WO2019239467A1 - Terminal device, base station, wireless communication system and wireless communication method - Google Patents

Terminal device, base station, wireless communication system and wireless communication method Download PDF

Info

Publication number
WO2019239467A1
WO2019239467A1 PCT/JP2018/022272 JP2018022272W WO2019239467A1 WO 2019239467 A1 WO2019239467 A1 WO 2019239467A1 JP 2018022272 W JP2018022272 W JP 2018022272W WO 2019239467 A1 WO2019239467 A1 WO 2019239467A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal device
preamble sequence
unit
sequence
Prior art date
Application number
PCT/JP2018/022272
Other languages
French (fr)
Japanese (ja)
Inventor
木下 裕介
啓二郎 武
亮 松永
佐和橋 衛
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/022272 priority Critical patent/WO2019239467A1/en
Publication of WO2019239467A1 publication Critical patent/WO2019239467A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • H04J13/22Allocation of codes with a zero correlation zone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to a terminal device, a base station, a wireless communication system, and a wireless communication method.
  • IoT Internet of Things
  • all things such as consumer devices, industrial control devices such as factories, sensors, meters, automobiles, etc. are connected to the Internet with communication functions. It has become to.
  • the wireless standard used in IoT requires a reduction in power consumption of the terminal device.
  • the number of information bits transmitted by an IoT device is often smaller than that of a general information terminal such as a smartphone. For this reason, in order to reduce the power consumption of the terminal device, it is effective to narrow the transmission bandwidth.
  • the narrower the transmission bandwidth the lower the baseband modulation and demodulation processing clock frequency, and the power consumption of the terminal device can be reduced. Further, since the transmission power per 1 Hz can be increased as the transmission bandwidth is narrowed, the coverage area can be expanded.
  • Non-Patent Document 1 discloses a random access procedure that is executed to establish a connection between a base station and a terminal device in wireless communication.
  • the random access procedure is performed between the terminal device and the base station, if the transmission bandwidth is narrow, the frequency diversity effect cannot be obtained like a wideband signal. For this reason, the received power level of the entire transmission band decreases due to frequency flat fading. For this reason, in downlink transmission from the base station to the terminal device, a decrease in the reception power level is suppressed by increasing the transmission power.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a terminal device, a base station, a radio communication system, and a radio communication method that can improve the detection probability of a preamble sequence transmitted in uplink. To do.
  • a terminal apparatus includes a dividing unit that divides a preamble sequence into a plurality of sub-blocks, and a plurality of sub-blocks each having a plurality of different frequency bands.
  • a mapping unit that is allocated to each of the resource blocks, and a transmission unit that transmits the sub-block to the base station using the allocated resource block.
  • the terminal device has an effect of improving the detection probability of a preamble sequence transmitted in uplink.
  • wireless communications system concerning Embodiment 1 of this invention The sequence diagram which shows the random access procedure performed between the terminal device shown in FIG. 1, and a base station
  • the figure which shows the structure of the transmission part shown in FIG. Explanatory drawing of the 1st example of the transmission block production
  • FIG. 1 is a diagram illustrating a configuration of a wireless communication system 1 according to the first embodiment of the present invention.
  • the wireless communication system 1 includes a plurality of terminal devices 10 and a base station 20.
  • the terminal device 10 is an IoT device having a communication function.
  • the terminal device 10 is a consumer device, an industrial control device, a sensor, a meter, an automobile, or the like.
  • the base station 20 is a device that can communicate with a plurality of terminal devices 10.
  • the terminal device 10 includes a transmission unit 100 and a reception unit 110.
  • the base station 20 includes a transmission unit 210 and a reception unit 200. Information can be transmitted bi-directionally between the terminal device 10 and the base station 20.
  • the wireless communication system 1 is an IoT system including an IoT device.
  • a home security service using a terminal device 10 that detects the state of a house such as a fire alarm, or information transmitted from an AED (Automated External Defibrillator) connected to the Internet is used.
  • AED monitoring service that monitors the state of the vehicle, weather observation service, the state of the vehicle and the parking lot, the smart parking service that efficiently guides each vehicle to the parking lot, the imaging machine etc. Examples include a pet monitoring service for monitoring and a line temperature monitoring service for monitoring the temperature measured by a thermometer installed on the line.
  • Wireless communication between the terminal device 10 and the base station 20 is performed according to a wireless specification specialized for IoT transmission.
  • Conditions required for IoT transmission include long life and low power consumption, low cost, and wide coverage of the terminal device 10.
  • the wireless specification specialized for IoT transmission is called LPWAN (Low Power Wide Area Network).
  • Examples of LPWANs that use frequency bands that do not require a radio license include SIGFOX, a wireless specification created by SIGFOX, and LoRaWAN supported by the non-profit organization LoRa Alliance.
  • Examples of LPWAN using a frequency band that requires a radio wave license include 3GPP category M1 (eMTC: Machine Type Communications), NB (Narrow Band) -IoT, and the like.
  • IoT transmission is characterized in that the number of information bits is small and the information bit rate is low compared to communication performed by a general information terminal such as a smartphone. For this reason, in order to reduce the power consumption of the terminal device 10, it is effective to narrow the transmission bandwidth. The narrower the signal band, the lower the baseband modulation and demodulation processing clock frequency, and the power consumption of the terminal device 10 can be reduced. Further, since the transmission power density and the reception power density per 1 Hz can be increased as the signal band is narrowed, the reachable range of radio waves, that is, the coverage area can be expanded.
  • bands such as 100 Hz, 125 kHz, and 250 kHz are used.
  • the power consumption of the terminal device 10 can be reduced, since frequency flat fading is received, a decoding error occurs when the reception level is lowered. That is, the frequency diversity effect can be obtained with a wideband signal, whereas the reception level in the frequency domain is not averaged with a narrowband signal, and the frequency diversity effect cannot be obtained.
  • the space diversity effect is not obtained. A decoding error occurs.
  • FIG. 2 is a sequence diagram showing a random access procedure executed between the terminal apparatus 10 and the base station 20 shown in FIG.
  • a random access procedure is performed to establish a connection.
  • the transmission unit 100 of the terminal device 10 transmits a signal including a preamble sequence to the base station 20 using a physical random access channel (step S101).
  • the base station 20 assigns a plurality of preamble sequences to each terminal group composed of the plurality of terminal devices 10, and the terminal device 10 uses the assigned preamble sequences.
  • a preamble sequence is selected, and a signal including the selected preamble sequence is transmitted to the base station 20.
  • a plurality of terminal devices 10 may use the same preamble sequence, and a collision may occur.
  • the base station 20 assigns a different preamble sequence for each terminal device 10, and the terminal device 10 transmits a signal including the assigned preamble sequence to the base station 20.
  • the preamble sequence transmitted by the terminal device 10 is unique to the terminal device 10, no collision occurs.
  • the second mode is used at the time of handover where a short control delay is required.
  • the preamble sequence assigned to the first mode is further divided into two groups according to the request message size in step S103 described later. Further, power ramping is applied to the physical random access channel.
  • the terminal device 10 determines transmission power when transmitting the preamble sequence, and transmits a signal including the preamble sequence with the determined transmission power.
  • the receiving unit 200 of the base station 20 When receiving the signal including the preamble sequence, the receiving unit 200 of the base station 20 returns a random access response to the terminal device 10 through the physical downlink shared channel (step S102).
  • the random access response multiplexes the Random Access Radio Network Temporary Identifier (RA-RNTI) indicating the frequency resource when the preamble sequence is detected.
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • the random access response includes the detected preamble sequence ID (RA-RNTI), time alignment information, information indicating the resource used by the terminal device 10 to transmit a message in the subsequent step S103, an identifier of the terminal device 10, for example, Includes Cell Radio Network Temporary Identifier (C-RNTI).
  • RA-RNTI detected preamble sequence ID
  • C-RNTI Cell Radio Network Temporary Identifier
  • the transmitting unit 100 of the terminal device 10 transmits a Layer2 (L2) / Layer3 (L3) message to the base station 20 (step S103).
  • the terminal device 10 transmits the L2 / L3 message using the resource notified by the random access response.
  • the L2 / L3 message transmitted here is a connection request signal, a scheduling request signal, or the like.
  • connection setup information including cell setting information for establishing a connection (step S104).
  • the terminal device 10 whose connection setup information includes its own terminal device identifier completes the random access process and establishes a connection. If the connection setup information including its own terminal device identifier cannot be received, the terminal device 10 determines that the random access channel detection has failed and repeats the random access procedure from step S101 again.
  • the transmission power from the base station 20 can be increased to make it less susceptible to frequency flat fading.
  • the transmission power of the terminal device 10 since the transmission power of the terminal device 10 is severely limited, the transmission power cannot be increased and is affected by frequency flat fading.
  • the probability of detection of the preamble sequence to be reduced is reduced. For this reason, in this Embodiment, the detection probability of a preamble sequence is improved using frequency hopping in uplink transmission.
  • FIG. 3 is a diagram illustrating a configuration of the subframe 5 transmitted from the terminal device 10 illustrated in FIG. 1 to the base station 20.
  • the subframe 5 is composed of a plurality of subblocks 5-1 and 5-2 including a preamble sequence, and a CP (Cyclic Prefix) added to each of the plurality of subblocks 5-1 and 5-2. .
  • the CP added to the subblock 5-1 is a copy of the end part of the preamble sequence # 1.
  • the CP added to the sub-block 5-2 is a copy of the end part of the preamble sequence # 2.
  • frequency hopping is performed in which a plurality of sub-blocks 5-1 and 5-2 included in sub-frame 5 are mapped to resource blocks in different frequency bands and transmitted.
  • FIG. 4 is an explanatory diagram of frequency hopping performed by the terminal device 10 shown in FIG.
  • a set of resource blocks composed of a plurality of resource blocks having different frequency bands are defined in advance as system information or cell specific information.
  • the resource block is a resource having a frequency bandwidth allocated to one terminal apparatus 10 and a subframe length in the time domain.
  • the resource block RB1 and the resource block RB2 constitute a set of resource blocks.
  • the bandwidth used by the wireless communication system 1 is a system bandwidth W BS and the number of resource blocks N RB
  • the bandwidth per resource block is W BS / N RB .
  • FIG. 5 is a diagram illustrating a configuration of the transmission unit 100 illustrated in FIG.
  • the transmission unit 100 includes a transmission block generation unit 11, a division unit 12, a mapping unit 13, an IFFT (Inverse Fast Fourier Transform) unit 14, and a CP insertion unit 15.
  • IFFT Inverse Fast Fourier Transform
  • the transmission block generation unit 11 generates a transmission block including a preamble sequence predetermined in the wireless communication system 1.
  • a Zadoff-chu sequence subjected to cyclic shift can be used as the preamble sequence.
  • the Zadoff-chu sequence belongs to the Constant Amptitude Zero Auto-Correlation (CAZAC) sequence, and the code sequence has a constant amplitude and a phase different from each other.
  • the Zadoff-chu sequence is a sequence in which the correlation power at the time of zero time shift is large and the accident correlation at the time shift is small.
  • the sequence length N Zadoff-chu sequence a n (i) is expressed by the following equation (1).
  • i is an integer of 0 or more and N ⁇ 1, and N is a prime number.
  • n is a root index having a prime relationship with N.
  • Different Zadoff-chu sequences can be generated by using different values of n.
  • a plurality of different sequences can be generated by cyclically shifting the Zadoff-chu sequence.
  • a plurality of Zadoff-chu sequences generated by using cyclic shift has a feature that cross-correlation can be reduced mutually.
  • Cyclic shift length delta CS is a value larger than the maximum value of the propagation delay time gold propagation distance difference to the base station 20 of each terminal apparatus 10.
  • the dividing unit 12 divides the transmission block generated by the transmission block generation unit 11 into a plurality of sub blocks. In the present embodiment, the dividing unit 12 divides the transmission block into two blocks, the first half and the second half.
  • the mapping unit 13 maps each of the plurality of sub blocks generated by the dividing unit 12 to each of the plurality of resource blocks allocated by the base station 20.
  • the plurality of resource blocks determined in advance by the base station 20 have different frequency bands. For this reason, each of the plurality of sub-blocks is mapped to resource blocks in different frequency bands.
  • the bandwidth of the resource block is 12 subcarriers, that is, 180 kHz, but the bandwidth W BS / N RB of the resource block should be optimized according to the requirements of the wireless communication system 1. Is desirable.
  • the frequency hopping interval is defined in advance as system information or cell specific information.
  • the mapping unit 13 inputs the frequency domain signal after mapping to the IFFT unit 14.
  • the IFFT unit 14 converts an input frequency domain signal into a time domain signal.
  • the IFFT unit 14 inputs the converted time-domain signal to the CP insertion unit 15.
  • the CP insertion unit 15 adds a CP to the head of each of the plurality of sub-blocks included in the input time domain signal.
  • FIG. 6 is an explanatory diagram of a first example of a transmission block generation method performed by the transmission block generation unit 11 illustrated in FIG.
  • the transmission block generation unit 11 can generate a first sequence that is a Zadoff-chu sequence having a sequence length Npa , and can use the generated first sequence as a transmission block.
  • the first sequence is divided into two sub-blocks of the first half and the second half by the dividing unit 12, and becomes preamble sequences # 1 and # 2, respectively.
  • the mapping unit 13 maps each of the preamble sequences # 1 and # 2 to resource blocks in different frequency bands. In this case, the number of orthogonal sequences is N ZC .
  • FIG. 7 is an explanatory diagram of a second example of a transmission block generation method performed by the transmission block generation unit 11 illustrated in FIG.
  • the transmission block generation unit 11 generates and generates a second sequence and a third sequence that are two types of Zadoff-chu sequences having a sequence length N pa / 2.
  • a transmission block composed of the sequence and the third sequence can be generated.
  • the second sequence generated by the transmission block generation unit 11 is a preamble sequence # 1
  • the third sequence is a preamble sequence # 2.
  • the number of orthogonal sequences per terminal apparatus 10 is N ZC / 2.
  • the timing which transmits a random access channel is notified to the terminal device 10 from the base station 20 using the control information of the broadcast channel of a downlink.
  • the terminal device 10 selects a resource to be used from among resource block and preamble sequence candidates notified by the base station 20.
  • a preamble sequence selection method there are a method of random selection, a method of selection based on an identifier of the terminal device 10, and the like.
  • the transmission part 100 has a function which determines the transmission power at the time of transmitting a preamble series.
  • the transmission unit 100 can determine transmission power by open-loop transmission power control.
  • the base station 20 can notify the transmission power of the base station 20 using the control information of the downlink broadcast channel.
  • the receiving unit 110 has a function of measuring the received power.
  • the base station 20 and the terminal device 10 are based on the notified transmission power and the measured received power. It is possible to calculate an average propagation loss due to distance attenuation and shadowing.
  • the terminal device 10 can determine the transmission power so that the calculated propagation loss can be compensated to satisfy the required received signal to noise ratio.
  • FIG. 8 is a diagram illustrating a configuration of the receiving unit 200 illustrated in FIG.
  • the receiving unit 200 includes a CP removing unit 21, an FFT (Fast Fourier Transform) unit 22, an extracting unit 23, a cyclic shift Zadoff-chu sequence generating unit 24, a correlation signal generating unit 25, and a correlation value calculating unit 26.
  • a series detection unit 27 is a diagram illustrating a configuration of the receiving unit 200 illustrated in FIG.
  • the receiving unit 200 includes a CP removing unit 21, an FFT (Fast Fourier Transform) unit 22, an extracting unit 23, a cyclic shift Zadoff-chu sequence generating unit 24, a correlation signal generating unit 25, and a correlation value calculating unit 26.
  • a series detection unit 27 is a series detection unit 27.
  • the preamble sequence candidates transmitted by the terminal device 10 and the resource block candidates used for frequency hopping are already known. However, a round-trip propagation delay time delay corresponding to the distance between the terminal device 10 and the base station 20 occurs.
  • the number of resource blocks notified to the terminal apparatus 10 is K (tilde) RB
  • the number of preamble sequences is K (tilde) ps .
  • the terminal apparatus 10 selects a resource block to be used when transmitting a preamble sequence from among K (tilde) RB resource blocks, and selects a preamble sequence to be transmitted from among K (tilde) ps preamble sequences. select.
  • the CP removal unit 21 removes the CP added to the received preamble sequence.
  • the CP removing unit 21 inputs the signal from which the CP has been removed to the FFT unit 22.
  • the FFT unit 22 performs FFT processing on the signal after removing the CP, and converts the time domain signal into a frequency domain signal.
  • the FFT unit 22 inputs the converted signal to the extraction unit 23.
  • the extraction unit 23 removes a carrier frequency component from the input frequency domain signal and extracts a complex baseband signal.
  • the extraction unit 23 inputs the extracted baseband signal to the correlation signal generation unit 25.
  • h be the index of the terminal apparatus 10 that transmits the preamble sequence using the same resource block (0 ⁇ h ⁇ (H ⁇ 1)).
  • H is the number of terminal apparatuses 10 that transmit a preamble sequence using the same resource block.
  • a collision occurs when the terminal apparatus 10 using the same resource block uses the same preamble sequence.
  • the preamble sequence can be represented by d h (j), where d h (j) is a subset of a (tilde) n, k (i) (0 ⁇ j ⁇ (N ⁇ 1)).
  • the discrete value display of the received signal is expressed by the following equation (3).
  • Equation (3) j is a sample index of the sequence, ⁇ h (j) is a channel response including distance attenuation, shadowing, and fading variation of the terminal device 10 at the index h, and ⁇ h is an index h.
  • the delay time from the terminal device 10 to the base station 20, w h (j) indicates an average zero noise component.
  • the cyclic shift Zadoff-chu sequence generation unit 24 generates the same Zadoff-chu sequence as the preamble sequence candidate used by the terminal device 10.
  • the cyclic shift Zadoff-chu sequence generation unit 24 inputs the generated sequence to the correlation signal generation unit 25.
  • the correlation signal generation unit 25 multiplies the baseband signal input from the extraction unit 23 by the sequence input from the Zadoff-chu sequence generation unit 24 to generate a correlation signal for each sub-block.
  • the correlation signal generation unit 25 inputs the generated correlation signal and baseband signal to the correlation value calculation unit 26.
  • the correlation value calculation unit 26 adds a plurality of correlation signals input from the correlation signal generation unit 25 to calculate a correlation value between blocks. Correlation value calculation unit 26 inputs the calculated correlation value and baseband signal to sequence detection unit 27.
  • the sequence detection unit 27 determines the reception timing of the preamble sequence based on the timing at which the input correlation value is maximized, and detects the preamble sequence from the baseband signal. The sequence detection unit 27 outputs the detected preamble sequence and the reception timing.
  • the first half block and the second half block are transmitted in resource blocks having a low frequency correlation.
  • the correlation value between them is obtained by averaging the power.
  • the reception timing ⁇ (hat) h of the terminal device 10 is expressed by the following formula (4).
  • the preamble sequence is transmitted using the same resource block, and thus the correlation detection of the entire subframe is performed by in-phase addition.
  • the reception timing ⁇ (hat) h of the terminal device 10 is expressed by the following formula (5).
  • terminal apparatus 10 divides a preamble sequence into a plurality of subblocks, and uses resource blocks of different frequency bands for each of the plurality of subblocks. To the base station 20. Therefore, the frequency diversity effect can be obtained, and the detection probability of the preamble sequence transmitted in the uplink can be improved.
  • FIG. FIG. 9 is a diagram showing a configuration of subframe 6 used in Embodiment 2 of the present invention.
  • Subframe 6 includes preamble sequences # 1 and # 2, control information, and CP.
  • Each of the first half 6-1 and the second half 6-2 of the subframe 6 is mapped to resource blocks in different frequency bands.
  • the CP is added to the preamble sequences # 1 and # 2 and each of the control information.
  • FIG. 10 is a diagram illustrating a configuration of the transmission block generation unit 11 according to the second embodiment of the present invention.
  • the transmission block generation unit 11 includes a cyclic shift Zadoff-chu sequence generation unit 101, a channel encoding unit 102, a modulation mapping unit 103, and a multiplexing unit 104.
  • a cyclic shift Zadoff-chu sequence generation unit 101 a channel encoding unit 102
  • a modulation mapping unit 103 a modulation mapping unit 103
  • a multiplexing unit 104 a multiplexing unit 104.
  • the cyclic shift Zadoff-chu sequence generation unit 101 can generate a preamble sequence using the two methods described in the first embodiment.
  • the channel coding unit 102 channel codes the control bits.
  • Channel coding section 102 inputs the control bits after channel coding to modulation mapping section 103.
  • the channel coding unit 102 can perform channel coding using a Reed-Muller code, a Polar code, a convolutional code, and the like.
  • the modulation mapping unit 103 interleaves the input control bits, and then generates a symbol in which the control bits are mapped.
  • Modulation mapping section 103 inputs the generated symbol to multiplexing section 104.
  • Multiplexing section 104 multiplexes the preamble sequence and the control information. Specifically, the multiplexing unit 104 multiplexes the input symbols on each of the first half 6-1 and the second half 6-2.
  • FIG. 13 is a diagram illustrating a first example of a random access procedure in which a transmission delay is shortened.
  • the base station 20 determines in advance the time, frequency resource, and preamble sequence candidate for the terminal apparatus 10 to transmit the random access channel, and the time, frequency, and preamble sequence candidate are transmitted by the downlink broadcast channel.
  • Notify users in The random access channel of this embodiment is composed of a preamble signature and a message part.
  • a Zadoff-Chu sequence using a cyclic shift is used as the preamble sequence.
  • the message part is composed of small-size control information with a small number of bits.
  • the message part includes a UE ID (User Equipment IDentifier) which is a user ID.
  • UE ID User Equipment IDentifier
  • (1) a method of directly multiplexing symbols mapped with control bits, (2) a method of multiplying symbols by a scramble sequence, and (3) multiplexing symbols by spreading them with spreading codes.
  • Method. The aforementioned scrambled sequence or spread sequence of information symbols is associated with the preamble sequence, and when the preamble sequence is detected, the subsequent scramble sequence of the information symbol part is restored (descrambled) or spread. Symbols can be despread. As shown in the flow of FIG. 13, a plurality of users transmit random access channels using the same time and frequency resources.
  • the base station 20 returns an Ack (Acknowledgement) / Nack (Non-acknowledgement) signal together with the UE ID to the terminal device 10 in the downlink.
  • Ack Acknowledgement
  • Nack Non-acknowledgement
  • FIG. 11 is a diagram showing a configuration of the receiving unit 200A according to the second embodiment of the present invention.
  • the receiving unit 200A includes a CP removing unit 21, an FFT unit 22, an extracting unit 23, a cyclic shift Zadoff-chu sequence generating unit 24, a correlation signal generating unit 25, a correlation value calculating unit 26, and a sequence detecting unit 27. And a demodulator 28 and an error correction decoder 29.
  • the extracting unit 23 descrambles the scramble sequence when the control symbol is multiplied by the scramble sequence, and the despread process when the control symbol is spread. including.
  • the extraction unit 23 inputs the extracted baseband signal to the demodulation unit 28 in addition to the correlation signal generation unit 25.
  • the correlation signal generation unit 25 inputs the generated correlation signal to the demodulation unit 28 in addition to the correlation value calculation unit 26.
  • the demodulator 28 synchronously detects control symbols using the input correlation signal as a reference signal, and demodulates control information from the baseband signal.
  • the demodulator 28 inputs the demodulated control information to the error correction decoder 29.
  • the error correction decoding unit 29 performs error correction decoding on the soft decision bits after synchronous detection, that is, the log likelihood ratio or the hard decision bits, and reproduces the control bits.
  • FIG. 14 is a diagram showing a sequence of a random access procedure with a reduced transmission delay.
  • the base station 20 determines in advance the time, frequency resource, and preamble sequence candidate for the terminal apparatus 10 to transmit the random access channel, and the time, frequency, and preamble sequence candidate are transmitted by the downlink broadcast channel.
  • the preamble sequences are almost orthogonal, so that a plurality of random access channels are detected. There is a high probability.
  • the receiving unit 200 of the base station 20 When receiving the signal including the preamble sequence, the receiving unit 200 of the base station 20 returns a random access response to the terminal device 10 through the physical downlink shared channel.
  • the random access response multiplexes RA-RNTI indicating the frequency resource at the time when the preamble sequence is detected.
  • RA-RNTI indicating the frequency resource at the time when the preamble sequence is detected.
  • the base station 20 notifies the terminal device 10 of the time and frequency resource allocation information for transmitting the subsequent uplink data channel.
  • the base station 20 also notifies the identifier of the terminal device 10, for example, C-RNTI.
  • the terminal device 10 transmits the user information together with its own ID, that is, the UE ID, on the uplink shared channel using the time and frequency resources allocated from the base station 20.
  • the user information may include Layer1 / Layer2 control information or higher layer control information.
  • the difference from the LTE RACH procedure shown in FIG. 2 is that RA-RNTI and temporary CRNTI may be received by multiple users. Therefore, in the next step, multiple users simultaneously receive user information on the uplink shared channel. May be transmitted. By allowing collision of uplink data channels, it is possible to reduce processing delay.
  • the base station 20 If the user information of the data channel can be correctly decoded, the base station 20 returns an Ack / Nack signal together with the UE ID to the terminal device 10 in the downlink.
  • the control bits are subjected to cyclic information check coding. As described above, even when a plurality of users transmit data channels with the same frequency resource at the same time at the same time, by receiving and decoding the Ack / Nack signal fed back from the base station 20, at the time of retransmission, There is no data channel collision. That is, only the UE ID terminal device 10 to which the base station 20 has transmitted the Nack signal retransmits the data channel.
  • FIG. 12 is an explanatory diagram of resource blocks assigned to the terminal device 10 by the base station 20 according to the second embodiment of the present invention.
  • a frequency diversity effect can be obtained, and the probability that the reception level of the entire random access channel is lowered can be greatly reduced. For this reason, the detection probability of the preamble sequence transmitted by uplink can be improved.
  • the terminal device 10 divides into resource blocks in different frequency bands with low frequency correlation and transmits the preamble sequence and control information.
  • the correlation value between the blocks in the second half 6-2 cannot be added in phase, and power is added.
  • the power addition is less effective in suppressing noise components and interference components than in-phase addition. For this reason, when the received signal-to-noise ratio is less than or equal to the threshold value, the terminal apparatus 10 does not perform frequency hopping in order to enhance the noise component and interference component suppression effect.
  • the received signal-to-noise ratio is obtained based on the transmission power of the base station 20 notified through the downlink broadcast channel and the reception power measured by the terminal device 10.
  • the receiving unit 110 of the terminal device 10 is based on the transmission power of the base station 20 and the measured received power, and averages due to distance attenuation and shadowing between the base station 20 and the terminal device 10. To calculate the correct propagation loss.
  • the receiving unit 110 can estimate the uplink received signal-to-noise ratio from the calculated propagation loss.
  • the transmission unit 100 transmits the preamble sequence without performing frequency hopping.
  • the terminal apparatus 10 may perform frequency hopping or may not perform frequency hopping depending on the estimated received signal-to-noise ratio. Therefore, each of the plurality of resource blocks to be allocated to the terminal device 10 is classified in advance into a first resource block used when frequency hopping is performed and a second resource block used when frequency hopping is not performed. ing.
  • resource blocks RB1 and RBn are first resource blocks
  • resource block RBn-1 is a second resource block.
  • the first resource block and the second resource block may be determined as system information in advance, or may be notified from the base station 20 to the terminal device 10 through a downlink broadcast channel.
  • the transmission unit 210 of the base station 20 determines whether the resource block used for the terminal apparatus 10 to transmit the preamble sequence is the first resource block or the second resource block. It is possible to notify the terminal device 10 of control information including information indicating whether or not.
  • terminal apparatus 10 divides a preamble sequence into a plurality of subblocks, and each of the plurality of subblocks is different. It is transmitted to the base station 20 using the resource block of the frequency band. Therefore, the frequency diversity effect can be obtained, and the detection probability of the preamble sequence transmitted in the uplink can be improved.
  • control information is divided into a plurality of subblocks together with the preamble sequence, and each of the plurality of subblocks is transmitted to the base station 20 using resource blocks of different frequency bands. For this reason, the detection probability of control information is also improved by the frequency diversity effect, and the transmission delay is shortened.
  • frequency hopping is not performed when the received signal-to-noise ratio is less than or equal to the threshold value. For this reason, it becomes possible to improve the suppression effect of a noise component and an interference component.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • 1 wireless communication system 5, 6 subframe, 5-1, 5-2 subblock, 6-1 first half, 6-2 second half, 10 terminal device, 11 transmission block generation unit, 12 division unit, 13 mapping unit , 14 IFFT unit, 15 CP insertion unit, 20 base station, 21 CP removal unit, 22 FFT unit, 23 extraction unit, 24, 101 cyclic shift Zadoff-chu sequence generation unit, 25 correlation signal generation unit, 26 correlation value calculation unit 27 sequence detection unit, 28 demodulation unit, 29 error correction decoding unit, 100, 210 transmission unit, 102 channel coding unit, 103 modulation mapping unit, 104 multiplexing unit, 110, 200 reception unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This terminal device (10) is characterized by comprising a transmission unit (100) which includes: a division unit (12) which divides a preamble sequence into a plurality of sub-blocks; and a mapping unit (13) which respectively allocates the plurality of sub-blocks to a plurality of resource blocks in different frequency bands, wherein the sub-blocks are transmitted to a base station (20) by using the allocated resource blocks.

Description

端末装置、基地局、無線通信システムおよび無線通信方法Terminal device, base station, radio communication system, and radio communication method
 本発明は、端末装置、基地局、無線通信システムおよび無線通信方法に関する。 The present invention relates to a terminal device, a base station, a wireless communication system, and a wireless communication method.
 近年、IoT(Internet of Things:モノのインターネット)と呼ばれるように、民生用の機器、工場などの産業用制御機器、センサ、メータ、自動車などあらゆるモノが通信機能を持ってインターネットに接続するようになってきている。IoTで使用される無線規格には、端末装置の低消費電力化が求められる。 In recent years, so-called IoT (Internet of Things), all things such as consumer devices, industrial control devices such as factories, sensors, meters, automobiles, etc. are connected to the Internet with communication functions. It has become to. The wireless standard used in IoT requires a reduction in power consumption of the terminal device.
 IoT機器が送信する情報ビット数は、スマートフォンのような一般的な情報端末よりは少ないことが多い。このため、端末装置の消費電力を低減するためには、送信帯域幅の狭帯域化が有効である。送信帯域幅を狭くするほど、ベースバンドの変調および復調処理のクロック周波数が低くなり、端末装置の消費電力を低減することができる。また、送信帯域幅を狭くするほど、1Hz当たりの送信電力を高くすることができるため、カバレッジエリアを拡張することもできる。 The number of information bits transmitted by an IoT device is often smaller than that of a general information terminal such as a smartphone. For this reason, in order to reduce the power consumption of the terminal device, it is effective to narrow the transmission bandwidth. The narrower the transmission bandwidth, the lower the baseband modulation and demodulation processing clock frequency, and the power consumption of the terminal device can be reduced. Further, since the transmission power per 1 Hz can be increased as the transmission bandwidth is narrowed, the coverage area can be expanded.
 また、非特許文献1には、無線通信において基地局と端末装置との間でコネクションを確立するために実行される、ランダムアクセス手順が開示されている。端末装置と基地局との間でランダムアクセス手順を行う場合に送信帯域幅が狭いと、広帯域信号のように周波数ダイバーシチ効果を得ることができない。このため、周波数フラットフェージングを受けて、送信帯域全体の受信電力レベルが低下する。このため、基地局から端末装置へのダウンリンク伝送では、送信電力を上げることで、受信電力レベルの低下を抑制する。 Also, Non-Patent Document 1 discloses a random access procedure that is executed to establish a connection between a base station and a terminal device in wireless communication. When the random access procedure is performed between the terminal device and the base station, if the transmission bandwidth is narrow, the frequency diversity effect cannot be obtained like a wideband signal. For this reason, the received power level of the entire transmission band decreases due to frequency flat fading. For this reason, in downlink transmission from the base station to the terminal device, a decrease in the reception power level is suppressed by increasing the transmission power.
 しかしながら、上記従来の技術をIoT環境に適用する場合、端末装置から基地局へのアップリンク伝送では、最大送信電力の制約がある。このため、送信電力を上げることができず、受信電力レベルが低下して、端末装置から基地局へアップリンク伝送されるプリアンブル系列の検出確率が低下するという問題があった。 However, when the above conventional technique is applied to the IoT environment, there is a restriction on the maximum transmission power in uplink transmission from the terminal device to the base station. For this reason, there is a problem that the transmission power cannot be increased, the reception power level is lowered, and the detection probability of the preamble sequence transmitted from the terminal apparatus to the base station is lowered.
 本発明は、上記に鑑みてなされたものであって、アップリンク伝送されるプリアンブル系列の検出確率を改善することができる端末装置、基地局、無線通信システムおよび無線通信方法を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a terminal device, a base station, a radio communication system, and a radio communication method that can improve the detection probability of a preamble sequence transmitted in uplink. To do.
 上述した課題を解決し、目的を達成するために、本発明にかかる端末装置は、プリアンブル系列を複数のサブブロックに分割する分割部と、複数のサブブロックのそれぞれを、互いに異なる周波数帯域の複数のリソースブロックのそれぞれに割り当てるマッピング部と、を有し、割り当てられたリソースブロックを用いてサブブロックを基地局に送信する送信部を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, a terminal apparatus according to the present invention includes a dividing unit that divides a preamble sequence into a plurality of sub-blocks, and a plurality of sub-blocks each having a plurality of different frequency bands. A mapping unit that is allocated to each of the resource blocks, and a transmission unit that transmits the sub-block to the base station using the allocated resource block.
 本発明にかかる端末装置は、アップリンク伝送されるプリアンブル系列の検出確率を改善することができるという効果を奏する。 The terminal device according to the present invention has an effect of improving the detection probability of a preamble sequence transmitted in uplink.
本発明の実施の形態1にかかる無線通信システムの構成を示す図The figure which shows the structure of the radio | wireless communications system concerning Embodiment 1 of this invention. 図1に示す端末装置と基地局との間で実行されるランダムアクセス手順を示すシーケンス図The sequence diagram which shows the random access procedure performed between the terminal device shown in FIG. 1, and a base station 図1に示す端末装置から基地局へ送信されるサブフレームの構成を示す図The figure which shows the structure of the sub-frame transmitted to the base station from the terminal device shown in FIG. 図1に示す端末装置が行う周波数ホッピングについての説明図Explanatory drawing about frequency hopping performed by the terminal device shown in FIG. 図1に示す送信部の構成を示す図The figure which shows the structure of the transmission part shown in FIG. 図5に示す送信ブロック生成部が行う送信ブロックの生成方法の第1の例の説明図Explanatory drawing of the 1st example of the transmission block production | generation method which the transmission block production | generation part shown in FIG. 5 performs. 図5に示す送信ブロック生成部が行う送信ブロックの生成方法の第2の例の説明図Explanatory drawing of the 2nd example of the transmission block production | generation method which the transmission block production | generation part shown in FIG. 5 performs. 図1に示す受信部の構成を示す図The figure which shows the structure of the receiving part shown in FIG. 本発明の実施の形態2で用いられるサブフレームの構成を示す図The figure which shows the structure of the sub-frame used in Embodiment 2 of this invention. 本発明の実施の形態2にかかる送信ブロック生成部の構成を示す図The figure which shows the structure of the transmission block production | generation part concerning Embodiment 2 of this invention. 本発明の実施の形態2にかかる受信部の構成を示す図The figure which shows the structure of the receiving part concerning Embodiment 2 of this invention. 本発明の実施の形態2にかかる基地局が端末装置に割り当てるリソースブロックの説明図Explanatory drawing of the resource block which the base station concerning Embodiment 2 of this invention allocates to a terminal device. 処理遅延を短縮したランダムアクセスの処理フローの第1の例を示す図The figure which shows the 1st example of the processing flow of random access which shortened processing delay 処理遅延を短縮したランダムアクセスの処理フローの第2の例を示す図The figure which shows the 2nd example of the processing flow of the random access which shortened the processing delay.
 以下に、本発明の実施の形態にかかる端末装置、基地局および無線通信システムを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a terminal device, a base station, and a wireless communication system according to an embodiment of the present invention will be described in detail based on the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明の実施の形態1にかかる無線通信システム1の構成を示す図である。無線通信システム1は、複数の端末装置10と、基地局20とを有する。端末装置10は、通信機能を備えたIoT機器である。具体的には、端末装置10は、民生用の機器、産業用制御機器、センサ、メータ、自動車などである。基地局20は、複数の端末装置10と通信可能な装置である。端末装置10は、送信部100および受信部110を有している。基地局20は、送信部210および受信部200を有している。端末装置10と基地局20との間では、双方向に情報を伝送することが可能である。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a configuration of a wireless communication system 1 according to the first embodiment of the present invention. The wireless communication system 1 includes a plurality of terminal devices 10 and a base station 20. The terminal device 10 is an IoT device having a communication function. Specifically, the terminal device 10 is a consumer device, an industrial control device, a sensor, a meter, an automobile, or the like. The base station 20 is a device that can communicate with a plurality of terminal devices 10. The terminal device 10 includes a transmission unit 100 and a reception unit 110. The base station 20 includes a transmission unit 210 and a reception unit 200. Information can be transmitted bi-directionally between the terminal device 10 and the base station 20.
 無線通信システム1は、IoT機器を備えるIoTシステムである。IoTシステムを利用したサービスとしては、火災報知器など家の状態を検知する端末装置10を使用したホームセキュリティサービス、インターネットに接続されたAED(Automated External Defibrillator)から送信される情報を用いて、AEDの状態をモニタリングするAEDモニタリングサービス、気象観測サービス、車両および駐車場の状態をモニタリングして、各車両を効率的に駐車場に導くスマートパーキングサービス、撮像機などを使用して、ペットの状態をモニタリングするペットモニタリングサービス、線路に設置された温度計が計測する温度をモニタリングする線路温度モニタリングサービスなどが挙げられる。 The wireless communication system 1 is an IoT system including an IoT device. As a service using the IoT system, a home security service using a terminal device 10 that detects the state of a house such as a fire alarm, or information transmitted from an AED (Automated External Defibrillator) connected to the Internet is used. AED monitoring service that monitors the state of the vehicle, weather observation service, the state of the vehicle and the parking lot, the smart parking service that efficiently guides each vehicle to the parking lot, the imaging machine etc. Examples include a pet monitoring service for monitoring and a line temperature monitoring service for monitoring the temperature measured by a thermometer installed on the line.
 端末装置10と基地局20との間の無線通信は、IoT伝送に特化した無線仕様に従って行われる。IoT伝送に求められる条件としては、端末装置10の長寿命低消費電力化、低コスト化、広カバレッジ化などが挙げられる。特に、センサなどの端末装置10では、電池の交換を数年おきにすることが求められるため、低消費電力化が求められる。IoT伝送に特化した無線仕様は、LPWAN(Low Power Wide Area Network)と呼ばれる。電波免許が不要な周波数帯を使用するLPWANとしては、SIGFOX社が作製した無線仕様であるSIGFOX、非営利団体LoRa AllianceがサポートするLoRaWANなどが挙げられる。電波免許が必要な周波数帯を使用するLPWANとしては、3GPPのカテゴリM1(eMTC:Machine Type Communications)、NB(Narrow Band)-IoTなどが挙げられる。 Wireless communication between the terminal device 10 and the base station 20 is performed according to a wireless specification specialized for IoT transmission. Conditions required for IoT transmission include long life and low power consumption, low cost, and wide coverage of the terminal device 10. In particular, in the terminal device 10 such as a sensor, it is required to replace the battery every several years, and thus low power consumption is required. The wireless specification specialized for IoT transmission is called LPWAN (Low Power Wide Area Network). Examples of LPWANs that use frequency bands that do not require a radio license include SIGFOX, a wireless specification created by SIGFOX, and LoRaWAN supported by the non-profit organization LoRa Alliance. Examples of LPWAN using a frequency band that requires a radio wave license include 3GPP category M1 (eMTC: Machine Type Communications), NB (Narrow Band) -IoT, and the like.
 IoT伝送では、一般的なスマートフォンなどの情報端末が行う通信と比べて、情報ビット数が少なく、情報ビットレートが低速であるという特徴がある。このため、端末装置10の低消費電力化のためには、送信帯域幅の狭帯域化が有効である。信号帯域が狭帯域になるほど、ベースバンドの変調および復調処理のクロック周波数は低くなり、端末装置10の消費電力を低減することができる。また、信号帯域を狭帯域にするほど、1Hz当たりの送信電力密度および受信電力密度を高くすることができるため、電波の到達距離すなわちカバレッジエリアを拡大することができる。 IoT transmission is characterized in that the number of information bits is small and the information bit rate is low compared to communication performed by a general information terminal such as a smartphone. For this reason, in order to reduce the power consumption of the terminal device 10, it is effective to narrow the transmission bandwidth. The narrower the signal band, the lower the baseband modulation and demodulation processing clock frequency, and the power consumption of the terminal device 10 can be reduced. Further, since the transmission power density and the reception power density per 1 Hz can be increased as the signal band is narrowed, the reachable range of radio waves, that is, the coverage area can be expanded.
 したがって、上記で例示したIoT伝送に特化した無線仕様では、100Hz、125kHz,250kHzなどの帯域が用いられている。この場合、端末装置10の消費電力を低減することはできるものの、周波数フラットフェージングを受けるため、受信レベルが低下した際には、復号誤りが生じてしまう。つまり、広帯域信号では、周波数ダイバーシチ効果が得られるのに対して、狭帯域信号では、周波数領域における受信レベルが平均化されず、周波数ダイバーシチ効果が得られない。さらに、IoT端末である端末装置10の消費電力を低減するために1アンテナ構成である場合、空間ダイバーシチ効果も得られないこのため、周波数フラットフェージングを受けやすく、受信レベルが低下した際には、復号誤りが生じる。 Therefore, in the wireless specification specialized for the IoT transmission exemplified above, bands such as 100 Hz, 125 kHz, and 250 kHz are used. In this case, although the power consumption of the terminal device 10 can be reduced, since frequency flat fading is received, a decoding error occurs when the reception level is lowered. That is, the frequency diversity effect can be obtained with a wideband signal, whereas the reception level in the frequency domain is not averaged with a narrowband signal, and the frequency diversity effect cannot be obtained. Furthermore, in the case of a single antenna configuration in order to reduce the power consumption of the terminal device 10 that is an IoT terminal, the space diversity effect is not obtained. A decoding error occurs.
 図2は、図1に示す端末装置10と基地局20との間で実行されるランダムアクセス手順を示すシーケンス図である。ランダムアクセス手順は、接続を確立するために行われる。端末装置10の送信部100は、プリアンブル系列を含む信号を、物理ランダムアクセスチャネルで基地局20に送信する(ステップS101)。ランダムアクセス手順には、衝突を許容する第1のモードと、衝突を回避する第2のモードの2種類がある。第1のモードでは、基地局20が複数の端末装置10から構成される端末グループ毎に複数のプリアンブル系列を割り当てておき、端末装置10は、割り当てられた複数のプリアンブル系列の中から、使用するプリアンブル系列を選択して、選択したプリアンブル系列を含む信号を基地局20に送信する。この場合、複数の端末装置10が同一のプリアンブル系列を使用する可能性があり、衝突が生じることがある。第2のモードでは、基地局20が端末装置10ごとに異なるプリアンブル系列を割り当てておき、端末装置10は、割り当てられたプリアンブル系列を含む信号を基地局20に送信する。この場合、端末装置10が送信するプリアンブル系列は、端末装置10に固有のものとなるため、衝突は生じない。第2のモードは、短時間の制御遅延が要求されるハンドオーバ時に用いられる。 FIG. 2 is a sequence diagram showing a random access procedure executed between the terminal apparatus 10 and the base station 20 shown in FIG. A random access procedure is performed to establish a connection. The transmission unit 100 of the terminal device 10 transmits a signal including a preamble sequence to the base station 20 using a physical random access channel (step S101). There are two types of random access procedures: a first mode that allows collisions and a second mode that avoids collisions. In the first mode, the base station 20 assigns a plurality of preamble sequences to each terminal group composed of the plurality of terminal devices 10, and the terminal device 10 uses the assigned preamble sequences. A preamble sequence is selected, and a signal including the selected preamble sequence is transmitted to the base station 20. In this case, a plurality of terminal devices 10 may use the same preamble sequence, and a collision may occur. In the second mode, the base station 20 assigns a different preamble sequence for each terminal device 10, and the terminal device 10 transmits a signal including the assigned preamble sequence to the base station 20. In this case, since the preamble sequence transmitted by the terminal device 10 is unique to the terminal device 10, no collision occurs. The second mode is used at the time of handover where a short control delay is required.
 64個のプリアンブル系列の中で、第2のモードで使用されるNcf個の系列を除いた(64-Ncf)個の系列が、第1のモードで用いられる。第1のモードに割り当てられたプリアンブル系列は、後述するステップS103の要求メッセージサイズに応じて、さらに2つのグループに分けられる。また、物理ランダムアクセスチャネルには、パワーランピングを適用する。端末装置10は、プリアンブル系列を送信する際の送信電力を決定し、決定した送信電力でプリアンブル系列を含む信号を送信する。 Of the 64 preamble sequences, (64−N cf ) sequences excluding N cf sequences used in the second mode are used in the first mode. The preamble sequence assigned to the first mode is further divided into two groups according to the request message size in step S103 described later. Further, power ramping is applied to the physical random access channel. The terminal device 10 determines transmission power when transmitting the preamble sequence, and transmits a signal including the preamble sequence with the determined transmission power.
 基地局20の受信部200は、プリアンブル系列を含む信号を受信すると、ランダムアクセス応答を物理下りリンク共有チャネルで端末装置10に返す(ステップS102)。ランダムアクセス応答は、プリアンブル系列が検出された時間、周波数リソースを示すRandom Access Radio Network Temporary Identifier(RA-RNTI)を多重する。複数の端末装置10が同一の時間、周波数リソースで同一のプリアンブル系列を送信した場合には、衝突が生じ、複数の端末装置10がランダムアクセス応答を受信することになる。ランダムアクセス応答は、検出されたプリアンブル系列のID(RA-RNTI)、タイムアライメント情報、端末装置10が続くステップS103においてメッセージを送信するために使用するリソースを示す情報、端末装置10の識別子、例えばCell Radio Network Temporary Identifier(C-RNTI)などを含む。 When receiving the signal including the preamble sequence, the receiving unit 200 of the base station 20 returns a random access response to the terminal device 10 through the physical downlink shared channel (step S102). The random access response multiplexes the Random Access Radio Network Temporary Identifier (RA-RNTI) indicating the frequency resource when the preamble sequence is detected. When a plurality of terminal apparatuses 10 transmit the same preamble sequence with the same time and frequency resource, a collision occurs and the plurality of terminal apparatuses 10 receive a random access response. The random access response includes the detected preamble sequence ID (RA-RNTI), time alignment information, information indicating the resource used by the terminal device 10 to transmit a message in the subsequent step S103, an identifier of the terminal device 10, for example, Includes Cell Radio Network Temporary Identifier (C-RNTI).
 端末装置10の受信部110がランダムアクセス応答を受信すると、端末装置10の送信部100は、Layer2(L2)/Layer3(L3)メッセージを基地局20に送信する(ステップS103)。端末装置10は、ランダムアクセス応答によって通知されたリソースを用いて、L2/L3メッセージを送信する。ここで送信されるL2/L3メッセージは、コネクション要求信号、スケジューリング要求信号などである。 When the receiving unit 110 of the terminal device 10 receives the random access response, the transmitting unit 100 of the terminal device 10 transmits a Layer2 (L2) / Layer3 (L3) message to the base station 20 (step S103). The terminal device 10 transmits the L2 / L3 message using the resource notified by the random access response. The L2 / L3 message transmitted here is a connection request signal, a scheduling request signal, or the like.
 基地局20の受信部200がL2/L3メッセージを受信すると、基地局20の送信部210は、コネクション確立のためのセル設定情報などを含む接続セットアップ情報を送信する(ステップS104)。接続セットアップ情報に自身の端末装置識別子が含まれていた端末装置10は、ランダムアクセス処理を完了してコネクションを確立する。自身の端末装置識別子が含まれた接続セットアップ情報を受信できなかった場合、端末装置10は、ランダムアクセスチャネル検出の失敗と判断して、再度、ステップS101からランダムアクセス手順を繰り返す。 When the receiving unit 200 of the base station 20 receives the L2 / L3 message, the transmitting unit 210 of the base station 20 transmits connection setup information including cell setting information for establishing a connection (step S104). The terminal device 10 whose connection setup information includes its own terminal device identifier completes the random access process and establishes a connection. If the connection setup information including its own terminal device identifier cannot be received, the terminal device 10 determines that the random access channel detection has failed and repeats the random access procedure from step S101 again.
 上記のランダムアクセス手順では、基地局20から端末装置10へのダウンリンク伝送では、基地局20からの送信電力を上げることで、周波数フラットフェージングの影響を受けにくくすることができる。しかしながら、端末装置10から基地局20へのアップリンク伝送では、端末装置10の送信電力の制約が厳しいため、送信電力を上げることができず、周波数フラットフェージングの影響を受けてしまい、アップリンク伝送されるプリアンブル系列の検出確率が低下する。このため、本実施の形態では、アップリンク伝送において、周波数ホッピングを用いて、プリアンブル系列の検出確率を改善する。 In the above random access procedure, in downlink transmission from the base station 20 to the terminal device 10, the transmission power from the base station 20 can be increased to make it less susceptible to frequency flat fading. However, in uplink transmission from the terminal device 10 to the base station 20, since the transmission power of the terminal device 10 is severely limited, the transmission power cannot be increased and is affected by frequency flat fading. The probability of detection of the preamble sequence to be reduced is reduced. For this reason, in this Embodiment, the detection probability of a preamble sequence is improved using frequency hopping in uplink transmission.
 図3は、図1に示す端末装置10から基地局20へ送信されるサブフレーム5の構成を示す図である。サブフレーム5は、プリアンブル系列を含む複数のサブブロック5-1,5-2と、複数のサブブロック5-1,5-2のそれぞれに付加されたCP(Cyclic Prefix)とから構成されている。サブブロック5-1に付加されたCPは、プリアンブル系列#1の終端部をコピーしたものである。サブブロック5-2に付加されたCPは、プリアンブル系列#2の終端部をコピーしたものである。本実施の形態では、サブフレーム5に含まれる複数のサブブロック5-1,5-2のそれぞれを異なる周波数帯域のリソースブロックにマッピングして送信する周波数ホッピングを行う。 FIG. 3 is a diagram illustrating a configuration of the subframe 5 transmitted from the terminal device 10 illustrated in FIG. 1 to the base station 20. The subframe 5 is composed of a plurality of subblocks 5-1 and 5-2 including a preamble sequence, and a CP (Cyclic Prefix) added to each of the plurality of subblocks 5-1 and 5-2. . The CP added to the subblock 5-1 is a copy of the end part of the preamble sequence # 1. The CP added to the sub-block 5-2 is a copy of the end part of the preamble sequence # 2. In the present embodiment, frequency hopping is performed in which a plurality of sub-blocks 5-1 and 5-2 included in sub-frame 5 are mapped to resource blocks in different frequency bands and transmitted.
 図4は、図1に示す端末装置10が行う周波数ホッピングについての説明図である。本実施の形態では、互いに周波数帯域が異なる複数のリソースブロックから構成される一組のリソースブロックをシステム情報またはセル固有情報として予め規定しておく。リソースブロックは、1つの端末装置10に割り当てる周波数帯域幅、および時間領域のサブフレーム長のリソースである。図4の例では、リソースブロックRB1およびリソースブロックRB2が一組のリソースブロックを構成している。 FIG. 4 is an explanatory diagram of frequency hopping performed by the terminal device 10 shown in FIG. In the present embodiment, a set of resource blocks composed of a plurality of resource blocks having different frequency bands are defined in advance as system information or cell specific information. The resource block is a resource having a frequency bandwidth allocated to one terminal apparatus 10 and a subframe length in the time domain. In the example of FIG. 4, the resource block RB1 and the resource block RB2 constitute a set of resource blocks.
 無線通信システム1が使用する帯域幅をシステム帯域幅WBS、リソースブロック数NRBとした場合、リソースブロック当たりの帯域幅は、WBS/NRBとなる。2つのリソースブロックに周波数ホッピングする場合、周波数ホッピング間隔は、ΔfFH=WBS/2とする。つまり、周波数ホッピングを行う一組のリソースブロックの間の周波数間隔は、ΔfFH=WBS/2である。 When the bandwidth used by the wireless communication system 1 is a system bandwidth W BS and the number of resource blocks N RB , the bandwidth per resource block is W BS / N RB . When frequency hopping is performed on two resource blocks, the frequency hopping interval is Δf FH = W BS / 2. That is, the frequency interval between a set of resource blocks that perform frequency hopping is Δf FH = W BS / 2.
 図5は、図1に示す送信部100の構成を示す図である。送信部100は、送信ブロック生成部11と、分割部12と、マッピング部13と、IFFT(Inverse Fast Fourier Transform)部14と、CP挿入部15とを有する。 FIG. 5 is a diagram illustrating a configuration of the transmission unit 100 illustrated in FIG. The transmission unit 100 includes a transmission block generation unit 11, a division unit 12, a mapping unit 13, an IFFT (Inverse Fast Fourier Transform) unit 14, and a CP insertion unit 15.
 送信ブロック生成部11は、無線通信システム1で予め定められたプリアンブル系列を含む送信ブロックを生成する。プリアンブル系列としては、巡回シフトを行ったZadoff-chu系列を用いることができる。Zadoff-chu系列は、Constant Amptitude Zero Auto-Correlation(CAZAC)系列に属し、符号系列の振幅は一定であって、位相が異なる系列である。Zadoff-chu系列は、ゼロタイムシフトのときの相関電力が大きく、タイムシフトしたときの事故相関を小さくできる系列である。系列長NのZadoff-chu系列an(i)は、以下の数式(1)で表される。ここで、iは、0以上N-1の整数であり、Nは素数である。 The transmission block generation unit 11 generates a transmission block including a preamble sequence predetermined in the wireless communication system 1. As the preamble sequence, a Zadoff-chu sequence subjected to cyclic shift can be used. The Zadoff-chu sequence belongs to the Constant Amptitude Zero Auto-Correlation (CAZAC) sequence, and the code sequence has a constant amplitude and a phase different from each other. The Zadoff-chu sequence is a sequence in which the correlation power at the time of zero time shift is large and the accident correlation at the time shift is small. The sequence length N Zadoff-chu sequence a n (i) is expressed by the following equation (1). Here, i is an integer of 0 or more and N−1, and N is a prime number.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 数式(1)において、nは、Nと素の関係にあるルートインデックスである。異なるnの値を用いることで、異なるZadoff-chu系列を生成することができる。さらに、Zadoff-chu系列を巡回シフトすることによって、異なる複数の系列を生成することができる。巡回シフトを用いて生成した複数のZadoff-chu系列は、相互相関を相互に小さくすることができるという特徴がある。巡回シフト長ΔCSとすると、同一のルートインデックスの系列に対して、NCS=N/ΔCS個の系列を生成することができる。巡回シフト長ΔCSは、各端末装置10の基地局20までの伝搬距離差に金する伝搬遅延時間の最大値よりも大きい値とする。Zadoff-chu系列an(i)に対して、巡回シフトして生成されたZadoff-chu系列は、以下の数式(2)で表される。 In Equation (1), n is a root index having a prime relationship with N. Different Zadoff-chu sequences can be generated by using different values of n. Furthermore, a plurality of different sequences can be generated by cyclically shifting the Zadoff-chu sequence. A plurality of Zadoff-chu sequences generated by using cyclic shift has a feature that cross-correlation can be reduced mutually. Assuming that the cyclic shift length is Δ CS , N CS = N / Δ CS sequences can be generated for the same route index sequence. Cyclic shift length delta CS is a value larger than the maximum value of the propagation delay time gold propagation distance difference to the base station 20 of each terminal apparatus 10. Against Zadoff-chu sequence a n (i), Zadoff- chu sequence generated by cyclic shift is represented by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 以下の説明中において、チルダが付された文字を示す場合、その文字の後に(チルダ)を記載する場合がある。同様にハットが付された文字を示す場合、その文字の後に(ハット)を記載する場合がある。 In the following explanation, when a character with a tilde is indicated, (tilde) may be written after the character. Similarly, when a character with a hat is shown, (hat) may be written after the character.
 数式(2)において、kは、同一のルートインデックスのZadoff-chu系列から生成される巡回シフト系列のインデックスを表す(k=0,1,…,K-1)。Kは、K≦NCSの関係にある。系列長NのZadoff-chu系列のルートインデックス数をNRIとすると、NZC=NRI×NCS個の直交系列が生成される。 In Equation (2), k represents an index of a cyclic shift sequence generated from a Zadoff-chu sequence having the same root index (k = 0, 1,..., K−1). K has a relationship of K ≦ N CS . If the number of root indexes of a Zadoff-chu sequence having a sequence length N is N RI , N ZC = N RI × N CS orthogonal sequences are generated.
 分割部12は、送信ブロック生成部11が生成した送信ブロックを、複数のサブブロックに分割する。本実施の形態では、分割部12は、送信ブロックを前半および後半の2つのブロックに分割する。 The dividing unit 12 divides the transmission block generated by the transmission block generation unit 11 into a plurality of sub blocks. In the present embodiment, the dividing unit 12 divides the transmission block into two blocks, the first half and the second half.
 マッピング部13は、分割部12が生成した複数のサブブロックのそれぞれを、基地局20によって割り当てられた複数のリソースブロックのそれぞれにマッピングする。ここで、基地局20によって予め決定された複数のリソースブロックは、互いに周波数帯域が異なる。このため、複数のサブブロックのそれぞれは、互いに異なる周波数帯のリソースブロックにマッピングされることになる。LTE(Long Term Evolution)では、リソースブロックの帯域幅は12サブキャリア、つまり180kHzであるが、無線通信システム1の要求条件に応じて、リソースブロックの帯域幅WBS/NRBは最適化することが望ましい。周波数ホッピング間隔は、予めシステム情報またはセル固有情報として規定される。マッピング部13は、マッピング後の周波数領域の信号をIFFT部14に入力する。 The mapping unit 13 maps each of the plurality of sub blocks generated by the dividing unit 12 to each of the plurality of resource blocks allocated by the base station 20. Here, the plurality of resource blocks determined in advance by the base station 20 have different frequency bands. For this reason, each of the plurality of sub-blocks is mapped to resource blocks in different frequency bands. In LTE (Long Term Evolution), the bandwidth of the resource block is 12 subcarriers, that is, 180 kHz, but the bandwidth W BS / N RB of the resource block should be optimized according to the requirements of the wireless communication system 1. Is desirable. The frequency hopping interval is defined in advance as system information or cell specific information. The mapping unit 13 inputs the frequency domain signal after mapping to the IFFT unit 14.
 IFFT部14は、入力される周波数領域の信号を時間領域の信号に変換する。IFFT部14は、変換後の時間領域の信号をCP挿入部15に入力する。CP挿入部15は、入力される時間領域の信号に含まれる複数のサブブロックのそれぞれの先頭にCPを付加する。 The IFFT unit 14 converts an input frequency domain signal into a time domain signal. The IFFT unit 14 inputs the converted time-domain signal to the CP insertion unit 15. The CP insertion unit 15 adds a CP to the head of each of the plurality of sub-blocks included in the input time domain signal.
 送信ブロック生成部11が送信ブロックを生成する方法について、以下に2つの方法を説明する。図6は、図5に示す送信ブロック生成部11が行う送信ブロックの生成方法の第1の例の説明図である。図6に示す第1の例では、送信ブロック生成部11は、系列長NpaのZadoff-chu系列である第1の系列を生成し、生成した第1の系列を送信ブロックとすることができる。第1の系列は、分割部12によって前半と後半の2つのサブブロックに分割されて、それぞれがプリアンブル系列#1,#2となる。マッピング部13は、プリアンブル系列#1,#2のそれぞれを、互いに異なる周波数帯域のリソースブロックにマッピングする。この場合の直交系列数は、NZCとなる。 Two methods for generating a transmission block by the transmission block generation unit 11 will be described below. FIG. 6 is an explanatory diagram of a first example of a transmission block generation method performed by the transmission block generation unit 11 illustrated in FIG. In the first example illustrated in FIG. 6, the transmission block generation unit 11 can generate a first sequence that is a Zadoff-chu sequence having a sequence length Npa , and can use the generated first sequence as a transmission block. . The first sequence is divided into two sub-blocks of the first half and the second half by the dividing unit 12, and becomes preamble sequences # 1 and # 2, respectively. The mapping unit 13 maps each of the preamble sequences # 1 and # 2 to resource blocks in different frequency bands. In this case, the number of orthogonal sequences is N ZC .
 図7は、図5に示す送信ブロック生成部11が行う送信ブロックの生成方法の第2の例の説明図である。図7に示す第2の例では、送信ブロック生成部11は、系列長Npa/2の2種類のZadoff-chu系列である第2の系列および第3の系列を生成し、生成した第2の系列および第3の系列から構成される送信ブロックを生成することができる。送信ブロック生成部11が生成した第2の系列は、プリアンブル系列#1となり、第3の系列は、プリアンブル系列#2となる。この場合の端末装置10当たりの直交系列数は、NZC/2となる。 FIG. 7 is an explanatory diagram of a second example of a transmission block generation method performed by the transmission block generation unit 11 illustrated in FIG. In the second example illustrated in FIG. 7, the transmission block generation unit 11 generates and generates a second sequence and a third sequence that are two types of Zadoff-chu sequences having a sequence length N pa / 2. A transmission block composed of the sequence and the third sequence can be generated. The second sequence generated by the transmission block generation unit 11 is a preamble sequence # 1, and the third sequence is a preamble sequence # 2. In this case, the number of orthogonal sequences per terminal apparatus 10 is N ZC / 2.
 なお、ランダムアクセスチャネルを送信するタイミングは、ダウンリンクの報知チャネルの制御情報を用いて、基地局20から端末装置10に通知される。基地局20の送信部210は、制御情報を用いて、リソースブロック数KRB=WBS/NRB、プリアンブル系列数Kps=NZCまたはNZC/2の中から、使用することができるリソースブロックおよびプリアンブル系列といったリソースを端末装置10に通知することができる。端末装置10は、基地局20が通知したリソースブロックおよびプリアンブル系列の候補の中から、使用するリソースを選択する。プリアンブル系列の選択方法としては、ランダムに選択する方法、端末装置10の識別子に基づいて選択する方法などがある。複数の端末装置10が同一のリソースブロックおよび同一のプリアンブル系列を選択した場合、衝突が生じる。また、送信部100は、プリアンブル系列を送信する際の送信電力を決定する機能を有する。送信部100は、開ループの送信電力制御によって送信電力を決定することができる。 In addition, the timing which transmits a random access channel is notified to the terminal device 10 from the base station 20 using the control information of the broadcast channel of a downlink. The transmission unit 210 of the base station 20 can use the resource from the number of resource blocks K RB = W BS / N RB , the number of preamble sequences K ps = N ZC or N ZC / 2, using the control information. Resources such as blocks and preamble sequences can be notified to the terminal device 10. The terminal device 10 selects a resource to be used from among resource block and preamble sequence candidates notified by the base station 20. As a preamble sequence selection method, there are a method of random selection, a method of selection based on an identifier of the terminal device 10, and the like. When multiple terminal devices 10 select the same resource block and the same preamble sequence, a collision occurs. Moreover, the transmission part 100 has a function which determines the transmission power at the time of transmitting a preamble series. The transmission unit 100 can determine transmission power by open-loop transmission power control.
 また基地局20は、ダウンリンクの報知チャネルの制御情報を用いて、基地局20の送信電力を通知することもできる。受信部110は、受信電力を測定する機能を有し、基地局20から送信電力が通知されると、通知された送信電力と、測定した受信電力とに基づいて、基地局20と端末装置10との間の距離減衰、シャドウイングに起因する平均的な伝搬損失を算出することができる。端末装置10は、算出した伝搬損失を補償して要求される受信信号雑音比を満たすことができるように送信電力を決定することができる。 Also, the base station 20 can notify the transmission power of the base station 20 using the control information of the downlink broadcast channel. The receiving unit 110 has a function of measuring the received power. When the transmission power is notified from the base station 20, the base station 20 and the terminal device 10 are based on the notified transmission power and the measured received power. It is possible to calculate an average propagation loss due to distance attenuation and shadowing. The terminal device 10 can determine the transmission power so that the calculated propagation loss can be compensated to satisfy the required received signal to noise ratio.
 図8は、図1に示す受信部200の構成を示す図である。受信部200は、CP除去部21と、FFT(Fast Fourier Transform)部22と、抽出部23と、巡回シフトZadoff-chu系列生成部24と、相関信号生成部25と、相関値算出部26と、系列検出部27とを有する。 FIG. 8 is a diagram illustrating a configuration of the receiving unit 200 illustrated in FIG. The receiving unit 200 includes a CP removing unit 21, an FFT (Fast Fourier Transform) unit 22, an extracting unit 23, a cyclic shift Zadoff-chu sequence generating unit 24, a correlation signal generating unit 25, and a correlation value calculating unit 26. A series detection unit 27.
 なお、端末装置10が送信するプリアンブル系列の候補と、周波数ホッピングを行うために用いられるリソースブロックの候補とは既知である。ただし、端末装置10と基地局20との間の距離に応じた往復伝搬遅延時間の遅延が生じる。端末装置10に通知されたリソースブロック数をK(チルダ)RB、プリアンブル系列数をK(チルダ)psとする。端末装置10は、K(チルダ)RB個のリソースブロックの中から、プリアンブル系列を送信するときに用いるリソースブロックを選択し、K(チルダ)ps個のプリアンブル系列の中から、送信するプリアンブル系列を選択する。 Note that the preamble sequence candidates transmitted by the terminal device 10 and the resource block candidates used for frequency hopping are already known. However, a round-trip propagation delay time delay corresponding to the distance between the terminal device 10 and the base station 20 occurs. Assume that the number of resource blocks notified to the terminal apparatus 10 is K (tilde) RB , and the number of preamble sequences is K (tilde) ps . The terminal apparatus 10 selects a resource block to be used when transmitting a preamble sequence from among K (tilde) RB resource blocks, and selects a preamble sequence to be transmitted from among K (tilde) ps preamble sequences. select.
 CP除去部21は、受信したプリアンブル系列に付加されたCPを除去する。CP除去部21は、CPを除去した信号をFFT部22に入力する。FFT部22は、CPを除去した後の信号をFFT処理して、時間領域の信号を周波数領域の信号に変換する。FFT部22は、変換後の信号を抽出部23に入力する。抽出部23は、入力された周波数領域の信号からキャリア周波数成分を除去して、複素のベースバンド信号を抽出する。抽出部23は、抽出したベースバンド信号を相関信号生成部25に入力する。 The CP removal unit 21 removes the CP added to the received preamble sequence. The CP removing unit 21 inputs the signal from which the CP has been removed to the FFT unit 22. The FFT unit 22 performs FFT processing on the signal after removing the CP, and converts the time domain signal into a frequency domain signal. The FFT unit 22 inputs the converted signal to the extraction unit 23. The extraction unit 23 removes a carrier frequency component from the input frequency domain signal and extracts a complex baseband signal. The extraction unit 23 inputs the extracted baseband signal to the correlation signal generation unit 25.
 同一のリソースブロックを用いてプリアンブル系列を送信する端末装置10のインデックスをhとする(0≦h≦(H-1))。Hは、同一のリソースブロックを用いてプリアンブル系列を送信する端末装置10の数である。同一のリソースブロックを用いる端末装置10が同一のプリアンブル系列を用いた場合には、衝突が生じる。プリアンブル系列をdh(j)で表すことができ、dh(j)は、a(チルダ)n,k(i)の部分集合である(0≦j≦(N-1))。説明を簡単にするため、1パスチャネルを仮定すると、受信信号の離散値表示は次の数式(3)で表される。 Let h be the index of the terminal apparatus 10 that transmits the preamble sequence using the same resource block (0 ≦ h ≦ (H−1)). H is the number of terminal apparatuses 10 that transmit a preamble sequence using the same resource block. A collision occurs when the terminal apparatus 10 using the same resource block uses the same preamble sequence. The preamble sequence can be represented by d h (j), where d h (j) is a subset of a (tilde) n, k (i) (0 ≦ j ≦ (N−1)). For simplicity of explanation, assuming a one-pass channel, the discrete value display of the received signal is expressed by the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 数式(3)において、jは系列のサンプルインデックスであり、ξh(j)は、インデックスhの端末装置10の距離減衰、シャドウイング、フェージング変動を含むチャネル応答であり、τは、インデックスhの端末装置10から基地局20までの遅延時間であり、w(j)は、平均0の雑音成分を示す。 In Equation (3), j is a sample index of the sequence, ξ h (j) is a channel response including distance attenuation, shadowing, and fading variation of the terminal device 10 at the index h, and τ h is an index h. The delay time from the terminal device 10 to the base station 20, w h (j) indicates an average zero noise component.
 巡回シフトZadoff-chu系列生成部24は、端末装置10が使用するプリアンブル系列の候補と同じZadoff-chu系列を生成する。巡回シフトZadoff-chu系列生成部24は、生成した系列を相関信号生成部25に入力する。 The cyclic shift Zadoff-chu sequence generation unit 24 generates the same Zadoff-chu sequence as the preamble sequence candidate used by the terminal device 10. The cyclic shift Zadoff-chu sequence generation unit 24 inputs the generated sequence to the correlation signal generation unit 25.
 相関信号生成部25は、抽出部23から入力されるベースバンド信号に、Zadoff-chu系列生成部24から入力される系列を乗算して、サブブロック毎の相関信号を生成する。相関信号生成部25は、生成した相関信号とベースバンド信号とを相関値算出部26に入力する。 The correlation signal generation unit 25 multiplies the baseband signal input from the extraction unit 23 by the sequence input from the Zadoff-chu sequence generation unit 24 to generate a correlation signal for each sub-block. The correlation signal generation unit 25 inputs the generated correlation signal and baseband signal to the correlation value calculation unit 26.
 相関値算出部26は、相関信号生成部25から入力される複数の相関信号を加算して、ブロック間の相関値を算出する。相関値算出部26は、算出した相関値とベースバンド信号とを系列検出部27に入力する。 The correlation value calculation unit 26 adds a plurality of correlation signals input from the correlation signal generation unit 25 to calculate a correlation value between blocks. Correlation value calculation unit 26 inputs the calculated correlation value and baseband signal to sequence detection unit 27.
 系列検出部27は、入力された相関値が最大となるタイミングに基づいて、プリアンブル系列の受信タイミングを決定し、ベースバンド信号の中からプリアンブル系列を検出する。系列検出部27は、検出したプリアンブル系列と、受信タイミングとを出力する。 The sequence detection unit 27 determines the reception timing of the preamble sequence based on the timing at which the input correlation value is maximized, and detects the preamble sequence from the baseband signal. The sequence detection unit 27 outputs the detected preamble sequence and the reception timing.
 端末装置10が本実施形態の周波数ホッピングを用いた場合、前半ブロックと後半ブロックとは、周波数相関の低いリソースブロックで送信されるため、各ブロック内は同相加算平均で相関を計算し、2ブロック間の相関値は、電力加算平均して求められる。端末装置10の受信タイミングμ(ハット)は、以下の数式(4)で表される。 When the terminal device 10 uses the frequency hopping of the present embodiment, the first half block and the second half block are transmitted in resource blocks having a low frequency correlation. The correlation value between them is obtained by averaging the power. The reception timing μ (hat) h of the terminal device 10 is expressed by the following formula (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 また、端末装置10が周波数ホッピングを用いない場合、プリアンブル系列は、同一のリソースブロックを用いて送信されるため、サブフレーム全体の相関検出を同相加算で行う。この場合、端末装置10の受信タイミングμ(ハット)は、以下の数式(5)で表される。 Further, when the terminal device 10 does not use frequency hopping, the preamble sequence is transmitted using the same resource block, and thus the correlation detection of the entire subframe is performed by in-phase addition. In this case, the reception timing μ (hat) h of the terminal device 10 is expressed by the following formula (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 以上説明したように、本発明の実施の形態1によれば、端末装置10は、プリアンブル系列を複数のサブブロックに分割して、複数のサブブロックのそれぞれを異なる周波数帯域のリソースブロックを使用して基地局20に送信する。したがって、周波数ダイバーシチ効果を得ることができ、アップリンク伝送されるプリアンブル系列の検出確率を改善することができる。 As described above, according to Embodiment 1 of the present invention, terminal apparatus 10 divides a preamble sequence into a plurality of subblocks, and uses resource blocks of different frequency bands for each of the plurality of subblocks. To the base station 20. Therefore, the frequency diversity effect can be obtained, and the detection probability of the preamble sequence transmitted in the uplink can be improved.
実施の形態2.
 図9は、本発明の実施の形態2で用いられるサブフレーム6の構成を示す図である。サブフレーム6は、プリアンブル系列#1,#2と、制御情報と、CPとを含む。サブフレーム6の前半部6-1および後半部6-2のそれぞれは、異なる周波数帯域のリソースブロックにマッピングされる。CPは、プリアンブル系列#1,#2と、制御情報のそれぞれとに付加される。
Embodiment 2. FIG.
FIG. 9 is a diagram showing a configuration of subframe 6 used in Embodiment 2 of the present invention. Subframe 6 includes preamble sequences # 1 and # 2, control information, and CP. Each of the first half 6-1 and the second half 6-2 of the subframe 6 is mapped to resource blocks in different frequency bands. The CP is added to the preamble sequences # 1 and # 2 and each of the control information.
 図10は、本発明の実施の形態2にかかる送信ブロック生成部11の構成を示す図である。送信ブロック生成部11は、巡回シフトZadoff-chu系列生成部101と、チャネル符号化部102と、変調マッピング部103と、多重化部104とを有する。なお、実施の形態2において送信ブロック生成部11以外の構成は実施の形態1と同様であるため詳細な説明を省略する。 FIG. 10 is a diagram illustrating a configuration of the transmission block generation unit 11 according to the second embodiment of the present invention. The transmission block generation unit 11 includes a cyclic shift Zadoff-chu sequence generation unit 101, a channel encoding unit 102, a modulation mapping unit 103, and a multiplexing unit 104. In the second embodiment, since the configuration other than the transmission block generation unit 11 is the same as that of the first embodiment, detailed description thereof is omitted.
 巡回シフトZadoff-chu系列生成部101は、実施の形態1で説明した2つの方法を使用して、プリアンブル系列を生成することができる。チャネル符号化部102は、制御ビットをチャネル符号化する。チャネル符号化部102は、チャネル符号化後の制御ビットを変調マッピング部103に入力する。チャネル符号化部102は、Reed-Muller符号、Polar符号、畳み込み符号などを用いて、チャネル符号化を行うことができる。変調マッピング部103は、入力された制御ビットをインタリーブした後、制御ビットをマッピングしたシンボルを生成する。変調マッピング部103は、生成したシンボルを多重化部104に入力する。多重化部104は、プリアンブル系列と制御情報とを多重化する。具体的には、多重化部104は、入力されるシンボルを前半部6-1および後半部6-2のそれぞれに多重する。 The cyclic shift Zadoff-chu sequence generation unit 101 can generate a preamble sequence using the two methods described in the first embodiment. The channel coding unit 102 channel codes the control bits. Channel coding section 102 inputs the control bits after channel coding to modulation mapping section 103. The channel coding unit 102 can perform channel coding using a Reed-Muller code, a Polar code, a convolutional code, and the like. The modulation mapping unit 103 interleaves the input control bits, and then generates a symbol in which the control bits are mapped. Modulation mapping section 103 inputs the generated symbol to multiplexing section 104. Multiplexing section 104 multiplexes the preamble sequence and the control information. Specifically, the multiplexing unit 104 multiplexes the input symbols on each of the first half 6-1 and the second half 6-2.
 図13は、伝送遅延を短縮したランダムアクセス手順の第1の例を示す図である。基地局20は、端末装置10がランダムアクセスチャネルを送信するための時間、周波数リソース、およびプリアンブル系列の候補を予め決めておき、時間、周波数、およびプリアンブル系列の候補を下りリンクの報知チャネルでセル内のユーザに通知する。本実施例のランダムアクセスチャネルは、プリアンブルシグネチャおよびメッセージ部から構成される。プリアンブル系列として巡回シフトを用いるZadoff-Chu系列が用いられる。メッセージ部は、ビット数の少ない小サイズの制御情報などで構成される。メッセージ部には、ユーザIDであるUE ID(User Equipment IDentifier)を含む。 FIG. 13 is a diagram illustrating a first example of a random access procedure in which a transmission delay is shortened. The base station 20 determines in advance the time, frequency resource, and preamble sequence candidate for the terminal apparatus 10 to transmit the random access channel, and the time, frequency, and preamble sequence candidate are transmitted by the downlink broadcast channel. Notify users in The random access channel of this embodiment is composed of a preamble signature and a message part. A Zadoff-Chu sequence using a cyclic shift is used as the preamble sequence. The message part is composed of small-size control information with a small number of bits. The message part includes a UE ID (User Equipment IDentifier) which is a user ID.
 メッセージ部の構成として、(1)制御ビットをシンボルマッピングしたシンボルを直接多重する方法、(2)シンボルにスクランブル系列を乗算して多重する方法、(3)シンボルを拡散符で拡散して多重する方法、が考えられる。前述の情報シンボルのスクランブル系列、あるいは拡散系列は、プリアンブル系列と対応づけることにより、プリアンブル系列を検出した時点で、後続する情報シンボル部のスクランブル系列を元に戻し(デスクランブル)、あるいは拡散されたシンボルを逆拡散できる。図13のフローに示すように、複数のユーザが同一の時間、周波数リソースを用いてランダムアクセスチャネルを送信する。この場合、複数のユーザが、異なるプリアンブル系列、すなわち異なる巡回シフトのZadoff-Chu系列を用いてランダムアクセスチャネルを送信する場合には、プリアンブル系列はほぼ直交するため、複数のランダムアクセスチャネルが検出される確率が高い。しかし、複数のユーザが、同一のプリアンブル系列を用いてランダムアクセスチャネルを送信した場合には、ともに不検出、あるいは1ユーザのランダムアクセスチャネルのみが検出される確率が高い。基地局20は、プリアンブル系列およびメッセージ部の制御ビットが正しく復号できた場合には、下りリンクでUE IDとともにAck(Acknowledgement)/Nack(Non-acknowledgement)信号を端末装置10に返す。メッセージ部の制御ビットが正しく復号できたかどうかを判定するために、制御ビットは、巡回冗長検査符号化(CRC:Cyclic Redundancy Check)を行っておく。 As the structure of the message part, (1) a method of directly multiplexing symbols mapped with control bits, (2) a method of multiplying symbols by a scramble sequence, and (3) multiplexing symbols by spreading them with spreading codes. Method. The aforementioned scrambled sequence or spread sequence of information symbols is associated with the preamble sequence, and when the preamble sequence is detected, the subsequent scramble sequence of the information symbol part is restored (descrambled) or spread. Symbols can be despread. As shown in the flow of FIG. 13, a plurality of users transmit random access channels using the same time and frequency resources. In this case, when a plurality of users transmit random access channels using different preamble sequences, that is, Zadoff-Chu sequences with different cyclic shifts, the preamble sequences are almost orthogonal, so that a plurality of random access channels are detected. There is a high probability. However, when a plurality of users transmit random access channels using the same preamble sequence, there is a high probability that both will not be detected or only one user's random access channel will be detected. When the preamble sequence and the control bits of the message part can be correctly decoded, the base station 20 returns an Ack (Acknowledgement) / Nack (Non-acknowledgement) signal together with the UE ID to the terminal device 10 in the downlink. In order to determine whether or not the control bits of the message part have been correctly decoded, the control bits are subjected to cyclic redundancy check coding (CRC).
 図11は、本発明の実施の形態2にかかる受信部200Aの構成を示す図である。受信部200Aは、CP除去部21と、FFT部22と、抽出部23と、巡回シフトZadoff-chu系列生成部24と、相関信号生成部25と、相関値算出部26と、系列検出部27と、復調部28と、誤り訂正復号部29とを有する。 FIG. 11 is a diagram showing a configuration of the receiving unit 200A according to the second embodiment of the present invention. The receiving unit 200A includes a CP removing unit 21, an FFT unit 22, an extracting unit 23, a cyclic shift Zadoff-chu sequence generating unit 24, a correlation signal generating unit 25, a correlation value calculating unit 26, and a sequence detecting unit 27. And a demodulator 28 and an error correction decoder 29.
 以下、実施の形態1と異なる部分について主に説明する。抽出部23は、制御シンボルを抽出する処理に加えて、制御シンボルにスクランブル系列を乗算した場合には、スクランブル系列を解くデスクランブル処理、制御シンボルに拡散処理を施した場合には、逆拡散処理を含む。抽出部23は、相関信号生成部25に加えて、復調部28に、抽出したベースバンド信号を入力する。相関信号生成部25は、相関値算出部26に加えて、復調部28に、生成した相関信号を入力する。 Hereinafter, the differences from the first embodiment will be mainly described. In addition to the process of extracting the control symbol, the extracting unit 23 descrambles the scramble sequence when the control symbol is multiplied by the scramble sequence, and the despread process when the control symbol is spread. including. The extraction unit 23 inputs the extracted baseband signal to the demodulation unit 28 in addition to the correlation signal generation unit 25. The correlation signal generation unit 25 inputs the generated correlation signal to the demodulation unit 28 in addition to the correlation value calculation unit 26.
 復調部28は、入力される相関信号を参照信号として制御シンボルを同期検波し、ベースバンド信号から制御情報を復調する。復調部28は、復調した制御情報を誤り訂正復号部29に入力する。誤り訂正復号部29は、同期検波後の軟判定ビット、つまり対数尤度比、または、硬判定ビットを誤り訂正復号して、制御ビットを再生する。 The demodulator 28 synchronously detects control symbols using the input correlation signal as a reference signal, and demodulates control information from the baseband signal. The demodulator 28 inputs the demodulated control information to the error correction decoder 29. The error correction decoding unit 29 performs error correction decoding on the soft decision bits after synchronous detection, that is, the log likelihood ratio or the hard decision bits, and reproduces the control bits.
 図14は、伝送遅延を短縮したランダムアクセス手順のシーケンスを示す図である。基地局20は、端末装置10がランダムアクセスチャネルを送信するための時間、周波数リソース、およびプリアンブル系列の候補を予め決めておき、時間、周波数、およびプリアンブル系列の候補を下りリンクの報知チャネルでセル内のユーザに通知する。この場合、複数のユーザが、異なるプリアンブル系列、すなわち異なる巡回シフトのZadoff-Chu系列を用いてランダムアクセスチャネルを送信する場合には、プリアンブル系列はほぼ直交するため、複数のランダムアクセスチャネルが検出される確率が高い。しかし、複数ユーザが、同一のプリアンブル系列を用いてランダムアクセスチャネルを送信した場合には、ともに不検出、あるいは1ユーザのランダムアクセスチャネルのみが検出される確率が高い。 FIG. 14 is a diagram showing a sequence of a random access procedure with a reduced transmission delay. The base station 20 determines in advance the time, frequency resource, and preamble sequence candidate for the terminal apparatus 10 to transmit the random access channel, and the time, frequency, and preamble sequence candidate are transmitted by the downlink broadcast channel. Notify users in In this case, when a plurality of users transmit random access channels using different preamble sequences, that is, Zadoff-Chu sequences with different cyclic shifts, the preamble sequences are almost orthogonal, so that a plurality of random access channels are detected. There is a high probability. However, when a plurality of users transmit random access channels using the same preamble sequence, there is a high probability that both will not be detected or only one user's random access channel will be detected.
 基地局20の受信部200は、プリアンブル系列を含む信号を受信すると、ランダムアクセス応答を物理下りリンク共有チャネルで端末装置10に返す。ランダムアクセス応答は、プリアンブル系列が検出された時間、周波数リソースを示すRA-RNTIを多重する。複数の端末装置10が同一の時間、同一の周波数リソースで同一のプリアンブル系列を送信した場合には、衝突が生じ、複数の端末装置10がランダムアクセス応答を受信することになる。基地局20は、LTEのランダムアクセス応答と同様に、後続する上りリンクのデータチャネルを送信する時間および周波数リソースの割り当て情報を端末装置10に通知する。また、基地局20は、端末装置10の識別子、例えばC-RNTIも通知する。 When receiving the signal including the preamble sequence, the receiving unit 200 of the base station 20 returns a random access response to the terminal device 10 through the physical downlink shared channel. The random access response multiplexes RA-RNTI indicating the frequency resource at the time when the preamble sequence is detected. When a plurality of terminal devices 10 transmit the same preamble sequence with the same frequency resource for the same time, a collision occurs and the plurality of terminal devices 10 receive a random access response. Similarly to the LTE random access response, the base station 20 notifies the terminal device 10 of the time and frequency resource allocation information for transmitting the subsequent uplink data channel. The base station 20 also notifies the identifier of the terminal device 10, for example, C-RNTI.
 端末装置10は、自身のID、すなわちUE IDとともに、ユーザ情報を上りリンクの共有チャネルで、基地局20から割り当てられた時間、周波数リソースを用いて送信する。ここで、ユーザ情報には、Layer1/Layer2制御情報、あるいは上位レイヤの制御情報を含んでもよい。図2に示すLTEのRACH手順と異なる点は、RA-RNTIおよびtemporary CRNTIは、複数のユーザが受信する可能性があるため、次のステップで複数のユーザが同時に上りリンクの共有チャネルでユーザ情報を送信する場合がある点である。上りリンクのデータチャネルの衝突を許容することで、処理遅延の短縮を実現することが可能になる。 The terminal device 10 transmits the user information together with its own ID, that is, the UE ID, on the uplink shared channel using the time and frequency resources allocated from the base station 20. Here, the user information may include Layer1 / Layer2 control information or higher layer control information. The difference from the LTE RACH procedure shown in FIG. 2 is that RA-RNTI and temporary CRNTI may be received by multiple users. Therefore, in the next step, multiple users simultaneously receive user information on the uplink shared channel. May be transmitted. By allowing collision of uplink data channels, it is possible to reduce processing delay.
 基地局20は、データチャネルのユーザ情報が正しく復号できた場合には、下りリンクでUE IDとともにAck/Nack信号を端末装置10に返す。ここで、ユーザ情報が正しく復号できたかどうかを判定するために、制御ビットは、巡回情報検査符号化を行っておく。前述のように、複数のユーザが同時に同一の時間、同一の周波数リソースでデータチャネルを送信した場合でも、基地局20からフィードバックされるAck/Nack信号を受信して復号することにより、再送時には、データチャネルの衝突が生じない。すなわち、基地局20がNack信号を送信したUE IDの端末装置10のみがデータチャネルを再送する。 If the user information of the data channel can be correctly decoded, the base station 20 returns an Ack / Nack signal together with the UE ID to the terminal device 10 in the downlink. Here, in order to determine whether the user information has been correctly decoded, the control bits are subjected to cyclic information check coding. As described above, even when a plurality of users transmit data channels with the same frequency resource at the same time at the same time, by receiving and decoding the Ack / Nack signal fed back from the base station 20, at the time of retransmission, There is no data channel collision. That is, only the UE ID terminal device 10 to which the base station 20 has transmitted the Nack signal retransmits the data channel.
 図12は、本発明の実施の形態2にかかる基地局20が端末装置10に割り当てるリソースブロックの説明図である。上記のように、狭帯域ランダムアクセスチャネルに周波数ホッピングを適用することによって、周波数ダイバーシチ効果を得ることができ、ランダムアクセスチャネル全体の受信レベルが低下する確率を大幅に低減することができる。このため、アップリンク伝送されるプリアンブル系列の検出確率を向上させることができる。 FIG. 12 is an explanatory diagram of resource blocks assigned to the terminal device 10 by the base station 20 according to the second embodiment of the present invention. As described above, by applying frequency hopping to the narrowband random access channel, a frequency diversity effect can be obtained, and the probability that the reception level of the entire random access channel is lowered can be greatly reduced. For this reason, the detection probability of the preamble sequence transmitted by uplink can be improved.
 しかしながら、上記の数式(4)に示したように、端末装置10は、周波数相関の低い異なる周波数帯域のリソースブロックに分割して、プリアンブル系列および制御情報を送信するため、前半部6-1および後半部6-2のブロック間の相関値は、同相加算することができず、電力加算を行う。電力加算は、同相加算と比べて雑音成分および干渉成分の抑制効果が小さい。このため、受信信号雑音比が閾値以下である場合、雑音成分および干渉成分の抑制効果を高めるために、端末装置10は、周波数ホッピングを行わない。 However, as shown in the above equation (4), the terminal device 10 divides into resource blocks in different frequency bands with low frequency correlation and transmits the preamble sequence and control information. The correlation value between the blocks in the second half 6-2 cannot be added in phase, and power is added. The power addition is less effective in suppressing noise components and interference components than in-phase addition. For this reason, when the received signal-to-noise ratio is less than or equal to the threshold value, the terminal apparatus 10 does not perform frequency hopping in order to enhance the noise component and interference component suppression effect.
 受信信号雑音比は、ダウンリンクの報知チャネルで通知される基地局20の送信電力および端末装置10が測定する受信電力に基づいて求められる。具体的には、端末装置10の受信部110は、基地局20の送信電力および測定した受信電力に基づいて、基地局20と端末装置10との間の距離減衰、シャドウイングに起因する平均的な伝搬損失を算出する。受信部110は、算出した伝搬損失から、アップリンクの受信信号雑音比を推定することができる。推定した受信信号雑音比が閾値よりも低い場合、送信部100は、周波数ホッピングを行わずに、プリアンブル系列を送信する。 The received signal-to-noise ratio is obtained based on the transmission power of the base station 20 notified through the downlink broadcast channel and the reception power measured by the terminal device 10. Specifically, the receiving unit 110 of the terminal device 10 is based on the transmission power of the base station 20 and the measured received power, and averages due to distance attenuation and shadowing between the base station 20 and the terminal device 10. To calculate the correct propagation loss. The receiving unit 110 can estimate the uplink received signal-to-noise ratio from the calculated propagation loss. When the estimated received signal-to-noise ratio is lower than the threshold, the transmission unit 100 transmits the preamble sequence without performing frequency hopping.
 このように、端末装置10は、推定した受信信号雑音比によって、周波数ホッピングを行うこともあれば、周波数ホッピングを行わないこともある。このため、端末装置10へ割り当てる複数のリソースブロックのそれぞれは、周波数ホッピングを行うときに用いられる第1のリソースブロックと、周波数ホッピングを行わないときに用いられる第2のリソースブロックとに予め分類されている。図12の例では、リソースブロックRB1,RBnは、第1のリソースブロックであり、リソースブロックRBn-1は、第2のリソースブロックである。第1のリソースブロックおよび第2のリソースブロックは、予めシステム情報として決定しておいてもよいし、ダウンリンクの報知チャネルで基地局20から端末装置10に通知されてもよい。 As described above, the terminal apparatus 10 may perform frequency hopping or may not perform frequency hopping depending on the estimated received signal-to-noise ratio. Therefore, each of the plurality of resource blocks to be allocated to the terminal device 10 is classified in advance into a first resource block used when frequency hopping is performed and a second resource block used when frequency hopping is not performed. ing. In the example of FIG. 12, resource blocks RB1 and RBn are first resource blocks, and resource block RBn-1 is a second resource block. The first resource block and the second resource block may be determined as system information in advance, or may be notified from the base station 20 to the terminal device 10 through a downlink broadcast channel.
 基地局20がリソースブロックの種類を通知する場合、基地局20の送信部210は、端末装置10がプリアンブル系列を送信するために用いるリソースブロックが第1のリソースブロックであるか第2のリソースブロックであるかを示す情報を含む制御情報を端末装置10に通知することができる。 When the base station 20 notifies the resource block type, the transmission unit 210 of the base station 20 determines whether the resource block used for the terminal apparatus 10 to transmit the preamble sequence is the first resource block or the second resource block. It is possible to notify the terminal device 10 of control information including information indicating whether or not.
 以上説明したように、本発明の実施の形態2によれば、実施の形態1と同様に、端末装置10は、プリアンブル系列を複数のサブブロックに分割して、複数のサブブロックのそれぞれが異なる周波数帯域のリソースブロックを使用して基地局20に送信される。したがって、周波数ダイバーシチ効果を得ることができ、アップリンク伝送されるプリアンブル系列の検出確率を改善することができる。 As described above, according to Embodiment 2 of the present invention, as in Embodiment 1, terminal apparatus 10 divides a preamble sequence into a plurality of subblocks, and each of the plurality of subblocks is different. It is transmitted to the base station 20 using the resource block of the frequency band. Therefore, the frequency diversity effect can be obtained, and the detection probability of the preamble sequence transmitted in the uplink can be improved.
 また、実施の形態2によれば、制御情報がプリアンブル系列と共に複数のサブブロックに分割されて、複数のサブブロックのそれぞれが異なる周波数帯域のリソースブロックを使用して基地局20に送信される。このため、周波数ダイバーシチ効果によって制御情報の検出確率も改善され、伝送遅延が短縮される。 Also, according to the second embodiment, the control information is divided into a plurality of subblocks together with the preamble sequence, and each of the plurality of subblocks is transmitted to the base station 20 using resource blocks of different frequency bands. For this reason, the detection probability of control information is also improved by the frequency diversity effect, and the transmission delay is shortened.
 また、実施の形態2によれば、受信信号雑音比が閾値以下である場合には、周波数ホッピングを行わない。このため、雑音成分および干渉成分の抑制効果を高めることが可能になる。 Also, according to the second embodiment, frequency hopping is not performed when the received signal-to-noise ratio is less than or equal to the threshold value. For this reason, it becomes possible to improve the suppression effect of a noise component and an interference component.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 無線通信システム、5,6 サブフレーム、5-1,5-2 サブブロック、6-1 前半部、6-2 後半部、10 端末装置、11 送信ブロック生成部、12 分割部、13 マッピング部、14 IFFT部、15 CP挿入部、20 基地局、21 CP除去部、22 FFT部、23 抽出部、24,101 巡回シフトZadoff-chu系列生成部、25 相関信号生成部、26 相関値算出部、27 系列検出部、28 復調部、29 誤り訂正復号部、100,210 送信部、102 チャネル符号化部、103 変調マッピング部、104 多重化部、110,200 受信部。 1 wireless communication system, 5, 6 subframe, 5-1, 5-2 subblock, 6-1 first half, 6-2 second half, 10 terminal device, 11 transmission block generation unit, 12 division unit, 13 mapping unit , 14 IFFT unit, 15 CP insertion unit, 20 base station, 21 CP removal unit, 22 FFT unit, 23 extraction unit, 24, 101 cyclic shift Zadoff-chu sequence generation unit, 25 correlation signal generation unit, 26 correlation value calculation unit 27 sequence detection unit, 28 demodulation unit, 29 error correction decoding unit, 100, 210 transmission unit, 102 channel coding unit, 103 modulation mapping unit, 104 multiplexing unit, 110, 200 reception unit.

Claims (14)

  1.  プリアンブル系列を複数のサブブロックに分割する分割部と、
     複数の前記サブブロックのそれぞれを、互いに異なる周波数帯域の複数のリソースブロックのそれぞれに割り当てるマッピング部と、
     を有し、
     割り当てられた前記リソースブロックを用いて前記サブブロックを前記基地局に送信する送信部を備えることを特徴とする端末装置。
    A dividing unit for dividing the preamble sequence into a plurality of sub-blocks;
    A mapping unit that allocates each of the plurality of sub-blocks to each of a plurality of resource blocks in different frequency bands;
    Have
    A terminal apparatus comprising: a transmission unit that transmits the sub-block to the base station using the allocated resource block.
  2.  前記送信部は、前記基地局から割り当てられた前記プリアンブル系列に制御情報を付加して送信ブロックを生成する送信ブロック生成部、
     をさらに有し、
     前記分割部は、前記送信ブロック生成部が生成した前記送信ブロックを複数の前記サブブロックに分割することを特徴とする請求項1に記載の端末装置。
    The transmission unit generates a transmission block by adding control information to the preamble sequence allocated from the base station,
    Further comprising
    The terminal device according to claim 1, wherein the division unit divides the transmission block generated by the transmission block generation unit into a plurality of subblocks.
  3.  前記プリアンブル系列は、Zadoff-chu系列を巡回シフトして生成された系列であることを特徴とする請求項1または2に記載の端末装置。 The terminal apparatus according to claim 1 or 2, wherein the preamble sequence is a sequence generated by cyclically shifting a Zadoff-chu sequence.
  4.  受信電力を測定する受信部、
     をさらに備え、
     前記送信部は、前記基地局の送信電力および前記受信部が測定した前記受信電力に基づいて計算される伝搬損失が、要求される受信信号雑音比を満たすように送信電力を決定することを特徴とする請求項1から3のいずれか1項に記載の端末装置。
    A receiver for measuring the received power,
    Further comprising
    The transmission unit determines transmission power so that a propagation loss calculated based on the transmission power of the base station and the reception power measured by the reception unit satisfies a required reception signal noise ratio. The terminal device according to any one of claims 1 to 3.
  5.  前記受信部は、前記基地局から通知された前記基地局の送信電力と、測定した前記受信電力とに基づいて、前記基地局と前記端末装置との間の伝搬損失を算出し、算出した前記伝搬損失に基づいて、前記基地局における受信信号雑音比を推定し、
     前記分割部は、推定された前記受信信号雑音比が予め定められた閾値よりも低い場合、前記プリアンブル系列を複数の前記サブブロックに分割しないことを特徴とする請求項4に記載の端末装置。
    The receiving unit calculates a propagation loss between the base station and the terminal device based on the transmission power of the base station notified from the base station and the measured received power, and the calculated Based on the propagation loss, estimate the received signal to noise ratio at the base station,
    The terminal apparatus according to claim 4, wherein the division unit does not divide the preamble sequence into the plurality of sub-blocks when the estimated received signal-to-noise ratio is lower than a predetermined threshold.
  6.  請求項1から5のいずれか1項に記載の端末装置が送信した信号を受信する基地局であって、
     受信した信号のキャリア周波数成分を除去して、ベースバンド信号を抽出する抽出部と、
     前記ベースバンド信号に前記プリアンブル系列を乗算してサブブロック毎の相関信号を生成する相関信号生成部と、
     複数の前記相関信号を加算して、ブロックの相関値を検出する相関値算出部と、
     前記ブロックの相関値が最大となるタイミングに基づいて、前記プリアンブル系列の受信タイミングを決定し、前記プリアンブル系列を検出する系列検出部と、
     を有する受信部を備えることを特徴とする基地局。
    A base station that receives a signal transmitted by the terminal device according to any one of claims 1 to 5,
    An extraction unit that removes a carrier frequency component of the received signal and extracts a baseband signal;
    A correlation signal generation unit that generates a correlation signal for each sub-block by multiplying the baseband signal by the preamble sequence;
    A correlation value calculation unit for adding a plurality of correlation signals to detect a correlation value of a block;
    A sequence detection unit that determines reception timing of the preamble sequence based on the timing at which the correlation value of the block is maximized, and detects the preamble sequence;
    A base station comprising: a receiving unit having:
  7.  請求項2に記載の端末装置が送信した信号を受信する基地局であって、
     受信した信号のキャリア周波数成分を除去して、ベースバンド信号を抽出する抽出部と、
     前記ベースバンド信号に前記プリアンブル系列を乗算してサブブロック毎の相関信号を生成する相関信号生成部と、
     複数の前記相関信号を加算して、ブロックの相関値を検出する相関値算出部と、
     前記ブロックの相関値が最大となるタイミングに基づいて、前記プリアンブル系列の受信タイミングを決定し、前記プリアンブル系列を検出する系列検出部と、
     検出した前記プリアンブル系列の前記相関信号を参照信号として、前記制御情報を復調する復調部と、
     を有する受信部を備えることを特徴とする基地局。
    A base station that receives a signal transmitted by the terminal device according to claim 2,
    An extraction unit that removes a carrier frequency component of the received signal and extracts a baseband signal;
    A correlation signal generation unit that generates a correlation signal for each sub-block by multiplying the baseband signal by the preamble sequence;
    A correlation value calculation unit for adding a plurality of correlation signals to detect a correlation value of a block;
    A sequence detection unit that determines reception timing of the preamble sequence based on the timing at which the correlation value of the block is maximized, and detects the preamble sequence;
    A demodulator that demodulates the control information using the correlation signal of the detected preamble sequence as a reference signal;
    A base station comprising: a receiving unit having:
  8.  前記プリアンブル系列は、前記端末装置毎に固有の系列であって、
     前記プリアンブル系列と、当該プリアンブル系列を送信するために用いられた一組の前記リソースブロックとに基づいて、前記端末装置を識別することを特徴とする請求項6または7に記載の基地局。
    The preamble sequence is a sequence unique to each terminal device,
    The base station according to claim 6 or 7, wherein the terminal device is identified based on the preamble sequence and a set of the resource blocks used for transmitting the preamble sequence.
  9.  前記プリアンブル系列は、複数の前記端末装置から構成される端末グループ毎に固有の系列であって、
     前記プリアンブル系列と、当該プリアンブル系列を送信するために用いられた一組の前記リソースブロックとに基づいて、前記端末グループを識別することを特徴とする請求項6または7に記載の基地局。
    The preamble sequence is a sequence unique to each terminal group composed of a plurality of the terminal devices,
    The base station according to claim 6 or 7, wherein the terminal group is identified based on the preamble sequence and a set of the resource blocks used for transmitting the preamble sequence.
  10.  前記プリアンブル系列と、前記端末装置が前記プリアンブル系列を送信するために用いる一組の前記リソースブロックとを示す制御情報を前記端末装置に通知する送信部、
     をさらに備えることを特徴とする請求項6から9のいずれか1項に記載の基地局。
    A transmission unit for notifying the terminal device of control information indicating the preamble sequence and a set of the resource blocks used by the terminal device to transmit the preamble sequence;
    The base station according to claim 6, further comprising:
  11.  前記端末装置へ割り当てる複数の前記リソースブロックのそれぞれは、複数の前記サブブロックのそれぞれを互いに異なる周波数帯域の複数の前記リソースブロックのそれぞれに割り当てる周波数ホッピングを行うときに用いられる第1のリソースブロック、または前記周波数ホッピングを行わないときに用いられる第2のリソースブロックに分類されていることを特徴とする請求項10に記載の基地局。 Each of the plurality of resource blocks to be allocated to the terminal device is a first resource block used when performing frequency hopping to allocate each of the plurality of sub-blocks to each of the plurality of resource blocks in different frequency bands, The base station according to claim 10, wherein the base station is classified into a second resource block used when the frequency hopping is not performed.
  12.  前記送信部は、前記端末装置が前記プリアンブル系列を送信するために用いるリソースブロックが前記第1のリソースブロックであるか前記第2のリソースブロックであるかを示す情報を含む前記制御情報を前記端末装置に通知することを特徴とする請求項11に記載の基地局。 The transmission unit includes the control information including information indicating whether a resource block used by the terminal device to transmit the preamble sequence is the first resource block or the second resource block. The base station according to claim 11, wherein the base station is notified to the apparatus.
  13.  請求項1から5のいずれか1項に記載の端末装置と、
     請求項6から12のいずれか1項に記載の基地局と、
     を備えることを特徴とする無線通信システム。
    The terminal device according to any one of claims 1 to 5,
    A base station according to any one of claims 6 to 12,
    A wireless communication system comprising:
  14.  基地局と端末装置との間で行われる無線通信方法であって、
     前記端末装置が、プリアンブル系列を複数のサブブロックに分割するステップと、
     前記端末装置が、複数の前記サブブロックのそれぞれを、互いに異なる周波数帯域の複数のリソースブロックのそれぞれに割り当てるステップと、
     前記端末装置が、割り当てられた前記リソースブロックを用いて、前記サブブロックを前記基地局に送信するステップと、
     を含むことを特徴とする無線通信方法。
    A wireless communication method performed between a base station and a terminal device,
    The terminal device divides a preamble sequence into a plurality of sub-blocks;
    The terminal device assigning each of the plurality of sub-blocks to each of a plurality of resource blocks in different frequency bands;
    The terminal device transmits the sub-block to the base station using the allocated resource block;
    A wireless communication method comprising:
PCT/JP2018/022272 2018-06-11 2018-06-11 Terminal device, base station, wireless communication system and wireless communication method WO2019239467A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/022272 WO2019239467A1 (en) 2018-06-11 2018-06-11 Terminal device, base station, wireless communication system and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/022272 WO2019239467A1 (en) 2018-06-11 2018-06-11 Terminal device, base station, wireless communication system and wireless communication method

Publications (1)

Publication Number Publication Date
WO2019239467A1 true WO2019239467A1 (en) 2019-12-19

Family

ID=68842626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022272 WO2019239467A1 (en) 2018-06-11 2018-06-11 Terminal device, base station, wireless communication system and wireless communication method

Country Status (1)

Country Link
WO (1) WO2019239467A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113810061A (en) * 2020-06-17 2021-12-17 华为技术有限公司 Polar code encoding method, Polar code decoding method and device thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102816A2 (en) * 2003-05-12 2004-11-25 Qualcomm Incorporated Fast frequency hopping with a code division multiplexed pilot in an ofdma system
WO2011005536A1 (en) * 2009-06-22 2011-01-13 Qualcomm Incorporated Transmission of reference signal on non-contiguous clusters of resources
US20170223743A1 (en) * 2016-01-29 2017-08-03 Telefonaktiebolaget Lm Ericsson (Publ) Frequency Hopping for Random Access

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102816A2 (en) * 2003-05-12 2004-11-25 Qualcomm Incorporated Fast frequency hopping with a code division multiplexed pilot in an ofdma system
WO2011005536A1 (en) * 2009-06-22 2011-01-13 Qualcomm Incorporated Transmission of reference signal on non-contiguous clusters of resources
US20170223743A1 (en) * 2016-01-29 2017-08-03 Telefonaktiebolaget Lm Ericsson (Publ) Frequency Hopping for Random Access

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Remaining issues on NPRACH range enhancement", 3GPP TSG RAN WG1 MEETING #93 RL-1806594, 12 May 2018 (2018-05-12), XP051462634 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113810061A (en) * 2020-06-17 2021-12-17 华为技术有限公司 Polar code encoding method, Polar code decoding method and device thereof

Similar Documents

Publication Publication Date Title
RU2754433C2 (en) Method and device for transmitting
EP3213438B1 (en) Methods and apparatus for repetition design
KR101824902B1 (en) Application of sequence hopping and orthogonal covering codes to uplink reference signals
US20220191080A1 (en) Wireless communications device, infrastructure equipment and methods
JP5972848B2 (en) Signaling message transmission in wireless communication networks
JP6856736B2 (en) Communication equipment, communication methods, and integrated circuits
KR100990589B1 (en) Four way handshake for robust channel estimation and rate prediction
KR101516100B1 (en) Radio communication device, radio communication method and integrated circuit
EP2690810B1 (en) Radio communication device and response signal spreading method
US20090323602A1 (en) Efficient bandwith request for broadband wireless networks
JP7224506B2 (en) Communication device, communication method and integrated circuit
WO2017077694A1 (en) Terminal and transmission method
US11539563B2 (en) Method, network node and user equipment for preamble sequence transmission and reception to control network traffic
WO2016088719A1 (en) Method for reducing uplink interference, and base station
KR20130049780A (en) Employing reference signals in communications
US20100272201A1 (en) Wireless communication base station device, wireless communication mobile station device, and propagation path estimation method
EP3264647B1 (en) Terminal apparatus, base station apparatus, and communication method
CN113557781A (en) Method and device for S-SSB transmission
US20140029656A1 (en) Multiple receivers in an ofdm/ofdma communication system
US11985612B2 (en) Method and apparatus for transmitting and receiving signal including cell information in communication system
US11785628B2 (en) Device and method for associating resource information with channel metric information in wireless networks
EP3264646A1 (en) Terminal device, base-station device, and communication method
WO2013113276A1 (en) Radio network channel allocation method, device and system
WO2019239467A1 (en) Terminal device, base station, wireless communication system and wireless communication method
US20210184904A1 (en) Base station, user equipment, control circuit, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP