electrode. The result is shown in FIG. In FIG. 7, the horizontal axis represents the applied potential, and the vertical axis represents the response current value. In the cyclic voltammogram curve in FIG. 7, the upper curve indicates an oxidation wave, and the lower curve indicates a reduction wave. In FIG. 1-1 is indicated by a solid line, and sample No. 1-11 is indicated by a broken line.
 図7に示すサイクリックボルタモグラムでは、試料No.1-1と試料No.1-11の酸化波又は還元波同士を比較したときに、電流値の絶対値が大きいほど電極上での電池反応性が大きいことを意味する。試料No.1-1と試料No.1-11の酸化波同士を比較すると、試料No.1-1では、電位1.40V付近で電流値のピークが見られ、試料No.1-11では、電位1.46V付近で電流値のピークが見られる。試料No.1-1は、試料No.1-11に比較して電流値の絶対値が大きいことがわかる。また、試料No.1-1と試料No.1-11の還元波同士を比較すると、試料No.1-1では、電位1.26V付近で電流値のピークが見られ、試料No.1-11では、電位1.17V付近で電流値のピークが見られる。試料No.1-1は、試料No.1-11に比較して電流値の絶対値が大きいことがわかる。試料No.1-1の電流値の絶対値が大きい理由は、炭素繊維で構成される基体に酸化タングステンで構成される触媒部が担持されているため、触媒部の触媒機能が効果的に発揮されたからと考えられる。触媒部の触媒機能が効果的に発揮されることで、電極上での電池反応性を向上できる。 In the cyclic voltammogram shown in FIG. 1-1 and sample no. When the 1-11 oxidation waves or reduction waves are compared, the larger the absolute value of the current value, the greater the battery reactivity on the electrode. Sample No. 1-1 and sample no. When comparing the oxidation waves of 1-11, the sample No. In 1-1, the peak of the current value was observed around the potential of 1.40 V. In 1-11, a peak of the current value is seen around the potential of 1.46V. Sample No. 1-1 is Sample No. It can be seen that the absolute value of the current value is larger than that of 1-11. Sample No. 1-1 and sample no. When the reduction waves of 1-11 are compared, In 1-1, the peak of the current value was observed around the potential of 1.26 V. In 1-11, a peak of the current value is seen around the potential of 1.17V. Sample No. 1-1 is Sample No. It can be seen that the absolute value of the current value is larger than that of 1-11. Sample No. The reason why the absolute value of the current value 1-1 is large is that the catalyst part made of tungsten oxide is supported on the base made of carbon fiber, so that the catalytic function of the catalyst part was effectively exhibited. Conceivable. The battery reactivity on the electrode can be improved by effectively exerting the catalytic function of the catalyst portion.
 また、図7に示すサイクリックボルタモグラムでは、試料No.1-1と試料No.1-11の酸化波の電位と還元波の電位とを比較したときに、電流値のピーク付近での電位差が小さいほど電極上での電池反応性が大きいことを意味する。その結果、試料No.1-1は、試料No.1-11に比較して上記電位差が小さいことがわかる。試料No.1-1の上記電位差が小さい理由は、炭素繊維で構成される基体に酸化タングステンで構成される触媒部が担持されているため、触媒部の触媒機能が効果的に発揮されたからと考えられる。触媒部の触媒機能が効果的に発揮されることで、電極上での電池反応性を向上できる。 In the cyclic voltammogram shown in FIG. 1-1 and sample no. When the 1-11 oxidation wave potential and the reduction wave potential are compared, the smaller the potential difference near the peak of the current value, the greater the battery reactivity on the electrode. As a result, sample no. 1-1 is Sample No. It can be seen that the potential difference is small compared to 1-11. Sample No. The reason why the potential difference of 1-1 is small is considered that the catalytic function of the catalyst part was effectively exhibited because the catalyst part made of tungsten oxide was supported on the base made of carbon fiber. The battery reactivity on the electrode can be improved by effectively exerting the catalytic function of the catalyst portion.
 〔セル抵抗率〕
 正極電極と、負極電極と、隔膜とを用いて、単セル構造のRF電池を作製した。正極電極には、上記の試料No.1-1及び試料No.1-11の電極を用いた。負極電極には、試料No.1-11と同様の電極(触媒部を備えない炭素繊維集合体)を用いた。電解液は、正極電解液として活物質にマンガンイオン、負極電解液として活物質にチタンイオンを含むマンガン-チタン系電解液を用いた。各試料は、単セル構造のRF電池としたため、RF電池の内部抵抗は、セル抵抗率として表す。各試料について、電池セルに電流密度が256mA/cmの定電流で充放電を行った。この試験では、予め設定した所定の切替電圧に達したら、充電から放電に切り替え、複数サイクルの充放電を行った。各サイクルの充放電後、各試料についてセル抵抗率(Ω・cm)を求めた。セル抵抗率は、複数サイクルのうち、任意の1サイクルにおける充電時平均電圧及び放電時平均電圧を求め、{(充電時平均電圧と放電時平均電圧の差)/(平均電流/2)}×セル有効面積とした。この例では、電解液に浸漬開始直後(浸漬日数0日)の電極におけるセル抵抗率を求めた。
[Cell resistivity]
An RF battery having a single cell structure was fabricated using a positive electrode, a negative electrode, and a diaphragm. In the positive electrode, the above-mentioned sample No. 1-1 and Sample No. 1-11 electrodes were used. Sample no. The same electrode (carbon fiber aggregate without a catalyst part) as in 1-11 was used. As the electrolytic solution, a manganese-titanium-based electrolytic solution containing manganese ions as an active material and a titanium ion as an active material was used as a negative electrode electrolytic solution. Since each sample was an RF battery having a single cell structure, the internal resistance of the RF battery is expressed as cell resistivity. About each sample, the battery cell was charged / discharged with the constant current whose current density is 256 mA / cm < 2 >. In this test, when a predetermined switching voltage set in advance was reached, switching from charging to discharging was performed, and charging and discharging were performed for a plurality of cycles. After charge / discharge of each cycle, the cell resistivity (Ω · cm 2 ) was determined for each sample. The cell resistivity is obtained by calculating an average voltage during charging and an average voltage during discharging in any one of a plurality of cycles, and {(difference between average voltage during charging and average voltage during discharging) / (average current / 2)} × The cell effective area was determined. In this example, the cell resistivity of the electrode immediately after the start of immersion in the electrolyte (0 days of immersion) was determined.
 その結果、セル抵抗率は、試料No.1-1では、0.76Ω・cmであり、試料No.1-11では、0.83Ω・cmであった。試料No.1-11に比較して、試料No.1-1のセル抵抗率が低減された理由は、炭素繊維で構成される基体に酸化タングステンで構成される触媒部が担持されているため、触媒部の触媒機能が効果的に発揮され、電極上での電池反応性を向上できたからと考えられる。 As a result, the cell resistivity was measured as Sample No. 1-1, 0.76 Ω · cm 2 . 1-11 was 0.83 Ω · cm 2 . Sample No. Compared to Sample No. 1-11, Sample No. The reason why the cell resistivity of 1-1 was reduced is that the catalyst part made of tungsten oxide is supported on the base made of carbon fiber, so that the catalytic function of the catalyst part is effectively exhibited, and the electrode This is thought to be due to the improved battery reactivity.
 [試験例2]
 非貴金属元素を含有する触媒部を備える電極として、電極のうち触媒部の占める質量割合(触媒部の存在比率)を変えた模擬電極を作製し、触媒部における電池反応性を調べた。
[Test Example 2]
As an electrode provided with a catalyst part containing a non-noble metal element, a simulated electrode in which the mass ratio occupied by the catalyst part in the electrode (existence ratio of the catalyst part) was changed was produced, and the cell reactivity in the catalyst part was examined.
 〔試料の作製〕
 ・試料No.2-1~2-5
 導電材と、その導電材内部に保持される触媒部とを備える模擬電極を作製した。模擬電極の作製には、まずプラスチックからなる円筒状部材を準備する。次に、円筒状部材の一端側の中空部分に棒状の真鍮を挿入し、他端側の中空部分にカーボンペーストオイル(導電材)と、各試料における触媒部を構成する粉末(酸化タングステン(WO)の粉末)とを充填する。これらの粉末を押し固めて、模擬電極が得られる。各試料において、カーボンペーストオイルと触媒部(上記粉末)との存在比率を変えた。具体的には、触媒部の存在比率は、試料No.2-1では、0質量%、試料No.2-2では、17質量%、試料No.2-3では、25質量%、試料No.2-4では、50質量%、試料No.2-5では、67質量%とした。触媒部の存在比率は、カーボンペーストオイルと触媒部(上記粉末)との合計含有量を100質量%としたときの触媒部の含有量の質量割合である。
[Sample preparation]
・ Sample No. 2-1 to 2-5
A simulated electrode including a conductive material and a catalyst portion held inside the conductive material was produced. To manufacture the simulated electrode, first, a cylindrical member made of plastic is prepared. Next, rod-shaped brass is inserted into the hollow portion on one end side of the cylindrical member, carbon paste oil (conductive material) is inserted into the hollow portion on the other end side, and the powder (tungsten oxide (WO 3 ) powder). These powders are pressed to obtain a simulated electrode. In each sample, the abundance ratio between the carbon paste oil and the catalyst part (the above powder) was changed. Specifically, the abundance ratio of the catalyst portion is the sample No. 2-1, 0% by mass, sample no. In 2-2, 17% by mass, sample no. 2-3, 25% by mass, sample No. 2-4, 50% by mass, sample no. In 2-5, the content was 67% by mass. The abundance ratio of the catalyst part is a mass ratio of the content of the catalyst part when the total content of the carbon paste oil and the catalyst part (the above powder) is 100% by mass.
 〔電池反応性〕
 上記の試料No.2-1~2-5の電極を用いてリニアスイープボルタンメトリー測定を行った。具体的には、上記の試料No.2-1~2-5の電極をそれぞれ、事前に充電した電解液中に浸漬し、電位走査を行った。この電解液は、濃度1.0mol/Lのマンガンイオンを含む。電位走査は、銀/塩化銀電極を参照電極として、充電した電解液の開放電圧(1.23V)から低電位側に3mV/sで行った。その結果を図8に示す。図8において、横軸は印加した電位であり、縦軸は応答電流値である。図8では、試料No.2-1を細実線、試料No.2-2を点線、試料No.2-3を一点鎖線、試料No.2-4を破線、試料No.2-5を太実線で示す。
[Battery reactivity]
In the above sample No. Linear sweep voltammetry measurement was performed using electrodes 2-1 to 2-5. Specifically, the above sample No. Each of the electrodes 2-1 to 2-5 was immersed in a previously charged electrolytic solution, and potential scanning was performed. This electrolytic solution contains manganese ions having a concentration of 1.0 mol / L. The potential scan was performed at 3 mV / s from the open voltage (1.23 V) of the charged electrolyte to the low potential side using the silver / silver chloride electrode as a reference electrode. The result is shown in FIG. In FIG. 8, the horizontal axis represents the applied potential, and the vertical axis represents the response current value. In FIG. 2-1, thin solid line, sample no. 2-2 is a dotted line, Sample No. 2-3 is an alternate long and short dash line. 2-4 is a broken line, Sample No. 2-5 is indicated by a bold solid line.
 図8に示すリニアスイープボルタモグラムでは、ピーク電位が大きいほど電極上での電池反応速度が速いことを意味する。試料No.2-1のピーク電位は、1.04Vであり、試料No.2-2~2-5のピーク電位は、1.20V付近である。この電位1.20Vは、電解液におけるMn3+→Mn2+の還元電位と考えられる。試料No.2-2~2-5は、料No.2-1に比較して、ピーク電位が大きいことがわかる。試料No.2-2~2-5のピーク電位が大きい理由は、触媒部の触媒機能が効果的に発揮され、電極上での電池反応性を向上できたからと考えられる。 In the linear sweep voltammogram shown in FIG. 8, the larger the peak potential, the faster the battery reaction rate on the electrode. Sample No. The peak potential of 2-1 is 1.04 V. The peak potential of 2-2 to 2-5 is around 1.20V. This potential of 1.20 V is considered to be a reduction potential of Mn 3+ → Mn 2+ in the electrolytic solution. Sample No. For 2-2 to 2-5, fee No. It can be seen that the peak potential is larger than that of 2-1. Sample No. The reason why the peak potential of 2-2 to 2-5 is large is considered to be that the catalytic function of the catalyst portion was effectively exhibited and the cell reactivity on the electrode was improved.
 また、図8に示すリニアスイープボルタモグラムでは、ピーク電流値の絶対値が大きいほど電極上での電池反応性が大きいことを意味する。試料No.2-2~2-5を比較したとき、電位1.2V付近で電流値のピークが見られ、タングステンの存在比率が大きくなるほど、そのピーク電流値の絶対値が大きくなることがわかる。この傾向が見られる理由は、触媒部の存在比率が大きいほど触媒部の触媒機能が効果的に発揮され、電極上での電池反応性を向上できたからと考えられる。 In the linear sweep voltammogram shown in FIG. 8, the larger the absolute value of the peak current value, the greater the battery reactivity on the electrode. Sample No. When comparing 2-2 to 2-5, it can be seen that a peak of the current value is observed near the potential of 1.2 V, and that the absolute value of the peak current value increases as the abundance ratio of tungsten increases. The reason why this tendency is observed is considered to be that the catalyst function of the catalyst part was more effectively exhibited as the presence ratio of the catalyst part was larger, and the cell reactivity on the electrode could be improved.
 [試験例3]
 非貴金属元素を含有する触媒部を備える電極として、触媒部の構成元素を変えた模擬電極を作製し、触媒部における電池反応性を調べた。
[Test Example 3]
As an electrode provided with a catalyst part containing a non-noble metal element, a simulated electrode in which the constituent elements of the catalyst part were changed was produced, and the cell reactivity in the catalyst part was examined.
 〔試料の作製〕
 ・試料No.3-1~3-6、3-11
 試験例2と同様に、導電材と、その導電材内部に保持される触媒部とを備える模擬電極を作製した。各試料において、触媒部を構成する粉末の構成元素を変えた。試料No.3-1は、酸化マンガン(MnO)の粉末を用いた。試料No.3-2は、酸化銅(CuO)の粉末を用いた。試料No.3-3は、酸化セリウム(CeO)の粉末を用いた。試料No.3-4は、酸化ケイ素(SiO)の粉末を用いた。試料No.3-5は、酸化モリブデン(MoO)の粉末を用いた。試料No.3-6は、酸化鉄(FeO)の粉末を用いた。試料No.3-1~3-6はいずれも、触媒部(上記粉末)の存在比率を25質量%とした。試料No.3-11は、カーボンペーストオイルのみで構成される。つまり、試料No.3-11は、100質量%のカーボンペーストオイルで構成され、触媒部(上記粉末)は0質量%である。
[Sample preparation]
・ Sample No. 3-1 to 3-6, 3-11
Similar to Test Example 2, a simulated electrode including a conductive material and a catalyst portion held inside the conductive material was produced. In each sample, the constituent elements of the powder constituting the catalyst part were changed. Sample No. In 3-1, a powder of manganese oxide (MnO 2 ) was used. Sample No. For 3-2, a powder of copper oxide (CuO 2 ) was used. Sample No. For 3-3, cerium oxide (CeO 2 ) powder was used. Sample No. For 3-4, powder of silicon oxide (SiO 2 ) was used. Sample No. For No. 3-5, molybdenum oxide (MoO 3 ) powder was used. Sample No. For 3-6, iron oxide (FeO) powder was used. Sample No. In all of 3-1 to 3-6, the abundance ratio of the catalyst part (the above powder) was 25 mass%. Sample No. 3-11 is composed only of carbon paste oil. That is, sample no. 3-11 is composed of 100% by mass of carbon paste oil, and the catalyst part (the above powder) is 0% by mass.
 〔電池反応性〕
 上記の試料No.3-1~3-6、3-11の模擬電極を用いてリニアスイープボルタンメトリー測定を行った。測定条件は、試験例2と同様である。その結果を表1に示す。表1では、ピーク電圧と、そのピーク電圧でのピーク電流とを示す。
[Battery reactivity]
In the above sample No. Linear sweep voltammetry measurement was performed using simulated electrodes 3-1 to 3-6 and 3-11. The measurement conditions are the same as in Test Example 2. The results are shown in Table 1. Table 1 shows the peak voltage and the peak current at the peak voltage.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、試料No.3-1~3-6は、試料No.3-11に比較して、ピーク電位が大きく、電池反応速度が速いことがわかる。また、また、料No.3-1~3-6は、試料No.3-11に比較して、ピーク電流値の絶対値が大きく、電池反応性が大きいことがわかる。この傾向が見られる理由は、触媒部の触媒機能が効果的に発揮され、電極上での電池反応性を向上できたからと考えられる。 As shown in Table 1, sample no. Samples Nos. 3-1 to 3-6 are sample Nos. Compared to 3-11, the peak potential is large and the cell reaction rate is fast. In addition, fee No. Samples Nos. 3-1 to 3-6 are sample Nos. It can be seen that the absolute value of the peak current value is large and the battery reactivity is large compared to 3-11. The reason for this tendency is considered that the catalytic function of the catalyst portion was effectively exhibited and the cell reactivity on the electrode could be improved.
 [試験例4]
 非貴金属元素を含有する触媒部を備える電極を作製し、その電極上での電池反応性を調べた。
[Test Example 4]
An electrode having a catalyst part containing a non-noble metal element was produced, and the cell reactivity on the electrode was examined.
 〔試料の作製〕
 ・試料No.4-1
 基体と、基体に担持される触媒部とを備える電極を作製した。
 基体として、複数の炭素繊維からなるカーボンペーパーを用いて、大きさが3.3mm×2.7mmで厚みが0.45mmの繊維集合体を作製した。この繊維集合体は、各炭素繊維の繊維径が円相当径で10μmであり、空隙率が85体積%であった。
 触媒部の構成元素を含有する塗布液として、硫酸マンガン(MnSO)を含有する水溶液を作製した。溶媒(水)は、塗布液全体に対して1質量%とした。
 上記基体を上記塗布液に浸漬し、基体(各炭素繊維)の外周面に上記塗布液を付着させた。その塗布液が付着した基体を乾燥させた後、480℃×1時間の熱処理を施した。
[Sample preparation]
・ Sample No. 4-1
An electrode including a substrate and a catalyst portion supported on the substrate was produced.
Using a carbon paper made of a plurality of carbon fibers as a substrate, a fiber assembly having a size of 3.3 mm × 2.7 mm and a thickness of 0.45 mm was produced. In this fiber assembly, the fiber diameter of each carbon fiber was 10 μm in terms of equivalent circle diameter, and the porosity was 85% by volume.
An aqueous solution containing manganese sulfate (MnSO 4 ) was prepared as a coating solution containing the constituent elements of the catalyst part. The solvent (water) was 1% by mass with respect to the entire coating solution.
The said base | substrate was immersed in the said coating liquid, and the said coating liquid was made to adhere to the outer peripheral surface of a base | substrate (each carbon fiber). After drying the substrate to which the coating solution adhered, heat treatment was performed at 480 ° C. for 1 hour.
 得られた電極(試料No.4-1)について、断面を走査型電子顕微鏡及びエネルギー分散型X線分光法を利用した分析装置(SEM-EDX)を用いて調べた。その結果、試料No.4-1の電極は、基体(各炭素繊維)の外周面に触媒部がほぼ均一的に分散して存在することが確認された。また、X線回析法(XRD)で結晶構造を測定し、X線マイクロアナライザー(EPMA)で元素組成を測定することで触媒部の存在状態を調べた。その結果、触媒部は、酸化マンガン(MnO)の形態で存在することがわかった。電極に占める触媒部の質量割合は20%であった。 The obtained electrode (Sample No. 4-1) was examined for a cross section using a scanning electron microscope and an analyzer (SEM-EDX) using energy dispersive X-ray spectroscopy. As a result, sample no. In the electrode of 4-1, it was confirmed that the catalyst portion was present almost uniformly dispersed on the outer peripheral surface of the substrate (each carbon fiber). In addition, the crystal structure was measured by an X-ray diffraction method (XRD), and the element composition was measured by an X-ray microanalyzer (EPMA) to examine the existence state of the catalyst part. As a result, it was found that the catalyst portion exists in the form of manganese oxide (MnO 3 ). The mass proportion of the catalyst portion in the electrode was 20%.
 ・試料No.4-11
 電極として、試料No.4-1の基体と同様の基体を作製した。試料No.4-11の電極は、基体のみで構成され、触媒部を備えない。
・ Sample No. 4-11
As an electrode, Sample No. A substrate similar to the substrate of 4-1 was produced. Sample No. The electrode 4-11 is composed only of the substrate and does not include a catalyst portion.
 〔電池反応性〕
 上記の試料No.4-1及び試料No.4-11の電極を用いてリニアスイープボルタンメトリー測定を行った。測定条件は、試験例2と同様である。その結果を表2に示す。表2では、ピーク電圧と、そのピーク電圧でのピーク電流とを示す。
[Battery reactivity]
In the above sample No. 4-1 and Sample No. Linear sweep voltammetry measurement was performed using electrodes 4-11. The measurement conditions are the same as in Test Example 2. The results are shown in Table 2. Table 2 shows the peak voltage and the peak current at the peak voltage.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、試料No.4-1は、試料No.4-11に比較して、ピーク電位が大きく、電池反応速度が速いことがわかる。また、試料No.4-1は、試料No.4-11に比較して、ピーク電流値の絶対値が大きく、電池反応性が大きいことがわかる。この傾向が見られる理由は、触媒部の触媒機能が効果的に発揮され、電極上での電池反応性を向上できたからと考えられる。 As shown in Table 2, sample No. 4-1, Sample No. It can be seen that the peak potential is larger and the battery reaction rate is faster than 4-11. Sample No. 4-1, Sample No. It can be seen that the absolute value of the peak current value is large and the battery reactivity is large compared to 4-11. The reason for this tendency is considered that the catalytic function of the catalyst portion was effectively exhibited and the cell reactivity on the electrode could be improved.
 本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。例えば、基体及び触媒部の各組成を特定元素及び特定範囲で変更したり、電解液の種類を変更したりできる。 The present invention is not limited to these exemplifications, is shown by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims. For example, the composition of the substrate and the catalyst part can be changed within a specific element and a specific range, or the type of the electrolytic solution can be changed.
 1 レドックスフロー電池(RF電池)
 100 電池セル
 11 隔膜
 10 電極
 110 基体、111 触媒部、112 バインダー
 12 正極セル、13 負極セル
 14 正極電極、15 負極電極
 16 セルフレーム
 161 双極板、162 枠体
 163,164 給液マニホールド、165,166 排液マニホールド
 163s,164s 給液スリット、165s,166s 排液スリット
 167 シール部材
 100P 正極循環機構、100N 負極循環機構
 18 正極電解液タンク、19 負極電解液タンク
 20,21,22,23 導管、24,25 ポンプ
 200 セルスタック
 200S サブスタック
 210,220 エンドプレート、230 連結部材
1 Redox flow battery (RF battery)
DESCRIPTION OF SYMBOLS 100 Battery cell 11 Diaphragm 10 Electrode 110 Base body, 111 Catalyst part, 112 Binder 12 Positive electrode cell, 13 Negative electrode cell 14 Positive electrode, 15 Negative electrode 16 Cell frame 161 Bipolar plate, 162 Frame body 163,164 Supply manifold, 165,166 Drainage manifold 163s, 164s Supply slit, 165s, 166s Drain slit 167 Seal member 100P Positive electrode circulation mechanism, 100N Negative electrode circulation mechanism 18 Positive electrode electrolyte tank, 19 Negative electrode electrolyte tank 20, 21, 22, 23 Conduit, 24, 25 Pump 200 Cell stack 200S Sub stack 210, 220 End plate, 230 Connecting member

Claims (9)

  1.  基体と、前記基体に担持される触媒部とを備え、
     前記基体は、C,Ti,Sn,Ta,Ce,In,W,及びZnからなる群より選択される1種以上の元素を含有し、
     前記触媒部は、Fe,Si,Mo,Ce,Mn,Cu,及びWからなる群より選択される1種以上の元素を含有する、
     レドックスフロー電池用電極。
    A substrate and a catalyst portion supported on the substrate;
    The substrate contains one or more elements selected from the group consisting of C, Ti, Sn, Ta, Ce, In, W, and Zn,
    The catalyst portion contains one or more elements selected from the group consisting of Fe, Si, Mo, Ce, Mn, Cu, and W.
    Redox flow battery electrode.
  2.  前記レドックスフロー電池用電極に占める前記触媒部の質量割合が、0.01%以上70%以下である請求項1に記載のレドックスフロー電池用電極。 The redox flow battery electrode according to claim 1, wherein a mass ratio of the catalyst portion in the redox flow battery electrode is 0.01% or more and 70% or less.
  3.  前記基体から露出される部分と、前記基体に埋設される部分とを有する前記触媒部を備える請求項1又は請求項2に記載のレドックスフロー電池用電極。 The electrode for a redox flow battery according to claim 1 or 2, comprising the catalyst part having a part exposed from the base and a part embedded in the base.
  4.  前記触媒部は、
      前記基体から露出される部分を有する第一の触媒部と、
      前記基体から露出されずに前記基体に埋設される第二の触媒部とを備える請求項1から請求項3のいずれか1項に記載のレドックスフロー電池用電極。
    The catalyst part is
    A first catalyst portion having a portion exposed from the substrate;
    The redox flow battery electrode according to any one of claims 1 to 3, further comprising a second catalyst portion embedded in the base body without being exposed from the base body.
  5.  前記触媒部の少なくとも一部を覆うバインダーを備える請求項1から請求項4のいずれか1項に記載のレドックスフロー電池用電極。 The redox flow battery electrode according to any one of claims 1 to 4, further comprising a binder covering at least a part of the catalyst portion.
  6.  正極電極と、負極電極と、前記正極電極と前記負極電極との間に介在される隔膜とを備える電池セルに正極電解液及び負極電解液を供給して充放電を行うレドックスフロー電池であって、
     前記正極電極は、請求項1から請求項5のいずれか1項に記載のレドックスフロー電池用電極である、
     レドックスフロー電池。
    A redox flow battery for supplying and discharging a positive electrode electrolyte and a negative electrode electrolyte to a battery cell comprising a positive electrode, a negative electrode, and a diaphragm interposed between the positive electrode and the negative electrode. ,
    The positive electrode is a redox flow battery electrode according to any one of claims 1 to 5,
    Redox flow battery.
  7.  前記負極電極は、請求項1から請求項5のいずれか1項に記載のレドックスフロー電池用電極である請求項6に記載のレドックスフロー電池。 7. The redox flow battery according to claim 6, wherein the negative electrode is an electrode for a redox flow battery according to any one of claims 1 to 5.
  8.  前記正極電解液は、正極活物質としてマンガンイオンを含有し、
     前記負極電解液は、負極活物質としてチタンイオンを含有する請求項6又は請求項7に記載のレドックスフロー電池。
    The positive electrode electrolyte contains manganese ions as a positive electrode active material,
    The redox flow battery according to claim 6 or 7, wherein the negative electrode electrolyte contains titanium ions as a negative electrode active material.
  9.  前記マンガンイオンの濃度及び前記チタンイオンの濃度はそれぞれ、0.3mol/L以上5mol/L以下である請求項8に記載のレドックスフロー電池。 The redox flow battery according to claim 8, wherein the manganese ion concentration and the titanium ion concentration are 0.3 mol / L or more and 5 mol / L or less, respectively.
PCT/JP2019/017589 2018-06-12 2019-04-25 Electrode for redox flow battery, and redox flow battery WO2019239732A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/056,777 US20210126263A1 (en) 2018-06-12 2019-04-25 Redox flow battery electrode and redox flow battery
DE112019003004.3T DE112019003004T5 (en) 2018-06-12 2019-04-25 Redox flow battery electrode and redox flow battery
JP2020525320A JP7226443B2 (en) 2018-06-12 2019-04-25 Electrode for redox flow battery and redox flow battery
CN201980037550.1A CN112236892A (en) 2018-06-12 2019-04-25 Electrode for redox flow battery and redox flow battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018112349 2018-06-12
JP2018-112349 2018-06-12

Publications (1)

Publication Number Publication Date
WO2019239732A1 true WO2019239732A1 (en) 2019-12-19

Family

ID=68842123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017589 WO2019239732A1 (en) 2018-06-12 2019-04-25 Electrode for redox flow battery, and redox flow battery

Country Status (6)

Country Link
US (1) US20210126263A1 (en)
JP (1) JP7226443B2 (en)
CN (1) CN112236892A (en)
DE (1) DE112019003004T5 (en)
TW (1) TW202002375A (en)
WO (1) WO2019239732A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209113A1 (en) * 2021-04-02 2022-10-06 住友電気工業株式会社 Electrode, battery cell, and redox flow battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085022A (en) * 1999-09-10 2001-03-30 Toyobo Co Ltd Carbon electrode material and carbon electrode material assembly
JP2006527794A (en) * 2003-06-19 2006-12-07 アクゾ ノーベル エヌ.ブイ. electrode
JP2012009448A (en) * 2010-03-12 2012-01-12 Sumitomo Electric Ind Ltd Redox flow battery
JP2015045072A (en) * 2013-08-29 2015-03-12 東邦チタニウム株式会社 Sheet-shaped titanium porous body, and production method thereof
JP2017033757A (en) * 2015-07-31 2017-02-09 東洋紡株式会社 Carbon electrode material for redox battery
JP2017091617A (en) * 2015-11-02 2017-05-25 旭化成株式会社 Carbon felt, secondary battery, and method of producing carbon felt

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5712688B2 (en) * 2010-03-12 2015-05-07 住友電気工業株式会社 Redox flow battery
JPWO2017006729A1 (en) * 2015-07-09 2018-04-19 住友電気工業株式会社 Redox flow battery electrode and redox flow battery system
JP6819982B2 (en) * 2016-02-26 2021-01-27 日清紡ホールディングス株式会社 Carbon catalyst for redox flow battery electrodes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085022A (en) * 1999-09-10 2001-03-30 Toyobo Co Ltd Carbon electrode material and carbon electrode material assembly
JP2006527794A (en) * 2003-06-19 2006-12-07 アクゾ ノーベル エヌ.ブイ. electrode
JP2012009448A (en) * 2010-03-12 2012-01-12 Sumitomo Electric Ind Ltd Redox flow battery
JP2015045072A (en) * 2013-08-29 2015-03-12 東邦チタニウム株式会社 Sheet-shaped titanium porous body, and production method thereof
JP2017033757A (en) * 2015-07-31 2017-02-09 東洋紡株式会社 Carbon electrode material for redox battery
JP2017091617A (en) * 2015-11-02 2017-05-25 旭化成株式会社 Carbon felt, secondary battery, and method of producing carbon felt

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209113A1 (en) * 2021-04-02 2022-10-06 住友電気工業株式会社 Electrode, battery cell, and redox flow battery

Also Published As

Publication number Publication date
TW202002375A (en) 2020-01-01
JP7226443B2 (en) 2023-02-21
DE112019003004T5 (en) 2021-02-25
JPWO2019239732A1 (en) 2021-06-17
US20210126263A1 (en) 2021-04-29
CN112236892A (en) 2021-01-15

Similar Documents

Publication Publication Date Title
Dinh et al. Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting
JP6775300B2 (en) Electrodes for redox flow batteries and redox flow batteries
KR102061922B1 (en) Corrosion resistant and electrically conductive surface of metal
Fuentes et al. Pt-Ir/TiC electrocatalysts for PEM fuel cell/electrolyzer process
JP5730751B2 (en) Platinum / titanium oxide / titanium carbide composite catalyst for fuel cell, production method thereof, and membrane / electrode assembly for fuel cell using the composite catalyst
EP3587622B1 (en) Positive electrode, positive electrode for water electrolysis, electrolysis cell, and method for producing hydrogen
Singh et al. Perovskite-type La2− xSrxNiO4 (0≤ x≤ 1) as active anode materials for methanol oxidation in alkaline solutions
US10103388B2 (en) Method for producing fine catalyst particle and fuel cell comprising fine catalyst particle produced by the production method
WO2018025737A1 (en) Redox flow battery and method for operating redox flow battery
AU2021361326B2 (en) Electrode, method for producing same, water electrolyzer, and fuel cell
US20150325861A1 (en) Platinum and palladium alloys suitable as fuel cell electrodes
US20130230794A1 (en) Complex oxides for catalytic electrodes
CN103456968A (en) Electrocatalyst for a fuel cell and the method of preparing thereof
Singh et al. Oxidation of methanol on perovskite-type La2-xSrxNiO4 (0≤ x≤ 1) film electrodes modified by dispersed nickel in 1 M KOH
WO2019239732A1 (en) Electrode for redox flow battery, and redox flow battery
WO2015122207A1 (en) Carbon support catalyst
Ding et al. Fabrication and study on Ni1− xFexO-YSZ anodes for intermediate temperature anode-supported solid oxide fuel cells
Bu et al. Composites of single/double perovskites as cathodes for solid oxide fuel cells
Soares et al. PtRu/C-LaNiO3 composite electrodes for electrocatalysis
JP2022077462A (en) Electrode, battery cell, cell stack, and redox flow battery system
JP2020087836A (en) Bipolar plate for battery, manufacturing method of bipolar plate for battery, and redox flow cell
JP2006127980A (en) Electrode catalyst for fuel cell and its manufacturing method
JP2021531958A (en) Catalyst system, electrodes, and fuel cell or electrolytic cell
飯屋谷和志 Investigations on the development of functional electrocatalysts by an RF magnetron sputtering deposition method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819823

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525320

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19819823

Country of ref document: EP

Kind code of ref document: A1