WO2019238023A1 - Neoantigen vaccines and uses thereof - Google Patents

Neoantigen vaccines and uses thereof Download PDF

Info

Publication number
WO2019238023A1
WO2019238023A1 PCT/CN2019/090633 CN2019090633W WO2019238023A1 WO 2019238023 A1 WO2019238023 A1 WO 2019238023A1 CN 2019090633 W CN2019090633 W CN 2019090633W WO 2019238023 A1 WO2019238023 A1 WO 2019238023A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
modified
cells
composition
fold
Prior art date
Application number
PCT/CN2019/090633
Other languages
French (fr)
Inventor
Weiyue GU
Original Assignee
Chineo Medical Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chineo Medical Technology Co., Ltd. filed Critical Chineo Medical Technology Co., Ltd.
Publication of WO2019238023A1 publication Critical patent/WO2019238023A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K40/00Cellular immunotherapy
    • A61K40/10Cellular immunotherapy characterised by the cell type used
    • A61K40/11T-cells, e.g. tumour infiltrating lymphocytes [TIL] or regulatory T [Treg] cells; Lymphokine-activated killer [LAK] cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K40/00Cellular immunotherapy
    • A61K40/10Cellular immunotherapy characterised by the cell type used
    • A61K40/13B-cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K40/00Cellular immunotherapy
    • A61K40/10Cellular immunotherapy characterised by the cell type used
    • A61K40/19Dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K40/00Cellular immunotherapy
    • A61K40/20Cellular immunotherapy characterised by the effect or the function of the cells
    • A61K40/24Antigen-presenting cells [APC]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K40/00Cellular immunotherapy
    • A61K40/40Cellular immunotherapy characterised by antigens that are targeted or presented by cells of the immune system
    • A61K40/41Vertebrate antigens
    • A61K40/42Cancer antigens
    • A61K40/4201Neoantigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0635B lymphocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0639Dendritic cells, e.g. Langherhans cells in the epidermis

Definitions

  • Immunotherapy can involve modifying a patient’s own immune cells to redirect cellular cytotoxicity to cells of interest, for example tumor cells.
  • One mechanism can involve T-cell recognition of epitopes that are displayed on the surface of tumor cells.
  • Immunotherapies that boost the ability of T cells to recognize and destroy tumor cells can enhance therapeutic efficacy.
  • compositions and methods of the present disclosure address this need, and provide additional advantages as well.
  • the various aspects of the disclosure provide amodified antigen-presenting cell (APC) comprising a neoantigen.
  • An aspect of the present disclosure provides a modified antigen-presenting cell (APC) comprising a neoantigen.
  • the APC may be a B cell.
  • the APC may be a dendritic cell.
  • the neoantigen may comprise a peptide fragment of a protein encoded by a mutated gene, wherein the gene is selected from ABL1, ACOl 1997, ACVR2A, AFP, AKT1, ALK, ALPPL2, ANAPC1, APC, ARID1A, AR, AR-v7, ASCL2, ⁇ 2 ⁇ , BRAF, BTK, C15ORF40, CDH1, CLDN6, CNOT1, CT45A5, CTAG1B, DCT, DKK4, EEF1B2, EEF1DP3, EGFR, EIF2B3, env, EPHB2, ERBB3, ESR1, ESRP1, FAM11 IB, FGFR3, FRG1B, GAGE1, GAGE 10, GATA3, GBP3, HER2, IDH1, JAK1, KIT, KRAS, LMAN1, MABEB 16, MAGEA1, MAGEA10, MAGEA4, MAGEA8, MAGEB 17, MAGEB4, MAGEC1, MEK, MLANA, M
  • the neoantigen may comprise a peptide fragment of a protein encoded by a mutated gene, wherein the gene is selected from JAK2, KRAS, BRAF, TP53, PIK3CA, EGFR, IDH1, NRAS, CTNNB1, NPM1, CALR, FGFR3, CDKN2A, KIT, MYD88, APC, HRAS, MED12, DNMT3A, GNAS, IDH2, KCNJ5, PTEN, NOTCH1, SF3B1, FLT3, ASXL1, SRSF2, FOXL2, PTPN11, GNAQ, RET, HLA-A, MPL, IKZF1, KMT2C, TET2, PDGFRA, FBXW7, H3F3A, ALK, CEBPA, ESR1, AKT1, RUNX1, GNA11, VHL, WT1, U2AF1, ABL1, ERBB2, DICER1, NOTCH4, EZH2, HNF1A
  • the neoantigen may be selected based on a genetic profile of a tumor sample from a subject. In some embodiments, the neoantigen may be selected based on a somatic mutation profile of a tumor sample from an individual.
  • the present disclosure may provide a composition comprising: a modified APC and a T cell capable of specifically binding the neoantigen of the modified APC.
  • the T cell may be a T cell having contacted with the modified APC.
  • the T cell may be a modified T cell that comprises a switch molecule, wherein the switch molecule comprises: an extracellular domain (ECD) of a protein that, in an unmodified T cell, elicits an immune cell inactivation signal upon binding to a ligand of the protein, wherein the ECD is fused to an intracellular domain (ICD) of a co-stimulatory molecule that mediates an immune cell activation signal, wherein binding of the switch molecule to the ligand yields the immune cell activation signal in the modified T cell instead of the immune cell inactivation signal.
  • ECD extracellular domain
  • ICD intracellular domain
  • the protein that elicits an immune cell inactivation signal upon binding to the ligand of the protein may be a signaling receptor.
  • the protein may elicit an immune cell inactivation signal upon binding to the ligand of the protein is selected from the group consisting of: a signaling receptor, a checkpoint receptor, a cytokine receptor, a chemokine receptor, a growth factor receptor, and a hormone receptor.
  • the protein that elicits an immune cell inactivation may be selected from the group consisting of: transforming growth factor-beta receptor (TGF-beta-R) , programmed cell death 1 (PD-1) , cytotoxic T-lymphocyte associated protein 4 (CTLA-4) , B and T lymphocyte attenuator (BTLA) , a killer immunoglobulin-like receptor (KIR) , indoleamine 2, 3-dioxygenase (IDO) , lymphocyte activation gene-3 (LAG3) , T cell immunoglobulin mucin 3 (TIM-3) , and TIGIT.
  • TGF-beta-R transforming growth factor-beta receptor
  • PD-1 programmed cell death 1
  • CTLA-4 cytotoxic T-lymphocyte associated protein 4
  • B and T lymphocyte attenuator (BTLA) B and T lymphocyte attenuator
  • KIR killer immunoglobulin-like receptor
  • IDO indoleamine 2, 3-dioxygen
  • the co-stimulatory molecule may be selected from the group consisting of: interleukin-2 receptor (IL-2R) , interleukin-12 receptor (IL-12R) , B7-H3, CD2, CD3, CD4, CD7, CD8, CD27, CD28, CD30, CD40, 4-1BB/CD137, ICOS, lymphocyte function-associated antigen-1 (LFA-1) , LIGHT, NKG2C, OX40, and PD-1.
  • IL-2R interleukin-2 receptor
  • IL-12R interleukin-12 receptor
  • B7-H3, CD2, CD3, CD4, CD7, CD8, CD27, CD28, CD30, CD40, 4-1BB/CD137, ICOS lymphocyte function-associated antigen-1 (LFA-1) , LIGHT, NKG2C, OX40, and PD-1.
  • the immune cell activation signal may be mediated by an activation factor.
  • the activation factor is a soluble cytokine, a soluble chemokine, or a growth factor.
  • the activation factor may be a soluble cytokine, and wherein the soluble cytokine is IL-1, IL-2, IL-6, IL-7, IL-8, IL-10, IL-12, IL-15, IL-21, TNF, TGF, IFN, or any functional fragment or variant thereof.
  • the immune cell activation signal may comprise a clonal expansion of the modified T cell; cytokine release by the modified T cell; cytotoxicity of the modified T cell; proliferation of the modified T cell; differentiation, dedifferentiation or transdifferentiation of the modified T cell; movement and/or trafficking of the modified T cell; exhaustion and/or reactivation of the modified T cell; and release of other intercellular molecules, metabolites, chemical compounds, or combinations thereof by the modified T cell.
  • the modified T cell may exhibit enhanced neoantigen binding as compared to an unmodified T cell.
  • the modified T cell may exhibit increased cytotoxicity against a target cell as compared to an unmodified T cell when the switch molecule binds to the ligand and the modified T cell binds to the neoantigen present on the target cell.
  • the modified T cell may exhibit increased secretion of a cytokine as compared to an unmodified T cell, when the switch molecule binds the ligand and the modified T cell binds to the neoantigen present on a target cell.
  • the cytokine may be IFN-gamma or IL-2.
  • the modified T cell may comprise a T cell receptor (TCR) complex capable of specifically binding to the neoantigen.
  • TCR T cell receptor
  • the TCR complex may be an endogenous TCR complex.
  • TCR complex may be an exogenous TCR complex.
  • the T cell may exhibit enhanced proliferation in a subject administered the composition and expressing the neoantigen, compared to a composition lacking the modified APC.
  • the T cell may exhibit at least a 2-fold increase in proliferation compared to a composition lacking the modified APC. In some embodiments, the T cell may exhibit at least a 10-fold increase in proliferation compared to a composition lacking the modified APC.
  • the amount of the modified APC may remain about the same over time in a subject administered the composition.
  • the present disclosure provides a vaccine comprising a modified APC or a composition disclosed herein.
  • the present disclosure provides a method of treating a disorder in a subject expressing the neoantigen, the method comprising administering a modified APC or a composition disclosed herein.
  • the present disclosure provides a method for immune cell enrichment comprising administering to a subject expressing the neoantigen a composition or a vaccine disclosed herein.
  • the present disclosure provides a method of treating a disorder in a subject in need thereof, the method comprising administering to the subject a modified APC disclosed herein and a T cell capable of specifically binding the neoantigen of the modified APC, wherein the modified APC and the T cell are administered concurrently or separately to the subject.
  • the modified APC may be administered prior to the modified T cell.
  • the T cell may be administered prior to the modified APC.
  • the modified APC and the T cell may be administered concurrently to the subject.
  • the T cell may be a T cell having contacted with the modified APC.
  • the T cell may be a modified T cell comprising a switch molecule, wherein the switch molecule comprises: an extracellular domain (ECD) of a protein that, in an unmodified T cell, elicits an immune cell inactivation signal upon binding to a ligand of the protein, wherein the ECD is fused to an intracellular domain (ICD) of a co-stimulatory molecule that mediates an immune cell activation signal, wherein binding of the switch molecule to the ligand of the protein yields the immune cell activation signal in the modified T cell instead of the immune cell inactivation signal.
  • ECD extracellular domain
  • ICD intracellular domain
  • the protein that elicits the immune cell inactivation signal may be a signaling receptor.
  • the protein that elicits the immune cell inactivation signal may be selected from the group consisting of: a signaling receptor, a checkpoint receptor, a cytokine receptor, a chemokine receptor, a growth factor receptor, and a hormone receptor.
  • the protein that elicits the immune cell inactivation signal may be selected from the group consisting of: transforming growth factor-beta receptor (TGF-beta-R) , programmed cell death 1 (PD-1) , cytotoxic T-lymphocyte associated protein 4 (CTLA-4) , B and T lymphocyte attenuator (BTLA) , a killer immunoglobulin-like receptor (KIR) , indoleamine 2, 3-dioxygenase (IDO) , lymphocyte activation gene-3 (LAG3) , T cell immunoglobulin mucin 3 (TIM-3) , and TIGIT.
  • TGF-beta-R transforming growth factor-beta receptor
  • PD-1 programmed cell death 1
  • CTLA-4 cytotoxic T-lymphocyte associated protein 4
  • B and T lymphocyte attenuator (BTLA) B and T lymphocyte attenuator
  • KIR killer immunoglobulin-like receptor
  • IDO indoleamine 2, 3-dioxy
  • the co-stimulatory molecule may be selected from the group consisting of: interleukin-2 receptor (IL-2R) , interleukin-12 receptor (IL-12R) , B7-H3, CD2, CD3, CD4, CD7, CD8, CD27, CD28, CD30, CD40, 4-1BB/CD137, ICOS, lymphocyte function-associated antigen-1 (LFA-1) , LIGHT, NKG2C, OX40, and PD-1.
  • IL-2R interleukin-2 receptor
  • IL-12R interleukin-12 receptor
  • B7-H3, CD2, CD3, CD4, CD7, CD8, CD27, CD28, CD30, CD40, 4-1BB/CD137, ICOS lymphocyte function-associated antigen-1 (LFA-1) , LIGHT, NKG2C, OX40, and PD-1.
  • the immune cell activation signal may be mediated by an activation factor.
  • the activation factor may be a soluble cytokine, a soluble chemokine, or a growth factor.
  • the activation factor may be a soluble cytokine, and wherein the soluble cytokine is IL-1, IL-2, IL-6, IL-7, IL-8, IL-10, IL-12, IL-15, IL-21, TNF, TGF, IFN, or any functional fragment or variant thereof.
  • the immune cell activation signal may comprise a clonal expansion of the modified T cell; cytokine release by the modified T cell; cytotoxicity of the modified T cell; proliferation of the modified T cell; differentiation, dedifferentiation or transdifferentiation of the modified T cell; movement and/or trafficking of the modified T cell; exhaustion and/or reactivation of the modified T cell; and release of other intercellular molecules, metabolites, chemical compounds, or combinations thereof by the modified T cell.
  • the modified T cell upon binding of the switch molecule of the modified T cell to the ligand of the protein, may exhibit enhanced neoantigen binding as compared to an unmodified T cell.
  • the modified T cell may exhibit increased cytotoxicity against a target cell as compared to an unmodified T cell, when the switch molecule binds to the ligand and the modified T cell binds to the neoantigen present on the target cell.
  • the modified T cell may exhibit increased secretion of a cytokine as compared to an unmodified T cell, when the switch molecule binds the ligand and the modified T cell binds to the neoantigen present on a target cell.
  • the cytokine may be IFN-gamma or IL-2.
  • the modified T cell may comprise a T cell receptor (TCR) complex capable of specifically binding to the neoantigen.
  • TCR T cell receptor
  • the TCR complex may be an endogenous TCR complex.
  • the TCR complex may be an exogenous TCR complex.
  • the modified T cell may exhibit enhanced proliferation in the subject relative to a subject administered the modified T cell but not the modified APC.
  • the modified T cell may exhibit at least a 2-fold increase in proliferation.
  • the modified T cell may exhibit at least a 10-fold increase in proliferation.
  • an amount of the modified APC may remain about the same over time in a subject administered the composition.
  • the subject may be a human.
  • the disorder may be a cancer.
  • modified antigen-presenting cell includes a plurality of antigen-presenting cells.
  • the term “about” or “approximately” means within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, i.e., the limitations of the measurement system. For example, “about” can mean within 1 or more than 1 standard deviation, per the practice in the art. Alternatively, “about” can mean a range of up to 20%, up to 10%, up to 5%, or up to 1%of a given value. Alternatively, particularly with respect to biological systems or processes, the term can mean within an order of magnitude, preferably within 5-fold, and more preferably within 2-fold, of a value. Where particular values are described in the application and claims, unless otherwise stated, the term “about” meaning within an acceptable error range for the particular value should be assumed.
  • a “cell” can generally refer to a biological cell.
  • a cell can be the basic structural, functional and/or biological unit of a living organism.
  • a cell can originate from any organism having one or more cells. Some non-limiting examples include: a prokaryotic cell, eukaryotic cell, a bacterial cell, an archaeal cell, a cell of a single-cell eukaryotic organism, a protozoa cell, a cell from a plant (e.g.
  • algal cell e.g., Botryococcusbraunii, Chlamydomonasreinhardtii, Nannochloropsisgaditana, Chlorella pyrenoidosa, Sargassum patens C. Agardh, and the like
  • seaweeds e.g., Botryococcusbraunii, Chlamydomonasreinhardtii, Nannochloropsisgaditana, Chlorella pyrenoidosa, Sargassum patens C. Agardh, and the like
  • seaweeds e.g.
  • a fungal cell e.g., a yeast cell, a cell from a mushroom
  • an animal cell e.g. fruit fly, cnidarian, echinoderm, nematode, etc.
  • a cell from a vertebrate animal e.g., fish, amphibian, reptile, bird, mammal
  • a cell from a mammal e.g., a pig, a cow, a goat, a sheep, a rodent, a rat, a mouse, a non-human primate, a human, etc.
  • a cell is not originating from a natural organism (e.g. a cell can be a synthetically made, sometimes termed an artificial cell) .
  • an antigen refers to a molecule or a fragment thereof capable of being bound by a selective binding agent.
  • an antigen can be a ligand that can be bound by a selective binding agent such as a receptor.
  • an antigen can be an antigenic molecule that can be bound by a selective binding agent such as an immunological protein (e.g., an antibody) .
  • An antigen can also refer to a molecule or fragment thereof capable of being used in an animal to produce antibodies capable of binding to that antigen.
  • Neoantigen generally refers to tumor-specific antigens arising from mutations in a gene. The resulting mutated proteins, or fragments thereof, can trigger an antitumor T cell response. Neoantigens can be unique to a tumor cell (e.g., absent in a normal cell) . A subject and/or a tumor can have a unique set of neoantigens. A neoantigen can refer to an “exogenous neoantigen” . An “exogenous neoantigen” can refer to a neoantigen not normally found in the host cell.
  • gene refers to a nucleic acid (e.g., DNA such as genomic DNA and cDNA) and its corresponding nucleotide sequence that is involved in encoding an RNA transcript.
  • genomic DNA includes intervening, non-coding regions as well as regulatory regions and can include 5' and 3' ends.
  • the term encompasses the transcribed sequences, including 5' and 3' untranslated regions (5'-UTR and 3'-UTR) , exons and introns.
  • the transcribed region will contain “open reading frames” that encode polypeptides.
  • a “gene” comprises only the coding sequences (e.g., an “open reading frame” or “coding region” ) necessary for encoding a polypeptide.
  • genes do not encode a polypeptide, for example, ribosomal RNA genes (rRNA) and transfer RNA (tRNA) genes.
  • rRNA ribosomal RNA genes
  • tRNA transfer RNA
  • the term “gene” includes not only the transcribed sequences, but in addition, also includes non-transcribed regions including upstream and downstream regulatory regions, enhancers and promoters.
  • a gene can refer to an “endogenous gene” or a native gene in its natural location in the genome of an organism.
  • a gene can refer to an “exogenous gene” or a non-native gene.
  • a non-native gene can refer to a gene not normally found in the host organism but which is introduced into the host organism by gene transfer.
  • a non-native gene can also refer to a gene not in its natural location in the genome of an organism.
  • a non-native gene can also refer to a naturally occurring nucleic acid or polypeptide sequence that comprises mutations, insertions and/or deletions (e.g., non-native sequence) .
  • antibody refers to a proteinaceous binding molecule with immunoglobulin-like functions.
  • the term antibody includes antibodies (e.g., monoclonal and polyclonal antibodies) , as well as derivatives, variants, and fragments thereof.
  • Antibodies include, but are not limited to, immunoglobulins (Ig’s ) of different classes (i.e. IgA, IgG, IgM, IgD and IgE) and subclasses (such as IgG1, IgG2, etc. ) .
  • a derivative, variant, or fragment thereof can refer to a functional derivative or fragment which retains the binding specificity (e.g., complete and/or partial) of the corresponding antibody.
  • Antigen-binding fragments include Fab, Fab', F (ab') 2 , variable fragment (Fv) , single chain variable fragment (scFv) , minibodies, diabodies, and single-domain antibodies ( “sdAb” or “nanobodies” or “camelids” ) .
  • the term antibody includes antibodies and antigen-binding fragments of antibodies that have been optimized, engineered or chemically conjugated. Examples of antibodies that have been optimized include affinity-matured antibodies. Examples of antibodies that have been engineered include Fc optimized antibodies (e.g., antibodies optimized in the fragment crystallizable region) and multispecific antibodies (e.g., bispecific antibodies) .
  • nucleotide generally refers to a base-sugar-phosphate combination.
  • a nucleotide can comprise a synthetic nucleotide.
  • a nucleotide can comprise a synthetic nucleotide analog.
  • Nucleotides can be monomeric units of a nucleic acid sequence (e.g. deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) ) .
  • nucleotide can include ribonucleoside triphosphates adenosine triphosphate (ATP) , uridine triphosphate (UTP) , cytosine triphosphate (CTP) , guanosine triphosphate (GTP) and deoxyribonucleoside triphosphates such as dATP, dCTP, dITP, dUTP, dGTP, dTTP, or derivatives thereof.
  • Such derivatives can include, for example, [ ⁇ S] dATP, 7-deaza-dGTP and 7-deaza-dATP, and nucleotide derivatives that confer nuclease resistance on the nucleic acid molecule containing them.
  • nucleotide as used herein can refer to dideoxyribonucleoside triphosphates (ddNTPs) and their derivatives.
  • ddNTPs dideoxyribonucleoside triphosphates
  • Illustrative examples of dideoxyribonucleoside triphosphates can include, but are not limited to, ddATP, ddCTP, ddGTP, ddITP, and ddTTP.
  • a nucleotide can be unlabeled or detectably labeled by well-known techniques. Labeling can also be carried out with quantum dots. Detectable labels can include, for example, radioactive isotopes, fluorescent labels, chemiluminescent labels, bioluminescent labels and enzyme labels.
  • polynucleotide, oligonucleotide, ” and “nucleic acid” are used interchangeably to refer to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides, or analogs thereof, either in single-, double-, or multi-stranded form.
  • a polynucleotide can be exogenous or endogenous to a cell.
  • a polynucleotide can exist in a cell-free environment.
  • a polynucleotide can be a gene or fragment thereof.
  • a polynucleotide can be DNA.
  • a polynucleotide can be RNA.
  • a polynucleotide can have any three dimensional structure, and can perform any function, known or unknown.
  • a polynucleotide can comprise one or more analogs (e.g. altered backbone, sugar, or nucleobase) . If present, modifications to the nucleotide structure can be imparted before or after assembly of the polymer. Some non-limiting examples of analogs include: 5-bromouracil, peptide nucleic acid, xeno nucleic acid, morpholinos, locked nucleic acids, glycol nucleic acids, threose nucleic acids, dideoxynucleotides, cordycepin, 7-deaza-GTP, fluorophores (e.g.
  • rhodamine or fluorescein linked to the sugar thiol containing nucleotides, biotin linked nucleotides, fluorescent base analogs, CpG islands, methyl-7-guanosine, methylated nucleotides, inosine, thiouridine, pseudourdine, dihydrouridine, queuosine, and wyosine.
  • Non-limiting examples of polynucleotides include coding or non-coding regions of a gene or gene fragment, loci (locus) defined from linkage analysis, exons, introns, messenger RNA (mRNA) , transfer RNA (tRNA) , ribosomal RNA (rRNA) , short interfering RNA (siRNA) , short-hairpin RNA (shRNA) , micro-RNA (miRNA) , ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, cell-free polynucleotides including cell-free DNA (cfDNA) and cell-free RNA (cfRNA) , nucleic acid probes, and primers.
  • the sequence of nucleotides can be interrupted by non-nucleotide components.
  • expression refers to one or more processes by which a polynucleotide is transcribed from a DNA template (such as into an mRNA or other RNA transcript) and/or the process by which a transcribed mRNA is subsequently translated into peptides, polypeptides, or proteins.
  • Transcripts and encoded polypeptides can be collectively referred to as “gene product. ” If the polynucleotide is derived from genomic DNA, expression can include splicing of the mRNA in a eukaryotic cell.
  • Up-regulated, with reference to expression, generally refers to an increased expression level of a polynucleotide (e.g., RNA such as mRNA) and/or polypeptide sequence relative to its expression level in a wild-type state while “down-regulated” generally refers to a decreased expression level of a polynucleotide (e.g., RNA such as mRNA) and/or polypeptide sequence relative to its expression in a wild-type state.
  • RNA e.g., RNA such as mRNA
  • complement generally refer to a sequence that is fully complementary to and hybridizable to the given sequence.
  • a sequence hybridized with a given nucleic acid is referred to as the “complement” or “reverse-complement” of the given molecule if its sequence of bases over a given region is capable of complementarily binding those of its binding partner, such that, for example, A-T, A-U, G-C, and G-U base pairs are formed.
  • a first sequence that is hybridizable to a second sequence is specifically or selectively hybridizable to the second sequence, such that hybridization to the second sequence or set of second sequences is preferred (e.g. thermodynamically more stable under a given set of conditions, such as stringent conditions commonly used in the art) to hybridization with non-target sequences during a hybridization reaction.
  • hybridizable sequences share a degree of sequence complementarity over all or a portion of their respective lengths, such as between 25%-100%complementarity, including at least 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, and 100%sequence complementarity.
  • Sequence identity such as for the purpose of assessing percent complementarity, can be measured by any suitable alignment algorithm, including but not limited to the Needleman-Wunsch algorithm (see e.g. the EMBOSS Needle aligner available at www. ebi. ac.
  • uk/Tools/psa/emboss_needle/nucleotide. html optionally with default settings
  • the BLAST algorithm see e.g. the BLAST alignment tool available at blast. ncbi. nlm. nih. gov/Blast. cgi, optionally with default settings
  • the Smith-Waterman algorithm see e.g. the EMBOSS Water aligner available at www. ebi. ac. uk/Tools/psa/emboss_water/nucleotide. html, optionally with default settings
  • Optimal alignment can be assessed using any suitable parameters of a chosen algorithm, including default parameters.
  • Complementarity can be perfect or substantial/sufficient. Perfect complementarity between two nucleic acids can mean that the two nucleic acids can form a duplex in which every base in the duplex is bonded to a complementary base by Watson-Crick pairing. Substantial or sufficient complementary can mean that a sequence in one strand is not completely and/or perfectly complementary to a sequence in an opposing strand, but that sufficient bonding occurs between bases on the two strands to form a stable hybrid complex in set of hybridization conditions (e.g., salt concentration and temperature) . Such conditions can be predicted by using the sequences and standard mathematical calculations to predict the Tm of hybridized strands, or by empirical determination of Tm by using routine methods.
  • hybridization conditions e.g., salt concentration and temperature
  • regulating refers to altering the level of expression or activity. Regulation can occur at the transcription level and/or translation level.
  • peptide, ” “polypeptide, ” and “protein” are used interchangeably herein to refer to a polymer of at least two amino acid residues joined by peptide bond (s) .
  • This term does not connote a specific length of polymer, nor is it intended to imply or distinguish whether the peptide is produced using recombinant techniques, chemical or enzymatic synthesis, or is naturally occurring.
  • the terms apply to naturally occurring amino acid polymers as well as amino acid polymers comprising at least one modified amino acid.
  • the polymer can be interrupted by non-amino acids.
  • the terms include amino acid chains of any length, including full length proteins, and proteins with or without secondary and/or tertiary structure (e.g., domains) .
  • amino acid polymer that has been modified, for example, by disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, oxidation, and any other manipulation such as conjugation with a labeling component.
  • amino acid and amino acids, ” as used herein generally refer to natural and non-natural amino acids, including, but not limited to, modified amino acids and amino acid analogues.
  • Modified amino acids can include natural amino acids and non-natural amino acids, which have been chemically modified to include a group or a chemical moiety not naturally present on the amino acid.
  • Amino acid analogues can refer to amino acid derivatives.
  • amino acid includes both D-amino acids and L-amino acids.
  • Derivatives, variants and fragments of a polypeptide can comprise one or more amino acid variations (e.g., mutations, insertions, and deletions) , truncations, modifications, or combinations thereof compared to a wild type polypeptide.
  • percent (%) identity refers to the percentage of amino acid (or nucleic acid) residues of a candidate sequence that are identical to the amino acid (or nucleic acid) residues of a reference sequence after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent identity (i.e., gaps can be introduced in one or both of the candidate and reference sequences for optimal alignment and non-homologous sequences can be disregarded for comparison purposes) .
  • Alignment, for purposes of determining percent identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, ALIGN, or Megalign (DNASTAR) software.
  • Percent identity of two sequences can be calculated by aligning a test sequence with a comparison sequence using BLAST, determining the number of amino acids or nucleotides in the aligned test sequence that are identical to amino acids or nucleotides in the same position of the comparison sequence, and dividing the number of identical amino acids or nucleotides by the number of amino acids or nucleotides in the comparison sequence.
  • fusion can refer to a protein and/or nucleic acid comprising one or more non-native sequences (e.g., moieties) .
  • a fusion can comprise one or more of the same non-native sequences.
  • a fusion can comprise one or more of different non-native sequences.
  • a fusion can be a chimera.
  • a fusion can comprise a nucleic acid affinity tag.
  • a fusion can comprise a barcode.
  • a fusion can comprise a peptide affinity tag.
  • a fusion can provide for subcellular localization of the site-directed polypeptide (e.g., a nuclear localization signal (NLS) for targeting to the nucleus, a mitochondrial localization signal for targeting to the mitochondria, a chloroplast localization signal for targeting to a chloroplast, an endoplasmic reticulum (ER) retention signal, and the like) .
  • a fusion can provide a non-native sequence (e.g., affinity tag) that can be used to track or purify.
  • a fusion can be a small molecule such as biotin or a dye such as Alexa fluor dyes, Cyanine3 dye, Cyanine5 dye.
  • exogenous T cell receptor (TCR) complex refers to a TCR complex in which one or more chains of the TCR are introduced into the genome of an immune cell that may or may not endogenously express the TCR.
  • an exogenous TCR complex can refer to a TCR complex in which one or more chains of an endogenous TCR complex have one or more mutated sequences, for example at either the nucleic acid or amino acid level.
  • Expression of an exogenous TCR on an immune cell can confer binding specificity for an epitope or antigen (e.g., an epitope or antigen preferentially present on the surface of a cancer cell or other disease-causing cell or particle) .
  • An exogenous TCR complex can comprise a TCR-alpha, a TCR-beta chain, a CD3-gamma chain, a CD3-delta chain, a CD3-zeta chain, or any combination thereof, which is introduced into the genome.
  • the chain introduced into the genome may replace the endogenously occurring chain.
  • subject “individual, ” and “patient” are used interchangeably herein to refer to a vertebrate, preferably a mammal such as a human. Mammals include, but are not limited to, murines, simians, humans, farm animals, sport animals, and pets. Tissues, cells and their progeny of a biological entity obtained in vivo or cultured in vitro are also encompassed.
  • treatment refers to an approach for obtaining beneficial or desired results including but not limited to a therapeutic benefit and/or a prophylactic benefit.
  • a treatment can comprise administering a system or cell population disclosed herein.
  • therapeutic benefit is meant any therapeutically relevant improvement in or effect on one or more diseases, conditions, or symptoms under treatment.
  • a composition can be administered to a subject at risk of developing a particular disease, condition, or symptom, or to a subject reporting one or more of the physiological symptoms of a disease, even though the disease, condition, or symptom may not have yet been manifested.
  • administer refers to the methods that may be used to enable delivery of agents or compositions to the desired site of biological action. These methods include, but are not limited to, parenteral administration (e.g., intravenous, subcutaneous, intraperitoneal, intramuscular, intravascular, intrathecal, intranasal, intravitreal, infusion and local injection) , transmucosal injection, oral administration, administration as a suppository, and topical administration. Administration is by any route, including parenteral.
  • Parenteral administration includes, e.g., intravenous, intramuscular, intra-arteriole, intradermal, subcutaneous, intraperitoneal, intraventricular, and intracranial.
  • Other modes of delivery include, but are not limited to, the use of liposomal formulations, intravenous infusion, transplantation, etc.
  • One skilled in the art will know of additional methods for administering a therapeutically effective amount of a composition of the present disclosure for preventing or relieving one or more symptoms associated with a disease.
  • an effective amount refers to the quantity of a composition, for example a composition comprising immune cells such as lymphocytes (e.g., B lymphocytes and/or T lymphocytes) of the present disclosure, that is sufficient to result in a desired activity upon administration to a subject in need thereof.
  • lymphocytes e.g., B lymphocytes and/or T lymphocytes
  • therapeutically effective refers to that quantity of a composition that is sufficient to delay the manifestation, arrest the progression, relieve or alleviate at least one symptom of a disorder treated by the methods of the present disclosure.
  • genetic profile refers to information about specific genes, including variations and gene expression in an individual or in a certain type of tissue. A genetic profile can be used for neoantigen selection.
  • genetic mutation profile refers to information about specific genes associated with somatic mutation, including but not limited to specific genes resulted from somatic mutation. A somatic mutation profile can be used for neoantigen selection.
  • the present disclosure provides a modified antigen-presenting cell (APC) that comprises a neoantigen.
  • APCs can mediate cellular immune responses by processing and presenting antigens for recognition by certain lymphocytes, such as T cells.
  • An APC can be, for example, B cell, dendritic cell, natural killer (NK) cell, a macrophage, monocyte, megakaryocyte, mast cell, thrombocyte, erythrocyte, and granulocyte.
  • the APC is a B cell.
  • the APC is a dendritic cell.
  • the modified APC is a modified B cell comprising a neoantigen (also referred to as neoantigen-loaded B cell or neoB) .
  • a neoB can have a stronger amplification capability in vitro as compared to another modified APC, for example, a modified dendritic cell loaded with the neoantigen (also referred to as neoantigen-loaded DC or neoDC) .
  • aneoB cell can have a stronger efficacy in continuously activating tumor-specific T cells with repeated re-infusion in vivo as compared to neoDC.
  • the neoB cell can produce enhanced proliferation of T cells that recognize the neoantigen compared with neoDC. In some cases, neoB can have a greater half-life than neoDC in a subject.
  • a modified APC comprises a neoantigen.
  • An APC can be modified to express a neoantigen for presentation to a T cell.
  • a T cell can specifically bind a neoantigen.
  • Neoantigens generally refer to tumor-specific mutations that trigger an antitumor T cell response. For example, these endogenous mutations can be identified using a whole-exomic-sequencing approach. Tran E, et al., “Cancer immunotherapy based on mutation-specific CD4+T cells in a patient with epithelial cancer, ” Science 344: 641-644 (2014) .
  • a neoantigen or neoepitope can be encoded by a mutated gene, for example, from a tumor cell.
  • the gene can be selected from the group consisting of: ABL1, ACOl 1997, ACVR2A, AFP, AKT1, ALK, ALPPL2, ANAPC1, APC, ARID1A, AR, AR-v7, ASCL2, ⁇ 2 ⁇ , BRAF, BTK, C15ORF40, CDH1, CLDN6, CNOT1, CT45A5, CTAG1B, DCT, DKK4, EEF1B2, EEF1DP3, EGFR, EIF2B3, env, EPHB2, ERBB3, ESR1, ESRP1, FAM11 IB, FGFR3, FRG1B, GAGE1, GAGE 10, GATA3, GBP3, HER2, IDH1, JAK1, KIT, KRAS, LMAN1, MABEB 16, MAGEA1, MAGEA10, MAGEA4, MAGEA8, MAGEB 17, MAGEB
  • the neoantigen is selected based on a genetic profile of a tumor sample from an individual. In some embodiments, the neoantigenis selected based on a somatic mutation profile of a tumor sample from an individual. In some embodiments, the neoantigen is an exogenous neoantigen. For example, the neoantigen can be exogenously introduced into an APC such as B cell.
  • compositions comprising a modified APC comprising a neoantigen and animmune cell capable of specifically binding the neoantigen of the modified APC.
  • an immune cell is a T cell.
  • a T cell capable of specifically binding to a neoantigen can also be referred to as a neoantigen-experienced T cell or neoT.
  • the T cell can be a natural T cell or a modified T cell.
  • an immune cell is a modified immune cell.
  • an immune cell is a modified immune cell generated by contacting an immune cell with aneoantigen.
  • the modified immune cell is a modified T cell generated by contacting a T cell with a neoantigen.
  • a neoantigen-experienced T cell can be generatedby contacting a T cell to the neoantigen presented by a modified APC (e.g. B cell or dendritic cell expressing the neoantigen) .
  • theneoantigen-experienced T cells can quickly reproduce to elicit a faster and stronger immune response as compared to the first time the T cell comes into contact with the neoantigen.
  • an immune cell is a modified immune cell comprising a switch molecule.
  • the modified immune is a modified T cell comprising a switch molecule.
  • the switch molecule can comprise an extracellular domain (ECD) of a protein that, in an unmodified immune cell, elicits an immune cell inactivation signal upon binding to its ligand.
  • ECD extracellular domain
  • the ECD may be fused to an intracellular domain (ICD) of a co-stimulatory molecule that mediates an immune cell activation signal. Binding of the switch molecule to the ligand can yield the immune cell activation signal in the modified immune cell instead of the immune cell inactivation signal.
  • Binding ofan immune cell such as a T cell to a neoantigen, such as that present on a modified APC, can activate the immune cell.
  • the switch molecule can be used to provide further control over immune cell activities, such as, but not limited to, immune cell activation and expansion. Binding of the switch molecule to its ligand in the modified immune cell, can elicit an immune cell activation signal in the modified immune cell instead of the immune cell inactivation signal. Eliciting the immune cell activation signal in the modified immune cell instead of the immune cell inactivation signal may minimize an immune-suppressive effect in the immune cell. Minimizing an immune-suppressive effect in the immune cell can increase the effectiveness of the immune cell in an immune response, for example, by increasing immune cell cytotoxicity against a target cell, such as a tumor cell.
  • the switch molecule can comprise an extracellular domain (ECD) of a protein that, in an unmodified immune cell, elicits an immune cell inactivation signal upon binding to its ligand.
  • ECD extracellular domain
  • the protein can be a signaling receptor or any functional fragment, derivative, or variant thereof.
  • the signaling receptor can be a membrane bound receptor.
  • a signaling receptor can, in response to ligand binding, induce one or more signaling pathways in a cell.
  • the signaling receptor can be a non-membrane bound receptor.
  • the switch molecule can comprise a fragment, for example, an extracellular domain of a receptor selected from a G-protein coupled receptor (GPCR) ; an integrin receptor; a cadherin receptor; a catalytic receptor (e.g., kinases) ; a death receptor; a checkpoint receptor; a cytokine receptor; a chemokine receptor; a growth factor receptor; a hormone receptor; or an immune receptor.
  • GPCR G-protein coupled receptor
  • the switch molecule comprises a fragment of an immune checkpoint receptor, which may be involved in regulation of the immune system.
  • immune checkpoint receptors include, but are not limited to, programmed cell death 1 (PD-1) , cytotoxic T-lymphocyte associated protein 4 (CTLA-4) , B and T lymphocyte attenuator (BTLA) , a killer immunoglobulin-like receptor (KIR) , indoleamine 2, 3-dioxygenase (IDO) , lymphocyte activation gene-3 (LAG3) , T cell immunoglobulin mucin 3 (TIM-3) , and T cell immunoreceptor with Ig and ITIM domains (TIGIT) .
  • PD-1 programmed cell death 1
  • CTLA-4 cytotoxic T-lymphocyte associated protein 4
  • BTLA B and T lymphocyte attenuator
  • KIR killer immunoglobulin-like receptor
  • IDO indoleamine 2, 3-dioxygenase
  • LAG3 lymphocyte activation gene-3
  • a switch molecule comprising an immune checkpoint receptor, or any derivative, variant, or fragment thereof can bind an antigen comprising any suitable immune checkpoint receptor ligand, or any derivative, variant, or fragment thereof.
  • suitable immune checkpoint receptor ligands include, but are not limited to, B7-1, B7-H3, B7-H4, HVEM (Herpesvirus Entry Mediator) , AP2M1, CD80, CD86, SHP-2, PPP2R5A, MHC (e.g., class I, class II) , PD-L1, and PD-L2.
  • the switch molecule comprises a fragment of a cytokine receptor.
  • Cytokine receptors can serve a variety of functions, non-limiting examples of which include immune cell regulation and mediating inflammation.
  • the switch molecule comprises a cytokine receptor, for example, a type-I cytokine receptor or a type-II cytokine receptor, or any derivative, variant, or fragment thereof.
  • the switch molecule comprises an interleukin receptor (e.g., IL-2R, IL-3R, IL-4R, IL-5R, IL-6R, IL-7R, IL-9R, IL-11R, IL-12R, IL-13R, IL-15R, IL-21R, IL-23R, IL-27R, and IL-31R) , a colony-stimulating factor receptor (e.g., erythropoietin receptor, CSF-1R, CSF-2R, GM-CSFR, and G-CSFR) , a hormone receptor/neuropeptide receptor (e.g., growth hormone receptor, prolactin receptor, and leptin receptor) , or any derivative, variant, or fragment thereof.
  • an interleukin receptor e.g., IL-2R, IL-3R, IL-4R, IL-5R, IL-6R, IL-7R, IL-9R, IL-11R, IL-12R,
  • the switch molecule comprises a type-II cytokine receptor, or any derivative, variant, or fragment thereof.
  • the switch molecule comprises an interferon receptor (e.g., IFNAR1, IFNAR2, and IFNGR) , an interleukin receptor (e.g., IL-10R, IL-20R, IL-22R, and IL-28R) , a tissue factor receptor (also called platelet tissue factor) , or any derivative, variant, or fragment thereof.
  • an interferon receptor e.g., IFNAR1, IFNAR2, and IFNGR
  • an interleukin receptor e.g., IL-10R, IL-20R, IL-22R, and IL-28R
  • tissue factor receptor also called platelet tissue factor
  • Cytokines refer to proteins (e.g., chemokines, interferons, lymphokines, interleukins, and tumor necrosis factors) released by cells which can affect cell behavior. Cytokines are produced by a broad range of cells, including immune cells, such as macrophages, B lymphocytes, T lymphocytes, mast cells, endothelial cells, fibroblasts, and various stromal cells. A given cytokine can be produced by more than one type of cell. Cytokines can be involved in producing systemic or local immunomodulatory effects.
  • Certain cytokines can function as pro-inflammatory cytokines.
  • Pro-inflammatory cytokines refer to cytokines involved in inducing or amplifying an inflammatory reaction.
  • Pro-inflammatory cytokines can work with various cells of the immune system, such as neutrophils and leukocytes, to generate an immune response.
  • Certain cytokines can function as anti-inflammatory cytokines.
  • Anti-inflammatory cytokines refer to cytokines involved in the reduction of an inflammatory reaction.
  • Anti-inflammatory cytokines in some cases, can regulate a pro-inflammatory cytokine response.
  • Some cytokines can function as both pro-and anti- inflammatory cytokines.
  • Certain cytokines, e.g., chemokines can function in chemotaxis. Chemokines can induce directed chemotaxis in nearby responsive cells.
  • the expression of a cytokine having pro-inflammatory and/or chemotactic functions can be up-regulated in an immune cell. Up-regulating the expression of a cytokine having pro-inflammatory and/or chemotactic functions can be useful, for example, to stimulate an immune response against a target cell in immunotherapy.
  • cytokines that can be overexpressed by immune cells provided herein include, but are not limited to, lymphokines, monokines, and traditional polypeptide hormones. Included among the cytokines are growth hormones, such as human growth hormone, N-methionyl human growth hormone, and bovine growth hormone; parathyroid hormone; thyroxine; insulin; proinsulin; relaxin; prorelaxin; glycoprotein hormones such as follicle stimulating hormone (FSH) , thyroid stimulating hormone (TSH) , and luteinizing hormone (LH) ; hepatic growth factor; fibroblast growth factor; prolactin; placental lactogen; tumor necrosis factor-alpha ; mullerian-inhibiting substance; mouse gonadotropin-associated peptide; inhibin; activin; vascular endothelial growth factor; integrin; thrombopoietin (TPO) ; nerve growth factors such as NGF-alpha; platelet-growth factor; transforming growth hormone
  • the overexpressed cytokine is an interleukin (IL) family member (e.g., ligand) , an IL-1 receptor family member, an interleukin-6 (IL-6) family member (e.g., ligand) , an IL-6 receptor, an interleukin-10 (IL-10) family member (e.g., ligand) , an IL-10 receptor, an interleukin-12 (IL-12) family member (e.g., ligand) , an IL-12 receptor, an interleukin-17 (IL-17) family member (e.g., ligand) , or an IL-17 receptor.
  • IL interleukin
  • IL-1 receptor e.g., an interleukin-6
  • IL-6 receptor e.g., an IL-6 receptor
  • an interleukin-10 (IL-10) family member e.g., ligand
  • an IL-10 receptor e.g., an IL-10 receptor
  • the overexpressed cytokine is an interleukin-1 (IL-1) family member or related protein; a tumor necrosis factor (TNF) family member or related protein; an interferon (IFN) family member or related protein; an interleukin-6 (IL-6) family member or related protein; or a chemokine or related protein.
  • IL-1 interleukin-1
  • TNF tumor necrosis factor
  • IFN interferon
  • IL-6 interleukin-6 family member or related protein
  • chemokine or related protein chemokine or related protein
  • the cytokine is selected from IL18, IL18BP, IL1A, IL1B, IL1F10, IL1F3/IL1RA, IL1F5, IL1F6, IL1F7, IL1F8, IL1RL2, IL1F9, IL33, BAFF/BLyS/TNFSF138, 4-1BBL, CD153/CD30L/TNFSF8, CD40LG, CD70, Fas Ligand/FASLG/CD95L/CD178, EDA-A1, TNFSF14/LIGHT/CD258, TNFA, LTA/TNFB/TNFSF1, LTB/TNFC, CD70/CD27L/TNFSF7, TNFSF10/TRAIL/APO-2L (CD253) , RANKL/OPGL/TNFSF11 (CD254) , TNFSF12, TNF-alpha/TNFA, TNFSF13, TL1A/TNFSF15, OX-40L/TNFSFSF
  • Cytokine expression can be evaluated using a variety of methods. Cytokine expression can be evaluated by assaying cell culture media (e.g., in vitro production) in which the modified immune cells are grown or sera (e.g., in vivo production) obtained from a subject having the modified immune cells for the presence of one or more cytokines. Cytokine levels can be quantified in various suitable units, including concentration, using any suitable assay. In some embodiments, cytokine protein is detected. In some embodiments, mRNA transcripts of cytokines are detected.
  • cytokine assays examples include enzyme-linked immunosorbent assays (ELISA) , immunoblot, immunofluorescence assays, radioimmunoassays, antibody arrays which allow various cytokines in a sample to be detected in parallel, bead-based arrays, quantitative PCR, microarray, etc.
  • ELISA enzyme-linked immunosorbent assays
  • immunoblot immunofluorescence assays
  • radioimmunoassays radioimmunoassays
  • antibody arrays which allow various cytokines in a sample to be detected in parallel
  • bead-based arrays examples include quantitative PCR, microarray, etc.
  • Other suitable methods may include proteomics approaches (2-D gels, MS analysis etc) .
  • the cytokine overexpressed by a modified immune cell provided herein is a chemokine.
  • the chemokine can be, for example, a CC chemokine, a CXC chemokine, a C chemokine, and a CX3C chemokine.
  • the chemokine overexpressed by a modified immune cell is a CC chemokine selected from CCL1, CCL2, CCL3, CCL4, CCL5, CCL6, CCL7, CCL8, CCL9, CCL10, CCL11, CCL12, CCL13, CCL14, CCL15, CCL16, CCL17, CCL18, CCL19, CCL20, CCL21, CCL22, CCL23, CCL24, CCL25, CCL26, CCL27, and CCL28.
  • the chemokine is a CXC chemokine selected from CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8, CXCL9, CXCL10, CXCL11, CXCL12, CXCL13, CXCL14, CXCL15, CXCL16, and CXCL17.
  • the chemokine overexpressed by a modified immune cell is a C chemokine selected from XCL1 and XCL2.
  • the chemokine overexpressed by an immune cell is a CX3C chemokine, and the CX3C chemokine is CX3CL1.
  • the switch molecule can comprise at least an extracellular region (e.g., ligand binding domain) of a catalytic receptor such as a receptor tyrosine kinase (RTK) , or any derivative, variant, or fragment thereof.
  • a catalytic receptor such as a receptor tyrosine kinase (RTK)
  • RTK receptor tyrosine kinase
  • the switch molecule comprises a class I RTK (e.g., the epidermal growth factor (EGF) receptor family including EGFR; the ErbB family including ErbB-2, ErbB-3, and ErbB-4) , a class II RTK (e.g., the insulin receptor family including INSR, IGF-1R, and IRR) , a class III RTK (e.g., the platelet-derived growth factor (PDGF) receptor family including PDGFR- ⁇ , PDGFR- ⁇ , CSF-1R, KIT/SCFR, and FLK2/FLT3) , a class IV RTK (e.g., the fibroblast growth factor (FGF) receptor family including FGFR-1, FGFR-2, FGFR-3, and FGFR-4) , a class V RTK (e.g., the vascular endothelial growth factor (VEGF) receptor family including VEGFR1, VEGFR2, and VEGFR3) , a class VI RTK (e.g.
  • EGF
  • a switch molecule comprising a RTK, or any derivative, variant, or fragment thereof can bind an antigen comprising any suitable RTK ligand, or any derivative, variant, or fragment thereof.
  • RTK ligands include growth factors, cytokines, and hormones.
  • Growth factors include, for example, members of the epidermal growth factor family (e.g., epidermal growth factor or EGF, heparin-binding EGF-like growth factor or HB-EGF, transforming growth factor- ⁇ or TGF- ⁇ , amphiregulin or AR, epiregulin or EPR, epigen, betacellulin or BTC, neuregulin-1 or NRG1, neuregulin-2 or NRG2, neuregulin-3 or NRG3, and neuregulin-4 or NRG4) , the fibroblast growth factor family (e.g., FGF1, FGF2, FGF3, FGF4, FGF5, FGF6, FGF7, FGF8, FGF9, FGF10, FGF11, FGF12, FGF13, FGF14, FGF15/19, FGF16, FGF17, FGF18, FGF20, FGF21, and FGF23) , the vascular endothelial growth factor family (e.g., VEGF-A, VEGF-B, VE
  • Hormones include, for example, members of the insulin/IGF/relaxin family (e.g., insulin, insulin-like growth factors, relaxin family peptides including relaxin1, relaxin2, relaxin3, Leydig cell-specific insulin-like peptide (gene INSL3) , early placenta insulin-like peptide (ELIP) (gene INSL4) , insulin-like peptide 5 (gene INSL5) , and insulin-like peptide 6) .
  • members of the insulin/IGF/relaxin family e.g., insulin, insulin-like growth factors, relaxin family peptides including relaxin1, relaxin2, relaxin3, Leydig cell-specific insulin-like peptide (gene INSL3) , early placenta insulin-like peptide (ELIP) (gene INSL4) , insulin-like peptide 5 (gene INSL5) , and insulin-like peptide 6) .
  • a switch molecule comprises at least an extracellular region (e.g., ligand binding domain) of a catalytic receptor such as a receptor threonine/serine kinase (RTSK) , or any derivative, variant, or fragment thereof.
  • a catalytic receptor such as a receptor threonine/serine kinase (RTSK)
  • RTSK receptor threonine/serine kinase
  • a switch molecule can comprise a type I RTSK, type II RTSK, or any derivative, variant, or fragment thereof.
  • a switch molecule can comprise a type I receptor, or any derivative, variant, or fragment thereof, selected from the group consisting of: ALK1 (ACVRL1) , ALK2 (ACVR1A) , ALK3 (BMPR1A) , ALK4 (ACVR1B) , ALK5 (TGF ⁇ R1) , ALK6 (BMPR1B) , and ALK7 (ACVR1C) .
  • a switch molecule can comprise a type II receptor, or any derivative, variant, or fragment thereof, selected from the group consisting of: TGF ⁇ R2, BMPR2, ACVR2A, ACVR2B, and AMHR2 (AMHR) .
  • the switch molecule comprises a TGF- ⁇ receptor, or any derivative, variant, or fragment thereof.
  • a switch molecule comprising a RTSK, or any derivative, variant, or fragment thereof can bind an antigen comprising any suitable RTSK ligand, or any derivative, variant, or fragment thereof.
  • the switch molecule can comprise an intracellular domain (ICD) of a co-stimulatory molecule that elicits an immune cell activation signal.
  • the co-stimulatory molecule may bind a ligand.
  • the co-stimulatory molecule may be activated by a ligand responsive protein.
  • the co-stimulatory molecule is operable to regulate a proliferative and/or survival signal in the immune cell.
  • the ICD is an intracellular domain of a co-stimulatory molecule selected from an MHC class I protein, an MHC class II protein, a TNF receptor protein, an immunoglobulin-like protein, a cytokine receptor, an integrin, a signaling lymphocytic activation molecule (SLAM protein) , an activating NK cell receptor, BTLA, or a Toll ligand receptor.
  • a co-stimulatory molecule selected from an MHC class I protein, an MHC class II protein, a TNF receptor protein, an immunoglobulin-like protein, a cytokine receptor, an integrin, a signaling lymphocytic activation molecule (SLAM protein) , an activating NK cell receptor, BTLA, or a Toll ligand receptor.
  • the co-stimulatory domain comprises a signaling domain of a molecule selected from the group consisting of: 2B4/CD244/SLAMF4, 4-1BB/TNFSF9/CD137, B7-1/CD80, B7-2/CD86, B7-H1/PD-L1, B7-H2, B7-H3, B7-H4, B7-H6, B7-H7, BAFF R/TNFRSF13C, BAFF/BLyS/TNFSF13B, BLAME/SLAMF8, BTLA/CD272, CD100 (SEMA4D) , CD103, CD11a, CD11b, CD11c, CD11d, CD150, CD160 (BY55) , CD18, CD19, CD2, CD200, CD229/SLAMF3, CD27 Ligand/TNFSF7, CD27/TNFRSF7, CD28, CD29, CD2F-10/SLAMF9, CD3, CD30 Ligand/TNFSF8, CD30/TNFRSF8, CD30/TNFR
  • the ECD and the ICD of a switch molecule can be joined by a transmembrane domain, for example by a membrane spanning segment.
  • the membrane spanning segment comprises a polypeptide.
  • the membrane spanning polypeptide can have any suitable polypeptide sequence.
  • the membrane spanning polypeptide comprises a polypeptide sequence of a membrane spanning portion of an endogenous or wild-type membrane spanning protein.
  • the membrane spanning polypeptide comprises a polypeptide sequence having at least 1 (e.g., at least 2, 3, 4, 5, 6, 7, 8, 9, 10 or greater) of an amino acid substitution, deletion, and insertion compared to a membrane spanning portion of an endogenous or wild-type membrane spanning protein.
  • the membrane spanning polypeptide comprises a non-natural polypeptide sequence, such as the sequence of a polypeptide linker.
  • the polypeptide linker may be flexible or rigid.
  • the polypeptide linker can be structured or unstructured.
  • the membrane spanning polypeptide transmits a signal from the ECD to the ICD, for example a signal indicating ligand-binding.
  • switch molecules can be linked by means of chemical bond, e.g., an amide bond or a disulfide bond; a small, organic molecule (e.g., a hydrocarbon chain) ; an amino acid sequence such as a peptide linker (e.g., an amino acid sequence about 3-200 amino acids in length) , or a combination of a small, organic molecule and peptide linker.
  • a peptide linker e.g., an amino acid sequence about 3-200 amino acids in length
  • Peptide linkers can provide desirable flexibility to permit the desired expression, activity and/or conformational positioning of the chimeric polypeptide.
  • the peptide linker can be of any appropriate length to connect at least two domains of interest and is preferably designed to be sufficiently flexible so as to allow the proper-folding and/or function and/or activity of one or both of the domains it connects.
  • the peptide linker can have a length of at least 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 amino acids.
  • a peptide linker has a length between about 0 and 200 amino acids, between about 10 and 190 amino acids, between about 20 and 180 amino acids, between about 30 and 170 amino acids, between about 40 and 160 amino acids, between about 50 and 150 amino acids, between about 60 and 140 amino acids, between about 70 and 130 amino acids, between about 80 and 120 amino acids, or between about 90 and 110 amino acids.
  • the linker sequence can comprise an endogenous protein sequence.
  • the linker sequence comprises glycine, alanine, and/or serine amino acid residues.
  • a linker can contain motifs, e.g., multiple or repeating motifs, of GS, GGS, GGGGS, GGSG, or SGGG.
  • the linker sequence can include any naturally occurring amino acids, non-naturally occurring amino acids, or combinations thereof.
  • Binding of a ligand to the switch molecule can yield an immune cell activation signal in the modified immune cell.
  • the immune cell activation signal is mediated by an activation factor.
  • the activation factor can be an immunomodulating molecule.
  • the activation factor may bind, activate, or stimulate T cells or other immune cells to modulate their activity.
  • the activation factor can be secreted from the immune cell.
  • the activation factor can be, for example, a soluble cytokine, a soluble chemokine, or a growth factor molecule.
  • Non-limiting examples of activation factors which can mediate the immune cell activation include a soluble cytokine, such as IL-1, IL-2, IL-6, IL-7, IL-8, IL-10, IL-12, IL-15, IL-21, tumor necrosis factor (TNF) , transforming growth factor (TGF) , interferon (IFN) , or any functional fragment or variant thereof.
  • a soluble cytokine such as IL-1, IL-2, IL-6, IL-7, IL-8, IL-10, IL-12, IL-15, IL-21, tumor necrosis factor (TNF) , transforming growth factor (TGF) , interferon (IFN) , or any functional fragment or variant thereof.
  • the immune cell activation signal can comprise or result in a clonal expansion of the modified immune cell; cytokine release by the modified immune cell; cytotoxicity of the modified immune cell; proliferation of the modified immune cell; differentiation, dedifferentiation or transdifferentiation of the modified immune cell; movement and/or trafficking of the modified immune cell; exhaustion and/or reactivation of the modified immune cell; and release of other intercellular molecules, metabolites, chemical compounds, or combinations thereof by the modified immune cell.
  • the immune cell activity comprises or results in clonal expansion of the immune cell (e.g., modified T cell) .
  • Clonal expansion can comprise the generation of daughter cells arising from the immune cell.
  • the daughter cells resulting from clonal expansion can comprise the switch molecule.
  • Clonal expansion of the modified immune cell can be greater than that of a comparable immune cell lacking the switch molecule.
  • Clonal expansion of the modified immune cell can be about 5-fold to about 10-fold, about 10-fold to about 20-fold, about 20-fold to about 30-fold, about 30-fold to about 40-fold, about 40-fold to about 50-fold, about 50-fold to about 60-fold, about 60-fold to about 70-fold, about 70-fold to about 80-fold, about 80-fold to about 90-fold, about 90-fold to about 100-fold, about100-fold to about 200-fold, about 200-fold to about 300-fold, about 300-fold to about 400-fold, about 400-fold to about 500-fold, about 500-fold to about 600-fold, or about 600-fold to about 700-fold greater than a comparable immune cell lacking the switch molecule.
  • determining clonal expansion can comprise quantifying a number of immune cells, for example with and without switch molecules and after ligand binding to the switch molecule. Quantifying a number of immune cells can be achieved by a variety of techniques, non-limiting examples of which include flow cytometry, Trypan Blue exclusion, and hemocytometry.
  • the immune cell activity comprises or results in cytokine release by the immune cell.
  • the immune cell activity comprises or results in the release of intercellular molecules, metabolites, chemical compounds or combinations thereof.
  • Cytokine release by the modified immune cell can comprise the release of IL-1, IL-2, IL-4, IL-5, IL-6, IL-13, IL-17, IL-21, IL-22, IFN ⁇ , TNF ⁇ , CSF, TGF ⁇ , granzyme, and the like.
  • cytokine release may be quantified using enzyme-linked immunosorbent assay (ELISA) , flow cytometry, western blot, and the like.
  • ELISA enzyme-linked immunosorbent assay
  • Cytokine release by a modified immune cell can be greater than that of a comparable immune cell lacking the switch molecule.
  • a modified immune cell provided herein can generate about 1-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 11-fold, 12-fold, 13-fold, 14-fold, 15-fold, 20-fold, 30-fold, 40-fold, 50-fold, 60-fold, 70-fold, 80-fold, 90-fold, 100-fold, 150-fold, 200-fold, 250-fold, or over 300-fold greater cytokine release as compared to a comparable immune cell lacking the switch molecule.
  • the modified immune cell can exhibit increased cytokine secretion as compared to a comparable immune cell lacking the switch molecule (e.g., unmodified) , when the switch molecule binds to the ligand and the modified immune cell binds to the neoantigen present on a target cell.
  • the cytokine secreted is IFN ⁇ or IL-2.
  • cytokine release can be quantified in vitro or in vivo.
  • the immune cell activity comprises or results in cytotoxicity of the immune cell (e.g., T cell) .
  • cytotoxicity of the modified immune cells provided herein can be used for killing a target cell.
  • An immune cell or population of immune cells expressing a switch molecule can induce death of a target cell. Killing of a target cell can be useful for a variety of applications, including, but not limited to, treating a disease or disorder in which a cell population is desired to be eliminated or its proliferation desired to be inhibited.
  • Cytotoxicity can also refer to the release of cytotoxic cytokines, for example IFN ⁇ or granzyme, by the immune cell.
  • modified immune cells provided herein may have altered (i) release of cytotoxins such as perforin, granzymes, and granulysin and/or (ii) induction of apoptosis via Fas-Fas ligand interaction between the T cells and target cells.
  • cytotoxicity can be quantified by a cytotoxicity assay including, a co-culture assay, ELISPOT, chromium release cytotoxicity assay, and the like. Cytotoxicity of a modified immune cell provided herein can be greater than that of a comparable immune cell lacking the switch molecule.
  • the modified immune cell can exhibit increased cytotoxicity against a target cell as compared to a comparable immune cell lacking the switch molecule (e.g., unmodified) , when the switch molecule binds to the ligand and the modified immune cell binds to the neoantigen present on the target cell.
  • a modified immune cell of the disclosure can be about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 125%, 150%, 175%, or 200%more cytotoxic to target cells as compared to a comparable immune cell lacking the switch molecule.
  • a modified immune cell of the disclosure can induce death of target cells that is at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 125%, 150%, 175%, or 200%greater than that of a comparable immune cell lacking the switch molecule.
  • an immune cell provided herein can induce apoptosis in target cells displaying target epitopes (e.g., neoantigens) on their surface.
  • cytotoxicity can be determined in vitro or in vivo.
  • determining cytotoxicity can comprise determining a level of disease after administration of a composition provided herein as compared to a level of disease prior to the administration. In some embodiments, determining cytotoxicity can comprise determining a level of disease after administration of a composition provided herein and a level of disease after administration of comparable immune cells lacking the switch molecule.
  • immune cell activity comprises or results in proliferation of the immune cell (e.g., T cell) .
  • Proliferation of the immune cell can refer to expansion of the immune cell.
  • Proliferation of the immune cell can refer to phenotypic changes of the immune cell.
  • Proliferation of a modified immune cell of the disclosure can be greater than that of a comparable immune cell lacking the switch molecule.
  • Proliferation of a modified immune cell provided herein can be about 5-fold to about 10-fold, about 10-fold to about 20-fold, about 20-fold to about 30-fold, about 30-fold to about 40-fold, about 40-fold to about 50-fold, about 50-fold to about 60-fold, about 60-fold to about 70-fold, about 70-fold to about 80-fold, about 80-fold to about 90-fold, about 90-fold to about 100-fold, about 100-fold to about 200-fold, from about 200-fold to about 300-fold, from about 300-fold to about 400-fold, from about 400-fold to about 500-fold, from about 500-fold to about 600-fold, or from about 600-fold to about 700-fold greater than the proliferation of a comparable immune cell lacking the switch molecule.
  • proliferation can be determined by quantifying a number of immune cells. Quantifying a number of immune cells can comprise flow cytometry, Trypan Blue exclusion, and/or hemocytometry. Proliferation can also be determined by phenotypic analysis of the immune cells.
  • immune cell activity can comprise or result in differentiation, dedifferentiation, or transdifferentiation of the immune cell (e.g., modified T cell) .
  • Differentiation, dedifferentiation, or transdifferentation of an immune cell can be determined by evaluating phenotypic expression of markers of differentiation, dedifferentiation, or transdifferentation on a cell surface by flow cytometry.
  • a modified immune cell provided herein has increased differentiation ability as compared to a comparable immune cell lacking the switch molecule.
  • a modified immune cell provided herein has increased dedifferentiation ability as compared to a comparable immune cell lacking the switch molecule.
  • a modified immune cell provided herein has greater transdifferentiation ability as compared to a comparable immune cell lacking the switch molecule.
  • immune cell activity can comprise or result in movement and/or trafficking of the immune cell (e.g., modified T cell) .
  • movement can be determined by quantifying localization of the immune cell to a target site.
  • modified immune cells provided herein can be quantified at a target site after administration, for example at a site that is not the target site. Quantification can be performed by isolating a lesion and quantifying a number of immune cells, for example tumor infiltrating lymphocytes, comprising the switch molecule. Movement and/or trafficking of an immune cell comprising a switch molecule can be greater than that of a comparable immune cell lacking the switch molecule.
  • the number of immune cells comprising the switch molecule at a target site can be about 5X, 10X, 15X, 20X, 25X, 30X, 35X, or 40X that of the number of comparable immune cells lacking the switch molecule. Trafficking can also be determined in vitro utilizing a transwell migration assay. In some embodiments, the number of immune cells comprising the switch molecule at a target site, for example in a transwell migration assay, can be about 5X, 10X, 15X, 20X, 25X, 30X, 35X, or 40X that of the number of comparable immune cells lacking the switch molecule.
  • immune cell activity can comprise or result in exhaustion and/or activation of the immune cell (e.g., modified T cell) .
  • Exhaustion and/or activation of an immune cell can be determined by phenotypic analysis by flow cytometry or microscopic analysis. For example, expression levels of markers of exhaustion, for instance programmed cell death protein 1 (PD1) , lymphocyte activation gene 3 protein (LAG3) , 2B4, CD160, Tim3, and T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) , can be determined quantitatively and/or qualitatively.
  • PD1 programmed cell death protein 1
  • LAG3 lymphocyte activation gene 3 protein
  • 2B4 lymphocyte activation gene 3 protein
  • CD160 e.g., Tim3, and T cell immunoreceptor with immunoglobulin and ITIM domains
  • TAGIT T cell immunoreceptor with immunoglobulin and ITIM domains
  • immune cells such as T cells, can lose effector functions in a hierarchical manner
  • the immune cell provided herein can undergo at least about a 1-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 11-fold, 12-fold, 13-fold, 14-fold, 15-fold, 20-fold, 30-fold, 40-fold, 50-fold, 60-fold, 70-fold, 80-fold, 90-fold, 100-fold, 150-fold, 200-fold, 250-fold, or over 300 increase in exhaustion or activation as compared to a comparable immune cell lacking the switch molecule.
  • the immune cell comprising provided herein can undergo at least about a 1-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 11-fold, 12-fold, 13-fold, 14-fold, 15-fold, 20-fold, 30-fold, 40-fold, 50-fold, 60-fold, 70-fold, 80-fold, 90-fold, 100-fold, 150-fold, 200-fold, 250-fold, or over 300 decrease in exhaustion or activation as compared to a comparable immune cell lacking the switch molecule.
  • the modified immune cell upon binding of the switch molecule to the ligand, the modified immune cell (e.g., modified T cell) exhibits enhanced neoantigen binding as compared to a comparable T cell lacking the switch molecule.
  • a modified T cell comprises a T cell receptor (TCR) complex which exhibits specific binding to a neoantigen.
  • TCR complex is an endogenous TCR complex.
  • the TCR is an exogenous TCR complex.
  • the TCR complex, e.g., endogenous or exogenous, of the modified immune cell can confer the antigen binding specificity (e.g., neoantigen binding) of the immune cell.
  • Amodified APC e.g., modified B cell
  • animmune cell in combination with animmune cell can enhance the ability of the modified APC to stimulate the immune cell in vivo.
  • Proliferation of the immune cell can refer to expansion of the immune cell.
  • Proliferation of the immune cell can refer to phenotypic changes of the immune cell.
  • Proliferation of an immune cell can be about 2 fold, 10 fold, 2 fold to about 10 fold, 5 fold to about 10 fold, about 10 fold to about 20 fold, about 20 fold to about 30 fold, about 30 fold to about 40 fold, about 40 fold to about 50 fold, about 50 fold to about 60 fold, about 60 fold to about 70 fold, about 70 fold to about 80 fold, about 80 fold to about 90 fold, about 90 fold to about 100 fold, about 100 fold to about 200 fold, from about 200 fold to about 300 fold, from about 300 fold to about 400 fold, from about 400 fold to about 500 fold, from about 500 fold to about 600 fold, from about 600 fold to about 700 fold greater than the proliferation of a comparable immune cell administered without a modified APC.
  • theimmune cell exhibits at least a 2-fold increase in proliferation compared to a comparable composition lacking a modified APC. In some embodiments, the immune cell exhibits at least a 10-fold increase in proliferation compared to a comparable composition lacking a modified APC.
  • Proliferation of an immune cell can be about 2 fold, 10 fold, 2 fold to about 10 fold, about 5 fold to about 10 fold, about 10 fold to about 20 fold, about 20 fold to about 30 fold, about 30 fold to about 40 fold, about 40 fold to about 50 fold, about 50 fold to about 60 fold, about 60 fold to about 70 fold, about 70 fold to about 80 fold, about 80 fold to about 90 fold, about 90 fold to about 100 fold, about 100 fold to about 200 fold, from about 200 fold to about 300 fold, from about 300 fold to about 400 fold, from about 400 fold to about 500 fold, from about 500 fold to about 600 fold, from about 600 fold to about 700 fold greater than the proliferation of a comparable immune cell administered without a modified APC, and wherein the proliferation is ascertained at least about 12, 24, 36, 48, 60, 72, 84, or 96 hours after administration of the composition comprising the modified APC and the immune cell.
  • the enhanced proliferation can be ascertained either in vitro or in vivo.
  • proliferation can comprise quantifying the number of immune cells. Quantifying a number of immune cells can comprise flow cytometry, Trypan Blue exclusion, and/or hemocytometry. Proliferation can also be determined by phenotypic analysis of the immune cells.
  • the amount of modified APC administered to a subject can remain about the same over time in the subject.
  • the modified APC may not be degraded over time, thus retaining the amount administered to the subject.
  • the modified APC that does not degrade over time is a modified B cell.
  • the decrease in the amount of modified APC can be less than about 1%, 2%, 3%, 5%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90%relative to the amount administered, and wherein the decrease is ascertained at least about 12, 24, 36, 48, 60, 72, 84, or 96 hours after administration of the modified APC.
  • the present disclosure provides a vaccine comprising a modified APC or a composition described herein.
  • the composition comprises a modified APC comprising a neoantigen and a T cell that is capable of specifically binding the neoantigen.
  • the present disclosure provides methods of treating a disorder in a subject expressing the neoantigen comprising administering a modified APC, a composition, or a vaccine described herein.
  • the disorder is cancer.
  • the present disclosure provides a method for immune cell enrichment comprising administering to a subject expressing the neoantigen, amodified APC, a composition, or a vaccine described herein.
  • the disclosure provides a method of treating a disorder in a subject in need thereof.
  • An exemplary method can comprise administering to the subject a modified APC comprising a neoantigen and a T cellcapable of specifically binding the neoantigen of the modified APC.
  • the modified APC and the T cell are administered concurrently.
  • the modified APC is administered prior to the T cell.
  • the T cell is administered prior to the modified APC.
  • a modified APC can comprise immune checkpoint inhibitors and/or cytokines described herein.
  • an immune cell described herein further comprises a kill switch.
  • a kill switch can be activated to eliminate the immune cell in cases of severe toxicity, such as hypercytokinemia. This can occur when the immune system has such a strong response that too many inflammatory cytokines are released, which triggermild to severe symptoms including fever, headache, rash, rapid heartbeat, low blood pressure, and breathing difficulties.
  • a kill switch can be a drug-inducible kill-switch.
  • the kill switch can comprise an inducible caspase-9.
  • a cell for example, an immune cell or a modified form thereof.
  • Cells for example, immune cells (e.g., lymphocytes including T cells and NK cells) , can be obtained from a subject.
  • immune cells e.g., lymphocytes including T cells and NK cells
  • subjects include humans, dogs, cats, mice, rats, and transgenic species thereof.
  • samples from a subject from which cells can be derived include, for example, skin, heart, lung, kidney, bone marrow, breast, pancreas, liver, muscle, smooth muscle, bladder, gall bladder, colon, intestine, brain, prostate, esophagus, thyroid, serum, saliva, urine, gastric and digestive fluid, tears, stool, semen, vaginal fluid, interstitial fluids derived from tumorous tissue, ocular fluids, sweat, mucus, earwax, oil, glandular secretions, spinal fluid, hair, fingernails, plasma, nasal swab or nasopharyngeal wash, spinal fluid, cerebral spinal fluid, tissue, throat swab, biopsy, placental fluid, amniotic fluid, cord blood, emphatic fluids, cavity fluids, sputum, pus, microbiota, meconium, breast milk, and/or other excretions or body tissues.
  • a cell can be a population of T cells, NK cell, B cells, and the like obtained from a subject.
  • T cells can be obtained from a number of sources, including PBMCs, bone marrow, lymph node tissue, cord blood, thymus tissue, and tissue from a site of infection, ascites, pleural effusion, spleen tissue, and tumors.
  • T cells can be obtained from a unit of blood collected from a subject using any number of techniques, such as separation.
  • cells from the circulating blood of an individual are obtained by apheresis.
  • the apheresis product typically contains lymphocytes, including T cells, monocytes, granulocytes, B cells, other nucleated white blood cells, red blood cells, and platelets.
  • lymphocytes including T cells, monocytes, granulocytes, B cells, other nucleated white blood cells, red blood cells, and platelets.
  • the cells collected by apheresis can be washed to remove the plasma fraction and placed in appropriate buffers or media for subsequent processing steps.
  • immune cells comprise granulocytes, such as asophils, eosinophils, and neutrophils; mast cells; monocytes, which can develop into macrophages; antigen-presenting cells such as dendritic cells; and lymphocytes, such as natural killer cells (NK cells) , B cells, and T cells.
  • an immune cell is an immune effector cell.
  • An immune effector cell refers to an immune cell that can perform a specific function in response to a stimulus.
  • an immune cell is an immune effector cell which can induce cell death.
  • the immune cell is a lymphocyte.
  • the lymphocyte is a T cell.
  • the T cell is an activated T cell.
  • T cells include both naive and memory cells (e.g. central memory or TCM, effector memory or TEM and effector memory RA or TEMRA) , effector cells (e.g. cytotoxic T cells or CTLs or Tc cells) , helper cells (e.g. Thl, Th2, Th3, Th9, Th7, TFH) , regulatory cells (e.g. Treg, and Trl cells) , natural killer T cells (NKT cells) , tumor infiltrating lymphocytes (TILs) , lymphocyte-activated killer cells (LAKs) , ⁇ ⁇ cells, ⁇ ⁇ cells, and similar unique classes of the T cell lineage.
  • TCM central memory
  • effector cells e.g. cytotoxic T cells or CTLs or Tc cells
  • helper cells e.g. Thl, Th2, Th3, Th9, Th7,
  • T cells can be divided into two broad categories: CD8+ T cells and CD4+ T cells, based on which protein is present on the cell's surface.
  • T cells expressing a subject system can carry out multiple functions, including killing infected cells and activating or recruiting other immune cells.
  • CD8+ T cells are referred to as cytotoxic T cells or cytotoxic T lymphocytes (CTLs) .
  • CTLs expressing a subject system can be involved in recognizing and removing virus-infected cells and cancer cells.
  • CTLs have specialized compartments, or granules, containing cytotoxins that cause apoptosis, e.g., programmed cell death.
  • CD4+ T cells can be subdivided into four sub-sets –Th1, Th2, Th17, and Treg, with “Th” referring to “T helper cell, ” although additional sub-sets may exist.
  • Th1 cells can coordinate immune responses against intracellular microbes, especially bacteria. They can produce and secrete molecules that alert and activate other immune cells, like bacteria-ingesting macrophages.
  • Th2 cells are involved in coordinating immune responses against extracellular pathogens, like helminths (parasitic worms) , by alerting B cells, granulocytes, and mast cells.
  • Th17 cells can produce interleukin 17 (IL-17) , a signaling molecule that activates immune and non-immune cells. Th17 cells are important for recruiting neutrophils.
  • IL-17 interleukin 17
  • a population of immune cells provided herein can be heterogeneous.
  • cells used can be composed of a heterogeneous mixture of CD4 and CD8 T cells.
  • the CD4 and CD8 cells can have phenotypic characteristics of circulating effector T cells.
  • the CD4 and CD8 cells can also have a phenotypic characteristic of effector-memory cells.
  • cells can be central-memory cells.
  • cells include peripheral blood mononuclear cells (PBMC) , peripheral blood lymphocytes (PBL) , and other blood cell subsets such as, but not limited to, T cell, a natural killer cell, a monocyte, a natural killer T cell, a monocyte-precursor cell, a hematopoietic stem cell or a non-pluripotent stem cell.
  • the cell can be any immune cell, including any Tcell such as tumor infiltrating cells (TILs) , such as CD3+ Tcells, CD4+ Tcells, CD8+ Tcells, or any other type of Tcell.
  • TILs tumor infiltrating cells
  • the T cell can also include memory T cells, memory stem T cells, or effector T cells.
  • the T cells can also be selected from a bulk population, for example, selecting T cells from whole blood.
  • the T cells can also be expanded from a bulk population.
  • the T cells can also be skewed towards particular populations and phenotypes.
  • the T cells can be skewed to phenotypically comprise, CD45RO (-) , CCR7 (+) , CD45RA (+) , CD62L (+) , CD27 (+) , CD28 (+) and/or IL-7R ⁇ (+) .
  • Suitable cells can be selected that comprise one of more markers selected from a list comprising: CD45RO (-) , CCR7 (+) , CD45RA (+) , CD62L (+) , CD27 (+) , CD28 (+) and/or IL-7R ⁇ (+) .
  • Cells also include stem cells such as, by way of example, embryonic stem cells, induced pluripotent stem cells, hematopoietic stem cells, neuronal stem cells and mesenchymal stem cells.
  • Cells can comprise any number of primary cells, such as human cells, non-human cells, and/or mouse cells.
  • Cells can be progenitor cells.
  • Cells can be derived from the subject to be treated (e.g., patient) .
  • Host cells can be derived from a human donor.
  • Host cells can be stem memory TSCM cells comprised of CD45RO (-) , CCR7 (+) , CD45RA (+) , CD62L+ (L-selectin) , CD27+, CD28+ and IL-7R ⁇ +, the stem memory cells can also express CD95, IL-2R ⁇ , CXCR3, and LFA-1, and show numerous functional attributes distinctive of the stem memory cells.
  • Host cells can be central memory TCM cells comprising L-selectin and CCR7, the central memory cells can secrete, for example, IL-2, but not IFN ⁇ or IL-4.
  • Cells can also be effector memory TEM cells comprising L-selectin or CCR7 and produce, for example, effector cytokines such as IFN ⁇ and IL-4.
  • an immune cell comprises a lymphocyte.
  • the lymphocyte is a T cell.
  • T cells can be obtained from a number of sources, including peripheral blood mononuclear cells, bone marrow, lymph node tissue, spleen tissue, umbilical cord, and tumors.
  • the lymphocyte is a natural killer cell (NK cell) .
  • NK cell natural killer cell
  • any number of T cell lines available can be used.
  • Immune cells such as lymphocytes (e.g., cytotoxic lymphocytes) can preferably be autologous cells, although heterologous cells can also be used.
  • T cells can be obtained from a unit of blood collected from a subject using any number of techniques, such as separation.
  • Cells from the circulating blood of an individual can be obtained by apheresis or leukapheresis.
  • the apheresis product typically contains lymphocytes, including T cells, monocytes, granulocytes, B cells, other nucleated white blood cells, red blood cells, and platelets.
  • the cells collected by apheresis can be washed to remove the plasma fraction and to place the cells in an appropriate buffer or media, such as phosphate buffered saline (PBS) , for subsequent processing steps. After washing, the cells can be resuspended in a variety of biocompatible buffers, such as Ca-free, Mg-free PBS.
  • PBS phosphate buffered saline
  • the undesirable components of the apheresis sample can be removed and the cells directly resuspended in culture media.
  • Samples can be provided directly by the subject, or indirectly through one or more intermediaries, such as a sample collection service provider or a medical provider (e.g. a physician or nurse) .
  • isolating T cells from peripheral blood leukocytes can include lysing the red blood cells and separating peripheral blood leukocytes from monocytes by, for example, centrifugation through, e.g., a gradient.
  • a specific subpopulation of T cells can be further isolated by positive or negative selection techniques.
  • Negative selection of a T cell population can be accomplished, for example, with a combination of antibodies directed to surface markers unique to the cells negatively selected.
  • One suitable technique includes cell sorting via negative magnetic immunoadherence, which utilizes a cocktail of monoclonal antibodies directed to cell surface markers present on the cells negatively selected.
  • a monoclonal antibody cocktail can include antibodies to CD14, CD20, CD1 lb, CD16, HLA-DR, and CD8.
  • the process of negative selection can be used to produce a desired T cell population that is primarily homogeneous.
  • a composition comprises a mixture of two or more (e.g. 2, 3, 4, 5, or more) different kind of Tcells.
  • the immune cell is a member of an enriched population of cells.
  • One or more desired cell types can be enriched by any suitable method, non-limiting examples of which include treating a population of cells to trigger expansion and/or differentiation to a desired cell type, treatment to stop the growth of undesired cell type (s) , treatment to kill or lyse undesired cell type (s) , purification of a desired cell type (e.g. purification on an affinity column to retain desired or undesired cell types on the basis of one or more cell surface markers) .
  • the enriched population of cells is a population of cells enriched in cytotoxic lymphocytes selected from cytotoxic T cells (also variously known as cytotoxic T lymphocytes, CTLs, T killer cells, cytolytic T cells, CD8+ T cells, and killer T cells) , natural killer (NK) cells, and lymphokine-activated killer (LAK) cells.
  • cytotoxic T cells also variously known as cytotoxic T lymphocytes, CTLs, T killer cells, cytolytic T cells, CD8+ T cells, and killer T cells
  • NK natural killer
  • LAK lymphokine-activated killer
  • the concentration of cells and surface can be varied. In certain embodiments, it can be desirable to significantly decrease the volume in which beads and cells are mixed together (i.e., increase the concentration of cells) , to ensure maximum contact of cells and beads.
  • a concentration of 2 billion cells/mL can be used. In some embodiments, a concentration of 1 billion cells/mL is used. In some embodiments, greater than 100 million cells/mL are used. A concentration of cells of 10, 15, 20, 25, 30, 35, 40, 45, or 50 million cells/mL can be used. In yet another embodiment, a concentration of cells from 75, 80, 85, 90, 95, or 100 million cells/mL can be used. In further embodiments, concentrations of 125 or 150 million cells/mL can be used. Using high concentrations can result in increased cell yield, cell activation, and cell expansion.
  • a variety of target cells can be killed using the systems and methods of the subject disclosure.
  • a target cell to which this method can be applied includes a wide variety of cell types.
  • a target cell can be in vitro.
  • a target cell can be in vivo.
  • a target cell can be ex vivo.
  • a target cell can be an isolated cell.
  • a target cell can be a cell inside of an organism.
  • a target cell can be an organism.
  • a target cell can be a cell in a cell culture.
  • a target cell can be one of a collection of cells.
  • a target cell can be a mammalian cell or derived from a mammalian cell.
  • a target cell can be a rodent cell or derived from a rodent cell.
  • a target cell can be a human cell or derived from a human cell.
  • a target cell can be a prokaryotic cell or derived from a prokaryotic cell.
  • a target cell can be a bacterial cell or can be derived from a bacterial cell.
  • a target cell can be an archaeal cell or derived from an archaeal cell.
  • a target cell can be a eukaryotic cell or derived from a eukaryotic cell.
  • a target cell can be a pluripotent stem cell.
  • a target cell can be a plant cell or derived from a plant cell.
  • a target cell can be an animal cell or derived from an animal cell.
  • a target cell can be an invertebrate cell or derived from an invertebrate cell.
  • a target cell can be a vertebrate cell or derived from a vertebrate cell.
  • a target cell can be a microbe cell or derived from a microbe cell.
  • a target cell can be a fungi cell or derived from a fungi cell.
  • a target cell can be a stem cell or progenitor cell.
  • Target cells can include stem cells (e.g., adult stem cells, embryonic stem cells, induced pluripotent stem (iPS) cells) and progenitor cells (e.g., cardiac progenitor cells, neural progenitor cells, etc. ) .
  • Target cells can include mammalian stem cells and progenitor cells, including rodent stem cells, rodent progenitor cells, human stem cells, human progenitor cells, etc.
  • Clonal cells can comprise the progeny of a cell.
  • a target cell can comprise a target nucleic acid.
  • a target cell can be in a living organism.
  • a target cell can be a genetically modified cell.
  • a target cell can be a host cell.
  • a target cell can be a primary cell.
  • cultures of primary cells can be passaged 0 times, 1 time, 2 times, 4 times, 5 times, 10 times, 15 times or more.
  • Cells can be unicellular organisms. Cells can be grown in culture.
  • a target cell can be a diseased cell.
  • a diseased cell can have altered metabolic, gene expression, and/or morphologic features.
  • a diseased cell can be a cancer cell, a diabetic cell, and a apoptotic cell.
  • a diseased cell can be a cell from a diseased subject. Exemplary diseases can include blood disorders, cancers, metabolic disorders, eye disorders, organ disorders, musculoskeletal disorders, cardiac disease, and the like.
  • the target cells may be harvested from an individual by any method.
  • leukocytes may be harvested by apheresis, leukocytapheresis, density gradient separation, etc.
  • Cells from tissues such as skin, muscle, bone marrow, spleen, liver, pancreas, lung, intestine, stomach, etc. can be harvested by biopsy.
  • An appropriate solution may be used for dispersion or suspension of the harvested cells.
  • Such solution can generally be a balanced salt solution, (e.g. normal saline, phosphate-buffered saline (PBS) , Hank’s balanced salt solution, etc.
  • PBS phosphate-buffered saline
  • Buffers can include HEPES, phosphate buffers, lactate buffers, etc.
  • Cells may be used immediately, or they may be stored (e.g., by freezing) . Frozen cells can be thawed and can be capable of being reused. Cells can be frozen in a DMSO, serum, medium buffer (e.g., 10%DMSO, 50%serum, 40%buffered medium) , and/or some other such common solution used to preserve cells at freezing temperatures.
  • Non-limiting examples of cells which can be target cells include, but are not limited to, lymphoid cells, such as B cell, T cell (Cytotoxic T cell, Natural Killer T cell, Regulatory T cell, T helper cell) , NK cell, cytokine-induced killer (CIK) cells; myeloid cells, such as granulocytes (Basophil granulocyte, Eosinophil granulocyte, Neutrophilgranulocyte/Hypersegmented neutrophil) , Monocyte/Macrophage, Red blood cell (Reticulocyte) , Mast cell, Thrombocyte/Megakaryocyte, Dendritic cell; cells from the endocrine system, including thyroid (Thyroid epithelial cell, Parafollicular cell) , parathyroid (Parathyroid chief cell, Oxyphil cell) , adrenal (Chromaffin cell) , pineal (Pinealocyte) cells; cells of the nervous system, including glial cells (Astrocyte, Microglia) , Magnocellular
  • Apocrine sweat gland cell odoriferous secretion, sex-hormone sensitive
  • Gland of Moll cell in eyelid specialized sweat gland
  • Sebaceous gland cell lipid-rich sebum secretion
  • Bowman's gland cell in nose washes olfactory epithelium
  • Brunner's gland cell in duodenum enzymes and alkaline mucus
  • Seminal vesicle cell secretes seminal fluid components, including fructose for swimming sperm
  • Prostate gland cell secretes seminal fluid components
  • Bulbourethral gland cell massbourethral gland cell
  • Bartholin's gland cell vaginal lubricant secretion
  • Gland of Littre cell Gland of Littre cell
  • Uterus endometrium cell (carbohydrate secretion)
  • Isolated goblet cell of respiratory and digestive tracts micus secretion
  • Duct cell (of seminal vesicle, prostate gland, etc. ) , Epithelial cells lining closed internal body cavities, Ciliated cells with propulsive function, Extracellular matrix secretion cells, Contractile cells; Skeletal muscle cells, stem cell, Heart muscle cells, Blood and immune system cells, Erythrocyte (red blood cell) , Megakaryocyte (platelet precursor) , Monocyte, Connective tissue macrophage (various types) , Epidermal Langerhans cell, Osteoclast (in bone) , Dendritic cell (in lymphoid tissues) , Microglial cell (in central nervous system) , Neutrophil granulocyte, Eosinophil granulocyte, Basophil granulocyte, Mast cell, Helper T cell, Suppressor T cell, Cytotoxic T cell, Natural Killer T cell, B cell, Natural killer cell, Reticulocyte, Stem cells and committed progenitors for the blood and immune system (various types) ,
  • the target cell is a cancer cell.
  • cancer cells include cells of cancers including Acanthoma, Acinic cell carcinoma, Acoustic neuroma, Acral lentiginous melanoma, Acrospiroma, Acute eosinophilic leukemia, Acute lymphoblastic leukemia, Acute megakaryoblastic leukemia, Acute monocytic leukemia, Acute myeloblastic leukemia with maturation, Acute myeloid dendritic cell leukemia, Acute myeloid leukemia, Acute promyelocytic leukemia, Adamantinoma, Adenocarcinoma, Adenoid cystic carcinoma, Adenoma, Adenomatoid odontogenic tumor, Adrenocortical carcinoma, Adult Tcell leukemia, Aggressive NK-cell leukemia, AIDS-Related Cancers, AIDS-related lymphoma, Alveolar soft part sarcoma,
  • the targeted cancer cell represents a subpopulation within a cancer cell population, such as a cancer stem cell.
  • the cancer is of a hematopoietic lineage, such as a lymphoma.
  • the antigen can be a tumor associated antigen.
  • the target cells form a tumor.
  • a tumor treated with the methods herein can result in stabilized tumor growth (e.g., one or more tumors do not increase more than 1%, 5%, 10%, 15%, or 20%in size, and/or do not metastasize) .
  • a tumor is stabilized for at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or more weeks.
  • a tumor is stabilized for at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or more months.
  • a tumor is stabilized for at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more years.
  • the size of a tumor or the number of tumor cells is reduced by at least about 5%, 10%, 15%, 20%, 25, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%or more.
  • the tumor is completely eliminated, or reduced below a level of detection.
  • a subject remains tumor free (e.g. in remission) for at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or more weeks following treatment.
  • a subject remains tumor free for at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or more months following treatment.
  • a subject remains tumor free for at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more years after treatment.
  • Death of target cells can be determined by any suitable method, including, but not limited to, counting cells before and after treatment, or measuring the level of a marker associated with live or dead cells (e.g. live or dead target cells) .
  • Degree of cell death can be determined by any suitable method. In some embodiments, degree of cell death is determined with respect to a starting condition. For example, an individual can have a known starting amount of target cells, such as a starting cell mass of known size or circulating target cells at a known concentration. In such cases, degree of cell death can be expressed as a ratio of surviving cells after treatment to the starting cell population. In some embodiments, degree of cell death can be determined by a suitable cell death assay. A variety of cell death assays are available, and can utilize a variety of detection methodologies. Examples of detection methodologies include, without limitation, the use of cell staining, microscopy, flow cytometry, cell sorting, and combinations of these.
  • the efficacy of treatment in reducing tumor size can be determined by measuring the percentage of resected tissue that is necrotic (i.e., dead) .
  • a treatment is therapeutically effective if the necrosis percentage of the resected tissue is greater than about 20%(e.g., at least about 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100%) .
  • the necrosis percentage of the resected tissue is 100%, that is, no living tumor tissue is present or detectable.
  • Exposing a target cell to an immune cell or population of immune cells disclosed herein can be conducted either in vitro or in vivo. Exposing a target cell to an immune cell or population of immune cells generally refers to bringing the target cell in contact with the immune cell and/or in sufficient proximity such that an antigen of a target cell (e.g., membrane bound or non-membrane bound) can bind to the switch molecule and/or TCR complexexpressed in the immune cell. Exposing a target cell to an immune cell or population of immune cells in vitro can be accomplished by co-culturing the target cells and the immune cells. Target cells and immune cells can be co-cultured, for example, as adherent cells or alternatively in suspension.
  • a target cell to an immune cell or population of immune cells generally refers to bringing the target cell in contact with the immune cell and/or in sufficient proximity such that an antigen of a target cell (e.g., membrane bound or non-membrane bound) can bind to the switch molecule and/or T
  • Target cells and immune cells can be co-cultured in various suitable types of cell culture media, for example with supplements, growth factors, ions, etc.
  • Exposing a target cell to an immune cell or population of immune cells in vivo can be accomplished, in some cases, by administering the immune cells to a subject, for example a human subject, and allowing the immune cells to localize to the target cell via the circulatory system.
  • an immune cell can be delivered to the immediate area where a target cell is localized, for example, by direct injection.
  • Exposing can be performed for any suitable length of time, for example at least 1 minute, at least 5 minutes, at least 10 minutes, at least 30 minutes, at least 1 hour, at least 2 hours, at least 3 hours, at least 4 hours, at least 5 hours, at least 6 hours, at least 7 hours, at least 8 hours, at least 12 hours, at least 16 hours, at least 20 hours, at least 24 hours, at least 2 days, at least 3 days, at least 4 days, at least 5 days, at least 6 days, at least 1 week, at least 2 weeks, at least 3 weeks, at least 1 month, or longer.
  • compositions and molecules e.g., polypeptides and/or nucleic acid encoding polypeptides
  • a host cell such as an immune cell.
  • the various components can be delivered simultaneously or temporally separated. The choice of method can be dependent on the type of cell being transformed and/or the circumstances under which the transformation is taking place (e.g., in vitro, ex vivo, or in vivo) .
  • a method of delivery can involve contacting a target polynucleotide or introducing into a cell (or a population of cells such as immune cells) one or more nucleic acids comprising nucleotide sequences encoding the compositions of the disclosure.
  • Suitable nucleic acids comprising nucleotide sequences encoding the compositions of the disclosure can include expression vectors, where an expression vector comprising a nucleotide sequence encoding one or more compositions of the disclosure is a recombinant expression vector.
  • Non-limiting examples of delivery methods or transformation include, for example, viral or bacteriophage infection, transfection, conjugation, protoplast fusion, lipofection, electroporation, calcium phosphate precipitation, polyethyleneimine (PEI) -mediated transfection, DEAE-dextran mediated transfection, liposome-mediated transfection, particle gun technology, calcium phosphate precipitation, direct micro injection, and nanoparticle-mediated nucleic acid delivery.
  • delivery methods or transformation include, for example, viral or bacteriophage infection, transfection, conjugation, protoplast fusion, lipofection, electroporation, calcium phosphate precipitation, polyethyleneimine (PEI) -mediated transfection, DEAE-dextran mediated transfection, liposome-mediated transfection, particle gun technology, calcium phosphate precipitation, direct micro injection, and nanoparticle-mediated nucleic acid delivery.
  • PEI polyethyleneimine
  • the present disclosure provides methods comprising delivering one or more polynucleotides encoding a gene described herein, or one or more vectors, or one or more transcripts thereof, and/or one or proteins transcribed therefrom, to a host cell.
  • the disclosure further provides cells produced by such methods, and organisms (such as animals, plants, or fungi) comprising or produced from such cells.
  • Non-viral vector delivery systems can include DNA plasmids, RNA (e.g. a transcript of a vector described herein) , naked nucleic acid, and nucleic acid complexed with a delivery vehicle, such as a liposome.
  • RNA e.g. a transcript of a vector described herein
  • Viral vector delivery systems can include DNA and RNA viruses, which can have either episomal or integrated genomes after delivery to the cell.
  • Methods of non-viral delivery of nucleic acids can include lipofection, nucleofection, microinjection, biolistics, virosomes, liposomes, immunoliposomes, polycation or lipid: nucleic acid conjugates, naked DNA, artificial virions, and agent-enhanced uptake of DNA.
  • Cationic and neutral lipids that are suitable for efficient receptor-recognition lipofection of polynucleotides can be used. Delivery can be to cells (e.g. in vitro or ex vivo administration) or target tissues (e.g. in vivo administration) .
  • the preparation of lipid nucleic acid complexes, including targeted liposomes such as immunolipid complexes, can be used.
  • RNA or DNA viral based systems can be used to target specific cells in the body and trafficking the viral payload to the nucleus of the cell.
  • Viral vectors can be administered directly (in vivo) or they can be used to treat cells in vitro, and the modified cells can optionally be administered (ex vivo) .
  • Viral based systems can include retroviral, lentivirus, adenoviral, adeno-associated and herpes simplex virus vectors for gene transfer. Integration in the host genome can occur with the retrovirus, lentivirus, and adeno-associated virus gene transfer methods, which can result in long term expression of the inserted transgene. High transduction efficiencies can be observed in many different cell types and target tissues.
  • Lentiviral vectors are retroviral vectors that can transduce or infect non-dividing cells and produce high viral titers. Selection of a retroviral gene transfer system can depend on the target tissue. Retroviral vectors can comprise cis-acting long terminal repeats with packaging capacity for up to 6-10 kb of foreign sequence. The minimum cis-acting LTRs can be sufficient for replication and packaging of the vectors, which can be used to integrate the therapeutic gene into the target cell to provide permanent transgene expression.
  • Retroviral vectors can include those based upon murine leukemia virus (MuLV) , gibbon ape leukemia virus (GaLV) , Simian Immuno deficiency virus (SIV) , human immuno deficiency virus (HIV) , and combinations thereof.
  • MoLV murine leukemia virus
  • GaLV gibbon ape leukemia virus
  • SIV Simian Immuno deficiency virus
  • HAV human immuno deficiency virus
  • adenoviral-based systems can be used to deliver a polynucleotide to a host cell.
  • Adenoviral-based systems can lead to transient expression of the transgene.
  • Adenoviral based vectors can have high transduction efficiency in cells and may not require cell division. High titer and levels of expression can be obtained with adenoviral based vectors.
  • Adeno-associated virus ( “AAV” ) vectors can be used to transduce cells with target nucleic acids, e.g., in the in vitro production of nucleic acids and peptides, and for in vivo and ex vivo gene therapy procedures.
  • Packaging cells can be used to form virus particles capable of infecting a host cell.
  • Such cells can include 293 cells, (e.g., for packaging adenovirus) , and Psi2 cells or PA317 cells (e.g., for packaging retrovirus) .
  • Viral vectors can be generated by producing a cell line that packages a nucleic acid vector into a viral particle.
  • the vectors can contain the minimal viral sequences required for packaging and subsequent integration into a host.
  • the vectors can contain other viral sequences being replaced by an expression cassette for the polynucleotide (s) to be expressed.
  • the missing viral functions can be supplied in trans by the packaging cell line.
  • AAV vectors can comprise ITR sequences from the AAV genome which are required for packaging and integration into the host genome.
  • Viral DNA can be packaged in a cell line, which can contain a helper plasmid encoding the other AAV genes, namely rep and cap, while lacking ITR sequences.
  • the cell line can also be infected with adenovirus as a helper.
  • the helper virus can promote replication of the AAV vector and expression of AAV genes from the helper plasmid. Contamination with adenovirus can be reduced by, e.g., heat treatment to which adenovirus is more sensitive than AAV.
  • a host cell can be transiently or non-transiently transfected with one or more vectors described herein.
  • a cell can be transfected as it naturally occurs in a subject.
  • a cell can be taken or derived from a subject and transfected.
  • a cell can be derived from cells taken from a subject, such as a cell line.
  • a cell transfected with one or more vectors described herein is used to establish a new cell line comprising one or more vector-derived sequences.
  • a cell transiently transfected with the compositions of the disclosure (such as by transient transfection of one or more vectors, or transfection with RNA) is used to establish a new cell line comprising cells containing the modification but lacking any other exogenous sequence.
  • vectors for eukaryotic host cells include pXT1, pSG5 pSVK3, pBPV, pMSG, and pSVLSV40
  • a “transposon system” refers to a plasmid-based gene transfer system comprising a transposon and a transposase.
  • a transposon expression construct can be used to deliver a polynucleotide to a host cell.
  • a transposon expression construct can comprise a polynucleotide encoding a neoantigen.
  • an exogenous neoantigen or immunogenicity enhancer is introduced to a host cell using a transposon expression construct.
  • a “transposon” or “transposable element” refers to a mobile genetic unit that can move positions within a DNA molecule in the presence of a transposase.
  • Transposons mobilize through a cut-and-paste mechanism in which a transposase enzyme binds to DNA at inverted repeats and catalyzes the excision of the element from a DNA molecule and inserts the element in another location in the DNA. This process of horizontal gene transfer can be used to introduce a gene into a cell.
  • Transposons that can be used to introduce an exogenous gene into a cell include, for example, the sleeping beauty transposon and the piggyBac transposon.
  • Contacting the cells with a composition of the disclosure can occur in any culture media and under any culture conditions that promote the survival of the cells.
  • cells may be suspended in any appropriate nutrient medium that is convenient, such as Iscove’s modified DMEM or RPMI 1640, supplemented with fetal calf serum or heat inactivated goat serum (about 5-10%) , L-glutamine, a thiol, particularly 2-mercaptoethanol, and antibiotics, e.g. penicillin and streptomycin.
  • the culture may contain growth factors to which the cells are responsive.
  • Growth factors as defined herein, are molecules capable of promoting survival, growth, and/or differentiation of cells, either in culture or in the intact tissue, through specific effects on a transmembrane receptor. Growth factors can include polypeptides and non-polypeptide factors.
  • the chosen delivery system is targeted to specific tissue or cell types.
  • tissue-or cell-targeting of the delivery system is achieved by binding the delivery system to tissue-or cell-specific markers, such as cell surface proteins.
  • tissue-or cell-specific markers such as cell surface proteins.
  • Viral and non-viral delivery systems can be customized to target tissue or cell-types of interest.
  • compositions containing molecules (e.g., polypeptides and/or nucleic acids encoding polypeptides) or immune cells described herein can be administered for prophylactic and/or therapeutic treatments.
  • the compositions can be administered to a subject already suffering from a disease or condition, in an amount sufficient to cure or at least partially arrest the symptoms of the disease or condition, or to cure, heal, improve, or ameliorate the condition.
  • Amounts effective for this use can vary based on the severity and course of the disease or condition, previous therapy, the subject’s health status, weight, and response to the drugs, and the judgment of the treating physician.
  • Multiple therapeutic agents can be administered in any order or simultaneously. If simultaneously, the multiple therapeutic agents can be provided in a single, unified form, or in multiple forms, for example, as multiple separate pills.
  • the molecules can be packed together or separately, in a single package or in a plurality of packages.
  • One or all of the therapeutic agents can be given in multiple doses. If not administered simultaneously, the timing between the multiple doses may vary to as much as about a month.
  • Molecules described herein can be administered before, during, or after the occurrence of a disease or condition, and the timing of administering the composition containing a compound can vary.
  • the pharmaceutical compositions can be used as a prophylactic and can be administered continuously to subjects with a propensity to conditions or diseases in order to prevent the occurrence of the disease or condition.
  • the molecules and pharmaceutical compositions can be administered to a subject during or as soon as possible after the onset of the symptoms.
  • the administration of the molecules can be initiated within the first 48 hours of the onset of the symptoms, within the first 24 hours of the onset of the symptoms, within the first 6 hours of the onset of the symptoms, or within 3 hours of the onset of the symptoms.
  • the initial administration can be via any route practical, such as by any route described herein using any formulation described herein.
  • a molecule can be administered as soon as is practicable after the onset of a disease or condition is detected or suspected, and for a length of time necessary for the treatment of the disease, such as, for example, from about 1 month to about 3 months.
  • the length of treatment can vary for each subject.
  • a molecule can be packaged into a biological compartment.
  • a biological compartment comprising the molecule can be administered to a subject.
  • Biological compartments can include, but are not limited to, viruses (lentivirus, adenovirus) , nanospheres, liposomes, quantum dots, nanoparticles, microparticles, nanocapsules, vesicles, polyethylene glycol particles, hydrogels, and micelles.
  • a biological compartment can comprise a liposome.
  • a liposome can be a self-assembling structure comprising one or more lipid bilayers, each of which can comprise two monolayers containing oppositely oriented amphipathic lipid molecules.
  • Amphipathic lipids can comprise a polar (hydrophilic) headgroup covalently linked to one or two or more non-polar (hydrophobic) acyl or alkyl chains.
  • Energetically unfavorable contacts between the hydrophobic acyl chains and a surrounding aqueous medium induce amphipathic lipid molecules to arrange themselves such that polar headgroups can be oriented towards the bilayer’s surface and acyl chains are oriented towards the interior of the bilayer, effectively shielding the acyl chains from contact with the aqueous environment.
  • Examples of preferred amphipathic compounds used in liposomes can include phosphoglycerides and sphingolipids, representative examples of which include phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidic acid, phoasphatidylglycerol, palmitoyloleoyl phosphatidylcholine, lysophosphatidylcholine, lysophosphatidylethanolamine, dimyristoylphosphatidylcholine (DMPC) , dipalmitoylphosphatidylcholine (DPPC) , dioleoylphosphatidylcholine, distearoylphosphatidylcholine (DSPC) , dilinoleoylphosphatidylcholine and egg sphingomyelin, or any combination thereof.
  • DMPC dimyristoylphosphatidy
  • a biological compartment can comprise a nanoparticle.
  • a nanoparticle can comprise a diameter of from about 40 nanometers to about 1 . 5 micrometers, from about 50 nanometers to about 1 . 2 micrometers, from about 60 nanometers to about 1 micrometer, from about 70 nanometers to about 800 nanometers, from about 80 nanometers to about 600 nanometers, from about 90 nanometers to about 400 nanometers, from about 100 nanometers to about 200 nanometers.
  • the release rate can be slowed or prolonged and as the size of the nanoparticle decreases, the release rate can be increased.
  • the amount of albumin in the nanoparticles can range from about 5%to about 85%albumin (v/v) , from about 10%to about 80%, from about 15%to about 80%, from about 20%to about 70%albumin (v/v) , from about 25%to about 60%, from about 30%to about 50%, or from about 35%to about 40%.
  • the pharmaceutical composition can comprise up to 30, 40, 50, 60, 70 or 80%or more of the nanoparticle.
  • the nucleic acid molecules of the disclosure can be bound to the surface of the nanoparticle.
  • a biological compartment can comprise a virus.
  • the virus can be a delivery system for the pharmaceutical compositions of the disclosure.
  • Exemplary viruses can include lentivirus, retrovirus, adenovirus, herpes simplex virus I or II, parvovirus, reticuloendotheliosis virus, and adeno-associated virus (AAV) .
  • Pharmaceutical compositions of the disclosure can be delivered to a cell using a virus.
  • the virus can infect and transduce the cell in vivo, ex vivo, or in vitro. In ex vivo and in vitro delivery, the transduced cells can be administered to a subject in need of therapy.
  • compositions can be packaged into viral delivery systems.
  • the compositions can be packaged into virions by a HSV-1 helper virus-free packaging system.
  • Viral delivery systems can be administered by direct injection, stereotaxic injection, intracerebroventricularly, by minipump infusion systems, by convection, catheters, intravenous, parenteral, intraperitoneal, and/or subcutaenous injection, to a cell, tissue, or organ of a subject in need.
  • cells can be transduced in vitro or ex vivo with viral delivery systems.
  • the transduced cells can be administered to a subject having a disease.
  • a stem cell can be transduced with a viral delivery system comprising a pharmaceutical composition and the stem cell can be implanted in the patient to treat a disease.
  • the dose of transduced cells given to a subject can be about 1 ⁇ 10 5 cells/kg, about 5 ⁇ 10 5 cells/kg, about 1 ⁇ 10 6 cells/kg, about 2 ⁇ 10 6 cells/kg, about 3 ⁇ 10 6 cells/kg, about 4 ⁇ 10 6 cells/kg, about 5 ⁇ 10 6 cells/kg, about 6 ⁇ 10 6 cells/kg, about 7 ⁇ 10 6 cells/kg, about 8 ⁇ 10 6 cells/kg, about 9 ⁇ 10 6 cells/kg, about 1 ⁇ 10 7 cells/kg, about 5 ⁇ 10 7 cells/kg, about 1 ⁇ 10 8 cells/kg, or more in one single dose.
  • Introduction of the biological compartments into cells can occur by viral or bacteriophage infection, transfection, conjugation, protoplast fusion, lipofection, electroporation, calcium phosphate precipitation, polyethyleneimine (PEI) -mediated transfection, DEAE-dextran mediated transfection, liposome-mediated transfection, particle gun technology, calcium phosphate precipitation, direct micro-injection, nanoparticle-mediated nucleic acid delivery, and the like.
  • PEI polyethyleneimine
  • immune cells expressing a subject system are administered.
  • Immune cells expressing a subject system can be administered before, during, or after the occurrence of a disease or condition, and the timing of administering the immune cells can vary.
  • immune cells expressing a subject system can be used as a prophylactic and can be administered continuously to subjects with a propensity to conditions or diseases in order to prevent the occurrence of the disease or condition.
  • the immune cells can be administered to a subject during or as soon as possible after the onset of the symptoms. The administration can be initiated within the first 48 hours of the onset of the symptoms, within the first 24 hours of the onset of the symptoms, within the first 6 hours of the onset of the symptoms, or within 3 hours of the onset of the symptoms.
  • the initial administration can be via any suitable route, such as by any route described herein using any formulation described herein.
  • Immune cells can be administered as soon as is practicable after the onset of a disease or condition is detected or suspected, and for a length of time necessary for the treatment of the disease, such as, for example, from about 1 month to about 3 months.
  • the length of treatment can vary for each subject.
  • a molecule (e.g., polypeptide and/or nucleic acid) described herein can be present in a composition in a range of from about 1 mg to about 2000 mg; from about 5 mg to about 1000 mg, from about 10 mg to about 25 mg to 500 mg, from about 50 mg to about 250 mg, from about 100 mg to about 200 mg, from about 1 mg to about 50 mg, from about 50 mg to about 100 mg, from about 100 mg to about 150 mg, from about 150 mg to about 200 mg, from about 200 mg to about 250 mg, from about 250 mg to about 300 mg, from about 300 mg to about 350 mg, from about 350 mg to about 400 mg, from about 400 mg to about 450 mg, from about 450 mg to about 500 mg, from about 500 mg to about 550 mg, from about 550 mg to about 600 mg, from about 600 mg to about 650 mg, from about 650 mg to about 700 mg, from about 700 mg to about 750 mg, from about 750 mg to about 800 mg, from about 800 mg to about 850 mg, from about 850 mg to about 900
  • a molecule (e.g., polypeptide and/or nucleic acid) described herein can be present in a composition in an amount of about 1 mg, about 2 mg, about 3 mg, about 4 mg, about 5 mg, about 10 mg, about 15 mg, about 20 mg, about 25 mg, about 30 mg, about 35 mg, about 40 mg, about 45 mg, about 50 mg, about 55 mg, about 60 mg, about 65 mg, about 70 mg, about 75 mg, about 80 mg, about 85 mg, about 90 mg, about 95 mg, about 100 mg, about 125 mg, about 150 mg, about 175 mg, about 200 mg, about 250 mg, about 300 mg, about 350 mg, about 400 mg, about 450 mg, about 500 mg, about 550 mg, about 600 mg, about 650 mg, about 700 mg, about 750 mg, about 800 mg, about 850 mg, about 900 mg, about 950 mg, about 1000 mg, about 1050 mg, about 1100 mg, about 1150 mg, about 1200 mg, about 1250 mg, about 1300 mg, about 1350 mg,
  • a molecule (e.g., polypeptide and/or nucleic acid) described herein can be present in a composition that provides at least 0.1, 0.5, 1, 1.5, 2, 2.5 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 10, or more units of activity/mg molecule.
  • the activity can be regulation of gene expression.
  • the total number of units of activity of the molecule delivered to a subject is at least 25,000, 30,000, 35,000, 40,000, 45,000, 50,000, 60,000, 70,000, 80,000, 90,000, 110,000, 120,000, 130,000, 140,000, 150,000, 160,000, 170,000, 180,000, 190,000, 200,000, 210,000, 220,000, 230,000, 250,000, or more units.
  • the total number of units of activity of the molecule delivered to a subject is at most 25,000, 30,000, 35,000, 40,000, 45,000, 50,000, 60,000, 70,000, 80,000, 90,000, 110,000, 120,000, 130,000, 140,000, 150,000, 160,000, 170,000, 180,000, 190,000, 200,000, 210,000, 220,000, 230,000, 250,000, or more units.
  • pharmacokinetic and pharmacodynamic data can be obtained.
  • Appropriate pharmacokinetic and pharmacodynamic profile components describing a particular composition can vary due to variations in drug metabolism in human subjects.
  • Pharmacokinetic and pharmacodynamic profiles can be based on the determination of the mean parameters of a group of subjects.
  • the group of subjects includes any reasonable number of subjects suitable for determining a representative mean, for example, 5 subjects, 10 subjects, 15 subjects, 20 subjects, 25 subjects, 30 subjects, 35 subjects, or more.
  • the mean can be determined by calculating the average of all subject's measurements for each parameter measured.
  • a dose can be modulated to achieve a desired pharmacokinetic or pharmacodynamics profile, such as a desired or effective blood profile, as described herein.
  • the pharmacokinetic parameters can be any parameters suitable for describing a molecule.
  • the Cmax can be, for example, not less than about 25 ng/mL; not less than about 50 ng/mL; not less than about 75 ng/mL; not less than about 100 ng/mL; not less than about 200 ng/mL; not less than about 300 ng/mL; not less than about 400 ng/mL; not less than about 500 ng/mL; not less than about 600 ng/mL; not less than about 700 ng/mL; not less than about 800 ng/mL; not less than about 900 ng/mL; not less than about 1000 ng/mL; not less than about 1250 ng/mL; not less than about 1500 ng/mL; not less than about 1750 ng/mL; not less than about 2000 ng/mL; or any other Cmax appropriate for describing a pharmacokinetic profile of a molecule described herein.
  • the Tmax of a molecule described herein can be, for example, not greater than about 0.5 hours, not greater than about 1 hours, not greater than about 1.5 hours, not greater than about 2 hours, not greater than about 2.5 hours, not greater than about 3 hours, not greater than about 3.5 hours, not greater than about 4 hours, not greater than about 4.5 hours, not greater than about 5 hours, or any other Tmax appropriate for describing a pharmacokinetic profile of a molecule described herein.
  • the AUC (0-inf) of a molecule described herein can be, for example, not less than about 50 ng ⁇ hr/mL, not less than about 100 ng/hr/mL, not less than about 150 ng/hr/mL, not less than about 200 ng ⁇ hr/mL, not less than about 250 ng/hr/mL, not less than about 300 ng/hr/mL, not less than about 350 ng/hr/mL, not less than about 400 ng/hr/mL, not less than about 450 ng/hr/mL, not less than about 500 ng/hr/mL, not less than about 600 ng/hr/mL, not less than about 700 ng/hr/mL, not less than about 800 ng/hr/mL, not less than about 900 ng/hr/mL, not less than about 1000 ng ⁇ hr/mL, not less than about 1250 ng/hr/mL, not less than about 1500
  • the plasma concentration of a molecule described herein about one hour after administration can be, for example, not less than about 25 ng/mL, not less than about 50 ng/mL, not less than about 75 ng/mL, not less than about 100 ng/mL, not less than about 150 ng/mL, not less than about 200 ng/mL, not less than about 300 ng/mL, not less than about 400 ng/mL, not less than about 500 ng/mL, not less than about 600 ng/mL, not less than about 700 ng/mL, not less than about 800 ng/mL, not less than about 900 ng/mL, not less than about 1000 ng/mL, not less than about 1200 ng/mL, or any other plasma concentration of a molecule described herein.
  • the pharmacodynamic parameters can be any parameters suitable for describing pharmaceutical compositions of the disclosure.
  • the pharmacodynamic profile can exhibit decreases in factors associated with inflammation after, for example, about 2 hours, about 4 hours, about 8 hours, about 12 hours, or about 24 hours.
  • a subject can be a human.
  • a subject can be a mammal (e.g., rat, mouse, cow, dog, pig, sheep, horse) .
  • a subject can be a vertebrate or an invertebrate.
  • a subject can be a laboratory animal.
  • a subject can be a patient.
  • a subject can be suffering from a disease.
  • a subject can display symptoms of a disease.
  • a subject may not display symptoms of a disease, but still have a disease.
  • a subject can be under medical care of a caregiver (e.g., the subject is hospitalized and is treated by a physician) .
  • a subject can be a plant or a crop.
  • the disclosure provides methods for preparing a modified APC comprising a neoantigen.
  • anAPC can be obtained autologously from a tumor or cancer patient, or an allogenic donor.
  • the isolated APC can be B cells, dendritic cells, or a combination thereof.
  • a neoantigen specific to a tumor to be targeted can be identified, for example, by analyzing somatic cell mutations in a tumor in a subject.
  • the identified neoantigen can beintroduced into the isolated APC to generate modified APCs comprising the neontigen.
  • Neoantigens can be introduced into APCs as polynucleotides (e.g., DNA, RNA, vector) encoding the neoantigen, or as a polypeptide.
  • Neoantigen presentation by the APC can be induced using a combination of the immune cell machinery and/or in vitro cultivation methods.
  • neoantigen loading on APCs can be performed by disrupting tumor cells from a patient to release tumor proteins. The tumor proteins can then be mixed with the APC to allow immune cell uptake via endocytosis and result in neoantigen presentation by the APC.
  • Neoantigen loading can be performed before or after in vitro cultivation of the immune cell during the proliferation process.
  • the present disclosure provides a method of preparing a composition comprising a modifiedAPC comprising a neoantigen and an immune cell such as a T cell capable of specifically recognizing the neoantigen.
  • a modified APC comprising a neoantigen can be mixed or co-cultivated with an immune cell such as a T cell of peripheral origin or a tumor infiltrating lymphocyte (TIL) from a tumor in vitro to generate modified T cells capable of specifically recognizing and binding the neoantigen.
  • the modified T cells can then be isolated from the mixture.
  • the T cells can be genetically modified before or after exposure to the neoantigen, for example, to introduce the switch molecule.
  • the modified T cells can be used in combination with a modified APCin vivo such that the modified T cell and the modified APC share an overlapping time window of action and the infused modified T cell can be further activated in vivo by the modified APC.
  • the modified T cell and the modified APC may not be infused together.
  • a modified antigen-presenting cell comprising a neoantigen.
  • neoantigen comprises a peptide fragment of a protein encoded by a mutated gene, wherein the gene is selected from ABL1, ACOl 1997, ACVR2A, AFP, AKT1, ALK, ALPPL2, ANAPC1, APC, ARID1A, AR, AR-v7, ASCL2, ⁇ 2 ⁇ , BRAF, BTK, C15ORF40, CDH1, CLDN6, CNOT1, CT45A5, CTAG1B, DCT, DKK4, EEF1B2, EEF1DP3, EGFR, EIF2B3, env, EPHB2, ERBB3, ESR1, ESRP1, FAM11 IB, FGFR3, FRG1B, GAGE1, GAGE 10, GATA3, GBP3, HER2, IDH1, JAK1, KIT, KRAS, LMAN1, MABEB 16, MAGEA1, MAGEA10, MAGEA4, MAGEA8, MAGEB 17, MAGEB4, MAG
  • composition comprising:
  • a T cell capable of specifically binding said neoantigen of said modified APC.
  • composition of embodiment 6, wherein said T cell is a T cell having contactedwith said modified APC.
  • ECD extracellular domain of a protein that, in an unmodified T cell, elicits an immune cell inactivation signal upon binding to a ligand of said protein, wherein said ECD is fused to an intracellular domain (ICD) of a co-stimulatory molecule that mediates an immune cell activation signal,
  • ICD intracellular domain
  • binding of said switch molecule to said ligand of said protein yields said immune cell activation signal in said modified T cell instead of said immune cell inactivation signal.
  • composition of embodiment 8, wherein said protein that elicits the immune cell inactivation signal is a signaling receptor.
  • composition of embodiment 8, wherein said protein that elicits the immune cell inactivation signal is selected from the group consisting of: a signaling receptor, a checkpoint receptor, a cytokine receptor, a chemokine receptor, a growth factor receptor, and a hormone receptor.
  • composition of embodiment 8, wherein said protein that elicits the immune cell inactivation signal is selected from the group consisting of: transforming growth factor-beta receptor (TGF-beta-R) , programmed cell death 1 (PD-1) , cytotoxic T-lymphocyte associated protein 4 (CTLA-4) , B and T lymphocyte attenuator (BTLA) , a killer immunoglobulin-like receptor (KIR) , indoleamine 2, 3-dioxygenase (IDO) , lymphocyte activation gene-3 (LAG3) , T cell immunoglobulin mucin 3 (TIM-3) , and TIGIT.
  • TGF-beta-R transforming growth factor-beta receptor
  • PD-1 programmed cell death 1
  • CTLA-4 cytotoxic T-lymphocyte associated protein 4
  • B and T lymphocyte attenuator BTLA
  • KIR killer immunoglobulin-like receptor
  • IDO indoleamine 2, 3-dioxygenase
  • composition of any one of embodiments 8-11, wherein said co-stimulatory molecule is selected from the group consisting of: interleukin-2 receptor (IL-2R) , interleukin-12 receptor (IL-12R) , B7-H3, CD2, CD3, CD4, CD7, CD8, CD27, CD28, CD30, CD40, 4-1BB/CD137, ICOS, lymphocyte function-associated antigen-1 (LFA-1) , LIGHT, NKG2C, OX40, and PD-1.
  • IL-2R interleukin-2 receptor
  • IL-12R interleukin-12 receptor
  • B7-H3, CD2, CD3, CD4, CD7, CD8, CD27, CD28, CD30, CD40, 4-1BB/CD137, ICOS lymphocyte function-associated antigen-1 (LFA-1) , LIGHT, NKG2C, OX40, and PD-1.
  • LFA-1 lymphocyte function-associated antigen-1
  • composition of embodiment 12, wherein said activation factor is a soluble cytokine, a soluble chemokine, or a growth factor.
  • composition of embodiment 12, wherein said activation factor is a soluble cytokine, and wherein said soluble cytokine is IL-1, IL-2, IL-6, IL-7, IL-8, IL-10, IL-12, IL-15, IL-21, TNF, TGF, IFN, or any functional fragment or variant thereof.
  • said immune cell activation signal comprises a clonal expansion of said modified T cell; cytokine release by said modified T cell; cytotoxicity of said modified T cell; proliferation of said modified T cell; differentiation, dedifferentiation or transdifferentiation of said modified T cell; movement and/or trafficking of said modified T cell; exhaustion and/or reactivation of said modified T cell; and release of other intercellular molecules, metabolites, chemical compounds, or combinations thereof by said modified T cell.
  • composition of any one of embodiments 8-16 wherein upon binding of said switch molecule of said modified T cell to said ligand of said protein, said modified T cell exhibits enhanced neoantigen binding as compared to an unmodified T cell.
  • composition of embodiment 19, wherein said cytokine is IFN-gamma or IL-2.
  • composition of any one of embodiments, wherein said modified T cell comprises a T cell receptor (TCR) complex capable of specifically binding to said neoantigen.
  • TCR T cell receptor
  • composition of embodiment 20, wherein said TCR complex is an endogenous TCR complex.
  • composition of embodiment 20, wherein said TCR complex is an exogenous TCR complex.
  • a vaccine comprising a modified APC of any one of embodiments 1-5 or a composition of any one of embodiments 6-27.
  • a method of treating a disorder in a subject expressing said neoantigen comprising administering a modified APC of any one of embodiments 1-5, a composition of any one of embodiments 6-27, or a vaccine of embodiment 28.
  • a method for immune cell enrichment comprising administering to a subject expressing said neoantigen a composition of any one of embodiments 6-27 or a vaccine of embodiment 28.
  • T cell capable of specifically binding said neoantigen of said modified APC
  • modified APC and the T cell are administered concurrently or separately to the subject.
  • T cell is a modified T cell comprising a switch molecule, wherein said switch molecule comprises:
  • ECD extracellular domain of a protein that, in an unmodified T cell, elicits an immune cell inactivation signal upon binding to a ligand of said protein, wherein said ECD is fused to an intracellular domain (ICD) of a co-stimulatory molecule that mediates an immune cell activation signal,
  • ICD intracellular domain
  • binding of said switch molecule to said ligand of said protein yields said immune cell activation signal in said modified T cell instead of said immune cell inactivation signal.
  • said protein that elicits the immune cell inactivation signal is selected from the group consisting of: a signaling receptor, a checkpoint receptor, a cytokine receptor, a chemokine receptor, a growth factor receptor, and a hormone receptor.
  • TGF-beta-R transforming growth factor-beta receptor
  • PD-1 programmed cell death 1
  • CTLA-4 cytotoxic T-lymphocyte associated protein 4
  • B and T lymphocyte attenuator BTLA
  • KIR killer immunoglobulin-like receptor
  • IDO indoleamine 2, 3-dioxygenase
  • LAG3 lymphocyte activation gene-3
  • TIM-3 T cell immunoglobulin mucin 3
  • TIGIT transforming growth factor-beta receptor
  • IL-2R interleukin-2 receptor
  • IL-12R interleukin-12 receptor
  • LFA-1 lymphocyte function-associated antigen-1
  • activation factor is a soluble cytokine, a soluble chemokine, or a growth factor.
  • said activation factor is a soluble cytokine
  • said soluble cytokine is IL-1, IL-2, IL-6, IL-7, IL-8, IL-10, IL-12, IL-15, IL-21, TNF, TGF, IFN, or any functional fragment or variant thereof.
  • said immune cell activation signal comprises a clonal expansion of said modified T cell; cytokine release by said modified T cell; cytotoxicity of said modified T cell; proliferation of said modified T cell; differentiation, dedifferentiation or transdifferentiation of said modified T cell; movement and/or trafficking of said modified T cell; exhaustion and/or reactivation of said modified T cell; and release of other intercellular molecules, metabolites, chemical compounds, or combinations thereof by said modified T cell.
  • TCR complex is an endogenous TCR complex.
  • Example 1 Preparation of neoantigen-loaded B cell vaccine (neoB) and neoantigen-loaded dendritic cell (DC) vaccine (neoDC) .
  • PMBCs peripheral blood mononuclear cells
  • B cells Peripheral blood was collected from veins of patients. PMBCs were isolated using lymphocyte separation solution. CD19+ B cells were sorted and quantitated using magnetic beads using an anti-CD19 antibody. B cells were amplified by cultivating in relevant media and cytokines. On Day 12, amplified B cells were collected and quantitated, resulting in 10-to 30-fold amplification.
  • PBMCs peripheral blood was collected directly from veins of patients or by cytapheresis. PBMCs were isolated with lymphocyte separation solution and allowed to adhere to wall for about 2 hours. Adhered monocytes were then isolated and relevant cytokines were added to the monocytes to promote DC differentiation and maturation. Mature DC cells were collected after 7 to 8 days of cultivation.
  • RNA sequencing analysis was conducted on tumor tissues obtained from the patients.
  • Candidate neoantigen mutations were in vitro synthesized and in vitro transcribed into RNA, which were transformed intoB cells or DCs by electroporation to yield neoBorneoDC, respectively.
  • Example 2 Activation and enrichment of neoantigen-reactive T cells (neoT) by neoB and neoDC vaccines in vitro.
  • neoT neoantigen-reactive T cells
  • TILs Tumor infiltrating T lymphocytes
  • PMBCs Tumor infiltrating T lymphocytes
  • the T cells were co-cultivated for one day with mixtures prepared from autologous cells of the patient containing either neoB or neoDC.
  • the percentage of CD137+ T cells (i.e., neoT) to the total T cells were determined by flow cytometry for each patient tumor sample. The results are shown in TABLE 1 below:
  • NeoB Stimulation 1 21.3% 22.1% 2 6.3% 6.5% 3 3.6% 3.8% 4 33.7% 34.1% 5 5.7% 5.9%
  • CD137+ T cells varied significantly among individual patients for both neoB and neoDC stimulated groups. However, for the same patient, the percentage of CD137+ T cells stimulated with either neoB or neoDC was very similar. The results indicate that neoT activation and enrichment by neoB is very similar to neoT activation and enrichment by neoDC.
  • Example 3 Preparation of normal and enhanced neoT.
  • TILs Tumor infiltrating T lymphocytes
  • PMBCs Tumor infiltrating T lymphocytes
  • Activated T cells were sorted using magnetic beads using an anti-CD137 antibody to obtain neoT.
  • a lentivirus vector for a switch receptor of PD1/4-1BB was transfected into neoT with a transfection efficiency of about 60%.
  • PD1+T cells were sorted by flow cytometry or magnetic beads to construct enhanced neoT (ENT) .
  • the remaining PD1-T cells were normal (non-enhanced) neoT.
  • Example 4 Amplification and enrichment of normal neoT and enhanced neoT (ENT) using neoB and neoDC, and cell viability of the neoB and neoDC vaccines.
  • mice The amplification and enrichment effects of neoB and neoDC on normal neoT and ENT are determined using immunodeficient mice. The mice are divided into 4 test groups to accept re-infusion via the tail vein, as shown in TABLE 2.
  • Group A neoB Group B: neoDC A1: neoT + neoB B1: neoT + neoDC A2: ENT + neoB B2: ENT + neoDC
  • NeoT, ENT, neoB, and neoDC are administered at an initial dose of 10 5 cells per mouse.
  • mouse peripheral blood is collected within 20 minutes to determine the number of neoB and neoDC.
  • mouse peripheral blood is collected to monitor the quantity of neoT and ENT.
  • the number of ENT is expected to be greater than the number of neoT after administration of the same vaccine (group A or group B) . It is expected that ENT is more prone to activation by an antigen-presenting cell.
  • neoDC In both neoT or ENT groups, the number of neoDC is expected to decrease significantly after re-infusion, for example, because neoB can be more viable (i.e., more resistant to cell killing by the T cells) than neoDC. NeoB is expected to exhibit a stronger activation and amplification effect on the T cells than neoDC. Thus, neoB is expected to be a better neoantigen vaccine than neoDC.
  • Example 5 Dose-dependent amplification and enrichment of ENT cells using neoB and neoDC.
  • Immunodeficienct mice used for this experiment are divided into 8 test groups to accept re-infusion via the tail vein, as shown in TABLE 3.
  • ENT is administered at an initial dose of 10 6 cells per mouse.
  • the neoantigen vaccine (neoB or neoDC) is re-infused earlier than ENT.
  • the number of ENT, neoB, and neoDC are determined weekly for six consecutive weeks.
  • the number of ENT is expected to be positively correlated with the dose of vaccine infusion, which would demonstrate that the vaccine dosage can play a crucial role in the amplification and enrichment of ENT.
  • All neoBtest groups are expected to have a significantly greater number of ENT than the neoDCtest groups. Because neoB is expected to have a higher rate of cell viability thanneoDC, the neoB group is expected to induce ENT proliferation more effectively than the neoDC groups. After initial infusion, the number of neoDC is expected to sharply decline after being killed by the T cells. As a result, the neoDC may no longer stimulate T cells. Conversely, neoB, by virtue of having a higher survival rate, is expected to be able to continuously stimulate the T cells.
  • This example demonstrates that increasing the number of neoantigen-loaded antigen-presenting cells can amplify the number of tumor-recognizing T cells (or neoantigen reactive T cells) .
  • B cells that are capable of proliferation can be preferable neoantigen vaccine vehicles over DCs, which may not be capable of proliferation, for enrichment and amplification of neoantigen reactive T cells.
  • Example 6 Enrichment and amplification of ENT cells by repeated administrations of neoB and neoDC.
  • Immunodeficient mice used for this experiment are divided into 8 test groups to accept re-infusion via the tail vein, as shown in TABLE 4.
  • ENT is administered at an initial dose of 10 5 .
  • neoB and neoDC are re-infused at a dose of 10 5 on the same day as ENT.
  • one dose of vaccine infusion is administered each week, with each additional dose being double the previous amount. For example, two doses: 2 x 10 5 (groups A3-A5 and B3-B5) , three doses: 4 x 10 5 (groups A4-A5 and B4-B5) , and four doses: 8 x 10 5 (groups A5 andB5) .
  • blood is drawn to determine the number of neoB, neoDC, and ENT.
  • neoB The amplification of ENT after administration of neoB in all doses is expected to be significantly greater than the amplification of ENT after administration of each corresponding dose of neoDC.
  • neoB In test groups in which repeated multiple doses of vaccines are administered, neoBis expected to exhibit a significantly greater amplification effect on ENT than neoDC.
  • NeoBis expected to exhibit a significantly higher rate of survival than neoDC.
  • test groups in which multiple does of vaccines are infused e.g., groups A3-A6 and B3-B6
  • the number of neoDCs is expected to be almost undetectable at later doses, whereas the number of B cells remains similar to the initial re-infusion amount.
  • NeoDC is expected to only activate T cells at the first dose of re-infusion.
  • the ENT may kill the neoDC and prevent the neoDC from exerting continuous activation effect on the ENT.
  • the number of neoDC may sharply decline after being killed by the T cells. As a result, the neoDC may no longer stimulate the T cells.
  • neoB by virtue of having a higher survival rate, is expected to be able to continuously stimulate the T cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present disclosure provides compositions and methods for treating cancer. The compositions and methods comprise modified antigen-presenting cells comprising neoantigen.

Description

NEOANTIGEN VACCINES AND USES THEREOF
CROSS-REFERENCE
This application claims benefit of PCT International Application No. PCT/CN2018/090634 filed on June 11, 2018, which is incorporated herein by reference in their entirety.
BACKGROUND
Immunotherapy can involve modifying a patient’s own immune cells to redirect cellular cytotoxicity to cells of interest, for example tumor cells. One mechanism can involve T-cell recognition of epitopes that are displayed on the surface of tumor cells. Immunotherapies that boost the ability of T cells to recognize and destroy tumor cells can enhance therapeutic efficacy.
Conventional methods of immunotherapy suffer from various deficiencies. Such deficiencies include inability to customize therapy to a subject, inadequate specificity of modified immune cells for diseased cells such as tumor cells (e.g., on-target off-tumor effects and toxicities) , insufficient activation of tumor cell recognizing T cells, and activation of immunosuppressive mechanisms, all of which can minimize the effect of immune responses.
SUMMARY
In view of the foregoing, there exists a considerable need for alternative compositions and methods to carry out immunotherapy. The compositions and methods of the present disclosure address this need, and provide additional advantages as well. In particular, the various aspects of the disclosure provide amodified antigen-presenting cell (APC) comprising a neoantigen.
An aspect of the present disclosure provides a modified antigen-presenting cell (APC) comprising a neoantigen. In some embodiments, the APC may be a B cell. In some embodiments, the APC may be a dendritic cell.
In some embodiments, the neoantigen may comprise a peptide fragment of a protein encoded by a mutated gene, wherein the gene is selected from ABL1, ACOl 1997, ACVR2A, AFP, AKT1, ALK, ALPPL2, ANAPC1, APC, ARID1A, AR, AR-v7, ASCL2, β2Μ, BRAF, BTK, C15ORF40, CDH1, CLDN6, CNOT1, CT45A5, CTAG1B, DCT, DKK4, EEF1B2,  EEF1DP3, EGFR, EIF2B3, env, EPHB2, ERBB3, ESR1, ESRP1, FAM11 IB, FGFR3, FRG1B, GAGE1, GAGE 10, GATA3, GBP3, HER2, IDH1, JAK1, KIT, KRAS, LMAN1, MABEB 16, MAGEA1, MAGEA10, MAGEA4, MAGEA8, MAGEB 17, MAGEB4, MAGEC1, MEK, MLANA, MLL2, MMP13, MSH3, MSH6, MYC, NDUFC2, NRAS, PAGE2, PAGE5, PDGFRa, PIK3CA, PMEL, pol protein, POLE, PTEN, RAC1, RBM27, RNF43, RPL22, RUNX1, SEC31A, SEC63, SF3B 1, SLC35F5, SLC45A2, SMAP1, SMAP1, SPOP, TFAM, TGFBR2, THAP5, TP53, TTK, TYR, UBR5, VHL, and XPOT. In some embodiments, the neoantigen may comprise a peptide fragment of a protein encoded by a mutated gene, wherein the gene is selected from JAK2, KRAS, BRAF, TP53, PIK3CA, EGFR, IDH1, NRAS, CTNNB1, NPM1, CALR, FGFR3, CDKN2A, KIT, MYD88, APC, HRAS, MED12, DNMT3A, GNAS, IDH2, KCNJ5, PTEN, NOTCH1, SF3B1, FLT3, ASXL1, SRSF2, FOXL2, PTPN11, GNAQ, RET, HLA-A, MPL, IKZF1, KMT2C, TET2, PDGFRA, FBXW7, H3F3A, ALK, CEBPA, ESR1, AKT1, RUNX1, GNA11, VHL, WT1, U2AF1, ABL1, ERBB2, DICER1, NOTCH4, EZH2, HNF1A, SMARCB1, CXCR4, PLCG1, TSHR, PRKACA, RHOA, STAT3, POLE, SETBP1, MET, AR, STK11, NF2, CBL, HLA-B, PRKCB, ATR, PPP2R1A, CASC5, CD79B, PBRM1, PTK2B, GATA2, KMT2D, SULT1A1, FLNB, PRPF8, RNF43, MSH6, FGFR2, SMAD4, JAK3, USP8, DLC1, ESRP1, LRP1B, MYH11, BRCA1, CARD11, HSP90AB1, MAP3K9, ADAMTSL3, PDGFRB, RPTOR, ROS1, NFKBIE, AMER1, KLF4, RAC1, TERT, MYOD1, ATP1A1, CSF3R, NOTCH2, CCR4, PAX5, SPTAN1, MLH1, CUBN, RNF213, SMO, ABCC4, AXIN2, CSF1R, PER1, PKHD1, IL7R, RB1, ARID1A, ATM, FES, MTHFR, PTCH2, FANCI, CDH5, CIC, IL6ST, MYH9, NF1, TGFBR2, INSR, PTPN12, TNFAIP3, MEN1, NSD1, SLITRK6, SYT1, TNKS, CCND3, PSMD13, CYP2D6, HELQ, LPHN3, PRAME, STAT5B, BCL6, CCDC6, CCND1, FLCN, LMO2, MUC1, NFKBIZ, NRP2, CTCF, HIST1H3B, KEAP1, SLC22A2, ABCC2, EED, GATA1, GLI3, IKZF3, PIK3CG, XPO1, CHRNA3, MAP2K1, SETD2, ZNF668, CCND2, FLT4, NT5C2, RECQL4, SSX1, ALOX12B, CDKN1B, ELF3, INPP4B, MARVELD3, MLLT4, MLPH, NTRK3, SPOP, BCL2, EPHB1, ERCC4, ERCC6, ETNK1, JAK1, LRP2, MUTYH, NFKBIA, ARNT, BRCA2, and CDH2. In some embodiments, the neoantigen is selected based on a genetic profile of a tumor sample from a subject. In some embodiments, the neoantigen is selected based on a somatic mutation profile of a tumor sample from an individual.
In some embodiments, the neoantigen may be selected based on a genetic profile of a  tumor sample from a subject. In some embodiments, the neoantigen may be selected based on a somatic mutation profile of a tumor sample from an individual.
In an aspect, the present disclosure may provide a composition comprising: a modified APC and a T cell capable of specifically binding the neoantigen of the modified APC.
In some embodiments, the T cell may be a T cell having contacted with the modified APC.
In some embodiments, the T cell may be a modified T cell that comprises a switch molecule, wherein the switch molecule comprises: an extracellular domain (ECD) of a protein that, in an unmodified T cell, elicits an immune cell inactivation signal upon binding to a ligand of the protein, wherein the ECD is fused to an intracellular domain (ICD) of a co-stimulatory molecule that mediates an immune cell activation signal, wherein binding of the switch molecule to the ligand yields the immune cell activation signal in the modified T cell instead of the immune cell inactivation signal.
In some embodiments, the protein that elicits an immune cell inactivation signal upon binding to the ligand of the protein may be a signaling receptor.
In some embodiments, the protein may elicit an immune cell inactivation signal upon binding to the ligand of the protein is selected from the group consisting of: a signaling receptor, a checkpoint receptor, a cytokine receptor, a chemokine receptor, a growth factor receptor, and a hormone receptor.
In some embodiments, the protein that elicits an immune cell inactivation may be selected from the group consisting of: transforming growth factor-beta receptor (TGF-beta-R) , programmed cell death 1 (PD-1) , cytotoxic T-lymphocyte associated protein 4 (CTLA-4) , B and T lymphocyte attenuator (BTLA) , a killer immunoglobulin-like receptor (KIR) , indoleamine 2, 3-dioxygenase (IDO) , lymphocyte activation gene-3 (LAG3) , T cell immunoglobulin mucin 3 (TIM-3) , and TIGIT.
In some embodiments, the co-stimulatory molecule may be selected from the group consisting of: interleukin-2 receptor (IL-2R) , interleukin-12 receptor (IL-12R) , B7-H3, CD2, CD3, CD4, CD7, CD8, CD27, CD28, CD30, CD40, 4-1BB/CD137, ICOS, lymphocyte function-associated antigen-1 (LFA-1) , LIGHT, NKG2C, OX40, and PD-1.
In some embodiments, the immune cell activation signal may be mediated by an activation factor. In some embodiments, the activation factor is a soluble cytokine, a soluble  chemokine, or a growth factor. In some embodiments, the activation factor may be a soluble cytokine, and wherein the soluble cytokine is IL-1, IL-2, IL-6, IL-7, IL-8, IL-10, IL-12, IL-15, IL-21, TNF, TGF, IFN, or any functional fragment or variant thereof.
In some embodiments, the immune cell activation signal may comprise a clonal expansion of the modified T cell; cytokine release by the modified T cell; cytotoxicity of the modified T cell; proliferation of the modified T cell; differentiation, dedifferentiation or transdifferentiation of the modified T cell; movement and/or trafficking of the modified T cell; exhaustion and/or reactivation of the modified T cell; and release of other intercellular molecules, metabolites, chemical compounds, or combinations thereof by the modified T cell.
In some embodiments, the modified T cell may exhibit enhanced neoantigen binding as compared to an unmodified T cell.
In some embodiments, the modified T cell may exhibit increased cytotoxicity against a target cell as compared to an unmodified T cell when the switch molecule binds to the ligand and the modified T cell binds to the neoantigen present on the target cell.
In some embodiments, the modified T cell may exhibit increased secretion of a cytokine as compared to an unmodified T cell, when the switch molecule binds the ligand and the modified T cell binds to the neoantigen present on a target cell.
In some embodiments, the cytokine may be IFN-gamma or IL-2.
In some embodiments, the modified T cell may comprise a T cell receptor (TCR) complex capable of specifically binding to the neoantigen. In some embodiments, the TCR complex may be an endogenous TCR complex. In some embodiments, TCR complex may be an exogenous TCR complex.
In some embodiments, the T cell may exhibit enhanced proliferation in a subject administered the composition and expressing the neoantigen, compared to a composition lacking the modified APC.
In some embodiments, the T cell may exhibit at least a 2-fold increase in proliferation compared to a composition lacking the modified APC. In some embodiments, the T cell may exhibit at least a 10-fold increase in proliferation compared to a composition lacking the modified APC.
In some embodiments, the amount of the modified APC may remain about the same over time in a subject administered the composition.
In some aspects, the present disclosure provides a vaccine comprising a modified APC or a composition disclosed herein.
In some aspects, the present disclosure provides a method of treating a disorder in a subject expressing the neoantigen, the method comprising administering a modified APC or a composition disclosed herein.
In some aspects, the present disclosure provides a method for immune cell enrichment comprising administering to a subject expressing the neoantigen a composition or a vaccine disclosed herein.
In an aspect, the present disclosure provides a method of treating a disorder in a subject in need thereof, the method comprising administering to the subject a modified APC disclosed herein and a T cell capable of specifically binding the neoantigen of the modified APC, wherein the modified APC and the T cell are administered concurrently or separately to the subject.
In some embodiments, the modified APC may be administered prior to the modified T cell.
In some embodiments, the T cell may be administered prior to the modified APC.
In some embodiments, the modified APC and the T cell may be administered concurrently to the subject.
In some embodiments, the T cell may be a T cell having contacted with the modified APC.
In some embodiments, the T cell may be a modified T cell comprising a switch molecule, wherein the switch molecule comprises: an extracellular domain (ECD) of a protein that, in an unmodified T cell, elicits an immune cell inactivation signal upon binding to a ligand of the protein, wherein the ECD is fused to an intracellular domain (ICD) of a co-stimulatory molecule that mediates an immune cell activation signal, wherein binding of the switch molecule to the ligand of the protein yields the immune cell activation signal in the modified T cell instead of the immune cell inactivation signal.
In some embodiments, the protein that elicits the immune cell inactivation signal may be a signaling receptor.
In some embodiments, the protein that elicits the immune cell inactivation signal may be selected from the group consisting of: a signaling receptor, a checkpoint receptor, a cytokine receptor, a chemokine receptor, a growth factor receptor, and a hormone receptor.
In some embodiments, the protein that elicits the immune cell inactivation signal may be selected from the group consisting of: transforming growth factor-beta receptor (TGF-beta-R) , programmed cell death 1 (PD-1) , cytotoxic T-lymphocyte associated protein 4 (CTLA-4) , B and T lymphocyte attenuator (BTLA) , a killer immunoglobulin-like receptor (KIR) , indoleamine 2, 3-dioxygenase (IDO) , lymphocyte activation gene-3 (LAG3) , T cell immunoglobulin mucin 3 (TIM-3) , and TIGIT.
In some embodiments, the co-stimulatory molecule may be selected from the group consisting of: interleukin-2 receptor (IL-2R) , interleukin-12 receptor (IL-12R) , B7-H3, CD2, CD3, CD4, CD7, CD8, CD27, CD28, CD30, CD40, 4-1BB/CD137, ICOS, lymphocyte function-associated antigen-1 (LFA-1) , LIGHT, NKG2C, OX40, and PD-1.
In some embodiments, the immune cell activation signal may be mediated by an activation factor.
In some embodiments, the activation factor may be a soluble cytokine, a soluble chemokine, or a growth factor.
In some embodiments, the activation factor may be a soluble cytokine, and wherein the soluble cytokine is IL-1, IL-2, IL-6, IL-7, IL-8, IL-10, IL-12, IL-15, IL-21, TNF, TGF, IFN, or any functional fragment or variant thereof.
In some embodiments, the immune cell activation signal may comprise a clonal expansion of the modified T cell; cytokine release by the modified T cell; cytotoxicity of the modified T cell; proliferation of the modified T cell; differentiation, dedifferentiation or transdifferentiation of the modified T cell; movement and/or trafficking of the modified T cell; exhaustion and/or reactivation of the modified T cell; and release of other intercellular molecules, metabolites, chemical compounds, or combinations thereof by the modified T cell.
In some embodiments, upon binding of the switch molecule of the modified T cell to the ligand of the protein, the modified T cell may exhibit enhanced neoantigen binding as compared to an unmodified T cell.
In some embodiments, the modified T cell may exhibit increased cytotoxicity against a target cell as compared to an unmodified T cell, when the switch molecule binds to the ligand and the modified T cell binds to the neoantigen present on the target cell.
In some embodiments, the modified T cell may exhibit increased secretion of a cytokine as compared to an unmodified T cell, when the switch molecule binds the ligand and  the modified T cell binds to the neoantigen present on a target cell.
In some embodiments, the cytokine may be IFN-gamma or IL-2.
In some embodiments, the modified T cell may comprise a T cell receptor (TCR) complex capable of specifically binding to the neoantigen.
In some embodiments, the TCR complex may be an endogenous TCR complex.
In some embodiments, the TCR complex may be an exogenous TCR complex.
In some embodiments, the modified T cell may exhibit enhanced proliferation in the subject relative to a subject administered the modified T cell but not the modified APC.
In some embodiments, the modified T cell may exhibit at least a 2-fold increase in proliferation.
In some embodiments, the modified T cell may exhibit at least a 10-fold increase in proliferation.
In some embodiments, an amount of the modified APC may remain about the same over time in a subject administered the composition.
In some embodiments, the subject may be a human.
In some embodiments, the disorder may be a cancer.
INCORPORATION BY REFERENCE
All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
DETAILED DESCRIPTION
The practice of some methods disclosed herein employ, unless otherwise indicated, conventional techniques of immunology, biochemistry, chemistry, molecular biology, microbiology, cell biology, genomics and recombinant DNA, which are within the skill of the art. See for example Sambrook and Green, Molecular Cloning: A Laboratory Manual, 4th Edition (2012) ; the series Current Protocols in Molecular Biology (F. M. Ausubel, et al. eds. ) ; the series Methods In Enzymology (Academic Press, Inc. ) , PCR 2: A Practical Approach (M.J. MacPherson, B.D. Hames and G.R. Taylor eds. (1995) ) , Harlow and Lane, eds. (1988) Antibodies, A Laboratory Manual, and Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications, 6th Edition (R.I. Freshney, ed. (2010) ) .
As used in the specification and claims, the singular forms “a” , “an, ” and “the” include plural references unless the context clearly dictates otherwise. For example, “amodified antigen-presenting cell” includes a plurality of antigen-presenting cells.
The term “about” or “approximately” means within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, i.e., the limitations of the measurement system. For example, “about” can mean within 1 or more than 1 standard deviation, per the practice in the art. Alternatively, “about” can mean a range of up to 20%, up to 10%, up to 5%, or up to 1%of a given value. Alternatively, particularly with respect to biological systems or processes, the term can mean within an order of magnitude, preferably within 5-fold, and more preferably within 2-fold, of a value. Where particular values are described in the application and claims, unless otherwise stated, the term “about” meaning within an acceptable error range for the particular value should be assumed.
As used herein, a “cell” can generally refer to a biological cell. A cell can be the basic structural, functional and/or biological unit of a living organism. A cell can originate from any organism having one or more cells. Some non-limiting examples include: a prokaryotic cell, eukaryotic cell, a bacterial cell, an archaeal cell, a cell of a single-cell eukaryotic organism, a protozoa cell, a cell from a plant (e.g. cells from plant crops, fruits, vegetables, grains, soy bean, corn, maize, wheat, seeds, tomatoes, rice, cassava, sugarcane, pumpkin, hay, potatoes, cotton, cannabis, tobacco, flowering plants, conifers, gymnosperms, ferns, clubmosses, hornworts, liverworts, mosses) , an algal cell, (e.g., Botryococcusbraunii, Chlamydomonasreinhardtii, Nannochloropsisgaditana, Chlorella pyrenoidosa, Sargassum patens C. Agardh, and the like) , seaweeds (e.g. kelp) , a fungal cell (e.g., a yeast cell, a cell from a mushroom) , an animal cell, a cell from an invertebrate animal (e.g. fruit fly, cnidarian, echinoderm, nematode, etc. ) , a cell from a vertebrate animal (e.g., fish, amphibian, reptile, bird, mammal) , a cell from a mammal (e.g., a pig, a cow, a goat, a sheep, a rodent, a rat, a mouse, a non-human primate, a human, etc. ) , and etcetera. Sometimes a cell is not originating from a natural organism (e.g. a cell can be a synthetically made, sometimes termed an artificial cell) .
The term “antigen, ” as used herein, refers to a molecule or a fragment thereof capable of being bound by a selective binding agent. As an example, an antigen can be a ligand that can be bound by a selective binding agent such as a receptor. As another example, an antigen can be  an antigenic molecule that can be bound by a selective binding agent such as an immunological protein (e.g., an antibody) . An antigen can also refer to a molecule or fragment thereof capable of being used in an animal to produce antibodies capable of binding to that antigen.
The term “neoantigen, ” as used herein, generally refers to tumor-specific antigens arising from mutations in a gene. The resulting mutated proteins, or fragments thereof, can trigger an antitumor T cell response. Neoantigens can be unique to a tumor cell (e.g., absent in a normal cell) . A subject and/or a tumor can have a unique set of neoantigens. A neoantigen can refer to an “exogenous neoantigen” . An “exogenous neoantigen” can refer to a neoantigen not normally found in the host cell.
The term “gene, ” as used herein, refers to a nucleic acid (e.g., DNA such as genomic DNA and cDNA) and its corresponding nucleotide sequence that is involved in encoding an RNA transcript. The term as used herein with reference to genomic DNA includes intervening, non-coding regions as well as regulatory regions and can include 5' and 3' ends. In some uses, the term encompasses the transcribed sequences, including 5' and 3' untranslated regions (5'-UTR and 3'-UTR) , exons and introns. In some genes, the transcribed region will contain “open reading frames” that encode polypeptides. In some uses of the term, a “gene” comprises only the coding sequences (e.g., an “open reading frame” or “coding region” ) necessary for encoding a polypeptide. In some cases, genes do not encode a polypeptide, for example, ribosomal RNA genes (rRNA) and transfer RNA (tRNA) genes. In some cases, the term “gene” includes not only the transcribed sequences, but in addition, also includes non-transcribed regions including upstream and downstream regulatory regions, enhancers and promoters. A gene can refer to an “endogenous gene” or a native gene in its natural location in the genome of an organism. A gene can refer to an “exogenous gene” or a non-native gene. A non-native gene can refer to a gene not normally found in the host organism but which is introduced into the host organism by gene transfer. A non-native gene can also refer to a gene not in its natural location in the genome of an organism. A non-native gene can also refer to a naturally occurring nucleic acid or polypeptide sequence that comprises mutations, insertions and/or deletions (e.g., non-native sequence) .
The term “antibody, ” as used herein, refers to a proteinaceous binding molecule with immunoglobulin-like functions. The term antibody includes antibodies (e.g., monoclonal and polyclonal antibodies) , as well as derivatives, variants, and fragments thereof. Antibodies include, but are not limited to, immunoglobulins (Ig’s ) of different classes (i.e. IgA, IgG, IgM,  IgD and IgE) and subclasses (such as IgG1, IgG2, etc. ) . A derivative, variant, or fragment thereof can refer to a functional derivative or fragment which retains the binding specificity (e.g., complete and/or partial) of the corresponding antibody. Antigen-binding fragments include Fab, Fab', F (ab')  2, variable fragment (Fv) , single chain variable fragment (scFv) , minibodies, diabodies, and single-domain antibodies ( “sdAb” or “nanobodies” or “camelids” ) . The term antibody includes antibodies and antigen-binding fragments of antibodies that have been optimized, engineered or chemically conjugated. Examples of antibodies that have been optimized include affinity-matured antibodies. Examples of antibodies that have been engineered include Fc optimized antibodies (e.g., antibodies optimized in the fragment crystallizable region) and multispecific antibodies (e.g., bispecific antibodies) .
The term “nucleotide, ” as used herein, generally refers to a base-sugar-phosphate combination. A nucleotide can comprise a synthetic nucleotide. A nucleotide can comprise a synthetic nucleotide analog. Nucleotides can be monomeric units of a nucleic acid sequence (e.g. deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) ) . The term nucleotide can include ribonucleoside triphosphates adenosine triphosphate (ATP) , uridine triphosphate (UTP) , cytosine triphosphate (CTP) , guanosine triphosphate (GTP) and deoxyribonucleoside triphosphates such as dATP, dCTP, dITP, dUTP, dGTP, dTTP, or derivatives thereof. Such derivatives can include, for example, [αS] dATP, 7-deaza-dGTP and 7-deaza-dATP, and nucleotide derivatives that confer nuclease resistance on the nucleic acid molecule containing them. The term nucleotide as used herein can refer to dideoxyribonucleoside triphosphates (ddNTPs) and their derivatives. Illustrative examples of dideoxyribonucleoside triphosphates can include, but are not limited to, ddATP, ddCTP, ddGTP, ddITP, and ddTTP. A nucleotide can be unlabeled or detectably labeled by well-known techniques. Labeling can also be carried out with quantum dots. Detectable labels can include, for example, radioactive isotopes, fluorescent labels, chemiluminescent labels, bioluminescent labels and enzyme labels.
The terms “polynucleotide, ” “oligonucleotide, ” and “nucleic acid” are used interchangeably to refer to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides, or analogs thereof, either in single-, double-, or multi-stranded form. A polynucleotide can be exogenous or endogenous to a cell. A polynucleotide can exist in a cell-free environment. A polynucleotide can be a gene or fragment thereof. A polynucleotide can be DNA. A polynucleotide can be RNA. A polynucleotide can have any three  dimensional structure, and can perform any function, known or unknown. A polynucleotide can comprise one or more analogs (e.g. altered backbone, sugar, or nucleobase) . If present, modifications to the nucleotide structure can be imparted before or after assembly of the polymer. Some non-limiting examples of analogs include: 5-bromouracil, peptide nucleic acid, xeno nucleic acid, morpholinos, locked nucleic acids, glycol nucleic acids, threose nucleic acids, dideoxynucleotides, cordycepin, 7-deaza-GTP, fluorophores (e.g. rhodamine or fluorescein linked to the sugar) , thiol containing nucleotides, biotin linked nucleotides, fluorescent base analogs, CpG islands, methyl-7-guanosine, methylated nucleotides, inosine, thiouridine, pseudourdine, dihydrouridine, queuosine, and wyosine. Non-limiting examples of polynucleotides include coding or non-coding regions of a gene or gene fragment, loci (locus) defined from linkage analysis, exons, introns, messenger RNA (mRNA) , transfer RNA (tRNA) , ribosomal RNA (rRNA) , short interfering RNA (siRNA) , short-hairpin RNA (shRNA) , micro-RNA (miRNA) , ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, cell-free polynucleotides including cell-free DNA (cfDNA) and cell-free RNA (cfRNA) , nucleic acid probes, and primers. The sequence of nucleotides can be interrupted by non-nucleotide components.
The terms “expression” or “expressing” refer to one or more processes by which a polynucleotide is transcribed from a DNA template (such as into an mRNA or other RNA transcript) and/or the process by which a transcribed mRNA is subsequently translated into peptides, polypeptides, or proteins. Transcripts and encoded polypeptides can be collectively referred to as “gene product. ” If the polynucleotide is derived from genomic DNA, expression can include splicing of the mRNA in a eukaryotic cell. “Up-regulated, ” with reference to expression, generally refers to an increased expression level of a polynucleotide (e.g., RNA such as mRNA) and/or polypeptide sequence relative to its expression level in a wild-type state while “down-regulated” generally refers to a decreased expression level of a polynucleotide (e.g., RNA such as mRNA) and/or polypeptide sequence relative to its expression in a wild-type state.
The terms “complement, ” “complements, ” “complementary, ” and “complementarity, ” as used herein, generally refer to a sequence that is fully complementary to and hybridizable to the given sequence. In some cases, a sequence hybridized with a given nucleic acid is referred to as the “complement” or “reverse-complement” of the given molecule if  its sequence of bases over a given region is capable of complementarily binding those of its binding partner, such that, for example, A-T, A-U, G-C, and G-U base pairs are formed. In general, a first sequence that is hybridizable to a second sequence is specifically or selectively hybridizable to the second sequence, such that hybridization to the second sequence or set of second sequences is preferred (e.g. thermodynamically more stable under a given set of conditions, such as stringent conditions commonly used in the art) to hybridization with non-target sequences during a hybridization reaction. Typically, hybridizable sequences share a degree of sequence complementarity over all or a portion of their respective lengths, such as between 25%-100%complementarity, including at least 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, and 100%sequence complementarity. Sequence identity, such as for the purpose of assessing percent complementarity, can be measured by any suitable alignment algorithm, including but not limited to the Needleman-Wunsch algorithm (see e.g. the EMBOSS Needle aligner available at www. ebi. ac. uk/Tools/psa/emboss_needle/nucleotide. html, optionally with default settings) , the BLAST algorithm (see e.g. the BLAST alignment tool available at blast. ncbi. nlm. nih. gov/Blast. cgi, optionally with default settings) , or the Smith-Waterman algorithm (see e.g. the EMBOSS Water aligner available at www. ebi. ac. uk/Tools/psa/emboss_water/nucleotide. html, optionally with default settings) . Optimal alignment can be assessed using any suitable parameters of a chosen algorithm, including default parameters.
Complementarity can be perfect or substantial/sufficient. Perfect complementarity between two nucleic acids can mean that the two nucleic acids can form a duplex in which every base in the duplex is bonded to a complementary base by Watson-Crick pairing. Substantial or sufficient complementary can mean that a sequence in one strand is not completely and/or perfectly complementary to a sequence in an opposing strand, but that sufficient bonding occurs between bases on the two strands to form a stable hybrid complex in set of hybridization conditions (e.g., salt concentration and temperature) . Such conditions can be predicted by using the sequences and standard mathematical calculations to predict the Tm of hybridized strands, or by empirical determination of Tm by using routine methods.
The term “regulating” with reference to expression or activity, as used herein, refers to altering the level of expression or activity. Regulation can occur at the transcription level  and/or translation level.
The terms “peptide, ” “polypeptide, ” and “protein” are used interchangeably herein to refer to a polymer of at least two amino acid residues joined by peptide bond (s) . This term does not connote a specific length of polymer, nor is it intended to imply or distinguish whether the peptide is produced using recombinant techniques, chemical or enzymatic synthesis, or is naturally occurring. The terms apply to naturally occurring amino acid polymers as well as amino acid polymers comprising at least one modified amino acid. In some cases, the polymer can be interrupted by non-amino acids. The terms include amino acid chains of any length, including full length proteins, and proteins with or without secondary and/or tertiary structure (e.g., domains) . The terms also encompass an amino acid polymer that has been modified, for example, by disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, oxidation, and any other manipulation such as conjugation with a labeling component. The terms “amino acid” and “amino acids, ” as used herein, generally refer to natural and non-natural amino acids, including, but not limited to, modified amino acids and amino acid analogues. Modified amino acids can include natural amino acids and non-natural amino acids, which have been chemically modified to include a group or a chemical moiety not naturally present on the amino acid. Amino acid analogues can refer to amino acid derivatives. The term “amino acid” includes both D-amino acids and L-amino acids.
The terms “derivative, ” “variant, ” and “fragment, ” when used herein with reference to a polypeptide, refers to a polypeptide related to a wild type polypeptide, for example either by amino acid sequence, structure (e.g., secondary and/or tertiary) , activity (e.g., enzymatic activity) and/or function. Derivatives, variants and fragments of a polypeptide can comprise one or more amino acid variations (e.g., mutations, insertions, and deletions) , truncations, modifications, or combinations thereof compared to a wild type polypeptide.
The term “percent (%) identity, ” as used herein, refers to the percentage of amino acid (or nucleic acid) residues of a candidate sequence that are identical to the amino acid (or nucleic acid) residues of a reference sequence after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent identity (i.e., gaps can be introduced in one or both of the candidate and reference sequences for optimal alignment and non-homologous sequences can be disregarded for comparison purposes) . Alignment, for purposes of determining percent identity, can be achieved in various ways that are within the skill in the art, for instance, using  publicly available computer software such as BLAST, ALIGN, or Megalign (DNASTAR) software. Percent identity of two sequences can be calculated by aligning a test sequence with a comparison sequence using BLAST, determining the number of amino acids or nucleotides in the aligned test sequence that are identical to amino acids or nucleotides in the same position of the comparison sequence, and dividing the number of identical amino acids or nucleotides by the number of amino acids or nucleotides in the comparison sequence.
As used herein, “fusion” can refer to a protein and/or nucleic acid comprising one or more non-native sequences (e.g., moieties) . A fusion can comprise one or more of the same non-native sequences. A fusion can comprise one or more of different non-native sequences. A fusion can be a chimera. A fusion can comprise a nucleic acid affinity tag. A fusion can comprise a barcode. A fusion can comprise a peptide affinity tag. A fusion can provide for subcellular localization of the site-directed polypeptide (e.g., a nuclear localization signal (NLS) for targeting to the nucleus, a mitochondrial localization signal for targeting to the mitochondria, a chloroplast localization signal for targeting to a chloroplast, an endoplasmic reticulum (ER) retention signal, and the like) . A fusion can provide a non-native sequence (e.g., affinity tag) that can be used to track or purify. A fusion can be a small molecule such as biotin or a dye such as Alexa fluor dyes, Cyanine3 dye, Cyanine5 dye.
The phrase “exogenous T cell receptor (TCR) complex” or “exogenous TCR complex, ” as used herein, refers to a TCR complex in which one or more chains of the TCR are introduced into the genome of an immune cell that may or may not endogenously express the TCR. In some cases, an exogenous TCR complex can refer to a TCR complex in which one or more chains of an endogenous TCR complex have one or more mutated sequences, for example at either the nucleic acid or amino acid level. Expression of an exogenous TCR on an immune cell can confer binding specificity for an epitope or antigen (e.g., an epitope or antigen preferentially present on the surface of a cancer cell or other disease-causing cell or particle) . An exogenous TCR complex can comprise a TCR-alpha, a TCR-beta chain, a CD3-gamma chain, a CD3-delta chain, a CD3-zeta chain, or any combination thereof, which is introduced into the genome. In some cases, the chain introduced into the genome may replace the endogenously occurring chain.
The terms “subject, ” “individual, ” and “patient” are used interchangeably herein to refer to a vertebrate, preferably a mammal such as a human. Mammals include, but are not  limited to, murines, simians, humans, farm animals, sport animals, and pets. Tissues, cells and their progeny of a biological entity obtained in vivo or cultured in vitro are also encompassed.
The terms “treatment” and “treating, ” as used herein, refer to an approach for obtaining beneficial or desired results including but not limited to a therapeutic benefit and/or a prophylactic benefit. For example, a treatment can comprise administering a system or cell population disclosed herein. By therapeutic benefit is meant any therapeutically relevant improvement in or effect on one or more diseases, conditions, or symptoms under treatment. For prophylactic benefit, a composition can be administered to a subject at risk of developing a particular disease, condition, or symptom, or to a subject reporting one or more of the physiological symptoms of a disease, even though the disease, condition, or symptom may not have yet been manifested.
As used herein, “administer, ” “administering, ” “administration, ” and derivatives thereof refer to the methods that may be used to enable delivery of agents or compositions to the desired site of biological action. These methods include, but are not limited to, parenteral administration (e.g., intravenous, subcutaneous, intraperitoneal, intramuscular, intravascular, intrathecal, intranasal, intravitreal, infusion and local injection) , transmucosal injection, oral administration, administration as a suppository, and topical administration. Administration is by any route, including parenteral. Parenteral administration includes, e.g., intravenous, intramuscular, intra-arteriole, intradermal, subcutaneous, intraperitoneal, intraventricular, and intracranial. Other modes of delivery include, but are not limited to, the use of liposomal formulations, intravenous infusion, transplantation, etc. One skilled in the art will know of additional methods for administering a therapeutically effective amount of a composition of the present disclosure for preventing or relieving one or more symptoms associated with a disease.
The term “effective amount” or “therapeutically effective amount” refers to the quantity of a composition, for example a composition comprising immune cells such as lymphocytes (e.g., B lymphocytes and/or T lymphocytes) of the present disclosure, that is sufficient to result in a desired activity upon administration to a subject in need thereof. Within the context of the present disclosure, the term “therapeutically effective” refers to that quantity of a composition that is sufficient to delay the manifestation, arrest the progression, relieve or alleviate at least one symptom of a disorder treated by the methods of the present disclosure.
The term “genetic profile, ” as used herein, refers to information about specific genes,  including variations and gene expression in an individual or in a certain type of tissue. A genetic profile can be used for neoantigen selection. The term “somatic mutation profile, ” as used herein, refers to information about specific genes associated with somatic mutation, including but not limited to specific genes resulted from somatic mutation. A somatic mutation profile can be used for neoantigen selection.
In an aspect, the present disclosure provides a modified antigen-presenting cell (APC) that comprises a neoantigen. APCs can mediate cellular immune responses by processing and presenting antigens for recognition by certain lymphocytes, such as T cells. An APC can be, for example, B cell, dendritic cell, natural killer (NK) cell, a macrophage, monocyte, megakaryocyte, mast cell, thrombocyte, erythrocyte, and granulocyte. In some embodiments, the APC is a B cell. In some embodiments, the APC is a dendritic cell.
In some embodiments, the modified APC is a modified B cell comprising a neoantigen (also referred to as neoantigen-loaded B cell or neoB) . In some cases, a neoB can have a stronger amplification capability in vitro as compared to another modified APC, for example, a modified dendritic cell loaded with the neoantigen (also referred to as neoantigen-loaded DC or neoDC) . In some cases, aneoB cell can have a stronger efficacy in continuously activating tumor-specific T cells with repeated re-infusion in vivo as compared to neoDC. In some cases, the neoB cell can produce enhanced proliferation of T cells that recognize the neoantigen compared with neoDC. In some cases, neoB can have a greater half-life than neoDC in a subject.
In some embodiments, a modified APC comprises a neoantigen. An APC can be modified to express a neoantigen for presentation to a T cell. A T cell can specifically bind a neoantigen. Neoantigens generally refer to tumor-specific mutations that trigger an antitumor T cell response. For example, these endogenous mutations can be identified using a whole-exomic-sequencing approach. Tran E, et al., “Cancer immunotherapy based on mutation-specific CD4+T cells in a patient with epithelial cancer, ” Science 344: 641-644 (2014) . In some cases, a neoantigen or neoepitope can be encoded by a mutated gene, for example, from a tumor cell. The gene can be selected from the group consisting of: ABL1, ACOl 1997, ACVR2A, AFP, AKT1, ALK, ALPPL2, ANAPC1, APC, ARID1A, AR, AR-v7, ASCL2, β2Μ, BRAF, BTK, C15ORF40, CDH1, CLDN6, CNOT1, CT45A5, CTAG1B, DCT, DKK4, EEF1B2, EEF1DP3, EGFR, EIF2B3, env, EPHB2, ERBB3, ESR1, ESRP1, FAM11 IB, FGFR3, FRG1B, GAGE1,  GAGE 10, GATA3, GBP3, HER2, IDH1, JAK1, KIT, KRAS, LMAN1, MABEB 16, MAGEA1, MAGEA10, MAGEA4, MAGEA8, MAGEB 17, MAGEB4, MAGEC1, MEK, MLANA, MLL2, MMP13, MSH3, MSH6, MYC, NDUFC2, NRAS, NY-ESO, PAGE2, PAGE5, PDGFRa, PIK3CA, PMEL, pol protein, POLE, PTEN, RAC1, RBM27, RNF43, RPL22, RUNX1, SEC31A, SEC63, SF3B 1, SLC35F5, SLC45A2, SMAP1, SMAP1, SPOP, TFAM, TGFBR2, THAP5, TP53, TTK, TYR, UBR5, VHL, and XPOT. In some embodiments, the neoantigen is selected based on a genetic profile of a tumor sample from an individual. In some embodiments, the neoantigenis selected based on a somatic mutation profile of a tumor sample from an individual. In some embodiments, the neoantigen is an exogenous neoantigen. For example, the neoantigen can be exogenously introduced into an APC such as B cell.
In one aspect, the present disclosure provides compositions comprising a modified APC comprising a neoantigen and animmune cell capable of specifically binding the neoantigen of the modified APC. In some embodiments, an immune cell is a T cell. A T cell capable of specifically binding to a neoantigen can also be referred to as a neoantigen-experienced T cell or neoT. The T cell can be a natural T cell or a modified T cell. In some embodiments, an immune cell is a modified immune cell.
In some embodiments, an immune cell is a modified immune cell generated by contacting an immune cell with aneoantigen. In some embodiments, the modified immune cell is a modified T cell generated by contacting a T cell with a neoantigen. For example, a neoantigen-experienced T cell can be generatedby contacting a T cell to the neoantigen presented by a modified APC (e.g. B cell or dendritic cell expressing the neoantigen) . During subsequent encounters with the neoantigen, for example, from the surface of tumor cells in a subject, theneoantigen-experienced T cells can quickly reproduce to elicit a faster and stronger immune response as compared to the first time the T cell comes into contact with the neoantigen.
In some embodiments, an immune cell is a modified immune cell comprising a switch molecule. In some embodiments, the modified immune is a modified T cell comprising a switch molecule. The switch molecule can comprise an extracellular domain (ECD) of a protein that, in an unmodified immune cell, elicits an immune cell inactivation signal upon binding to its ligand. The ECD may be fused to an intracellular domain (ICD) of a co-stimulatory molecule that mediates an immune cell activation signal. Binding of the switch molecule to the ligand can yield the immune cell activation signal in the modified immune cell instead of the immune cell  inactivation signal.
Binding ofan immune cell such as a T cell to a neoantigen, such as that present on a modified APC, can activate the immune cell. The switch molecule can be used to provide further control over immune cell activities, such as, but not limited to, immune cell activation and expansion. Binding of the switch molecule to its ligand in the modified immune cell, can elicit an immune cell activation signal in the modified immune cell instead of the immune cell inactivation signal. Eliciting the immune cell activation signal in the modified immune cell instead of the immune cell inactivation signal may minimize an immune-suppressive effect in the immune cell. Minimizing an immune-suppressive effect in the immune cell can increase the effectiveness of the immune cell in an immune response, for example, by increasing immune cell cytotoxicity against a target cell, such as a tumor cell.
The switch molecule can comprise an extracellular domain (ECD) of a protein that, in an unmodified immune cell, elicits an immune cell inactivation signal upon binding to its ligand. The protein can be a signaling receptor or any functional fragment, derivative, or variant thereof. In some cases, the signaling receptor can be a membrane bound receptor. A signaling receptor can, in response to ligand binding, induce one or more signaling pathways in a cell. In some cases, the signaling receptor can be a non-membrane bound receptor. The switch molecule can comprise a fragment, for example, an extracellular domain of a receptor selected from a G-protein coupled receptor (GPCR) ; an integrin receptor; a cadherin receptor; a catalytic receptor (e.g., kinases) ; a death receptor; a checkpoint receptor; a cytokine receptor; a chemokine receptor; a growth factor receptor; a hormone receptor; or an immune receptor.
In some embodiments, the switch molecule comprises a fragment of an immune checkpoint receptor, which may be involved in regulation of the immune system. Non-limiting examples of such receptors include, but are not limited to, programmed cell death 1 (PD-1) , cytotoxic T-lymphocyte associated protein 4 (CTLA-4) , B and T lymphocyte attenuator (BTLA) , a killer immunoglobulin-like receptor (KIR) , indoleamine 2, 3-dioxygenase (IDO) , lymphocyte activation gene-3 (LAG3) , T cell immunoglobulin mucin 3 (TIM-3) , and T cell immunoreceptor with Ig and ITIM domains (TIGIT) .
A switch molecule comprising an immune checkpoint receptor, or any derivative, variant, or fragment thereof, can bind an antigen comprising any suitable immune checkpoint receptor ligand, or any derivative, variant, or fragment thereof. Non-limiting examples of such  ligands include, but are not limited to, B7-1, B7-H3, B7-H4, HVEM (Herpesvirus Entry Mediator) , AP2M1, CD80, CD86, SHP-2, PPP2R5A, MHC (e.g., class I, class II) , PD-L1, and PD-L2.
In some embodiments, the switch molecule comprises a fragment of a cytokine receptor. Cytokine receptors can serve a variety of functions, non-limiting examples of which include immune cell regulation and mediating inflammation. In some embodiments, the switch molecule comprises a cytokine receptor, for example, a type-I cytokine receptor or a type-II cytokine receptor, or any derivative, variant, or fragment thereof. In some embodiments, the switch molecule comprises an interleukin receptor (e.g., IL-2R, IL-3R, IL-4R, IL-5R, IL-6R, IL-7R, IL-9R, IL-11R, IL-12R, IL-13R, IL-15R, IL-21R, IL-23R, IL-27R, and IL-31R) , a colony-stimulating factor receptor (e.g., erythropoietin receptor, CSF-1R, CSF-2R, GM-CSFR, and G-CSFR) , a hormone receptor/neuropeptide receptor (e.g., growth hormone receptor, prolactin receptor, and leptin receptor) , or any derivative, variant, or fragment thereof. In some embodiments, the switch molecule comprises a type-II cytokine receptor, or any derivative, variant, or fragment thereof. In some embodiments, the switch molecule comprises an interferon receptor (e.g., IFNAR1, IFNAR2, and IFNGR) , an interleukin receptor (e.g., IL-10R, IL-20R, IL-22R, and IL-28R) , a tissue factor receptor (also called platelet tissue factor) , or any derivative, variant, or fragment thereof.
Cytokines refer to proteins (e.g., chemokines, interferons, lymphokines, interleukins, and tumor necrosis factors) released by cells which can affect cell behavior. Cytokines are produced by a broad range of cells, including immune cells, such as macrophages, B lymphocytes, T lymphocytes, mast cells, endothelial cells, fibroblasts, and various stromal cells. A given cytokine can be produced by more than one type of cell. Cytokines can be involved in producing systemic or local immunomodulatory effects.
Certain cytokines can function as pro-inflammatory cytokines. Pro-inflammatory cytokines refer to cytokines involved in inducing or amplifying an inflammatory reaction. Pro-inflammatory cytokines can work with various cells of the immune system, such as neutrophils and leukocytes, to generate an immune response. Certain cytokines can function as anti-inflammatory cytokines. Anti-inflammatory cytokines refer to cytokines involved in the reduction of an inflammatory reaction. Anti-inflammatory cytokines, in some cases, can regulate a pro-inflammatory cytokine response. Some cytokines can function as both pro-and anti- inflammatory cytokines. Certain cytokines, e.g., chemokines, can function in chemotaxis. Chemokines can induce directed chemotaxis in nearby responsive cells.
In some embodiments, the expression of a cytokine having pro-inflammatory and/or chemotactic functions can be up-regulated in an immune cell. Up-regulating the expression of a cytokine having pro-inflammatory and/or chemotactic functions can be useful, for example, to stimulate an immune response against a target cell in immunotherapy.
Examples of cytokines that can be overexpressed by immune cells provided herein include, but are not limited to, lymphokines, monokines, and traditional polypeptide hormones. Included among the cytokines are growth hormones, such as human growth hormone, N-methionyl human growth hormone, and bovine growth hormone; parathyroid hormone; thyroxine; insulin; proinsulin; relaxin; prorelaxin; glycoprotein hormones such as follicle stimulating hormone (FSH) , thyroid stimulating hormone (TSH) , and luteinizing hormone (LH) ; hepatic growth factor; fibroblast growth factor; prolactin; placental lactogen; tumor necrosis factor-alpha ; mullerian-inhibiting substance; mouse gonadotropin-associated peptide; inhibin; activin; vascular endothelial growth factor; integrin; thrombopoietin (TPO) ; nerve growth factors such as NGF-alpha; platelet-growth factor; transforming growth factors (TGFs) such as TGF-alpha, TGF-beta, TGF-beta1, TGF-beta2, and TGF-beta3; insulin-like growth factor-I and -II; erythropoietin (EPO) ; Flt-3L; stem cell factor (SCF) ; osteoinductive factors; interferons (IFNs) such as IFN-α, IFN-β, IFN-γ; colony stimulating factors (CSFs) such as macrophage-CSF (M-CSF) ; granulocyte-macrophage-CSF (GM-CSF) ; granulocyte-CSF (G-CSF) ; macrophage stimulating factor (MSP) ; interleukins (ILs) such as IL-1, IL-1a, IL-1b, IL-1RA, IL-18, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-20;a tumor necrosis factor such as CD154, LT-beta, TNF-alpha, TNF-beta, 4-1BBL, APRIL, CD70, CD153, CD178, GITRL, LIGHT, OX40L, TALL-1, TRAIL, TWEAK, TRANCE; and other polypeptide factors including LIF, oncostatin M (OSM) and kit ligand (KL) . Cytokine receptors refer to the receptor proteins which bind cytokines. Cytokine receptors may be both membrane-bound and soluble.
In some embodiments, the overexpressed cytokine is an interleukin (IL) family member (e.g., ligand) , an IL-1 receptor family member, an interleukin-6 (IL-6) family member (e.g., ligand) , an IL-6 receptor, an interleukin-10 (IL-10) family member (e.g., ligand) , an IL-10 receptor, an interleukin-12 (IL-12) family member (e.g., ligand) , an IL-12 receptor, an  interleukin-17 (IL-17) family member (e.g., ligand) , or an IL-17 receptor.
In some embodiments, the overexpressed cytokine is an interleukin-1 (IL-1) family member or related protein; a tumor necrosis factor (TNF) family member or related protein; an interferon (IFN) family member or related protein; an interleukin-6 (IL-6) family member or related protein; or a chemokine or related protein. In some embodiments, the cytokine is selected from IL18, IL18BP, IL1A, IL1B, IL1F10, IL1F3/IL1RA, IL1F5, IL1F6, IL1F7, IL1F8, IL1RL2, IL1F9, IL33, BAFF/BLyS/TNFSF138, 4-1BBL, CD153/CD30L/TNFSF8, CD40LG, CD70, Fas Ligand/FASLG/CD95L/CD178, EDA-A1, TNFSF14/LIGHT/CD258, TNFA, LTA/TNFB/TNFSF1, LTB/TNFC, CD70/CD27L/TNFSF7, TNFSF10/TRAIL/APO-2L (CD253) , RANKL/OPGL/TNFSF11 (CD254) , TNFSF12, TNF-alpha/TNFA, TNFSF13, TL1A/TNFSF15, OX-40L/TNFSF4/CD252, CD40L/CD154/TNFSF5, IFNA1, IFNA10, IFNA13, IFNA14, IFNA2, IFNA4, IFNA7, IFNB1, IFNE, IFNG, IFNZ, IFNA8, IFNA5/IFNaG, IFNω/IFNW1, CLCF1, CNTF, IL11, IL31, IL6, Leptin, LIF, OSM, CCL1/TCA3, CCL11, CCL12/MCP-5,CCL13/MCP-4, CCL14, CCL15, CCL16, CCL17/TARC, CCL18, CCL19, CCL2/MCP-1, CCL20, CCL21, CCL22/MDC, CCL23, CCL24, CCL25, CCL26, CCL27, CCL28, CCL3, CCL3L3, CCL4, CCL4L1/LAG-1, CCL5, CCL6, CCL7, CCL8, CCL9, CX3CL1, CXCL1, CXCL10, CXCL11, CXCL12, CXCL13, CXCL14, CXCL15, CXCL16, CXCL17, CXCL2/MIP-2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7/Ppbp, CXCL9, IL8/CXCL8, XCL1, XCL2, FAM19A1, FAM19A2, FAM19A3, FAM19A4, and FAM19A5.
Cytokine expression can be evaluated using a variety of methods. Cytokine expression can be evaluated by assaying cell culture media (e.g., in vitro production) in which the modified immune cells are grown or sera (e.g., in vivo production) obtained from a subject having the modified immune cells for the presence of one or more cytokines. Cytokine levels can be quantified in various suitable units, including concentration, using any suitable assay. In some embodiments, cytokine protein is detected. In some embodiments, mRNA transcripts of cytokines are detected. Examples of cytokine assays include enzyme-linked immunosorbent assays (ELISA) , immunoblot, immunofluorescence assays, radioimmunoassays, antibody arrays which allow various cytokines in a sample to be detected in parallel, bead-based arrays, quantitative PCR, microarray, etc. Other suitable methods may include proteomics approaches (2-D gels, MS analysis etc) .
In some embodiments, the cytokine overexpressed by a modified immune cell  provided herein is a chemokine. The chemokine can be, for example, a CC chemokine, a CXC chemokine, a C chemokine, and a CX3C chemokine. In some embodiments, the chemokine overexpressed by a modified immune cell is a CC chemokine selected from CCL1, CCL2, CCL3, CCL4, CCL5, CCL6, CCL7, CCL8, CCL9, CCL10, CCL11, CCL12, CCL13, CCL14, CCL15, CCL16, CCL17, CCL18, CCL19, CCL20, CCL21, CCL22, CCL23, CCL24, CCL25, CCL26, CCL27, and CCL28. . In some embodiments, the chemokine is a CXC chemokine selected from CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8, CXCL9, CXCL10, CXCL11, CXCL12, CXCL13, CXCL14, CXCL15, CXCL16, and CXCL17. In some embodiments, the chemokine overexpressed by a modified immune cell is a C chemokine selected from XCL1 and XCL2. In some embodiments, the chemokine overexpressed by an immune cell is a CX3C chemokine, and the CX3C chemokine is CX3CL1.
In some embodiments, the switch molecule can comprise at least an extracellular region (e.g., ligand binding domain) of a catalytic receptor such as a receptor tyrosine kinase (RTK) , or any derivative, variant, or fragment thereof. In some embodiments, the switch molecule comprises a class I RTK (e.g., the epidermal growth factor (EGF) receptor family including EGFR; the ErbB family including ErbB-2, ErbB-3, and ErbB-4) , a class II RTK (e.g., the insulin receptor family including INSR, IGF-1R, and IRR) , a class III RTK (e.g., the platelet-derived growth factor (PDGF) receptor family including PDGFR-α, PDGFR-β, CSF-1R, KIT/SCFR, and FLK2/FLT3) , a class IV RTK (e.g., the fibroblast growth factor (FGF) receptor family including FGFR-1, FGFR-2, FGFR-3, and FGFR-4) , a class V RTK (e.g., the vascular endothelial growth factor (VEGF) receptor family including VEGFR1, VEGFR2, and VEGFR3) , a class VI RTK (e.g., the hepatocyte growth factor (HGF) receptor family including hepatocyte growth factor receptor (HGFR/MET) and RON) , a class VII RTK (e.g., the tropomyosin receptor kinase (Trk) receptor family including TRKA, TRKB, and TRKC) , a class VIII RTK (e.g., the ephrin (Eph) receptor family including EPHA1, EPHA2, EPHA3, EPHA4, EPHA5, EPHA6, EPHA7, EPHA8, EPHB1, EPHB2, EPHB3, EPHB4, EPHB5, and EPHB6) , a class IX RTK (e.g., AXL receptor family such as AXL, MER, and TRYO3) , a class X RTK (e.g., LTK receptor family such as LTK and ALK) , a class XI RTK (e.g., TIE receptor family such as TIE and TEK) , a class XII RTK (e.g., ROR receptor family ROR1 and ROR2) , a class XIII RTK (e.g., the discoidin domain receptor (DDR) family such as DDR1 and DDR2) , a class XIV RTK (e.g., RET receptor family such as RET) , a class XV RTK (e.g., KLG receptor family including  PTK7) , a class XVI RTK (e.g., RYK receptor family including Ryk) , a class XVII RTK (e.g., MuSK receptor family such as MuSK) , or any derivative, variant, or fragment thereof.
A switch molecule comprising a RTK, or any derivative, variant, or fragment thereof, can bind an antigen comprising any suitable RTK ligand, or any derivative, variant, or fragment thereof. Non limiting examples of RTK ligands include growth factors, cytokines, and hormones. Growth factors include, for example, members of the epidermal growth factor family (e.g., epidermal growth factor or EGF, heparin-binding EGF-like growth factor or HB-EGF, transforming growth factor-α or TGF-α, amphiregulin or AR, epiregulin or EPR, epigen, betacellulin or BTC, neuregulin-1 or NRG1, neuregulin-2 or NRG2, neuregulin-3 or NRG3, and neuregulin-4 or NRG4) , the fibroblast growth factor family (e.g., FGF1, FGF2, FGF3, FGF4, FGF5, FGF6, FGF7, FGF8, FGF9, FGF10, FGF11, FGF12, FGF13, FGF14, FGF15/19, FGF16, FGF17, FGF18, FGF20, FGF21, and FGF23) , the vascular endothelial growth factor family (e.g., VEGF-A, VEGF-B, VEGF-C, VEGF-D, and PIGF) , and the platelet-derived growth factor family (e.g., PDGFA, PDGFB, PDGFC, and PDGFD) . Hormones include, for example, members of the insulin/IGF/relaxin family (e.g., insulin, insulin-like growth factors, relaxin family peptides including relaxin1, relaxin2, relaxin3, Leydig cell-specific insulin-like peptide (gene INSL3) , early placenta insulin-like peptide (ELIP) (gene INSL4) , insulin-like peptide 5 (gene INSL5) , and insulin-like peptide 6) .
In some embodiments, a switch molecule comprises at least an extracellular region (e.g., ligand binding domain) of a catalytic receptor such as a receptor threonine/serine kinase (RTSK) , or any derivative, variant, or fragment thereof. A switch molecule can comprise a type I RTSK, type II RTSK, or any derivative, variant, or fragment thereof. A switch molecule can comprise a type I receptor, or any derivative, variant, or fragment thereof, selected from the group consisting of: ALK1 (ACVRL1) , ALK2 (ACVR1A) , ALK3 (BMPR1A) , ALK4 (ACVR1B) , ALK5 (TGFβR1) , ALK6 (BMPR1B) , and ALK7 (ACVR1C) . A switch molecule can comprise a type II receptor, or any derivative, variant, or fragment thereof, selected from the group consisting of: TGFβR2, BMPR2, ACVR2A, ACVR2B, and AMHR2 (AMHR) . In some embodiments, the switch molecule comprises a TGF-β receptor, or any derivative, variant, or fragment thereof.
A switch molecule comprising a RTSK, or any derivative, variant, or fragment thereof, can bind an antigen comprising any suitable RTSK ligand, or any derivative, variant, or  fragment thereof.
The switch molecule can comprise an intracellular domain (ICD) of a co-stimulatory molecule that elicits an immune cell activation signal. The co-stimulatory molecule may bind a ligand. In some cases, the co-stimulatory molecule may be activated by a ligand responsive protein. In some embodiments, the co-stimulatory molecule is operable to regulate a proliferative and/or survival signal in the immune cell. In some embodiments, the ICD is an intracellular domain of a co-stimulatory molecule selected from an MHC class I protein, an MHC class II protein, a TNF receptor protein, an immunoglobulin-like protein, a cytokine receptor, an integrin, a signaling lymphocytic activation molecule (SLAM protein) , an activating NK cell receptor, BTLA, or a Toll ligand receptor. In some embodiments, the co-stimulatory domain comprises a signaling domain of a molecule selected from the group consisting of: 2B4/CD244/SLAMF4, 4-1BB/TNFSF9/CD137, B7-1/CD80, B7-2/CD86, B7-H1/PD-L1, B7-H2, B7-H3, B7-H4, B7-H6, B7-H7, BAFF R/TNFRSF13C, BAFF/BLyS/TNFSF13B, BLAME/SLAMF8, BTLA/CD272, CD100 (SEMA4D) , CD103, CD11a, CD11b, CD11c, CD11d, CD150, CD160 (BY55) , CD18, CD19, CD2, CD200, CD229/SLAMF3, CD27 Ligand/TNFSF7, CD27/TNFRSF7, CD28, CD29, CD2F-10/SLAMF9, CD3, CD30 Ligand/TNFSF8, CD30/TNFRSF8, CD300a/LMIR1, CD4, CD40 Ligand/TNFSF5, CD40/TNFRSF5, CD48/SLAMF2, CD49a, CD49D, CD49f, CD5, CD53, CD58/LFA-3, CD69, CD7, CD8 α, CD8 β, CD82/Kai-1, CD84/SLAMF5, CD90/Thy1, CD96, CDS, CEACAM1, CRACC/SLAMF7, CRTAM, CTLA-4, DAP12, Dectin-1/CLEC7A, DNAM1 (CD226) , DPPIV/CD26, DR3/TNFRSF25, EphB6, GADS, Gi24/VISTA/B7-H5, GITR Ligand/TNFSF18, GITR/TNFRSF18, HLA Class I, HLA-DR, HVEM/TNFRSF14, IA4, ICAM-1, ICOS/CD278, Ikaros, IL2R β, IL2R γ, IL7R α, IL-12R, Integrin α4/CD49d, Integrin α4β1, Integrin α4β7/LPAM-1, IPO-3, ITGA4, ITGA6, ITGAD, ITGAE, ITGAL, ITGAM, ITGAX, ITGB1, ITGB2, ITGB7, KIRDS2, LAG-3, LAT, LIGHT/TNFSF14, LTBR, Ly108, Ly9 (CD229) , lymphocyte function associated antigen-1 (LFA-1) , Lymphotoxin-α/TNF-β, NKG2C, NKG2D, NKp30, NKp44, NKp46, NKp80 (KLRF1) , NTB-A/SLAMF6, OX40 Ligand/TNFSF4, OX40/TNFRSF4, PAG/Cbp, PD-1, PDCD6, PD-L2/B7-DC, PSGL1, RELT/TNFRSF19L, SELPLG (CD162) , SLAM (SLAMF1) , SLAM/CD150, SLAMF4 (CD244) , SLAMF6 (NTB-A) , SLAMF7, SLP-76, TACI/TNFRSF13B, TCL1A, TCL1B, TIM-1/KIM-1/HAVCR, TIM-4, TL1A/TNFSF15, TNF RII/TNFRSF1B, TNF-α, TRANCE/RANKL, TSLP, TSLP R, VLA1, and  VLA-6.
The ECD and the ICD of a switch molecule can be joined by a transmembrane domain, for example by a membrane spanning segment. In some embodiments, the membrane spanning segment comprises a polypeptide. The membrane spanning polypeptide can have any suitable polypeptide sequence. In some cases, the membrane spanning polypeptide comprises a polypeptide sequence of a membrane spanning portion of an endogenous or wild-type membrane spanning protein. In some embodiments, the membrane spanning polypeptide comprises a polypeptide sequence having at least 1 (e.g., at least 2, 3, 4, 5, 6, 7, 8, 9, 10 or greater) of an amino acid substitution, deletion, and insertion compared to a membrane spanning portion of an endogenous or wild-type membrane spanning protein. In some embodiments, the membrane spanning polypeptide comprises a non-natural polypeptide sequence, such as the sequence of a polypeptide linker. The polypeptide linker may be flexible or rigid. The polypeptide linker can be structured or unstructured. In some embodiments, the membrane spanning polypeptide transmits a signal from the ECD to the ICD, for example a signal indicating ligand-binding.
The various domains of switch molecules provided herein can be linked by means of chemical bond, e.g., an amide bond or a disulfide bond; a small, organic molecule (e.g., a hydrocarbon chain) ; an amino acid sequence such as a peptide linker (e.g., an amino acid sequence about 3-200 amino acids in length) , or a combination of a small, organic molecule and peptide linker. Peptide linkers can provide desirable flexibility to permit the desired expression, activity and/or conformational positioning of the chimeric polypeptide. The peptide linker can be of any appropriate length to connect at least two domains of interest and is preferably designed to be sufficiently flexible so as to allow the proper-folding and/or function and/or activity of one or both of the domains it connects. The peptide linker can have a length of at least 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 amino acids. In some embodiments, a peptide linker has a length between about 0 and 200 amino acids, between about 10 and 190 amino acids, between about 20 and 180 amino acids, between about 30 and 170 amino acids, between about 40 and 160 amino acids, between about 50 and 150 amino acids, between about 60 and 140 amino acids, between about 70 and 130 amino acids, between about 80 and 120 amino acids, or between about 90 and 110 amino acids. In some embodiments, the linker sequence can comprise an endogenous protein sequence. In some embodiments, the linker sequence comprises glycine, alanine, and/or serine amino acid residues. In some embodiments, a  linker can contain motifs, e.g., multiple or repeating motifs, of GS, GGS, GGGGS, GGSG, or SGGG. The linker sequence can include any naturally occurring amino acids, non-naturally occurring amino acids, or combinations thereof.
Binding of a ligand to the switch molecule can yield an immune cell activation signal in the modified immune cell. In some embodiments, the immune cell activation signal is mediated by an activation factor. The activation factor can be an immunomodulating molecule. The activation factor may bind, activate, or stimulate T cells or other immune cells to modulate their activity. In some embodiments, the activation factor can be secreted from the immune cell. The activation factor can be, for example, a soluble cytokine, a soluble chemokine, or a growth factor molecule. Non-limiting examples of activation factors which can mediate the immune cell activation include a soluble cytokine, such as IL-1, IL-2, IL-6, IL-7, IL-8, IL-10, IL-12, IL-15, IL-21, tumor necrosis factor (TNF) , transforming growth factor (TGF) , interferon (IFN) , or any functional fragment or variant thereof.
The immune cell activation signal can comprise or result in a clonal expansion of the modified immune cell; cytokine release by the modified immune cell; cytotoxicity of the modified immune cell; proliferation of the modified immune cell; differentiation, dedifferentiation or transdifferentiation of the modified immune cell; movement and/or trafficking of the modified immune cell; exhaustion and/or reactivation of the modified immune cell; and release of other intercellular molecules, metabolites, chemical compounds, or combinations thereof by the modified immune cell.
In some embodiments, the immune cell activity comprises or results in clonal expansion of the immune cell (e.g., modified T cell) . Clonal expansion can comprise the generation of daughter cells arising from the immune cell. The daughter cells resulting from clonal expansion can comprise the switch molecule. Clonal expansion of the modified immune cell can be greater than that of a comparable immune cell lacking the switch molecule. Clonal expansion of the modified immune cell can be about 5-fold to about 10-fold, about 10-fold to about 20-fold, about 20-fold to about 30-fold, about 30-fold to about 40-fold, about 40-fold to about 50-fold, about 50-fold to about 60-fold, about 60-fold to about 70-fold, about 70-fold to about 80-fold, about 80-fold to about 90-fold, about 90-fold to about 100-fold, about100-fold to about 200-fold, about 200-fold to about 300-fold, about 300-fold to about 400-fold, about 400-fold to about 500-fold, about 500-fold to about 600-fold, or about 600-fold to about 700-fold  greater than a comparable immune cell lacking the switch molecule. In some embodiments, determining clonal expansion can comprise quantifying a number of immune cells, for example with and without switch molecules and after ligand binding to the switch molecule. Quantifying a number of immune cells can be achieved by a variety of techniques, non-limiting examples of which include flow cytometry, Trypan Blue exclusion, and hemocytometry.
In some embodiments, the immune cell activity comprises or results in cytokine release by the immune cell. In some embodiments, the immune cell activity comprises or results in the release of intercellular molecules, metabolites, chemical compounds or combinations thereof. Cytokine release by the modified immune cell can comprise the release of IL-1, IL-2, IL-4, IL-5, IL-6, IL-13, IL-17, IL-21, IL-22, IFNγ, TNFα, CSF, TGFβ, granzyme, and the like. In some embodiments, cytokine release may be quantified using enzyme-linked immunosorbent assay (ELISA) , flow cytometry, western blot, and the like. Cytokine release by a modified immune cell can be greater than that of a comparable immune cell lacking the switch molecule. A modified immune cell provided herein can generate about 1-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 11-fold, 12-fold, 13-fold, 14-fold, 15-fold, 20-fold, 30-fold, 40-fold, 50-fold, 60-fold, 70-fold, 80-fold, 90-fold, 100-fold, 150-fold, 200-fold, 250-fold, or over 300-fold greater cytokine release as compared to a comparable immune cell lacking the switch molecule. The modified immune cell can exhibit increased cytokine secretion as compared to a comparable immune cell lacking the switch molecule (e.g., unmodified) , when the switch molecule binds to the ligand and the modified immune cell binds to the neoantigen present on a target cell. In some embodiments, the cytokine secreted is IFNγ or IL-2. In some embodiments, cytokine release can be quantified in vitro or in vivo.
In some embodiments, the immune cell activity comprises or results in cytotoxicity of the immune cell (e.g., T cell) . In some cases, cytotoxicity of the modified immune cells provided herein can be used for killing a target cell. An immune cell or population of immune cells expressing a switch molecule can induce death of a target cell. Killing of a target cell can be useful for a variety of applications, including, but not limited to, treating a disease or disorder in which a cell population is desired to be eliminated or its proliferation desired to be inhibited. Cytotoxicity can also refer to the release of cytotoxic cytokines, for example IFNγ or granzyme, by the immune cell. In some cases, modified immune cells provided herein may have altered (i) release of cytotoxins such as perforin, granzymes, and granulysin and/or (ii) induction of  apoptosis via Fas-Fas ligand interaction between the T cells and target cells. In some embodiments, cytotoxicity can be quantified by a cytotoxicity assay including, a co-culture assay, ELISPOT, chromium release cytotoxicity assay, and the like. Cytotoxicity of a modified immune cell provided herein can be greater than that of a comparable immune cell lacking the switch molecule. The modified immune cell can exhibit increased cytotoxicity against a target cell as compared to a comparable immune cell lacking the switch molecule (e.g., unmodified) , when the switch molecule binds to the ligand and the modified immune cell binds to the neoantigen present on the target cell. A modified immune cell of the disclosure can be about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 125%, 150%, 175%, or 200%more cytotoxic to target cells as compared to a comparable immune cell lacking the switch molecule. A modified immune cell of the disclosure can induce death of target cells that is at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 125%, 150%, 175%, or 200%greater than that of a comparable immune cell lacking the switch molecule. In some embodiments, an immune cell provided herein can induce apoptosis in target cells displaying target epitopes (e.g., neoantigens) on their surface. In some embodiments, cytotoxicity can be determined in vitro or in vivo. In some embodiments, determining cytotoxicity can comprise determining a level of disease after administration of a composition provided herein as compared to a level of disease prior to the administration. In some embodiments, determining cytotoxicity can comprise determining a level of disease after administration of a composition provided herein and a level of disease after administration of comparable immune cells lacking the switch molecule.
In some embodiments, immune cell activity comprises or results in proliferation of the immune cell (e.g., T cell) . Proliferation of the immune cell can refer to expansion of the immune cell. Proliferation of the immune cell can refer to phenotypic changes of the immune cell. Proliferation of a modified immune cell of the disclosure can be greater than that of a comparable immune cell lacking the switch molecule. Proliferation of a modified immune cell provided herein can be about 5-fold to about 10-fold, about 10-fold to about 20-fold, about 20-fold to about 30-fold, about 30-fold to about 40-fold, about 40-fold to about 50-fold, about 50-fold to about 60-fold, about 60-fold to about 70-fold, about 70-fold to about 80-fold, about 80-fold to about 90-fold, about 90-fold to about 100-fold, about 100-fold to about 200-fold, from  about 200-fold to about 300-fold, from about 300-fold to about 400-fold, from about 400-fold to about 500-fold, from about 500-fold to about 600-fold, or from about 600-fold to about 700-fold greater than the proliferation of a comparable immune cell lacking the switch molecule. In some embodiments, proliferation can be determined by quantifying a number of immune cells. Quantifying a number of immune cells can comprise flow cytometry, Trypan Blue exclusion, and/or hemocytometry. Proliferation can also be determined by phenotypic analysis of the immune cells.
In some embodiments, immune cell activity can comprise or result in differentiation, dedifferentiation, or transdifferentiation of the immune cell (e.g., modified T cell) . Differentiation, dedifferentiation, or transdifferentation of an immune cell can be determined by evaluating phenotypic expression of markers of differentiation, dedifferentiation, or transdifferentation on a cell surface by flow cytometry. In some embodiments, a modified immune cell provided herein has increased differentiation ability as compared to a comparable immune cell lacking the switch molecule. In some embodiments, a modified immune cell provided herein has increased dedifferentiation ability as compared to a comparable immune cell lacking the switch molecule. In some embodiments, a modified immune cell provided herein has greater transdifferentiation ability as compared to a comparable immune cell lacking the switch molecule.
In some embodiments, immune cell activity can comprise or result in movement and/or trafficking of the immune cell (e.g., modified T cell) . In some embodiments, movement can be determined by quantifying localization of the immune cell to a target site. For example, modified immune cells provided herein can be quantified at a target site after administration, for example at a site that is not the target site. Quantification can be performed by isolating a lesion and quantifying a number of immune cells, for example tumor infiltrating lymphocytes, comprising the switch molecule. Movement and/or trafficking of an immune cell comprising a switch molecule can be greater than that of a comparable immune cell lacking the switch molecule. In some embodiments, the number of immune cells comprising the switch molecule at a target site, for example a tumor lesion, can be about 5X, 10X, 15X, 20X, 25X, 30X, 35X, or 40X that of the number of comparable immune cells lacking the switch molecule. Trafficking can also be determined in vitro utilizing a transwell migration assay. In some embodiments, the number of immune cells comprising the switch molecule at a target site, for example in a  transwell migration assay, can be about 5X, 10X, 15X, 20X, 25X, 30X, 35X, or 40X that of the number of comparable immune cells lacking the switch molecule.
In some embodiments, immune cell activity can comprise or result in exhaustion and/or activation of the immune cell (e.g., modified T cell) . Exhaustion and/or activation of an immune cell can be determined by phenotypic analysis by flow cytometry or microscopic analysis. For example, expression levels of markers of exhaustion, for instance programmed cell death protein 1 (PD1) , lymphocyte activation gene 3 protein (LAG3) , 2B4, CD160, Tim3, and T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) , can be determined quantitatively and/or qualitatively. In some cases, immune cells, such as T cells, can lose effector functions in a hierarchical manner and become exhausted. As a result of exhaustion, functions such as IL-2 production and cytokine expression, as well as high proliferative capacity, can be lost. Exhaustion can also be followed by defects in the production of IFNγ, TNF, and chemokines, as well as in degranulation. Exhaustion or activation of a modified immune cell provided herein can be greater than that of a comparable immune cell lacking the switch molecule. In some embodiments, the immune cell provided herein can undergo at least about a 1-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 11-fold, 12-fold, 13-fold, 14-fold, 15-fold, 20-fold, 30-fold, 40-fold, 50-fold, 60-fold, 70-fold, 80-fold, 90-fold, 100-fold, 150-fold, 200-fold, 250-fold, or over 300 increase in exhaustion or activation as compared to a comparable immune cell lacking the switch molecule. In some embodiments, the immune cell comprising provided herein can undergo at least about a 1-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 11-fold, 12-fold, 13-fold, 14-fold, 15-fold, 20-fold, 30-fold, 40-fold, 50-fold, 60-fold, 70-fold, 80-fold, 90-fold, 100-fold, 150-fold, 200-fold, 250-fold, or over 300 decrease in exhaustion or activation as compared to a comparable immune cell lacking the switch molecule.
In some embodiments, upon binding of the switch molecule to the ligand, the modified immune cell (e.g., modified T cell) exhibits enhanced neoantigen binding as compared to a comparable T cell lacking the switch molecule.
In some embodiments, a modified T cell comprises a T cell receptor (TCR) complex which exhibits specific binding to a neoantigen. In some embodiments, the TCR complex is an endogenous TCR complex. In some embodiments, the TCR is an exogenous TCR complex. The TCR complex, e.g., endogenous or exogenous, of the modified immune cell can confer the  antigen binding specificity (e.g., neoantigen binding) of the immune cell.
In some embodiments, animmune cellexhibits enhanced proliferation in a subject administered a composition comprising the immune cell and a modified APC expressing aneoantigen recognized by the immune cell, compared to a comparable composition lacking the modified APC. Amodified APC (e.g., modified B cell) in combination with animmune cell can enhance the ability of the modified APC to stimulate the immune cell in vivo. Proliferation of the immune cell can refer to expansion of the immune cell. Proliferation of the immune cell can refer to phenotypic changes of the immune cell. Proliferation of an immune cell can be about 2 fold, 10 fold, 2 fold to about 10 fold, 5 fold to about 10 fold, about 10 fold to about 20 fold, about 20 fold to about 30 fold, about 30 fold to about 40 fold, about 40 fold to about 50 fold, about 50 fold to about 60 fold, about 60 fold to about 70 fold, about 70 fold to about 80 fold, about 80 fold to about 90 fold, about 90 fold to about 100 fold, about 100 fold to about 200 fold, from about 200 fold to about 300 fold, from about 300 fold to about 400 fold, from about 400 fold to about 500 fold, from about 500 fold to about 600 fold, from about 600 fold to about 700 fold greater than the proliferation of a comparable immune cell administered without a modified APC. In some embodiments, theimmune cell exhibits at least a 2-fold increase in proliferation compared to a comparable composition lacking a modified APC. In some embodiments, the immune cell exhibits at least a 10-fold increase in proliferation compared to a comparable composition lacking a modified APC. Proliferation of an immune cell can be about 2 fold, 10 fold, 2 fold to about 10 fold, about 5 fold to about 10 fold, about 10 fold to about 20 fold, about 20 fold to about 30 fold, about 30 fold to about 40 fold, about 40 fold to about 50 fold, about 50 fold to about 60 fold, about 60 fold to about 70 fold, about 70 fold to about 80 fold, about 80 fold to about 90 fold, about 90 fold to about 100 fold, about 100 fold to about 200 fold, from about 200 fold to about 300 fold, from about 300 fold to about 400 fold, from about 400 fold to about 500 fold, from about 500 fold to about 600 fold, from about 600 fold to about 700 fold greater than the proliferation of a comparable immune cell administered without a modified APC, and wherein the proliferation is ascertained at least about 12, 24, 36, 48, 60, 72, 84, or 96 hours after administration of the composition comprising the modified APC and the immune cell. The enhanced proliferation can be ascertained either in vitro or in vivo. In some embodiments, proliferation can comprise quantifying the number of immune cells. Quantifying a number of immune cells can comprise flow cytometry, Trypan Blue exclusion, and/or hemocytometry.  Proliferation can also be determined by phenotypic analysis of the immune cells.
In some embodiments, the amount of modified APC administered to a subject can remain about the same over time in the subject. The modified APC may not be degraded over time, thus retaining the amount administered to the subject. In some cases, the modified APC that does not degrade over time is a modified B cell. The decrease in the amount of modified APC can be less than about 1%, 2%, 3%, 5%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90%relative to the amount administered, and wherein the decrease is ascertained at least about 12, 24, 36, 48, 60, 72, 84, or 96 hours after administration of the modified APC.
In one aspect, the present disclosure provides a vaccine comprising a modified APC or a composition described herein. In some embodiments, the composition comprises a modified APC comprising a neoantigen and a T cell that is capable of specifically binding the neoantigen.
In one aspect, the present disclosure provides methods of treating a disorder in a subject expressing the neoantigen comprising administering a modified APC, a composition, or a vaccine described herein. In some embodiments, the disorder is cancer.
In one aspect, the present disclosure provides a method for immune cell enrichment comprising administering to a subject expressing the neoantigen, amodified APC, a composition, or a vaccine described herein.
In various embodiments of the aspects herein, the disclosure provides a method of treating a disorder in a subject in need thereof. An exemplary methodcan comprise administering to the subject a modified APC comprising a neoantigen and a T cellcapable of specifically binding the neoantigen of the modified APC. In some embodiments, the modified APC and the T cell are administered concurrently. In some embodiments, the modified APC is administered prior to the T cell. In some embodiments, the T cell is administered prior to the modified APC.
In various embodiments of the aspects herein, a modified APC can comprise immune checkpoint inhibitors and/or cytokines described herein.
In various embodiments of the aspects herein, an immune cell described herein further comprises a kill switch. A kill switch can be activated to eliminate the immune cell in cases of severe toxicity, such as hypercytokinemia. This can occur when the immune system has such a strong response that too many inflammatory cytokines are released, which triggermild to severe symptoms including fever, headache, rash, rapid heartbeat, low blood pressure, and breathing difficulties. A kill switch can be a drug-inducible kill-switch. The kill switch can  comprise an inducible caspase-9.
Various embodiments of the aspects herein comprise a cell, for example, an immune cell or a modified form thereof. Cells, for example, immune cells (e.g., lymphocytes including T cells and NK cells) , can be obtained from a subject. Non-limiting examples of subjects include humans, dogs, cats, mice, rats, and transgenic species thereof. Examples of samples from a subject from which cells can be derived include, for example, skin, heart, lung, kidney, bone marrow, breast, pancreas, liver, muscle, smooth muscle, bladder, gall bladder, colon, intestine, brain, prostate, esophagus, thyroid, serum, saliva, urine, gastric and digestive fluid, tears, stool, semen, vaginal fluid, interstitial fluids derived from tumorous tissue, ocular fluids, sweat, mucus, earwax, oil, glandular secretions, spinal fluid, hair, fingernails, plasma, nasal swab or nasopharyngeal wash, spinal fluid, cerebral spinal fluid, tissue, throat swab, biopsy, placental fluid, amniotic fluid, cord blood, emphatic fluids, cavity fluids, sputum, pus, microbiota, meconium, breast milk, and/or other excretions or body tissues.
In some cases, a cell can be a population of T cells, NK cell, B cells, and the like obtained from a subject. T cells can be obtained from a number of sources, including PBMCs, bone marrow, lymph node tissue, cord blood, thymus tissue, and tissue from a site of infection, ascites, pleural effusion, spleen tissue, and tumors. In some embodiments, T cells can be obtained from a unit of blood collected from a subject using any number of techniques, such as 
Figure PCTCN2019090633-appb-000001
separation. In one embodiment, cells from the circulating blood of an individual are obtained by apheresis. The apheresis product typically contains lymphocytes, including T cells, monocytes, granulocytes, B cells, other nucleated white blood cells, red blood cells, and platelets. The cells collected by apheresis can be washed to remove the plasma fraction and placed in appropriate buffers or media for subsequent processing steps.
Any of a variety of immune cells can be utilized in the aspects herein. In some embodiments, immune cells comprise granulocytes, such as asophils, eosinophils, and neutrophils; mast cells; monocytes, which can develop into macrophages; antigen-presenting cells such as dendritic cells; and lymphocytes, such as natural killer cells (NK cells) , B cells, and T cells. In some embodiments, an immune cell is an immune effector cell. An immune effector cell refers to an immune cell that can perform a specific function in response to a stimulus. In some embodiments, an immune cell is an immune effector cell which can induce cell death. In some embodiments, the immune cell is a lymphocyte. In some embodiments the lymphocyte is a  T cell. In some embodiments, the T cell is an activated T cell. T cells include both naive and memory cells (e.g. central memory or TCM, effector memory or TEM and effector memory RA or TEMRA) , effector cells (e.g. cytotoxic T cells or CTLs or Tc cells) , helper cells (e.g. Thl, Th2, Th3, Th9, Th7, TFH) , regulatory cells (e.g. Treg, and Trl cells) , natural killer T cells (NKT cells) , tumor infiltrating lymphocytes (TILs) , lymphocyte-activated killer cells (LAKs) , αβ Τcells, γδ Τ cells, and similar unique classes of the T cell lineage. T cells can be divided into two broad categories: CD8+ T cells and CD4+ T cells, based on which protein is present on the cell's surface. T cells expressing a subject system can carry out multiple functions, including killing infected cells and activating or recruiting other immune cells. CD8+ T cells are referred to as cytotoxic T cells or cytotoxic T lymphocytes (CTLs) . CTLs expressing a subject system can be involved in recognizing and removing virus-infected cells and cancer cells. CTLs have specialized compartments, or granules, containing cytotoxins that cause apoptosis, e.g., programmed cell death. CD4+ T cells can be subdivided into four sub-sets –Th1, Th2, Th17, and Treg, with “Th” referring to “T helper cell, ” although additional sub-sets may exist. Th1 cells can coordinate immune responses against intracellular microbes, especially bacteria. They can produce and secrete molecules that alert and activate other immune cells, like bacteria-ingesting macrophages. Th2 cells are involved in coordinating immune responses against extracellular pathogens, like helminths (parasitic worms) , by alerting B cells, granulocytes, and mast cells. Th17 cells can produce interleukin 17 (IL-17) , a signaling molecule that activates immune and non-immune cells. Th17 cells are important for recruiting neutrophils.
In some embodiments, a population of immune cells provided herein can be heterogeneous. In some embodiments, cells used can be composed of a heterogeneous mixture of CD4 and CD8 T cells. The CD4 and CD8 cells can have phenotypic characteristics of circulating effector T cells. The CD4 and CD8 cells can also have a phenotypic characteristic of effector-memory cells. In some embodiment, cells can be central-memory cells.
In some embodiments, cells include peripheral blood mononuclear cells (PBMC) , peripheral blood lymphocytes (PBL) , and other blood cell subsets such as, but not limited to, T cell, a natural killer cell, a monocyte, a natural killer T cell, a monocyte-precursor cell, a hematopoietic stem cell or a non-pluripotent stem cell. In some cases, the cell can be any immune cell, including any Tcell such as tumor infiltrating cells (TILs) , such as CD3+ Tcells, CD4+ Tcells, CD8+ Tcells, or any other type of Tcell. The T cell can also include memory T  cells, memory stem T cells, or effector T cells. The T cells can also be selected from a bulk population, for example, selecting T cells from whole blood. The T cells can also be expanded from a bulk population. The T cells can also be skewed towards particular populations and phenotypes. For example, the T cells can be skewed to phenotypically comprise, CD45RO (-) , CCR7 (+) , CD45RA (+) , CD62L (+) , CD27 (+) , CD28 (+) and/or IL-7Rα (+) . Suitable cells can be selected that comprise one of more markers selected from a list comprising: CD45RO (-) , CCR7 (+) , CD45RA (+) , CD62L (+) , CD27 (+) , CD28 (+) and/or IL-7Rα (+) . Cells also include stem cells such as, by way of example, embryonic stem cells, induced pluripotent stem cells, hematopoietic stem cells, neuronal stem cells and mesenchymal stem cells. Cells can comprise any number of primary cells, such as human cells, non-human cells, and/or mouse cells. Cells can be progenitor cells. Cells can be derived from the subject to be treated (e.g., patient) . Cells can be derived from a human donor. Host cells can be stem memory TSCM cells comprised of CD45RO (-) , CCR7 (+) , CD45RA (+) , CD62L+ (L-selectin) , CD27+, CD28+ and IL-7Rα+, the stem memory cells can also express CD95, IL-2Rβ, CXCR3, and LFA-1, and show numerous functional attributes distinctive of the stem memory cells. Host cells can be central memory TCM cells comprising L-selectin and CCR7, the central memory cells can secrete, for example, IL-2, but not IFNγ or IL-4. Cells can also be effector memory TEM cells comprising L-selectin or CCR7 and produce, for example, effector cytokines such as IFNγ and IL-4.
In various embodiments of the aspects herein, an immune cell comprises a lymphocyte. In some embodiments, the lymphocyte is a T cell. T cells can be obtained from a number of sources, including peripheral blood mononuclear cells, bone marrow, lymph node tissue, spleen tissue, umbilical cord, and tumors. In some embodiments, the lymphocyte is a natural killer cell (NK cell) . In some embodiments, any number of T cell lines available can be used. Immune cells such as lymphocytes (e.g., cytotoxic lymphocytes) can preferably be autologous cells, although heterologous cells can also be used. T cells can be obtained from a unit of blood collected from a subject using any number of techniques, such as separation. Cells from the circulating blood of an individual can be obtained by apheresis or leukapheresis. The apheresis product typically contains lymphocytes, including T cells, monocytes, granulocytes, B cells, other nucleated white blood cells, red blood cells, and platelets. The cells collected by apheresis can be washed to remove the plasma fraction and to place the cells in an appropriate buffer or media, such as phosphate buffered saline (PBS) , for  subsequent processing steps. After washing, the cells can be resuspended in a variety of biocompatible buffers, such as Ca-free, Mg-free PBS. Alternatively, the undesirable components of the apheresis sample can be removed and the cells directly resuspended in culture media. Samples can be provided directly by the subject, or indirectly through one or more intermediaries, such as a sample collection service provider or a medical provider (e.g. a physician or nurse) . In some embodiments, isolating T cells from peripheral blood leukocytes can include lysing the red blood cells and separating peripheral blood leukocytes from monocytes by, for example, centrifugation through, e.g., a
Figure PCTCN2019090633-appb-000003
gradient.
A specific subpopulation of T cells, such as CD4+ or CD8+ T cells, can be further isolated by positive or negative selection techniques. Negative selection of a T cell population can be accomplished, for example, with a combination of antibodies directed to surface markers unique to the cells negatively selected. One suitable technique includes cell sorting via negative magnetic immunoadherence, which utilizes a cocktail of monoclonal antibodies directed to cell surface markers present on the cells negatively selected. For example, to isolate CD4+ cells, a monoclonal antibody cocktail can include antibodies to CD14, CD20, CD1 lb, CD16, HLA-DR, and CD8. The process of negative selection can be used to produce a desired T cell population that is primarily homogeneous. In some embodiments, a composition comprises a mixture of two or more (e.g. 2, 3, 4, 5, or more) different kind of Tcells.
In some embodiments, the immune cell is a member of an enriched population of cells. One or more desired cell types can be enriched by any suitable method, non-limiting examples of which include treating a population of cells to trigger expansion and/or differentiation to a desired cell type, treatment to stop the growth of undesired cell type (s) , treatment to kill or lyse undesired cell type (s) , purification of a desired cell type (e.g. purification on an affinity column to retain desired or undesired cell types on the basis of one or more cell surface markers) . In some embodiments, the enriched population of cells is a population of cells enriched in cytotoxic lymphocytes selected from cytotoxic T cells (also variously known as cytotoxic T lymphocytes, CTLs, T killer cells, cytolytic T cells, CD8+ T cells, and killer T cells) , natural killer (NK) cells, and lymphokine-activated killer (LAK) cells.
For isolation of a desired population of cells by positive or negative selection, the concentration of cells and surface (e.g., particles such as beads) can be varied. In certain embodiments, it can be desirable to significantly decrease the volume in which beads and cells  are mixed together (i.e., increase the concentration of cells) , to ensure maximum contact of cells and beads. For example, a concentration of 2 billion cells/mL can be used. In some embodiments, a concentration of 1 billion cells/mL is used. In some embodiments, greater than 100 million cells/mL are used. A concentration of cells of 10, 15, 20, 25, 30, 35, 40, 45, or 50 million cells/mL can be used. In yet another embodiment, a concentration of cells from 75, 80, 85, 90, 95, or 100 million cells/mL can be used. In further embodiments, concentrations of 125 or 150 million cells/mL can be used. Using high concentrations can result in increased cell yield, cell activation, and cell expansion.
A variety of target cells can be killed using the systems and methods of the subject disclosure. A target cell to which this method can be applied includes a wide variety of cell types. A target cell can be in vitro. A target cell can be in vivo. A target cell can be ex vivo. A target cell can be an isolated cell. A target cell can be a cell inside of an organism. A target cell can be an organism. A target cell can be a cell in a cell culture. A target cell can be one of a collection of cells. A target cell can be a mammalian cell or derived from a mammalian cell. A target cell can be a rodent cell or derived from a rodent cell. A target cell can be a human cell or derived from a human cell. A target cell can be a prokaryotic cell or derived from a prokaryotic cell. A target cell can be a bacterial cell or can be derived from a bacterial cell. A target cell can be an archaeal cell or derived from an archaeal cell. A target cell can be a eukaryotic cell or derived from a eukaryotic cell. A target cell can be a pluripotent stem cell. A target cell can be a plant cell or derived from a plant cell. A target cell can be an animal cell or derived from an animal cell. A target cell can be an invertebrate cell or derived from an invertebrate cell. A target cell can be a vertebrate cell or derived from a vertebrate cell. A target cell can be a microbe cell or derived from a microbe cell. A target cell can be a fungi cell or derived from a fungi cell. A target cell can be from a specific organ or tissue.
A target cell can be a stem cell or progenitor cell. Target cells can include stem cells (e.g., adult stem cells, embryonic stem cells, induced pluripotent stem (iPS) cells) and progenitor cells (e.g., cardiac progenitor cells, neural progenitor cells, etc. ) . Target cells can include mammalian stem cells and progenitor cells, including rodent stem cells, rodent progenitor cells, human stem cells, human progenitor cells, etc. Clonal cells can comprise the progeny of a cell. A target cell can comprise a target nucleic acid. A target cell can be in a living organism. A target cell can be a genetically modified cell. A target cell can be a host cell.
A target cell can be a primary cell. For example, cultures of primary cells can be passaged 0 times, 1 time, 2 times, 4 times, 5 times, 10 times, 15 times or more. Cells can be unicellular organisms. Cells can be grown in culture.
A target cell can be a diseased cell. A diseased cell can have altered metabolic, gene expression, and/or morphologic features. A diseased cell can be a cancer cell, a diabetic cell, and a apoptotic cell. A diseased cell can be a cell from a diseased subject. Exemplary diseases can include blood disorders, cancers, metabolic disorders, eye disorders, organ disorders, musculoskeletal disorders, cardiac disease, and the like.
If the target cells are primary cells, they may be harvested from an individual by any method. For example, leukocytes may be harvested by apheresis, leukocytapheresis, density gradient separation, etc. Cells from tissues such as skin, muscle, bone marrow, spleen, liver, pancreas, lung, intestine, stomach, etc. can be harvested by biopsy. An appropriate solution may be used for dispersion or suspension of the harvested cells. Such solution can generally be a balanced salt solution, (e.g. normal saline, phosphate-buffered saline (PBS) , Hank’s balanced salt solution, etc. ) , conveniently supplemented with fetal calf serum or other naturally occurring factors, in conjunction with an acceptable buffer at low concentration. Buffers can include HEPES, phosphate buffers, lactate buffers, etc. Cells may be used immediately, or they may be stored (e.g., by freezing) . Frozen cells can be thawed and can be capable of being reused. Cells can be frozen in a DMSO, serum, medium buffer (e.g., 10%DMSO, 50%serum, 40%buffered medium) , and/or some other such common solution used to preserve cells at freezing temperatures.
Non-limiting examples of cells which can be target cells include, but are not limited to, lymphoid cells, such as B cell, T cell (Cytotoxic T cell, Natural Killer T cell, Regulatory T cell, T helper cell) , NK cell, cytokine-induced killer (CIK) cells; myeloid cells, such as granulocytes (Basophil granulocyte, Eosinophil granulocyte, Neutrophilgranulocyte/Hypersegmented neutrophil) , Monocyte/Macrophage, Red blood cell (Reticulocyte) , Mast cell, Thrombocyte/Megakaryocyte, Dendritic cell; cells from the endocrine system, including thyroid (Thyroid epithelial cell, Parafollicular cell) , parathyroid (Parathyroid chief cell, Oxyphil cell) , adrenal (Chromaffin cell) , pineal (Pinealocyte) cells; cells of the nervous system, including glial cells (Astrocyte, Microglia) , Magnocellular neurosecretory cell, Stellate cell, Boettcher cell, and pituitary (Gonadotrope, Corticotrope, Thyrotrope,  Somatotrope, Lactotroph ) ; cells of the Respiratory system, includingPneumocyte (Type I pneumocyte, Type II pneumocyte) , Clara cell, Goblet cell, Dust cell; cells of the circulatory system, including Myocardiocyte, Pericyte; cells of the digestive system, including stomach (Gastric chief cell, Parietal cell) , Goblet cell, Paneth cell, G cells, D cells, ECL cells, I cells, K cells, S cells; enteroendocrine cells, including enterochromaffm cell, APUD cell, liver (Hepatocyte, Kupffer cell) , Cartilage/bone/muscle; bone cells, including Osteoblast, Osteocyte, Osteoclast, teeth (Cementoblast, Ameloblast) ; cartilage cells, including Chondroblast, Chondrocyte; skin cells, including Trichocyte, Keratinocyte, Melanocyte (Nevus cell) ; muscle cells, including Myocyte; urinary system cells, including Podocyte, Juxtaglomerular cell, Intraglomerular mesangial cell/Extraglomerular mesangial cell, Kidney proximal tubule brush border cell, Macula densa cell; reproductive system cells, including Spermatozoon, Sertoli cell, Leydig cell, Ovum; and other cells, including Adipocyte, Fibroblast, Tendon cell, Epidermal keratinocyte (differentiating epidermal cell) , Epidermal basal cell (stem cell) , Keratinocyte of fingernails and toenails, Nail bed basal cell (stem cell) , Medullary hair shaft cell, Cortical hair shaft cell, Cuticular hair shaft cell, Cuticular hair root sheath cell, Hair root sheath cell of Huxley's layer, Hair root sheath cell of Henle's layer, External hair root sheath cell, Hair matrix cell (stem cell) , Wet stratified barrier epithelial cells, Surface epithelial cell of stratified squamous epithelium of cornea, tongue, oral cavity, esophagus, anal canal, distal urethra and vagina, basal cell (stem cell) of epithelia of cornea, tongue, oral cavity, esophagus, anal canal, distal urethra and vagina, Urinary epithelium cell (lining urinary bladder and urinary ducts) , Exocrine secretory epithelial cells, Salivary gland mucous cell (polysaccharide-rich secretion) , Salivary gland serous cell (glycoprotein enzyme-rich secretion) , Von Ebner’s gland cell in tongue (washes taste buds) , Mammary gland cell (milk secretion) , Lacrimal gland cell (tear secretion) , Ceruminous gland cell in ear (wax secretion) , Eccrine sweat gland dark cell (glycoprotein secretion) , Eccrine sweat gland clear cell (small molecule secretion) . Apocrine sweat gland cell (odoriferous secretion, sex-hormone sensitive) , Gland of Moll cell in eyelid (specialized sweat gland) , Sebaceous gland cell (lipid-rich sebum secretion) , Bowman's gland cell in nose (washes olfactory epithelium) , Brunner's gland cell in duodenum (enzymes and alkaline mucus) , Seminal vesicle cell (secretes seminal fluid components, including fructose for swimming sperm) , Prostate gland cell (secretes seminal fluid components) , Bulbourethral gland cell (mucus secretion) , Bartholin's gland cell (vaginal lubricant secretion) , Gland of Littre cell  (mucus secretion) , Uterus endometrium cell (carbohydrate secretion) , Isolated goblet cell of respiratory and digestive tracts (mucus secretion) , Stomach lining mucous cell (mucus secretion) , Gastric gland zymogenic cell (pepsinogen secretion) , Gastric gland oxyntic cell (hydrochloric acid secretion) , Pancreatic acinar cell (bicarbonate and digestive enzyme secretion) , Paneth cell of small intestine (lysozyme secretion) , Type II pneumocyte of lung (surfactant secretion) , Clara cell of lung, Hormone secreting cells, Anterior pituitary cells, Somatotropes, Lactotropes, Thyrotropes, Gonadotropes, Corticotropes, Intermediate pituitary cell, Magnocellular neurosecretory cells, Gut and respiratory tract cells, Thyroid gland cells, thyroid epithelial cell, parafollicular cell, Parathyroid gland cells, Parathyroid chief cell, Oxyphil cell, Adrenal gland cells, chromaffin cells, Ley dig cell of testes, Theca interna cell of ovarian follicle, Corpus luteum cell of ruptured ovarian follicle, Granulosa lutein cells, Theca lutein cells, Juxtaglomerular cell (renin secretion) , Macula densa cell of kidney, Metabolism and storage cells, Barrier function cells (Lung, Gut, Exocrine Glands and Urogenital Tract) , Kidney, Type I pneumocyte (lining air space of lung) , Pancreatic duct cell (centroacinar cell) , Nonstriated duct cell (of sweat gland, salivary gland, mammary gland, etc. ) , Duct cell (of seminal vesicle, prostate gland, etc. ) , Epithelial cells lining closed internal body cavities, Ciliated cells with propulsive function, Extracellular matrix secretion cells, Contractile cells; Skeletal muscle cells, stem cell, Heart muscle cells, Blood and immune system cells, Erythrocyte (red blood cell) , Megakaryocyte (platelet precursor) , Monocyte, Connective tissue macrophage (various types) , Epidermal Langerhans cell, Osteoclast (in bone) , Dendritic cell (in lymphoid tissues) , Microglial cell (in central nervous system) , Neutrophil granulocyte, Eosinophil granulocyte, Basophil granulocyte, Mast cell, Helper T cell, Suppressor T cell, Cytotoxic T cell, Natural Killer T cell, B cell, Natural killer cell, Reticulocyte, Stem cells and committed progenitors for the blood and immune system (various types) , Pluripotent stem cells, Totipotent stem cells, Induced pluripotent stem cells, adult stem cells, Sensory transducer cells, Autonomic neuron cells, Sense organ and peripheral neuron supporting cells, Central nervous system neurons and glial cells, Lens cells, Pigment cells, Melanocyte, Retinal pigmented epithelial cell, Germ cells, Oogonium/Oocyte, Spermatid, Spermatocyte, Spermatogonium cell (stem cell for spermatocyte) , Spermatozoon, Nurse cells, Ovarian follicle cell, Sertoli cell (in testis) , Thymus epithelial cell, Interstitial cells, and Interstitial kidney cells.
Of particular interest are cancer cells. In some embodiments, the target cell is a cancer  cell. Non-limiting examples of cancer cells include cells of cancers including Acanthoma, Acinic cell carcinoma, Acoustic neuroma, Acral lentiginous melanoma, Acrospiroma, Acute eosinophilic leukemia, Acute lymphoblastic leukemia, Acute megakaryoblastic leukemia, Acute monocytic leukemia, Acute myeloblastic leukemia with maturation, Acute myeloid dendritic cell leukemia, Acute myeloid leukemia, Acute promyelocytic leukemia, Adamantinoma, Adenocarcinoma, Adenoid cystic carcinoma, Adenoma, Adenomatoid odontogenic tumor, Adrenocortical carcinoma, Adult Tcell leukemia, Aggressive NK-cell leukemia, AIDS-Related Cancers, AIDS-related lymphoma, Alveolar soft part sarcoma, Ameloblastic fibroma, Anal cancer, Anaplastic large cell lymphoma, Anaplastic thyroid cancer, Angioimmunoblastic Tcell lymphoma, Angiomyolipoma, Angiosarcoma, Appendix cancer, Astrocytoma, Atypical teratoidrhabdoid tumor, Basal cell carcinoma, Basal-like carcinoma, B-cell leukemia, B-cell lymphoma, Bellini duct carcinoma, Biliary tract cancer, Bladder cancer, Blastoma, Bone Cancer, Bone tumor, Brain Stem Glioma, Brain Tumor, Breast Cancer, Brenner tumor, Bronchial Tumor, Bronchioloalveolar carcinoma, Brown tumor, Burkitt's lymphoma, Cancer of Unknown Primary Site, Carcinoid Tumor, Carcinoma, Carcinoma in situ, Carcinoma of the penis, Carcinoma of Unknown Primary Site, Carcinosarcoma, Castleman's Disease, Central Nervous System Embryonal Tumor, Cerebellar Astrocytoma, Cerebral Astrocytoma, Cervical Cancer, Cholangiocarcinoma, Chondroma, Chondrosarcoma, Chordoma, Choriocarcinoma, Choroid plexus papilloma, Chronic Lymphocytic Leukemia, Chronic monocytic leukemia, Chronic myelogenous leukemia, Chronic Myeloproliferative Disorder, Chronic neutrophilic leukemia, Clear-cell tumor, Colon Cancer, Colorectal cancer, Craniopharyngioma, Cutaneous Tcell lymphoma, Degos disease, Dermatofibrosarcoma protuberans, Dermoid cyst, Desmoplastic small round cell tumor, Diffuse large B cell lymphoma, Dysembryoplasticneuroepithelial tumor, Embryonal carcinoma, Endodermal sinus tumor, Endometrial cancer, Endometrial Uterine Cancer, Endometrioid tumor, Enteropathy-associated Tcell lymphoma, Ependymoblastoma, Ependymoma, Epithelioid sarcoma, Erythroleukemia, Esophageal cancer, Esthesioneuroblastoma, Ewing Family of Tumor, Ewing Family Sarcoma, Ewing's sarcoma, Extracranial Germ Cell Tumor, Extragonadal Germ Cell Tumor, Extrahepatic Bile Duct Cancer, Extramammary Paget's disease, Fallopian tube cancer, Fetus in fetu, Fibroma, Fibrosarcoma, Follicular lymphoma, Follicular thyroid cancer, Gallbladder Cancer, Gallbladder cancer, Ganglioglioma, Ganglioneuroma, Gastric Cancer, Gastric lymphoma, Gastrointestinal cancer,  Gastrointestinal Carcinoid Tumor, Gastrointestinal Stromal Tumor, Gastrointestinal stromal tumor, Germ cell tumor, Germinoma, Gestational choriocarcinoma, Gestational Trophoblastic Tumor, Giant cell tumor of bone, Glioblastoma multiforme, Glioma, Gliomatosiscerebri, Glomus tumor, Glucagonoma, Gonadoblastoma, Granulosa cell tumor, Hairy Cell Leukemia, Hairy cell leukemia, Head and Neck Cancer, Head and neck cancer, Heart cancer, Hemangioblastoma, Hemangiopericytoma, Hemangiosarcoma, Hematological malignancy, Hepatocellular carcinoma, Hepatosplenic Tcell lymphoma, Hereditary breast-ovarian cancer syndrome, Hodgkin Lymphoma, Hodgkin's lymphoma, Hypopharyngeal Cancer, Hypothalamic Glioma, Inflammatory breast cancer, Intraocular Melanoma, Islet cell carcinoma, Islet Cell Tumor, Juvenile myelomonocytic leukemia, Kaposi Sarcoma, Kaposi’s sarcoma, Kidney Cancer, Klatskin tumor, Krukenberg tumor, Laryngeal Cancer, Laryngeal cancer, Lentigomaligna melanoma, Leukemia, Leukemia, Lip and Oral Cavity Cancer, Liposarcoma, Lung cancer, Luteoma, Lymphangioma, Lymphangiosarcoma, Lymphoepithelioma, Lymphoid leukemia, Lymphoma, Macroglobulinemia, Malignant Fibrous Histiocytoma, Malignant fibrous histiocytoma, Malignant Fibrous Histiocytoma of Bone, Malignant Glioma, Malignant Mesothelioma, Malignant peripheral nerve sheath tumor, Malignant rhabdoid tumor, Malignant triton tumor, MALT lymphoma, Mantle cell lymphoma, Mast cell leukemia, Mediastinal germ cell tumor, Mediastinal tumor, Medullary thyroid cancer, Medulloblastoma, Medulloblastoma, Medulloepithelioma, Melanoma, Melanoma, Meningioma, Merkel Cell Carcinoma, Mesothelioma, Mesothelioma, Metastatic Squamous Neck Cancer with Occult Primary, Metastatic urothelial carcinoma, Mixed Mullerian tumor, Monocytic leukemia, Mouth Cancer, Mucinous tumor, Multiple Endocrine Neoplasia Syndrome, Multiple Myeloma, Multiple myeloma, Mycosis Fungoides, Mycosis fungoides, Myelodysplastic Disease, Myelodysplastic Syndromes, Myeloid leukemia, Myeloid sarcoma, Myeloproliferative Disease, Myxoma, Nasal Cavity Cancer, Nasopharyngeal Cancer, Nasopharyngeal carcinoma, Neoplasm, Neurinoma, Neuroblastoma, Neuroblastoma, Neurofibroma, Neuroma, Nodular melanoma, Non-Hodgkin Lymphoma, Non-Hodgkin lymphoma, Nonmelanoma Skin Cancer, Non-Small Cell Lung Cancer, Ocular oncology, Oligoastrocytoma, Oligodendroglioma, Oncocytoma, Optic nerve sheath meningioma, Oral Cancer, Oral cancer, Oropharyngeal Cancer, Osteosarcoma, Osteosarcoma, Ovarian Cancer, Ovarian cancer, Ovarian Epithelial Cancer, Ovarian Germ Cell Tumor, Ovarian Low Malignant Potential Tumor, Paget's disease of the breast, Pancoast tumor,  Pancreatic Cancer, Pancreatic cancer, Papillary thyroid cancer, Papillomatosis, Paraganglioma, Paranasal Sinus Cancer, Parathyroid Cancer, Penile Cancer, Perivascular epithelioid cell tumor, Pharyngeal Cancer, Pheochromocytoma, Pineal Parenchymal Tumor of Intermediate Differentiation, Pineoblastoma, Pituicytoma, Pituitary adenoma, Pituitary tumor, Plasma Cell Neoplasm, Pleuropulmonaryblastoma, Polyembryoma, Precursor T-lymphoblastic lymphoma, Primary central nervous system lymphoma, Primary effusion lymphoma, Primary Hepatocellular Cancer, Primary Liver Cancer, Primary peritoneal cancer, Primitive neuroectodermal tumor, Prostate cancer, Pseudomyxomaperitonei, Rectal Cancer, Renal cell carcinoma, Respiratory Tract Carcinoma Involving the NUT Gene on Chromosome 15, Retinoblastoma, Rhabdomyoma, Rhabdomyosarcoma, Richter's transformation, Sacrococcygealteratoma, Salivary Gland Cancer, Sarcoma, Schwannomatosis, Sebaceous gland carcinoma, Secondary neoplasm, Seminoma, Serous tumor, Sertoli-Leydig cell tumor, Sex cord-stromal tumor, Sezary Syndrome, Signet ring cell carcinoma, Skin Cancer, Small blue round cell tumor, Small cell carcinoma, Small Cell Lung Cancer, Small cell lymphoma, Small intestine cancer, Soft tissue sarcoma, Somatostatinoma, Soot wart, Spinal Cord Tumor, Spinal tumor, Splenic marginal zone lymphoma, Squamous cell carcinoma, Stomach cancer, Superficial spreading melanoma, Supratentorial Primitive Neuroectodermal Tumor, Surface epithelial-stromal tumor, Synovial sarcoma, Tcell acute lymphoblastic leukemia, T cell large granular lymphocyte leukemia, Tcell leukemia, Tcell lymphoma, Tcell prolymphocytic leukemia, Teratoma, Terminal lymphatic cancer, Testicular cancer, Thecoma, Throat Cancer, Thymic Carcinoma, Thymoma, Thyroid cancer, Transitional Cell Cancer of Renal Pelvis and Ureter, Transitional cell carcinoma, Urachal cancer, Urethral cancer, Urogenital neoplasm, Uterine sarcoma, Uveal melanoma, Vaginal Cancer, Verner Morrison syndrome, Verrucous carcinoma, Visual Pathway Glioma, Vulvar Cancer, Waldenstrom'smacroglobulinemia, Warthin’s tumor, Wilms’ tumor, and combinations thereof. In some embodiments, the targeted cancer cell represents a subpopulation within a cancer cell population, such as a cancer stem cell. In some embodiments, the cancer is of a hematopoietic lineage, such as a lymphoma. The antigen can be a tumor associated antigen.
In some embodiments, the target cells form a tumor. A tumor treated with the methods herein can result in stabilized tumor growth (e.g., one or more tumors do not increase more than 1%, 5%, 10%, 15%, or 20%in size, and/or do not metastasize) . In some embodiments, a tumor is stabilized for at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or more weeks. In some  embodiments, a tumor is stabilized for at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or more months. In some embodiments, a tumor is stabilized for at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more years. In some embodiments, the size of a tumor or the number of tumor cells is reduced by at least about 5%, 10%, 15%, 20%, 25, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%or more. In some embodiments, the tumor is completely eliminated, or reduced below a level of detection. In some embodiments, a subject remains tumor free (e.g. in remission) for at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or more weeks following treatment. In some embodiments, a subject remains tumor free for at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or more months following treatment. In some embodiments, a subject remains tumor free for at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more years after treatment.
Death of target cells can be determined by any suitable method, including, but not limited to, counting cells before and after treatment, or measuring the level of a marker associated with live or dead cells (e.g. live or dead target cells) . Degree of cell death can be determined by any suitable method. In some embodiments, degree of cell death is determined with respect to a starting condition. For example, an individual can have a known starting amount of target cells, such as a starting cell mass of known size or circulating target cells at a known concentration. In such cases, degree of cell death can be expressed as a ratio of surviving cells after treatment to the starting cell population. In some embodiments, degree of cell death can be determined by a suitable cell death assay. A variety of cell death assays are available, and can utilize a variety of detection methodologies. Examples of detection methodologies include, without limitation, the use of cell staining, microscopy, flow cytometry, cell sorting, and combinations of these.
When a tumor is subject to surgical resection following completion of a therapeutic period, the efficacy of treatment in reducing tumor size can be determined by measuring the percentage of resected tissue that is necrotic (i.e., dead) . In some embodiments, a treatment is therapeutically effective if the necrosis percentage of the resected tissue is greater than about 20%(e.g., at least about 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100%) . In some embodiments, the necrosis percentage of the resected tissue is 100%, that is, no living tumor tissue is present or detectable.
Exposing a target cell to an immune cell or population of immune cells disclosed herein can be conducted either in vitro or in vivo. Exposing a target cell to an immune cell or  population of immune cells generally refers to bringing the target cell in contact with the immune cell and/or in sufficient proximity such that an antigen of a target cell (e.g., membrane bound or non-membrane bound) can bind to the switch molecule and/or TCR complexexpressed in the immune cell. Exposing a target cell to an immune cell or population of immune cells in vitro can be accomplished by co-culturing the target cells and the immune cells. Target cells and immune cells can be co-cultured, for example, as adherent cells or alternatively in suspension. Target cells and immune cells can be co-cultured in various suitable types of cell culture media, for example with supplements, growth factors, ions, etc. Exposing a target cell to an immune cell or population of immune cells in vivo can be accomplished, in some cases, by administering the immune cells to a subject, for example a human subject, and allowing the immune cells to localize to the target cell via the circulatory system. In some cases, an immune cell can be delivered to the immediate area where a target cell is localized, for example, by direct injection.
Exposing can be performed for any suitable length of time, for example at least 1 minute, at least 5 minutes, at least 10 minutes, at least 30 minutes, at least 1 hour, at least 2 hours, at least 3 hours, at least 4 hours, at least 5 hours, at least 6 hours, at least 7 hours, at least 8 hours, at least 12 hours, at least 16 hours, at least 20 hours, at least 24 hours, at least 2 days, at least 3 days, at least 4 days, at least 5 days, at least 6 days, at least 1 week, at least 2 weeks, at least 3 weeks, at least 1 month, or longer.
Any suitable delivery method can be used for introducing compositions and molecules (e.g., polypeptides and/or nucleic acid encoding polypeptides) of the disclosure into a host cell, such as an immune cell. The various components can be delivered simultaneously or temporally separated. The choice of method can be dependent on the type of cell being transformed and/or the circumstances under which the transformation is taking place (e.g., in vitro, ex vivo, or in vivo) .
A method of delivery can involve contacting a target polynucleotide or introducing into a cell (or a population of cells such as immune cells) one or more nucleic acids comprising nucleotide sequences encoding the compositions of the disclosure. Suitable nucleic acids comprising nucleotide sequences encoding the compositions of the disclosure can include expression vectors, where an expression vector comprising a nucleotide sequence encoding one or more compositions of the disclosure is a recombinant expression vector.
Non-limiting examples of delivery methods or transformation include, for example,  viral or bacteriophage infection, transfection, conjugation, protoplast fusion, lipofection, electroporation, calcium phosphate precipitation, polyethyleneimine (PEI) -mediated transfection, DEAE-dextran mediated transfection, liposome-mediated transfection, particle gun technology, calcium phosphate precipitation, direct micro injection, and nanoparticle-mediated nucleic acid delivery.
In some aspects, the present disclosure provides methods comprising delivering one or more polynucleotides encoding a gene described herein, or one or more vectors, or one or more transcripts thereof, and/or one or proteins transcribed therefrom, to a host cell. In some aspects, the disclosure further provides cells produced by such methods, and organisms (such as animals, plants, or fungi) comprising or produced from such cells.
Conventional viral and non-viral based gene transfer methods can be used to introduce nucleic acids in mammalian cells or target tissues. Such methods can be used to administer nucleic acids encoding compositions of the disclosure to cells in culture, or in a host organism. Non-viral vector delivery systems can include DNA plasmids, RNA (e.g. a transcript of a vector described herein) , naked nucleic acid, and nucleic acid complexed with a delivery vehicle, such as a liposome. Viral vector delivery systems can include DNA and RNA viruses, which can have either episomal or integrated genomes after delivery to the cell.
Methods of non-viral delivery of nucleic acids can include lipofection, nucleofection, microinjection, biolistics, virosomes, liposomes, immunoliposomes, polycation or lipid: nucleic acid conjugates, naked DNA, artificial virions, and agent-enhanced uptake of DNA. Cationic and neutral lipids that are suitable for efficient receptor-recognition lipofection of polynucleotides can be used. Delivery can be to cells (e.g. in vitro or ex vivo administration) or target tissues (e.g. in vivo administration) . The preparation of lipid: nucleic acid complexes, including targeted liposomes such as immunolipid complexes, can be used.
RNA or DNA viral based systems can be used to target specific cells in the body and trafficking the viral payload to the nucleus of the cell. Viral vectors can be administered directly (in vivo) or they can be used to treat cells in vitro, and the modified cells can optionally be administered (ex vivo) . Viral based systems can include retroviral, lentivirus, adenoviral, adeno-associated and herpes simplex virus vectors for gene transfer. Integration in the host genome can occur with the retrovirus, lentivirus, and adeno-associated virus gene transfer methods, which can result in long term expression of the inserted transgene. High transduction efficiencies can be  observed in many different cell types and target tissues.
The tropism of a retrovirus can be altered by incorporating foreign envelope proteins, expanding the potential target population of target cells. Lentiviral vectors are retroviral vectors that can transduce or infect non-dividing cells and produce high viral titers. Selection of a retroviral gene transfer system can depend on the target tissue. Retroviral vectors can comprise cis-acting long terminal repeats with packaging capacity for up to 6-10 kb of foreign sequence. The minimum cis-acting LTRs can be sufficient for replication and packaging of the vectors, which can be used to integrate the therapeutic gene into the target cell to provide permanent transgene expression. Retroviral vectors can include those based upon murine leukemia virus (MuLV) , gibbon ape leukemia virus (GaLV) , Simian Immuno deficiency virus (SIV) , human immuno deficiency virus (HIV) , and combinations thereof.
In some embodiments, adenoviral-based systems can be used to deliver a polynucleotide to a host cell. Adenoviral-based systems can lead to transient expression of the transgene. Adenoviral based vectors can have high transduction efficiency in cells and may not require cell division. High titer and levels of expression can be obtained with adenoviral based vectors. Adeno-associated virus ( “AAV” ) vectors can be used to transduce cells with target nucleic acids, e.g., in the in vitro production of nucleic acids and peptides, and for in vivo and ex vivo gene therapy procedures.
Packaging cells can be used to form virus particles capable of infecting a host cell. Such cells can include 293 cells, (e.g., for packaging adenovirus) , and Psi2 cells or PA317 cells (e.g., for packaging retrovirus) . Viral vectors can be generated by producing a cell line that packages a nucleic acid vector into a viral particle. The vectors can contain the minimal viral sequences required for packaging and subsequent integration into a host. The vectors can contain other viral sequences being replaced by an expression cassette for the polynucleotide (s) to be expressed. The missing viral functions can be supplied in trans by the packaging cell line. For example, AAV vectors can comprise ITR sequences from the AAV genome which are required for packaging and integration into the host genome. Viral DNA can be packaged in a cell line, which can contain a helper plasmid encoding the other AAV genes, namely rep and cap, while lacking ITR sequences. The cell line can also be infected with adenovirus as a helper. The helper virus can promote replication of the AAV vector and expression of AAV genes from the helper plasmid. Contamination with adenovirus can be reduced by, e.g., heat treatment to which  adenovirus is more sensitive than AAV.
A host cell can be transiently or non-transiently transfected with one or more vectors described herein. A cell can be transfected as it naturally occurs in a subject. A cell can be taken or derived from a subject and transfected. A cell can be derived from cells taken from a subject, such as a cell line. In some embodiments, a cell transfected with one or more vectors described herein is used to establish a new cell line comprising one or more vector-derived sequences. In some embodiments, a cell transiently transfected with the compositions of the disclosure (such as by transient transfection of one or more vectors, or transfection with RNA) is used to establish a new cell line comprising cells containing the modification but lacking any other exogenous sequence.
Any suitable vector compatible with the host cell can be used with the methods of the disclosure. Non-limiting examples of vectors for eukaryotic host cells include pXT1, pSG5 
Figure PCTCN2019090633-appb-000004
pSVK3, pBPV, pMSG, and pSVLSV40
Figure PCTCN2019090633-appb-000005
As used herein, a “transposon system” refers to a plasmid-based gene transfer system comprising a transposon and a transposase. In some embodiments, a transposon expression construct can be used to deliver a polynucleotide to a host cell. For example, a transposon expression construct can comprise a polynucleotide encoding a neoantigen. In some embodiments, an exogenous neoantigen or immunogenicity enhancer is introduced to a host cell using a transposon expression construct. A “transposon” or “transposable element” refers to a mobile genetic unit that can move positions within a DNA molecule in the presence of a transposase. Transposons mobilize through a cut-and-paste mechanism in which a transposase enzyme binds to DNA at inverted repeats and catalyzes the excision of the element from a DNA molecule and inserts the element in another location in the DNA. This process of horizontal gene transfer can be used to introduce a gene into a cell. Transposons that can be used to introduce an exogenous gene into a cell include, for example, the sleeping beauty transposon and the piggyBac transposon.
Contacting the cells with a composition of the disclosure can occur in any culture media and under any culture conditions that promote the survival of the cells. For example, cells may be suspended in any appropriate nutrient medium that is convenient, such as Iscove’s modified DMEM or RPMI 1640, supplemented with fetal calf serum or heat inactivated goat serum (about 5-10%) , L-glutamine, a thiol, particularly 2-mercaptoethanol, and antibiotics, e.g.  penicillin and streptomycin. The culture may contain growth factors to which the cells are responsive. Growth factors, as defined herein, are molecules capable of promoting survival, growth, and/or differentiation of cells, either in culture or in the intact tissue, through specific effects on a transmembrane receptor. Growth factors can include polypeptides and non-polypeptide factors.
In numerous embodiments, the chosen delivery system is targeted to specific tissue or cell types. In some cases, tissue-or cell-targeting of the delivery system is achieved by binding the delivery system to tissue-or cell-specific markers, such as cell surface proteins. Viral and non-viral delivery systems can be customized to target tissue or cell-types of interest.
Pharmaceutical compositions containing molecules (e.g., polypeptides and/or nucleic acids encoding polypeptides) or immune cells described herein can be administered for prophylactic and/or therapeutic treatments. In therapeutic applications, the compositions can be administered to a subject already suffering from a disease or condition, in an amount sufficient to cure or at least partially arrest the symptoms of the disease or condition, or to cure, heal, improve, or ameliorate the condition. Amounts effective for this use can vary based on the severity and course of the disease or condition, previous therapy, the subject’s health status, weight, and response to the drugs, and the judgment of the treating physician.
Multiple therapeutic agents can be administered in any order or simultaneously. If simultaneously, the multiple therapeutic agents can be provided in a single, unified form, or in multiple forms, for example, as multiple separate pills. The molecules can be packed together or separately, in a single package or in a plurality of packages. One or all of the therapeutic agents can be given in multiple doses. If not administered simultaneously, the timing between the multiple doses may vary to as much as about a month.
Molecules described herein can be administered before, during, or after the occurrence of a disease or condition, and the timing of administering the composition containing a compound can vary. For example, the pharmaceutical compositions can be used as a prophylactic and can be administered continuously to subjects with a propensity to conditions or diseases in order to prevent the occurrence of the disease or condition. The molecules and pharmaceutical compositions can be administered to a subject during or as soon as possible after the onset of the symptoms. The administration of the molecules can be initiated within the first 48 hours of the onset of the symptoms, within the first 24 hours of the onset of the symptoms,  within the first 6 hours of the onset of the symptoms, or within 3 hours of the onset of the symptoms. The initial administration can be via any route practical, such as by any route described herein using any formulation described herein. A molecule can be administered as soon as is practicable after the onset of a disease or condition is detected or suspected, and for a length of time necessary for the treatment of the disease, such as, for example, from about 1 month to about 3 months. The length of treatment can vary for each subject.
A molecule can be packaged into a biological compartment. A biological compartment comprising the molecule can be administered to a subject. Biological compartments can include, but are not limited to, viruses (lentivirus, adenovirus) , nanospheres, liposomes, quantum dots, nanoparticles, microparticles, nanocapsules, vesicles, polyethylene glycol particles, hydrogels, and micelles.
For example, a biological compartment can comprise a liposome. A liposome can be a self-assembling structure comprising one or more lipid bilayers, each of which can comprise two monolayers containing oppositely oriented amphipathic lipid molecules. Amphipathic lipids can comprise a polar (hydrophilic) headgroup covalently linked to one or two or more non-polar (hydrophobic) acyl or alkyl chains. Energetically unfavorable contacts between the hydrophobic acyl chains and a surrounding aqueous medium induce amphipathic lipid molecules to arrange themselves such that polar headgroups can be oriented towards the bilayer’s surface and acyl chains are oriented towards the interior of the bilayer, effectively shielding the acyl chains from contact with the aqueous environment.
Examples of preferred amphipathic compounds used in liposomes can include phosphoglycerides and sphingolipids, representative examples of which include phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidic acid, phoasphatidylglycerol, palmitoyloleoyl phosphatidylcholine, lysophosphatidylcholine, lysophosphatidylethanolamine, dimyristoylphosphatidylcholine (DMPC) , dipalmitoylphosphatidylcholine (DPPC) , dioleoylphosphatidylcholine, distearoylphosphatidylcholine (DSPC) , dilinoleoylphosphatidylcholine and egg sphingomyelin, or any combination thereof.
A biological compartment can comprise a nanoparticle. A nanoparticle can comprise a diameter of from about 40 nanometers to about 1 . 5 micrometers, from about 50 nanometers to about 1 . 2 micrometers, from about 60 nanometers to about 1 micrometer, from about 70  nanometers to about 800 nanometers, from about 80 nanometers to about 600 nanometers, from about 90 nanometers to about 400 nanometers, from about 100 nanometers to about 200 nanometers.
In some instances, as the size of the nanoparticle increases, the release rate can be slowed or prolonged and as the size of the nanoparticle decreases, the release rate can be increased.
The amount of albumin in the nanoparticles can range from about 5%to about 85%albumin (v/v) , from about 10%to about 80%, from about 15%to about 80%, from about 20%to about 70%albumin (v/v) , from about 25%to about 60%, from about 30%to about 50%, or from about 35%to about 40%. The pharmaceutical composition can comprise up to 30, 40, 50, 60, 70 or 80%or more of the nanoparticle. In some instances, the nucleic acid molecules of the disclosure can be bound to the surface of the nanoparticle.
A biological compartment can comprise a virus. The virus can be a delivery system for the pharmaceutical compositions of the disclosure. Exemplary viruses can include lentivirus, retrovirus, adenovirus, herpes simplex virus I or II, parvovirus, reticuloendotheliosis virus, and adeno-associated virus (AAV) . Pharmaceutical compositions of the disclosure can be delivered to a cell using a virus. The virus can infect and transduce the cell in vivo, ex vivo, or in vitro. In ex vivo and in vitro delivery, the transduced cells can be administered to a subject in need of therapy.
Pharmaceutical compositions can be packaged into viral delivery systems. For example, the compositions can be packaged into virions by a HSV-1 helper virus-free packaging system.
Viral delivery systems (e.g., viruses comprising the pharmaceutical compositions of the disclosure) can be administered by direct injection, stereotaxic injection, intracerebroventricularly, by minipump infusion systems, by convection, catheters, intravenous, parenteral, intraperitoneal, and/or subcutaenous injection, to a cell, tissue, or organ of a subject in need. In some instances, cells can be transduced in vitro or ex vivo with viral delivery systems. The transduced cells can be administered to a subject having a disease. For example, a stem cell can be transduced with a viral delivery system comprising a pharmaceutical composition and the stem cell can be implanted in the patient to treat a disease. In some instances, the dose of transduced cells given to a subject can be about 1×10 5 cells/kg, about 5×10 5 cells/kg, about  1×10 6 cells/kg, about 2×10 6 cells/kg, about 3×10 6 cells/kg, about 4×10 6 cells/kg, about 5×10 6 cells/kg, about 6×10 6 cells/kg, about 7×10 6 cells/kg, about 8×10 6 cells/kg, about 9×10 6 cells/kg, about 1×10 7 cells/kg, about 5×10 7 cells/kg, about 1×10 8 cells/kg, or more in one single dose.
Introduction of the biological compartments into cells can occur by viral or bacteriophage infection, transfection, conjugation, protoplast fusion, lipofection, electroporation, calcium phosphate precipitation, polyethyleneimine (PEI) -mediated transfection, DEAE-dextran mediated transfection, liposome-mediated transfection, particle gun technology, calcium phosphate precipitation, direct micro-injection, nanoparticle-mediated nucleic acid delivery, and the like.
In some embodiments, immune cells expressing a subject system are administered. Immune cells expressing a subject system can be administered before, during, or after the occurrence of a disease or condition, and the timing of administering the immune cells can vary. For example, immune cells expressing a subject system can be used as a prophylactic and can be administered continuously to subjects with a propensity to conditions or diseases in order to prevent the occurrence of the disease or condition. The immune cells can be administered to a subject during or as soon as possible after the onset of the symptoms. The administration can be initiated within the first 48 hours of the onset of the symptoms, within the first 24 hours of the onset of the symptoms, within the first 6 hours of the onset of the symptoms, or within 3 hours of the onset of the symptoms. The initial administration can be via any suitable route, such as by any route described herein using any formulation described herein. Immune cells can be administered as soon as is practicable after the onset of a disease or condition is detected or suspected, and for a length of time necessary for the treatment of the disease, such as, for example, from about 1 month to about 3 months. The length of treatment can vary for each subject.
A molecule (e.g., polypeptide and/or nucleic acid) described herein can be present in a composition in a range of from about 1 mg to about 2000 mg; from about 5 mg to about 1000 mg, from about 10 mg to about 25 mg to 500 mg, from about 50 mg to about 250 mg, from about 100 mg to about 200 mg, from about 1 mg to about 50 mg, from about 50 mg to about 100 mg, from about 100 mg to about 150 mg, from about 150 mg to about 200 mg, from about 200 mg to about 250 mg, from about 250 mg to about 300 mg, from about 300 mg to about 350 mg, from about 350 mg to about 400 mg, from about 400 mg to about 450 mg, from about 450 mg to about  500 mg, from about 500 mg to about 550 mg, from about 550 mg to about 600 mg, from about 600 mg to about 650 mg, from about 650 mg to about 700 mg, from about 700 mg to about 750 mg, from about 750 mg to about 800 mg, from about 800 mg to about 850 mg, from about 850 mg to about 900 mg, from about 900 mg to about 950 mg, or from about 950 mg to about 1000 mg.
A molecule (e.g., polypeptide and/or nucleic acid) described herein can be present in a composition in an amount of about 1 mg, about 2 mg, about 3 mg, about 4 mg, about 5 mg, about 10 mg, about 15 mg, about 20 mg, about 25 mg, about 30 mg, about 35 mg, about 40 mg, about 45 mg, about 50 mg, about 55 mg, about 60 mg, about 65 mg, about 70 mg, about 75 mg, about 80 mg, about 85 mg, about 90 mg, about 95 mg, about 100 mg, about 125 mg, about 150 mg, about 175 mg, about 200 mg, about 250 mg, about 300 mg, about 350 mg, about 400 mg, about 450 mg, about 500 mg, about 550 mg, about 600 mg, about 650 mg, about 700 mg, about 750 mg, about 800 mg, about 850 mg, about 900 mg, about 950 mg, about 1000 mg, about 1050 mg, about 1100 mg, about 1150 mg, about 1200 mg, about 1250 mg, about 1300 mg, about 1350 mg, about 1400 mg, about 1450 mg, about 1500 mg, about 1550 mg, about 1600 mg, about 1650 mg, about 1700 mg, about 1750 mg, about 1800 mg, about 1850 mg, about 1900 mg, about 1950 mg, or about 2000 mg.
A molecule (e.g., polypeptide and/or nucleic acid) described herein can be present in a composition that provides at least 0.1, 0.5, 1, 1.5, 2, 2.5 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 10, or more units of activity/mg molecule. The activity can be regulation of gene expression. In some embodiments, the total number of units of activity of the molecule delivered to a subject is at least 25,000, 30,000, 35,000, 40,000, 45,000, 50,000, 60,000, 70,000, 80,000, 90,000, 110,000, 120,000, 130,000, 140,000, 150,000, 160,000, 170,000, 180,000, 190,000, 200,000, 210,000, 220,000, 230,000, 250,000, or more units. In some embodiments, the total number of units of activity of the molecule delivered to a subject is at most 25,000, 30,000, 35,000, 40,000, 45,000, 50,000, 60,000, 70,000, 80,000, 90,000, 110,000, 120,000, 130,000, 140,000, 150,000, 160,000, 170,000, 180,000, 190,000, 200,000, 210,000, 220,000, 230,000, 250,000, or more units.
In various embodiments of the aspects herein, pharmacokinetic and pharmacodynamic data can be obtained. Various experimental techniques for obtaining such data are available. Appropriate pharmacokinetic and pharmacodynamic profile components describing a particular composition can vary due to variations in drug metabolism in human subjects. Pharmacokinetic  and pharmacodynamic profiles can be based on the determination of the mean parameters of a group of subjects. The group of subjects includes any reasonable number of subjects suitable for determining a representative mean, for example, 5 subjects, 10 subjects, 15 subjects, 20 subjects, 25 subjects, 30 subjects, 35 subjects, or more. The mean can be determined by calculating the average of all subject's measurements for each parameter measured. A dose can be modulated to achieve a desired pharmacokinetic or pharmacodynamics profile, such as a desired or effective blood profile, as described herein.
The pharmacokinetic parameters can be any parameters suitable for describing a molecule. For example, the Cmax can be, for example, not less than about 25 ng/mL; not less than about 50 ng/mL; not less than about 75 ng/mL; not less than about 100 ng/mL; not less than about 200 ng/mL; not less than about 300 ng/mL; not less than about 400 ng/mL; not less than about 500 ng/mL; not less than about 600 ng/mL; not less than about 700 ng/mL; not less than about 800 ng/mL; not less than about 900 ng/mL; not less than about 1000 ng/mL; not less than about 1250 ng/mL; not less than about 1500 ng/mL; not less than about 1750 ng/mL; not less than about 2000 ng/mL; or any other Cmax appropriate for describing a pharmacokinetic profile of a molecule described herein.
The Tmax of a molecule described herein can be, for example, not greater than about 0.5 hours, not greater than about 1 hours, not greater than about 1.5 hours, not greater than about 2 hours, not greater than about 2.5 hours, not greater than about 3 hours, not greater than about 3.5 hours, not greater than about 4 hours, not greater than about 4.5 hours, not greater than about 5 hours, or any other Tmax appropriate for describing a pharmacokinetic profile of a molecule described herein.
The AUC (0-inf) of a molecule described herein can be, for example, not less than about 50 ng·hr/mL, not less than about 100 ng/hr/mL, not less than about 150 ng/hr/mL, not less than about 200 ng·hr/mL, not less than about 250 ng/hr/mL, not less than about 300 ng/hr/mL, not less than about 350 ng/hr/mL, not less than about 400 ng/hr/mL, not less than about 450 ng/hr/mL, not less than about 500 ng/hr/mL, not less than about 600 ng/hr/mL, not less than about 700 ng/hr/mL, not less than about 800 ng/hr/mL, not less than about 900 ng/hr/mL, not less than about 1000 ng·hr/mL, not less than about 1250 ng/hr/mL, not less than about 1500 ng/hr/mL, not less than about 1750 ng/hr/mL, not less than about 2000 ng/hr/mL, not less than about 2500 ng/hr/mL, not less than about 3000 ng/hr/mL, not less than about 3500 ng/hr/mL, not  less than about 4000 ng/hr/mL, not less than about 5000 ng/hr/mL, not less than about 6000 ng/hr/mL, not less than about 7000 ng/hr/mL, not less than about 8000 ng/hr/mL, not less than about 9000 ng/hr/mL, not less than about 10,000 ng/hr/mL, or any other AUC (0-inf) appropriate for describing a pharmacokinetic profile of a molecule described herein.
The plasma concentration of a molecule described herein about one hour after administration can be, for example, not less than about 25 ng/mL, not less than about 50 ng/mL, not less than about 75 ng/mL, not less than about 100 ng/mL, not less than about 150 ng/mL, not less than about 200 ng/mL, not less than about 300 ng/mL, not less than about 400 ng/mL, not less than about 500 ng/mL, not less than about 600 ng/mL, not less than about 700 ng/mL, not less than about 800 ng/mL, not less than about 900 ng/mL, not less than about 1000 ng/mL, not less than about 1200 ng/mL, or any other plasma concentration of a molecule described herein.
The pharmacodynamic parameters can be any parameters suitable for describing pharmaceutical compositions of the disclosure. For example, the pharmacodynamic profile can exhibit decreases in factors associated with inflammation after, for example, about 2 hours, about 4 hours, about 8 hours, about 12 hours, or about 24 hours.
In various embodiments of the aspects herein, methods of the disclosure are performed in a subject. A subject can be a human. A subject can be a mammal (e.g., rat, mouse, cow, dog, pig, sheep, horse) . A subject can be a vertebrate or an invertebrate. A subject can be a laboratory animal. A subject can be a patient. A subject can be suffering from a disease. A subject can display symptoms of a disease. A subject may not display symptoms of a disease, but still have a disease. A subject can be under medical care of a caregiver (e.g., the subject is hospitalized and is treated by a physician) . A subject can be a plant or a crop.
In one aspect, the disclosure provides methods for preparing a modified APC comprising a neoantigen. In an exemplary method, anAPC can be obtained autologously from a tumor or cancer patient, or an allogenic donor. The isolated APC can be B cells, dendritic cells, or a combination thereof. A neoantigen specific to a tumor to be targeted can be identified, for example, by analyzing somatic cell mutations in a tumor in a subject. The identified neoantigen can beintroduced into the isolated APC to generate modified APCs comprising the neontigen. Neoantigens can be introduced into APCs as polynucleotides (e.g., DNA, RNA, vector) encoding the neoantigen, or as a polypeptide. Neoantigen presentation by the APC can be induced using a combination of the immune cell machinery and/or in vitro cultivation methods. In some cases,  neoantigen loading on APCs can be performed by disrupting tumor cells from a patient to release tumor proteins. The tumor proteins can then be mixed with the APC to allow immune cell uptake via endocytosis and result in neoantigen presentation by the APC. Neoantigen loading can be performed before or after in vitro cultivation of the immune cell during the proliferation process.
In one aspect, the present disclosure provides a method of preparing a composition comprising a modifiedAPC comprising a neoantigen and an immune cell such as a T cell capable of specifically recognizing the neoantigen.
In an exemplary method, a modified APC comprising a neoantigen can be mixed or co-cultivated with an immune cell such as a T cell of peripheral origin or a tumor infiltrating lymphocyte (TIL) from a tumor in vitro to generate modified T cells capable of specifically recognizing and binding the neoantigen. The modified T cells can then be isolated from the mixture. The T cells can be genetically modified before or after exposure to the neoantigen, for example, to introduce the switch molecule.
The modified T cells can be used in combination with a modified APCin vivo such that the modified T cell and the modified APC share an overlapping time window of action and the infused modified T cell can be further activated in vivo by the modified APC. In some embodiments, the modified T cell and the modified APC may not be infused together.
Further embodiments of the present invention are explicitly described as follows.
1. A modified antigen-presenting cell (APC) comprising a neoantigen.
2. The modified APC of embodiment 1, wherein said APC is a B cell.
3. The modified APC of embodiment 1, wherein said APC is a dendritic cell.
4. The modified APC of any one of embodiments 1-3, wherein said neoantigen comprises a peptide fragment of a protein encoded by a mutated gene, wherein the gene is selected from ABL1, ACOl 1997, ACVR2A, AFP, AKT1, ALK, ALPPL2, ANAPC1, APC, ARID1A, AR, AR-v7, ASCL2, β2Μ, BRAF, BTK, C15ORF40, CDH1, CLDN6, CNOT1, CT45A5, CTAG1B, DCT, DKK4, EEF1B2, EEF1DP3, EGFR, EIF2B3, env, EPHB2, ERBB3, ESR1, ESRP1, FAM11 IB, FGFR3, FRG1B, GAGE1, GAGE 10, GATA3, GBP3, HER2, IDH1, JAK1, KIT, KRAS, LMAN1, MABEB 16, MAGEA1, MAGEA10, MAGEA4, MAGEA8, MAGEB 17, MAGEB4, MAGEC1, MEK, MLANA, MLL2, MMP13, MSH3, MSH6, MYC, NDUFC2, NRAS, PAGE2, PAGE5, PDGFRa, PIK3CA, PMEL, pol protein, POLE, PTEN, RAC1, RBM27, RNF43, RPL22, RUNX1,  SEC31A, SEC63, SF3B 1, SLC35F5, SLC45A2, SMAP1, SMAP1, SPOP, TFAM, TGFBR2, THAP5, TP53, TTK, TYR, UBR5, VHL, and XPOT.
5. The modified APC of any one of embodiments 1-4, wherein said neoantigen is selected based on a somatic mutation profile of a tumor sample from a subject.
6. A composition comprising:
a. a modified APC of any one of embodiments 1-5; and
b. a T cell capable of specifically binding said neoantigen of said modified APC.
7. The composition of embodiment 6, wherein said T cell is a T cell having contactedwith said modified APC.
8. The composition of embodiment 6, wherein said T cell is a modified T cell comprising a switch molecule, wherein said switch molecule comprises:
an extracellular domain (ECD) of a protein that, in an unmodified T cell, elicits an immune cell inactivation signal upon binding to a ligand of said protein, wherein said ECD is fused to an intracellular domain (ICD) of a co-stimulatory molecule that mediates an immune cell activation signal,
wherein binding of said switch molecule to said ligand of said protein yields said immune cell activation signal in said modified T cell instead of said immune cell inactivation signal.
9. The composition of embodiment 8, wherein said protein that elicits the immune cell inactivation signal is a signaling receptor.
10. The composition of embodiment 8, wherein said protein that elicits the immune cell inactivation signal is selected from the group consisting of: a signaling receptor, a checkpoint receptor, a cytokine receptor, a chemokine receptor, a growth factor receptor, and a hormone receptor.
11. The composition of embodiment 8, wherein said protein that elicits the immune cell inactivation signal is selected from the group consisting of: transforming growth factor-beta receptor (TGF-beta-R) , programmed cell death 1 (PD-1) , cytotoxic T-lymphocyte associated protein 4 (CTLA-4) , B and T lymphocyte attenuator (BTLA) , a killer immunoglobulin-like receptor (KIR) , indoleamine 2, 3-dioxygenase (IDO) , lymphocyte activation gene-3 (LAG3) , T cell immunoglobulin mucin 3 (TIM-3) , and TIGIT.
12. The composition of any one of embodiments 8-11, wherein said co-stimulatory molecule  is selected from the group consisting of: interleukin-2 receptor (IL-2R) , interleukin-12 receptor (IL-12R) , B7-H3, CD2, CD3, CD4, CD7, CD8, CD27, CD28, CD30, CD40, 4-1BB/CD137, ICOS, lymphocyte function-associated antigen-1 (LFA-1) , LIGHT, NKG2C, OX40, and PD-1.
13. The composition of any one of embodiments 8-12, wherein said immune cell activation signal is mediated by an activation factor.
14. The composition of embodiment 12, wherein said activation factor is a soluble cytokine, a soluble chemokine, or a growth factor.
15. The composition of embodiment 12, wherein said activation factor is a soluble cytokine, and wherein said soluble cytokine is IL-1, IL-2, IL-6, IL-7, IL-8, IL-10, IL-12, IL-15, IL-21, TNF, TGF, IFN, or any functional fragment or variant thereof.
16. The composition of any one of embodiments 8-15, wherein said immune cell activation signal comprises a clonal expansion of said modified T cell; cytokine release by said modified T cell; cytotoxicity of said modified T cell; proliferation of said modified T cell; differentiation, dedifferentiation or transdifferentiation of said modified T cell; movement and/or trafficking of said modified T cell; exhaustion and/or reactivation of said modified T cell; and release of other intercellular molecules, metabolites, chemical compounds, or combinations thereof by said modified T cell.
17. The composition of any one of embodiments 8-16, wherein upon binding of said switch molecule of said modified T cell to said ligand of said protein, said modified T cell exhibits enhanced neoantigen binding as compared to an unmodified T cell.
18. The composition of any one of embodiments 8-17, wherein said modified T cell exhibits increased cytotoxicity against a target cell as compared to an unmodified T cell, when said switch molecule binds to said ligand and said modified T cell binds to said neoantigen present on said target cell.
19. The composition of any one of embodiments 8-18, wherein said modified T cell exhibits increased secretion of a cytokine as compared to an unmodified T cell, when said switch molecule binds said ligand and said modified T cell binds to said neoantigen present on a target cell.
20. The composition of embodiment 19, wherein said cytokine is IFN-gamma or IL-2.
21. The composition of any one of embodiments, wherein said modified T cell comprises a T  cell receptor (TCR) complex capable of specifically binding to said neoantigen.
22. The composition of embodiment 20, wherein said TCR complex is an endogenous TCR complex.
23. The composition of embodiment 20, wherein said TCR complex is an exogenous TCR complex.
24. The composition of any one of embodiments 6-22, wherein said T cell exhibits enhanced proliferation in a subject administered said composition and expressing said neoantigen, compared to a composition lacking said modified APC.
25. The composition of embodiment 24, wherein said T cell exhibits at least a 2-fold increase in proliferation compared to a composition lacking said modified APC.
26. The composition of embodiment 24, wherein said T cell exhibits at least a 10-fold increase in proliferation compared to a composition lacking said modified APC.
27. The composition of any one of embodiments 6-26, wherein an amount of said modified APC remains about the same over time in a subject administered said composition.
28. A vaccine comprising a modified APC of any one of embodiments 1-5 or a composition of any one of embodiments 6-27.
29. A method of treating a disorder in a subject expressing said neoantigen, said method comprising administering a modified APC of any one of embodiments 1-5, a composition of any one of embodiments 6-27, or a vaccine of embodiment 28.
30. A method for immune cell enrichment, said method comprising administering to a subject expressing said neoantigen a composition of any one of embodiments 6-27 or a vaccine of embodiment 28.
31. A method of treating a disorder in a subject in need thereof, the method comprising administering to the subject:
a. a modified APC of any one of embodiments 1-5; and
b. a T cell capable of specifically binding said neoantigen of said modified APC;
wherein the modified APC and the T cell are administered concurrently or separately to the subject.
32. The method of embodiment 31, wherein the modified APC is administered prior to the modified T cell.
33. The method of embodiment 31, wherein the T cell is administered prior to the modified  APC.
34. The method of embodiment 31, wherein the modified APC and the T cell are administered concurrently to the subject.
35. The method of any one of embodiments 31-0, wherein said T cell is a T cell having contacted with said modified APC.
36. The method of any one of embodiments 31-0, wherein said T cell is a modified T cell comprising a switch molecule, wherein said switch molecule comprises:
an extracellular domain (ECD) of a protein that, in an unmodified T cell, elicits an immune cell inactivation signal upon binding to a ligand of said protein, wherein said ECD is fused to an intracellular domain (ICD) of a co-stimulatory molecule that mediates an immune cell activation signal,
wherein binding of said switch molecule to said ligand of said protein yields said immune cell activation signal in said modified T cell instead of said immune cell inactivation signal.
37. The method of embodiment 0, wherein said protein that elicits the immune cell inactivation signal is a signaling receptor.
38. The method of embodiment 0, wherein said protein that elicits the immune cell inactivation signal is selected from the group consisting of: a signaling receptor, a checkpoint receptor, a cytokine receptor, a chemokine receptor, a growth factor receptor, and a hormone receptor.
39. The method of embodiment 0, wherein said protein that elicits the immune cell inactivation signal is selected from the group consisting of: transforming growth factor-beta receptor (TGF-beta-R) , programmed cell death 1 (PD-1) , cytotoxic T-lymphocyte associated protein 4 (CTLA-4) , B and T lymphocyte attenuator (BTLA) , a killer immunoglobulin-like receptor (KIR) , indoleamine 2, 3-dioxygenase (IDO) , lymphocyte activation gene-3 (LAG3) , T cell immunoglobulin mucin 3 (TIM-3) , and TIGIT.
40. The method of any one of embodiments 36-39, wherein said co-stimulatory molecule is selected from the group consisting of: interleukin-2 receptor (IL-2R) , interleukin-12 receptor (IL-12R) , B7-H3, CD2, CD3, CD4, CD7, CD8, CD27, CD28, CD30, CD40, 4-1BB/CD137, ICOS, lymphocyte function-associated antigen-1 (LFA-1) , LIGHT, NKG2C, OX40, and PD-1.
41. The method of any one of embodiments 36-39, wherein said immune cell activation signal is mediated by an activation factor.
42. The method of embodiment 41, wherein said activation factor is a soluble cytokine, a soluble chemokine, or a growth factor.
43. The method of embodiment 41, wherein said activation factor is a soluble cytokine, and wherein said soluble cytokine is IL-1, IL-2, IL-6, IL-7, IL-8, IL-10, IL-12, IL-15, IL-21, TNF, TGF, IFN, or any functional fragment or variant thereof.
44. The method of any one of embodiments 36-43, wherein said immune cell activation signal comprises a clonal expansion of said modified T cell; cytokine release by said modified T cell; cytotoxicity of said modified T cell; proliferation of said modified T cell; differentiation, dedifferentiation or transdifferentiation of said modified T cell; movement and/or trafficking of said modified T cell; exhaustion and/or reactivation of said modified T cell; and release of other intercellular molecules, metabolites, chemical compounds, or combinations thereof by said modified T cell.
45. The method of any one of embodiments 36-44, wherein upon binding of said switch molecule of said modified T cell to said ligand of said protein, said modified T cell exhibits enhanced neoantigen binding as compared to an unmodified T cell.
46. The method of any one of embodiments 36-45, wherein said modified T cell exhibits increased cytotoxicity against a target cell as compared to an unmodified T cell, when said switch molecule binds to said ligand and said modified T cell binds to said neoantigen present on said target cell.
47. The method of any one of embodiments 36-46, wherein said modified T cell exhibits increased secretion of a cytokine as compared to an unmodified T cell, when said switch molecule binds said ligand and said modified T cell binds to said neoantigen present on a target cell.
48. The method of embodiment 47, wherein said cytokine is IFN-gamma or IL-2.
49. The method of any one of embodiments 36-48, wherein said modified T cell comprises a T cell receptor (TCR) complex capable of specifically binding to said neoantigen.
50. The method of embodiment 49, wherein said TCR complex is an endogenous TCR complex.
51. The method of embodiment 49, wherein said TCR complex is an exogenous TCR  complex.
52. The method of any one of embodiments 31-51, wherein said modified T cell exhibits enhanced proliferation in said subject relative to a subject administered said modified T cell but not said modified APC.
53. The method of embodiment 52, wherein said modified T cell exhibits at least a 2-fold increase in proliferation.
54. The method of embodiment 52, wherein said modified T cell exhibits at least a 10-fold increase in proliferation.
55. The method of any one of embodiments 31-54, wherein an amount of said modified APC remains about the same over time in a subject administered said composition.
56. The method any one of embodiments 31-55, whereinthe subject is a human.
57. The method any one of embodiments 31-56, wherein the disorder is a cancer.
EXAMPLES
The following examples are given for the purpose of illustrating various embodiments of the disclosure and are not meant to limit the present disclosure in any fashion. The present examples, along with the methods described herein are presently representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the disclosure.
Example 1: Preparation of neoantigen-loaded B cell vaccine (neoB) and neoantigen-loaded dendritic cell (DC) vaccine (neoDC) .
B cells and DCs were isolated from peripheral blood mononuclear cells (PMBCs) from tumor patients.
Isolation and proliferation of B cells: Peripheral blood was collected from veins of patients. PMBCs were isolated using
Figure PCTCN2019090633-appb-000006
lymphocyte separation solution. CD19+ B cells were sorted and quantitated using magnetic beads using an anti-CD19 antibody. B cells were amplified by cultivating in relevant media and cytokines. On Day 12, amplified B cells were collected and quantitated, resulting in 10-to 30-fold amplification.
Isolation, differentiation, and maturation of DCs: Peripheral blood was collected directly from veins of patients or by cytapheresis. PBMCs were isolated with
Figure PCTCN2019090633-appb-000007
lymphocyte separation solution and allowed to adhere to wall for about 2 hours. Adhered  monocytes were then isolated and relevant cytokines were added to the monocytes to promote DC differentiation and maturation. Mature DC cells were collected after 7 to 8 days of cultivation.
Genetic sequencing analysis was conducted on tumor tissues obtained from the patients. Candidate neoantigen mutations were in vitro synthesized and in vitro transcribed into RNA, which were transformed intoB cells or DCs by electroporation to yield neoBorneoDC, respectively.
Example 2: Activation and enrichment of neoantigen-reactive T cells (neoT) by neoB and neoDC vaccines in vitro.
Tumor infiltrating T lymphocytes (TILs) were isolated from autologous tissues of a tumor patient. Alternatively, T cells were isolated from PMBCs of a tumor patient. The T cells were co-cultivated for one day with mixtures prepared from autologous cells of the patient containing either neoB or neoDC. The percentage of CD137+ T cells (i.e., neoT) to the total T cells were determined by flow cytometry for each patient tumor sample. The results are shown in TABLE 1 below:
TABLE 1
Patient NeoB Stimulation NeoDC Stimulation
1 21.3% 22.1%
2 6.3% 6.5%
3 3.6% 3.8%
4 33.7% 34.1%
5 5.7% 5.9%
The percentage of CD137+ T cells varied significantly among individual patients for both neoB and neoDC stimulated groups. However, for the same patient, the percentage of CD137+ T cells stimulated with either neoB or neoDC was very similar. The results indicate that neoT activation and enrichment by neoB is very similar to neoT activation and enrichment by neoDC.
Example 3: Preparation of normal and enhanced neoT.
Tumor infiltrating T lymphocytes (TILs) were isolated from autologous tissues of a tumor patient. Alternatively, T cells were isolated from PMBCs of a tumor patient. The T cells were co-cultivated for one day independently with neoB and neoDC mixtures, each of which was prepared from autologous cells of the patient. Activated T cells were sorted using magnetic beads using an anti-CD137 antibody to obtain neoT.
A lentivirus vector for a switch receptor of PD1/4-1BB was transfected into neoT with a transfection efficiency of about 60%. PD1+T cells were sorted by flow cytometry or magnetic beads to construct enhanced neoT (ENT) . The remaining PD1-T cells were normal (non-enhanced) neoT.
Example 4: Amplification and enrichment of normal neoT and enhanced neoT (ENT) using neoB and neoDC, and cell viability of the neoB and neoDC vaccines.
The amplification and enrichment effects of neoB and neoDC on normal neoT and ENT are determined using immunodeficient mice. The mice are divided into 4 test groups to accept re-infusion via the tail vein, as shown in TABLE 2.
TABLE 2
Group A: neoB Group B: neoDC
A1: neoT + neoB B1: neoT + neoDC
A2: ENT + neoB B2: ENT + neoDC
NeoT, ENT, neoB, and neoDC are administered at an initial dose of 10 5 cells per mouse. Three days after re-infusion, mouse peripheral blood is collected within 20 minutes to determine the number of neoB and neoDC. One week after re-infusion, mouse peripheral blood is collected to monitor the quantity of neoT and ENT. 
The number of ENT is expected to be greater than the number of neoT after administration of the same vaccine (group A or group B) . It is expected that ENT is more prone to activation by an antigen-presenting cell.
In both neoT or ENT groups, the number of neoDC is expected to decrease significantly after re-infusion, for example, because neoB can be more viable (i.e., more resistant  to cell killing by the T cells) than neoDC. NeoB is expected to exhibit a stronger activation and amplification effect on the T cells than neoDC. Thus, neoB is expected to be a better neoantigen vaccine than neoDC.
Example 5: Dose-dependent amplification and enrichment of ENT cells using neoB and neoDC.
Immunodeficienct mice used for this experiment are divided into 8 test groups to accept re-infusion via the tail vein, as shown in TABLE 3.
TABLE 3
Figure PCTCN2019090633-appb-000008
In all groups, ENT is administered at an initial dose of 10 6 cells per mouse. The neoantigen vaccine (neoB or neoDC) is re-infused earlier than ENT. The number of ENT, neoB, and neoDC are determined weekly for six consecutive weeks.
In both group A and group B, the number of ENT is expected to be positively correlated with the dose of vaccine infusion, which would demonstrate that the vaccine dosage can play a crucial role in the amplification and enrichment of ENT.
All neoBtest groups are expected to have a significantly greater number of ENT than the neoDCtest groups. Because neoB is expected to have a higher rate of cell viability thanneoDC, the neoB group is expected to induce ENT proliferation more effectively than the neoDC groups. After initial infusion, the number of neoDC is expected to sharply decline after being killed by the T cells. As a result, the neoDC may no longer stimulate T cells. Conversely, neoB, by virtue of having a higher survival rate, is expected to be able to continuously stimulate the T cells.
This example demonstrates that increasing the number of neoantigen-loaded antigen-presenting cells can amplify the number of tumor-recognizing T cells (or neoantigen reactive T cells) . Thus, B cells that are capable of proliferation, can be preferable neoantigen vaccine vehicles over DCs, which may not be capable of proliferation, for enrichment and amplification  of neoantigen reactive T cells.
Example 6: Enrichment and amplification of ENT cells by repeated administrations of neoB and neoDC.
Immunodeficient mice used for this experiment are divided into 8 test groups to accept re-infusion via the tail vein, as shown in TABLE 4.
TABLE 4
Figure PCTCN2019090633-appb-000009
In all groups, ENT is administered at an initial dose of 10 5. For the initial dose, neoB and neoDC are re-infused at a dose of 10 5on the same day as ENT. For test groups with multiple administrations of vaccine, one dose of vaccine infusion is administered each week, with each additional dose being double the previous amount. For example, two doses: 2 x 10 5 (groups A3-A5 and B3-B5) , three doses: 4 x 10 5 (groups A4-A5 and B4-B5) , and four doses: 8 x 10 5 (groups A5 andB5) . Each week, blood is drawn to determine the number of neoB, neoDC, and ENT.
The amplification of ENT after administration of neoB in all doses is expected to be significantly greater than the amplification of ENT after administration of each corresponding dose of neoDC. In test groups in which repeated multiple doses of vaccines are administered, neoBis expected to exhibit a significantly greater amplification effect on ENT than neoDC.
NeoBis expected to exhibit a significantly higher rate of survival than neoDC. In test groups in which multiple does of vaccines are infused (e.g., groups A3-A6 and B3-B6) , the number of neoDCs is expected to be almost undetectable at later doses, whereas the number of B cells remains similar to the initial re-infusion amount. NeoDC is expected to only activate T cells at the first dose of re-infusion. After the second dose, the ENT may kill the neoDC and prevent the neoDC from exerting continuous activation effect on the ENT. The number of neoDC may sharply decline after being killed by the T cells. As a result, the neoDC may no longer stimulate the T cells. Conversely, neoB, by virtue of having a higher survival rate, is  expected to be able to continuously stimulate the T cells.
These experiments can demonstrate that combined administration of neoB and ENT can significantly amplify the quantity of ENT. In sum, continuous and repeated infusion of the neoantigen vaccine may be needed to allow the vaccine to amplify neoT or ENT in vivo. Due to greater T cell proliferation ability and viability of neoB, neoB can be more effective than neoDC in continuous amplification of neoT and ENT.
While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims (31)

  1. A modified antigen-presenting cell (APC) comprising a neoantigen.
  2. The modified APC of claim 1, wherein said APC is a B cell.
  3. The modified APC of claim 1, wherein said APC is a dendritic cell.
  4. The modified APC of any one of claims 1-3, wherein said neoantigen comprises a peptide fragment of a protein encoded by a mutated gene, wherein the gene is selected from ABL1, ACOl 1997, ACVR2A, AFP, AKT1, ALK, ALPPL2, ANAPC1, APC, ARID1A, AR, AR-v7, ASCL2, β2Μ, BRAF, BTK, C15ORF40, CDH1, CLDN6, CNOT1, CT45A5, CTAG1B, DCT, DKK4, EEF1B2, EEF1DP3, EGFR, EIF2B3, env, EPHB2, ERBB3, ESR1, ESRP1, FAM11 IB, FGFR3, FRG1B, GAGE1, GAGE 10, GATA3, GBP3, HER2, IDH1, JAK1, KIT, KRAS, LMAN1, MABEB 16, MAGEA1, MAGEA10, MAGEA4, MAGEA8, MAGEB 17, MAGEB4, MAGEC1, MEK, MLANA, MLL2, MMP13, MSH3, MSH6, MYC, NDUFC2, NRAS, PAGE2, PAGE5, PDGFRa, PIK3CA, PMEL, pol protein, POLE, PTEN, RAC1, RBM27, RNF43, RPL22, RUNX1, SEC31A, SEC63, SF3B 1, SLC35F5, SLC45A2, SMAP1, SMAP1, SPOP, TFAM, TGFBR2, THAP5, TP53, TTK, TYR, UBR5, VHL, and XPOT.
  5. The modified APC of any one of claims 1-4, wherein said neoantigen is selected based on a somatic mutation profile of a tumor sample from a subject.
  6. A composition comprising:
    a. a modified APC of any one of claims 1-5; and
    b. a T cell capable of specifically binding said neoantigen of said modified APC.
  7. The composition of claim 6, wherein said T cell is a T cell having contactedwith said modified APC.
  8. The composition of claim 6, wherein said T cell is a modified T cell comprising a switch molecule, wherein said switch molecule comprises:
    an extracellular domain (ECD) of a protein that, in an unmodified T cell, elicits an immune cell inactivation signal upon binding to a ligand of said protein, wherein said ECD is fused to an intracellular domain (ICD) of a co-stimulatory molecule that mediates an immune cell activation signal,
    wherein binding of said switch molecule to said ligand of said protein yields said  immune cell activation signal in said modified T cell instead of said immune cell inactivation signal.
  9. The composition of claim 8, wherein said protein that elicits the immune cell inactivation signal is a signaling receptor.
  10. The composition of claim 8, wherein said protein that elicits the immune cell inactivation signal is selected from the group consisting of: a signaling receptor, a checkpoint receptor, a cytokine receptor, a chemokine receptor, a growth factor receptor, and a hormone receptor.
  11. The composition of claim 8, wherein said protein that elicits the immune cell inactivation signal is selected from the group consisting of: transforming growth factor-beta receptor (TGF-beta-R) , programmed cell death 1 (PD-1) , cytotoxic T-lymphocyte associated protein 4 (CTLA-4) , B and T lymphocyte attenuator (BTLA) , a killer immunoglobulin-like receptor (KIR) , indoleamine 2, 3-dioxygenase (IDO) , lymphocyte activation gene-3 (LAG3) , T cell immunoglobulin mucin 3 (TIM-3) , and TIGIT.
  12. The composition of any one of claims 8-11, wherein said co-stimulatory molecule is selected from the group consisting of: interleukin-2 receptor (IL-2R) , interleukin-12 receptor (IL-12R) , B7-H3, CD2, CD3, CD4, CD7, CD8, CD27, CD28, CD30, CD40, 4-1BB/CD137, ICOS, lymphocyte function-associated antigen-1 (LFA-1) , LIGHT, NKG2C, OX40, and PD-1.
  13. The composition of any one of claims 8-12, wherein said immune cell activation signal is mediated by an activation factor.
  14. The composition of claim 12, wherein said activation factor is a soluble cytokine, a soluble chemokine, or a growth factor.
  15. The composition of claim 12, wherein said activation factor is a soluble cytokine, and wherein said soluble cytokine is IL-1, IL-2, IL-6, IL-7, IL-8, IL-10, IL-12, IL-15, IL-21, TNF, TGF, IFN, or any functional fragment or variant thereof.
  16. The composition of any one of claims 8-15, wherein said immune cell activation signal comprises a clonal expansion of said modified T cell; cytokine release by said modified T cell; cytotoxicity of said modified T cell; proliferation of said modified T cell; differentiation, dedifferentiation or transdifferentiation of said modified T cell; movement and/or trafficking of said modified T cell; exhaustion and/or reactivation of said modified  T cell; and release of other intercellular molecules, metabolites, chemical compounds, or combinations thereof by said modified T cell.
  17. The composition of any one of claims 8-16, wherein upon binding of said switch molecule of said modified T cell to said ligand of said protein, said modified T cell exhibits enhanced neoantigen binding as compared to an unmodified T cell.
  18. The composition of any one of claims 8-17, wherein said modified T cell exhibits increased cytotoxicity against a target cell as compared to an unmodified T cell, when said switch molecule binds to said ligand and said modified T cell binds to said neoantigen present on said target cell.
  19. The composition of any one of claims 8-18, wherein said modified T cell exhibits increased secretion of a cytokine as compared to an unmodified T cell, when said switch molecule binds said ligand and said modified T cell binds to said neoantigen present on a target cell.
  20. The composition of claim 19, wherein said cytokine is IFN-gamma or IL-2.
  21. The composition of any one of claims, wherein said modified T cell comprises a T cell receptor (TCR) complex capable of specifically binding to said neoantigen.
  22. The composition of claim 20, wherein said TCR complex is an endogenous TCR complex.
  23. The composition of claim 20, wherein said TCR complex is an exogenous TCR complex.
  24. The composition of any one of claims 6-22, wherein said T cell exhibits enhanced proliferation in a subject administered said composition and expressing said neoantigen, compared to a composition lacking said modified APC.
  25. The composition of claim 24, wherein said T cell exhibits at least a 2-fold increase in proliferation compared to a composition lacking said modified APC.
  26. The composition of claim 24, wherein said T cell exhibits at least a 10-fold increase in proliferation compared to a composition lacking said modified APC.
  27. The composition of any one of claims 6-26, wherein an amount of said modified APC remains about the same over time in a subject administered said composition.
  28. A vaccine comprising a modified APC of any one of claims 1-5 or a composition of any one of claims 6-27.
  29. A method of treating a disorder in a subject expressing said neoantigen, said method  comprising administering a modified APC of any one of claims 1-5, a composition of any one of claims 6-27, or a vaccine of claim 28.
  30. A method for immune cell enrichment, said method comprising administering to a subject expressing said neoantigen a composition of any one of claims 6-27 or a vaccine of claim 28.
  31. A method of treating a disorder in a subject in need thereof, the method comprising administering to the subject:
    a. a modified APC of any one of claims 1-5; and
    b. a T cell capable of specifically binding said neoantigen of said modified APC;
    wherein the modified APC and the T cell are administered concurrently or separately to the subject.
PCT/CN2019/090633 2018-06-11 2019-06-11 Neoantigen vaccines and uses thereof WO2019238023A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2018/090634 2018-06-11
CN2018090634 2018-06-11

Publications (1)

Publication Number Publication Date
WO2019238023A1 true WO2019238023A1 (en) 2019-12-19

Family

ID=68842728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090633 WO2019238023A1 (en) 2018-06-11 2019-06-11 Neoantigen vaccines and uses thereof

Country Status (1)

Country Link
WO (1) WO2019238023A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200222478A1 (en) * 2019-01-10 2020-07-16 Janssen Biotech, Inc. Prostate neoantigens and their uses
CN111690609A (en) * 2020-06-30 2020-09-22 深圳裕泰抗原科技有限公司 Method for testing immunogenicity of neoantigen
CN113398249A (en) * 2021-07-08 2021-09-17 中国人民解放军空军军医大学 Application of over-expressed chemokine CCL14 in preparation of medicine for treating tumors under participation of immune system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105153315A (en) * 2015-10-09 2015-12-16 重庆倍思益生物科技有限公司 Chimeric receptor combining immunosuppression receptor and tumor antigen receptor and application of chimeric receptor
WO2017147139A1 (en) * 2016-02-22 2017-08-31 Oceanside Biotechnology Neoantigen compositions and methods of using the same in immunooncotherapy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105153315A (en) * 2015-10-09 2015-12-16 重庆倍思益生物科技有限公司 Chimeric receptor combining immunosuppression receptor and tumor antigen receptor and application of chimeric receptor
WO2017147139A1 (en) * 2016-02-22 2017-08-31 Oceanside Biotechnology Neoantigen compositions and methods of using the same in immunooncotherapy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200222478A1 (en) * 2019-01-10 2020-07-16 Janssen Biotech, Inc. Prostate neoantigens and their uses
US11793843B2 (en) * 2019-01-10 2023-10-24 Janssen Biotech, Inc. Prostate neoantigens and their uses
CN111690609A (en) * 2020-06-30 2020-09-22 深圳裕泰抗原科技有限公司 Method for testing immunogenicity of neoantigen
CN111690609B (en) * 2020-06-30 2022-04-05 深圳裕泰抗原科技有限公司 Method for testing immunogenicity of neoantigen
CN113398249A (en) * 2021-07-08 2021-09-17 中国人民解放军空军军医大学 Application of over-expressed chemokine CCL14 in preparation of medicine for treating tumors under participation of immune system

Similar Documents

Publication Publication Date Title
US20240247231A1 (en) Modified immune cells and uses thereof
ES2875747T3 (en) Chimeric proteins and immunotherapy methods
RU2751921C2 (en) Products of a certain composition containing genetically modified t cells
US20230293689A1 (en) Strengthened receptor for improving immune cell function
WO2019238022A1 (en) Modified immune cells and uses thereof
EP3926042A1 (en) Adjuvant capable of promoting expansion of immune cells in vivo
WO2019183572A1 (en) Gene regulation via conditional nuclear localization of gene modulating polypeptides
CN113710691A (en) Amplification of natural killer and chimeric antigen receptor modified cells
WO2019238023A1 (en) Neoantigen vaccines and uses thereof
US20220162288A1 (en) Cellular therapeutics engineered with signal modulators and methods of use thereof
WO2021119349A1 (en) Chimeric receptor polypeptide and methods of activation thereof
EP4435101A1 (en) Membrane surface protein containing gpi anchor region
TW202039540A (en) Anti-lmp2 tcr-t cell therapy for the treatment of ebv-associated cancers
US20230226213A1 (en) Methods and compositions for modulating cells and cellular membranes
CN117460742A (en) Materials and methods for enhanced stem cell-like memory T cell engineering
CN111676195A (en) UCAR immune cell for treating T cell tumor
WO2021204204A1 (en) Antigen gene transfection cell vaccine and related immune cell
WO2023144355A1 (en) Ex vivo human model designed to evaluate the vaccine potential of a composition
WO2024206155A1 (en) Utilizing t cells derived from tumor draining lymph nodes for chimeric antigen receptor (car) t cell therapy for the treatment of cancer
CN116514997A (en) Construction and application of chimeric antigen receptor with enhanced expression

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19818575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19818575

Country of ref document: EP

Kind code of ref document: A1