WO2019239567A1 - Optical connector - Google Patents

Optical connector Download PDF

Info

Publication number
WO2019239567A1
WO2019239567A1 PCT/JP2018/022814 JP2018022814W WO2019239567A1 WO 2019239567 A1 WO2019239567 A1 WO 2019239567A1 JP 2018022814 W JP2018022814 W JP 2018022814W WO 2019239567 A1 WO2019239567 A1 WO 2019239567A1
Authority
WO
WIPO (PCT)
Prior art keywords
boot
mpo
cable
crimp ring
optical connector
Prior art date
Application number
PCT/JP2018/022814
Other languages
French (fr)
Japanese (ja)
Inventor
小松 幹也
草原 裕次
文之 千国
達也 石室
Original Assignee
株式会社日新化成
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日新化成 filed Critical 株式会社日新化成
Priority to PCT/JP2018/022814 priority Critical patent/WO2019239567A1/en
Publication of WO2019239567A1 publication Critical patent/WO2019239567A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means

Definitions

  • the present invention relates to an optical connector such as an MPO (Multi-fiber Push-on) connector (optical connector for an optical fiber round cable) that connects a plurality of optical fibers at once, and more specifically, an optical fiber bending space. It is about securing.
  • MPO Multi-fiber Push-on
  • FIG. 4A is a perspective view
  • FIG. 4B is a plan view and a cross-sectional view.
  • the multi-core optical fibers 505 exposed on the front side or the front side of the MPO connector 500 are aligned in an MT (Mechanically Transferable) ferrule 510, and positioning pins 512 are provided at both ends.
  • the MT ferrule 510 is covered with an inner housing 520
  • the inner housing 520 is covered with an outer housing 530.
  • a round cable 540 connected to the rear side or back side of the MPO connector 500 (only shown in FIG. 5A) is covered with an MPO boot 550, and the optical fiber in the round cable 540 is the inner housing 520, MT ferrule. 510 is exposed as a multi-core optical fiber 505.
  • the inner housing 520 is exposed from the skirt portion 532 on the round cable 540 side of the outer housing 530, and a spring push 560 is provided between the outer housing 530 and the MPO boot 550.
  • the round cable 540 is fixed by the spring push 560.
  • the spring push 560 is reduced in diameter toward the rear side, and becomes a reduced diameter portion 562.
  • a crimp ring 570 is provided outside the reduced diameter portion 562, and a ring 572 is provided outside the crimp ring 570.
  • the crimp ring 570 is configured such that the Kevlar of the round cable 540 is sandwiched between the reduced diameter portion 562 of the spring push 560. Further, the ring 572 is for preventing the round cable 540 from being displaced by caulking the covering of the round cable 540.
  • the overall length of the MPO connector 500 is 66 mm, and the length of the MPO boot 550 is 40 mm.
  • the MPO connector 500 When attaching the MPO connector 500 to the MPO adapter 600, the MPO connector 500 is pushed in the direction of arrow F with the spring push 560, or the MPO connector 500 is pushed by holding the MPO boot 550 with a finger. On the contrary, when the MPO connector 500 is detached from the MPO adapter 600, the MPO connector 500 is detached by picking the outer housing 530 with a finger and pulling it in the direction opposite to the arrow F.
  • an optical fiber having an allowable bending radius R of 15 mm (bending R15) is commercially available.
  • an MPO connector for effectively utilizing this characteristic is required.
  • the boot shape is long and the rigidity is high, it is difficult to achieve the bending R15, and a space-saving MPO connector capable of achieving the bending R15 is desired.
  • the optical fiber tape core is formed by partially enclosing a portion of the other end side of the optical fiber and positioning an engaging portion between the stopper and the tip of the protective boot in the housing. The bending radius of the optical fiber ribbon considering the bending loss and breakage of the wire is ensured in a small space.
  • the optical connector described in Patent Document 1 described above relates to an MPO connector for a tape core wire, and is excellent in space saving but inferior in durability as compared with an MPO connector for a round cable.
  • MPO connector for a tape core wire
  • connection consistency between the MPO connector and the MPO adapter is important.
  • the present invention focuses on the above points, and its purpose is to sufficiently consider the bending loss and breaking strength of the optical fiber, and to ensure the connection matching with the adapter, and to achieve the desired minimum bending in a smaller space. To get the radius.
  • the present invention includes a crimp ring that is positioned outside a reduced diameter portion of a spring push and is fixed with a cable interposed therebetween, and a boot that is positioned outside the crimp ring and covers an end portion of the cable.
  • An optical connector having a minimum radius of curvature R of the cable, a tensile load F applied to the boot, an outer diameter d1, an inner diameter d2, and an offset L of the boot end surface with respect to the crimp ring end surface,
  • the boot is formed of a material having a Young's modulus E determined in consideration of the above.
  • a crimp ring that is positioned outside the reduced diameter portion of the spring push and is fixed with a cable interposed therebetween, and a boot that is positioned outside the crimp ring and covers an end portion of the cable.
  • An optical connector provided with a Young's modulus E of the material forming the boot, a minimum radius of curvature R of the cable, a tensile load F applied to the boot, an inner diameter dimension d2 of the end face of the boot, and the crimp ring end face with respect to the end face.
  • the boot is formed so as to have an outer diameter dimension d1 determined in consideration of the offset amount L of the boot end face.
  • Still another invention is a crimp ring that is positioned outside a reduced diameter portion of a spring push and is fixed with a cable interposed therebetween, and a boot that is positioned outside the crimp ring and covers an end of the cable.
  • the relationship between the Young's modulus E and the outer diameter d1 of the boot is It is represented by.
  • the cable is a cable that can be bent with a minimum radius of curvature of 15 mm.
  • the tensile load F applied to the boot is a standard value that defines the durability of the tensile load of the boot or a value lower than that, more specifically, The standard value is 3.3 kgf.
  • the inner diameter d2 at the end face of the boot is the outer diameter of the cable fixed by the crimp ring, and more specifically, the inner diameter d2 is 3 mm. It is characterized by.
  • the Young's modulus material or outer dimensions determined in consideration of the minimum radius of curvature of the cable, the tensile load applied to the boot, the inner diameter of the boot end face, and the offset of the boot end face with respect to the crimp ring end face. Since the boot is formed in the shape of the above, it is possible to obtain the desired minimum bending radius in a smaller space while ensuring the connection consistency with the adapter and sufficiently considering the bending loss and breaking strength of the optical fiber. Can do.
  • FIG. 1 It is a figure which shows the whole MPO connector in Example 1 of this invention.
  • (A) is a perspective view
  • (B) is a plane when (A) is viewed from the direction of arrow F1, and a part is a cross section viewed along the # 1- # 1 line in the direction of the arrow.
  • (C) is a plan and cross-sectional view showing another embodiment. It is a figure which shows the mode of the cable attachment in the said Example. It is a figure which shows the example of a dimension of each part in the said Example.
  • (A) shows a state where the cable is bent
  • (B) is a graph showing the relationship between the Young's modulus and the outer diameter of the material of the MPO boot in the example of FIG. It is a figure which shows an example of the conventional MPO connector.
  • FIG. 1 shows an MPO connector according to the present embodiment.
  • FIG. 2A shows the appearance
  • FIG. 2B shows a plane viewed from the arrow F1 in FIG.
  • the upper part from the center shows the internal structure viewed in the direction of the arrow along the # 1- # 1 line of the same figure (A)
  • the lower part shows the external appearance.
  • the multi-core optical fibers 105 exposed on the front side of the MPO connector 100 are aligned in an MT (Mechanically Transferable) ferrule 110, and positioning pins 112 are provided at both ends.
  • the MT ferrule 110 is covered with an inner housing 120, and the inner housing 120 is further covered with an outer housing 130.
  • a spring push 140 is provided behind the outer housing 130.
  • a spring 132 is provided between the inner housing 120 and the outer housing 130, and the outer housing 130 is slid against the urging force of the spring 132, thereby preventing the MPO adapter (see FIG. 5).
  • the engagement is released and the MPO connector 100 can be removed.
  • a spring 142 is provided between the inner housing 120 and the spring push 140, and the MPO connector 100 is engaged with the MPO adapter by pushing the spring push 140 against the urging force of the spring 142. It comes to match.
  • the rear side (right side of the drawing) of the spring push 140 is a reduced diameter portion 144.
  • the reduced diameter portion 144 is provided with a crimp ring 150, and the outer side thereof is provided with an MPO boot 160. Yes.
  • the MPO connector 500 of the background art shown in FIG. 5 the crimp ring 570 and the ring 572 are provided. However, in this embodiment, only the crimp ring 150 is provided, which is connected to the crimp ring 570 and the ring 572. I also use it.
  • the inner housing 120, the spring push 140, the crimp ring 150, and the MPO boot 160 are all shortened and designed to be compact. It is composed of the smallest shape. Specifically, the overall length of the MPO connector 500 shown in FIG. 5 is 66 mm, whereas the overall length of the MPO connector 100 of this embodiment is 32 mm.
  • the round cable 200 has a Kevlar 202 on the outside of the above-described multi-core optical fiber 105, and further a coating 204 is formed on the outside thereof.
  • the multi-core optical fiber 105 passes through the MPO boot 160, the crimp ring 150, the spring push 140, and the inner housing 120, and is arranged in the MT ferrule 110 as described above.
  • the Kevlar 202 is sandwiched between the reduced diameter portion 144 of the spring push 140 and the large diameter portion of the crimp ring 150 and fixed by crimping the crimp ring 150.
  • the entire cable including the sheath 204 passes through the MPO boot 160 and is fixed by caulking with a small diameter portion on the entrance side of the crimp ring 150.
  • the design of the MPO boot 160 is important, and it is important to optimize the rigidity of the MPO boot 160 to ensure a bending total length of 47.5 mm or less.
  • the round cable 200 is bent from the end face PA of the crimp ring 150 which is the root, attention is paid to this point.
  • the Young's modulus (elastic coefficient) of the MPO boot 160 is E
  • the secondary moment of section is I
  • the bending moment is M
  • the radius of curvature R of the round cable 200 is E ⁇ I as shown in the following equation (1). Proportional to the value of. For this reason, if a material and a shape with a high elastic modulus E are selected, the radius of curvature R becomes high and the bending R15 cannot be achieved.
  • FIG. 4B shows the relationship between the Young's modulus E of the material and the boot outer diameter d1 based on the equation (4).
  • a radius of curvature R: 15 mm b
  • tensile load F 2kgf c
  • Offset amount L 2.8 mm d
  • MPO boot inner diameter d2 3mm It was.
  • the value of the tensile load of b mentioned above has an item that the durability of the tensile load of the MPO boot 160 is “3.3 kgf or more” in the MPO standard (Telcordia). It is a representative value.
  • the value of the inner diameter d2 of the MPO boot 160 of the above d is a value in accordance with the outer diameter of a general round cable being “3 mm”. According to the graph of FIG. 6, if the MPO boot 160 is manufactured using a material having a Young's modulus of 260 MPa, for example, the optimum boot outer diameter d1 is 4.36 mm.
  • the round cable 200 of the bending R15 is used, a, the shape of the spring push 140 and the crimp ring 150 of the MPO connector 100, b, Young's modulus E of the material used for the MPO boot 160, c, the outer diameter d1 and the inner diameter d2, of the MPO boot 160 d, the offset amount L of the MPO boot 160 with respect to the crimp ring 150, Therefore, a desired minimum bending radius can be obtained with less space. Specifically, when the MPO connector 100 having a minimum length of about 32 mm as an IEC standard product is used, the distance to obtain the R15 bending radius can be 47.5 mm or less.
  • Embodiment 2 of the present invention will be described with reference to FIG.
  • the MPO connector 101 of this embodiment is similar to the above-described embodiment on the MT ferrule 110 side of the inner housing 121 as compared to the above-described embodiment of FIGS. 1A and 1B, but the opposite side 121B. Is slightly longer and is similar to the inner housing 520 of the MPO connector 500 of the background art shown in FIG. For this reason, the spring push 141 of the present embodiment is also as shown in the background art of FIG. 5, but is provided with a reduced diameter portion 144 as in the embodiment of FIGS. 1 (A) and 1 (B). .
  • the overall length of the MPO connector 101 of this embodiment is 34.5 mm, which is shorter than the overall length of 66 mm of the MPO connector 500 shown in FIG. 5, but the MPO of the embodiment shown in FIGS.
  • the total length of the connector 100 is longer than 32 mm.
  • a Since the shape and dimensions on the ferrule side are the same as the conventional one, connection consistency with the MPO adapter is ensured.
  • b since the shape from the reduced diameter portion 144 of the spring push 141 to the crimp ring 150 and the MPO boot 160 is the same as that of the above-described embodiment, the distance until the R15 bending radius is obtained is somewhat longer, but is similarly good. Space effect can be obtained.
  • this invention is not limited to the Example mentioned above, A various change can be added in the range which does not deviate from the summary of this invention. For example, the following are also included.
  • (1) The shapes and dimensions shown in the above embodiments are examples, and may be appropriately changed as necessary.
  • (2) The numerical values shown in the above-described embodiments are also examples, and are not limited thereto.
  • (3) The above-described embodiment is a suitable example of an MPO connector that connects a plurality of optical fibers at once, but can be applied to various optical connectors.
  • the Young's modulus material or outer dimensions determined in consideration of the minimum radius of curvature of the cable, the tensile load applied to the boot, the inner diameter of the boot end face, and the offset of the boot end face with respect to the crimp ring end face. Since the boot is formed in the shape of the above, it is possible to obtain the desired minimum bending radius in a smaller space while ensuring the connection consistency with the adapter and sufficiently considering the bending loss and breaking strength of the optical fiber. It is suitable for MPO connectors and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

[Problem] To obtain a desired minimal bending radius with a smaller space while sufficiently considering the bending loss or fracture strength of an optical fiber and also ensuring connection consistency with an adapter. [Solution] The present invention comprises: a crimp ring 150 that is located outside a diameter-reduced part 144 of a spring push 140, and fixes a round cable 200 by inserting therebetween; and an MPO boots 160 that is located outside the crimp ring 150 and covers an end of the round cable 200. By considering a minimum bending radius R of the round cable 200, a tensile load F applied to the MPO boots 160, an inner diameter dimension d2 at the end surface of the MPO boots, and an offset amount L of the end surface of the MPO boots 160 with respect to the end surface of the crimp ring 150, the relationship between Young's modulus E of the material that forms the MPO boots 160, and the external radius dimension d1 at the end surface of the MPO boots 160 is obtained, and the material and the shape of the MPO boots 160 is determined.

Description

光コネクタOptical connector
 本発明は、複数の光ファイバを一括して接続するMPO(Multi-fiber Push-on)コネクタ(光ファイバラウンドケーブル用光コネクタ)などの光コネクタに関し、より具体的には、光ファイバの曲げスペース確保に関するものである。 The present invention relates to an optical connector such as an MPO (Multi-fiber Push-on) connector (optical connector for an optical fiber round cable) that connects a plurality of optical fibers at once, and more specifically, an optical fiber bending space. It is about securing.
 一般的なラウンドケーブル用MPOコネクタとしては、例えば、図5に示すものがある。同図(A)は斜視図,同図(B)は平面図及び断面図である。これらの図において、MPOコネクタ500の前側ないし正面側に露出した多芯光ファイバ505は、MT(Mechanically Transferable)フェルール510の中に整列しており、両端には位置決めピン512が設けられている。MTフェルール510はインナーハウジング520で被覆されており、更にインナーハウジング520はアウターハウジング530で被覆された構造となっている。 As a general round cable MPO connector, for example, there is one shown in FIG. FIG. 4A is a perspective view, and FIG. 4B is a plan view and a cross-sectional view. In these drawings, the multi-core optical fibers 505 exposed on the front side or the front side of the MPO connector 500 are aligned in an MT (Mechanically Transferable) ferrule 510, and positioning pins 512 are provided at both ends. The MT ferrule 510 is covered with an inner housing 520, and the inner housing 520 is covered with an outer housing 530.
 MPOコネクタ500の後側ないし背面側に接続されたラウンドケーブル540(同図(A)のみ図示)は、MPOブーツ550で被覆されており、ラウンドケーブル540内の光ファイバがインナーハウジング520,MTフェルール510内を通過し、多心光ファイバ505として露出している。アウターハウジング530のラウンドケーブル540側のスカート部532からは、インナーハウジング520が露出しており、MPOブーツ550との間にスプリングプッシュ560が設けられている。このスプリングプッシュ560により、ラウンドケーブル540が固定される。 A round cable 540 connected to the rear side or back side of the MPO connector 500 (only shown in FIG. 5A) is covered with an MPO boot 550, and the optical fiber in the round cable 540 is the inner housing 520, MT ferrule. 510 is exposed as a multi-core optical fiber 505. The inner housing 520 is exposed from the skirt portion 532 on the round cable 540 side of the outer housing 530, and a spring push 560 is provided between the outer housing 530 and the MPO boot 550. The round cable 540 is fixed by the spring push 560.
 スプリングプッシュ560は、後側に向かって縮径しており、縮径部562となっている。この縮径部562の外側には、クリンプリング570が設けられており、その外側にはリング572が設けられている。クリンプリング570は、スプリングプッシュ560の縮径部562との間に、ラウンドケーブル540のケブラが挟み込まれるようになっている。また、リング572は、ラウンドケーブル540の被覆をカシメることで、ラウンドケーブル540のズレを防止するためのものである。MPOコネクタ500の全長は66mmとなっており、MPOブーツ550の長さは40mmとなっている。 The spring push 560 is reduced in diameter toward the rear side, and becomes a reduced diameter portion 562. A crimp ring 570 is provided outside the reduced diameter portion 562, and a ring 572 is provided outside the crimp ring 570. The crimp ring 570 is configured such that the Kevlar of the round cable 540 is sandwiched between the reduced diameter portion 562 of the spring push 560. Further, the ring 572 is for preventing the round cable 540 from being displaced by caulking the covering of the round cable 540. The overall length of the MPO connector 500 is 66 mm, and the length of the MPO boot 550 is 40 mm.
 MPOアダプタ600に対してMPOコネクタ500を装着するときは、スプリングプッシュ560を指で矢印F方向にMPOコネクタ500を押すか、MPOブーツ550を指で摘まんでMPOコネクタ500を押すことになる。逆に、MPOアダプタ600からMPOコネクタ500を離脱するときは、アウターハウジング530を指で摘まんで矢印Fと反対の方向に引くことで、MPOコネクタ500が外れる。 When attaching the MPO connector 500 to the MPO adapter 600, the MPO connector 500 is pushed in the direction of arrow F with the spring push 560, or the MPO connector 500 is pushed by holding the MPO boot 550 with a finger. On the contrary, when the MPO connector 500 is detached from the MPO adapter 600, the MPO connector 500 is detached by picking the outer housing 530 with a finger and pulling it in the direction opposite to the arrow F.
 ところで、光ファイバの配線自由度を向上するために、許容曲げ半径Rが15mm(曲げR15)の光ファイバが市販されているが、この特性を有効活用するためのMPOコネクタが必要とされている。しかし、上述した一般的なラウンドケーブル用MPOコネクタでは、ブーツ形状が長く、かつ剛性が高いため、曲げR15の達成は困難であり、曲げR15を達成可能な省スペースのMPOコネクタが要望されている。
 また、かかる点に着目した背景技術としては、例えば、下記特許文献1記載の「光コネクタ」がある。これは、光ファイバの一端部が固着されたフェルールのハウジングからの抜けを防止するストッパに、可撓性を有した保護ブーツの先端部が係合された状態で前記ハウジングの後端から延ばして、前記光ファイバの他端側の部位を部分的に囲むようにし、前記ストッパと前記保護ブーツの先端部との間の係合部を、前記ハウジング内に位置付ることで、光ファイバテープ心線の曲げ損失や折損を考慮した光ファイバテープ心線の曲げ半径を、少ないスペースで確保するようにしている。
By the way, in order to improve the wiring flexibility of the optical fiber, an optical fiber having an allowable bending radius R of 15 mm (bending R15) is commercially available. However, an MPO connector for effectively utilizing this characteristic is required. . However, in the above-described general round cable MPO connector, since the boot shape is long and the rigidity is high, it is difficult to achieve the bending R15, and a space-saving MPO connector capable of achieving the bending R15 is desired. .
Further, as a background art focusing on this point, for example, there is an “optical connector” described in Patent Document 1 below. This is because the ferrule to which one end of the optical fiber is fixed is prevented from coming off from the housing and is extended from the rear end of the housing with the tip of the flexible protective boot engaged. The optical fiber tape core is formed by partially enclosing a portion of the other end side of the optical fiber and positioning an engaging portion between the stopper and the tip of the protective boot in the housing. The bending radius of the optical fiber ribbon considering the bending loss and breakage of the wire is ensured in a small space.
特開2003-215401号公報JP 2003-215401 A
 しかしながら、上述した特許文献1記載の光コネクタは、テープ芯線用MPOコネクタに関するものであり、ラウンドケーブル用MPOコネクタと比較して、省スペースには優れるが耐久性に劣る。加えて、ラウンドケーブル用の場合、少ないスペースで曲げR15を確保するとしても、光ファイバの曲げ損失や破壊強度を考慮する必要がある。また、MPOコネクタとMPOアダプタとの接続整合性も重要である。 However, the optical connector described in Patent Document 1 described above relates to an MPO connector for a tape core wire, and is excellent in space saving but inferior in durability as compared with an MPO connector for a round cable. In addition, in the case of a round cable, it is necessary to consider the bending loss and breaking strength of the optical fiber even if the bending R15 is ensured in a small space. Also, connection consistency between the MPO connector and the MPO adapter is important.
 本発明は、以上の点に着目したもので、その目的は、光ファイバの曲げ損失や破壊強度を十分に考慮するとともに、アダプタに対する接続整合性を確保しつつ、より少ないスペースで所望の最小曲げ半径を得ることである。 The present invention focuses on the above points, and its purpose is to sufficiently consider the bending loss and breaking strength of the optical fiber, and to ensure the connection matching with the adapter, and to achieve the desired minimum bending in a smaller space. To get the radius.
 本発明は、スプリングプッシュの縮径部の外側に位置しており、ケーブルを挟んで固定するクリンプリングと、該クリンプリングの外側に位置しており、前記ケーブルの端部を覆うブーツとを備えた光コネクタであって、前記ケーブルの最小曲率半径R,前記ブーツにかかる引っ張り加重F,前記ブーツの端面における外径寸法d1,内径寸法d2,前記クリンプリング端面に対する前記ブーツ端面のオフセット量L,を考慮して決定したヤング率Eの材料で前記ブーツを形成したことを特徴とする。 The present invention includes a crimp ring that is positioned outside a reduced diameter portion of a spring push and is fixed with a cable interposed therebetween, and a boot that is positioned outside the crimp ring and covers an end portion of the cable. An optical connector having a minimum radius of curvature R of the cable, a tensile load F applied to the boot, an outer diameter d1, an inner diameter d2, and an offset L of the boot end surface with respect to the crimp ring end surface, The boot is formed of a material having a Young's modulus E determined in consideration of the above.
 他の発明は、スプリングプッシュの縮径部の外側に位置しており、ケーブルを挟んで固定するクリンプリングと、該クリンプリングの外側に位置しており、前記ケーブルの端部を覆うブーツとを備えた光コネクタであって、前記ブーツを形成する材料のヤング率E,前記ケーブルの最小曲率半径R,前記ブーツにかかる引っ張り加重F,前記ブーツの端面における内径寸法d2,前記クリンプリング端面に対する前記ブーツ端面のオフセット量L,を考慮して決定した外径寸法d1となるように、前記ブーツを形成したことを特徴とする。 In another aspect of the invention, there is provided a crimp ring that is positioned outside the reduced diameter portion of the spring push and is fixed with a cable interposed therebetween, and a boot that is positioned outside the crimp ring and covers an end portion of the cable. An optical connector provided with a Young's modulus E of the material forming the boot, a minimum radius of curvature R of the cable, a tensile load F applied to the boot, an inner diameter dimension d2 of the end face of the boot, and the crimp ring end face with respect to the end face. The boot is formed so as to have an outer diameter dimension d1 determined in consideration of the offset amount L of the boot end face.
 更に他の発明は、スプリングプッシュの縮径部の外側に位置しており、ケーブルを挟んで固定するクリンプリングと、該クリンプリングの外側に位置しており、前記ケーブルの端部を覆うブーツとを備えた光コネクタであって、前記ケーブルの最小曲率半径R,前記ブーツにかかる引っ張り加重F,前記ブーツの端面における内径寸法d2,前記クリンプリング端面に対する前記ブーツ端面のオフセット量L,を考慮して、前記ブーツを形成する材料のヤング率Eと、前記ブーツの端面における外径寸法d1との関係を求め、この関係を利用して、前記ブーツの材料及び形状を決定したことを特徴とする。 Still another invention is a crimp ring that is positioned outside a reduced diameter portion of a spring push and is fixed with a cable interposed therebetween, and a boot that is positioned outside the crimp ring and covers an end of the cable. In consideration of the minimum radius of curvature R of the cable, the tensile load F applied to the boot, the inner diameter dimension d2 of the end face of the boot, and the offset L of the end face of the crimp ring relative to the end face of the crimp ring. Then, the relationship between the Young's modulus E of the material forming the boot and the outer diameter d1 at the end face of the boot is obtained, and the material and shape of the boot are determined using this relationship. .
 主要な形態の一つによれば、前記ヤング率Eと前記ブーツの外径寸法d1との関係が、
Figure JPOXMLDOC01-appb-I000002
で表されることを特徴とする。
 更に他の形態によれば、前記ケーブルとして、最小曲率半径が15mmで曲げ加工可能なものを使用することを特徴とする。更に他の形態によれば、前記ブーツにかかる引っ張り加重Fを、前記ブーツの引張り加重の耐久性を規定する規格値もしくはそれよりも低い値としたことを特徴とし、より具体的には、前記規格値を3.3kgfとしたことを特徴とする。更に他の形態としては、前記ブーツの端面における内径寸法d2を、前記クリンプリングによって固定されるケーブルの外径としたことを特徴とし、より具体的には、前記内径寸法d2を3mmとしたことを特徴とする。本発明の前記及び他の目的,特徴,利点は、以下の詳細な説明及び添付図面から明瞭になろう。
According to one of the main forms, the relationship between the Young's modulus E and the outer diameter d1 of the boot is
Figure JPOXMLDOC01-appb-I000002
It is represented by.
According to still another aspect, the cable is a cable that can be bent with a minimum radius of curvature of 15 mm. According to still another aspect, the tensile load F applied to the boot is a standard value that defines the durability of the tensile load of the boot or a value lower than that, more specifically, The standard value is 3.3 kgf. In another embodiment, the inner diameter d2 at the end face of the boot is the outer diameter of the cable fixed by the crimp ring, and more specifically, the inner diameter d2 is 3 mm. It is characterized by. The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
 本発明によれば、ケーブルの最小曲率半径,ブーツにかかる引っ張り加重,前記ブーツの端面における内径寸法,クリンプリング端面に対する前記ブーツ端面のオフセット量,を考慮して決定したヤング率の材料もしくは外形寸法の形状で前記ブーツを形成することとしたので、アダプタに対する接続整合性を確保するとともに、光ファイバの曲げ損失や破壊強度を十分に考慮して、より少ないスペースで所望の最小曲げ半径を得ることができる。 According to the present invention, the Young's modulus material or outer dimensions determined in consideration of the minimum radius of curvature of the cable, the tensile load applied to the boot, the inner diameter of the boot end face, and the offset of the boot end face with respect to the crimp ring end face. Since the boot is formed in the shape of the above, it is possible to obtain the desired minimum bending radius in a smaller space while ensuring the connection consistency with the adapter and sufficiently considering the bending loss and breaking strength of the optical fiber. Can do.
本発明の実施例1におけるMPOコネクタの全体を示す図である。(A)は斜視図、(B)は(A)を矢印F1方向から見た平面で、一部は#1-#1線に沿って矢印方向に見た断面である。(C)は他の実施例を示す平面及び断面の図である。It is a figure which shows the whole MPO connector in Example 1 of this invention. (A) is a perspective view, (B) is a plane when (A) is viewed from the direction of arrow F1, and a part is a cross section viewed along the # 1- # 1 line in the direction of the arrow. (C) is a plan and cross-sectional view showing another embodiment. 前記実施例におけるケーブル取り付けの様子を示す図である。It is a figure which shows the mode of the cable attachment in the said Example. 前記実施例における各部の寸法例を示す図である。It is a figure which shows the example of a dimension of each part in the said Example. (A)はケーブルを曲げた様子が示されており、(B)は前記図3の例におけるMPOブーツの材料のヤング率と外径との関係を示すグラフである。(A) shows a state where the cable is bent, and (B) is a graph showing the relationship between the Young's modulus and the outer diameter of the material of the MPO boot in the example of FIG. 従来のMPOコネクタの一例を示す図である。It is a figure which shows an example of the conventional MPO connector.
 以下、本発明を実施するための最良の形態を、実施例に基づいて詳細に説明する。 Hereinafter, the best mode for carrying out the present invention will be described in detail based on examples.
 図1には、本実施例に係るMPOコネクタが示されている。同図(A)は外観を示し、同図(B)は同図(A)の矢印F1から見た平面を示す。また、同図(B)のうち、中心から上は、同図(A)の#1-#1線に沿って矢印方向に見た内部構造を示し、中心から下は外観を示す。これらの図において、MPOコネクタ100の正面側に露出した多芯光ファイバ105は、MT(Mechanically Transferable)フェルール110の中に整列しており、両端には位置決めピン112が設けられている。MTフェルール110はインナーハウジング120で被覆されており、更にインナーハウジング120はアウターハウジング130で被覆された構造となっている。アウターハウジング130の後方には、スプリングプッシュ140が設けられている。これらの構造・形状は、上述した背景技術のMPOコネクタ500と同様であり、従って、従来のMPOアダプタに対して、接続整合性が確保されている。 FIG. 1 shows an MPO connector according to the present embodiment. FIG. 2A shows the appearance, and FIG. 2B shows a plane viewed from the arrow F1 in FIG. Also, in the same figure (B), the upper part from the center shows the internal structure viewed in the direction of the arrow along the # 1- # 1 line of the same figure (A), and the lower part shows the external appearance. In these drawings, the multi-core optical fibers 105 exposed on the front side of the MPO connector 100 are aligned in an MT (Mechanically Transferable) ferrule 110, and positioning pins 112 are provided at both ends. The MT ferrule 110 is covered with an inner housing 120, and the inner housing 120 is further covered with an outer housing 130. A spring push 140 is provided behind the outer housing 130. These structures and shapes are the same as those of the MPO connector 500 of the background art described above, and therefore, connection consistency is ensured with respect to the conventional MPO adapter.
 次に、インナーハウジング120とアウターハウジング130の間には、バネ132が設けられており、このバネ132の付勢力に抗してアウターハウジング130をスライドさせることで、MPOアダプタ(図5参照)に対する係合が外れて、MPOコネクタ100を取り外すことができるようになっている。また、インナーハウジング120とスプリングプッシュ140との間には、バネ142が設けれられており、このバネ142の付勢力に抗してスプリングプッシュ140を押すことで、MPOアダプタにMPOコネクタ100が係合するようになっている。 Next, a spring 132 is provided between the inner housing 120 and the outer housing 130, and the outer housing 130 is slid against the urging force of the spring 132, thereby preventing the MPO adapter (see FIG. 5). The engagement is released and the MPO connector 100 can be removed. Further, a spring 142 is provided between the inner housing 120 and the spring push 140, and the MPO connector 100 is engaged with the MPO adapter by pushing the spring push 140 against the urging force of the spring 142. It comes to match.
 スプリングプッシュ140の後側(図の右側)は縮径部144となっており、この縮径部144には、クリンプリング150が設けられており、その外側には、MPOブーツ160が設けられている。図5に示した背景技術のMPOコネクタ500では、クリンプリング570とリング572とが設けられているが、本実施例では、クリンプリング150のみが設けられており、これがクリンプリング570とリング572を兼用している。 The rear side (right side of the drawing) of the spring push 140 is a reduced diameter portion 144. The reduced diameter portion 144 is provided with a crimp ring 150, and the outer side thereof is provided with an MPO boot 160. Yes. In the MPO connector 500 of the background art shown in FIG. 5, the crimp ring 570 and the ring 572 are provided. However, in this embodiment, only the crimp ring 150 is provided, which is connected to the crimp ring 570 and the ring 572. I also use it.
 本実施例のMPOコネクタ100と、上述した図5のMPOコネクタ500を比較すると、インナーハウジング120,スプリングプッシュ140,クリンプリング150,MPOブーツ160が、いずれも短くなってコンパクトに設計されており、最小形状で構成されている。具体的には、図5に示したMPOコネクタ500の全長が66mmであるのに対し、本実施例のMPOコネクタ100の全長は32mmとなっている。 Comparing the MPO connector 100 of this embodiment with the MPO connector 500 of FIG. 5 described above, the inner housing 120, the spring push 140, the crimp ring 150, and the MPO boot 160 are all shortened and designed to be compact. It is composed of the smallest shape. Specifically, the overall length of the MPO connector 500 shown in FIG. 5 is 66 mm, whereas the overall length of the MPO connector 100 of this embodiment is 32 mm.
 次に、図2も参照しながら、ラウンドケーブル200の接続について説明する。同図(A)に示すように、ラウンドケーブル200は、上述した多芯光ファイバ105の外側にケブラ202があり、更にその外側には被覆204が形成されている。これらのうち、多芯光ファイバ105は、MPOブーツ160,クリンプリング150,スプリングプッシュ140,インナーハウジング120を貫通して、上述したようにMTフェルール110の中に整列して配置される。次に、ケブラ202は、スプリングプッシュ140の縮径部144とクリンプリング150の大径部との間に挟んで、クリンプリング150をカシメることで固定される。被覆204を含むケーブル全体は、MPOブーツ160を貫通し、クリンプリング150の入り口側の小径部に挟んでカシメることで固定される。 Next, the connection of the round cable 200 will be described with reference to FIG. As shown in FIG. 1A, the round cable 200 has a Kevlar 202 on the outside of the above-described multi-core optical fiber 105, and further a coating 204 is formed on the outside thereof. Among these, the multi-core optical fiber 105 passes through the MPO boot 160, the crimp ring 150, the spring push 140, and the inner housing 120, and is arranged in the MT ferrule 110 as described above. Next, the Kevlar 202 is sandwiched between the reduced diameter portion 144 of the spring push 140 and the large diameter portion of the crimp ring 150 and fixed by crimping the crimp ring 150. The entire cable including the sheath 204 passes through the MPO boot 160 and is fixed by caulking with a small diameter portion on the entrance side of the crimp ring 150.
 次に、ラウンドケーブル200を「曲げR15」で曲げたときの曲げ全長を、図3に示すように47.5mm以下とするための条件について説明する。ラウンドケーブル200のR15の曲げに追随させるためには、まず、ケーブル自体を曲げR15に対応して曲がるものを使用する。具体的には、図4(A)に示すように、外形3.0mmのラウンドケーブル200をR15に曲げるとき、ケーブルの中心の弧の長さが、15×2×π/4になるのに対し、内側及び外側の弧の長さは、(15±1.5)×2×π/4になり、その比率は、100±10%となる。よって、そのケーブルの伸縮率は、負荷である引っ張り加重Fを掛けた際に、90%以上110%以下(90%≦伸縮率≦110%)に限りなく近い数値であることが求められる。すなわち、中心の弧の曲げ半径R=15mmに対して、内側の弧の曲げ半径Rinは―10%で、Rin=13.5mm,外側の弧の曲げ半径Routは+10%で、Rout=16.5mmとなる。 Next, conditions for setting the total bending length when the round cable 200 is bent at “bending R15” to 47.5 mm or less as shown in FIG. 3 will be described. In order to follow the bending of R15 of the round cable 200, first, a cable that bends corresponding to the bending R15 is used. Specifically, as shown in FIG. 4A, when a round cable 200 having an outer diameter of 3.0 mm is bent to R15, the length of the arc at the center of the cable is 15 × 2 × π / 4. On the other hand, the lengths of the inner and outer arcs are (15 ± 1.5) × 2 × π / 4, and the ratio is 100 ± 10%. Therefore, the expansion / contraction rate of the cable is required to be a numerical value that is infinitely close to 90% or more and 110% or less (90% ≦ expansion / contraction rate ≦ 110%) when a tensile load F as a load is applied. That is, the bending radius Rin of the inner arc is −10% and the bending radius Rin of the outer arc is + 10% with respect to the bending radius R = 15 mm of the central arc, and Rout = 16. 5 mm.
 次に、MPOブーツ160の設計が重要であり、MPOブーツ160の剛性を最適化して、曲げ全長47.5mm以下を確保することが大切である。ここで、ラウンドケーブル200は、根本であるクリンプリング150端面PAから曲げられるので、この点に着目する。MPOブーツ160のヤング率(弾性係数)をE,断面二次モーメントをI,曲げモーメントをM,とすると、ラウンドケーブル200の曲率半径Rは、次の数1式に示すように、E×Iの値に比例する。このため、弾性係数Eが高い材料及び形状を選定すると、曲率半径Rは高くなり、曲げR15を達成できなくなる。
Figure JPOXMLDOC01-appb-M000003
Next, the design of the MPO boot 160 is important, and it is important to optimize the rigidity of the MPO boot 160 to ensure a bending total length of 47.5 mm or less. Here, since the round cable 200 is bent from the end face PA of the crimp ring 150 which is the root, attention is paid to this point. When the Young's modulus (elastic coefficient) of the MPO boot 160 is E, the secondary moment of section is I, and the bending moment is M, the radius of curvature R of the round cable 200 is E × I as shown in the following equation (1). Proportional to the value of. For this reason, if a material and a shape with a high elastic modulus E are selected, the radius of curvature R becomes high and the bending R15 cannot be achieved.
Figure JPOXMLDOC01-appb-M000003
 一方、MPOブーツ160の端面PBにおける外径寸法をd1,内径寸法をd2としたとき、円筒形状の断面二次モーメントIは、次の数2式で示される。
Figure JPOXMLDOC01-appb-M000004
On the other hand, when the outer diameter dimension at the end face PB of the MPO boot 160 is d1 and the inner diameter dimension is d2, the cylindrical sectional secondary moment I is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000004
 また、ラウンドケーブル200を曲げたときにMPOブーツ160にかかる引っ張り加重をF,クリンプリング150端面PAからMPOブーツ160端面PBまでの距離に相当するオフセット量をLとしたとき、MPOブーツ160の端面PBにかかる曲げモーメントMは、次の数3式で表される。
Figure JPOXMLDOC01-appb-M000005
Further, when the tension load applied to the MPO boot 160 when the round cable 200 is bent is F and the offset amount corresponding to the distance from the end face PA of the crimp ring 150 to the end face PB of the MPO boot 160 is L, the end face of the MPO boot 160 The bending moment M applied to PB is expressed by the following equation (3).
Figure JPOXMLDOC01-appb-M000005
 以上の数1式~数3式から、MPOブーツ160の外径寸法d1を求めると、次の数4式のようになる。この条件が、MPOブーツ160の外径寸法d1と、使用する材料のヤング率Eとが満たすべき関係となる。
Figure JPOXMLDOC01-appb-M000006
When the outer diameter d1 of the MPO boot 160 is obtained from the above formulas 1 to 3, the following formula 4 is obtained. This condition is a relationship that the outer diameter dimension d1 of the MPO boot 160 and the Young's modulus E of the material to be used should be satisfied.
Figure JPOXMLDOC01-appb-M000006
 図4(B)には、前記数4式に基づく、材料のヤング率Eとブーツ外径d1との関係が示されている。なお、
a,曲率半径R:15mm
b,引っ張り加重F:2kgf
c,オフセット量L:2.8mm
d,MPOブーツ内径d2:3mm
とした。なお、上記bの引張り加重の値は、MPO規格(テルコーディア)において、MPOブーツ160の引張り加重の耐久性が「3.3kgf以上」という項目があり、この耐久性に対してより低い値を代表値としたものである。また、上記dのMPOブーツ160の内径d2の値は、一般的なラウンドケーブルの外径が「3mm」であることに合わせた値である。同図のグラフからすると、例えば、ヤング率260MPaの材料を用いてMPOブーツ160を作製したとすると、最適なブーツ外径d1は4.36mmとなる。
FIG. 4B shows the relationship between the Young's modulus E of the material and the boot outer diameter d1 based on the equation (4). In addition,
a, radius of curvature R: 15 mm
b, tensile load F: 2kgf
c, Offset amount L: 2.8 mm
d, MPO boot inner diameter d2: 3mm
It was. In addition, the value of the tensile load of b mentioned above has an item that the durability of the tensile load of the MPO boot 160 is “3.3 kgf or more” in the MPO standard (Telcordia). It is a representative value. In addition, the value of the inner diameter d2 of the MPO boot 160 of the above d is a value in accordance with the outer diameter of a general round cable being “3 mm”. According to the graph of FIG. 6, if the MPO boot 160 is manufactured using a material having a Young's modulus of 260 MPa, for example, the optimum boot outer diameter d1 is 4.36 mm.
 以上のように、本実施例によれば、曲げR15のラウンドケーブル200を用いるとともに、
a,MPOコネクタ100のスプリングプッシュ140やクリンプリング150の形状,
b,MPOブーツ160に使用する材料のヤング率E,
c,MPOブーツ160の外径寸法d1及び内径寸法d2,
d,クリンプリング150に対するMPOブーツ160のオフセット量L,
を最適化することとしたので、より少ないスペースで所望の最小曲げ半径を得ることができる。具体的には、全長がIEC規格品として最小の約32mmのMPOコネクタ100を使用した場合、R15曲げ半径を得るまでの距離を47.5mm以下とすることができる。また、光ファイバの曲げ損失や破壊強度が生ずることもなく、MPOアダプタに対する接続整合性も確保できる。このため、MPOコネクタ,MPOアダプタを実装するバックパネルからドア内側までの距離を短くすることができ、大きなスペース効果が得られる。
As described above, according to the present embodiment, the round cable 200 of the bending R15 is used,
a, the shape of the spring push 140 and the crimp ring 150 of the MPO connector 100,
b, Young's modulus E of the material used for the MPO boot 160,
c, the outer diameter d1 and the inner diameter d2, of the MPO boot 160
d, the offset amount L of the MPO boot 160 with respect to the crimp ring 150,
Therefore, a desired minimum bending radius can be obtained with less space. Specifically, when the MPO connector 100 having a minimum length of about 32 mm as an IEC standard product is used, the distance to obtain the R15 bending radius can be 47.5 mm or less. Further, there is no bending loss or breaking strength of the optical fiber, and connection consistency with the MPO adapter can be ensured. For this reason, the distance from the back panel which mounts an MPO connector and an MPO adapter to the inside of a door can be shortened, and a big space effect is acquired.
 次に、図1(C)を参照しながら、本発明の実施例2について説明する。この実施例のMPOコネクタ101は、上述した図1(A),(B)の実施例と比較して、インナーハウジング121のMTフェルール110側は上述した実施例と同様であるが、反対側121Bが多少長い形状となっており、図5に示した背景技術のMPOコネクタ500のインナーハウジング520と同様となっている。このため、本実施例のスプリングプッシュ141も、図5の背景技術のようになっているが、図1(A),(B)の実施例のように、縮径部144が設けられている。 Next, Embodiment 2 of the present invention will be described with reference to FIG. The MPO connector 101 of this embodiment is similar to the above-described embodiment on the MT ferrule 110 side of the inner housing 121 as compared to the above-described embodiment of FIGS. 1A and 1B, but the opposite side 121B. Is slightly longer and is similar to the inner housing 520 of the MPO connector 500 of the background art shown in FIG. For this reason, the spring push 141 of the present embodiment is also as shown in the background art of FIG. 5, but is provided with a reduced diameter portion 144 as in the embodiment of FIGS. 1 (A) and 1 (B). .
 本実施例のMPOコネクタ101の全長は34.5mmとなっており、図5に示したMPOコネクタ500の全長66mmよりは短いものの、図1(A),(B)に示した実施例のMPOコネクタ100の全長32mmよりは長くなっている。しかし、本実施例によれば、
a,フェルール側の形状・寸法は従来と同じであるので、MPOアダプタに対する接続整合性は確保されている。
b,スプリングプッシュ141の縮径部144からクリンプリング150,MPOブーツ160に至る形状は上述した実施例と同様であるので、R15曲げ半径を得るまでの距離が多少長くなるものの、同様に良好なスペース効果を得ることができる。
The overall length of the MPO connector 101 of this embodiment is 34.5 mm, which is shorter than the overall length of 66 mm of the MPO connector 500 shown in FIG. 5, but the MPO of the embodiment shown in FIGS. The total length of the connector 100 is longer than 32 mm. However, according to this example,
a, Since the shape and dimensions on the ferrule side are the same as the conventional one, connection consistency with the MPO adapter is ensured.
b, since the shape from the reduced diameter portion 144 of the spring push 141 to the crimp ring 150 and the MPO boot 160 is the same as that of the above-described embodiment, the distance until the R15 bending radius is obtained is somewhat longer, but is similarly good. Space effect can be obtained.
 なお、本発明は、上述した実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えることができる。例えば、以下のものも含まれる。
(1)前記実施例で示した形状,寸法は一例であり、必要に応じて適宜変更してよい。
(2)前記実施例で示した数値も一例であり、それらに限定されるものではない。
(3)前記実施例は、複数の光ファイバを一括して接続するMPOコネクタが好適な例であるが、各種の光コネクタに適用可能である。
In addition, this invention is not limited to the Example mentioned above, A various change can be added in the range which does not deviate from the summary of this invention. For example, the following are also included.
(1) The shapes and dimensions shown in the above embodiments are examples, and may be appropriately changed as necessary.
(2) The numerical values shown in the above-described embodiments are also examples, and are not limited thereto.
(3) The above-described embodiment is a suitable example of an MPO connector that connects a plurality of optical fibers at once, but can be applied to various optical connectors.
 本発明によれば、ケーブルの最小曲率半径,ブーツにかかる引っ張り加重,前記ブーツの端面における内径寸法,クリンプリング端面に対する前記ブーツ端面のオフセット量,を考慮して決定したヤング率の材料もしくは外形寸法の形状で前記ブーツを形成することとしたので、アダプタに対する接続整合性を確保するとともに、光ファイバの曲げ損失や破壊強度を十分に考慮して、より少ないスペースで所望の最小曲げ半径を得ることができ、MPOコネクタなどに好適である。 According to the present invention, the Young's modulus material or outer dimensions determined in consideration of the minimum radius of curvature of the cable, the tensile load applied to the boot, the inner diameter of the boot end face, and the offset of the boot end face with respect to the crimp ring end face. Since the boot is formed in the shape of the above, it is possible to obtain the desired minimum bending radius in a smaller space while ensuring the connection consistency with the adapter and sufficiently considering the bending loss and breaking strength of the optical fiber. It is suitable for MPO connectors and the like.
100,101:コネクタ
105:多芯光ファイバ
110:フェルール
112:ピン
120,121:インナーハウジング
130:アウターハウジング
132:バネ
140,141:スプリングプッシュ
142:バネ
144:縮径部
150:クリンプリング
160:MPOブーツ
200:ラウンドケーブル
202:ケブラ
204:被覆
500:コネクタ
505:多芯光ファイバ
510:フェルール
512:ピン
520:インナーハウジング
530:アウターハウジング
532:スカート部
540:ラウンドケーブル
550:ブーツ
560:スプリングプッシュ
562:縮径部
570:クリンプリング
572:リング
600:MPOアダプタ-
d1:ブーツ外径
d2:ブーツ内径
PA,PB:端面
100, 101: Connector 105: Multi-core optical fiber 110: Ferrule 112: Pin 120, 121: Inner housing 130: Outer housing 132: Spring 140, 141: Spring push 142: Spring 144: Reduced diameter portion 150: Crimp ring 160: MPO boot 200: Round cable 202: Kevlar 204: Cover 500: Connector 505: Multi-core optical fiber 510: Ferrule 512: Pin 520: Inner housing 530: Outer housing 532: Skirt portion 540: Round cable 550: Boot 560: Spring push 562: Reduced diameter portion 570: Crimp ring 572: Ring 600: MPO adapter
d1: Boot outer diameter d2: Boot inner diameter PA, PB: End face

Claims (9)

  1.  スプリングプッシュの縮径部の外側に位置しており、ケーブルを挟んで固定するクリンプリングと、該クリンプリングの外側に位置しており、前記ケーブルの端部を覆うブーツとを備えた光コネクタであって、
     前記ケーブルの最小曲率半径R,前記ブーツにかかる引っ張り加重F,前記ブーツの端面における外径寸法d1,内径寸法d2,前記クリンプリング端面に対する前記ブーツ端面のオフセット量L,を考慮して決定したヤング率Eの材料で前記ブーツを形成したことを特徴とする光コネクタ。
    An optical connector that is located outside the reduced diameter portion of the spring push and that has a crimp ring that is fixed with the cable in between, and a boot that is located outside the crimp ring and covers the end of the cable. There,
    Young determined by taking into consideration the minimum radius of curvature R of the cable, the tensile load F applied to the boot, the outer diameter d1, the inner diameter d2, and the offset L of the boot end face with respect to the crimp ring end face. An optical connector, wherein the boot is formed of a material having a rate E.
  2.  スプリングプッシュの縮径部の外側に位置しており、ケーブルを挟んで固定するクリンプリングと、該クリンプリングの外側に位置しており、前記ケーブルの端部を覆うブーツとを備えた光コネクタであって、
     前記ブーツを形成する材料のヤング率E,前記ケーブルの最小曲率半径R,前記ブーツにかかる引っ張り加重F,前記ブーツの端面における内径寸法d2,前記クリンプリング端面に対する前記ブーツ端面のオフセット量L,を考慮して決定した外径寸法d1となるように、前記ブーツを形成したことを特徴とする光コネクタ。
    An optical connector that is located outside the reduced diameter portion of the spring push and that has a crimp ring that is fixed with the cable in between, and a boot that is located outside the crimp ring and covers the end of the cable. There,
    Young's modulus E of the material forming the boot, minimum radius of curvature R of the cable, tensile load F applied to the boot, inner diameter dimension d2 of the boot end surface, offset amount L of the boot end surface with respect to the crimp ring end surface, An optical connector, wherein the boot is formed so as to have an outer diameter d1 determined in consideration.
  3.  スプリングプッシュの縮径部の外側に位置しており、ケーブルを挟んで固定するクリンプリングと、該クリンプリングの外側に位置しており、前記ケーブルの端部を覆うブーツとを備えた光コネクタであって、
     前記ケーブルの最小曲率半径R,前記ブーツにかかる引っ張り加重F,前記ブーツの端面における内径寸法d2,前記クリンプリング端面に対する前記ブーツ端面のオフセット量L,を考慮して、前記ブーツを形成する材料のヤング率Eと、前記ブーツの端面における外径寸法d1との関係を求め、この関係を利用して、前記ブーツの材料及び形状を決定したことを特徴とする光コネクタ。
    An optical connector that is located outside the reduced diameter portion of the spring push and that has a crimp ring that is fixed with the cable in between, and a boot that is located outside the crimp ring and covers the end of the cable. There,
    Considering the minimum radius of curvature R of the cable, the tensile load F applied to the boot, the inner diameter d2 of the end face of the boot, and the offset L of the end face of the boot relative to the end face of the crimp ring, the material of the material forming the boot An optical connector characterized in that a relationship between a Young's modulus E and an outer diameter d1 at an end face of the boot is obtained, and the material and shape of the boot are determined using this relationship.
  4.  前記ヤング率Eと前記ブーツの外径寸法d1との関係が、
    Figure JPOXMLDOC01-appb-I000001
    で表されることを特徴とする請求項3記載の光コネクタ。
    The relationship between the Young's modulus E and the outer diameter d1 of the boot is
    Figure JPOXMLDOC01-appb-I000001
    The optical connector according to claim 3, wherein
  5.  前記ケーブルとして、最小曲率半径15mmで曲げ加工可能なものを使用することを特徴とする請求項1~4のいずれか一項に記載の光コネクタ。 5. The optical connector according to claim 1, wherein the cable is a cable that can be bent with a minimum curvature radius of 15 mm.
  6.  前記ブーツにかかる引っ張り加重Fを、前記ブーツの引張り加重の耐久性を規定する規格値もしくはそれよりも低い値としたことを特徴とする請求項1~5のいずれか一項に記載の光コネクタ。 6. The optical connector according to claim 1, wherein the tensile load F applied to the boot is set to a standard value that defines the durability of the tensile load of the boot or a value lower than the standard value. .
  7.  前記規格値が3.3kgfである請求項6記載の光コネクタ。 The optical connector according to claim 6, wherein the standard value is 3.3 kgf.
  8.  前記ブーツの端面における内径寸法d2を、前記クリンプリングによって固定されるケーブルの外径としたことを特徴とする請求項1~7のいずれか一項に記載の光コネクタ。 The optical connector according to any one of claims 1 to 7, wherein an inner diameter d2 of the end face of the boot is an outer diameter of a cable fixed by the crimp ring.
  9.  前記ブーツの端面における内径寸法d2を3mmとした請求項8記載の光コネクタ。 The optical connector according to claim 8, wherein the inner diameter d2 of the end face of the boot is 3 mm.
PCT/JP2018/022814 2018-06-14 2018-06-14 Optical connector WO2019239567A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/022814 WO2019239567A1 (en) 2018-06-14 2018-06-14 Optical connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/022814 WO2019239567A1 (en) 2018-06-14 2018-06-14 Optical connector

Publications (1)

Publication Number Publication Date
WO2019239567A1 true WO2019239567A1 (en) 2019-12-19

Family

ID=68843114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022814 WO2019239567A1 (en) 2018-06-14 2018-06-14 Optical connector

Country Status (1)

Country Link
WO (1) WO2019239567A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10845542B1 (en) 2019-08-19 2020-11-24 Afl Telecommunications Llc Cable node transition assemblies
WO2024004243A1 (en) * 2022-06-28 2024-01-04 株式会社フジクラ Optical connector boot

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5781681A (en) * 1995-11-22 1998-07-14 The Whitaker Corporation Bend limiting strain relief boot
JP2003215401A (en) * 2001-11-15 2003-07-30 Furukawa Electric Co Ltd:The Optical connector
US20040234209A1 (en) * 2003-05-22 2004-11-25 Cox Larry R. Strain relief boot with flexible extension for guiding fiber optic cable
JP2011027856A (en) * 2009-07-22 2011-02-10 Fujikura Ltd Optical connector and assembling method of optical connector
US20110222826A1 (en) * 2010-03-11 2011-09-15 Blackburn James D Strain-releif member and fiber optic drop cable assembly using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5781681A (en) * 1995-11-22 1998-07-14 The Whitaker Corporation Bend limiting strain relief boot
JP2003215401A (en) * 2001-11-15 2003-07-30 Furukawa Electric Co Ltd:The Optical connector
US20040234209A1 (en) * 2003-05-22 2004-11-25 Cox Larry R. Strain relief boot with flexible extension for guiding fiber optic cable
JP2011027856A (en) * 2009-07-22 2011-02-10 Fujikura Ltd Optical connector and assembling method of optical connector
US20110222826A1 (en) * 2010-03-11 2011-09-15 Blackburn James D Strain-releif member and fiber optic drop cable assembly using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10845542B1 (en) 2019-08-19 2020-11-24 Afl Telecommunications Llc Cable node transition assemblies
WO2024004243A1 (en) * 2022-06-28 2024-01-04 株式会社フジクラ Optical connector boot

Similar Documents

Publication Publication Date Title
US11782224B2 (en) Fiber optic connector
CN109752803B (en) Multi-fiber push-in type optical fiber connector
US9989711B2 (en) Fiber optic connector and fiber optic cable assembly with fiber optic cable anchored to boot of fiber optic connector
US20100284656A1 (en) Short profile optical connector
US5915056A (en) Optical fiber strain relief device
US20170212313A1 (en) Fiber optic connector and fiber optic cable assembly with fiber optic cable anchored to boot of fiber optic connector
JP5688832B2 (en) Bend limiting boots
US7758256B2 (en) Connector for tight-jacketed optical fiber cable
JP2002357752A5 (en)
EP1959282A3 (en) Fiber optic drop cables and preconnectorized assemblies having toning portions
CN202453542U (en) Optical fiber connector
WO2019239567A1 (en) Optical connector
US6808315B2 (en) Optical connector integrally formed so as to limit the bend radius of an optical fiber cord
US20040121646A1 (en) Modified, field installable, field adjustable flexible angled boot for multi-conductor cables and process for installing the same
US20030108303A1 (en) Optical connector and structure of holding an optical fiber cord
WO2020004230A1 (en) Optical fiber cable
EP2626732B1 (en) Optical connector with sleeve
US11852873B2 (en) Adapter to jacketed fiber interface
US20100003002A1 (en) Robust connector enforcement
US20070127871A1 (en) Boot for MT connector
US20220283382A1 (en) Fixing member, optical connector, optical cable with pulling end, and optical cable laying method
WO2020204030A1 (en) Mpo optical connector plug
EP0078399B1 (en) Optical connector
JP4478089B2 (en) Optical connector
TW202242468A (en) Optical cable assembly with mismatched fiber length

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP