WO2019238023A1 - Neoantigen vaccines and uses thereof - Google Patents
Neoantigen vaccines and uses thereof Download PDFInfo
- Publication number
- WO2019238023A1 WO2019238023A1 PCT/CN2019/090633 CN2019090633W WO2019238023A1 WO 2019238023 A1 WO2019238023 A1 WO 2019238023A1 CN 2019090633 W CN2019090633 W CN 2019090633W WO 2019238023 A1 WO2019238023 A1 WO 2019238023A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell
- modified
- cells
- composition
- fold
- Prior art date
Links
- 229960005486 vaccine Drugs 0.000 title claims description 27
- 239000000203 mixture Substances 0.000 claims abstract description 116
- 210000000612 antigen-presenting cell Anatomy 0.000 claims abstract description 98
- 238000000034 method Methods 0.000 claims abstract description 98
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 75
- 210000004027 cell Anatomy 0.000 claims description 418
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 262
- 210000002865 immune cell Anatomy 0.000 claims description 231
- 108090000623 proteins and genes Proteins 0.000 claims description 112
- -1 ACOl 1997 Proteins 0.000 claims description 86
- 102000004127 Cytokines Human genes 0.000 claims description 84
- 108090000695 Cytokines Proteins 0.000 claims description 84
- 102000004169 proteins and genes Human genes 0.000 claims description 64
- 230000027455 binding Effects 0.000 claims description 59
- 239000003446 ligand Substances 0.000 claims description 52
- 108091008874 T cell receptors Proteins 0.000 claims description 49
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 claims description 49
- 230000035755 proliferation Effects 0.000 claims description 49
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 46
- 239000012634 fragment Substances 0.000 claims description 42
- 230000004913 activation Effects 0.000 claims description 34
- 230000005931 immune cell recruitment Effects 0.000 claims description 30
- 230000002779 inactivation Effects 0.000 claims description 30
- 210000003719 b-lymphocyte Anatomy 0.000 claims description 29
- 230000028327 secretion Effects 0.000 claims description 28
- 102100040678 Programmed cell death protein 1 Human genes 0.000 claims description 22
- 101710089372 Programmed cell death protein 1 Proteins 0.000 claims description 22
- 230000003013 cytotoxicity Effects 0.000 claims description 21
- 231100000135 cytotoxicity Toxicity 0.000 claims description 21
- 102000019034 Chemokines Human genes 0.000 claims description 20
- 108010012236 Chemokines Proteins 0.000 claims description 20
- 230000001965 increasing effect Effects 0.000 claims description 19
- 102100036856 Tumor necrosis factor receptor superfamily member 9 Human genes 0.000 claims description 16
- 102100029822 B- and T-lymphocyte attenuator Human genes 0.000 claims description 15
- 101000716102 Homo sapiens T-cell surface glycoprotein CD4 Proteins 0.000 claims description 15
- 108010002350 Interleukin-2 Proteins 0.000 claims description 15
- 102000000588 Interleukin-2 Human genes 0.000 claims description 15
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 claims description 15
- 101710144268 B- and T-lymphocyte attenuator Proteins 0.000 claims description 14
- 102100020862 Lymphocyte activation gene 3 protein Human genes 0.000 claims description 14
- 210000004443 dendritic cell Anatomy 0.000 claims description 14
- 208000035475 disorder Diseases 0.000 claims description 14
- 239000003102 growth factor Substances 0.000 claims description 14
- 230000001404 mediated effect Effects 0.000 claims description 14
- 102000035025 signaling receptors Human genes 0.000 claims description 14
- 108091005475 signaling receptors Proteins 0.000 claims description 14
- 229940045513 CTLA4 antagonist Drugs 0.000 claims description 13
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 claims description 13
- 101000889276 Homo sapiens Cytotoxic T-lymphocyte protein 4 Proteins 0.000 claims description 13
- 101001137987 Homo sapiens Lymphocyte activation gene 3 protein Proteins 0.000 claims description 13
- 102000004560 Interleukin-12 Receptors Human genes 0.000 claims description 13
- 108010017515 Interleukin-12 Receptors Proteins 0.000 claims description 13
- 102000004889 Interleukin-6 Human genes 0.000 claims description 13
- 108090001005 Interleukin-6 Proteins 0.000 claims description 13
- 108010064548 Lymphocyte Function-Associated Antigen-1 Proteins 0.000 claims description 13
- 230000004069 differentiation Effects 0.000 claims description 13
- 102000002698 KIR Receptors Human genes 0.000 claims description 12
- 108010043610 KIR Receptors Proteins 0.000 claims description 12
- 229940126547 T-cell immunoglobulin mucin-3 Drugs 0.000 claims description 12
- 102100034922 T-cell surface glycoprotein CD8 alpha chain Human genes 0.000 claims description 12
- 102000003675 cytokine receptors Human genes 0.000 claims description 12
- 108010057085 cytokine receptors Proteins 0.000 claims description 12
- 102000006639 indoleamine 2,3-dioxygenase Human genes 0.000 claims description 12
- 108020004201 indoleamine 2,3-dioxygenase Proteins 0.000 claims description 12
- 108010038453 Interleukin-2 Receptors Proteins 0.000 claims description 11
- 102000010789 Interleukin-2 Receptors Human genes 0.000 claims description 11
- 102000016715 Transforming Growth Factor beta Receptors Human genes 0.000 claims description 11
- 102100027207 CD27 antigen Human genes 0.000 claims description 10
- 101000914511 Homo sapiens CD27 antigen Proteins 0.000 claims description 10
- 102000000589 Interleukin-1 Human genes 0.000 claims description 10
- 108010002352 Interleukin-1 Proteins 0.000 claims description 10
- 108010092867 Transforming Growth Factor beta Receptors Proteins 0.000 claims description 10
- 230000032459 dedifferentiation Effects 0.000 claims description 10
- 230000032258 transport Effects 0.000 claims description 10
- 206010069754 Acquired gene mutation Diseases 0.000 claims description 9
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 claims description 9
- 102000037978 Immune checkpoint receptors Human genes 0.000 claims description 9
- 108091008028 Immune checkpoint receptors Proteins 0.000 claims description 9
- 102000003814 Interleukin-10 Human genes 0.000 claims description 9
- 108090000174 Interleukin-10 Proteins 0.000 claims description 9
- 102000013462 Interleukin-12 Human genes 0.000 claims description 9
- 108010065805 Interleukin-12 Proteins 0.000 claims description 9
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 claims description 9
- 108010009583 Transforming Growth Factors Proteins 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 9
- 230000003834 intracellular effect Effects 0.000 claims description 9
- 230000033001 locomotion Effects 0.000 claims description 9
- 230000037439 somatic mutation Effects 0.000 claims description 9
- 101000615382 Homo sapiens Stromal membrane-associated protein 1 Proteins 0.000 claims description 8
- 102000004890 Interleukin-8 Human genes 0.000 claims description 8
- 108090001007 Interleukin-8 Proteins 0.000 claims description 8
- 102100021037 Protein unc-45 homolog A Human genes 0.000 claims description 8
- 102100024834 T-cell immunoreceptor with Ig and ITIM domains Human genes 0.000 claims description 8
- 102100038078 CD276 antigen Human genes 0.000 claims description 7
- 101000851376 Homo sapiens Tumor necrosis factor receptor superfamily member 8 Proteins 0.000 claims description 7
- 102100037850 Interferon gamma Human genes 0.000 claims description 7
- 108090000172 Interleukin-15 Proteins 0.000 claims description 7
- 102000003812 Interleukin-15 Human genes 0.000 claims description 7
- 108010002586 Interleukin-7 Proteins 0.000 claims description 7
- 102000000704 Interleukin-7 Human genes 0.000 claims description 7
- 102100022153 Tumor necrosis factor receptor superfamily member 4 Human genes 0.000 claims description 7
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 claims description 7
- 102100036857 Tumor necrosis factor receptor superfamily member 8 Human genes 0.000 claims description 7
- 108091008039 hormone receptors Proteins 0.000 claims description 7
- 108010074108 interleukin-21 Proteins 0.000 claims description 7
- 239000002207 metabolite Substances 0.000 claims description 7
- 102100033793 ALK tyrosine kinase receptor Human genes 0.000 claims description 6
- 101150013553 CD40 gene Proteins 0.000 claims description 6
- 102000009410 Chemokine receptor Human genes 0.000 claims description 6
- 108050000299 Chemokine receptor Proteins 0.000 claims description 6
- 102100027842 Fibroblast growth factor receptor 3 Human genes 0.000 claims description 6
- 101710182396 Fibroblast growth factor receptor 3 Proteins 0.000 claims description 6
- 102000009465 Growth Factor Receptors Human genes 0.000 claims description 6
- 108010009202 Growth Factor Receptors Proteins 0.000 claims description 6
- 101000779641 Homo sapiens ALK tyrosine kinase receptor Proteins 0.000 claims description 6
- 101001109503 Homo sapiens NKG2-C type II integral membrane protein Proteins 0.000 claims description 6
- 108010074328 Interferon-gamma Proteins 0.000 claims description 6
- 102100022683 NKG2-C type II integral membrane protein Human genes 0.000 claims description 6
- 102100027208 T-cell antigen CD7 Human genes 0.000 claims description 6
- 102100025237 T-cell surface antigen CD2 Human genes 0.000 claims description 6
- 101710165473 Tumor necrosis factor receptor superfamily member 4 Proteins 0.000 claims description 6
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 claims description 6
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 claims description 6
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 claims description 6
- 230000007420 reactivation Effects 0.000 claims description 6
- 102100034580 AT-rich interactive domain-containing protein 1A Human genes 0.000 claims description 5
- 102100021886 Activin receptor type-2A Human genes 0.000 claims description 5
- 101001042041 Bos taurus Isocitrate dehydrogenase [NAD] subunit beta, mitochondrial Proteins 0.000 claims description 5
- 108010043471 Core Binding Factor Alpha 2 Subunit Proteins 0.000 claims description 5
- 102100021147 DNA mismatch repair protein Msh6 Human genes 0.000 claims description 5
- 102100026245 E3 ubiquitin-protein ligase RNF43 Human genes 0.000 claims description 5
- 101150097734 EPHB2 gene Proteins 0.000 claims description 5
- 102100031968 Ephrin type-B receptor 2 Human genes 0.000 claims description 5
- 102100039623 Epithelial splicing regulatory protein 1 Human genes 0.000 claims description 5
- 102100038595 Estrogen receptor Human genes 0.000 claims description 5
- 102100030708 GTPase KRas Human genes 0.000 claims description 5
- 102100039788 GTPase NRas Human genes 0.000 claims description 5
- 102100027768 Histone-lysine N-methyltransferase 2D Human genes 0.000 claims description 5
- 101000924266 Homo sapiens AT-rich interactive domain-containing protein 1A Proteins 0.000 claims description 5
- 101000970954 Homo sapiens Activin receptor type-2A Proteins 0.000 claims description 5
- 101000968658 Homo sapiens DNA mismatch repair protein Msh6 Proteins 0.000 claims description 5
- 101000692702 Homo sapiens E3 ubiquitin-protein ligase RNF43 Proteins 0.000 claims description 5
- 101000814084 Homo sapiens Epithelial splicing regulatory protein 1 Proteins 0.000 claims description 5
- 101000882584 Homo sapiens Estrogen receptor Proteins 0.000 claims description 5
- 101000744505 Homo sapiens GTPase NRas Proteins 0.000 claims description 5
- 101001008894 Homo sapiens Histone-lysine N-methyltransferase 2D Proteins 0.000 claims description 5
- 101000960234 Homo sapiens Isocitrate dehydrogenase [NADP] cytoplasmic Proteins 0.000 claims description 5
- 101000605639 Homo sapiens Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform Proteins 0.000 claims description 5
- 101000779418 Homo sapiens RAC-alpha serine/threonine-protein kinase Proteins 0.000 claims description 5
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 claims description 5
- 101000984753 Homo sapiens Serine/threonine-protein kinase B-raf Proteins 0.000 claims description 5
- 101000642268 Homo sapiens Speckle-type POZ protein Proteins 0.000 claims description 5
- 101000823316 Homo sapiens Tyrosine-protein kinase ABL1 Proteins 0.000 claims description 5
- 101000997835 Homo sapiens Tyrosine-protein kinase JAK1 Proteins 0.000 claims description 5
- 102100039905 Isocitrate dehydrogenase [NADP] cytoplasmic Human genes 0.000 claims description 5
- 108010011536 PTEN Phosphohydrolase Proteins 0.000 claims description 5
- 102000014160 PTEN Phosphohydrolase Human genes 0.000 claims description 5
- 102100038332 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform Human genes 0.000 claims description 5
- 102100033810 RAC-alpha serine/threonine-protein kinase Human genes 0.000 claims description 5
- 102100022122 Ras-related C3 botulinum toxin substrate 1 Human genes 0.000 claims description 5
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 claims description 5
- 101710100969 Receptor tyrosine-protein kinase erbB-3 Proteins 0.000 claims description 5
- 102100025373 Runt-related transcription factor 1 Human genes 0.000 claims description 5
- 102100027103 Serine/threonine-protein kinase B-raf Human genes 0.000 claims description 5
- 102100036422 Speckle-type POZ protein Human genes 0.000 claims description 5
- 108010082684 Transforming Growth Factor-beta Type II Receptor Proteins 0.000 claims description 5
- 108010078814 Tumor Suppressor Protein p53 Proteins 0.000 claims description 5
- 102100022596 Tyrosine-protein kinase ABL1 Human genes 0.000 claims description 5
- 102100033438 Tyrosine-protein kinase JAK1 Human genes 0.000 claims description 5
- 108010062302 rac1 GTP Binding Protein Proteins 0.000 claims description 5
- 102100037685 60S ribosomal protein L22 Human genes 0.000 claims description 4
- 102100022144 Achaete-scute homolog 2 Human genes 0.000 claims description 4
- 102100025677 Alkaline phosphatase, germ cell type Human genes 0.000 claims description 4
- 102100023635 Alpha-fetoprotein Human genes 0.000 claims description 4
- 102000052567 Anaphase-Promoting Complex-Cyclosome Apc1 Subunit Human genes 0.000 claims description 4
- 108700004581 Anaphase-Promoting Complex-Cyclosome Apc1 Subunit Proteins 0.000 claims description 4
- 102100031024 CCR4-NOT transcription complex subunit 1 Human genes 0.000 claims description 4
- 108091058556 CTAG1B Proteins 0.000 claims description 4
- 102100025570 Cancer/testis antigen 1 Human genes 0.000 claims description 4
- 102100031661 Cancer/testis antigen family 45 member A5 Human genes 0.000 claims description 4
- 108091007854 Cdh1/Fizzy-related Proteins 0.000 claims description 4
- 102100038449 Claudin-6 Human genes 0.000 claims description 4
- 102100027995 Collagenase 3 Human genes 0.000 claims description 4
- 102100037700 DNA mismatch repair protein Msh3 Human genes 0.000 claims description 4
- 102100037986 Dickkopf-related protein 4 Human genes 0.000 claims description 4
- 102100036109 Dual specificity protein kinase TTK Human genes 0.000 claims description 4
- 102100040341 E3 ubiquitin-protein ligase UBR5 Human genes 0.000 claims description 4
- 102100040465 Elongation factor 1-beta Human genes 0.000 claims description 4
- 102100039207 Exportin-T Human genes 0.000 claims description 4
- 102100039717 G antigen 1 Human genes 0.000 claims description 4
- 101001097555 Homo sapiens 60S ribosomal protein L22 Proteins 0.000 claims description 4
- 101000901109 Homo sapiens Achaete-scute homolog 2 Proteins 0.000 claims description 4
- 101000574440 Homo sapiens Alkaline phosphatase, germ cell type Proteins 0.000 claims description 4
- 101000919672 Homo sapiens CCR4-NOT transcription complex subunit 1 Proteins 0.000 claims description 4
- 101000940772 Homo sapiens Cancer/testis antigen family 45 member A5 Proteins 0.000 claims description 4
- 101000882898 Homo sapiens Claudin-6 Proteins 0.000 claims description 4
- 101000577887 Homo sapiens Collagenase 3 Proteins 0.000 claims description 4
- 101001027762 Homo sapiens DNA mismatch repair protein Msh3 Proteins 0.000 claims description 4
- 101000951340 Homo sapiens Dickkopf-related protein 4 Proteins 0.000 claims description 4
- 101000659223 Homo sapiens Dual specificity protein kinase TTK Proteins 0.000 claims description 4
- 101000671838 Homo sapiens E3 ubiquitin-protein ligase UBR5 Proteins 0.000 claims description 4
- 101000967447 Homo sapiens Elongation factor 1-beta Proteins 0.000 claims description 4
- 101000745703 Homo sapiens Exportin-T Proteins 0.000 claims description 4
- 101000886137 Homo sapiens G antigen 1 Proteins 0.000 claims description 4
- 101001058854 Homo sapiens Guanylate-binding protein 3 Proteins 0.000 claims description 4
- 101001045848 Homo sapiens Histone-lysine N-methyltransferase 2B Proteins 0.000 claims description 4
- 101000620359 Homo sapiens Melanocyte protein PMEL Proteins 0.000 claims description 4
- 101000578784 Homo sapiens Melanoma antigen recognized by T-cells 1 Proteins 0.000 claims description 4
- 101001005728 Homo sapiens Melanoma-associated antigen 1 Proteins 0.000 claims description 4
- 101001005725 Homo sapiens Melanoma-associated antigen 10 Proteins 0.000 claims description 4
- 101001005720 Homo sapiens Melanoma-associated antigen 4 Proteins 0.000 claims description 4
- 101001005723 Homo sapiens Melanoma-associated antigen 8 Proteins 0.000 claims description 4
- 101001036691 Homo sapiens Melanoma-associated antigen B4 Proteins 0.000 claims description 4
- 101001036406 Homo sapiens Melanoma-associated antigen C1 Proteins 0.000 claims description 4
- 101001030211 Homo sapiens Myc proto-oncogene protein Proteins 0.000 claims description 4
- 101001023553 Homo sapiens NADH dehydrogenase [ubiquinone] 1 subunit C2 Proteins 0.000 claims description 4
- 101001114056 Homo sapiens P antigen family member 2 Proteins 0.000 claims description 4
- 101001114051 Homo sapiens P antigen family member 5 Proteins 0.000 claims description 4
- 101001038300 Homo sapiens Protein ERGIC-53 Proteins 0.000 claims description 4
- 101000822459 Homo sapiens Protein transport protein Sec31A Proteins 0.000 claims description 4
- 101000880263 Homo sapiens Putative elongation factor 1-delta-like protein Proteins 0.000 claims description 4
- 101001076732 Homo sapiens RNA-binding protein 27 Proteins 0.000 claims description 4
- 101000652995 Homo sapiens THAP domain-containing protein 5 Proteins 0.000 claims description 4
- 101000819111 Homo sapiens Trans-acting T-cell-specific transcription factor GATA-3 Proteins 0.000 claims description 4
- 101000835023 Homo sapiens Transcription factor A, mitochondrial Proteins 0.000 claims description 4
- 101001049688 Homo sapiens Translation initiation factor eIF-2B subunit gamma Proteins 0.000 claims description 4
- 101000631620 Homo sapiens Translocation protein SEC63 homolog Proteins 0.000 claims description 4
- 101710123134 Ice-binding protein Proteins 0.000 claims description 4
- 101710082837 Ice-structuring protein Proteins 0.000 claims description 4
- 102100031413 L-dopachrome tautomerase Human genes 0.000 claims description 4
- 101710093778 L-dopachrome tautomerase Proteins 0.000 claims description 4
- 102100022430 Melanocyte protein PMEL Human genes 0.000 claims description 4
- 102100028389 Melanoma antigen recognized by T-cells 1 Human genes 0.000 claims description 4
- 102100025050 Melanoma-associated antigen 1 Human genes 0.000 claims description 4
- 102100025049 Melanoma-associated antigen 10 Human genes 0.000 claims description 4
- 102100025077 Melanoma-associated antigen 4 Human genes 0.000 claims description 4
- 102100025076 Melanoma-associated antigen 8 Human genes 0.000 claims description 4
- 102100039476 Melanoma-associated antigen B4 Human genes 0.000 claims description 4
- 102100039447 Melanoma-associated antigen C1 Human genes 0.000 claims description 4
- 102100037258 Membrane-associated transporter protein Human genes 0.000 claims description 4
- 108090000744 Mitogen-Activated Protein Kinase Kinases Proteins 0.000 claims description 4
- 102000004232 Mitogen-Activated Protein Kinase Kinases Human genes 0.000 claims description 4
- 102100038895 Myc proto-oncogene protein Human genes 0.000 claims description 4
- 102100035386 NADH dehydrogenase [ubiquinone] 1 subunit C2 Human genes 0.000 claims description 4
- 102100023220 P antigen family member 2 Human genes 0.000 claims description 4
- 102100023238 P antigen family member 5 Human genes 0.000 claims description 4
- 101150038994 PDGFRA gene Proteins 0.000 claims description 4
- 102000007079 Peptide Fragments Human genes 0.000 claims description 4
- 108010033276 Peptide Fragments Proteins 0.000 claims description 4
- 102100040252 Protein ERGIC-53 Human genes 0.000 claims description 4
- 102100022484 Protein transport protein Sec31A Human genes 0.000 claims description 4
- 102100037650 Putative elongation factor 1-delta-like protein Human genes 0.000 claims description 4
- 102100025873 RNA-binding protein 27 Human genes 0.000 claims description 4
- 102100029986 Receptor tyrosine-protein kinase erbB-3 Human genes 0.000 claims description 4
- 108091006962 SLC35F5 Proteins 0.000 claims description 4
- 108091007563 SLC45A2 Proteins 0.000 claims description 4
- 102100030112 Solute carrier family 35 member F5 Human genes 0.000 claims description 4
- 102100030952 THAP domain-containing protein 5 Human genes 0.000 claims description 4
- 102100021386 Trans-acting T-cell-specific transcription factor GATA-3 Human genes 0.000 claims description 4
- 102100026155 Transcription factor A, mitochondrial Human genes 0.000 claims description 4
- 102100023225 Translation initiation factor eIF-2B subunit gamma Human genes 0.000 claims description 4
- 102100029006 Translocation protein SEC63 homolog Human genes 0.000 claims description 4
- 101710107540 Type-2 ice-structuring protein Proteins 0.000 claims description 4
- 101150072346 anapc1 gene Proteins 0.000 claims description 4
- 108010089520 pol Gene Products Proteins 0.000 claims description 4
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 claims description 3
- 101000959820 Homo sapiens Interferon alpha-1/13 Proteins 0.000 claims description 2
- 102100027766 Atlastin-1 Human genes 0.000 claims 1
- 102000038594 Cdh1/Fizzy-related Human genes 0.000 claims 1
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 claims 1
- 101000831007 Homo sapiens T-cell immunoreceptor with Ig and ITIM domains Proteins 0.000 claims 1
- 102000004060 Transforming Growth Factor-beta Type II Receptor Human genes 0.000 claims 1
- 201000011510 cancer Diseases 0.000 abstract description 17
- 235000018102 proteins Nutrition 0.000 description 56
- 108090000765 processed proteins & peptides Proteins 0.000 description 53
- 102000004196 processed proteins & peptides Human genes 0.000 description 43
- 229920001184 polypeptide Polymers 0.000 description 40
- 235000001014 amino acid Nutrition 0.000 description 39
- 150000001413 amino acids Chemical class 0.000 description 38
- 150000007523 nucleic acids Chemical class 0.000 description 36
- 101100228946 Streptomyces fradiae neoB gene Proteins 0.000 description 35
- 102000039446 nucleic acids Human genes 0.000 description 35
- 108020004707 nucleic acids Proteins 0.000 description 35
- 201000010099 disease Diseases 0.000 description 32
- 230000000694 effects Effects 0.000 description 30
- 230000014509 gene expression Effects 0.000 description 28
- 125000003729 nucleotide group Chemical group 0.000 description 25
- 210000000130 stem cell Anatomy 0.000 description 25
- 102000040430 polynucleotide Human genes 0.000 description 24
- 108091033319 polynucleotide Proteins 0.000 description 24
- 239000002157 polynucleotide Substances 0.000 description 24
- 238000000338 in vitro Methods 0.000 description 23
- 210000001519 tissue Anatomy 0.000 description 23
- 239000013598 vector Substances 0.000 description 23
- 239000002773 nucleotide Substances 0.000 description 22
- 102000027426 receptor tyrosine kinases Human genes 0.000 description 22
- 108091008598 receptor tyrosine kinases Proteins 0.000 description 22
- WYFYSTBFFDOVJW-UHFFFAOYSA-L 2-[4-[4-(3,5-diphenyltetrazol-2-ium-2-yl)phenyl]phenyl]-3,5-diphenyltetrazol-2-ium;dichloride Chemical compound [Cl-].[Cl-].C1=CC=CC=C1C(N=[N+]1C=2C=CC(=CC=2)C=2C=CC(=CC=2)[N+]=2N(N=C(N=2)C=2C=CC=CC=2)C=2C=CC=CC=2)=NN1C1=CC=CC=C1 WYFYSTBFFDOVJW-UHFFFAOYSA-L 0.000 description 21
- 102000005962 receptors Human genes 0.000 description 20
- 108020003175 receptors Proteins 0.000 description 20
- 208000024891 symptom Diseases 0.000 description 20
- 102000053602 DNA Human genes 0.000 description 19
- 108020004414 DNA Proteins 0.000 description 19
- 230000003612 virological effect Effects 0.000 description 19
- 239000000427 antigen Substances 0.000 description 18
- 108091007433 antigens Proteins 0.000 description 18
- 102000036639 antigens Human genes 0.000 description 18
- 230000006870 function Effects 0.000 description 17
- 238000001727 in vivo Methods 0.000 description 17
- 210000004698 lymphocyte Anatomy 0.000 description 17
- 238000011282 treatment Methods 0.000 description 17
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 16
- 238000001802 infusion Methods 0.000 description 16
- 210000004379 membrane Anatomy 0.000 description 16
- 239000012528 membrane Substances 0.000 description 16
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 15
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 14
- 230000003321 amplification Effects 0.000 description 13
- 238000003199 nucleic acid amplification method Methods 0.000 description 13
- 229920002477 rna polymer Polymers 0.000 description 13
- 230000004927 fusion Effects 0.000 description 12
- 102000014150 Interferons Human genes 0.000 description 11
- 108010050904 Interferons Proteins 0.000 description 11
- 229940100601 interleukin-6 Drugs 0.000 description 11
- 239000000523 sample Substances 0.000 description 11
- 210000004881 tumor cell Anatomy 0.000 description 11
- 210000001616 monocyte Anatomy 0.000 description 10
- 239000002105 nanoparticle Substances 0.000 description 10
- 239000008194 pharmaceutical composition Substances 0.000 description 10
- 238000001890 transfection Methods 0.000 description 10
- 241000700605 Viruses Species 0.000 description 9
- 210000004369 blood Anatomy 0.000 description 9
- 239000008280 blood Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 238000000684 flow cytometry Methods 0.000 description 9
- 239000002502 liposome Substances 0.000 description 9
- 210000000822 natural killer cell Anatomy 0.000 description 9
- 238000004806 packaging method and process Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 206010025323 Lymphomas Diseases 0.000 description 8
- 241000699666 Mus <mouse, genus> Species 0.000 description 8
- 102000009618 Transforming Growth Factors Human genes 0.000 description 8
- 238000002617 apheresis Methods 0.000 description 8
- 239000012530 fluid Substances 0.000 description 8
- 229940079322 interferon Drugs 0.000 description 8
- 229940076144 interleukin-10 Drugs 0.000 description 8
- 229940117681 interleukin-12 Drugs 0.000 description 8
- 108020004999 messenger RNA Proteins 0.000 description 8
- 230000035772 mutation Effects 0.000 description 8
- 210000003171 tumor-infiltrating lymphocyte Anatomy 0.000 description 8
- 102100032937 CD40 ligand Human genes 0.000 description 7
- 102100025221 CD70 antigen Human genes 0.000 description 7
- 102100030703 Interleukin-22 Human genes 0.000 description 7
- 102100029215 Signaling lymphocytic activation molecule Human genes 0.000 description 7
- 101710090983 T-cell immunoreceptor with Ig and ITIM domains Proteins 0.000 description 7
- 102100036922 Tumor necrosis factor ligand superfamily member 13B Human genes 0.000 description 7
- 239000011324 bead Substances 0.000 description 7
- 239000000872 buffer Substances 0.000 description 7
- 230000000295 complement effect Effects 0.000 description 7
- 210000003743 erythrocyte Anatomy 0.000 description 7
- 230000002068 genetic effect Effects 0.000 description 7
- 230000028993 immune response Effects 0.000 description 7
- 150000002632 lipids Chemical class 0.000 description 7
- 210000002540 macrophage Anatomy 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 230000001105 regulatory effect Effects 0.000 description 7
- 230000001225 therapeutic effect Effects 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 description 6
- 108050005493 CD3 protein, epsilon/gamma/delta subunit Proteins 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- 241000196324 Embryophyta Species 0.000 description 6
- 102000013691 Interleukin-17 Human genes 0.000 description 6
- 108050003558 Interleukin-17 Proteins 0.000 description 6
- 102100033467 L-selectin Human genes 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 6
- 102100024568 Tumor necrosis factor ligand superfamily member 11 Human genes 0.000 description 6
- 102100026890 Tumor necrosis factor ligand superfamily member 4 Human genes 0.000 description 6
- 102100032100 Tumor necrosis factor ligand superfamily member 8 Human genes 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 210000001772 blood platelet Anatomy 0.000 description 6
- 239000012636 effector Substances 0.000 description 6
- 210000002919 epithelial cell Anatomy 0.000 description 6
- 210000003714 granulocyte Anatomy 0.000 description 6
- 210000004209 hair Anatomy 0.000 description 6
- 210000003630 histaminocyte Anatomy 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 6
- 210000000265 leukocyte Anatomy 0.000 description 6
- 230000000670 limiting effect Effects 0.000 description 6
- 210000004072 lung Anatomy 0.000 description 6
- 210000003097 mucus Anatomy 0.000 description 6
- 210000005259 peripheral blood Anatomy 0.000 description 6
- 239000011886 peripheral blood Substances 0.000 description 6
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 6
- 230000003285 pharmacodynamic effect Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000000770 proinflammatory effect Effects 0.000 description 6
- 230000004083 survival effect Effects 0.000 description 6
- 241000701161 unidentified adenovirus Species 0.000 description 6
- 102100036301 C-C chemokine receptor type 7 Human genes 0.000 description 5
- 101000716065 Homo sapiens C-C chemokine receptor type 7 Proteins 0.000 description 5
- 101000868215 Homo sapiens CD40 ligand Proteins 0.000 description 5
- 101000934356 Homo sapiens CD70 antigen Proteins 0.000 description 5
- 101000633786 Homo sapiens SLAM family member 6 Proteins 0.000 description 5
- 101000934346 Homo sapiens T-cell surface antigen CD2 Proteins 0.000 description 5
- 102000015696 Interleukins Human genes 0.000 description 5
- 108010063738 Interleukins Proteins 0.000 description 5
- 241000713666 Lentivirus Species 0.000 description 5
- 241000124008 Mammalia Species 0.000 description 5
- 241000699670 Mus sp. Species 0.000 description 5
- 108010025832 RANK Ligand Proteins 0.000 description 5
- 241000283984 Rodentia Species 0.000 description 5
- 102100029197 SLAM family member 6 Human genes 0.000 description 5
- 102100031988 Tumor necrosis factor ligand superfamily member 6 Human genes 0.000 description 5
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 5
- 102100039037 Vascular endothelial growth factor A Human genes 0.000 description 5
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 5
- 125000003275 alpha amino acid group Chemical group 0.000 description 5
- 230000030833 cell death Effects 0.000 description 5
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 5
- 210000000987 immune system Anatomy 0.000 description 5
- 238000009169 immunotherapy Methods 0.000 description 5
- 208000032839 leukemia Diseases 0.000 description 5
- 210000000581 natural killer T-cell Anatomy 0.000 description 5
- 210000000440 neutrophil Anatomy 0.000 description 5
- 239000002953 phosphate buffered saline Substances 0.000 description 5
- 239000013612 plasmid Substances 0.000 description 5
- 230000000069 prophylactic effect Effects 0.000 description 5
- 230000001177 retroviral effect Effects 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 210000001685 thyroid gland Anatomy 0.000 description 5
- 239000001226 triphosphate Substances 0.000 description 5
- 235000011178 triphosphate Nutrition 0.000 description 5
- 210000003462 vein Anatomy 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- 102100034540 Adenomatous polyposis coli protein Human genes 0.000 description 4
- 108010004586 Ataxia Telangiectasia Mutated Proteins Proteins 0.000 description 4
- 108010028006 B-Cell Activating Factor Proteins 0.000 description 4
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 4
- 201000009030 Carcinoma Diseases 0.000 description 4
- 241000702421 Dependoparvovirus Species 0.000 description 4
- 238000002965 ELISA Methods 0.000 description 4
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 4
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 4
- 101000924577 Homo sapiens Adenomatous polyposis coli protein Proteins 0.000 description 4
- 101000764263 Homo sapiens Tumor necrosis factor ligand superfamily member 4 Proteins 0.000 description 4
- 101000638255 Homo sapiens Tumor necrosis factor ligand superfamily member 8 Proteins 0.000 description 4
- 206010061218 Inflammation Diseases 0.000 description 4
- 102100032818 Integrin alpha-4 Human genes 0.000 description 4
- 108090000978 Interleukin-4 Proteins 0.000 description 4
- 102000004388 Interleukin-4 Human genes 0.000 description 4
- 229920002873 Polyethylenimine Polymers 0.000 description 4
- 206010039491 Sarcoma Diseases 0.000 description 4
- 108010074687 Signaling Lymphocytic Activation Molecule Family Member 1 Proteins 0.000 description 4
- 102100033455 TGF-beta receptor type-2 Human genes 0.000 description 4
- 108020004566 Transfer RNA Proteins 0.000 description 4
- 102000015098 Tumor Suppressor Protein p53 Human genes 0.000 description 4
- 102100024587 Tumor necrosis factor ligand superfamily member 15 Human genes 0.000 description 4
- 102100028785 Tumor necrosis factor receptor superfamily member 14 Human genes 0.000 description 4
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 4
- 125000002252 acyl group Chemical group 0.000 description 4
- 210000004102 animal cell Anatomy 0.000 description 4
- 230000003110 anti-inflammatory effect Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 210000001185 bone marrow Anatomy 0.000 description 4
- 239000001506 calcium phosphate Substances 0.000 description 4
- 229910000389 calcium phosphate Inorganic materials 0.000 description 4
- 235000011010 calcium phosphates Nutrition 0.000 description 4
- 231100000433 cytotoxic Toxicity 0.000 description 4
- 230000001472 cytotoxic effect Effects 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 210000003527 eukaryotic cell Anatomy 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 210000004907 gland Anatomy 0.000 description 4
- 210000002443 helper t lymphocyte Anatomy 0.000 description 4
- 229940088597 hormone Drugs 0.000 description 4
- 239000005556 hormone Substances 0.000 description 4
- 210000005260 human cell Anatomy 0.000 description 4
- 238000009396 hybridization Methods 0.000 description 4
- 230000004054 inflammatory process Effects 0.000 description 4
- 238000001990 intravenous administration Methods 0.000 description 4
- 210000003734 kidney Anatomy 0.000 description 4
- 238000001638 lipofection Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 210000002345 respiratory system Anatomy 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 210000004918 root sheath Anatomy 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 239000004055 small Interfering RNA Substances 0.000 description 4
- 210000000106 sweat gland Anatomy 0.000 description 4
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 4
- 125000002264 triphosphate group Chemical class [H]OP(=O)(O[H])OP(=O)(O[H])OP(=O)(O[H])O* 0.000 description 4
- 241001430294 unidentified retrovirus Species 0.000 description 4
- 239000013603 viral vector Substances 0.000 description 4
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 3
- 102100027211 Albumin Human genes 0.000 description 3
- 108010088751 Albumins Proteins 0.000 description 3
- 102100023702 C-C motif chemokine 13 Human genes 0.000 description 3
- 102100021943 C-C motif chemokine 2 Human genes 0.000 description 3
- 102100024263 CD160 antigen Human genes 0.000 description 3
- 102100025805 Cadherin-1 Human genes 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 101800003838 Epidermal growth factor Proteins 0.000 description 3
- 241000233866 Fungi Species 0.000 description 3
- 206010018338 Glioma Diseases 0.000 description 3
- 102000003886 Glycoproteins Human genes 0.000 description 3
- 108090000288 Glycoproteins Proteins 0.000 description 3
- 108060005986 Granzyme Proteins 0.000 description 3
- 102000001398 Granzyme Human genes 0.000 description 3
- 102100028543 Guanylate-binding protein 3 Human genes 0.000 description 3
- 102100034459 Hepatitis A virus cellular receptor 1 Human genes 0.000 description 3
- 101000761938 Homo sapiens CD160 antigen Proteins 0.000 description 3
- 101000994375 Homo sapiens Integrin alpha-4 Proteins 0.000 description 3
- 101001018097 Homo sapiens L-selectin Proteins 0.000 description 3
- 101000764535 Homo sapiens Lymphotoxin-alpha Proteins 0.000 description 3
- 101000932478 Homo sapiens Receptor-type tyrosine-protein kinase FLT3 Proteins 0.000 description 3
- 101000633784 Homo sapiens SLAM family member 7 Proteins 0.000 description 3
- 101000633780 Homo sapiens Signaling lymphocytic activation molecule Proteins 0.000 description 3
- 101000638161 Homo sapiens Tumor necrosis factor ligand superfamily member 6 Proteins 0.000 description 3
- 102000004877 Insulin Human genes 0.000 description 3
- 108090001061 Insulin Proteins 0.000 description 3
- 102100032816 Integrin alpha-6 Human genes 0.000 description 3
- 108010092694 L-Selectin Proteins 0.000 description 3
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 3
- 102000004083 Lymphotoxin-alpha Human genes 0.000 description 3
- 102100026238 Lymphotoxin-alpha Human genes 0.000 description 3
- 108090000542 Lymphotoxin-alpha Proteins 0.000 description 3
- 102100026894 Lymphotoxin-beta Human genes 0.000 description 3
- 102100028198 Macrophage colony-stimulating factor 1 receptor Human genes 0.000 description 3
- 108010061593 Member 14 Tumor Necrosis Factor Receptors Proteins 0.000 description 3
- 208000003445 Mouth Neoplasms Diseases 0.000 description 3
- 101100407308 Mus musculus Pdcd1lg2 gene Proteins 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 3
- 108090000630 Oncostatin M Proteins 0.000 description 3
- 102000004140 Oncostatin M Human genes 0.000 description 3
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 3
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 3
- 102100033237 Pro-epidermal growth factor Human genes 0.000 description 3
- 108700030875 Programmed Cell Death 1 Ligand 2 Proteins 0.000 description 3
- 102100024216 Programmed cell death 1 ligand 1 Human genes 0.000 description 3
- 102100024213 Programmed cell death 1 ligand 2 Human genes 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 102100020718 Receptor-type tyrosine-protein kinase FLT3 Human genes 0.000 description 3
- 102000003743 Relaxin Human genes 0.000 description 3
- 108090000103 Relaxin Proteins 0.000 description 3
- 102100029198 SLAM family member 7 Human genes 0.000 description 3
- 102100033447 T-lymphocyte surface antigen Ly-9 Human genes 0.000 description 3
- 102400001320 Transforming growth factor alpha Human genes 0.000 description 3
- 101800004564 Transforming growth factor alpha Proteins 0.000 description 3
- 108700019146 Transgenes Proteins 0.000 description 3
- 102000008579 Transposases Human genes 0.000 description 3
- 108010020764 Transposases Proteins 0.000 description 3
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 3
- 102100024598 Tumor necrosis factor ligand superfamily member 10 Human genes 0.000 description 3
- 101710181056 Tumor necrosis factor ligand superfamily member 13B Proteins 0.000 description 3
- 102100024586 Tumor necrosis factor ligand superfamily member 14 Human genes 0.000 description 3
- 102100032101 Tumor necrosis factor ligand superfamily member 9 Human genes 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 210000000270 basal cell Anatomy 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 230000021615 conjugation Effects 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 230000034994 death Effects 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 238000004520 electroporation Methods 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 102000027412 enzyme-linked receptors Human genes 0.000 description 3
- 108091008592 enzyme-linked receptors Proteins 0.000 description 3
- 210000003979 eosinophil Anatomy 0.000 description 3
- 229940116977 epidermal growth factor Drugs 0.000 description 3
- 210000003238 esophagus Anatomy 0.000 description 3
- 230000007717 exclusion Effects 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 229940126864 fibroblast growth factor Drugs 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 210000001035 gastrointestinal tract Anatomy 0.000 description 3
- 210000002175 goblet cell Anatomy 0.000 description 3
- 210000004919 hair shaft Anatomy 0.000 description 3
- 239000012642 immune effector Substances 0.000 description 3
- 229940121354 immunomodulator Drugs 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 229940125396 insulin Drugs 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 102000006495 integrins Human genes 0.000 description 3
- 108010044426 integrins Proteins 0.000 description 3
- 229940047124 interferons Drugs 0.000 description 3
- 229940047122 interleukins Drugs 0.000 description 3
- 238000007912 intraperitoneal administration Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 230000002147 killing effect Effects 0.000 description 3
- 208000012987 lip and oral cavity carcinoma Diseases 0.000 description 3
- 210000004185 liver Anatomy 0.000 description 3
- 210000004962 mammalian cell Anatomy 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 210000003593 megakaryocyte Anatomy 0.000 description 3
- 238000000520 microinjection Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 210000003205 muscle Anatomy 0.000 description 3
- 201000005962 mycosis fungoides Diseases 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 210000002394 ovarian follicle Anatomy 0.000 description 3
- 230000001817 pituitary effect Effects 0.000 description 3
- 210000002381 plasma Anatomy 0.000 description 3
- 210000001778 pluripotent stem cell Anatomy 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 208000029340 primitive neuroectodermal tumor Diseases 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 210000001236 prokaryotic cell Anatomy 0.000 description 3
- 210000002307 prostate Anatomy 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 108020004418 ribosomal RNA Proteins 0.000 description 3
- 210000003079 salivary gland Anatomy 0.000 description 3
- 210000000582 semen Anatomy 0.000 description 3
- 210000000952 spleen Anatomy 0.000 description 3
- 210000002784 stomach Anatomy 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000008685 targeting Effects 0.000 description 3
- 229940124597 therapeutic agent Drugs 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 210000002105 tongue Anatomy 0.000 description 3
- 230000002485 urinary effect Effects 0.000 description 3
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 3
- CITHEXJVPOWHKC-UUWRZZSWSA-N 1,2-di-O-myristoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCC CITHEXJVPOWHKC-UUWRZZSWSA-N 0.000 description 2
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 description 2
- NRJAVPSFFCBXDT-HUESYALOSA-N 1,2-distearoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCCCC NRJAVPSFFCBXDT-HUESYALOSA-N 0.000 description 2
- 108010082808 4-1BB Ligand Proteins 0.000 description 2
- 239000013607 AAV vector Substances 0.000 description 2
- ZKHQWZAMYRWXGA-KQYNXXCUSA-J ATP(4-) Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-J 0.000 description 2
- 102100034135 Activin receptor type-1C Human genes 0.000 description 2
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 2
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 2
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 2
- 201000003076 Angiosarcoma Diseases 0.000 description 2
- 102100025511 Anti-Muellerian hormone type-2 receptor Human genes 0.000 description 2
- 206010003571 Astrocytoma Diseases 0.000 description 2
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 2
- 108010074708 B7-H1 Antigen Proteins 0.000 description 2
- 101800001382 Betacellulin Proteins 0.000 description 2
- 102100025423 Bone morphogenetic protein receptor type-1A Human genes 0.000 description 2
- 102100027052 Bone morphogenetic protein receptor type-1B Human genes 0.000 description 2
- 208000018084 Bone neoplasm Diseases 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 241000195940 Bryophyta Species 0.000 description 2
- 108050005711 C Chemokine Proteins 0.000 description 2
- 102000017483 C chemokine Human genes 0.000 description 2
- 102100023705 C-C motif chemokine 14 Human genes 0.000 description 2
- 102100023703 C-C motif chemokine 15 Human genes 0.000 description 2
- 102100023700 C-C motif chemokine 16 Human genes 0.000 description 2
- 102100023701 C-C motif chemokine 18 Human genes 0.000 description 2
- 102100036842 C-C motif chemokine 19 Human genes 0.000 description 2
- 102100036848 C-C motif chemokine 20 Human genes 0.000 description 2
- 102100036846 C-C motif chemokine 21 Human genes 0.000 description 2
- 102100036850 C-C motif chemokine 23 Human genes 0.000 description 2
- 102100036849 C-C motif chemokine 24 Human genes 0.000 description 2
- 102100021933 C-C motif chemokine 25 Human genes 0.000 description 2
- 102100021935 C-C motif chemokine 26 Human genes 0.000 description 2
- 102100021936 C-C motif chemokine 27 Human genes 0.000 description 2
- 102100021942 C-C motif chemokine 28 Human genes 0.000 description 2
- 102100021984 C-C motif chemokine 4-like Human genes 0.000 description 2
- 102100032367 C-C motif chemokine 5 Human genes 0.000 description 2
- 102100032366 C-C motif chemokine 7 Human genes 0.000 description 2
- 102100034871 C-C motif chemokine 8 Human genes 0.000 description 2
- 102100025248 C-X-C motif chemokine 10 Human genes 0.000 description 2
- 102100025279 C-X-C motif chemokine 11 Human genes 0.000 description 2
- 102100025277 C-X-C motif chemokine 13 Human genes 0.000 description 2
- 102100025250 C-X-C motif chemokine 14 Human genes 0.000 description 2
- 102100039396 C-X-C motif chemokine 16 Human genes 0.000 description 2
- 102100039435 C-X-C motif chemokine 17 Human genes 0.000 description 2
- 102100039398 C-X-C motif chemokine 2 Human genes 0.000 description 2
- 102100036189 C-X-C motif chemokine 3 Human genes 0.000 description 2
- 102100036150 C-X-C motif chemokine 5 Human genes 0.000 description 2
- 102100036153 C-X-C motif chemokine 6 Human genes 0.000 description 2
- 102100036170 C-X-C motif chemokine 9 Human genes 0.000 description 2
- 102100040840 C-type lectin domain family 7 member A Human genes 0.000 description 2
- 108010040471 CC Chemokines Proteins 0.000 description 2
- 102000001902 CC Chemokines Human genes 0.000 description 2
- 101150049756 CCL6 gene Proteins 0.000 description 2
- 101150011672 CCL9 gene Proteins 0.000 description 2
- 108010046080 CD27 Ligand Proteins 0.000 description 2
- 108010029697 CD40 Ligand Proteins 0.000 description 2
- 102100036008 CD48 antigen Human genes 0.000 description 2
- 102100027217 CD82 antigen Human genes 0.000 description 2
- 108050006947 CXC Chemokine Proteins 0.000 description 2
- 102000019388 CXC chemokine Human genes 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- 101150075117 Ccl12 gene Proteins 0.000 description 2
- 206010009944 Colon cancer Diseases 0.000 description 2
- 102000007644 Colony-Stimulating Factors Human genes 0.000 description 2
- 108010071942 Colony-Stimulating Factors Proteins 0.000 description 2
- 241000218631 Coniferophyta Species 0.000 description 2
- 102100035298 Cytokine SCM-1 beta Human genes 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 102100025012 Dipeptidyl peptidase 4 Human genes 0.000 description 2
- 108010043648 Discoidin Domain Receptors Proteins 0.000 description 2
- 102000002706 Discoidin Domain Receptors Human genes 0.000 description 2
- 102100033267 Early placenta insulin-like peptide Human genes 0.000 description 2
- 101710205542 Early placenta insulin-like peptide Proteins 0.000 description 2
- 102100023688 Eotaxin Human genes 0.000 description 2
- 102100030779 Ephrin type-B receptor 1 Human genes 0.000 description 2
- 102100031984 Ephrin type-B receptor 6 Human genes 0.000 description 2
- 102400001329 Epiregulin Human genes 0.000 description 2
- 101800000155 Epiregulin Proteins 0.000 description 2
- 102000003951 Erythropoietin Human genes 0.000 description 2
- 108090000394 Erythropoietin Proteins 0.000 description 2
- 108700024394 Exon Proteins 0.000 description 2
- 102100023600 Fibroblast growth factor receptor 2 Human genes 0.000 description 2
- 101710182389 Fibroblast growth factor receptor 2 Proteins 0.000 description 2
- 102000012673 Follicle Stimulating Hormone Human genes 0.000 description 2
- 108010079345 Follicle Stimulating Hormone Proteins 0.000 description 2
- 102100020997 Fractalkine Human genes 0.000 description 2
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 2
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 2
- 208000022072 Gallbladder Neoplasms Diseases 0.000 description 2
- 206010051066 Gastrointestinal stromal tumour Diseases 0.000 description 2
- 208000021309 Germ cell tumor Diseases 0.000 description 2
- 241000713813 Gibbon ape leukemia virus Species 0.000 description 2
- 208000032612 Glial tumor Diseases 0.000 description 2
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 102100034221 Growth-regulated alpha protein Human genes 0.000 description 2
- XKMLYUALXHKNFT-UUOKFMHZSA-N Guanosine-5'-triphosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O XKMLYUALXHKNFT-UUOKFMHZSA-N 0.000 description 2
- 102000006354 HLA-DR Antigens Human genes 0.000 description 2
- 108010058597 HLA-DR Antigens Proteins 0.000 description 2
- 208000001258 Hemangiosarcoma Diseases 0.000 description 2
- 102400001369 Heparin-binding EGF-like growth factor Human genes 0.000 description 2
- 101800001649 Heparin-binding EGF-like growth factor Proteins 0.000 description 2
- 108090000100 Hepatocyte Growth Factor Proteins 0.000 description 2
- 102100021866 Hepatocyte growth factor Human genes 0.000 description 2
- 102100022623 Hepatocyte growth factor receptor Human genes 0.000 description 2
- 208000017604 Hodgkin disease Diseases 0.000 description 2
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 2
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000799193 Homo sapiens Activin receptor type-1C Proteins 0.000 description 2
- 101000693801 Homo sapiens Anti-Muellerian hormone type-2 receptor Proteins 0.000 description 2
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 2
- 101000934638 Homo sapiens Bone morphogenetic protein receptor type-1A Proteins 0.000 description 2
- 101000984546 Homo sapiens Bone morphogenetic protein receptor type-1B Proteins 0.000 description 2
- 101000978379 Homo sapiens C-C motif chemokine 13 Proteins 0.000 description 2
- 101000978381 Homo sapiens C-C motif chemokine 14 Proteins 0.000 description 2
- 101000978376 Homo sapiens C-C motif chemokine 15 Proteins 0.000 description 2
- 101000978375 Homo sapiens C-C motif chemokine 16 Proteins 0.000 description 2
- 101000978371 Homo sapiens C-C motif chemokine 18 Proteins 0.000 description 2
- 101000713106 Homo sapiens C-C motif chemokine 19 Proteins 0.000 description 2
- 101000713099 Homo sapiens C-C motif chemokine 20 Proteins 0.000 description 2
- 101000713085 Homo sapiens C-C motif chemokine 21 Proteins 0.000 description 2
- 101000713081 Homo sapiens C-C motif chemokine 23 Proteins 0.000 description 2
- 101000713078 Homo sapiens C-C motif chemokine 24 Proteins 0.000 description 2
- 101000897486 Homo sapiens C-C motif chemokine 25 Proteins 0.000 description 2
- 101000897493 Homo sapiens C-C motif chemokine 26 Proteins 0.000 description 2
- 101000897494 Homo sapiens C-C motif chemokine 27 Proteins 0.000 description 2
- 101000897477 Homo sapiens C-C motif chemokine 28 Proteins 0.000 description 2
- 101000896959 Homo sapiens C-C motif chemokine 4-like Proteins 0.000 description 2
- 101000797762 Homo sapiens C-C motif chemokine 5 Proteins 0.000 description 2
- 101000797758 Homo sapiens C-C motif chemokine 7 Proteins 0.000 description 2
- 101000946794 Homo sapiens C-C motif chemokine 8 Proteins 0.000 description 2
- 101000858088 Homo sapiens C-X-C motif chemokine 10 Proteins 0.000 description 2
- 101000858060 Homo sapiens C-X-C motif chemokine 11 Proteins 0.000 description 2
- 101000858064 Homo sapiens C-X-C motif chemokine 13 Proteins 0.000 description 2
- 101000858068 Homo sapiens C-X-C motif chemokine 14 Proteins 0.000 description 2
- 101000889133 Homo sapiens C-X-C motif chemokine 16 Proteins 0.000 description 2
- 101000889048 Homo sapiens C-X-C motif chemokine 17 Proteins 0.000 description 2
- 101000889128 Homo sapiens C-X-C motif chemokine 2 Proteins 0.000 description 2
- 101000947193 Homo sapiens C-X-C motif chemokine 3 Proteins 0.000 description 2
- 101000947186 Homo sapiens C-X-C motif chemokine 5 Proteins 0.000 description 2
- 101000947177 Homo sapiens C-X-C motif chemokine 6 Proteins 0.000 description 2
- 101000947172 Homo sapiens C-X-C motif chemokine 9 Proteins 0.000 description 2
- 101000804771 Homo sapiens Cytokine SCM-1 beta Proteins 0.000 description 2
- 101000978392 Homo sapiens Eotaxin Proteins 0.000 description 2
- 101001064150 Homo sapiens Ephrin type-B receptor 1 Proteins 0.000 description 2
- 101001064451 Homo sapiens Ephrin type-B receptor 6 Proteins 0.000 description 2
- 101000854520 Homo sapiens Fractalkine Proteins 0.000 description 2
- 101001069921 Homo sapiens Growth-regulated alpha protein Proteins 0.000 description 2
- 101001021491 Homo sapiens HERV-H LTR-associating protein 2 Proteins 0.000 description 2
- 101000852815 Homo sapiens Insulin receptor Proteins 0.000 description 2
- 101001078158 Homo sapiens Integrin alpha-1 Proteins 0.000 description 2
- 101000994365 Homo sapiens Integrin alpha-6 Proteins 0.000 description 2
- 101001035237 Homo sapiens Integrin alpha-D Proteins 0.000 description 2
- 101001046687 Homo sapiens Integrin alpha-E Proteins 0.000 description 2
- 101000935043 Homo sapiens Integrin beta-1 Proteins 0.000 description 2
- 101000935040 Homo sapiens Integrin beta-2 Proteins 0.000 description 2
- 101001076407 Homo sapiens Interleukin-1 receptor antagonist protein Proteins 0.000 description 2
- 101001055144 Homo sapiens Interleukin-2 receptor subunit alpha Proteins 0.000 description 2
- 101001043809 Homo sapiens Interleukin-7 receptor subunit alpha Proteins 0.000 description 2
- 101001055222 Homo sapiens Interleukin-8 Proteins 0.000 description 2
- 101000971538 Homo sapiens Killer cell lectin-like receptor subfamily F member 1 Proteins 0.000 description 2
- 101000804764 Homo sapiens Lymphotactin Proteins 0.000 description 2
- 101000764294 Homo sapiens Lymphotoxin-beta Proteins 0.000 description 2
- 101001103036 Homo sapiens Nuclear receptor ROR-alpha Proteins 0.000 description 2
- 101000947178 Homo sapiens Platelet basic protein Proteins 0.000 description 2
- 101000582950 Homo sapiens Platelet factor 4 Proteins 0.000 description 2
- 101000579425 Homo sapiens Proto-oncogene tyrosine-protein kinase receptor Ret Proteins 0.000 description 2
- 101000633778 Homo sapiens SLAM family member 5 Proteins 0.000 description 2
- 101000633782 Homo sapiens SLAM family member 8 Proteins 0.000 description 2
- 101000633792 Homo sapiens SLAM family member 9 Proteins 0.000 description 2
- 101000617130 Homo sapiens Stromal cell-derived factor 1 Proteins 0.000 description 2
- 101000946843 Homo sapiens T-cell surface glycoprotein CD8 alpha chain Proteins 0.000 description 2
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 2
- 101001018021 Homo sapiens T-lymphocyte surface antigen Ly-9 Proteins 0.000 description 2
- 101000845170 Homo sapiens Thymic stromal lymphopoietin Proteins 0.000 description 2
- 101000830596 Homo sapiens Tumor necrosis factor ligand superfamily member 15 Proteins 0.000 description 2
- 101000795167 Homo sapiens Tumor necrosis factor receptor superfamily member 13B Proteins 0.000 description 2
- 101000801234 Homo sapiens Tumor necrosis factor receptor superfamily member 18 Proteins 0.000 description 2
- 101000679903 Homo sapiens Tumor necrosis factor receptor superfamily member 25 Proteins 0.000 description 2
- 101000666896 Homo sapiens V-type immunoglobulin domain-containing suppressor of T-cell activation Proteins 0.000 description 2
- 108010000521 Human Growth Hormone Proteins 0.000 description 2
- 102000002265 Human Growth Hormone Human genes 0.000 description 2
- 239000000854 Human Growth Hormone Substances 0.000 description 2
- 241000725303 Human immunodeficiency virus Species 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- 102100036721 Insulin receptor Human genes 0.000 description 2
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 2
- 102100037852 Insulin-like growth factor I Human genes 0.000 description 2
- 102100021244 Integral membrane protein GPR180 Human genes 0.000 description 2
- 102100025323 Integrin alpha-1 Human genes 0.000 description 2
- 102100039904 Integrin alpha-D Human genes 0.000 description 2
- 102100022341 Integrin alpha-E Human genes 0.000 description 2
- 102100022338 Integrin alpha-M Human genes 0.000 description 2
- 102100022297 Integrin alpha-X Human genes 0.000 description 2
- 102100025304 Integrin beta-1 Human genes 0.000 description 2
- 102100025390 Integrin beta-2 Human genes 0.000 description 2
- 102100040019 Interferon alpha-1/13 Human genes 0.000 description 2
- 102100026720 Interferon beta Human genes 0.000 description 2
- 108090000177 Interleukin-11 Proteins 0.000 description 2
- 102000003815 Interleukin-11 Human genes 0.000 description 2
- 108090000176 Interleukin-13 Proteins 0.000 description 2
- 102000003816 Interleukin-13 Human genes 0.000 description 2
- 102000003810 Interleukin-18 Human genes 0.000 description 2
- 108090000171 Interleukin-18 Proteins 0.000 description 2
- 102100026878 Interleukin-2 receptor subunit alpha Human genes 0.000 description 2
- 108010002616 Interleukin-5 Proteins 0.000 description 2
- 102000000743 Interleukin-5 Human genes 0.000 description 2
- 102100021593 Interleukin-7 receptor subunit alpha Human genes 0.000 description 2
- 102100026236 Interleukin-8 Human genes 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- 208000007766 Kaposi sarcoma Diseases 0.000 description 2
- 102100021458 Killer cell lectin-like receptor subfamily F member 1 Human genes 0.000 description 2
- 102100020880 Kit ligand Human genes 0.000 description 2
- 208000006404 Large Granular Lymphocytic Leukemia Diseases 0.000 description 2
- 206010023825 Laryngeal cancer Diseases 0.000 description 2
- 102000009151 Luteinizing Hormone Human genes 0.000 description 2
- 108010073521 Luteinizing Hormone Proteins 0.000 description 2
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 2
- 102000008072 Lymphokines Human genes 0.000 description 2
- 108010074338 Lymphokines Proteins 0.000 description 2
- 102100035304 Lymphotactin Human genes 0.000 description 2
- 101710150918 Macrophage colony-stimulating factor 1 receptor Proteins 0.000 description 2
- 208000006644 Malignant Fibrous Histiocytoma Diseases 0.000 description 2
- 208000000172 Medulloblastoma Diseases 0.000 description 2
- 206010027406 Mesothelioma Diseases 0.000 description 2
- 208000034578 Multiple myelomas Diseases 0.000 description 2
- 241000714177 Murine leukemia virus Species 0.000 description 2
- 101100222387 Mus musculus Cxcl15 gene Proteins 0.000 description 2
- 101000597780 Mus musculus Tumor necrosis factor ligand superfamily member 18 Proteins 0.000 description 2
- 102100029166 NT-3 growth factor receptor Human genes 0.000 description 2
- 206010061306 Nasopharyngeal cancer Diseases 0.000 description 2
- 102100038082 Natural killer cell receptor 2B4 Human genes 0.000 description 2
- 101710141230 Natural killer cell receptor 2B4 Proteins 0.000 description 2
- 206010028851 Necrosis Diseases 0.000 description 2
- 208000034176 Neoplasms, Germ Cell and Embryonal Diseases 0.000 description 2
- 108090000556 Neuregulin-1 Proteins 0.000 description 2
- 206010029260 Neuroblastoma Diseases 0.000 description 2
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 2
- 108010077850 Nuclear Localization Signals Proteins 0.000 description 2
- 102100039614 Nuclear receptor ROR-alpha Human genes 0.000 description 2
- 108010042215 OX40 Ligand Proteins 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 206010033128 Ovarian cancer Diseases 0.000 description 2
- 206010061535 Ovarian neoplasm Diseases 0.000 description 2
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- 208000007913 Pituitary Neoplasms Diseases 0.000 description 2
- 206010035226 Plasma cell myeloma Diseases 0.000 description 2
- 102100036154 Platelet basic protein Human genes 0.000 description 2
- 102100030304 Platelet factor 4 Human genes 0.000 description 2
- 108010051742 Platelet-Derived Growth Factor beta Receptor Proteins 0.000 description 2
- 102100030485 Platelet-derived growth factor receptor alpha Human genes 0.000 description 2
- 102100026547 Platelet-derived growth factor receptor beta Human genes 0.000 description 2
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 2
- 102100022668 Pro-neuregulin-2, membrane-bound isoform Human genes 0.000 description 2
- 102100022659 Pro-neuregulin-3, membrane-bound isoform Human genes 0.000 description 2
- 102100022658 Pro-neuregulin-4, membrane-bound isoform Human genes 0.000 description 2
- 102100029837 Probetacellulin Human genes 0.000 description 2
- 102000009516 Protein Serine-Threonine Kinases Human genes 0.000 description 2
- 108010009341 Protein Serine-Threonine Kinases Proteins 0.000 description 2
- 102100028286 Proto-oncogene tyrosine-protein kinase receptor Ret Human genes 0.000 description 2
- 201000000582 Retinoblastoma Diseases 0.000 description 2
- 102100029216 SLAM family member 5 Human genes 0.000 description 2
- 102100029214 SLAM family member 8 Human genes 0.000 description 2
- 102100029196 SLAM family member 9 Human genes 0.000 description 2
- 102100027744 Semaphorin-4D Human genes 0.000 description 2
- 241000713311 Simian immunodeficiency virus Species 0.000 description 2
- 241000700584 Simplexvirus Species 0.000 description 2
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 2
- 108091027967 Small hairpin RNA Proteins 0.000 description 2
- 108020004459 Small interfering RNA Proteins 0.000 description 2
- 108010039445 Stem Cell Factor Proteins 0.000 description 2
- 208000005718 Stomach Neoplasms Diseases 0.000 description 2
- 102100021669 Stromal cell-derived factor 1 Human genes 0.000 description 2
- 230000005867 T cell response Effects 0.000 description 2
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 2
- 108700012411 TNFSF10 Proteins 0.000 description 2
- 210000000068 Th17 cell Anatomy 0.000 description 2
- 108010000499 Thromboplastin Proteins 0.000 description 2
- 102000036693 Thrombopoietin Human genes 0.000 description 2
- 108010041111 Thrombopoietin Proteins 0.000 description 2
- 102100031294 Thymic stromal lymphopoietin Human genes 0.000 description 2
- 102000011923 Thyrotropin Human genes 0.000 description 2
- 108010061174 Thyrotropin Proteins 0.000 description 2
- 102100030859 Tissue factor Human genes 0.000 description 2
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 2
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 2
- 108010065158 Tumor Necrosis Factor Ligand Superfamily Member 14 Proteins 0.000 description 2
- 102100040247 Tumor necrosis factor Human genes 0.000 description 2
- 102100024584 Tumor necrosis factor ligand superfamily member 12 Human genes 0.000 description 2
- 108090000138 Tumor necrosis factor ligand superfamily member 15 Proteins 0.000 description 2
- 102100035283 Tumor necrosis factor ligand superfamily member 18 Human genes 0.000 description 2
- 102100029675 Tumor necrosis factor receptor superfamily member 13B Human genes 0.000 description 2
- 102100033728 Tumor necrosis factor receptor superfamily member 18 Human genes 0.000 description 2
- 102100033733 Tumor necrosis factor receptor superfamily member 1B Human genes 0.000 description 2
- 102100022203 Tumor necrosis factor receptor superfamily member 25 Human genes 0.000 description 2
- 102100037236 Tyrosine-protein kinase receptor UFO Human genes 0.000 description 2
- 102100033019 Tyrosine-protein phosphatase non-receptor type 11 Human genes 0.000 description 2
- 208000015778 Undifferentiated pleomorphic sarcoma Diseases 0.000 description 2
- 201000005969 Uveal melanoma Diseases 0.000 description 2
- 102100038929 V-set domain-containing T-cell activation inhibitor 1 Human genes 0.000 description 2
- 102100038282 V-type immunoglobulin domain-containing suppressor of T-cell activation Human genes 0.000 description 2
- 102100033179 Vascular endothelial growth factor receptor 3 Human genes 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 208000009956 adenocarcinoma Diseases 0.000 description 2
- 210000004504 adult stem cell Anatomy 0.000 description 2
- 210000002383 alveolar type I cell Anatomy 0.000 description 2
- 210000002588 alveolar type II cell Anatomy 0.000 description 2
- 210000002255 anal canal Anatomy 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 210000003651 basophil Anatomy 0.000 description 2
- 210000002228 beta-basophil Anatomy 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 210000000233 bronchiolar non-ciliated Anatomy 0.000 description 2
- 239000006143 cell culture medium Substances 0.000 description 2
- 238000010822 cell death assay Methods 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 230000003833 cell viability Effects 0.000 description 2
- 108091092259 cell-free RNA Proteins 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000003399 chemotactic effect Effects 0.000 description 2
- 230000035605 chemotaxis Effects 0.000 description 2
- 210000001612 chondrocyte Anatomy 0.000 description 2
- 210000003737 chromaffin cell Anatomy 0.000 description 2
- 229940047120 colony stimulating factors Drugs 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 210000004087 cornea Anatomy 0.000 description 2
- 210000004405 cytokine-induced killer cell Anatomy 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 231100000599 cytotoxic agent Toxicity 0.000 description 2
- 238000002784 cytotoxicity assay Methods 0.000 description 2
- 231100000263 cytotoxicity test Toxicity 0.000 description 2
- 239000002619 cytotoxin Substances 0.000 description 2
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 2
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000002716 delivery method Methods 0.000 description 2
- 229960003724 dimyristoylphosphatidylcholine Drugs 0.000 description 2
- 210000003162 effector t lymphocyte Anatomy 0.000 description 2
- 210000001671 embryonic stem cell Anatomy 0.000 description 2
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 210000000981 epithelium Anatomy 0.000 description 2
- 229940105423 erythropoietin Drugs 0.000 description 2
- 210000004700 fetal blood Anatomy 0.000 description 2
- 239000012894 fetal calf serum Substances 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- 206010016629 fibroma Diseases 0.000 description 2
- 210000004905 finger nail Anatomy 0.000 description 2
- 229940028334 follicle stimulating hormone Drugs 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 201000010175 gallbladder cancer Diseases 0.000 description 2
- 206010017758 gastric cancer Diseases 0.000 description 2
- 210000001156 gastric mucosa Anatomy 0.000 description 2
- 201000011243 gastrointestinal stromal tumor Diseases 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 201000009277 hairy cell leukemia Diseases 0.000 description 2
- 201000010536 head and neck cancer Diseases 0.000 description 2
- 208000014829 head and neck neoplasm Diseases 0.000 description 2
- 244000000013 helminth Species 0.000 description 2
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 2
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000002519 immonomodulatory effect Effects 0.000 description 2
- 230000006028 immune-suppresssive effect Effects 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 210000004263 induced pluripotent stem cell Anatomy 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 102000002467 interleukin receptors Human genes 0.000 description 2
- 108010093036 interleukin receptors Proteins 0.000 description 2
- 210000000936 intestine Anatomy 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 210000002510 keratinocyte Anatomy 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 210000001756 lactotroph Anatomy 0.000 description 2
- 206010023841 laryngeal neoplasm Diseases 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 210000002332 leydig cell Anatomy 0.000 description 2
- 108020001756 ligand binding domains Proteins 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 229940040129 luteinizing hormone Drugs 0.000 description 2
- 210000001165 lymph node Anatomy 0.000 description 2
- 210000001730 macula densa epithelial cell Anatomy 0.000 description 2
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 2
- 210000005075 mammary gland Anatomy 0.000 description 2
- 230000035800 maturation Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 210000002752 melanocyte Anatomy 0.000 description 2
- 201000001441 melanoma Diseases 0.000 description 2
- 210000003584 mesangial cell Anatomy 0.000 description 2
- 108091070501 miRNA Proteins 0.000 description 2
- 239000002679 microRNA Substances 0.000 description 2
- 238000010232 migration assay Methods 0.000 description 2
- 210000000214 mouth Anatomy 0.000 description 2
- 210000003550 mucous cell Anatomy 0.000 description 2
- 208000025113 myeloid leukemia Diseases 0.000 description 2
- 230000017074 necrotic cell death Effects 0.000 description 2
- 210000004498 neuroglial cell Anatomy 0.000 description 2
- 210000001719 neurosecretory cell Anatomy 0.000 description 2
- 210000004940 nucleus Anatomy 0.000 description 2
- 210000002997 osteoclast Anatomy 0.000 description 2
- 201000008968 osteosarcoma Diseases 0.000 description 2
- 210000001711 oxyntic cell Anatomy 0.000 description 2
- 210000003889 oxyphil cell of parathyroid gland Anatomy 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 201000002528 pancreatic cancer Diseases 0.000 description 2
- 208000008443 pancreatic carcinoma Diseases 0.000 description 2
- 210000003134 paneth cell Anatomy 0.000 description 2
- 210000002655 parathyroid chief cell Anatomy 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 210000005105 peripheral blood lymphocyte Anatomy 0.000 description 2
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 2
- 230000036470 plasma concentration Effects 0.000 description 2
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- 210000001938 protoplast Anatomy 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 210000001995 reticulocyte Anatomy 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 210000001625 seminal vesicle Anatomy 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 210000000717 sertoli cell Anatomy 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 210000001764 somatotrope Anatomy 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 201000011549 stomach cancer Diseases 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 210000001550 testis Anatomy 0.000 description 2
- 150000003573 thiols Chemical class 0.000 description 2
- 208000008732 thymoma Diseases 0.000 description 2
- 210000001541 thymus gland Anatomy 0.000 description 2
- 238000010361 transduction Methods 0.000 description 2
- 230000026683 transduction Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 206010044412 transitional cell carcinoma Diseases 0.000 description 2
- 102000042287 type II cytokine receptor family Human genes 0.000 description 2
- 108091052254 type II cytokine receptor family Proteins 0.000 description 2
- 241001515965 unidentified phage Species 0.000 description 2
- 210000003708 urethra Anatomy 0.000 description 2
- 210000003932 urinary bladder Anatomy 0.000 description 2
- 210000001215 vagina Anatomy 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 201000010653 vesiculitis Diseases 0.000 description 2
- 210000002845 virion Anatomy 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- JARGNLJYKBUKSJ-KGZKBUQUSA-N (2r)-2-amino-5-[[(2r)-1-(carboxymethylamino)-3-hydroxy-1-oxopropan-2-yl]amino]-5-oxopentanoic acid;hydrobromide Chemical compound Br.OC(=O)[C@H](N)CCC(=O)N[C@H](CO)C(=O)NCC(O)=O JARGNLJYKBUKSJ-KGZKBUQUSA-N 0.000 description 1
- JPSHPWJJSVEEAX-OWPBQMJCSA-N (2s)-2-amino-4-fluoranylpentanedioic acid Chemical compound OC(=O)[C@@H](N)CC([18F])C(O)=O JPSHPWJJSVEEAX-OWPBQMJCSA-N 0.000 description 1
- NMWKYTGJWUAZPZ-WWHBDHEGSA-N (4S)-4-[[(4R,7S,10S,16S,19S,25S,28S,31R)-31-[[(2S)-2-[[(1R,6R,9S,12S,18S,21S,24S,27S,30S,33S,36S,39S,42R,47R,53S,56S,59S,62S,65S,68S,71S,76S,79S,85S)-47-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-3-methylbutanoyl]amino]-3-methylbutanoyl]amino]-3-hydroxypropanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-3-phenylpropanoyl]amino]-4-oxobutanoyl]amino]-3-carboxypropanoyl]amino]-18-(4-aminobutyl)-27,68-bis(3-amino-3-oxopropyl)-36,71,76-tribenzyl-39-(3-carbamimidamidopropyl)-24-(2-carboxyethyl)-21,56-bis(carboxymethyl)-65,85-bis[(1R)-1-hydroxyethyl]-59-(hydroxymethyl)-62,79-bis(1H-imidazol-4-ylmethyl)-9-methyl-33-(2-methylpropyl)-8,11,17,20,23,26,29,32,35,38,41,48,54,57,60,63,66,69,72,74,77,80,83,86-tetracosaoxo-30-propan-2-yl-3,4,44,45-tetrathia-7,10,16,19,22,25,28,31,34,37,40,49,55,58,61,64,67,70,73,75,78,81,84,87-tetracosazatetracyclo[40.31.14.012,16.049,53]heptaoctacontane-6-carbonyl]amino]-3-methylbutanoyl]amino]-7-(3-carbamimidamidopropyl)-25-(hydroxymethyl)-19-[(4-hydroxyphenyl)methyl]-28-(1H-imidazol-4-ylmethyl)-10-methyl-6,9,12,15,18,21,24,27,30-nonaoxo-16-propan-2-yl-1,2-dithia-5,8,11,14,17,20,23,26,29-nonazacyclodotriacontane-4-carbonyl]amino]-5-[[(2S)-1-[[(2S)-1-[[(2S)-3-carboxy-1-[[(2S)-1-[[(2S)-1-[[(1S)-1-carboxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-(1H-imidazol-4-yl)-1-oxopropan-2-yl]amino]-5-oxopentanoic acid Chemical compound CC(C)C[C@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](Cc1c[nH]cn1)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H]1CSSC[C@H](NC(=O)[C@@H](NC(=O)[C@@H]2CSSC[C@@H]3NC(=O)[C@H](Cc4ccccc4)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](Cc4c[nH]cn4)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H]4CCCN4C(=O)[C@H](CSSC[C@H](NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](Cc4c[nH]cn4)NC(=O)[C@H](Cc4ccccc4)NC3=O)[C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](Cc3ccccc3)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N3CCC[C@H]3C(=O)N[C@@H](C)C(=O)N2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](Cc2ccccc2)NC(=O)[C@H](Cc2c[nH]cn2)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)[C@@H](C)O)C(C)C)C(=O)N[C@@H](Cc2c[nH]cn2)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](Cc2ccc(O)cc2)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1)C(=O)N[C@@H](C)C(O)=O NMWKYTGJWUAZPZ-WWHBDHEGSA-N 0.000 description 1
- FVXDQWZBHIXIEJ-LNDKUQBDSA-N 1,2-di-[(9Z,12Z)-octadecadienoyl]-sn-glycero-3-phosphocholine Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/C\C=C/CCCCC FVXDQWZBHIXIEJ-LNDKUQBDSA-N 0.000 description 1
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 description 1
- SNKAWJBJQDLSFF-NVKMUCNASA-N 1,2-dioleoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC SNKAWJBJQDLSFF-NVKMUCNASA-N 0.000 description 1
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 1
- RYCNUMLMNKHWPZ-SNVBAGLBSA-N 1-acetyl-sn-glycero-3-phosphocholine Chemical compound CC(=O)OC[C@@H](O)COP([O-])(=O)OCC[N+](C)(C)C RYCNUMLMNKHWPZ-SNVBAGLBSA-N 0.000 description 1
- 102100026205 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1 Human genes 0.000 description 1
- OAKPWEUQDVLTCN-NKWVEPMBSA-N 2',3'-Dideoxyadenosine-5-triphosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1CC[C@@H](CO[P@@](O)(=O)O[P@](O)(=O)OP(O)(O)=O)O1 OAKPWEUQDVLTCN-NKWVEPMBSA-N 0.000 description 1
- ZEXHXVOGJFGTRX-UHFFFAOYSA-N 2-(2-methyl-5-nitroimidazol-1-yl)ethyl n-[2,2,2-trichloro-1-(pyrimidin-2-ylamino)ethyl]carbamate Chemical class CC1=NC=C([N+]([O-])=O)N1CCOC(=O)NC(C(Cl)(Cl)Cl)NC1=NC=CC=N1 ZEXHXVOGJFGTRX-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- 102100040962 26S proteasome non-ATPase regulatory subunit 13 Human genes 0.000 description 1
- 108020005345 3' Untranslated Regions Proteins 0.000 description 1
- ZLOIGESWDJYCTF-XVFCMESISA-N 4-thiouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=S)C=C1 ZLOIGESWDJYCTF-XVFCMESISA-N 0.000 description 1
- 108020003589 5' Untranslated Regions Proteins 0.000 description 1
- LQLQRFGHAALLLE-UHFFFAOYSA-N 5-bromouracil Chemical compound BrC1=CNC(=O)NC1=O LQLQRFGHAALLLE-UHFFFAOYSA-N 0.000 description 1
- 102100029377 ADAMTS-like protein 3 Human genes 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 208000002008 AIDS-Related Lymphoma Diseases 0.000 description 1
- 102100031315 AP-2 complex subunit mu Human genes 0.000 description 1
- 102100025684 APC membrane recruitment protein 1 Human genes 0.000 description 1
- 101710146195 APC membrane recruitment protein 1 Proteins 0.000 description 1
- 102000000872 ATM Human genes 0.000 description 1
- 102100028161 ATP-binding cassette sub-family C member 2 Human genes 0.000 description 1
- 102100028163 ATP-binding cassette sub-family C member 4 Human genes 0.000 description 1
- 102100027452 ATP-dependent DNA helicase Q4 Human genes 0.000 description 1
- 208000007876 Acrospiroma Diseases 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 102100034111 Activin receptor type-1 Human genes 0.000 description 1
- 102100034134 Activin receptor type-1B Human genes 0.000 description 1
- 102100027647 Activin receptor type-2B Human genes 0.000 description 1
- 108010059616 Activins Proteins 0.000 description 1
- 206010000871 Acute monocytic leukaemia Diseases 0.000 description 1
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 1
- 208000036762 Acute promyelocytic leukaemia Diseases 0.000 description 1
- 208000001783 Adamantinoma Diseases 0.000 description 1
- 102100035886 Adenine DNA glycosylase Human genes 0.000 description 1
- 208000003200 Adenoma Diseases 0.000 description 1
- 206010001233 Adenoma benign Diseases 0.000 description 1
- 102100036793 Adhesion G protein-coupled receptor L3 Human genes 0.000 description 1
- 102100036775 Afadin Human genes 0.000 description 1
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 1
- 235000016626 Agrimonia eupatoria Nutrition 0.000 description 1
- 239000012099 Alexa Fluor family Substances 0.000 description 1
- 208000037540 Alveolar soft tissue sarcoma Diseases 0.000 description 1
- 102100038778 Amphiregulin Human genes 0.000 description 1
- 108010033760 Amphiregulin Proteins 0.000 description 1
- 206010061424 Anal cancer Diseases 0.000 description 1
- 208000001446 Anaplastic Thyroid Carcinoma Diseases 0.000 description 1
- 206010073478 Anaplastic large-cell lymphoma Diseases 0.000 description 1
- 206010002240 Anaplastic thyroid cancer Diseases 0.000 description 1
- 206010051810 Angiomyolipoma Diseases 0.000 description 1
- 108010005853 Anti-Mullerian Hormone Proteins 0.000 description 1
- 208000007860 Anus Neoplasms Diseases 0.000 description 1
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 1
- 206010073360 Appendix cancer Diseases 0.000 description 1
- 102100027971 Arachidonate 12-lipoxygenase, 12R-type Human genes 0.000 description 1
- 239000000592 Artificial Cell Substances 0.000 description 1
- 102100030907 Aryl hydrocarbon receptor nuclear translocator Human genes 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- 241000512259 Ascophyllum nodosum Species 0.000 description 1
- 206010060971 Astrocytoma malignant Diseases 0.000 description 1
- 201000008271 Atypical teratoid rhabdoid tumor Diseases 0.000 description 1
- 102100035683 Axin-2 Human genes 0.000 description 1
- 235000000832 Ayote Nutrition 0.000 description 1
- 208000004736 B-Cell Leukemia Diseases 0.000 description 1
- 208000036170 B-Cell Marginal Zone Lymphoma Diseases 0.000 description 1
- 102100027203 B-cell antigen receptor complex-associated protein beta chain Human genes 0.000 description 1
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 1
- 208000003950 B-cell lymphoma Diseases 0.000 description 1
- 102100021631 B-cell lymphoma 6 protein Human genes 0.000 description 1
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 1
- 108091012583 BCL2 Proteins 0.000 description 1
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 1
- 102100035080 BDNF/NT-3 growth factors receptor Human genes 0.000 description 1
- 108700020463 BRCA1 Proteins 0.000 description 1
- 101150072950 BRCA1 gene Proteins 0.000 description 1
- 108700020462 BRCA2 Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241000218495 Bactrocera correcta Species 0.000 description 1
- 206010004146 Basal cell carcinoma Diseases 0.000 description 1
- 206010004453 Benign salivary gland neoplasm Diseases 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 206010004593 Bile duct cancer Diseases 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- 208000019838 Blood disease Diseases 0.000 description 1
- 206010005949 Bone cancer Diseases 0.000 description 1
- 102100025422 Bone morphogenetic protein receptor type-2 Human genes 0.000 description 1
- 241001536303 Botryococcus braunii Species 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 206010006143 Brain stem glioma Diseases 0.000 description 1
- 101150008921 Brca2 gene Proteins 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 102100025401 Breast cancer type 1 susceptibility protein Human genes 0.000 description 1
- 102100025399 Breast cancer type 2 susceptibility protein Human genes 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 208000007690 Brenner tumor Diseases 0.000 description 1
- 206010073258 Brenner tumour Diseases 0.000 description 1
- 208000003170 Bronchiolo-Alveolar Adenocarcinoma Diseases 0.000 description 1
- 206010058354 Bronchioloalveolar carcinoma Diseases 0.000 description 1
- 206010070487 Brown tumour Diseases 0.000 description 1
- 208000011691 Burkitt lymphomas Diseases 0.000 description 1
- 101710098191 C-4 methylsterol oxidase ERG25 Proteins 0.000 description 1
- 101710149863 C-C chemokine receptor type 4 Proteins 0.000 description 1
- 102100036841 C-C motif chemokine 1 Human genes 0.000 description 1
- 101710155835 C-C motif chemokine 1 Proteins 0.000 description 1
- 101710112613 C-C motif chemokine 13 Proteins 0.000 description 1
- 102100023698 C-C motif chemokine 17 Human genes 0.000 description 1
- 101710155857 C-C motif chemokine 2 Proteins 0.000 description 1
- 102100034673 C-C motif chemokine 3-like 1 Human genes 0.000 description 1
- 102100028990 C-X-C chemokine receptor type 3 Human genes 0.000 description 1
- 102100031650 C-X-C chemokine receptor type 4 Human genes 0.000 description 1
- 102100034808 CCAAT/enhancer-binding protein alpha Human genes 0.000 description 1
- 108010014064 CCCTC-Binding Factor Proteins 0.000 description 1
- 102100032976 CCR4-NOT transcription complex subunit 6 Human genes 0.000 description 1
- 108010056102 CD100 antigen Proteins 0.000 description 1
- 108010017009 CD11b Antigen Proteins 0.000 description 1
- 102100038077 CD226 antigen Human genes 0.000 description 1
- 108010017987 CD30 Ligand Proteins 0.000 description 1
- 108010038940 CD48 Antigen Proteins 0.000 description 1
- 108010084313 CD58 Antigens Proteins 0.000 description 1
- 108010062802 CD66 antigens Proteins 0.000 description 1
- 210000001239 CD8-positive, alpha-beta cytotoxic T lymphocyte Anatomy 0.000 description 1
- 101710139831 CD82 antigen Proteins 0.000 description 1
- 102000000905 Cadherin Human genes 0.000 description 1
- 108050007957 Cadherin Proteins 0.000 description 1
- 102100036364 Cadherin-2 Human genes 0.000 description 1
- 102100029761 Cadherin-5 Human genes 0.000 description 1
- 101000690445 Caenorhabditis elegans Aryl hydrocarbon receptor nuclear translocator homolog Proteins 0.000 description 1
- 102100029968 Calreticulin Human genes 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 102100024533 Carcinoembryonic antigen-related cell adhesion molecule 1 Human genes 0.000 description 1
- 206010007275 Carcinoid tumour Diseases 0.000 description 1
- 206010007279 Carcinoid tumour of the gastrointestinal tract Diseases 0.000 description 1
- 208000009458 Carcinoma in Situ Diseases 0.000 description 1
- 201000000274 Carcinosarcoma Diseases 0.000 description 1
- 208000020446 Cardiac disease Diseases 0.000 description 1
- 102100029391 Cardiotrophin-like cytokine factor 1 Human genes 0.000 description 1
- 102100024965 Caspase recruitment domain-containing protein 11 Human genes 0.000 description 1
- 102100026550 Caspase-9 Human genes 0.000 description 1
- 108090000566 Caspase-9 Proteins 0.000 description 1
- 208000005024 Castleman disease Diseases 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 102100028914 Catenin beta-1 Human genes 0.000 description 1
- 208000037138 Central nervous system embryonal tumor Diseases 0.000 description 1
- 206010007953 Central nervous system lymphoma Diseases 0.000 description 1
- 206010050337 Cerumen impaction Diseases 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 102100036645 Chemokine-like protein TAFA-1 Human genes 0.000 description 1
- 102100036650 Chemokine-like protein TAFA-2 Human genes 0.000 description 1
- 102100036649 Chemokine-like protein TAFA-3 Human genes 0.000 description 1
- 102100025944 Chemokine-like protein TAFA-4 Human genes 0.000 description 1
- 102100025942 Chemokine-like protein TAFA-5 Human genes 0.000 description 1
- 241000195597 Chlamydomonas reinhardtii Species 0.000 description 1
- 244000249214 Chlorella pyrenoidosa Species 0.000 description 1
- 235000007091 Chlorella pyrenoidosa Nutrition 0.000 description 1
- 206010008583 Chloroma Diseases 0.000 description 1
- 201000005262 Chondroma Diseases 0.000 description 1
- 208000005243 Chondrosarcoma Diseases 0.000 description 1
- 201000009047 Chordoma Diseases 0.000 description 1
- 208000006332 Choriocarcinoma Diseases 0.000 description 1
- 102100021809 Chorionic somatomammotropin hormone 1 Human genes 0.000 description 1
- 208000004378 Choroid plexus papilloma Diseases 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 1
- 108010005939 Ciliary Neurotrophic Factor Proteins 0.000 description 1
- 102100031614 Ciliary neurotrophic factor Human genes 0.000 description 1
- 241000243321 Cnidaria Species 0.000 description 1
- 102100031048 Coiled-coil domain-containing protein 6 Human genes 0.000 description 1
- 108010003384 Colony-Stimulating Factor Receptors Proteins 0.000 description 1
- 102000004626 Colony-Stimulating Factor Receptors Human genes 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 206010052012 Congenital teratoma Diseases 0.000 description 1
- KQLDDLUWUFBQHP-UHFFFAOYSA-N Cordycepin Natural products C1=NC=2C(N)=NC=NC=2N1C1OCC(CO)C1O KQLDDLUWUFBQHP-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 108091029523 CpG island Proteins 0.000 description 1
- 208000009798 Craniopharyngioma Diseases 0.000 description 1
- 102100031096 Cubilin Human genes 0.000 description 1
- 240000004244 Cucurbita moschata Species 0.000 description 1
- 235000009854 Cucurbita moschata Nutrition 0.000 description 1
- 235000009804 Cucurbita pepo subsp pepo Nutrition 0.000 description 1
- OHOQEZWSNFNUSY-UHFFFAOYSA-N Cy3-bifunctional dye zwitterion Chemical compound O=C1CCC(=O)N1OC(=O)CCCCCN1C2=CC=C(S(O)(=O)=O)C=C2C(C)(C)C1=CC=CC(C(C1=CC(=CC=C11)S([O-])(=O)=O)(C)C)=[N+]1CCCCCC(=O)ON1C(=O)CCC1=O OHOQEZWSNFNUSY-UHFFFAOYSA-N 0.000 description 1
- 108010058546 Cyclin D1 Proteins 0.000 description 1
- 108010009392 Cyclin-Dependent Kinase Inhibitor p16 Proteins 0.000 description 1
- 108010016777 Cyclin-Dependent Kinase Inhibitor p27 Proteins 0.000 description 1
- 102000000577 Cyclin-Dependent Kinase Inhibitor p27 Human genes 0.000 description 1
- 108010076010 Cystathionine beta-lyase Proteins 0.000 description 1
- 108010001237 Cytochrome P-450 CYP2D6 Proteins 0.000 description 1
- 102100021704 Cytochrome P450 2D6 Human genes 0.000 description 1
- 206010050685 Cytokine storm Diseases 0.000 description 1
- 102100028712 Cytosolic purine 5'-nucleotidase Human genes 0.000 description 1
- 102100027816 Cytotoxic and regulatory T-cell molecule Human genes 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- XUIIKFGFIJCVMT-GFCCVEGCSA-N D-thyroxine Chemical compound IC1=CC(C[C@@H](N)C(O)=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-GFCCVEGCSA-N 0.000 description 1
- 102100024812 DNA (cytosine-5)-methyltransferase 3A Human genes 0.000 description 1
- 108010024491 DNA Methyltransferase 3A Proteins 0.000 description 1
- 102100031867 DNA excision repair protein ERCC-6 Human genes 0.000 description 1
- 102100029094 DNA repair endonuclease XPF Human genes 0.000 description 1
- 102100037799 DNA-binding protein Ikaros Human genes 0.000 description 1
- 108010049207 Death Domain Receptors Proteins 0.000 description 1
- 102000009058 Death Domain Receptors Human genes 0.000 description 1
- AHCYMLUZIRLXAA-SHYZEUOFSA-N Deoxyuridine 5'-triphosphate Chemical compound O1[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C[C@@H]1N1C(=O)NC(=O)C=C1 AHCYMLUZIRLXAA-SHYZEUOFSA-N 0.000 description 1
- 208000008334 Dermatofibrosarcoma Diseases 0.000 description 1
- 206010057070 Dermatofibrosarcoma protuberans Diseases 0.000 description 1
- 208000001154 Dermoid Cyst Diseases 0.000 description 1
- 208000008743 Desmoplastic Small Round Cell Tumor Diseases 0.000 description 1
- 206010064581 Desmoplastic small round cell tumour Diseases 0.000 description 1
- 102100031107 Disintegrin and metalloproteinase domain-containing protein 11 Human genes 0.000 description 1
- 101710121366 Disintegrin and metalloproteinase domain-containing protein 11 Proteins 0.000 description 1
- 101100347633 Drosophila melanogaster Mhc gene Proteins 0.000 description 1
- 102100031480 Dual specificity mitogen-activated protein kinase kinase 1 Human genes 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 102100035813 E3 ubiquitin-protein ligase CBL Human genes 0.000 description 1
- 102100027418 E3 ubiquitin-protein ligase RNF213 Human genes 0.000 description 1
- 102000001301 EGF receptor Human genes 0.000 description 1
- 108060006698 EGF receptor Proteins 0.000 description 1
- 101150076616 EPHA2 gene Proteins 0.000 description 1
- 101150016325 EPHA3 gene Proteins 0.000 description 1
- 101150029707 ERBB2 gene Proteins 0.000 description 1
- 102100035079 ETS-related transcription factor Elf-3 Human genes 0.000 description 1
- 102100025137 Early activation antigen CD69 Human genes 0.000 description 1
- 241000258955 Echinodermata Species 0.000 description 1
- 102100037354 Ectodysplasin-A Human genes 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- 201000009051 Embryonal Carcinoma Diseases 0.000 description 1
- 102100027723 Endogenous retrovirus group K member 6 Rec protein Human genes 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- 102100023387 Endoribonuclease Dicer Human genes 0.000 description 1
- 102100031785 Endothelial transcription factor GATA-2 Human genes 0.000 description 1
- 101710091045 Envelope protein Proteins 0.000 description 1
- 208000033832 Eosinophilic Acute Leukemia Diseases 0.000 description 1
- 201000008228 Ependymoblastoma Diseases 0.000 description 1
- 206010014967 Ependymoma Diseases 0.000 description 1
- 206010014968 Ependymoma malignant Diseases 0.000 description 1
- 108010055211 EphA1 Receptor Proteins 0.000 description 1
- 108010055323 EphB4 Receptor Proteins 0.000 description 1
- 101150078651 Epha4 gene Proteins 0.000 description 1
- 101150025643 Epha5 gene Proteins 0.000 description 1
- 102100030322 Ephrin type-A receptor 1 Human genes 0.000 description 1
- 102100030340 Ephrin type-A receptor 2 Human genes 0.000 description 1
- 102100030324 Ephrin type-A receptor 3 Human genes 0.000 description 1
- 102100021616 Ephrin type-A receptor 4 Human genes 0.000 description 1
- 102100021605 Ephrin type-A receptor 5 Human genes 0.000 description 1
- 102100021604 Ephrin type-A receptor 6 Human genes 0.000 description 1
- 102100021606 Ephrin type-A receptor 7 Human genes 0.000 description 1
- 102100021601 Ephrin type-A receptor 8 Human genes 0.000 description 1
- 102100031982 Ephrin type-B receptor 3 Human genes 0.000 description 1
- 102100031983 Ephrin type-B receptor 4 Human genes 0.000 description 1
- 108010016906 Epigen Proteins 0.000 description 1
- 102100030323 Epigen Human genes 0.000 description 1
- 102100036725 Epithelial discoidin domain-containing receptor 1 Human genes 0.000 description 1
- 101710131668 Epithelial discoidin domain-containing receptor 1 Proteins 0.000 description 1
- 201000005231 Epithelioid sarcoma Diseases 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 241000402754 Erythranthe moschata Species 0.000 description 1
- 208000031637 Erythroblastic Acute Leukemia Diseases 0.000 description 1
- 102100031690 Erythroid transcription factor Human genes 0.000 description 1
- 208000036566 Erythroleukaemia Diseases 0.000 description 1
- 108010075944 Erythropoietin Receptors Proteins 0.000 description 1
- 102100036509 Erythropoietin receptor Human genes 0.000 description 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 1
- 102100033175 Ethanolamine kinase 1 Human genes 0.000 description 1
- 208000006168 Ewing Sarcoma Diseases 0.000 description 1
- 208000012468 Ewing sarcoma/peripheral primitive neuroectodermal tumor Diseases 0.000 description 1
- 208000010201 Exanthema Diseases 0.000 description 1
- 102100029095 Exportin-1 Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 208000017259 Extragonadal germ cell tumor Diseases 0.000 description 1
- 208000010368 Extramammary Paget Disease Diseases 0.000 description 1
- 206010061850 Extranodal marginal zone B-cell lymphoma (MALT type) Diseases 0.000 description 1
- 101710105178 F-box/WD repeat-containing protein 7 Proteins 0.000 description 1
- 102100028138 F-box/WD repeat-containing protein 7 Human genes 0.000 description 1
- 201000001342 Fallopian tube cancer Diseases 0.000 description 1
- 208000013452 Fallopian tube neoplasm Diseases 0.000 description 1
- 102100034554 Fanconi anemia group I protein Human genes 0.000 description 1
- 108010039471 Fas Ligand Protein Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 108090000386 Fibroblast Growth Factor 1 Proteins 0.000 description 1
- 102000003971 Fibroblast Growth Factor 1 Human genes 0.000 description 1
- 102100028412 Fibroblast growth factor 10 Human genes 0.000 description 1
- 102100028413 Fibroblast growth factor 11 Human genes 0.000 description 1
- 102100028417 Fibroblast growth factor 12 Human genes 0.000 description 1
- 102100035290 Fibroblast growth factor 13 Human genes 0.000 description 1
- 102100035292 Fibroblast growth factor 14 Human genes 0.000 description 1
- 102100035307 Fibroblast growth factor 16 Human genes 0.000 description 1
- 108050002072 Fibroblast growth factor 16 Proteins 0.000 description 1
- 102100035308 Fibroblast growth factor 17 Human genes 0.000 description 1
- 102100035323 Fibroblast growth factor 18 Human genes 0.000 description 1
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 1
- 102100031361 Fibroblast growth factor 20 Human genes 0.000 description 1
- 108090000376 Fibroblast growth factor 21 Proteins 0.000 description 1
- 102000003973 Fibroblast growth factor 21 Human genes 0.000 description 1
- 102100024802 Fibroblast growth factor 23 Human genes 0.000 description 1
- 102100028043 Fibroblast growth factor 3 Human genes 0.000 description 1
- 102100028072 Fibroblast growth factor 4 Human genes 0.000 description 1
- 102100028073 Fibroblast growth factor 5 Human genes 0.000 description 1
- 102100028075 Fibroblast growth factor 6 Human genes 0.000 description 1
- 102100028071 Fibroblast growth factor 7 Human genes 0.000 description 1
- 102100037680 Fibroblast growth factor 8 Human genes 0.000 description 1
- 102100037665 Fibroblast growth factor 9 Human genes 0.000 description 1
- 102100023593 Fibroblast growth factor receptor 1 Human genes 0.000 description 1
- 101710182386 Fibroblast growth factor receptor 1 Proteins 0.000 description 1
- 102100027844 Fibroblast growth factor receptor 4 Human genes 0.000 description 1
- 101710182387 Fibroblast growth factor receptor 4 Proteins 0.000 description 1
- 102100032596 Fibrocystin Human genes 0.000 description 1
- 201000008808 Fibrosarcoma Diseases 0.000 description 1
- 102100026559 Filamin-B Human genes 0.000 description 1
- 206010016935 Follicular thyroid cancer Diseases 0.000 description 1
- 102100027909 Folliculin Human genes 0.000 description 1
- 108010010285 Forkhead Box Protein L2 Proteins 0.000 description 1
- 102100035137 Forkhead box protein L2 Human genes 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 210000000712 G cell Anatomy 0.000 description 1
- 102100021237 G protein-activated inward rectifier potassium channel 4 Human genes 0.000 description 1
- 102100024165 G1/S-specific cyclin-D1 Human genes 0.000 description 1
- 102100024185 G1/S-specific cyclin-D2 Human genes 0.000 description 1
- 102100037859 G1/S-specific cyclin-D3 Human genes 0.000 description 1
- 102100022086 GRB2-related adapter protein 2 Human genes 0.000 description 1
- 102100029974 GTPase HRas Human genes 0.000 description 1
- 101100445395 Gallus gallus EPHB5 gene Proteins 0.000 description 1
- 201000004066 Ganglioglioma Diseases 0.000 description 1
- 206010017993 Gastrointestinal neoplasms Diseases 0.000 description 1
- 206010061183 Genitourinary tract neoplasm Diseases 0.000 description 1
- 208000000527 Germinoma Diseases 0.000 description 1
- 208000002966 Giant Cell Tumor of Bone Diseases 0.000 description 1
- 201000010915 Glioblastoma multiforme Diseases 0.000 description 1
- 201000005409 Gliomatosis cerebri Diseases 0.000 description 1
- 206010068601 Glioneuronal tumour Diseases 0.000 description 1
- 206010018381 Glomus tumour Diseases 0.000 description 1
- 206010018404 Glucagonoma Diseases 0.000 description 1
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 102000006771 Gonadotropins Human genes 0.000 description 1
- 108010086677 Gonadotropins Proteins 0.000 description 1
- 241000219146 Gossypium Species 0.000 description 1
- 102100039622 Granulocyte colony-stimulating factor receptor Human genes 0.000 description 1
- 208000005234 Granulosa Cell Tumor Diseases 0.000 description 1
- 102100021186 Granulysin Human genes 0.000 description 1
- 101710168479 Granulysin Proteins 0.000 description 1
- 102100020948 Growth hormone receptor Human genes 0.000 description 1
- 102100025334 Guanine nucleotide-binding protein G(q) subunit alpha Human genes 0.000 description 1
- 102100032610 Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas Human genes 0.000 description 1
- 102100036738 Guanine nucleotide-binding protein subunit alpha-11 Human genes 0.000 description 1
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 1
- 108091059596 H3F3A Proteins 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 102100035943 HERV-H LTR-associating protein 2 Human genes 0.000 description 1
- 102100028972 HLA class I histocompatibility antigen, A alpha chain Human genes 0.000 description 1
- 102100028976 HLA class I histocompatibility antigen, B alpha chain Human genes 0.000 description 1
- 102100029966 HLA class II histocompatibility antigen, DP alpha 1 chain Human genes 0.000 description 1
- 108010075704 HLA-A Antigens Proteins 0.000 description 1
- 108010058607 HLA-B Antigens Proteins 0.000 description 1
- 206010066476 Haematological malignancy Diseases 0.000 description 1
- 239000012981 Hank's balanced salt solution Substances 0.000 description 1
- 101150046249 Havcr2 gene Proteins 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- 102100032510 Heat shock protein HSP 90-beta Human genes 0.000 description 1
- 102100022536 Helicase POLQ-like Human genes 0.000 description 1
- 208000006050 Hemangiopericytoma Diseases 0.000 description 1
- 208000002250 Hematologic Neoplasms Diseases 0.000 description 1
- 108010007712 Hepatitis A Virus Cellular Receptor 1 Proteins 0.000 description 1
- 101710185991 Hepatitis A virus cellular receptor 1 homolog Proteins 0.000 description 1
- 102100034458 Hepatitis A virus cellular receptor 2 Human genes 0.000 description 1
- 102100022057 Hepatocyte nuclear factor 1-alpha Human genes 0.000 description 1
- 102100035108 High affinity nerve growth factor receptor Human genes 0.000 description 1
- 102100034535 Histone H3.1 Human genes 0.000 description 1
- 102100039236 Histone H3.3 Human genes 0.000 description 1
- 102100027755 Histone-lysine N-methyltransferase 2C Human genes 0.000 description 1
- 102100038970 Histone-lysine N-methyltransferase EZH2 Human genes 0.000 description 1
- 102100032742 Histone-lysine N-methyltransferase SETD2 Human genes 0.000 description 1
- 102100029239 Histone-lysine N-methyltransferase, H3 lysine-36 specific Human genes 0.000 description 1
- 101000691599 Homo sapiens 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1 Proteins 0.000 description 1
- 101000612536 Homo sapiens 26S proteasome non-ATPase regulatory subunit 13 Proteins 0.000 description 1
- 101000701175 Homo sapiens ADAMTS-like protein 3 Proteins 0.000 description 1
- 101000796047 Homo sapiens AP-2 complex subunit mu Proteins 0.000 description 1
- 101000986629 Homo sapiens ATP-binding cassette sub-family C member 4 Proteins 0.000 description 1
- 101000580577 Homo sapiens ATP-dependent DNA helicase Q4 Proteins 0.000 description 1
- 101000799140 Homo sapiens Activin receptor type-1 Proteins 0.000 description 1
- 101000799189 Homo sapiens Activin receptor type-1B Proteins 0.000 description 1
- 101000937269 Homo sapiens Activin receptor type-2B Proteins 0.000 description 1
- 101001000351 Homo sapiens Adenine DNA glycosylase Proteins 0.000 description 1
- 101000928176 Homo sapiens Adhesion G protein-coupled receptor L3 Proteins 0.000 description 1
- 101000928246 Homo sapiens Afadin Proteins 0.000 description 1
- 101000578469 Homo sapiens Arachidonate 12-lipoxygenase, 12R-type Proteins 0.000 description 1
- 101000793115 Homo sapiens Aryl hydrocarbon receptor nuclear translocator Proteins 0.000 description 1
- 101000874569 Homo sapiens Axin-2 Proteins 0.000 description 1
- 101000914491 Homo sapiens B-cell antigen receptor complex-associated protein beta chain Proteins 0.000 description 1
- 101000971234 Homo sapiens B-cell lymphoma 6 protein Proteins 0.000 description 1
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 1
- 101000596896 Homo sapiens BDNF/NT-3 growth factors receptor Proteins 0.000 description 1
- 101000934635 Homo sapiens Bone morphogenetic protein receptor type-2 Proteins 0.000 description 1
- 101000978362 Homo sapiens C-C motif chemokine 17 Proteins 0.000 description 1
- 101000897480 Homo sapiens C-C motif chemokine 2 Proteins 0.000 description 1
- 101000946370 Homo sapiens C-C motif chemokine 3-like 1 Proteins 0.000 description 1
- 101000777471 Homo sapiens C-C motif chemokine 4 Proteins 0.000 description 1
- 101000916050 Homo sapiens C-X-C chemokine receptor type 3 Proteins 0.000 description 1
- 101000922348 Homo sapiens C-X-C chemokine receptor type 4 Proteins 0.000 description 1
- 101000749325 Homo sapiens C-type lectin domain family 7 member A Proteins 0.000 description 1
- 101000945515 Homo sapiens CCAAT/enhancer-binding protein alpha Proteins 0.000 description 1
- 101000884298 Homo sapiens CD226 antigen Proteins 0.000 description 1
- 101000716130 Homo sapiens CD48 antigen Proteins 0.000 description 1
- 101000914469 Homo sapiens CD82 antigen Proteins 0.000 description 1
- 101000714537 Homo sapiens Cadherin-2 Proteins 0.000 description 1
- 101000794587 Homo sapiens Cadherin-5 Proteins 0.000 description 1
- 101000793651 Homo sapiens Calreticulin Proteins 0.000 description 1
- 101000989964 Homo sapiens Cardiotrophin-like cytokine factor 1 Proteins 0.000 description 1
- 101000761179 Homo sapiens Caspase recruitment domain-containing protein 11 Proteins 0.000 description 1
- 101000916173 Homo sapiens Catenin beta-1 Proteins 0.000 description 1
- 101000715175 Homo sapiens Chemokine-like protein TAFA-1 Proteins 0.000 description 1
- 101000715173 Homo sapiens Chemokine-like protein TAFA-2 Proteins 0.000 description 1
- 101000715170 Homo sapiens Chemokine-like protein TAFA-3 Proteins 0.000 description 1
- 101000788132 Homo sapiens Chemokine-like protein TAFA-4 Proteins 0.000 description 1
- 101000788164 Homo sapiens Chemokine-like protein TAFA-5 Proteins 0.000 description 1
- 101000851684 Homo sapiens Chimeric ERCC6-PGBD3 protein Proteins 0.000 description 1
- 101000777370 Homo sapiens Coiled-coil domain-containing protein 6 Proteins 0.000 description 1
- 101000922080 Homo sapiens Cubilin Proteins 0.000 description 1
- 101000915162 Homo sapiens Cytosolic purine 5'-nucleotidase Proteins 0.000 description 1
- 101000920783 Homo sapiens DNA excision repair protein ERCC-6 Proteins 0.000 description 1
- 101000599038 Homo sapiens DNA-binding protein Ikaros Proteins 0.000 description 1
- 101001053992 Homo sapiens Deleted in lung and esophageal cancer protein 1 Proteins 0.000 description 1
- 101000908391 Homo sapiens Dipeptidyl peptidase 4 Proteins 0.000 description 1
- 101000966403 Homo sapiens Dynein light chain 1, cytoplasmic Proteins 0.000 description 1
- 101000650316 Homo sapiens E3 ubiquitin-protein ligase RNF213 Proteins 0.000 description 1
- 101000877379 Homo sapiens ETS-related transcription factor Elf-3 Proteins 0.000 description 1
- 101000934374 Homo sapiens Early activation antigen CD69 Proteins 0.000 description 1
- 101000998777 Homo sapiens Early placenta insulin-like peptide Proteins 0.000 description 1
- 101000880080 Homo sapiens Ectodysplasin-A Proteins 0.000 description 1
- 101000907904 Homo sapiens Endoribonuclease Dicer Proteins 0.000 description 1
- 101001066265 Homo sapiens Endothelial transcription factor GATA-2 Proteins 0.000 description 1
- 101000898696 Homo sapiens Ephrin type-A receptor 6 Proteins 0.000 description 1
- 101000898708 Homo sapiens Ephrin type-A receptor 7 Proteins 0.000 description 1
- 101000898676 Homo sapiens Ephrin type-A receptor 8 Proteins 0.000 description 1
- 101001064458 Homo sapiens Ephrin type-B receptor 3 Proteins 0.000 description 1
- 101001066268 Homo sapiens Erythroid transcription factor Proteins 0.000 description 1
- 101000851032 Homo sapiens Ethanolamine kinase 1 Proteins 0.000 description 1
- 101000848174 Homo sapiens Fanconi anemia group I protein Proteins 0.000 description 1
- 101000917237 Homo sapiens Fibroblast growth factor 10 Proteins 0.000 description 1
- 101000917236 Homo sapiens Fibroblast growth factor 11 Proteins 0.000 description 1
- 101000917234 Homo sapiens Fibroblast growth factor 12 Proteins 0.000 description 1
- 101000878181 Homo sapiens Fibroblast growth factor 14 Proteins 0.000 description 1
- 101000878124 Homo sapiens Fibroblast growth factor 17 Proteins 0.000 description 1
- 101000878128 Homo sapiens Fibroblast growth factor 18 Proteins 0.000 description 1
- 101000846532 Homo sapiens Fibroblast growth factor 20 Proteins 0.000 description 1
- 101001051973 Homo sapiens Fibroblast growth factor 23 Proteins 0.000 description 1
- 101001060280 Homo sapiens Fibroblast growth factor 3 Proteins 0.000 description 1
- 101001060274 Homo sapiens Fibroblast growth factor 4 Proteins 0.000 description 1
- 101001060267 Homo sapiens Fibroblast growth factor 5 Proteins 0.000 description 1
- 101001060265 Homo sapiens Fibroblast growth factor 6 Proteins 0.000 description 1
- 101001060261 Homo sapiens Fibroblast growth factor 7 Proteins 0.000 description 1
- 101001027382 Homo sapiens Fibroblast growth factor 8 Proteins 0.000 description 1
- 101001027380 Homo sapiens Fibroblast growth factor 9 Proteins 0.000 description 1
- 101000730595 Homo sapiens Fibrocystin Proteins 0.000 description 1
- 101000913551 Homo sapiens Filamin-B Proteins 0.000 description 1
- 101001060703 Homo sapiens Folliculin Proteins 0.000 description 1
- 101000614712 Homo sapiens G protein-activated inward rectifier potassium channel 4 Proteins 0.000 description 1
- 101000980741 Homo sapiens G1/S-specific cyclin-D2 Proteins 0.000 description 1
- 101000738559 Homo sapiens G1/S-specific cyclin-D3 Proteins 0.000 description 1
- 101000900690 Homo sapiens GRB2-related adapter protein 2 Proteins 0.000 description 1
- 101000584633 Homo sapiens GTPase HRas Proteins 0.000 description 1
- 101000584612 Homo sapiens GTPase KRas Proteins 0.000 description 1
- 101000746364 Homo sapiens Granulocyte colony-stimulating factor receptor Proteins 0.000 description 1
- 101000857888 Homo sapiens Guanine nucleotide-binding protein G(q) subunit alpha Proteins 0.000 description 1
- 101001014590 Homo sapiens Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas Proteins 0.000 description 1
- 101001014594 Homo sapiens Guanine nucleotide-binding protein G(s) subunit alpha isoforms short Proteins 0.000 description 1
- 101001072407 Homo sapiens Guanine nucleotide-binding protein subunit alpha-11 Proteins 0.000 description 1
- 101000864089 Homo sapiens HLA class II histocompatibility antigen, DP alpha 1 chain Proteins 0.000 description 1
- 101000930802 Homo sapiens HLA class II histocompatibility antigen, DQ alpha 1 chain Proteins 0.000 description 1
- 101000968032 Homo sapiens HLA class II histocompatibility antigen, DR beta 3 chain Proteins 0.000 description 1
- 101001016856 Homo sapiens Heat shock protein HSP 90-beta Proteins 0.000 description 1
- 101000899334 Homo sapiens Helicase POLQ-like Proteins 0.000 description 1
- 101001068136 Homo sapiens Hepatitis A virus cellular receptor 1 Proteins 0.000 description 1
- 101000972946 Homo sapiens Hepatocyte growth factor receptor Proteins 0.000 description 1
- 101001045751 Homo sapiens Hepatocyte nuclear factor 1-alpha Proteins 0.000 description 1
- 101000596894 Homo sapiens High affinity nerve growth factor receptor Proteins 0.000 description 1
- 101001067844 Homo sapiens Histone H3.1 Proteins 0.000 description 1
- 101001008892 Homo sapiens Histone-lysine N-methyltransferase 2C Proteins 0.000 description 1
- 101000882127 Homo sapiens Histone-lysine N-methyltransferase EZH2 Proteins 0.000 description 1
- 101000654725 Homo sapiens Histone-lysine N-methyltransferase SETD2 Proteins 0.000 description 1
- 101000634050 Homo sapiens Histone-lysine N-methyltransferase, H3 lysine-36 specific Proteins 0.000 description 1
- 101000606465 Homo sapiens Inactive tyrosine-protein kinase 7 Proteins 0.000 description 1
- 101001103039 Homo sapiens Inactive tyrosine-protein kinase transmembrane receptor ROR1 Proteins 0.000 description 1
- 101001042104 Homo sapiens Inducible T-cell costimulator Proteins 0.000 description 1
- 101001053339 Homo sapiens Inositol polyphosphate 4-phosphatase type II Proteins 0.000 description 1
- 101000998783 Homo sapiens Insulin-like 3 Proteins 0.000 description 1
- 101000998774 Homo sapiens Insulin-like peptide INSL5 Proteins 0.000 description 1
- 101001046683 Homo sapiens Integrin alpha-L Proteins 0.000 description 1
- 101001046686 Homo sapiens Integrin alpha-M Proteins 0.000 description 1
- 101001046668 Homo sapiens Integrin alpha-X Proteins 0.000 description 1
- 101001015037 Homo sapiens Integrin beta-7 Proteins 0.000 description 1
- 101001034829 Homo sapiens Interferon alpha-10 Proteins 0.000 description 1
- 101001034828 Homo sapiens Interferon alpha-14 Proteins 0.000 description 1
- 101000959794 Homo sapiens Interferon alpha-2 Proteins 0.000 description 1
- 101000959708 Homo sapiens Interferon alpha-4 Proteins 0.000 description 1
- 101000959704 Homo sapiens Interferon alpha-5 Proteins 0.000 description 1
- 101000961126 Homo sapiens Interferon alpha-7 Proteins 0.000 description 1
- 101000999391 Homo sapiens Interferon alpha-8 Proteins 0.000 description 1
- 101000852870 Homo sapiens Interferon alpha/beta receptor 1 Proteins 0.000 description 1
- 101000852865 Homo sapiens Interferon alpha/beta receptor 2 Proteins 0.000 description 1
- 101001054334 Homo sapiens Interferon beta Proteins 0.000 description 1
- 101001054329 Homo sapiens Interferon epsilon Proteins 0.000 description 1
- 101000599940 Homo sapiens Interferon gamma Proteins 0.000 description 1
- 101001001420 Homo sapiens Interferon gamma receptor 1 Proteins 0.000 description 1
- 101000999370 Homo sapiens Interferon omega-1 Proteins 0.000 description 1
- 101001002634 Homo sapiens Interleukin-1 alpha Proteins 0.000 description 1
- 101001033249 Homo sapiens Interleukin-1 beta Proteins 0.000 description 1
- 101001076386 Homo sapiens Interleukin-1 family member 10 Proteins 0.000 description 1
- 101001076418 Homo sapiens Interleukin-1 receptor type 1 Proteins 0.000 description 1
- 101000852965 Homo sapiens Interleukin-1 receptor-like 2 Proteins 0.000 description 1
- 101001019591 Homo sapiens Interleukin-18-binding protein Proteins 0.000 description 1
- 101001043821 Homo sapiens Interleukin-31 Proteins 0.000 description 1
- 101000998140 Homo sapiens Interleukin-36 alpha Proteins 0.000 description 1
- 101000998126 Homo sapiens Interleukin-36 beta Proteins 0.000 description 1
- 101001040964 Homo sapiens Interleukin-36 receptor antagonist protein Proteins 0.000 description 1
- 101000998122 Homo sapiens Interleukin-37 Proteins 0.000 description 1
- 101000599056 Homo sapiens Interleukin-6 receptor subunit beta Proteins 0.000 description 1
- 101000599886 Homo sapiens Isocitrate dehydrogenase [NADP], mitochondrial Proteins 0.000 description 1
- 101000971521 Homo sapiens Kinetochore scaffold 1 Proteins 0.000 description 1
- 101001139134 Homo sapiens Krueppel-like factor 4 Proteins 0.000 description 1
- 101000980823 Homo sapiens Leukocyte surface antigen CD53 Proteins 0.000 description 1
- 101000917858 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-A Proteins 0.000 description 1
- 101000917839 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-B Proteins 0.000 description 1
- 101000984620 Homo sapiens Low-density lipoprotein receptor-related protein 1B Proteins 0.000 description 1
- 101001043562 Homo sapiens Low-density lipoprotein receptor-related protein 2 Proteins 0.000 description 1
- 101001090688 Homo sapiens Lymphocyte cytosolic protein 2 Proteins 0.000 description 1
- 101001063392 Homo sapiens Lymphocyte function-associated antigen 3 Proteins 0.000 description 1
- 101001005714 Homo sapiens MARVEL domain-containing protein 3 Proteins 0.000 description 1
- 101000916644 Homo sapiens Macrophage colony-stimulating factor 1 receptor Proteins 0.000 description 1
- 101000614988 Homo sapiens Mediator of RNA polymerase II transcription subunit 12 Proteins 0.000 description 1
- 101001055386 Homo sapiens Melanophilin Proteins 0.000 description 1
- 101000582631 Homo sapiens Menin Proteins 0.000 description 1
- 101000954986 Homo sapiens Merlin Proteins 0.000 description 1
- 101000653374 Homo sapiens Methylcytosine dioxygenase TET2 Proteins 0.000 description 1
- 101000587058 Homo sapiens Methylenetetrahydrofolate reductase Proteins 0.000 description 1
- 101001055085 Homo sapiens Mitogen-activated protein kinase kinase kinase 9 Proteins 0.000 description 1
- 101000946889 Homo sapiens Monocyte differentiation antigen CD14 Proteins 0.000 description 1
- 101001133056 Homo sapiens Mucin-1 Proteins 0.000 description 1
- 101001023043 Homo sapiens Myoblast determination protein 1 Proteins 0.000 description 1
- 101001000104 Homo sapiens Myosin-11 Proteins 0.000 description 1
- 101001030232 Homo sapiens Myosin-9 Proteins 0.000 description 1
- 101000961071 Homo sapiens NF-kappa-B inhibitor alpha Proteins 0.000 description 1
- 101000998194 Homo sapiens NF-kappa-B inhibitor epsilon Proteins 0.000 description 1
- 101001076431 Homo sapiens NF-kappa-B inhibitor zeta Proteins 0.000 description 1
- 101001109501 Homo sapiens NKG2-D type II integral membrane protein Proteins 0.000 description 1
- 101000589305 Homo sapiens Natural cytotoxicity triggering receptor 2 Proteins 0.000 description 1
- 101001014610 Homo sapiens Neuroendocrine secretory protein 55 Proteins 0.000 description 1
- 101000745163 Homo sapiens Neuronal acetylcholine receptor subunit alpha-3 Proteins 0.000 description 1
- 101001109719 Homo sapiens Nucleophosmin Proteins 0.000 description 1
- 101001098352 Homo sapiens OX-2 membrane glycoprotein Proteins 0.000 description 1
- 101000873418 Homo sapiens P-selectin glycoprotein ligand 1 Proteins 0.000 description 1
- 101000601724 Homo sapiens Paired box protein Pax-5 Proteins 0.000 description 1
- 101000579484 Homo sapiens Period circadian protein homolog 1 Proteins 0.000 description 1
- 101000595751 Homo sapiens Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Proteins 0.000 description 1
- 101001001487 Homo sapiens Phosphatidylinositol-glycan biosynthesis class F protein Proteins 0.000 description 1
- 101000595923 Homo sapiens Placenta growth factor Proteins 0.000 description 1
- 101000611888 Homo sapiens Platelet-derived growth factor C Proteins 0.000 description 1
- 101000611892 Homo sapiens Platelet-derived growth factor D Proteins 0.000 description 1
- 101001126417 Homo sapiens Platelet-derived growth factor receptor alpha Proteins 0.000 description 1
- 101000663006 Homo sapiens Poly [ADP-ribose] polymerase tankyrase-1 Proteins 0.000 description 1
- 101000728236 Homo sapiens Polycomb group protein ASXL1 Proteins 0.000 description 1
- 101000866766 Homo sapiens Polycomb protein EED Proteins 0.000 description 1
- 101001126582 Homo sapiens Post-GPI attachment to proteins factor 3 Proteins 0.000 description 1
- 101001105683 Homo sapiens Pre-mRNA-processing-splicing factor 8 Proteins 0.000 description 1
- 101001109792 Homo sapiens Pro-neuregulin-2, membrane-bound isoform Proteins 0.000 description 1
- 101001109765 Homo sapiens Pro-neuregulin-3, membrane-bound isoform Proteins 0.000 description 1
- 101001109767 Homo sapiens Pro-neuregulin-4, membrane-bound isoform Proteins 0.000 description 1
- 101000734646 Homo sapiens Programmed cell death protein 6 Proteins 0.000 description 1
- 101000684208 Homo sapiens Prolyl endopeptidase FAP Proteins 0.000 description 1
- 101001091094 Homo sapiens Prorelaxin H1 Proteins 0.000 description 1
- 101001091088 Homo sapiens Prorelaxin H2 Proteins 0.000 description 1
- 101000797903 Homo sapiens Protein ALEX Proteins 0.000 description 1
- 101000880769 Homo sapiens Protein SSX1 Proteins 0.000 description 1
- 101000883014 Homo sapiens Protein capicua homolog Proteins 0.000 description 1
- 101001051767 Homo sapiens Protein kinase C beta type Proteins 0.000 description 1
- 101000601770 Homo sapiens Protein polybromo-1 Proteins 0.000 description 1
- 101000878540 Homo sapiens Protein-tyrosine kinase 2-beta Proteins 0.000 description 1
- 101000686031 Homo sapiens Proto-oncogene tyrosine-protein kinase ROS Proteins 0.000 description 1
- 101000742859 Homo sapiens Retinoblastoma-associated protein Proteins 0.000 description 1
- 101001106322 Homo sapiens Rho GTPase-activating protein 7 Proteins 0.000 description 1
- 101001111742 Homo sapiens Rhombotin-2 Proteins 0.000 description 1
- 101000654718 Homo sapiens SET-binding protein Proteins 0.000 description 1
- 101000835984 Homo sapiens SLIT and NTRK-like protein 6 Proteins 0.000 description 1
- 101000650817 Homo sapiens Semaphorin-4D Proteins 0.000 description 1
- 101000587430 Homo sapiens Serine/arginine-rich splicing factor 2 Proteins 0.000 description 1
- 101000628562 Homo sapiens Serine/threonine-protein kinase STK11 Proteins 0.000 description 1
- 101000799194 Homo sapiens Serine/threonine-protein kinase receptor R3 Proteins 0.000 description 1
- 101000785887 Homo sapiens Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform Proteins 0.000 description 1
- 101000783404 Homo sapiens Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform Proteins 0.000 description 1
- 101000701334 Homo sapiens Sodium/potassium-transporting ATPase subunit alpha-1 Proteins 0.000 description 1
- 101000704203 Homo sapiens Spectrin alpha chain, non-erythrocytic 1 Proteins 0.000 description 1
- 101000707567 Homo sapiens Splicing factor 3B subunit 1 Proteins 0.000 description 1
- 101000808799 Homo sapiens Splicing factor U2AF 35 kDa subunit Proteins 0.000 description 1
- 101000826399 Homo sapiens Sulfotransferase 1A1 Proteins 0.000 description 1
- 101000714470 Homo sapiens Synaptotagmin-1 Proteins 0.000 description 1
- 101000914496 Homo sapiens T-cell antigen CD7 Proteins 0.000 description 1
- 101000837401 Homo sapiens T-cell leukemia/lymphoma protein 1A Proteins 0.000 description 1
- 101000837398 Homo sapiens T-cell leukemia/lymphoma protein 1B Proteins 0.000 description 1
- 101000980827 Homo sapiens T-cell surface glycoprotein CD1a Proteins 0.000 description 1
- 101000716149 Homo sapiens T-cell surface glycoprotein CD1b Proteins 0.000 description 1
- 101000716124 Homo sapiens T-cell surface glycoprotein CD1c Proteins 0.000 description 1
- 101000934341 Homo sapiens T-cell surface glycoprotein CD5 Proteins 0.000 description 1
- 101000596234 Homo sapiens T-cell surface protein tactile Proteins 0.000 description 1
- 101100369992 Homo sapiens TNFSF10 gene Proteins 0.000 description 1
- 101100207070 Homo sapiens TNFSF8 gene Proteins 0.000 description 1
- 101000809875 Homo sapiens TYRO protein tyrosine kinase-binding protein Proteins 0.000 description 1
- 101000799466 Homo sapiens Thrombopoietin receptor Proteins 0.000 description 1
- 101000800116 Homo sapiens Thy-1 membrane glycoprotein Proteins 0.000 description 1
- 101000772267 Homo sapiens Thyrotropin receptor Proteins 0.000 description 1
- 101001074042 Homo sapiens Transcriptional activator GLI3 Proteins 0.000 description 1
- 101000830565 Homo sapiens Tumor necrosis factor ligand superfamily member 10 Proteins 0.000 description 1
- 101000830603 Homo sapiens Tumor necrosis factor ligand superfamily member 11 Proteins 0.000 description 1
- 101000830598 Homo sapiens Tumor necrosis factor ligand superfamily member 12 Proteins 0.000 description 1
- 101000830600 Homo sapiens Tumor necrosis factor ligand superfamily member 13 Proteins 0.000 description 1
- 101000830594 Homo sapiens Tumor necrosis factor ligand superfamily member 14 Proteins 0.000 description 1
- 101000597779 Homo sapiens Tumor necrosis factor ligand superfamily member 18 Proteins 0.000 description 1
- 101000638251 Homo sapiens Tumor necrosis factor ligand superfamily member 9 Proteins 0.000 description 1
- 101000795169 Homo sapiens Tumor necrosis factor receptor superfamily member 13C Proteins 0.000 description 1
- 101000648507 Homo sapiens Tumor necrosis factor receptor superfamily member 14 Proteins 0.000 description 1
- 101000762805 Homo sapiens Tumor necrosis factor receptor superfamily member 19L Proteins 0.000 description 1
- 101000801232 Homo sapiens Tumor necrosis factor receptor superfamily member 1B Proteins 0.000 description 1
- 101000679857 Homo sapiens Tumor necrosis factor receptor superfamily member 3 Proteins 0.000 description 1
- 101000679851 Homo sapiens Tumor necrosis factor receptor superfamily member 4 Proteins 0.000 description 1
- 101000611185 Homo sapiens Tumor necrosis factor receptor superfamily member 5 Proteins 0.000 description 1
- 101000611023 Homo sapiens Tumor necrosis factor receptor superfamily member 6 Proteins 0.000 description 1
- 101001026790 Homo sapiens Tyrosine-protein kinase Fes/Fps Proteins 0.000 description 1
- 101000997832 Homo sapiens Tyrosine-protein kinase JAK2 Proteins 0.000 description 1
- 101000934996 Homo sapiens Tyrosine-protein kinase JAK3 Proteins 0.000 description 1
- 101000753253 Homo sapiens Tyrosine-protein kinase receptor Tie-1 Proteins 0.000 description 1
- 101001103033 Homo sapiens Tyrosine-protein kinase transmembrane receptor ROR2 Proteins 0.000 description 1
- 101001087416 Homo sapiens Tyrosine-protein phosphatase non-receptor type 11 Proteins 0.000 description 1
- 101001087418 Homo sapiens Tyrosine-protein phosphatase non-receptor type 12 Proteins 0.000 description 1
- 101000841466 Homo sapiens Ubiquitin carboxyl-terminal hydrolase 8 Proteins 0.000 description 1
- 101000851018 Homo sapiens Vascular endothelial growth factor receptor 1 Proteins 0.000 description 1
- 101000851007 Homo sapiens Vascular endothelial growth factor receptor 2 Proteins 0.000 description 1
- 101000851030 Homo sapiens Vascular endothelial growth factor receptor 3 Proteins 0.000 description 1
- 101000915614 Homo sapiens Zinc finger protein 668 Proteins 0.000 description 1
- 101000599042 Homo sapiens Zinc finger protein Aiolos Proteins 0.000 description 1
- 101000994496 Homo sapiens cAMP-dependent protein kinase catalytic subunit alpha Proteins 0.000 description 1
- 241000700588 Human alphaherpesvirus 1 Species 0.000 description 1
- 101100273566 Humulus lupulus CCL10 gene Proteins 0.000 description 1
- 206010021042 Hypopharyngeal cancer Diseases 0.000 description 1
- 206010056305 Hypopharyngeal neoplasm Diseases 0.000 description 1
- 208000001953 Hypotension Diseases 0.000 description 1
- 102100034980 ICOS ligand Human genes 0.000 description 1
- 108091058536 IL1F9 Proteins 0.000 description 1
- 108091058560 IL8 Proteins 0.000 description 1
- 108010013958 Ikaros Transcription Factor Proteins 0.000 description 1
- 102000017182 Ikaros Transcription Factor Human genes 0.000 description 1
- 229940076838 Immune checkpoint inhibitor Drugs 0.000 description 1
- 102100039813 Inactive tyrosine-protein kinase 7 Human genes 0.000 description 1
- 102100021317 Inducible T-cell costimulator Human genes 0.000 description 1
- 208000005726 Inflammatory Breast Neoplasms Diseases 0.000 description 1
- 206010021980 Inflammatory carcinoma of the breast Diseases 0.000 description 1
- 102100026818 Inhibin beta E chain Human genes 0.000 description 1
- 102000037984 Inhibitory immune checkpoint proteins Human genes 0.000 description 1
- 108091008026 Inhibitory immune checkpoint proteins Proteins 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 102100024366 Inositol polyphosphate 4-phosphatase type II Human genes 0.000 description 1
- 102000003746 Insulin Receptor Human genes 0.000 description 1
- 108010001127 Insulin Receptor Proteins 0.000 description 1
- 108090001117 Insulin-Like Growth Factor II Proteins 0.000 description 1
- 102100025947 Insulin-like growth factor II Human genes 0.000 description 1
- 101710190529 Insulin-like peptide Proteins 0.000 description 1
- 102100033266 Insulin-like peptide INSL5 Human genes 0.000 description 1
- 101710125723 Insulin-like peptide INSL5 Proteins 0.000 description 1
- 102100033235 Insulin-like peptide INSL6 Human genes 0.000 description 1
- 101710125719 Insulin-like peptide INSL6 Proteins 0.000 description 1
- 102100022339 Integrin alpha-L Human genes 0.000 description 1
- 108010041012 Integrin alpha4 Proteins 0.000 description 1
- 108010008212 Integrin alpha4beta1 Proteins 0.000 description 1
- 108010041100 Integrin alpha6 Proteins 0.000 description 1
- 108010030465 Integrin alpha6beta1 Proteins 0.000 description 1
- 102100033016 Integrin beta-7 Human genes 0.000 description 1
- 108010064593 Intercellular Adhesion Molecule-1 Proteins 0.000 description 1
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 description 1
- 108010054267 Interferon Receptors Proteins 0.000 description 1
- 102000001617 Interferon Receptors Human genes 0.000 description 1
- 101710192051 Interferon alpha-1/13 Proteins 0.000 description 1
- 102100039734 Interferon alpha-10 Human genes 0.000 description 1
- 102100039733 Interferon alpha-14 Human genes 0.000 description 1
- 102100040018 Interferon alpha-2 Human genes 0.000 description 1
- 102100039949 Interferon alpha-4 Human genes 0.000 description 1
- 102100039948 Interferon alpha-5 Human genes 0.000 description 1
- 102100039350 Interferon alpha-7 Human genes 0.000 description 1
- 102100036532 Interferon alpha-8 Human genes 0.000 description 1
- 102100036714 Interferon alpha/beta receptor 1 Human genes 0.000 description 1
- 102100036718 Interferon alpha/beta receptor 2 Human genes 0.000 description 1
- 102100026688 Interferon epsilon Human genes 0.000 description 1
- 102100035678 Interferon gamma receptor 1 Human genes 0.000 description 1
- 102100036479 Interferon omega-1 Human genes 0.000 description 1
- 108010047761 Interferon-alpha Proteins 0.000 description 1
- 102000006992 Interferon-alpha Human genes 0.000 description 1
- 108090000467 Interferon-beta Proteins 0.000 description 1
- 102100020881 Interleukin-1 alpha Human genes 0.000 description 1
- 102100039065 Interleukin-1 beta Human genes 0.000 description 1
- 102100026015 Interleukin-1 family member 10 Human genes 0.000 description 1
- 102000019223 Interleukin-1 receptor Human genes 0.000 description 1
- 108050006617 Interleukin-1 receptor Proteins 0.000 description 1
- 102100026018 Interleukin-1 receptor antagonist protein Human genes 0.000 description 1
- 102100026016 Interleukin-1 receptor type 1 Human genes 0.000 description 1
- 102100036697 Interleukin-1 receptor-like 2 Human genes 0.000 description 1
- 108010017550 Interleukin-10 Receptors Proteins 0.000 description 1
- 102000004551 Interleukin-10 Receptors Human genes 0.000 description 1
- 102100020793 Interleukin-13 receptor subunit alpha-2 Human genes 0.000 description 1
- 101800003050 Interleukin-16 Proteins 0.000 description 1
- 102000049772 Interleukin-16 Human genes 0.000 description 1
- 108010017525 Interleukin-17 Receptors Proteins 0.000 description 1
- 102000004554 Interleukin-17 Receptors Human genes 0.000 description 1
- 102100035017 Interleukin-18-binding protein Human genes 0.000 description 1
- 102100036672 Interleukin-23 receptor Human genes 0.000 description 1
- 102100040066 Interleukin-27 receptor subunit alpha Human genes 0.000 description 1
- 108010002386 Interleukin-3 Proteins 0.000 description 1
- 102000000646 Interleukin-3 Human genes 0.000 description 1
- 102100021596 Interleukin-31 Human genes 0.000 description 1
- 108010067003 Interleukin-33 Proteins 0.000 description 1
- 102000017761 Interleukin-33 Human genes 0.000 description 1
- 102100033474 Interleukin-36 alpha Human genes 0.000 description 1
- 102100033498 Interleukin-36 beta Human genes 0.000 description 1
- 102100033503 Interleukin-36 gamma Human genes 0.000 description 1
- 102100021150 Interleukin-36 receptor antagonist protein Human genes 0.000 description 1
- 102100033502 Interleukin-37 Human genes 0.000 description 1
- 108010038501 Interleukin-6 Receptors Proteins 0.000 description 1
- 102000010781 Interleukin-6 Receptors Human genes 0.000 description 1
- 102100037792 Interleukin-6 receptor subunit alpha Human genes 0.000 description 1
- 102100037795 Interleukin-6 receptor subunit beta Human genes 0.000 description 1
- 108010002335 Interleukin-9 Proteins 0.000 description 1
- 102000000585 Interleukin-9 Human genes 0.000 description 1
- 102100026244 Interleukin-9 receptor Human genes 0.000 description 1
- 206010061252 Intraocular melanoma Diseases 0.000 description 1
- 208000009164 Islet Cell Adenoma Diseases 0.000 description 1
- 102100037845 Isocitrate dehydrogenase [NADP], mitochondrial Human genes 0.000 description 1
- 108090000484 Kelch-Like ECH-Associated Protein 1 Proteins 0.000 description 1
- 102000004034 Kelch-Like ECH-Associated Protein 1 Human genes 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- 102100021464 Kinetochore scaffold 1 Human genes 0.000 description 1
- 208000007666 Klatskin Tumor Diseases 0.000 description 1
- 102100020677 Krueppel-like factor 4 Human genes 0.000 description 1
- 208000000675 Krukenberg Tumor Diseases 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 150000008575 L-amino acids Chemical class 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- 102000017578 LAG3 Human genes 0.000 description 1
- 108091008555 LTK receptors Proteins 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 101150030213 Lag3 gene Proteins 0.000 description 1
- 208000031671 Large B-Cell Diffuse Lymphoma Diseases 0.000 description 1
- 208000032004 Large-Cell Anaplastic Lymphoma Diseases 0.000 description 1
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 1
- 206010024218 Lentigo maligna Diseases 0.000 description 1
- 241000270322 Lepidosauria Species 0.000 description 1
- 102100031775 Leptin receptor Human genes 0.000 description 1
- 206010024305 Leukaemia monocytic Diseases 0.000 description 1
- 102100024221 Leukocyte surface antigen CD53 Human genes 0.000 description 1
- 206010061523 Lip and/or oral cavity cancer Diseases 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- 102000003752 Lipocalin 1 Human genes 0.000 description 1
- 108010057281 Lipocalin 1 Proteins 0.000 description 1
- 101001089108 Lotus tetragonolobus Anti-H(O) lectin Proteins 0.000 description 1
- 102100029185 Low affinity immunoglobulin gamma Fc region receptor III-B Human genes 0.000 description 1
- 102100027121 Low-density lipoprotein receptor-related protein 1B Human genes 0.000 description 1
- 102100021922 Low-density lipoprotein receptor-related protein 2 Human genes 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 201000002171 Luteoma Diseases 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- 241000195947 Lycopodium Species 0.000 description 1
- 206010025219 Lymphangioma Diseases 0.000 description 1
- 101710092458 Lymphocyte activation gene 3 protein Proteins 0.000 description 1
- 102100034709 Lymphocyte cytosolic protein 2 Human genes 0.000 description 1
- 102100030984 Lymphocyte function-associated antigen 3 Human genes 0.000 description 1
- 208000028018 Lymphocytic leukaemia Diseases 0.000 description 1
- 206010025312 Lymphoma AIDS related Diseases 0.000 description 1
- 108090000362 Lymphotoxin-beta Proteins 0.000 description 1
- 201000003791 MALT lymphoma Diseases 0.000 description 1
- 108010068342 MAP Kinase Kinase 1 Proteins 0.000 description 1
- 102100025080 MARVEL domain-containing protein 3 Human genes 0.000 description 1
- 102000043129 MHC class I family Human genes 0.000 description 1
- 108091054437 MHC class I family Proteins 0.000 description 1
- 101150053046 MYD88 gene Proteins 0.000 description 1
- 241000218922 Magnoliophyta Species 0.000 description 1
- 206010064281 Malignant atrophic papulosis Diseases 0.000 description 1
- 208000030070 Malignant epithelial tumor of ovary Diseases 0.000 description 1
- 206010025557 Malignant fibrous histiocytoma of bone Diseases 0.000 description 1
- 206010073059 Malignant neoplasm of unknown primary site Diseases 0.000 description 1
- 208000032271 Malignant tumor of penis Diseases 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 208000025205 Mantle-Cell Lymphoma Diseases 0.000 description 1
- 241000196323 Marchantiophyta Species 0.000 description 1
- 102100027754 Mast/stem cell growth factor receptor Kit Human genes 0.000 description 1
- 101710087603 Mast/stem cell growth factor receptor Kit Proteins 0.000 description 1
- 102100021070 Mediator of RNA polymerase II transcription subunit 12 Human genes 0.000 description 1
- 208000009018 Medullary thyroid cancer Diseases 0.000 description 1
- 208000035490 Megakaryoblastic Acute Leukemia Diseases 0.000 description 1
- 206010027145 Melanocytic naevus Diseases 0.000 description 1
- 102100026158 Melanophilin Human genes 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 102100030550 Menin Human genes 0.000 description 1
- 208000002030 Merkel cell carcinoma Diseases 0.000 description 1
- 102100037106 Merlin Human genes 0.000 description 1
- 206010027462 Metastases to ovary Diseases 0.000 description 1
- 102100030803 Methylcytosine dioxygenase TET2 Human genes 0.000 description 1
- 102100029684 Methylenetetrahydrofolate reductase Human genes 0.000 description 1
- 241000736262 Microbiota Species 0.000 description 1
- 101710151803 Mitochondrial intermediate peptidase 2 Proteins 0.000 description 1
- 102100026909 Mitogen-activated protein kinase kinase kinase 9 Human genes 0.000 description 1
- 102100035877 Monocyte differentiation antigen CD14 Human genes 0.000 description 1
- 208000035489 Monocytic Acute Leukemia Diseases 0.000 description 1
- 102000013967 Monokines Human genes 0.000 description 1
- 108010050619 Monokines Proteins 0.000 description 1
- 102100025725 Mothers against decapentaplegic homolog 4 Human genes 0.000 description 1
- 101710143112 Mothers against decapentaplegic homolog 4 Proteins 0.000 description 1
- 108091008553 MuSK receptors Proteins 0.000 description 1
- 102100034256 Mucin-1 Human genes 0.000 description 1
- 108010066419 Multidrug Resistance-Associated Protein 2 Proteins 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 101100490437 Mus musculus Acvrl1 gene Proteins 0.000 description 1
- 101000978374 Mus musculus C-C motif chemokine 12 Proteins 0.000 description 1
- 101100328148 Mus musculus Cd300a gene Proteins 0.000 description 1
- 101100390675 Mus musculus Fgf15 gene Proteins 0.000 description 1
- 101100236305 Mus musculus Ly9 gene Proteins 0.000 description 1
- 101100207071 Mus musculus Tnfsf8 gene Proteins 0.000 description 1
- 101710190051 Muscle, skeletal receptor tyrosine protein kinase Proteins 0.000 description 1
- 102100038168 Muscle, skeletal receptor tyrosine-protein kinase Human genes 0.000 description 1
- 208000023178 Musculoskeletal disease Diseases 0.000 description 1
- 102000013609 MutL Protein Homolog 1 Human genes 0.000 description 1
- 108010026664 MutL Protein Homolog 1 Proteins 0.000 description 1
- 201000003793 Myelodysplastic syndrome Diseases 0.000 description 1
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 1
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 1
- 102100024134 Myeloid differentiation primary response protein MyD88 Human genes 0.000 description 1
- 208000037538 Myelomonocytic Juvenile Leukemia Diseases 0.000 description 1
- 208000014767 Myeloproliferative disease Diseases 0.000 description 1
- 201000007224 Myeloproliferative neoplasm Diseases 0.000 description 1
- 102100035077 Myoblast determination protein 1 Human genes 0.000 description 1
- 102100036639 Myosin-11 Human genes 0.000 description 1
- 102100038938 Myosin-9 Human genes 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- RWKUXQNLWDTSLO-GWQJGLRPSA-N N-hexadecanoylsphingosine-1-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)N[C@@H](COP([O-])(=O)OCC[N+](C)(C)C)[C@H](O)\C=C\CCCCCCCCCCCCC RWKUXQNLWDTSLO-GWQJGLRPSA-N 0.000 description 1
- 102100039337 NF-kappa-B inhibitor alpha Human genes 0.000 description 1
- 102100033104 NF-kappa-B inhibitor epsilon Human genes 0.000 description 1
- 102100026009 NF-kappa-B inhibitor zeta Human genes 0.000 description 1
- 108091008877 NK cell receptors Proteins 0.000 description 1
- 102100022680 NKG2-D type II integral membrane protein Human genes 0.000 description 1
- 101150117329 NTRK3 gene Proteins 0.000 description 1
- 108091061960 Naked DNA Proteins 0.000 description 1
- 241001250129 Nannochloropsis gaditana Species 0.000 description 1
- 206010028729 Nasal cavity cancer Diseases 0.000 description 1
- 206010028767 Nasal sinus cancer Diseases 0.000 description 1
- 208000002454 Nasopharyngeal Carcinoma Diseases 0.000 description 1
- 208000001894 Nasopharyngeal Neoplasms Diseases 0.000 description 1
- 108010004217 Natural Cytotoxicity Triggering Receptor 1 Proteins 0.000 description 1
- 108010004222 Natural Cytotoxicity Triggering Receptor 3 Proteins 0.000 description 1
- 102000010648 Natural Killer Cell Receptors Human genes 0.000 description 1
- 102100032870 Natural cytotoxicity triggering receptor 1 Human genes 0.000 description 1
- 102100032851 Natural cytotoxicity triggering receptor 2 Human genes 0.000 description 1
- 102100032852 Natural cytotoxicity triggering receptor 3 Human genes 0.000 description 1
- 102100029527 Natural cytotoxicity triggering receptor 3 ligand 1 Human genes 0.000 description 1
- 241000244206 Nematoda Species 0.000 description 1
- 108010025020 Nerve Growth Factor Proteins 0.000 description 1
- 102000007072 Nerve Growth Factors Human genes 0.000 description 1
- 102400000058 Neuregulin-1 Human genes 0.000 description 1
- 102000048238 Neuregulin-1 Human genes 0.000 description 1
- 101800000675 Neuregulin-2 Proteins 0.000 description 1
- 101800000673 Neuregulin-3 Proteins 0.000 description 1
- 101800002641 Neuregulin-4 Proteins 0.000 description 1
- 206010029266 Neuroendocrine carcinoma of the skin Diseases 0.000 description 1
- 201000004404 Neurofibroma Diseases 0.000 description 1
- 102000007530 Neurofibromin 1 Human genes 0.000 description 1
- 108010085793 Neurofibromin 1 Proteins 0.000 description 1
- 208000005890 Neuroma Diseases 0.000 description 1
- 102100039908 Neuronal acetylcholine receptor subunit alpha-3 Human genes 0.000 description 1
- 108070000018 Neuropeptide receptor Proteins 0.000 description 1
- 102000028517 Neuropeptide receptor Human genes 0.000 description 1
- 108090000770 Neuropilin-2 Proteins 0.000 description 1
- 208000033755 Neutrophilic Chronic Leukemia Diseases 0.000 description 1
- 208000007256 Nevus Diseases 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 206010029488 Nodular melanoma Diseases 0.000 description 1
- 102000001759 Notch1 Receptor Human genes 0.000 description 1
- 108010029755 Notch1 Receptor Proteins 0.000 description 1
- 102000001756 Notch2 Receptor Human genes 0.000 description 1
- 108010029751 Notch2 Receptor Proteins 0.000 description 1
- 102000001753 Notch4 Receptor Human genes 0.000 description 1
- 108010029741 Notch4 Receptor Proteins 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 1
- 102100022678 Nucleophosmin Human genes 0.000 description 1
- 102100037589 OX-2 membrane glycoprotein Human genes 0.000 description 1
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 1
- 208000000160 Olfactory Esthesioneuroblastoma Diseases 0.000 description 1
- 201000010133 Oligodendroglioma Diseases 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 206010048757 Oncocytoma Diseases 0.000 description 1
- 102000056849 Organic Cation Transporter 2 Human genes 0.000 description 1
- 206010031096 Oropharyngeal cancer Diseases 0.000 description 1
- 206010057444 Oropharyngeal neoplasm Diseases 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 208000007571 Ovarian Epithelial Carcinoma Diseases 0.000 description 1
- 206010061328 Ovarian epithelial cancer Diseases 0.000 description 1
- 206010033268 Ovarian low malignant potential tumour Diseases 0.000 description 1
- 206010073261 Ovarian theca cell tumour Diseases 0.000 description 1
- 240000007019 Oxalis corniculata Species 0.000 description 1
- 208000002063 Oxyphilic Adenoma Diseases 0.000 description 1
- 102100034925 P-selectin glycoprotein ligand 1 Human genes 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 102000036673 PRAME Human genes 0.000 description 1
- 108060006580 PRAME Proteins 0.000 description 1
- 208000025618 Paget disease of nipple Diseases 0.000 description 1
- 102100037504 Paired box protein Pax-5 Human genes 0.000 description 1
- 201000010630 Pancoast tumor Diseases 0.000 description 1
- 208000015330 Pancoast tumour Diseases 0.000 description 1
- 206010033701 Papillary thyroid cancer Diseases 0.000 description 1
- 208000037064 Papilloma of choroid plexus Diseases 0.000 description 1
- 206010061332 Paraganglion neoplasm Diseases 0.000 description 1
- 208000003937 Paranasal Sinus Neoplasms Diseases 0.000 description 1
- 208000000821 Parathyroid Neoplasms Diseases 0.000 description 1
- 102000003982 Parathyroid hormone Human genes 0.000 description 1
- 108090000445 Parathyroid hormone Proteins 0.000 description 1
- 108010071083 Patched-2 Receptor Proteins 0.000 description 1
- 102000007497 Patched-2 Receptor Human genes 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 208000002471 Penile Neoplasms Diseases 0.000 description 1
- 206010034299 Penile cancer Diseases 0.000 description 1
- 108010047320 Pepsinogen A Proteins 0.000 description 1
- 102000015731 Peptide Hormones Human genes 0.000 description 1
- 108010038988 Peptide Hormones Proteins 0.000 description 1
- 108091093037 Peptide nucleic acid Proteins 0.000 description 1
- 102000004503 Perforin Human genes 0.000 description 1
- 108010056995 Perforin Proteins 0.000 description 1
- KHGNFPUMBJSZSM-UHFFFAOYSA-N Perforine Natural products COC1=C2CCC(O)C(CCC(C)(C)O)(OC)C2=NC2=C1C=CO2 KHGNFPUMBJSZSM-UHFFFAOYSA-N 0.000 description 1
- 102100028293 Period circadian protein homolog 1 Human genes 0.000 description 1
- 208000031839 Peripheral nerve sheath tumour malignant Diseases 0.000 description 1
- 208000000360 Perivascular Epithelioid Cell Neoplasms Diseases 0.000 description 1
- 208000009565 Pharyngeal Neoplasms Diseases 0.000 description 1
- 206010034811 Pharyngeal cancer Diseases 0.000 description 1
- 102100036052 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Human genes 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 206010050487 Pinealoblastoma Diseases 0.000 description 1
- 208000007641 Pinealoma Diseases 0.000 description 1
- 208000021308 Pituicytoma Diseases 0.000 description 1
- 201000005746 Pituitary adenoma Diseases 0.000 description 1
- 206010061538 Pituitary tumour benign Diseases 0.000 description 1
- 102100035194 Placenta growth factor Human genes 0.000 description 1
- 108010003044 Placental Lactogen Proteins 0.000 description 1
- 239000000381 Placental Lactogen Substances 0.000 description 1
- 102100040681 Platelet-derived growth factor C Human genes 0.000 description 1
- 102100040682 Platelet-derived growth factor D Human genes 0.000 description 1
- 101710148465 Platelet-derived growth factor receptor alpha Proteins 0.000 description 1
- 102100037596 Platelet-derived growth factor subunit A Human genes 0.000 description 1
- 102100040990 Platelet-derived growth factor subunit B Human genes 0.000 description 1
- 208000002151 Pleural effusion Diseases 0.000 description 1
- 201000008199 Pleuropulmonary blastoma Diseases 0.000 description 1
- 102100037664 Poly [ADP-ribose] polymerase tankyrase-1 Human genes 0.000 description 1
- 102100029799 Polycomb group protein ASXL1 Human genes 0.000 description 1
- 102100031338 Polycomb protein EED Human genes 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 241000985694 Polypodiopsida Species 0.000 description 1
- 102100021231 Pre-mRNA-processing-splicing factor 8 Human genes 0.000 description 1
- 206010065857 Primary Effusion Lymphoma Diseases 0.000 description 1
- 208000026149 Primary peritoneal carcinoma Diseases 0.000 description 1
- 206010057846 Primitive neuroectodermal tumour Diseases 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 102100034785 Programmed cell death protein 6 Human genes 0.000 description 1
- 108010076181 Proinsulin Proteins 0.000 description 1
- 102000003946 Prolactin Human genes 0.000 description 1
- 108010057464 Prolactin Proteins 0.000 description 1
- 108010002519 Prolactin Receptors Proteins 0.000 description 1
- 102100029000 Prolactin receptor Human genes 0.000 description 1
- 208000033766 Prolymphocytic Leukemia Diseases 0.000 description 1
- 208000033826 Promyelocytic Acute Leukemia Diseases 0.000 description 1
- 102100034945 Prorelaxin H1 Human genes 0.000 description 1
- 102100034949 Prorelaxin H2 Human genes 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 102100037687 Protein SSX1 Human genes 0.000 description 1
- 101710188315 Protein X Proteins 0.000 description 1
- 102100038777 Protein capicua homolog Human genes 0.000 description 1
- 102100024923 Protein kinase C beta type Human genes 0.000 description 1
- 102100034433 Protein kinase C-binding protein NELL2 Human genes 0.000 description 1
- 102100037516 Protein polybromo-1 Human genes 0.000 description 1
- 102100037787 Protein-tyrosine kinase 2-beta Human genes 0.000 description 1
- 108010089836 Proto-Oncogene Proteins c-met Proteins 0.000 description 1
- 108010019674 Proto-Oncogene Proteins c-sis Proteins 0.000 description 1
- 102100023347 Proto-oncogene tyrosine-protein kinase ROS Human genes 0.000 description 1
- 241000125945 Protoparvovirus Species 0.000 description 1
- 208000006930 Pseudomyxoma Peritonei Diseases 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 102000018795 RELT Human genes 0.000 description 1
- 108010052562 RELT Proteins 0.000 description 1
- 108091008551 RET receptors Proteins 0.000 description 1
- 101150111584 RHOA gene Proteins 0.000 description 1
- 108091008554 ROR receptors Proteins 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 108091008552 RYK receptors Proteins 0.000 description 1
- 208000034541 Rare lymphatic malformation Diseases 0.000 description 1
- 108091005682 Receptor kinases Proteins 0.000 description 1
- 101710100963 Receptor tyrosine-protein kinase erbB-4 Proteins 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 208000015634 Rectal Neoplasms Diseases 0.000 description 1
- 108010029031 Regulatory-Associated Protein of mTOR Proteins 0.000 description 1
- 102100040969 Regulatory-associated protein of mTOR Human genes 0.000 description 1
- 102100034944 Relaxin-3 Human genes 0.000 description 1
- 101710113452 Relaxin-3 Proteins 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- 102100028255 Renin Human genes 0.000 description 1
- 108090000783 Renin Proteins 0.000 description 1
- 241000712909 Reticuloendotheliosis virus Species 0.000 description 1
- 102100038042 Retinoblastoma-associated protein Human genes 0.000 description 1
- 208000008938 Rhabdoid tumor Diseases 0.000 description 1
- 208000005678 Rhabdomyoma Diseases 0.000 description 1
- 102100021446 Rho GTPase-activating protein 7 Human genes 0.000 description 1
- 102100023876 Rhombotin-2 Human genes 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 208000025316 Richter syndrome Diseases 0.000 description 1
- 102100032741 SET-binding protein Human genes 0.000 description 1
- 108091006735 SLC22A2 Proteins 0.000 description 1
- 102100025504 SLIT and NTRK-like protein 6 Human genes 0.000 description 1
- 108700028341 SMARCB1 Proteins 0.000 description 1
- 101150008214 SMARCB1 gene Proteins 0.000 description 1
- 108010017324 STAT3 Transcription Factor Proteins 0.000 description 1
- 101150063267 STAT5B gene Proteins 0.000 description 1
- 102100025746 SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 Human genes 0.000 description 1
- 101100485284 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CRM1 gene Proteins 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- 208000025280 Sacrococcygeal teratoma Diseases 0.000 description 1
- 208000004337 Salivary Gland Neoplasms Diseases 0.000 description 1
- 206010061934 Salivary gland cancer Diseases 0.000 description 1
- 241000593524 Sargassum patens Species 0.000 description 1
- 208000006938 Schwannomatosis Diseases 0.000 description 1
- 201000010208 Seminoma Diseases 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 102100029666 Serine/arginine-rich splicing factor 2 Human genes 0.000 description 1
- 102100026715 Serine/threonine-protein kinase STK11 Human genes 0.000 description 1
- 102100034136 Serine/threonine-protein kinase receptor R3 Human genes 0.000 description 1
- 102100026282 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform Human genes 0.000 description 1
- 102100036122 Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform Human genes 0.000 description 1
- 208000000097 Sertoli-Leydig cell tumor Diseases 0.000 description 1
- 208000002669 Sex Cord-Gonadal Stromal Tumors Diseases 0.000 description 1
- 208000009359 Sezary Syndrome Diseases 0.000 description 1
- 208000021388 Sezary disease Diseases 0.000 description 1
- 102100024040 Signal transducer and activator of transcription 3 Human genes 0.000 description 1
- 102100024474 Signal transducer and activator of transcription 5B Human genes 0.000 description 1
- 102000008115 Signaling Lymphocytic Activation Molecule Family Member 1 Human genes 0.000 description 1
- 101710163413 Signaling lymphocytic activation molecule Proteins 0.000 description 1
- 208000003252 Signet Ring Cell Carcinoma Diseases 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- 206010041067 Small cell lung cancer Diseases 0.000 description 1
- 102000013380 Smoothened Receptor Human genes 0.000 description 1
- 101710090597 Smoothened homolog Proteins 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 102100030458 Sodium/potassium-transporting ATPase subunit alpha-1 Human genes 0.000 description 1
- 208000021712 Soft tissue sarcoma Diseases 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 102000013275 Somatomedins Human genes 0.000 description 1
- 206010041329 Somatostatinoma Diseases 0.000 description 1
- 108010068542 Somatotropin Receptors Proteins 0.000 description 1
- 102100031874 Spectrin alpha chain, non-erythrocytic 1 Human genes 0.000 description 1
- 102100031711 Splicing factor 3B subunit 1 Human genes 0.000 description 1
- 102100038501 Splicing factor U2AF 35 kDa subunit Human genes 0.000 description 1
- 102100023986 Sulfotransferase 1A1 Human genes 0.000 description 1
- 206010042553 Superficial spreading melanoma stage unspecified Diseases 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 102100036417 Synaptotagmin-1 Human genes 0.000 description 1
- 230000024932 T cell mediated immunity Effects 0.000 description 1
- 230000006052 T cell proliferation Effects 0.000 description 1
- 102100039367 T-cell immunoglobulin and mucin domain-containing protein 4 Human genes 0.000 description 1
- 101710174757 T-cell immunoglobulin and mucin domain-containing protein 4 Proteins 0.000 description 1
- 201000008717 T-cell large granular lymphocyte leukemia Diseases 0.000 description 1
- 102100028676 T-cell leukemia/lymphoma protein 1A Human genes 0.000 description 1
- 102100028678 T-cell leukemia/lymphoma protein 1B Human genes 0.000 description 1
- 102100024219 T-cell surface glycoprotein CD1a Human genes 0.000 description 1
- 102100025244 T-cell surface glycoprotein CD5 Human genes 0.000 description 1
- 102100035268 T-cell surface protein tactile Human genes 0.000 description 1
- 208000020982 T-lymphoblastic lymphoma Diseases 0.000 description 1
- 101710114141 T-lymphocyte surface antigen Ly-9 Proteins 0.000 description 1
- 108091005735 TGF-beta receptors Proteins 0.000 description 1
- 101150052863 THY1 gene Proteins 0.000 description 1
- 102000005450 TIE receptors Human genes 0.000 description 1
- 108010006830 TIE receptors Proteins 0.000 description 1
- 102100038717 TYRO protein tyrosine kinase-binding protein Human genes 0.000 description 1
- 206010043276 Teratoma Diseases 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- 201000000331 Testicular germ cell cancer Diseases 0.000 description 1
- 206010057644 Testis cancer Diseases 0.000 description 1
- 210000000447 Th1 cell Anatomy 0.000 description 1
- 210000004241 Th2 cell Anatomy 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 206010043515 Throat cancer Diseases 0.000 description 1
- 102100034196 Thrombopoietin receptor Human genes 0.000 description 1
- 102100033523 Thy-1 membrane glycoprotein Human genes 0.000 description 1
- 201000009365 Thymic carcinoma Diseases 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- 102100029337 Thyrotropin receptor Human genes 0.000 description 1
- 102100035559 Transcriptional activator GLI3 Human genes 0.000 description 1
- 102100027671 Transcriptional repressor CTCF Human genes 0.000 description 1
- 102000046299 Transforming Growth Factor beta1 Human genes 0.000 description 1
- 102000011117 Transforming Growth Factor beta2 Human genes 0.000 description 1
- 101800002279 Transforming growth factor beta-1 Proteins 0.000 description 1
- 101800000304 Transforming growth factor beta-2 Proteins 0.000 description 1
- 102000056172 Transforming growth factor beta-3 Human genes 0.000 description 1
- 108090000097 Transforming growth factor beta-3 Proteins 0.000 description 1
- 102100022387 Transforming protein RhoA Human genes 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 102000005937 Tropomyosin Human genes 0.000 description 1
- 108010030743 Tropomyosin Proteins 0.000 description 1
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 1
- 108010047933 Tumor Necrosis Factor alpha-Induced Protein 3 Proteins 0.000 description 1
- 102100024596 Tumor necrosis factor alpha-induced protein 3 Human genes 0.000 description 1
- 101710097155 Tumor necrosis factor ligand superfamily member 12 Proteins 0.000 description 1
- 102100024585 Tumor necrosis factor ligand superfamily member 13 Human genes 0.000 description 1
- 108050002568 Tumor necrosis factor ligand superfamily member 6 Proteins 0.000 description 1
- 102100029690 Tumor necrosis factor receptor superfamily member 13C Human genes 0.000 description 1
- 102100026716 Tumor necrosis factor receptor superfamily member 19L Human genes 0.000 description 1
- 101710187830 Tumor necrosis factor receptor superfamily member 1B Proteins 0.000 description 1
- 102100022156 Tumor necrosis factor receptor superfamily member 3 Human genes 0.000 description 1
- 102100040403 Tumor necrosis factor receptor superfamily member 6 Human genes 0.000 description 1
- 102100033254 Tumor suppressor ARF Human genes 0.000 description 1
- 102100037333 Tyrosine-protein kinase Fes/Fps Human genes 0.000 description 1
- 102100033444 Tyrosine-protein kinase JAK2 Human genes 0.000 description 1
- 102100025387 Tyrosine-protein kinase JAK3 Human genes 0.000 description 1
- 102100022007 Tyrosine-protein kinase receptor Tie-1 Human genes 0.000 description 1
- 101710116241 Tyrosine-protein phosphatase non-receptor type 11 Proteins 0.000 description 1
- 102100033020 Tyrosine-protein phosphatase non-receptor type 12 Human genes 0.000 description 1
- 102100029088 Ubiquitin carboxyl-terminal hydrolase 8 Human genes 0.000 description 1
- 206010046431 Urethral cancer Diseases 0.000 description 1
- 206010046458 Urethral neoplasms Diseases 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 208000008385 Urogenital Neoplasms Diseases 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 208000002495 Uterine Neoplasms Diseases 0.000 description 1
- 208000009311 VIPoma Diseases 0.000 description 1
- 108010073925 Vascular Endothelial Growth Factor B Proteins 0.000 description 1
- 108010073923 Vascular Endothelial Growth Factor C Proteins 0.000 description 1
- 108010073919 Vascular Endothelial Growth Factor D Proteins 0.000 description 1
- 108010053100 Vascular Endothelial Growth Factor Receptor-3 Proteins 0.000 description 1
- 102100038217 Vascular endothelial growth factor B Human genes 0.000 description 1
- 102100038232 Vascular endothelial growth factor C Human genes 0.000 description 1
- 102100038234 Vascular endothelial growth factor D Human genes 0.000 description 1
- 102100033178 Vascular endothelial growth factor receptor 1 Human genes 0.000 description 1
- 102100033177 Vascular endothelial growth factor receptor 2 Human genes 0.000 description 1
- 208000014070 Vestibular schwannoma Diseases 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 206010047741 Vulval cancer Diseases 0.000 description 1
- 208000004354 Vulvar Neoplasms Diseases 0.000 description 1
- 102000040856 WT1 Human genes 0.000 description 1
- 108700020467 WT1 Proteins 0.000 description 1
- 101150084041 WT1 gene Proteins 0.000 description 1
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 description 1
- 208000021146 Warthin tumor Diseases 0.000 description 1
- 208000000260 Warts Diseases 0.000 description 1
- 208000008383 Wilms tumor Diseases 0.000 description 1
- JCZSFCLRSONYLH-UHFFFAOYSA-N Wyosine Natural products N=1C(C)=CN(C(C=2N=C3)=O)C=1N(C)C=2N3C1OC(CO)C(O)C1O JCZSFCLRSONYLH-UHFFFAOYSA-N 0.000 description 1
- 101150094313 XPO1 gene Proteins 0.000 description 1
- 208000012018 Yolk sac tumor Diseases 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- 102100028936 Zinc finger protein 668 Human genes 0.000 description 1
- 102100037798 Zinc finger protein Aiolos Human genes 0.000 description 1
- CWRILEGKIAOYKP-SSDOTTSWSA-M [(2r)-3-acetyloxy-2-hydroxypropyl] 2-aminoethyl phosphate Chemical compound CC(=O)OC[C@@H](O)COP([O-])(=O)OCCN CWRILEGKIAOYKP-SSDOTTSWSA-M 0.000 description 1
- NOXMCJDDSWCSIE-DAGMQNCNSA-N [[(2R,3S,4R,5R)-5-(2-amino-4-oxo-3H-pyrrolo[2,3-d]pyrimidin-7-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound C1=2NC(N)=NC(=O)C=2C=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O NOXMCJDDSWCSIE-DAGMQNCNSA-N 0.000 description 1
- AZJLCKAEZFNJDI-DJLDLDEBSA-N [[(2r,3s,5r)-5-(4-aminopyrrolo[2,3-d]pyrimidin-7-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound C1=CC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 AZJLCKAEZFNJDI-DJLDLDEBSA-N 0.000 description 1
- HDRRAMINWIWTNU-NTSWFWBYSA-N [[(2s,5r)-5-(2-amino-6-oxo-3h-purin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@H]1CC[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HDRRAMINWIWTNU-NTSWFWBYSA-N 0.000 description 1
- ARLKCWCREKRROD-POYBYMJQSA-N [[(2s,5r)-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)CC1 ARLKCWCREKRROD-POYBYMJQSA-N 0.000 description 1
- PGAVKCOVUIYSFO-UHFFFAOYSA-N [[5-(2,4-dioxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound OC1C(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)OC1N1C(=O)NC(=O)C=C1 PGAVKCOVUIYSFO-UHFFFAOYSA-N 0.000 description 1
- ZXZIQGYRHQJWSY-NKWVEPMBSA-N [hydroxy-[[(2s,5r)-5-(6-oxo-3h-purin-9-yl)oxolan-2-yl]methoxy]phosphoryl] phosphono hydrogen phosphate Chemical compound O1[C@H](COP(O)(=O)OP(O)(=O)OP(O)(=O)O)CC[C@@H]1N1C(NC=NC2=O)=C2N=C1 ZXZIQGYRHQJWSY-NKWVEPMBSA-N 0.000 description 1
- 206010059394 acanthoma Diseases 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 208000006336 acinar cell carcinoma Diseases 0.000 description 1
- 208000004064 acoustic neuroma Diseases 0.000 description 1
- 206010000583 acral lentiginous melanoma Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000488 activin Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 208000021841 acute erythroid leukemia Diseases 0.000 description 1
- 208000013593 acute megakaryoblastic leukemia Diseases 0.000 description 1
- 208000020700 acute megakaryocytic leukemia Diseases 0.000 description 1
- 208000026784 acute myeloblastic leukemia with maturation Diseases 0.000 description 1
- 208000002517 adenoid cystic carcinoma Diseases 0.000 description 1
- 208000026562 adenomatoid odontogenic tumor Diseases 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 210000001789 adipocyte Anatomy 0.000 description 1
- 208000020990 adrenal cortex carcinoma Diseases 0.000 description 1
- 230000001919 adrenal effect Effects 0.000 description 1
- 210000004100 adrenal gland Anatomy 0.000 description 1
- 208000007128 adrenocortical carcinoma Diseases 0.000 description 1
- 208000015230 aggressive NK-cell leukemia Diseases 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 210000001132 alveolar macrophage Anatomy 0.000 description 1
- 208000008524 alveolar soft part sarcoma Diseases 0.000 description 1
- 210000001053 ameloblast Anatomy 0.000 description 1
- 230000002707 ameloblastic effect Effects 0.000 description 1
- 150000003862 amino acid derivatives Chemical class 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 210000004381 amniotic fluid Anatomy 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000000868 anti-mullerian hormone Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 201000011165 anus cancer Diseases 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 238000003782 apoptosis assay Methods 0.000 description 1
- 208000021780 appendiceal neoplasm Diseases 0.000 description 1
- 210000004396 apud cell Anatomy 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 210000001130 astrocyte Anatomy 0.000 description 1
- 210000002453 autonomic neuron Anatomy 0.000 description 1
- 239000003855 balanced salt solution Substances 0.000 description 1
- 210000004082 barrier epithelial cell Anatomy 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 210000002947 bartholin's gland Anatomy 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 201000009036 biliary tract cancer Diseases 0.000 description 1
- 208000020790 biliary tract neoplasm Diseases 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 201000009076 bladder urachal carcinoma Diseases 0.000 description 1
- 201000000053 blastoma Diseases 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 210000002449 bone cell Anatomy 0.000 description 1
- 201000011143 bone giant cell tumor Diseases 0.000 description 1
- 208000012172 borderline epithelial tumor of ovary Diseases 0.000 description 1
- 108010006025 bovine growth hormone Proteins 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 210000000465 brunner gland Anatomy 0.000 description 1
- 210000002533 bulbourethral gland Anatomy 0.000 description 1
- 102100032791 cAMP-dependent protein kinase catalytic subunit alpha Human genes 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000002619 cancer immunotherapy Methods 0.000 description 1
- 208000035269 cancer or benign tumor Diseases 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 208000002458 carcinoid tumor Diseases 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 210000004413 cardiac myocyte Anatomy 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 210000003321 cartilage cell Anatomy 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000020411 cell activation Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000022534 cell killing Effects 0.000 description 1
- 230000009134 cell regulation Effects 0.000 description 1
- 229940030156 cell vaccine Drugs 0.000 description 1
- 230000005889 cellular cytotoxicity Effects 0.000 description 1
- 210000000250 cementoblast Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 201000007335 cerebellar astrocytoma Diseases 0.000 description 1
- 208000030239 cerebral astrocytoma Diseases 0.000 description 1
- 210000002939 cerumen Anatomy 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 210000004691 chief cell of stomach Anatomy 0.000 description 1
- 210000003763 chloroplast Anatomy 0.000 description 1
- 230000011088 chloroplast localization Effects 0.000 description 1
- 208000006990 cholangiocarcinoma Diseases 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 1
- 201000006778 chronic monocytic leukemia Diseases 0.000 description 1
- 201000010902 chronic myelomonocytic leukemia Diseases 0.000 description 1
- 201000010903 chronic neutrophilic leukemia Diseases 0.000 description 1
- 210000000254 ciliated cell Anatomy 0.000 description 1
- 108010072917 class-I restricted T cell-associated molecule Proteins 0.000 description 1
- 238000011198 co-culture assay Methods 0.000 description 1
- 201000010276 collecting duct carcinoma Diseases 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 210000000555 contractile cell Anatomy 0.000 description 1
- OFEZSBMBBKLLBJ-BAJZRUMYSA-N cordycepin Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)C[C@H]1O OFEZSBMBBKLLBJ-BAJZRUMYSA-N 0.000 description 1
- OFEZSBMBBKLLBJ-UHFFFAOYSA-N cordycepine Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(CO)CC1O OFEZSBMBBKLLBJ-UHFFFAOYSA-N 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 210000004246 corpus luteum Anatomy 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001054 cortical effect Effects 0.000 description 1
- 238000012364 cultivation method Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 208000017563 cutaneous Paget disease Diseases 0.000 description 1
- 208000017763 cutaneous neuroendocrine carcinoma Diseases 0.000 description 1
- 206010052015 cytokine release syndrome Diseases 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 1
- HAAZLUGHYHWQIW-KVQBGUIXSA-N dGTP Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HAAZLUGHYHWQIW-KVQBGUIXSA-N 0.000 description 1
- UFJPAQSLHAGEBL-RRKCRQDMSA-N dITP Chemical compound O1[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C[C@@H]1N1C(N=CNC2=O)=C2N=C1 UFJPAQSLHAGEBL-RRKCRQDMSA-N 0.000 description 1
- NHVNXKFIZYSCEB-XLPZGREQSA-N dTTP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C1 NHVNXKFIZYSCEB-XLPZGREQSA-N 0.000 description 1
- URGJWIFLBWJRMF-JGVFFNPUSA-N ddTTP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)CC1 URGJWIFLBWJRMF-JGVFFNPUSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 108010025838 dectin 1 Proteins 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229940029030 dendritic cell vaccine Drugs 0.000 description 1
- 239000005549 deoxyribonucleoside Substances 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 239000005546 dideoxynucleotide Substances 0.000 description 1
- 206010012818 diffuse large B-cell lymphoma Diseases 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 102000038379 digestive enzymes Human genes 0.000 description 1
- 108091007734 digestive enzymes Proteins 0.000 description 1
- 210000002249 digestive system Anatomy 0.000 description 1
- ZPTBLXKRQACLCR-XVFCMESISA-N dihydrouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)CC1 ZPTBLXKRQACLCR-XVFCMESISA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000036267 drug metabolism Effects 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 210000001198 duodenum Anatomy 0.000 description 1
- 201000004428 dysembryoplastic neuroepithelial tumor Diseases 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 201000008184 embryoma Diseases 0.000 description 1
- 210000000750 endocrine system Anatomy 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 208000001991 endodermal sinus tumor Diseases 0.000 description 1
- 230000002357 endometrial effect Effects 0.000 description 1
- 208000027858 endometrioid tumor Diseases 0.000 description 1
- 210000004696 endometrium Anatomy 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 210000004188 enterochromaffin-like cell Anatomy 0.000 description 1
- 210000003158 enteroendocrine cell Anatomy 0.000 description 1
- 208000037902 enteropathy Diseases 0.000 description 1
- 238000003114 enzyme-linked immunosorbent spot assay Methods 0.000 description 1
- 108060002566 ephrin Proteins 0.000 description 1
- 102000012803 ephrin Human genes 0.000 description 1
- 210000001339 epidermal cell Anatomy 0.000 description 1
- 210000005175 epidermal keratinocyte Anatomy 0.000 description 1
- 210000003426 epidermal langerhans cell Anatomy 0.000 description 1
- 201000004101 esophageal cancer Diseases 0.000 description 1
- 208000032099 esthesioneuroblastoma Diseases 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 201000005884 exanthem Diseases 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 210000003499 exocrine gland Anatomy 0.000 description 1
- 108700002148 exportin 1 Proteins 0.000 description 1
- 210000003722 extracellular fluid Anatomy 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 201000008819 extrahepatic bile duct carcinoma Diseases 0.000 description 1
- 208000030533 eye disease Diseases 0.000 description 1
- 210000000744 eyelid Anatomy 0.000 description 1
- 201000010972 female reproductive endometrioid cancer Diseases 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 102000003684 fibroblast growth factor 13 Human genes 0.000 description 1
- 108090000047 fibroblast growth factor 13 Proteins 0.000 description 1
- 210000004904 fingernail bed Anatomy 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- IJJVMEJXYNJXOJ-UHFFFAOYSA-N fluquinconazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1N1C(=O)C2=CC(F)=CC=C2N=C1N1C=NC=N1 IJJVMEJXYNJXOJ-UHFFFAOYSA-N 0.000 description 1
- 201000003444 follicular lymphoma Diseases 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 210000000232 gallbladder Anatomy 0.000 description 1
- 108010044804 gamma-glutamyl-seryl-glycine Proteins 0.000 description 1
- 201000008361 ganglioneuroma Diseases 0.000 description 1
- 230000027119 gastric acid secretion Effects 0.000 description 1
- 210000002618 gastric chief cell Anatomy 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 201000011587 gastric lymphoma Diseases 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 201000003115 germ cell cancer Diseases 0.000 description 1
- 201000008822 gestational choriocarcinoma Diseases 0.000 description 1
- 201000007116 gestational trophoblastic neoplasm Diseases 0.000 description 1
- 230000000762 glandular Effects 0.000 description 1
- 208000005017 glioblastoma Diseases 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 150000002327 glycerophospholipids Chemical class 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 235000019410 glycyrrhizin Nutrition 0.000 description 1
- 239000003163 gonadal steroid hormone Substances 0.000 description 1
- 208000003064 gonadoblastoma Diseases 0.000 description 1
- 239000002622 gonadotropin Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 210000003772 granulosa lutein cell Anatomy 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 229940029575 guanosine Drugs 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 201000010235 heart cancer Diseases 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 208000024348 heart neoplasm Diseases 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 201000002222 hemangioblastoma Diseases 0.000 description 1
- 208000014951 hematologic disease Diseases 0.000 description 1
- 208000018706 hematopoietic system disease Diseases 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 201000011045 hereditary breast ovarian cancer syndrome Diseases 0.000 description 1
- 239000008241 heterogeneous mixture Substances 0.000 description 1
- 208000002557 hidradenitis Diseases 0.000 description 1
- 208000029824 high grade glioma Diseases 0.000 description 1
- 208000018060 hilar cholangiocarcinoma Diseases 0.000 description 1
- 235000020256 human milk Nutrition 0.000 description 1
- 210000004251 human milk Anatomy 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 201000006866 hypopharynx cancer Diseases 0.000 description 1
- 230000002267 hypothalamic effect Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 102000027596 immune receptors Human genes 0.000 description 1
- 108091008915 immune receptors Proteins 0.000 description 1
- 239000012274 immune-checkpoint protein inhibitor Substances 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 201000004933 in situ carcinoma Diseases 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000006882 induction of apoptosis Effects 0.000 description 1
- 201000004653 inflammatory breast carcinoma Diseases 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 239000000893 inhibin Substances 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 108010043603 integrin alpha4beta7 Proteins 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 108090000681 interleukin 20 Proteins 0.000 description 1
- 102000004114 interleukin 20 Human genes 0.000 description 1
- 108040006870 interleukin-10 receptor activity proteins Proteins 0.000 description 1
- 108040006873 interleukin-11 receptor activity proteins Proteins 0.000 description 1
- 108040003607 interleukin-13 receptor activity proteins Proteins 0.000 description 1
- 108040002039 interleukin-15 receptor activity proteins Proteins 0.000 description 1
- 102000008616 interleukin-15 receptor activity proteins Human genes 0.000 description 1
- 230000004073 interleukin-2 production Effects 0.000 description 1
- 108040001834 interleukin-20 receptor activity proteins Proteins 0.000 description 1
- 108040002099 interleukin-21 receptor activity proteins Proteins 0.000 description 1
- 102000008640 interleukin-21 receptor activity proteins Human genes 0.000 description 1
- 108010074109 interleukin-22 Proteins 0.000 description 1
- 108010027445 interleukin-22 receptor Proteins 0.000 description 1
- 102000009548 interleukin-22 receptor activity proteins Human genes 0.000 description 1
- 108040001844 interleukin-23 receptor activity proteins Proteins 0.000 description 1
- 108040010246 interleukin-27 receptor activity proteins Proteins 0.000 description 1
- 108040006856 interleukin-3 receptor activity proteins Proteins 0.000 description 1
- 108040006852 interleukin-4 receptor activity proteins Proteins 0.000 description 1
- 108040006859 interleukin-5 receptor activity proteins Proteins 0.000 description 1
- 108040006858 interleukin-6 receptor activity proteins Proteins 0.000 description 1
- 108040006861 interleukin-7 receptor activity proteins Proteins 0.000 description 1
- 108040006862 interleukin-9 receptor activity proteins Proteins 0.000 description 1
- 210000002570 interstitial cell Anatomy 0.000 description 1
- 208000028774 intestinal disease Diseases 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 201000002529 islet cell tumor Diseases 0.000 description 1
- 201000005992 juvenile myelomonocytic leukemia Diseases 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 210000001865 kupffer cell Anatomy 0.000 description 1
- 210000004561 lacrimal apparatus Anatomy 0.000 description 1
- 230000001381 lactotroph Effects 0.000 description 1
- 210000003644 lens cell Anatomy 0.000 description 1
- 208000011080 lentigo maligna melanoma Diseases 0.000 description 1
- 108010019813 leptin receptors Proteins 0.000 description 1
- 230000029226 lipidation Effects 0.000 description 1
- 206010024627 liposarcoma Diseases 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 208000012866 low blood pressure Diseases 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 208000016992 lung adenocarcinoma in situ Diseases 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 208000024169 luteoma of pregnancy Diseases 0.000 description 1
- 208000012804 lymphangiosarcoma Diseases 0.000 description 1
- 230000001926 lymphatic effect Effects 0.000 description 1
- 208000003747 lymphoid leukemia Diseases 0.000 description 1
- 210000003563 lymphoid tissue Anatomy 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 201000000564 macroglobulinemia Diseases 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- 208000030883 malignant astrocytoma Diseases 0.000 description 1
- 201000011614 malignant glioma Diseases 0.000 description 1
- 208000006178 malignant mesothelioma Diseases 0.000 description 1
- 201000009020 malignant peripheral nerve sheath tumor Diseases 0.000 description 1
- 208000015179 malignant superior sulcus neoplasm Diseases 0.000 description 1
- 201000001117 malignant triton tumor Diseases 0.000 description 1
- 208000026045 malignant tumor of parathyroid gland Diseases 0.000 description 1
- 208000027202 mammary Paget disease Diseases 0.000 description 1
- 240000004308 marijuana Species 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 208000000516 mast-cell leukemia Diseases 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 210000001006 meconium Anatomy 0.000 description 1
- 201000000349 mediastinal cancer Diseases 0.000 description 1
- 208000029586 mediastinal germ cell tumor Diseases 0.000 description 1
- 208000023356 medullary thyroid gland carcinoma Diseases 0.000 description 1
- 201000008203 medulloepithelioma Diseases 0.000 description 1
- 210000003071 memory t lymphocyte Anatomy 0.000 description 1
- 206010027191 meningioma Diseases 0.000 description 1
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 208000037970 metastatic squamous neck cancer Diseases 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 238000002493 microarray Methods 0.000 description 1
- 210000000274 microglia Anatomy 0.000 description 1
- 230000002025 microglial effect Effects 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 238000007431 microscopic evaluation Methods 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 210000000110 microvilli Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 208000024191 minimally invasive lung adenocarcinoma Diseases 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 230000025608 mitochondrion localization Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 201000006894 monocytic leukemia Diseases 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 208000022669 mucinous neoplasm Diseases 0.000 description 1
- 206010051747 multiple endocrine neoplasia Diseases 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 210000000066 myeloid cell Anatomy 0.000 description 1
- 201000005987 myeloid sarcoma Diseases 0.000 description 1
- 210000000107 myocyte Anatomy 0.000 description 1
- 208000009091 myxoma Diseases 0.000 description 1
- OHDXDNUPVVYWOV-UHFFFAOYSA-N n-methyl-1-(2-naphthalen-1-ylsulfanylphenyl)methanamine Chemical compound CNCC1=CC=CC=C1SC1=CC=CC2=CC=CC=C12 OHDXDNUPVVYWOV-UHFFFAOYSA-N 0.000 description 1
- 239000002088 nanocapsule Substances 0.000 description 1
- 239000002077 nanosphere Substances 0.000 description 1
- 208000014761 nasopharyngeal type undifferentiated carcinoma Diseases 0.000 description 1
- 201000011216 nasopharynx carcinoma Diseases 0.000 description 1
- 230000001338 necrotic effect Effects 0.000 description 1
- 208000018280 neoplasm of mediastinum Diseases 0.000 description 1
- 208000028732 neoplasm with perivascular epithelioid cell differentiation Diseases 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 210000005155 neural progenitor cell Anatomy 0.000 description 1
- 208000007538 neurilemmoma Diseases 0.000 description 1
- 201000009494 neurilemmomatosis Diseases 0.000 description 1
- 208000027831 neuroepithelial neoplasm Diseases 0.000 description 1
- 208000029974 neurofibrosarcoma Diseases 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 201000000032 nodular malignant melanoma Diseases 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- 210000001331 nose Anatomy 0.000 description 1
- 239000002853 nucleic acid probe Substances 0.000 description 1
- 210000001915 nurse cell Anatomy 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 201000002575 ocular melanoma Diseases 0.000 description 1
- 210000001706 olfactory mucosa Anatomy 0.000 description 1
- 206010073131 oligoastrocytoma Diseases 0.000 description 1
- 210000000287 oocyte Anatomy 0.000 description 1
- 210000002380 oogonia Anatomy 0.000 description 1
- 201000011130 optic nerve sheath meningioma Diseases 0.000 description 1
- 208000022982 optic pathway glioma Diseases 0.000 description 1
- 201000006958 oropharynx cancer Diseases 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- 210000004409 osteocyte Anatomy 0.000 description 1
- 230000002138 osteoinductive effect Effects 0.000 description 1
- 208000021284 ovarian germ cell tumor Diseases 0.000 description 1
- 210000004681 ovum Anatomy 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 201000011116 pancreatic cholera Diseases 0.000 description 1
- 210000000277 pancreatic duct Anatomy 0.000 description 1
- 201000002530 pancreatic endocrine carcinoma Diseases 0.000 description 1
- 208000022102 pancreatic neuroendocrine neoplasm Diseases 0.000 description 1
- 208000003154 papilloma Diseases 0.000 description 1
- 208000029211 papillomatosis Diseases 0.000 description 1
- 208000007312 paraganglioma Diseases 0.000 description 1
- 201000007052 paranasal sinus cancer Diseases 0.000 description 1
- 230000000849 parathyroid Effects 0.000 description 1
- 210000002990 parathyroid gland Anatomy 0.000 description 1
- 239000000199 parathyroid hormone Substances 0.000 description 1
- 229960001319 parathyroid hormone Drugs 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 208000030940 penile carcinoma Diseases 0.000 description 1
- 239000000813 peptide hormone Substances 0.000 description 1
- 229930192851 perforin Natural products 0.000 description 1
- 210000003668 pericyte Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 210000002856 peripheral neuron Anatomy 0.000 description 1
- 201000005207 perivascular epithelioid cell tumor Diseases 0.000 description 1
- 210000003800 pharynx Anatomy 0.000 description 1
- 208000028591 pheochromocytoma Diseases 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 150000003905 phosphatidylinositols Chemical class 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 210000004694 pigment cell Anatomy 0.000 description 1
- 210000001127 pigmented epithelial cell Anatomy 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 201000004119 pineal parenchymal tumor of intermediate differentiation Diseases 0.000 description 1
- 210000000793 pinealocyte Anatomy 0.000 description 1
- 201000003113 pineoblastoma Diseases 0.000 description 1
- 208000021310 pituitary gland adenoma Diseases 0.000 description 1
- 208000010916 pituitary tumor Diseases 0.000 description 1
- 230000003169 placental effect Effects 0.000 description 1
- 208000010626 plasma cell neoplasm Diseases 0.000 description 1
- 108010017843 platelet-derived growth factor A Proteins 0.000 description 1
- 210000000557 podocyte Anatomy 0.000 description 1
- 208000024246 polyembryoma Diseases 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 235000012015 potatoes Nutrition 0.000 description 1
- 208000016800 primary central nervous system lymphoma Diseases 0.000 description 1
- 230000005522 programmed cell death Effects 0.000 description 1
- 230000007126 proinflammatory cytokine response Effects 0.000 description 1
- 229940097325 prolactin Drugs 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001141 propulsive effect Effects 0.000 description 1
- 108010087851 prorelaxin Proteins 0.000 description 1
- GPTFURBXHJWNHR-UHFFFAOYSA-N protopine Chemical compound C1=C2C(=O)CC3=CC=C4OCOC4=C3CN(C)CCC2=CC2=C1OCO2 GPTFURBXHJWNHR-UHFFFAOYSA-N 0.000 description 1
- 210000000512 proximal kidney tubule Anatomy 0.000 description 1
- 235000015136 pumpkin Nutrition 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- QQXQGKSPIMGUIZ-AEZJAUAXSA-N queuosine Chemical compound C1=2C(=O)NC(N)=NC=2N([C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)C=C1CN[C@H]1C=C[C@H](O)[C@@H]1O QQXQGKSPIMGUIZ-AEZJAUAXSA-N 0.000 description 1
- 108700022487 rRNA Genes Proteins 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 206010038038 rectal cancer Diseases 0.000 description 1
- 201000001275 rectum cancer Diseases 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000014493 regulation of gene expression Effects 0.000 description 1
- 210000003289 regulatory T cell Anatomy 0.000 description 1
- 208000030859 renal pelvis/ureter urothelial carcinoma Diseases 0.000 description 1
- 210000004994 reproductive system Anatomy 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000002207 retinal effect Effects 0.000 description 1
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 239000002342 ribonucleoside Substances 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 201000007416 salivary gland adenoid cystic carcinoma Diseases 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 206010039667 schwannoma Diseases 0.000 description 1
- 201000008407 sebaceous adenocarcinoma Diseases 0.000 description 1
- 210000001732 sebaceous gland Anatomy 0.000 description 1
- 210000002374 sebum Anatomy 0.000 description 1
- 208000011581 secondary neoplasm Diseases 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 210000000697 sensory organ Anatomy 0.000 description 1
- 210000003728 serous cell Anatomy 0.000 description 1
- 231100000004 severe toxicity Toxicity 0.000 description 1
- 208000028467 sex cord-stromal tumor Diseases 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 201000008123 signet ring cell adenocarcinoma Diseases 0.000 description 1
- 210000002363 skeletal muscle cell Anatomy 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 201000008261 skin carcinoma Diseases 0.000 description 1
- 210000004927 skin cell Anatomy 0.000 description 1
- 201000010153 skin papilloma Diseases 0.000 description 1
- 208000000649 small cell carcinoma Diseases 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 201000002314 small intestine cancer Diseases 0.000 description 1
- 210000001622 small lutein cell Anatomy 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 210000002325 somatostatin-secreting cell Anatomy 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 210000004336 spermatogonium Anatomy 0.000 description 1
- 150000003408 sphingolipids Chemical class 0.000 description 1
- 206010062261 spinal cord neoplasm Diseases 0.000 description 1
- 208000037959 spinal tumor Diseases 0.000 description 1
- 206010062113 splenic marginal zone lymphoma Diseases 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 210000004500 stellate cell Anatomy 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 210000000352 storage cell Anatomy 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 210000002536 stromal cell Anatomy 0.000 description 1
- 230000004960 subcellular localization Effects 0.000 description 1
- 208000030457 superficial spreading melanoma Diseases 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 201000008205 supratentorial primitive neuroectodermal tumor Diseases 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
- 206010042863 synovial sarcoma Diseases 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 210000001779 taste bud Anatomy 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 210000003684 theca cell Anatomy 0.000 description 1
- 208000001644 thecoma Diseases 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
- 208000030901 thyroid gland follicular carcinoma Diseases 0.000 description 1
- 208000030045 thyroid gland papillary carcinoma Diseases 0.000 description 1
- 208000019179 thyroid gland undifferentiated (anaplastic) carcinoma Diseases 0.000 description 1
- 229940034208 thyroxine Drugs 0.000 description 1
- XUIIKFGFIJCVMT-UHFFFAOYSA-N thyroxine-binding globulin Natural products IC1=CC(CC([NH3+])C([O-])=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-UHFFFAOYSA-N 0.000 description 1
- 210000004906 toe nail Anatomy 0.000 description 1
- 210000000515 tooth Anatomy 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 210000003014 totipotent stem cell Anatomy 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 201000007363 trachea carcinoma Diseases 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- 238000003146 transient transfection Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 102000027257 transmembrane receptors Human genes 0.000 description 1
- 108091008578 transmembrane receptors Proteins 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 210000002014 trichocyte Anatomy 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- 108010064892 trkC Receptor Proteins 0.000 description 1
- 230000010415 tropism Effects 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 102000003390 tumor necrosis factor Human genes 0.000 description 1
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 1
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 1
- 102000042286 type I cytokine receptor family Human genes 0.000 description 1
- 108091052247 type I cytokine receptor family Proteins 0.000 description 1
- 210000003954 umbilical cord Anatomy 0.000 description 1
- 208000018417 undifferentiated high grade pleomorphic sarcoma of bone Diseases 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 208000023747 urothelial carcinoma Diseases 0.000 description 1
- 206010046766 uterine cancer Diseases 0.000 description 1
- 208000037965 uterine sarcoma Diseases 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 206010046885 vaginal cancer Diseases 0.000 description 1
- 208000013139 vaginal neoplasm Diseases 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 208000008662 verrucous carcinoma Diseases 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 239000000277 virosome Substances 0.000 description 1
- 210000001849 von ebner gland Anatomy 0.000 description 1
- 201000005102 vulva cancer Diseases 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- JCZSFCLRSONYLH-QYVSTXNMSA-N wyosin Chemical compound N=1C(C)=CN(C(C=2N=C3)=O)C=1N(C)C=2N3[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O JCZSFCLRSONYLH-QYVSTXNMSA-N 0.000 description 1
- 108010073629 xeroderma pigmentosum group F protein Proteins 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K40/00—Cellular immunotherapy
- A61K40/10—Cellular immunotherapy characterised by the cell type used
- A61K40/11—T-cells, e.g. tumour infiltrating lymphocytes [TIL] or regulatory T [Treg] cells; Lymphokine-activated killer [LAK] cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K40/00—Cellular immunotherapy
- A61K40/10—Cellular immunotherapy characterised by the cell type used
- A61K40/13—B-cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K40/00—Cellular immunotherapy
- A61K40/10—Cellular immunotherapy characterised by the cell type used
- A61K40/19—Dendritic cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K40/00—Cellular immunotherapy
- A61K40/20—Cellular immunotherapy characterised by the effect or the function of the cells
- A61K40/24—Antigen-presenting cells [APC]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K40/00—Cellular immunotherapy
- A61K40/40—Cellular immunotherapy characterised by antigens that are targeted or presented by cells of the immune system
- A61K40/41—Vertebrate antigens
- A61K40/42—Cancer antigens
- A61K40/4201—Neoantigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0635—B lymphocytes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0639—Dendritic cells, e.g. Langherhans cells in the epidermis
Definitions
- Immunotherapy can involve modifying a patient’s own immune cells to redirect cellular cytotoxicity to cells of interest, for example tumor cells.
- One mechanism can involve T-cell recognition of epitopes that are displayed on the surface of tumor cells.
- Immunotherapies that boost the ability of T cells to recognize and destroy tumor cells can enhance therapeutic efficacy.
- compositions and methods of the present disclosure address this need, and provide additional advantages as well.
- the various aspects of the disclosure provide amodified antigen-presenting cell (APC) comprising a neoantigen.
- An aspect of the present disclosure provides a modified antigen-presenting cell (APC) comprising a neoantigen.
- the APC may be a B cell.
- the APC may be a dendritic cell.
- the neoantigen may comprise a peptide fragment of a protein encoded by a mutated gene, wherein the gene is selected from ABL1, ACOl 1997, ACVR2A, AFP, AKT1, ALK, ALPPL2, ANAPC1, APC, ARID1A, AR, AR-v7, ASCL2, ⁇ 2 ⁇ , BRAF, BTK, C15ORF40, CDH1, CLDN6, CNOT1, CT45A5, CTAG1B, DCT, DKK4, EEF1B2, EEF1DP3, EGFR, EIF2B3, env, EPHB2, ERBB3, ESR1, ESRP1, FAM11 IB, FGFR3, FRG1B, GAGE1, GAGE 10, GATA3, GBP3, HER2, IDH1, JAK1, KIT, KRAS, LMAN1, MABEB 16, MAGEA1, MAGEA10, MAGEA4, MAGEA8, MAGEB 17, MAGEB4, MAGEC1, MEK, MLANA, M
- the neoantigen may comprise a peptide fragment of a protein encoded by a mutated gene, wherein the gene is selected from JAK2, KRAS, BRAF, TP53, PIK3CA, EGFR, IDH1, NRAS, CTNNB1, NPM1, CALR, FGFR3, CDKN2A, KIT, MYD88, APC, HRAS, MED12, DNMT3A, GNAS, IDH2, KCNJ5, PTEN, NOTCH1, SF3B1, FLT3, ASXL1, SRSF2, FOXL2, PTPN11, GNAQ, RET, HLA-A, MPL, IKZF1, KMT2C, TET2, PDGFRA, FBXW7, H3F3A, ALK, CEBPA, ESR1, AKT1, RUNX1, GNA11, VHL, WT1, U2AF1, ABL1, ERBB2, DICER1, NOTCH4, EZH2, HNF1A
- the neoantigen may be selected based on a genetic profile of a tumor sample from a subject. In some embodiments, the neoantigen may be selected based on a somatic mutation profile of a tumor sample from an individual.
- the present disclosure may provide a composition comprising: a modified APC and a T cell capable of specifically binding the neoantigen of the modified APC.
- the T cell may be a T cell having contacted with the modified APC.
- the T cell may be a modified T cell that comprises a switch molecule, wherein the switch molecule comprises: an extracellular domain (ECD) of a protein that, in an unmodified T cell, elicits an immune cell inactivation signal upon binding to a ligand of the protein, wherein the ECD is fused to an intracellular domain (ICD) of a co-stimulatory molecule that mediates an immune cell activation signal, wherein binding of the switch molecule to the ligand yields the immune cell activation signal in the modified T cell instead of the immune cell inactivation signal.
- ECD extracellular domain
- ICD intracellular domain
- the protein that elicits an immune cell inactivation signal upon binding to the ligand of the protein may be a signaling receptor.
- the protein may elicit an immune cell inactivation signal upon binding to the ligand of the protein is selected from the group consisting of: a signaling receptor, a checkpoint receptor, a cytokine receptor, a chemokine receptor, a growth factor receptor, and a hormone receptor.
- the protein that elicits an immune cell inactivation may be selected from the group consisting of: transforming growth factor-beta receptor (TGF-beta-R) , programmed cell death 1 (PD-1) , cytotoxic T-lymphocyte associated protein 4 (CTLA-4) , B and T lymphocyte attenuator (BTLA) , a killer immunoglobulin-like receptor (KIR) , indoleamine 2, 3-dioxygenase (IDO) , lymphocyte activation gene-3 (LAG3) , T cell immunoglobulin mucin 3 (TIM-3) , and TIGIT.
- TGF-beta-R transforming growth factor-beta receptor
- PD-1 programmed cell death 1
- CTLA-4 cytotoxic T-lymphocyte associated protein 4
- B and T lymphocyte attenuator (BTLA) B and T lymphocyte attenuator
- KIR killer immunoglobulin-like receptor
- IDO indoleamine 2, 3-dioxygen
- the co-stimulatory molecule may be selected from the group consisting of: interleukin-2 receptor (IL-2R) , interleukin-12 receptor (IL-12R) , B7-H3, CD2, CD3, CD4, CD7, CD8, CD27, CD28, CD30, CD40, 4-1BB/CD137, ICOS, lymphocyte function-associated antigen-1 (LFA-1) , LIGHT, NKG2C, OX40, and PD-1.
- IL-2R interleukin-2 receptor
- IL-12R interleukin-12 receptor
- B7-H3, CD2, CD3, CD4, CD7, CD8, CD27, CD28, CD30, CD40, 4-1BB/CD137, ICOS lymphocyte function-associated antigen-1 (LFA-1) , LIGHT, NKG2C, OX40, and PD-1.
- the immune cell activation signal may be mediated by an activation factor.
- the activation factor is a soluble cytokine, a soluble chemokine, or a growth factor.
- the activation factor may be a soluble cytokine, and wherein the soluble cytokine is IL-1, IL-2, IL-6, IL-7, IL-8, IL-10, IL-12, IL-15, IL-21, TNF, TGF, IFN, or any functional fragment or variant thereof.
- the immune cell activation signal may comprise a clonal expansion of the modified T cell; cytokine release by the modified T cell; cytotoxicity of the modified T cell; proliferation of the modified T cell; differentiation, dedifferentiation or transdifferentiation of the modified T cell; movement and/or trafficking of the modified T cell; exhaustion and/or reactivation of the modified T cell; and release of other intercellular molecules, metabolites, chemical compounds, or combinations thereof by the modified T cell.
- the modified T cell may exhibit enhanced neoantigen binding as compared to an unmodified T cell.
- the modified T cell may exhibit increased cytotoxicity against a target cell as compared to an unmodified T cell when the switch molecule binds to the ligand and the modified T cell binds to the neoantigen present on the target cell.
- the modified T cell may exhibit increased secretion of a cytokine as compared to an unmodified T cell, when the switch molecule binds the ligand and the modified T cell binds to the neoantigen present on a target cell.
- the cytokine may be IFN-gamma or IL-2.
- the modified T cell may comprise a T cell receptor (TCR) complex capable of specifically binding to the neoantigen.
- TCR T cell receptor
- the TCR complex may be an endogenous TCR complex.
- TCR complex may be an exogenous TCR complex.
- the T cell may exhibit enhanced proliferation in a subject administered the composition and expressing the neoantigen, compared to a composition lacking the modified APC.
- the T cell may exhibit at least a 2-fold increase in proliferation compared to a composition lacking the modified APC. In some embodiments, the T cell may exhibit at least a 10-fold increase in proliferation compared to a composition lacking the modified APC.
- the amount of the modified APC may remain about the same over time in a subject administered the composition.
- the present disclosure provides a vaccine comprising a modified APC or a composition disclosed herein.
- the present disclosure provides a method of treating a disorder in a subject expressing the neoantigen, the method comprising administering a modified APC or a composition disclosed herein.
- the present disclosure provides a method for immune cell enrichment comprising administering to a subject expressing the neoantigen a composition or a vaccine disclosed herein.
- the present disclosure provides a method of treating a disorder in a subject in need thereof, the method comprising administering to the subject a modified APC disclosed herein and a T cell capable of specifically binding the neoantigen of the modified APC, wherein the modified APC and the T cell are administered concurrently or separately to the subject.
- the modified APC may be administered prior to the modified T cell.
- the T cell may be administered prior to the modified APC.
- the modified APC and the T cell may be administered concurrently to the subject.
- the T cell may be a T cell having contacted with the modified APC.
- the T cell may be a modified T cell comprising a switch molecule, wherein the switch molecule comprises: an extracellular domain (ECD) of a protein that, in an unmodified T cell, elicits an immune cell inactivation signal upon binding to a ligand of the protein, wherein the ECD is fused to an intracellular domain (ICD) of a co-stimulatory molecule that mediates an immune cell activation signal, wherein binding of the switch molecule to the ligand of the protein yields the immune cell activation signal in the modified T cell instead of the immune cell inactivation signal.
- ECD extracellular domain
- ICD intracellular domain
- the protein that elicits the immune cell inactivation signal may be a signaling receptor.
- the protein that elicits the immune cell inactivation signal may be selected from the group consisting of: a signaling receptor, a checkpoint receptor, a cytokine receptor, a chemokine receptor, a growth factor receptor, and a hormone receptor.
- the protein that elicits the immune cell inactivation signal may be selected from the group consisting of: transforming growth factor-beta receptor (TGF-beta-R) , programmed cell death 1 (PD-1) , cytotoxic T-lymphocyte associated protein 4 (CTLA-4) , B and T lymphocyte attenuator (BTLA) , a killer immunoglobulin-like receptor (KIR) , indoleamine 2, 3-dioxygenase (IDO) , lymphocyte activation gene-3 (LAG3) , T cell immunoglobulin mucin 3 (TIM-3) , and TIGIT.
- TGF-beta-R transforming growth factor-beta receptor
- PD-1 programmed cell death 1
- CTLA-4 cytotoxic T-lymphocyte associated protein 4
- B and T lymphocyte attenuator (BTLA) B and T lymphocyte attenuator
- KIR killer immunoglobulin-like receptor
- IDO indoleamine 2, 3-dioxy
- the co-stimulatory molecule may be selected from the group consisting of: interleukin-2 receptor (IL-2R) , interleukin-12 receptor (IL-12R) , B7-H3, CD2, CD3, CD4, CD7, CD8, CD27, CD28, CD30, CD40, 4-1BB/CD137, ICOS, lymphocyte function-associated antigen-1 (LFA-1) , LIGHT, NKG2C, OX40, and PD-1.
- IL-2R interleukin-2 receptor
- IL-12R interleukin-12 receptor
- B7-H3, CD2, CD3, CD4, CD7, CD8, CD27, CD28, CD30, CD40, 4-1BB/CD137, ICOS lymphocyte function-associated antigen-1 (LFA-1) , LIGHT, NKG2C, OX40, and PD-1.
- the immune cell activation signal may be mediated by an activation factor.
- the activation factor may be a soluble cytokine, a soluble chemokine, or a growth factor.
- the activation factor may be a soluble cytokine, and wherein the soluble cytokine is IL-1, IL-2, IL-6, IL-7, IL-8, IL-10, IL-12, IL-15, IL-21, TNF, TGF, IFN, or any functional fragment or variant thereof.
- the immune cell activation signal may comprise a clonal expansion of the modified T cell; cytokine release by the modified T cell; cytotoxicity of the modified T cell; proliferation of the modified T cell; differentiation, dedifferentiation or transdifferentiation of the modified T cell; movement and/or trafficking of the modified T cell; exhaustion and/or reactivation of the modified T cell; and release of other intercellular molecules, metabolites, chemical compounds, or combinations thereof by the modified T cell.
- the modified T cell upon binding of the switch molecule of the modified T cell to the ligand of the protein, may exhibit enhanced neoantigen binding as compared to an unmodified T cell.
- the modified T cell may exhibit increased cytotoxicity against a target cell as compared to an unmodified T cell, when the switch molecule binds to the ligand and the modified T cell binds to the neoantigen present on the target cell.
- the modified T cell may exhibit increased secretion of a cytokine as compared to an unmodified T cell, when the switch molecule binds the ligand and the modified T cell binds to the neoantigen present on a target cell.
- the cytokine may be IFN-gamma or IL-2.
- the modified T cell may comprise a T cell receptor (TCR) complex capable of specifically binding to the neoantigen.
- TCR T cell receptor
- the TCR complex may be an endogenous TCR complex.
- the TCR complex may be an exogenous TCR complex.
- the modified T cell may exhibit enhanced proliferation in the subject relative to a subject administered the modified T cell but not the modified APC.
- the modified T cell may exhibit at least a 2-fold increase in proliferation.
- the modified T cell may exhibit at least a 10-fold increase in proliferation.
- an amount of the modified APC may remain about the same over time in a subject administered the composition.
- the subject may be a human.
- the disorder may be a cancer.
- modified antigen-presenting cell includes a plurality of antigen-presenting cells.
- the term “about” or “approximately” means within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, i.e., the limitations of the measurement system. For example, “about” can mean within 1 or more than 1 standard deviation, per the practice in the art. Alternatively, “about” can mean a range of up to 20%, up to 10%, up to 5%, or up to 1%of a given value. Alternatively, particularly with respect to biological systems or processes, the term can mean within an order of magnitude, preferably within 5-fold, and more preferably within 2-fold, of a value. Where particular values are described in the application and claims, unless otherwise stated, the term “about” meaning within an acceptable error range for the particular value should be assumed.
- a “cell” can generally refer to a biological cell.
- a cell can be the basic structural, functional and/or biological unit of a living organism.
- a cell can originate from any organism having one or more cells. Some non-limiting examples include: a prokaryotic cell, eukaryotic cell, a bacterial cell, an archaeal cell, a cell of a single-cell eukaryotic organism, a protozoa cell, a cell from a plant (e.g.
- algal cell e.g., Botryococcusbraunii, Chlamydomonasreinhardtii, Nannochloropsisgaditana, Chlorella pyrenoidosa, Sargassum patens C. Agardh, and the like
- seaweeds e.g., Botryococcusbraunii, Chlamydomonasreinhardtii, Nannochloropsisgaditana, Chlorella pyrenoidosa, Sargassum patens C. Agardh, and the like
- seaweeds e.g.
- a fungal cell e.g., a yeast cell, a cell from a mushroom
- an animal cell e.g. fruit fly, cnidarian, echinoderm, nematode, etc.
- a cell from a vertebrate animal e.g., fish, amphibian, reptile, bird, mammal
- a cell from a mammal e.g., a pig, a cow, a goat, a sheep, a rodent, a rat, a mouse, a non-human primate, a human, etc.
- a cell is not originating from a natural organism (e.g. a cell can be a synthetically made, sometimes termed an artificial cell) .
- an antigen refers to a molecule or a fragment thereof capable of being bound by a selective binding agent.
- an antigen can be a ligand that can be bound by a selective binding agent such as a receptor.
- an antigen can be an antigenic molecule that can be bound by a selective binding agent such as an immunological protein (e.g., an antibody) .
- An antigen can also refer to a molecule or fragment thereof capable of being used in an animal to produce antibodies capable of binding to that antigen.
- Neoantigen generally refers to tumor-specific antigens arising from mutations in a gene. The resulting mutated proteins, or fragments thereof, can trigger an antitumor T cell response. Neoantigens can be unique to a tumor cell (e.g., absent in a normal cell) . A subject and/or a tumor can have a unique set of neoantigens. A neoantigen can refer to an “exogenous neoantigen” . An “exogenous neoantigen” can refer to a neoantigen not normally found in the host cell.
- gene refers to a nucleic acid (e.g., DNA such as genomic DNA and cDNA) and its corresponding nucleotide sequence that is involved in encoding an RNA transcript.
- genomic DNA includes intervening, non-coding regions as well as regulatory regions and can include 5' and 3' ends.
- the term encompasses the transcribed sequences, including 5' and 3' untranslated regions (5'-UTR and 3'-UTR) , exons and introns.
- the transcribed region will contain “open reading frames” that encode polypeptides.
- a “gene” comprises only the coding sequences (e.g., an “open reading frame” or “coding region” ) necessary for encoding a polypeptide.
- genes do not encode a polypeptide, for example, ribosomal RNA genes (rRNA) and transfer RNA (tRNA) genes.
- rRNA ribosomal RNA genes
- tRNA transfer RNA
- the term “gene” includes not only the transcribed sequences, but in addition, also includes non-transcribed regions including upstream and downstream regulatory regions, enhancers and promoters.
- a gene can refer to an “endogenous gene” or a native gene in its natural location in the genome of an organism.
- a gene can refer to an “exogenous gene” or a non-native gene.
- a non-native gene can refer to a gene not normally found in the host organism but which is introduced into the host organism by gene transfer.
- a non-native gene can also refer to a gene not in its natural location in the genome of an organism.
- a non-native gene can also refer to a naturally occurring nucleic acid or polypeptide sequence that comprises mutations, insertions and/or deletions (e.g., non-native sequence) .
- antibody refers to a proteinaceous binding molecule with immunoglobulin-like functions.
- the term antibody includes antibodies (e.g., monoclonal and polyclonal antibodies) , as well as derivatives, variants, and fragments thereof.
- Antibodies include, but are not limited to, immunoglobulins (Ig’s ) of different classes (i.e. IgA, IgG, IgM, IgD and IgE) and subclasses (such as IgG1, IgG2, etc. ) .
- a derivative, variant, or fragment thereof can refer to a functional derivative or fragment which retains the binding specificity (e.g., complete and/or partial) of the corresponding antibody.
- Antigen-binding fragments include Fab, Fab', F (ab') 2 , variable fragment (Fv) , single chain variable fragment (scFv) , minibodies, diabodies, and single-domain antibodies ( “sdAb” or “nanobodies” or “camelids” ) .
- the term antibody includes antibodies and antigen-binding fragments of antibodies that have been optimized, engineered or chemically conjugated. Examples of antibodies that have been optimized include affinity-matured antibodies. Examples of antibodies that have been engineered include Fc optimized antibodies (e.g., antibodies optimized in the fragment crystallizable region) and multispecific antibodies (e.g., bispecific antibodies) .
- nucleotide generally refers to a base-sugar-phosphate combination.
- a nucleotide can comprise a synthetic nucleotide.
- a nucleotide can comprise a synthetic nucleotide analog.
- Nucleotides can be monomeric units of a nucleic acid sequence (e.g. deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) ) .
- nucleotide can include ribonucleoside triphosphates adenosine triphosphate (ATP) , uridine triphosphate (UTP) , cytosine triphosphate (CTP) , guanosine triphosphate (GTP) and deoxyribonucleoside triphosphates such as dATP, dCTP, dITP, dUTP, dGTP, dTTP, or derivatives thereof.
- Such derivatives can include, for example, [ ⁇ S] dATP, 7-deaza-dGTP and 7-deaza-dATP, and nucleotide derivatives that confer nuclease resistance on the nucleic acid molecule containing them.
- nucleotide as used herein can refer to dideoxyribonucleoside triphosphates (ddNTPs) and their derivatives.
- ddNTPs dideoxyribonucleoside triphosphates
- Illustrative examples of dideoxyribonucleoside triphosphates can include, but are not limited to, ddATP, ddCTP, ddGTP, ddITP, and ddTTP.
- a nucleotide can be unlabeled or detectably labeled by well-known techniques. Labeling can also be carried out with quantum dots. Detectable labels can include, for example, radioactive isotopes, fluorescent labels, chemiluminescent labels, bioluminescent labels and enzyme labels.
- polynucleotide, oligonucleotide, ” and “nucleic acid” are used interchangeably to refer to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides, or analogs thereof, either in single-, double-, or multi-stranded form.
- a polynucleotide can be exogenous or endogenous to a cell.
- a polynucleotide can exist in a cell-free environment.
- a polynucleotide can be a gene or fragment thereof.
- a polynucleotide can be DNA.
- a polynucleotide can be RNA.
- a polynucleotide can have any three dimensional structure, and can perform any function, known or unknown.
- a polynucleotide can comprise one or more analogs (e.g. altered backbone, sugar, or nucleobase) . If present, modifications to the nucleotide structure can be imparted before or after assembly of the polymer. Some non-limiting examples of analogs include: 5-bromouracil, peptide nucleic acid, xeno nucleic acid, morpholinos, locked nucleic acids, glycol nucleic acids, threose nucleic acids, dideoxynucleotides, cordycepin, 7-deaza-GTP, fluorophores (e.g.
- rhodamine or fluorescein linked to the sugar thiol containing nucleotides, biotin linked nucleotides, fluorescent base analogs, CpG islands, methyl-7-guanosine, methylated nucleotides, inosine, thiouridine, pseudourdine, dihydrouridine, queuosine, and wyosine.
- Non-limiting examples of polynucleotides include coding or non-coding regions of a gene or gene fragment, loci (locus) defined from linkage analysis, exons, introns, messenger RNA (mRNA) , transfer RNA (tRNA) , ribosomal RNA (rRNA) , short interfering RNA (siRNA) , short-hairpin RNA (shRNA) , micro-RNA (miRNA) , ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, cell-free polynucleotides including cell-free DNA (cfDNA) and cell-free RNA (cfRNA) , nucleic acid probes, and primers.
- the sequence of nucleotides can be interrupted by non-nucleotide components.
- expression refers to one or more processes by which a polynucleotide is transcribed from a DNA template (such as into an mRNA or other RNA transcript) and/or the process by which a transcribed mRNA is subsequently translated into peptides, polypeptides, or proteins.
- Transcripts and encoded polypeptides can be collectively referred to as “gene product. ” If the polynucleotide is derived from genomic DNA, expression can include splicing of the mRNA in a eukaryotic cell.
- Up-regulated, with reference to expression, generally refers to an increased expression level of a polynucleotide (e.g., RNA such as mRNA) and/or polypeptide sequence relative to its expression level in a wild-type state while “down-regulated” generally refers to a decreased expression level of a polynucleotide (e.g., RNA such as mRNA) and/or polypeptide sequence relative to its expression in a wild-type state.
- RNA e.g., RNA such as mRNA
- complement generally refer to a sequence that is fully complementary to and hybridizable to the given sequence.
- a sequence hybridized with a given nucleic acid is referred to as the “complement” or “reverse-complement” of the given molecule if its sequence of bases over a given region is capable of complementarily binding those of its binding partner, such that, for example, A-T, A-U, G-C, and G-U base pairs are formed.
- a first sequence that is hybridizable to a second sequence is specifically or selectively hybridizable to the second sequence, such that hybridization to the second sequence or set of second sequences is preferred (e.g. thermodynamically more stable under a given set of conditions, such as stringent conditions commonly used in the art) to hybridization with non-target sequences during a hybridization reaction.
- hybridizable sequences share a degree of sequence complementarity over all or a portion of their respective lengths, such as between 25%-100%complementarity, including at least 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, and 100%sequence complementarity.
- Sequence identity such as for the purpose of assessing percent complementarity, can be measured by any suitable alignment algorithm, including but not limited to the Needleman-Wunsch algorithm (see e.g. the EMBOSS Needle aligner available at www. ebi. ac.
- uk/Tools/psa/emboss_needle/nucleotide. html optionally with default settings
- the BLAST algorithm see e.g. the BLAST alignment tool available at blast. ncbi. nlm. nih. gov/Blast. cgi, optionally with default settings
- the Smith-Waterman algorithm see e.g. the EMBOSS Water aligner available at www. ebi. ac. uk/Tools/psa/emboss_water/nucleotide. html, optionally with default settings
- Optimal alignment can be assessed using any suitable parameters of a chosen algorithm, including default parameters.
- Complementarity can be perfect or substantial/sufficient. Perfect complementarity between two nucleic acids can mean that the two nucleic acids can form a duplex in which every base in the duplex is bonded to a complementary base by Watson-Crick pairing. Substantial or sufficient complementary can mean that a sequence in one strand is not completely and/or perfectly complementary to a sequence in an opposing strand, but that sufficient bonding occurs between bases on the two strands to form a stable hybrid complex in set of hybridization conditions (e.g., salt concentration and temperature) . Such conditions can be predicted by using the sequences and standard mathematical calculations to predict the Tm of hybridized strands, or by empirical determination of Tm by using routine methods.
- hybridization conditions e.g., salt concentration and temperature
- regulating refers to altering the level of expression or activity. Regulation can occur at the transcription level and/or translation level.
- peptide, ” “polypeptide, ” and “protein” are used interchangeably herein to refer to a polymer of at least two amino acid residues joined by peptide bond (s) .
- This term does not connote a specific length of polymer, nor is it intended to imply or distinguish whether the peptide is produced using recombinant techniques, chemical or enzymatic synthesis, or is naturally occurring.
- the terms apply to naturally occurring amino acid polymers as well as amino acid polymers comprising at least one modified amino acid.
- the polymer can be interrupted by non-amino acids.
- the terms include amino acid chains of any length, including full length proteins, and proteins with or without secondary and/or tertiary structure (e.g., domains) .
- amino acid polymer that has been modified, for example, by disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, oxidation, and any other manipulation such as conjugation with a labeling component.
- amino acid and amino acids, ” as used herein generally refer to natural and non-natural amino acids, including, but not limited to, modified amino acids and amino acid analogues.
- Modified amino acids can include natural amino acids and non-natural amino acids, which have been chemically modified to include a group or a chemical moiety not naturally present on the amino acid.
- Amino acid analogues can refer to amino acid derivatives.
- amino acid includes both D-amino acids and L-amino acids.
- Derivatives, variants and fragments of a polypeptide can comprise one or more amino acid variations (e.g., mutations, insertions, and deletions) , truncations, modifications, or combinations thereof compared to a wild type polypeptide.
- percent (%) identity refers to the percentage of amino acid (or nucleic acid) residues of a candidate sequence that are identical to the amino acid (or nucleic acid) residues of a reference sequence after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent identity (i.e., gaps can be introduced in one or both of the candidate and reference sequences for optimal alignment and non-homologous sequences can be disregarded for comparison purposes) .
- Alignment, for purposes of determining percent identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, ALIGN, or Megalign (DNASTAR) software.
- Percent identity of two sequences can be calculated by aligning a test sequence with a comparison sequence using BLAST, determining the number of amino acids or nucleotides in the aligned test sequence that are identical to amino acids or nucleotides in the same position of the comparison sequence, and dividing the number of identical amino acids or nucleotides by the number of amino acids or nucleotides in the comparison sequence.
- fusion can refer to a protein and/or nucleic acid comprising one or more non-native sequences (e.g., moieties) .
- a fusion can comprise one or more of the same non-native sequences.
- a fusion can comprise one or more of different non-native sequences.
- a fusion can be a chimera.
- a fusion can comprise a nucleic acid affinity tag.
- a fusion can comprise a barcode.
- a fusion can comprise a peptide affinity tag.
- a fusion can provide for subcellular localization of the site-directed polypeptide (e.g., a nuclear localization signal (NLS) for targeting to the nucleus, a mitochondrial localization signal for targeting to the mitochondria, a chloroplast localization signal for targeting to a chloroplast, an endoplasmic reticulum (ER) retention signal, and the like) .
- a fusion can provide a non-native sequence (e.g., affinity tag) that can be used to track or purify.
- a fusion can be a small molecule such as biotin or a dye such as Alexa fluor dyes, Cyanine3 dye, Cyanine5 dye.
- exogenous T cell receptor (TCR) complex refers to a TCR complex in which one or more chains of the TCR are introduced into the genome of an immune cell that may or may not endogenously express the TCR.
- an exogenous TCR complex can refer to a TCR complex in which one or more chains of an endogenous TCR complex have one or more mutated sequences, for example at either the nucleic acid or amino acid level.
- Expression of an exogenous TCR on an immune cell can confer binding specificity for an epitope or antigen (e.g., an epitope or antigen preferentially present on the surface of a cancer cell or other disease-causing cell or particle) .
- An exogenous TCR complex can comprise a TCR-alpha, a TCR-beta chain, a CD3-gamma chain, a CD3-delta chain, a CD3-zeta chain, or any combination thereof, which is introduced into the genome.
- the chain introduced into the genome may replace the endogenously occurring chain.
- subject “individual, ” and “patient” are used interchangeably herein to refer to a vertebrate, preferably a mammal such as a human. Mammals include, but are not limited to, murines, simians, humans, farm animals, sport animals, and pets. Tissues, cells and their progeny of a biological entity obtained in vivo or cultured in vitro are also encompassed.
- treatment refers to an approach for obtaining beneficial or desired results including but not limited to a therapeutic benefit and/or a prophylactic benefit.
- a treatment can comprise administering a system or cell population disclosed herein.
- therapeutic benefit is meant any therapeutically relevant improvement in or effect on one or more diseases, conditions, or symptoms under treatment.
- a composition can be administered to a subject at risk of developing a particular disease, condition, or symptom, or to a subject reporting one or more of the physiological symptoms of a disease, even though the disease, condition, or symptom may not have yet been manifested.
- administer refers to the methods that may be used to enable delivery of agents or compositions to the desired site of biological action. These methods include, but are not limited to, parenteral administration (e.g., intravenous, subcutaneous, intraperitoneal, intramuscular, intravascular, intrathecal, intranasal, intravitreal, infusion and local injection) , transmucosal injection, oral administration, administration as a suppository, and topical administration. Administration is by any route, including parenteral.
- Parenteral administration includes, e.g., intravenous, intramuscular, intra-arteriole, intradermal, subcutaneous, intraperitoneal, intraventricular, and intracranial.
- Other modes of delivery include, but are not limited to, the use of liposomal formulations, intravenous infusion, transplantation, etc.
- One skilled in the art will know of additional methods for administering a therapeutically effective amount of a composition of the present disclosure for preventing or relieving one or more symptoms associated with a disease.
- an effective amount refers to the quantity of a composition, for example a composition comprising immune cells such as lymphocytes (e.g., B lymphocytes and/or T lymphocytes) of the present disclosure, that is sufficient to result in a desired activity upon administration to a subject in need thereof.
- lymphocytes e.g., B lymphocytes and/or T lymphocytes
- therapeutically effective refers to that quantity of a composition that is sufficient to delay the manifestation, arrest the progression, relieve or alleviate at least one symptom of a disorder treated by the methods of the present disclosure.
- genetic profile refers to information about specific genes, including variations and gene expression in an individual or in a certain type of tissue. A genetic profile can be used for neoantigen selection.
- genetic mutation profile refers to information about specific genes associated with somatic mutation, including but not limited to specific genes resulted from somatic mutation. A somatic mutation profile can be used for neoantigen selection.
- the present disclosure provides a modified antigen-presenting cell (APC) that comprises a neoantigen.
- APCs can mediate cellular immune responses by processing and presenting antigens for recognition by certain lymphocytes, such as T cells.
- An APC can be, for example, B cell, dendritic cell, natural killer (NK) cell, a macrophage, monocyte, megakaryocyte, mast cell, thrombocyte, erythrocyte, and granulocyte.
- the APC is a B cell.
- the APC is a dendritic cell.
- the modified APC is a modified B cell comprising a neoantigen (also referred to as neoantigen-loaded B cell or neoB) .
- a neoB can have a stronger amplification capability in vitro as compared to another modified APC, for example, a modified dendritic cell loaded with the neoantigen (also referred to as neoantigen-loaded DC or neoDC) .
- aneoB cell can have a stronger efficacy in continuously activating tumor-specific T cells with repeated re-infusion in vivo as compared to neoDC.
- the neoB cell can produce enhanced proliferation of T cells that recognize the neoantigen compared with neoDC. In some cases, neoB can have a greater half-life than neoDC in a subject.
- a modified APC comprises a neoantigen.
- An APC can be modified to express a neoantigen for presentation to a T cell.
- a T cell can specifically bind a neoantigen.
- Neoantigens generally refer to tumor-specific mutations that trigger an antitumor T cell response. For example, these endogenous mutations can be identified using a whole-exomic-sequencing approach. Tran E, et al., “Cancer immunotherapy based on mutation-specific CD4+T cells in a patient with epithelial cancer, ” Science 344: 641-644 (2014) .
- a neoantigen or neoepitope can be encoded by a mutated gene, for example, from a tumor cell.
- the gene can be selected from the group consisting of: ABL1, ACOl 1997, ACVR2A, AFP, AKT1, ALK, ALPPL2, ANAPC1, APC, ARID1A, AR, AR-v7, ASCL2, ⁇ 2 ⁇ , BRAF, BTK, C15ORF40, CDH1, CLDN6, CNOT1, CT45A5, CTAG1B, DCT, DKK4, EEF1B2, EEF1DP3, EGFR, EIF2B3, env, EPHB2, ERBB3, ESR1, ESRP1, FAM11 IB, FGFR3, FRG1B, GAGE1, GAGE 10, GATA3, GBP3, HER2, IDH1, JAK1, KIT, KRAS, LMAN1, MABEB 16, MAGEA1, MAGEA10, MAGEA4, MAGEA8, MAGEB 17, MAGEB
- the neoantigen is selected based on a genetic profile of a tumor sample from an individual. In some embodiments, the neoantigenis selected based on a somatic mutation profile of a tumor sample from an individual. In some embodiments, the neoantigen is an exogenous neoantigen. For example, the neoantigen can be exogenously introduced into an APC such as B cell.
- compositions comprising a modified APC comprising a neoantigen and animmune cell capable of specifically binding the neoantigen of the modified APC.
- an immune cell is a T cell.
- a T cell capable of specifically binding to a neoantigen can also be referred to as a neoantigen-experienced T cell or neoT.
- the T cell can be a natural T cell or a modified T cell.
- an immune cell is a modified immune cell.
- an immune cell is a modified immune cell generated by contacting an immune cell with aneoantigen.
- the modified immune cell is a modified T cell generated by contacting a T cell with a neoantigen.
- a neoantigen-experienced T cell can be generatedby contacting a T cell to the neoantigen presented by a modified APC (e.g. B cell or dendritic cell expressing the neoantigen) .
- theneoantigen-experienced T cells can quickly reproduce to elicit a faster and stronger immune response as compared to the first time the T cell comes into contact with the neoantigen.
- an immune cell is a modified immune cell comprising a switch molecule.
- the modified immune is a modified T cell comprising a switch molecule.
- the switch molecule can comprise an extracellular domain (ECD) of a protein that, in an unmodified immune cell, elicits an immune cell inactivation signal upon binding to its ligand.
- ECD extracellular domain
- the ECD may be fused to an intracellular domain (ICD) of a co-stimulatory molecule that mediates an immune cell activation signal. Binding of the switch molecule to the ligand can yield the immune cell activation signal in the modified immune cell instead of the immune cell inactivation signal.
- Binding ofan immune cell such as a T cell to a neoantigen, such as that present on a modified APC, can activate the immune cell.
- the switch molecule can be used to provide further control over immune cell activities, such as, but not limited to, immune cell activation and expansion. Binding of the switch molecule to its ligand in the modified immune cell, can elicit an immune cell activation signal in the modified immune cell instead of the immune cell inactivation signal. Eliciting the immune cell activation signal in the modified immune cell instead of the immune cell inactivation signal may minimize an immune-suppressive effect in the immune cell. Minimizing an immune-suppressive effect in the immune cell can increase the effectiveness of the immune cell in an immune response, for example, by increasing immune cell cytotoxicity against a target cell, such as a tumor cell.
- the switch molecule can comprise an extracellular domain (ECD) of a protein that, in an unmodified immune cell, elicits an immune cell inactivation signal upon binding to its ligand.
- ECD extracellular domain
- the protein can be a signaling receptor or any functional fragment, derivative, or variant thereof.
- the signaling receptor can be a membrane bound receptor.
- a signaling receptor can, in response to ligand binding, induce one or more signaling pathways in a cell.
- the signaling receptor can be a non-membrane bound receptor.
- the switch molecule can comprise a fragment, for example, an extracellular domain of a receptor selected from a G-protein coupled receptor (GPCR) ; an integrin receptor; a cadherin receptor; a catalytic receptor (e.g., kinases) ; a death receptor; a checkpoint receptor; a cytokine receptor; a chemokine receptor; a growth factor receptor; a hormone receptor; or an immune receptor.
- GPCR G-protein coupled receptor
- the switch molecule comprises a fragment of an immune checkpoint receptor, which may be involved in regulation of the immune system.
- immune checkpoint receptors include, but are not limited to, programmed cell death 1 (PD-1) , cytotoxic T-lymphocyte associated protein 4 (CTLA-4) , B and T lymphocyte attenuator (BTLA) , a killer immunoglobulin-like receptor (KIR) , indoleamine 2, 3-dioxygenase (IDO) , lymphocyte activation gene-3 (LAG3) , T cell immunoglobulin mucin 3 (TIM-3) , and T cell immunoreceptor with Ig and ITIM domains (TIGIT) .
- PD-1 programmed cell death 1
- CTLA-4 cytotoxic T-lymphocyte associated protein 4
- BTLA B and T lymphocyte attenuator
- KIR killer immunoglobulin-like receptor
- IDO indoleamine 2, 3-dioxygenase
- LAG3 lymphocyte activation gene-3
- a switch molecule comprising an immune checkpoint receptor, or any derivative, variant, or fragment thereof can bind an antigen comprising any suitable immune checkpoint receptor ligand, or any derivative, variant, or fragment thereof.
- suitable immune checkpoint receptor ligands include, but are not limited to, B7-1, B7-H3, B7-H4, HVEM (Herpesvirus Entry Mediator) , AP2M1, CD80, CD86, SHP-2, PPP2R5A, MHC (e.g., class I, class II) , PD-L1, and PD-L2.
- the switch molecule comprises a fragment of a cytokine receptor.
- Cytokine receptors can serve a variety of functions, non-limiting examples of which include immune cell regulation and mediating inflammation.
- the switch molecule comprises a cytokine receptor, for example, a type-I cytokine receptor or a type-II cytokine receptor, or any derivative, variant, or fragment thereof.
- the switch molecule comprises an interleukin receptor (e.g., IL-2R, IL-3R, IL-4R, IL-5R, IL-6R, IL-7R, IL-9R, IL-11R, IL-12R, IL-13R, IL-15R, IL-21R, IL-23R, IL-27R, and IL-31R) , a colony-stimulating factor receptor (e.g., erythropoietin receptor, CSF-1R, CSF-2R, GM-CSFR, and G-CSFR) , a hormone receptor/neuropeptide receptor (e.g., growth hormone receptor, prolactin receptor, and leptin receptor) , or any derivative, variant, or fragment thereof.
- an interleukin receptor e.g., IL-2R, IL-3R, IL-4R, IL-5R, IL-6R, IL-7R, IL-9R, IL-11R, IL-12R,
- the switch molecule comprises a type-II cytokine receptor, or any derivative, variant, or fragment thereof.
- the switch molecule comprises an interferon receptor (e.g., IFNAR1, IFNAR2, and IFNGR) , an interleukin receptor (e.g., IL-10R, IL-20R, IL-22R, and IL-28R) , a tissue factor receptor (also called platelet tissue factor) , or any derivative, variant, or fragment thereof.
- an interferon receptor e.g., IFNAR1, IFNAR2, and IFNGR
- an interleukin receptor e.g., IL-10R, IL-20R, IL-22R, and IL-28R
- tissue factor receptor also called platelet tissue factor
- Cytokines refer to proteins (e.g., chemokines, interferons, lymphokines, interleukins, and tumor necrosis factors) released by cells which can affect cell behavior. Cytokines are produced by a broad range of cells, including immune cells, such as macrophages, B lymphocytes, T lymphocytes, mast cells, endothelial cells, fibroblasts, and various stromal cells. A given cytokine can be produced by more than one type of cell. Cytokines can be involved in producing systemic or local immunomodulatory effects.
- Certain cytokines can function as pro-inflammatory cytokines.
- Pro-inflammatory cytokines refer to cytokines involved in inducing or amplifying an inflammatory reaction.
- Pro-inflammatory cytokines can work with various cells of the immune system, such as neutrophils and leukocytes, to generate an immune response.
- Certain cytokines can function as anti-inflammatory cytokines.
- Anti-inflammatory cytokines refer to cytokines involved in the reduction of an inflammatory reaction.
- Anti-inflammatory cytokines in some cases, can regulate a pro-inflammatory cytokine response.
- Some cytokines can function as both pro-and anti- inflammatory cytokines.
- Certain cytokines, e.g., chemokines can function in chemotaxis. Chemokines can induce directed chemotaxis in nearby responsive cells.
- the expression of a cytokine having pro-inflammatory and/or chemotactic functions can be up-regulated in an immune cell. Up-regulating the expression of a cytokine having pro-inflammatory and/or chemotactic functions can be useful, for example, to stimulate an immune response against a target cell in immunotherapy.
- cytokines that can be overexpressed by immune cells provided herein include, but are not limited to, lymphokines, monokines, and traditional polypeptide hormones. Included among the cytokines are growth hormones, such as human growth hormone, N-methionyl human growth hormone, and bovine growth hormone; parathyroid hormone; thyroxine; insulin; proinsulin; relaxin; prorelaxin; glycoprotein hormones such as follicle stimulating hormone (FSH) , thyroid stimulating hormone (TSH) , and luteinizing hormone (LH) ; hepatic growth factor; fibroblast growth factor; prolactin; placental lactogen; tumor necrosis factor-alpha ; mullerian-inhibiting substance; mouse gonadotropin-associated peptide; inhibin; activin; vascular endothelial growth factor; integrin; thrombopoietin (TPO) ; nerve growth factors such as NGF-alpha; platelet-growth factor; transforming growth hormone
- the overexpressed cytokine is an interleukin (IL) family member (e.g., ligand) , an IL-1 receptor family member, an interleukin-6 (IL-6) family member (e.g., ligand) , an IL-6 receptor, an interleukin-10 (IL-10) family member (e.g., ligand) , an IL-10 receptor, an interleukin-12 (IL-12) family member (e.g., ligand) , an IL-12 receptor, an interleukin-17 (IL-17) family member (e.g., ligand) , or an IL-17 receptor.
- IL interleukin
- IL-1 receptor e.g., an interleukin-6
- IL-6 receptor e.g., an IL-6 receptor
- an interleukin-10 (IL-10) family member e.g., ligand
- an IL-10 receptor e.g., an IL-10 receptor
- the overexpressed cytokine is an interleukin-1 (IL-1) family member or related protein; a tumor necrosis factor (TNF) family member or related protein; an interferon (IFN) family member or related protein; an interleukin-6 (IL-6) family member or related protein; or a chemokine or related protein.
- IL-1 interleukin-1
- TNF tumor necrosis factor
- IFN interferon
- IL-6 interleukin-6 family member or related protein
- chemokine or related protein chemokine or related protein
- the cytokine is selected from IL18, IL18BP, IL1A, IL1B, IL1F10, IL1F3/IL1RA, IL1F5, IL1F6, IL1F7, IL1F8, IL1RL2, IL1F9, IL33, BAFF/BLyS/TNFSF138, 4-1BBL, CD153/CD30L/TNFSF8, CD40LG, CD70, Fas Ligand/FASLG/CD95L/CD178, EDA-A1, TNFSF14/LIGHT/CD258, TNFA, LTA/TNFB/TNFSF1, LTB/TNFC, CD70/CD27L/TNFSF7, TNFSF10/TRAIL/APO-2L (CD253) , RANKL/OPGL/TNFSF11 (CD254) , TNFSF12, TNF-alpha/TNFA, TNFSF13, TL1A/TNFSF15, OX-40L/TNFSFSF
- Cytokine expression can be evaluated using a variety of methods. Cytokine expression can be evaluated by assaying cell culture media (e.g., in vitro production) in which the modified immune cells are grown or sera (e.g., in vivo production) obtained from a subject having the modified immune cells for the presence of one or more cytokines. Cytokine levels can be quantified in various suitable units, including concentration, using any suitable assay. In some embodiments, cytokine protein is detected. In some embodiments, mRNA transcripts of cytokines are detected.
- cytokine assays examples include enzyme-linked immunosorbent assays (ELISA) , immunoblot, immunofluorescence assays, radioimmunoassays, antibody arrays which allow various cytokines in a sample to be detected in parallel, bead-based arrays, quantitative PCR, microarray, etc.
- ELISA enzyme-linked immunosorbent assays
- immunoblot immunofluorescence assays
- radioimmunoassays radioimmunoassays
- antibody arrays which allow various cytokines in a sample to be detected in parallel
- bead-based arrays examples include quantitative PCR, microarray, etc.
- Other suitable methods may include proteomics approaches (2-D gels, MS analysis etc) .
- the cytokine overexpressed by a modified immune cell provided herein is a chemokine.
- the chemokine can be, for example, a CC chemokine, a CXC chemokine, a C chemokine, and a CX3C chemokine.
- the chemokine overexpressed by a modified immune cell is a CC chemokine selected from CCL1, CCL2, CCL3, CCL4, CCL5, CCL6, CCL7, CCL8, CCL9, CCL10, CCL11, CCL12, CCL13, CCL14, CCL15, CCL16, CCL17, CCL18, CCL19, CCL20, CCL21, CCL22, CCL23, CCL24, CCL25, CCL26, CCL27, and CCL28.
- the chemokine is a CXC chemokine selected from CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8, CXCL9, CXCL10, CXCL11, CXCL12, CXCL13, CXCL14, CXCL15, CXCL16, and CXCL17.
- the chemokine overexpressed by a modified immune cell is a C chemokine selected from XCL1 and XCL2.
- the chemokine overexpressed by an immune cell is a CX3C chemokine, and the CX3C chemokine is CX3CL1.
- the switch molecule can comprise at least an extracellular region (e.g., ligand binding domain) of a catalytic receptor such as a receptor tyrosine kinase (RTK) , or any derivative, variant, or fragment thereof.
- a catalytic receptor such as a receptor tyrosine kinase (RTK)
- RTK receptor tyrosine kinase
- the switch molecule comprises a class I RTK (e.g., the epidermal growth factor (EGF) receptor family including EGFR; the ErbB family including ErbB-2, ErbB-3, and ErbB-4) , a class II RTK (e.g., the insulin receptor family including INSR, IGF-1R, and IRR) , a class III RTK (e.g., the platelet-derived growth factor (PDGF) receptor family including PDGFR- ⁇ , PDGFR- ⁇ , CSF-1R, KIT/SCFR, and FLK2/FLT3) , a class IV RTK (e.g., the fibroblast growth factor (FGF) receptor family including FGFR-1, FGFR-2, FGFR-3, and FGFR-4) , a class V RTK (e.g., the vascular endothelial growth factor (VEGF) receptor family including VEGFR1, VEGFR2, and VEGFR3) , a class VI RTK (e.g.
- EGF
- a switch molecule comprising a RTK, or any derivative, variant, or fragment thereof can bind an antigen comprising any suitable RTK ligand, or any derivative, variant, or fragment thereof.
- RTK ligands include growth factors, cytokines, and hormones.
- Growth factors include, for example, members of the epidermal growth factor family (e.g., epidermal growth factor or EGF, heparin-binding EGF-like growth factor or HB-EGF, transforming growth factor- ⁇ or TGF- ⁇ , amphiregulin or AR, epiregulin or EPR, epigen, betacellulin or BTC, neuregulin-1 or NRG1, neuregulin-2 or NRG2, neuregulin-3 or NRG3, and neuregulin-4 or NRG4) , the fibroblast growth factor family (e.g., FGF1, FGF2, FGF3, FGF4, FGF5, FGF6, FGF7, FGF8, FGF9, FGF10, FGF11, FGF12, FGF13, FGF14, FGF15/19, FGF16, FGF17, FGF18, FGF20, FGF21, and FGF23) , the vascular endothelial growth factor family (e.g., VEGF-A, VEGF-B, VE
- Hormones include, for example, members of the insulin/IGF/relaxin family (e.g., insulin, insulin-like growth factors, relaxin family peptides including relaxin1, relaxin2, relaxin3, Leydig cell-specific insulin-like peptide (gene INSL3) , early placenta insulin-like peptide (ELIP) (gene INSL4) , insulin-like peptide 5 (gene INSL5) , and insulin-like peptide 6) .
- members of the insulin/IGF/relaxin family e.g., insulin, insulin-like growth factors, relaxin family peptides including relaxin1, relaxin2, relaxin3, Leydig cell-specific insulin-like peptide (gene INSL3) , early placenta insulin-like peptide (ELIP) (gene INSL4) , insulin-like peptide 5 (gene INSL5) , and insulin-like peptide 6) .
- a switch molecule comprises at least an extracellular region (e.g., ligand binding domain) of a catalytic receptor such as a receptor threonine/serine kinase (RTSK) , or any derivative, variant, or fragment thereof.
- a catalytic receptor such as a receptor threonine/serine kinase (RTSK)
- RTSK receptor threonine/serine kinase
- a switch molecule can comprise a type I RTSK, type II RTSK, or any derivative, variant, or fragment thereof.
- a switch molecule can comprise a type I receptor, or any derivative, variant, or fragment thereof, selected from the group consisting of: ALK1 (ACVRL1) , ALK2 (ACVR1A) , ALK3 (BMPR1A) , ALK4 (ACVR1B) , ALK5 (TGF ⁇ R1) , ALK6 (BMPR1B) , and ALK7 (ACVR1C) .
- a switch molecule can comprise a type II receptor, or any derivative, variant, or fragment thereof, selected from the group consisting of: TGF ⁇ R2, BMPR2, ACVR2A, ACVR2B, and AMHR2 (AMHR) .
- the switch molecule comprises a TGF- ⁇ receptor, or any derivative, variant, or fragment thereof.
- a switch molecule comprising a RTSK, or any derivative, variant, or fragment thereof can bind an antigen comprising any suitable RTSK ligand, or any derivative, variant, or fragment thereof.
- the switch molecule can comprise an intracellular domain (ICD) of a co-stimulatory molecule that elicits an immune cell activation signal.
- the co-stimulatory molecule may bind a ligand.
- the co-stimulatory molecule may be activated by a ligand responsive protein.
- the co-stimulatory molecule is operable to regulate a proliferative and/or survival signal in the immune cell.
- the ICD is an intracellular domain of a co-stimulatory molecule selected from an MHC class I protein, an MHC class II protein, a TNF receptor protein, an immunoglobulin-like protein, a cytokine receptor, an integrin, a signaling lymphocytic activation molecule (SLAM protein) , an activating NK cell receptor, BTLA, or a Toll ligand receptor.
- a co-stimulatory molecule selected from an MHC class I protein, an MHC class II protein, a TNF receptor protein, an immunoglobulin-like protein, a cytokine receptor, an integrin, a signaling lymphocytic activation molecule (SLAM protein) , an activating NK cell receptor, BTLA, or a Toll ligand receptor.
- the co-stimulatory domain comprises a signaling domain of a molecule selected from the group consisting of: 2B4/CD244/SLAMF4, 4-1BB/TNFSF9/CD137, B7-1/CD80, B7-2/CD86, B7-H1/PD-L1, B7-H2, B7-H3, B7-H4, B7-H6, B7-H7, BAFF R/TNFRSF13C, BAFF/BLyS/TNFSF13B, BLAME/SLAMF8, BTLA/CD272, CD100 (SEMA4D) , CD103, CD11a, CD11b, CD11c, CD11d, CD150, CD160 (BY55) , CD18, CD19, CD2, CD200, CD229/SLAMF3, CD27 Ligand/TNFSF7, CD27/TNFRSF7, CD28, CD29, CD2F-10/SLAMF9, CD3, CD30 Ligand/TNFSF8, CD30/TNFRSF8, CD30/TNFR
- the ECD and the ICD of a switch molecule can be joined by a transmembrane domain, for example by a membrane spanning segment.
- the membrane spanning segment comprises a polypeptide.
- the membrane spanning polypeptide can have any suitable polypeptide sequence.
- the membrane spanning polypeptide comprises a polypeptide sequence of a membrane spanning portion of an endogenous or wild-type membrane spanning protein.
- the membrane spanning polypeptide comprises a polypeptide sequence having at least 1 (e.g., at least 2, 3, 4, 5, 6, 7, 8, 9, 10 or greater) of an amino acid substitution, deletion, and insertion compared to a membrane spanning portion of an endogenous or wild-type membrane spanning protein.
- the membrane spanning polypeptide comprises a non-natural polypeptide sequence, such as the sequence of a polypeptide linker.
- the polypeptide linker may be flexible or rigid.
- the polypeptide linker can be structured or unstructured.
- the membrane spanning polypeptide transmits a signal from the ECD to the ICD, for example a signal indicating ligand-binding.
- switch molecules can be linked by means of chemical bond, e.g., an amide bond or a disulfide bond; a small, organic molecule (e.g., a hydrocarbon chain) ; an amino acid sequence such as a peptide linker (e.g., an amino acid sequence about 3-200 amino acids in length) , or a combination of a small, organic molecule and peptide linker.
- a peptide linker e.g., an amino acid sequence about 3-200 amino acids in length
- Peptide linkers can provide desirable flexibility to permit the desired expression, activity and/or conformational positioning of the chimeric polypeptide.
- the peptide linker can be of any appropriate length to connect at least two domains of interest and is preferably designed to be sufficiently flexible so as to allow the proper-folding and/or function and/or activity of one or both of the domains it connects.
- the peptide linker can have a length of at least 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 amino acids.
- a peptide linker has a length between about 0 and 200 amino acids, between about 10 and 190 amino acids, between about 20 and 180 amino acids, between about 30 and 170 amino acids, between about 40 and 160 amino acids, between about 50 and 150 amino acids, between about 60 and 140 amino acids, between about 70 and 130 amino acids, between about 80 and 120 amino acids, or between about 90 and 110 amino acids.
- the linker sequence can comprise an endogenous protein sequence.
- the linker sequence comprises glycine, alanine, and/or serine amino acid residues.
- a linker can contain motifs, e.g., multiple or repeating motifs, of GS, GGS, GGGGS, GGSG, or SGGG.
- the linker sequence can include any naturally occurring amino acids, non-naturally occurring amino acids, or combinations thereof.
- Binding of a ligand to the switch molecule can yield an immune cell activation signal in the modified immune cell.
- the immune cell activation signal is mediated by an activation factor.
- the activation factor can be an immunomodulating molecule.
- the activation factor may bind, activate, or stimulate T cells or other immune cells to modulate their activity.
- the activation factor can be secreted from the immune cell.
- the activation factor can be, for example, a soluble cytokine, a soluble chemokine, or a growth factor molecule.
- Non-limiting examples of activation factors which can mediate the immune cell activation include a soluble cytokine, such as IL-1, IL-2, IL-6, IL-7, IL-8, IL-10, IL-12, IL-15, IL-21, tumor necrosis factor (TNF) , transforming growth factor (TGF) , interferon (IFN) , or any functional fragment or variant thereof.
- a soluble cytokine such as IL-1, IL-2, IL-6, IL-7, IL-8, IL-10, IL-12, IL-15, IL-21, tumor necrosis factor (TNF) , transforming growth factor (TGF) , interferon (IFN) , or any functional fragment or variant thereof.
- the immune cell activation signal can comprise or result in a clonal expansion of the modified immune cell; cytokine release by the modified immune cell; cytotoxicity of the modified immune cell; proliferation of the modified immune cell; differentiation, dedifferentiation or transdifferentiation of the modified immune cell; movement and/or trafficking of the modified immune cell; exhaustion and/or reactivation of the modified immune cell; and release of other intercellular molecules, metabolites, chemical compounds, or combinations thereof by the modified immune cell.
- the immune cell activity comprises or results in clonal expansion of the immune cell (e.g., modified T cell) .
- Clonal expansion can comprise the generation of daughter cells arising from the immune cell.
- the daughter cells resulting from clonal expansion can comprise the switch molecule.
- Clonal expansion of the modified immune cell can be greater than that of a comparable immune cell lacking the switch molecule.
- Clonal expansion of the modified immune cell can be about 5-fold to about 10-fold, about 10-fold to about 20-fold, about 20-fold to about 30-fold, about 30-fold to about 40-fold, about 40-fold to about 50-fold, about 50-fold to about 60-fold, about 60-fold to about 70-fold, about 70-fold to about 80-fold, about 80-fold to about 90-fold, about 90-fold to about 100-fold, about100-fold to about 200-fold, about 200-fold to about 300-fold, about 300-fold to about 400-fold, about 400-fold to about 500-fold, about 500-fold to about 600-fold, or about 600-fold to about 700-fold greater than a comparable immune cell lacking the switch molecule.
- determining clonal expansion can comprise quantifying a number of immune cells, for example with and without switch molecules and after ligand binding to the switch molecule. Quantifying a number of immune cells can be achieved by a variety of techniques, non-limiting examples of which include flow cytometry, Trypan Blue exclusion, and hemocytometry.
- the immune cell activity comprises or results in cytokine release by the immune cell.
- the immune cell activity comprises or results in the release of intercellular molecules, metabolites, chemical compounds or combinations thereof.
- Cytokine release by the modified immune cell can comprise the release of IL-1, IL-2, IL-4, IL-5, IL-6, IL-13, IL-17, IL-21, IL-22, IFN ⁇ , TNF ⁇ , CSF, TGF ⁇ , granzyme, and the like.
- cytokine release may be quantified using enzyme-linked immunosorbent assay (ELISA) , flow cytometry, western blot, and the like.
- ELISA enzyme-linked immunosorbent assay
- Cytokine release by a modified immune cell can be greater than that of a comparable immune cell lacking the switch molecule.
- a modified immune cell provided herein can generate about 1-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 11-fold, 12-fold, 13-fold, 14-fold, 15-fold, 20-fold, 30-fold, 40-fold, 50-fold, 60-fold, 70-fold, 80-fold, 90-fold, 100-fold, 150-fold, 200-fold, 250-fold, or over 300-fold greater cytokine release as compared to a comparable immune cell lacking the switch molecule.
- the modified immune cell can exhibit increased cytokine secretion as compared to a comparable immune cell lacking the switch molecule (e.g., unmodified) , when the switch molecule binds to the ligand and the modified immune cell binds to the neoantigen present on a target cell.
- the cytokine secreted is IFN ⁇ or IL-2.
- cytokine release can be quantified in vitro or in vivo.
- the immune cell activity comprises or results in cytotoxicity of the immune cell (e.g., T cell) .
- cytotoxicity of the modified immune cells provided herein can be used for killing a target cell.
- An immune cell or population of immune cells expressing a switch molecule can induce death of a target cell. Killing of a target cell can be useful for a variety of applications, including, but not limited to, treating a disease or disorder in which a cell population is desired to be eliminated or its proliferation desired to be inhibited.
- Cytotoxicity can also refer to the release of cytotoxic cytokines, for example IFN ⁇ or granzyme, by the immune cell.
- modified immune cells provided herein may have altered (i) release of cytotoxins such as perforin, granzymes, and granulysin and/or (ii) induction of apoptosis via Fas-Fas ligand interaction between the T cells and target cells.
- cytotoxicity can be quantified by a cytotoxicity assay including, a co-culture assay, ELISPOT, chromium release cytotoxicity assay, and the like. Cytotoxicity of a modified immune cell provided herein can be greater than that of a comparable immune cell lacking the switch molecule.
- the modified immune cell can exhibit increased cytotoxicity against a target cell as compared to a comparable immune cell lacking the switch molecule (e.g., unmodified) , when the switch molecule binds to the ligand and the modified immune cell binds to the neoantigen present on the target cell.
- a modified immune cell of the disclosure can be about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 125%, 150%, 175%, or 200%more cytotoxic to target cells as compared to a comparable immune cell lacking the switch molecule.
- a modified immune cell of the disclosure can induce death of target cells that is at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 125%, 150%, 175%, or 200%greater than that of a comparable immune cell lacking the switch molecule.
- an immune cell provided herein can induce apoptosis in target cells displaying target epitopes (e.g., neoantigens) on their surface.
- cytotoxicity can be determined in vitro or in vivo.
- determining cytotoxicity can comprise determining a level of disease after administration of a composition provided herein as compared to a level of disease prior to the administration. In some embodiments, determining cytotoxicity can comprise determining a level of disease after administration of a composition provided herein and a level of disease after administration of comparable immune cells lacking the switch molecule.
- immune cell activity comprises or results in proliferation of the immune cell (e.g., T cell) .
- Proliferation of the immune cell can refer to expansion of the immune cell.
- Proliferation of the immune cell can refer to phenotypic changes of the immune cell.
- Proliferation of a modified immune cell of the disclosure can be greater than that of a comparable immune cell lacking the switch molecule.
- Proliferation of a modified immune cell provided herein can be about 5-fold to about 10-fold, about 10-fold to about 20-fold, about 20-fold to about 30-fold, about 30-fold to about 40-fold, about 40-fold to about 50-fold, about 50-fold to about 60-fold, about 60-fold to about 70-fold, about 70-fold to about 80-fold, about 80-fold to about 90-fold, about 90-fold to about 100-fold, about 100-fold to about 200-fold, from about 200-fold to about 300-fold, from about 300-fold to about 400-fold, from about 400-fold to about 500-fold, from about 500-fold to about 600-fold, or from about 600-fold to about 700-fold greater than the proliferation of a comparable immune cell lacking the switch molecule.
- proliferation can be determined by quantifying a number of immune cells. Quantifying a number of immune cells can comprise flow cytometry, Trypan Blue exclusion, and/or hemocytometry. Proliferation can also be determined by phenotypic analysis of the immune cells.
- immune cell activity can comprise or result in differentiation, dedifferentiation, or transdifferentiation of the immune cell (e.g., modified T cell) .
- Differentiation, dedifferentiation, or transdifferentation of an immune cell can be determined by evaluating phenotypic expression of markers of differentiation, dedifferentiation, or transdifferentation on a cell surface by flow cytometry.
- a modified immune cell provided herein has increased differentiation ability as compared to a comparable immune cell lacking the switch molecule.
- a modified immune cell provided herein has increased dedifferentiation ability as compared to a comparable immune cell lacking the switch molecule.
- a modified immune cell provided herein has greater transdifferentiation ability as compared to a comparable immune cell lacking the switch molecule.
- immune cell activity can comprise or result in movement and/or trafficking of the immune cell (e.g., modified T cell) .
- movement can be determined by quantifying localization of the immune cell to a target site.
- modified immune cells provided herein can be quantified at a target site after administration, for example at a site that is not the target site. Quantification can be performed by isolating a lesion and quantifying a number of immune cells, for example tumor infiltrating lymphocytes, comprising the switch molecule. Movement and/or trafficking of an immune cell comprising a switch molecule can be greater than that of a comparable immune cell lacking the switch molecule.
- the number of immune cells comprising the switch molecule at a target site can be about 5X, 10X, 15X, 20X, 25X, 30X, 35X, or 40X that of the number of comparable immune cells lacking the switch molecule. Trafficking can also be determined in vitro utilizing a transwell migration assay. In some embodiments, the number of immune cells comprising the switch molecule at a target site, for example in a transwell migration assay, can be about 5X, 10X, 15X, 20X, 25X, 30X, 35X, or 40X that of the number of comparable immune cells lacking the switch molecule.
- immune cell activity can comprise or result in exhaustion and/or activation of the immune cell (e.g., modified T cell) .
- Exhaustion and/or activation of an immune cell can be determined by phenotypic analysis by flow cytometry or microscopic analysis. For example, expression levels of markers of exhaustion, for instance programmed cell death protein 1 (PD1) , lymphocyte activation gene 3 protein (LAG3) , 2B4, CD160, Tim3, and T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) , can be determined quantitatively and/or qualitatively.
- PD1 programmed cell death protein 1
- LAG3 lymphocyte activation gene 3 protein
- 2B4 lymphocyte activation gene 3 protein
- CD160 e.g., Tim3, and T cell immunoreceptor with immunoglobulin and ITIM domains
- TAGIT T cell immunoreceptor with immunoglobulin and ITIM domains
- immune cells such as T cells, can lose effector functions in a hierarchical manner
- the immune cell provided herein can undergo at least about a 1-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 11-fold, 12-fold, 13-fold, 14-fold, 15-fold, 20-fold, 30-fold, 40-fold, 50-fold, 60-fold, 70-fold, 80-fold, 90-fold, 100-fold, 150-fold, 200-fold, 250-fold, or over 300 increase in exhaustion or activation as compared to a comparable immune cell lacking the switch molecule.
- the immune cell comprising provided herein can undergo at least about a 1-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 11-fold, 12-fold, 13-fold, 14-fold, 15-fold, 20-fold, 30-fold, 40-fold, 50-fold, 60-fold, 70-fold, 80-fold, 90-fold, 100-fold, 150-fold, 200-fold, 250-fold, or over 300 decrease in exhaustion or activation as compared to a comparable immune cell lacking the switch molecule.
- the modified immune cell upon binding of the switch molecule to the ligand, the modified immune cell (e.g., modified T cell) exhibits enhanced neoantigen binding as compared to a comparable T cell lacking the switch molecule.
- a modified T cell comprises a T cell receptor (TCR) complex which exhibits specific binding to a neoantigen.
- TCR complex is an endogenous TCR complex.
- the TCR is an exogenous TCR complex.
- the TCR complex, e.g., endogenous or exogenous, of the modified immune cell can confer the antigen binding specificity (e.g., neoantigen binding) of the immune cell.
- Amodified APC e.g., modified B cell
- animmune cell in combination with animmune cell can enhance the ability of the modified APC to stimulate the immune cell in vivo.
- Proliferation of the immune cell can refer to expansion of the immune cell.
- Proliferation of the immune cell can refer to phenotypic changes of the immune cell.
- Proliferation of an immune cell can be about 2 fold, 10 fold, 2 fold to about 10 fold, 5 fold to about 10 fold, about 10 fold to about 20 fold, about 20 fold to about 30 fold, about 30 fold to about 40 fold, about 40 fold to about 50 fold, about 50 fold to about 60 fold, about 60 fold to about 70 fold, about 70 fold to about 80 fold, about 80 fold to about 90 fold, about 90 fold to about 100 fold, about 100 fold to about 200 fold, from about 200 fold to about 300 fold, from about 300 fold to about 400 fold, from about 400 fold to about 500 fold, from about 500 fold to about 600 fold, from about 600 fold to about 700 fold greater than the proliferation of a comparable immune cell administered without a modified APC.
- theimmune cell exhibits at least a 2-fold increase in proliferation compared to a comparable composition lacking a modified APC. In some embodiments, the immune cell exhibits at least a 10-fold increase in proliferation compared to a comparable composition lacking a modified APC.
- Proliferation of an immune cell can be about 2 fold, 10 fold, 2 fold to about 10 fold, about 5 fold to about 10 fold, about 10 fold to about 20 fold, about 20 fold to about 30 fold, about 30 fold to about 40 fold, about 40 fold to about 50 fold, about 50 fold to about 60 fold, about 60 fold to about 70 fold, about 70 fold to about 80 fold, about 80 fold to about 90 fold, about 90 fold to about 100 fold, about 100 fold to about 200 fold, from about 200 fold to about 300 fold, from about 300 fold to about 400 fold, from about 400 fold to about 500 fold, from about 500 fold to about 600 fold, from about 600 fold to about 700 fold greater than the proliferation of a comparable immune cell administered without a modified APC, and wherein the proliferation is ascertained at least about 12, 24, 36, 48, 60, 72, 84, or 96 hours after administration of the composition comprising the modified APC and the immune cell.
- the enhanced proliferation can be ascertained either in vitro or in vivo.
- proliferation can comprise quantifying the number of immune cells. Quantifying a number of immune cells can comprise flow cytometry, Trypan Blue exclusion, and/or hemocytometry. Proliferation can also be determined by phenotypic analysis of the immune cells.
- the amount of modified APC administered to a subject can remain about the same over time in the subject.
- the modified APC may not be degraded over time, thus retaining the amount administered to the subject.
- the modified APC that does not degrade over time is a modified B cell.
- the decrease in the amount of modified APC can be less than about 1%, 2%, 3%, 5%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90%relative to the amount administered, and wherein the decrease is ascertained at least about 12, 24, 36, 48, 60, 72, 84, or 96 hours after administration of the modified APC.
- the present disclosure provides a vaccine comprising a modified APC or a composition described herein.
- the composition comprises a modified APC comprising a neoantigen and a T cell that is capable of specifically binding the neoantigen.
- the present disclosure provides methods of treating a disorder in a subject expressing the neoantigen comprising administering a modified APC, a composition, or a vaccine described herein.
- the disorder is cancer.
- the present disclosure provides a method for immune cell enrichment comprising administering to a subject expressing the neoantigen, amodified APC, a composition, or a vaccine described herein.
- the disclosure provides a method of treating a disorder in a subject in need thereof.
- An exemplary method can comprise administering to the subject a modified APC comprising a neoantigen and a T cellcapable of specifically binding the neoantigen of the modified APC.
- the modified APC and the T cell are administered concurrently.
- the modified APC is administered prior to the T cell.
- the T cell is administered prior to the modified APC.
- a modified APC can comprise immune checkpoint inhibitors and/or cytokines described herein.
- an immune cell described herein further comprises a kill switch.
- a kill switch can be activated to eliminate the immune cell in cases of severe toxicity, such as hypercytokinemia. This can occur when the immune system has such a strong response that too many inflammatory cytokines are released, which triggermild to severe symptoms including fever, headache, rash, rapid heartbeat, low blood pressure, and breathing difficulties.
- a kill switch can be a drug-inducible kill-switch.
- the kill switch can comprise an inducible caspase-9.
- a cell for example, an immune cell or a modified form thereof.
- Cells for example, immune cells (e.g., lymphocytes including T cells and NK cells) , can be obtained from a subject.
- immune cells e.g., lymphocytes including T cells and NK cells
- subjects include humans, dogs, cats, mice, rats, and transgenic species thereof.
- samples from a subject from which cells can be derived include, for example, skin, heart, lung, kidney, bone marrow, breast, pancreas, liver, muscle, smooth muscle, bladder, gall bladder, colon, intestine, brain, prostate, esophagus, thyroid, serum, saliva, urine, gastric and digestive fluid, tears, stool, semen, vaginal fluid, interstitial fluids derived from tumorous tissue, ocular fluids, sweat, mucus, earwax, oil, glandular secretions, spinal fluid, hair, fingernails, plasma, nasal swab or nasopharyngeal wash, spinal fluid, cerebral spinal fluid, tissue, throat swab, biopsy, placental fluid, amniotic fluid, cord blood, emphatic fluids, cavity fluids, sputum, pus, microbiota, meconium, breast milk, and/or other excretions or body tissues.
- a cell can be a population of T cells, NK cell, B cells, and the like obtained from a subject.
- T cells can be obtained from a number of sources, including PBMCs, bone marrow, lymph node tissue, cord blood, thymus tissue, and tissue from a site of infection, ascites, pleural effusion, spleen tissue, and tumors.
- T cells can be obtained from a unit of blood collected from a subject using any number of techniques, such as separation.
- cells from the circulating blood of an individual are obtained by apheresis.
- the apheresis product typically contains lymphocytes, including T cells, monocytes, granulocytes, B cells, other nucleated white blood cells, red blood cells, and platelets.
- lymphocytes including T cells, monocytes, granulocytes, B cells, other nucleated white blood cells, red blood cells, and platelets.
- the cells collected by apheresis can be washed to remove the plasma fraction and placed in appropriate buffers or media for subsequent processing steps.
- immune cells comprise granulocytes, such as asophils, eosinophils, and neutrophils; mast cells; monocytes, which can develop into macrophages; antigen-presenting cells such as dendritic cells; and lymphocytes, such as natural killer cells (NK cells) , B cells, and T cells.
- an immune cell is an immune effector cell.
- An immune effector cell refers to an immune cell that can perform a specific function in response to a stimulus.
- an immune cell is an immune effector cell which can induce cell death.
- the immune cell is a lymphocyte.
- the lymphocyte is a T cell.
- the T cell is an activated T cell.
- T cells include both naive and memory cells (e.g. central memory or TCM, effector memory or TEM and effector memory RA or TEMRA) , effector cells (e.g. cytotoxic T cells or CTLs or Tc cells) , helper cells (e.g. Thl, Th2, Th3, Th9, Th7, TFH) , regulatory cells (e.g. Treg, and Trl cells) , natural killer T cells (NKT cells) , tumor infiltrating lymphocytes (TILs) , lymphocyte-activated killer cells (LAKs) , ⁇ ⁇ cells, ⁇ ⁇ cells, and similar unique classes of the T cell lineage.
- TCM central memory
- effector cells e.g. cytotoxic T cells or CTLs or Tc cells
- helper cells e.g. Thl, Th2, Th3, Th9, Th7,
- T cells can be divided into two broad categories: CD8+ T cells and CD4+ T cells, based on which protein is present on the cell's surface.
- T cells expressing a subject system can carry out multiple functions, including killing infected cells and activating or recruiting other immune cells.
- CD8+ T cells are referred to as cytotoxic T cells or cytotoxic T lymphocytes (CTLs) .
- CTLs expressing a subject system can be involved in recognizing and removing virus-infected cells and cancer cells.
- CTLs have specialized compartments, or granules, containing cytotoxins that cause apoptosis, e.g., programmed cell death.
- CD4+ T cells can be subdivided into four sub-sets –Th1, Th2, Th17, and Treg, with “Th” referring to “T helper cell, ” although additional sub-sets may exist.
- Th1 cells can coordinate immune responses against intracellular microbes, especially bacteria. They can produce and secrete molecules that alert and activate other immune cells, like bacteria-ingesting macrophages.
- Th2 cells are involved in coordinating immune responses against extracellular pathogens, like helminths (parasitic worms) , by alerting B cells, granulocytes, and mast cells.
- Th17 cells can produce interleukin 17 (IL-17) , a signaling molecule that activates immune and non-immune cells. Th17 cells are important for recruiting neutrophils.
- IL-17 interleukin 17
- a population of immune cells provided herein can be heterogeneous.
- cells used can be composed of a heterogeneous mixture of CD4 and CD8 T cells.
- the CD4 and CD8 cells can have phenotypic characteristics of circulating effector T cells.
- the CD4 and CD8 cells can also have a phenotypic characteristic of effector-memory cells.
- cells can be central-memory cells.
- cells include peripheral blood mononuclear cells (PBMC) , peripheral blood lymphocytes (PBL) , and other blood cell subsets such as, but not limited to, T cell, a natural killer cell, a monocyte, a natural killer T cell, a monocyte-precursor cell, a hematopoietic stem cell or a non-pluripotent stem cell.
- the cell can be any immune cell, including any Tcell such as tumor infiltrating cells (TILs) , such as CD3+ Tcells, CD4+ Tcells, CD8+ Tcells, or any other type of Tcell.
- TILs tumor infiltrating cells
- the T cell can also include memory T cells, memory stem T cells, or effector T cells.
- the T cells can also be selected from a bulk population, for example, selecting T cells from whole blood.
- the T cells can also be expanded from a bulk population.
- the T cells can also be skewed towards particular populations and phenotypes.
- the T cells can be skewed to phenotypically comprise, CD45RO (-) , CCR7 (+) , CD45RA (+) , CD62L (+) , CD27 (+) , CD28 (+) and/or IL-7R ⁇ (+) .
- Suitable cells can be selected that comprise one of more markers selected from a list comprising: CD45RO (-) , CCR7 (+) , CD45RA (+) , CD62L (+) , CD27 (+) , CD28 (+) and/or IL-7R ⁇ (+) .
- Cells also include stem cells such as, by way of example, embryonic stem cells, induced pluripotent stem cells, hematopoietic stem cells, neuronal stem cells and mesenchymal stem cells.
- Cells can comprise any number of primary cells, such as human cells, non-human cells, and/or mouse cells.
- Cells can be progenitor cells.
- Cells can be derived from the subject to be treated (e.g., patient) .
- Host cells can be derived from a human donor.
- Host cells can be stem memory TSCM cells comprised of CD45RO (-) , CCR7 (+) , CD45RA (+) , CD62L+ (L-selectin) , CD27+, CD28+ and IL-7R ⁇ +, the stem memory cells can also express CD95, IL-2R ⁇ , CXCR3, and LFA-1, and show numerous functional attributes distinctive of the stem memory cells.
- Host cells can be central memory TCM cells comprising L-selectin and CCR7, the central memory cells can secrete, for example, IL-2, but not IFN ⁇ or IL-4.
- Cells can also be effector memory TEM cells comprising L-selectin or CCR7 and produce, for example, effector cytokines such as IFN ⁇ and IL-4.
- an immune cell comprises a lymphocyte.
- the lymphocyte is a T cell.
- T cells can be obtained from a number of sources, including peripheral blood mononuclear cells, bone marrow, lymph node tissue, spleen tissue, umbilical cord, and tumors.
- the lymphocyte is a natural killer cell (NK cell) .
- NK cell natural killer cell
- any number of T cell lines available can be used.
- Immune cells such as lymphocytes (e.g., cytotoxic lymphocytes) can preferably be autologous cells, although heterologous cells can also be used.
- T cells can be obtained from a unit of blood collected from a subject using any number of techniques, such as separation.
- Cells from the circulating blood of an individual can be obtained by apheresis or leukapheresis.
- the apheresis product typically contains lymphocytes, including T cells, monocytes, granulocytes, B cells, other nucleated white blood cells, red blood cells, and platelets.
- the cells collected by apheresis can be washed to remove the plasma fraction and to place the cells in an appropriate buffer or media, such as phosphate buffered saline (PBS) , for subsequent processing steps. After washing, the cells can be resuspended in a variety of biocompatible buffers, such as Ca-free, Mg-free PBS.
- PBS phosphate buffered saline
- the undesirable components of the apheresis sample can be removed and the cells directly resuspended in culture media.
- Samples can be provided directly by the subject, or indirectly through one or more intermediaries, such as a sample collection service provider or a medical provider (e.g. a physician or nurse) .
- isolating T cells from peripheral blood leukocytes can include lysing the red blood cells and separating peripheral blood leukocytes from monocytes by, for example, centrifugation through, e.g., a gradient.
- a specific subpopulation of T cells can be further isolated by positive or negative selection techniques.
- Negative selection of a T cell population can be accomplished, for example, with a combination of antibodies directed to surface markers unique to the cells negatively selected.
- One suitable technique includes cell sorting via negative magnetic immunoadherence, which utilizes a cocktail of monoclonal antibodies directed to cell surface markers present on the cells negatively selected.
- a monoclonal antibody cocktail can include antibodies to CD14, CD20, CD1 lb, CD16, HLA-DR, and CD8.
- the process of negative selection can be used to produce a desired T cell population that is primarily homogeneous.
- a composition comprises a mixture of two or more (e.g. 2, 3, 4, 5, or more) different kind of Tcells.
- the immune cell is a member of an enriched population of cells.
- One or more desired cell types can be enriched by any suitable method, non-limiting examples of which include treating a population of cells to trigger expansion and/or differentiation to a desired cell type, treatment to stop the growth of undesired cell type (s) , treatment to kill or lyse undesired cell type (s) , purification of a desired cell type (e.g. purification on an affinity column to retain desired or undesired cell types on the basis of one or more cell surface markers) .
- the enriched population of cells is a population of cells enriched in cytotoxic lymphocytes selected from cytotoxic T cells (also variously known as cytotoxic T lymphocytes, CTLs, T killer cells, cytolytic T cells, CD8+ T cells, and killer T cells) , natural killer (NK) cells, and lymphokine-activated killer (LAK) cells.
- cytotoxic T cells also variously known as cytotoxic T lymphocytes, CTLs, T killer cells, cytolytic T cells, CD8+ T cells, and killer T cells
- NK natural killer
- LAK lymphokine-activated killer
- the concentration of cells and surface can be varied. In certain embodiments, it can be desirable to significantly decrease the volume in which beads and cells are mixed together (i.e., increase the concentration of cells) , to ensure maximum contact of cells and beads.
- a concentration of 2 billion cells/mL can be used. In some embodiments, a concentration of 1 billion cells/mL is used. In some embodiments, greater than 100 million cells/mL are used. A concentration of cells of 10, 15, 20, 25, 30, 35, 40, 45, or 50 million cells/mL can be used. In yet another embodiment, a concentration of cells from 75, 80, 85, 90, 95, or 100 million cells/mL can be used. In further embodiments, concentrations of 125 or 150 million cells/mL can be used. Using high concentrations can result in increased cell yield, cell activation, and cell expansion.
- a variety of target cells can be killed using the systems and methods of the subject disclosure.
- a target cell to which this method can be applied includes a wide variety of cell types.
- a target cell can be in vitro.
- a target cell can be in vivo.
- a target cell can be ex vivo.
- a target cell can be an isolated cell.
- a target cell can be a cell inside of an organism.
- a target cell can be an organism.
- a target cell can be a cell in a cell culture.
- a target cell can be one of a collection of cells.
- a target cell can be a mammalian cell or derived from a mammalian cell.
- a target cell can be a rodent cell or derived from a rodent cell.
- a target cell can be a human cell or derived from a human cell.
- a target cell can be a prokaryotic cell or derived from a prokaryotic cell.
- a target cell can be a bacterial cell or can be derived from a bacterial cell.
- a target cell can be an archaeal cell or derived from an archaeal cell.
- a target cell can be a eukaryotic cell or derived from a eukaryotic cell.
- a target cell can be a pluripotent stem cell.
- a target cell can be a plant cell or derived from a plant cell.
- a target cell can be an animal cell or derived from an animal cell.
- a target cell can be an invertebrate cell or derived from an invertebrate cell.
- a target cell can be a vertebrate cell or derived from a vertebrate cell.
- a target cell can be a microbe cell or derived from a microbe cell.
- a target cell can be a fungi cell or derived from a fungi cell.
- a target cell can be a stem cell or progenitor cell.
- Target cells can include stem cells (e.g., adult stem cells, embryonic stem cells, induced pluripotent stem (iPS) cells) and progenitor cells (e.g., cardiac progenitor cells, neural progenitor cells, etc. ) .
- Target cells can include mammalian stem cells and progenitor cells, including rodent stem cells, rodent progenitor cells, human stem cells, human progenitor cells, etc.
- Clonal cells can comprise the progeny of a cell.
- a target cell can comprise a target nucleic acid.
- a target cell can be in a living organism.
- a target cell can be a genetically modified cell.
- a target cell can be a host cell.
- a target cell can be a primary cell.
- cultures of primary cells can be passaged 0 times, 1 time, 2 times, 4 times, 5 times, 10 times, 15 times or more.
- Cells can be unicellular organisms. Cells can be grown in culture.
- a target cell can be a diseased cell.
- a diseased cell can have altered metabolic, gene expression, and/or morphologic features.
- a diseased cell can be a cancer cell, a diabetic cell, and a apoptotic cell.
- a diseased cell can be a cell from a diseased subject. Exemplary diseases can include blood disorders, cancers, metabolic disorders, eye disorders, organ disorders, musculoskeletal disorders, cardiac disease, and the like.
- the target cells may be harvested from an individual by any method.
- leukocytes may be harvested by apheresis, leukocytapheresis, density gradient separation, etc.
- Cells from tissues such as skin, muscle, bone marrow, spleen, liver, pancreas, lung, intestine, stomach, etc. can be harvested by biopsy.
- An appropriate solution may be used for dispersion or suspension of the harvested cells.
- Such solution can generally be a balanced salt solution, (e.g. normal saline, phosphate-buffered saline (PBS) , Hank’s balanced salt solution, etc.
- PBS phosphate-buffered saline
- Buffers can include HEPES, phosphate buffers, lactate buffers, etc.
- Cells may be used immediately, or they may be stored (e.g., by freezing) . Frozen cells can be thawed and can be capable of being reused. Cells can be frozen in a DMSO, serum, medium buffer (e.g., 10%DMSO, 50%serum, 40%buffered medium) , and/or some other such common solution used to preserve cells at freezing temperatures.
- Non-limiting examples of cells which can be target cells include, but are not limited to, lymphoid cells, such as B cell, T cell (Cytotoxic T cell, Natural Killer T cell, Regulatory T cell, T helper cell) , NK cell, cytokine-induced killer (CIK) cells; myeloid cells, such as granulocytes (Basophil granulocyte, Eosinophil granulocyte, Neutrophilgranulocyte/Hypersegmented neutrophil) , Monocyte/Macrophage, Red blood cell (Reticulocyte) , Mast cell, Thrombocyte/Megakaryocyte, Dendritic cell; cells from the endocrine system, including thyroid (Thyroid epithelial cell, Parafollicular cell) , parathyroid (Parathyroid chief cell, Oxyphil cell) , adrenal (Chromaffin cell) , pineal (Pinealocyte) cells; cells of the nervous system, including glial cells (Astrocyte, Microglia) , Magnocellular
- Apocrine sweat gland cell odoriferous secretion, sex-hormone sensitive
- Gland of Moll cell in eyelid specialized sweat gland
- Sebaceous gland cell lipid-rich sebum secretion
- Bowman's gland cell in nose washes olfactory epithelium
- Brunner's gland cell in duodenum enzymes and alkaline mucus
- Seminal vesicle cell secretes seminal fluid components, including fructose for swimming sperm
- Prostate gland cell secretes seminal fluid components
- Bulbourethral gland cell massbourethral gland cell
- Bartholin's gland cell vaginal lubricant secretion
- Gland of Littre cell Gland of Littre cell
- Uterus endometrium cell (carbohydrate secretion)
- Isolated goblet cell of respiratory and digestive tracts micus secretion
- Duct cell (of seminal vesicle, prostate gland, etc. ) , Epithelial cells lining closed internal body cavities, Ciliated cells with propulsive function, Extracellular matrix secretion cells, Contractile cells; Skeletal muscle cells, stem cell, Heart muscle cells, Blood and immune system cells, Erythrocyte (red blood cell) , Megakaryocyte (platelet precursor) , Monocyte, Connective tissue macrophage (various types) , Epidermal Langerhans cell, Osteoclast (in bone) , Dendritic cell (in lymphoid tissues) , Microglial cell (in central nervous system) , Neutrophil granulocyte, Eosinophil granulocyte, Basophil granulocyte, Mast cell, Helper T cell, Suppressor T cell, Cytotoxic T cell, Natural Killer T cell, B cell, Natural killer cell, Reticulocyte, Stem cells and committed progenitors for the blood and immune system (various types) ,
- the target cell is a cancer cell.
- cancer cells include cells of cancers including Acanthoma, Acinic cell carcinoma, Acoustic neuroma, Acral lentiginous melanoma, Acrospiroma, Acute eosinophilic leukemia, Acute lymphoblastic leukemia, Acute megakaryoblastic leukemia, Acute monocytic leukemia, Acute myeloblastic leukemia with maturation, Acute myeloid dendritic cell leukemia, Acute myeloid leukemia, Acute promyelocytic leukemia, Adamantinoma, Adenocarcinoma, Adenoid cystic carcinoma, Adenoma, Adenomatoid odontogenic tumor, Adrenocortical carcinoma, Adult Tcell leukemia, Aggressive NK-cell leukemia, AIDS-Related Cancers, AIDS-related lymphoma, Alveolar soft part sarcoma,
- the targeted cancer cell represents a subpopulation within a cancer cell population, such as a cancer stem cell.
- the cancer is of a hematopoietic lineage, such as a lymphoma.
- the antigen can be a tumor associated antigen.
- the target cells form a tumor.
- a tumor treated with the methods herein can result in stabilized tumor growth (e.g., one or more tumors do not increase more than 1%, 5%, 10%, 15%, or 20%in size, and/or do not metastasize) .
- a tumor is stabilized for at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or more weeks.
- a tumor is stabilized for at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or more months.
- a tumor is stabilized for at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more years.
- the size of a tumor or the number of tumor cells is reduced by at least about 5%, 10%, 15%, 20%, 25, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%or more.
- the tumor is completely eliminated, or reduced below a level of detection.
- a subject remains tumor free (e.g. in remission) for at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or more weeks following treatment.
- a subject remains tumor free for at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or more months following treatment.
- a subject remains tumor free for at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more years after treatment.
- Death of target cells can be determined by any suitable method, including, but not limited to, counting cells before and after treatment, or measuring the level of a marker associated with live or dead cells (e.g. live or dead target cells) .
- Degree of cell death can be determined by any suitable method. In some embodiments, degree of cell death is determined with respect to a starting condition. For example, an individual can have a known starting amount of target cells, such as a starting cell mass of known size or circulating target cells at a known concentration. In such cases, degree of cell death can be expressed as a ratio of surviving cells after treatment to the starting cell population. In some embodiments, degree of cell death can be determined by a suitable cell death assay. A variety of cell death assays are available, and can utilize a variety of detection methodologies. Examples of detection methodologies include, without limitation, the use of cell staining, microscopy, flow cytometry, cell sorting, and combinations of these.
- the efficacy of treatment in reducing tumor size can be determined by measuring the percentage of resected tissue that is necrotic (i.e., dead) .
- a treatment is therapeutically effective if the necrosis percentage of the resected tissue is greater than about 20%(e.g., at least about 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100%) .
- the necrosis percentage of the resected tissue is 100%, that is, no living tumor tissue is present or detectable.
- Exposing a target cell to an immune cell or population of immune cells disclosed herein can be conducted either in vitro or in vivo. Exposing a target cell to an immune cell or population of immune cells generally refers to bringing the target cell in contact with the immune cell and/or in sufficient proximity such that an antigen of a target cell (e.g., membrane bound or non-membrane bound) can bind to the switch molecule and/or TCR complexexpressed in the immune cell. Exposing a target cell to an immune cell or population of immune cells in vitro can be accomplished by co-culturing the target cells and the immune cells. Target cells and immune cells can be co-cultured, for example, as adherent cells or alternatively in suspension.
- a target cell to an immune cell or population of immune cells generally refers to bringing the target cell in contact with the immune cell and/or in sufficient proximity such that an antigen of a target cell (e.g., membrane bound or non-membrane bound) can bind to the switch molecule and/or T
- Target cells and immune cells can be co-cultured in various suitable types of cell culture media, for example with supplements, growth factors, ions, etc.
- Exposing a target cell to an immune cell or population of immune cells in vivo can be accomplished, in some cases, by administering the immune cells to a subject, for example a human subject, and allowing the immune cells to localize to the target cell via the circulatory system.
- an immune cell can be delivered to the immediate area where a target cell is localized, for example, by direct injection.
- Exposing can be performed for any suitable length of time, for example at least 1 minute, at least 5 minutes, at least 10 minutes, at least 30 minutes, at least 1 hour, at least 2 hours, at least 3 hours, at least 4 hours, at least 5 hours, at least 6 hours, at least 7 hours, at least 8 hours, at least 12 hours, at least 16 hours, at least 20 hours, at least 24 hours, at least 2 days, at least 3 days, at least 4 days, at least 5 days, at least 6 days, at least 1 week, at least 2 weeks, at least 3 weeks, at least 1 month, or longer.
- compositions and molecules e.g., polypeptides and/or nucleic acid encoding polypeptides
- a host cell such as an immune cell.
- the various components can be delivered simultaneously or temporally separated. The choice of method can be dependent on the type of cell being transformed and/or the circumstances under which the transformation is taking place (e.g., in vitro, ex vivo, or in vivo) .
- a method of delivery can involve contacting a target polynucleotide or introducing into a cell (or a population of cells such as immune cells) one or more nucleic acids comprising nucleotide sequences encoding the compositions of the disclosure.
- Suitable nucleic acids comprising nucleotide sequences encoding the compositions of the disclosure can include expression vectors, where an expression vector comprising a nucleotide sequence encoding one or more compositions of the disclosure is a recombinant expression vector.
- Non-limiting examples of delivery methods or transformation include, for example, viral or bacteriophage infection, transfection, conjugation, protoplast fusion, lipofection, electroporation, calcium phosphate precipitation, polyethyleneimine (PEI) -mediated transfection, DEAE-dextran mediated transfection, liposome-mediated transfection, particle gun technology, calcium phosphate precipitation, direct micro injection, and nanoparticle-mediated nucleic acid delivery.
- delivery methods or transformation include, for example, viral or bacteriophage infection, transfection, conjugation, protoplast fusion, lipofection, electroporation, calcium phosphate precipitation, polyethyleneimine (PEI) -mediated transfection, DEAE-dextran mediated transfection, liposome-mediated transfection, particle gun technology, calcium phosphate precipitation, direct micro injection, and nanoparticle-mediated nucleic acid delivery.
- PEI polyethyleneimine
- the present disclosure provides methods comprising delivering one or more polynucleotides encoding a gene described herein, or one or more vectors, or one or more transcripts thereof, and/or one or proteins transcribed therefrom, to a host cell.
- the disclosure further provides cells produced by such methods, and organisms (such as animals, plants, or fungi) comprising or produced from such cells.
- Non-viral vector delivery systems can include DNA plasmids, RNA (e.g. a transcript of a vector described herein) , naked nucleic acid, and nucleic acid complexed with a delivery vehicle, such as a liposome.
- RNA e.g. a transcript of a vector described herein
- Viral vector delivery systems can include DNA and RNA viruses, which can have either episomal or integrated genomes after delivery to the cell.
- Methods of non-viral delivery of nucleic acids can include lipofection, nucleofection, microinjection, biolistics, virosomes, liposomes, immunoliposomes, polycation or lipid: nucleic acid conjugates, naked DNA, artificial virions, and agent-enhanced uptake of DNA.
- Cationic and neutral lipids that are suitable for efficient receptor-recognition lipofection of polynucleotides can be used. Delivery can be to cells (e.g. in vitro or ex vivo administration) or target tissues (e.g. in vivo administration) .
- the preparation of lipid nucleic acid complexes, including targeted liposomes such as immunolipid complexes, can be used.
- RNA or DNA viral based systems can be used to target specific cells in the body and trafficking the viral payload to the nucleus of the cell.
- Viral vectors can be administered directly (in vivo) or they can be used to treat cells in vitro, and the modified cells can optionally be administered (ex vivo) .
- Viral based systems can include retroviral, lentivirus, adenoviral, adeno-associated and herpes simplex virus vectors for gene transfer. Integration in the host genome can occur with the retrovirus, lentivirus, and adeno-associated virus gene transfer methods, which can result in long term expression of the inserted transgene. High transduction efficiencies can be observed in many different cell types and target tissues.
- Lentiviral vectors are retroviral vectors that can transduce or infect non-dividing cells and produce high viral titers. Selection of a retroviral gene transfer system can depend on the target tissue. Retroviral vectors can comprise cis-acting long terminal repeats with packaging capacity for up to 6-10 kb of foreign sequence. The minimum cis-acting LTRs can be sufficient for replication and packaging of the vectors, which can be used to integrate the therapeutic gene into the target cell to provide permanent transgene expression.
- Retroviral vectors can include those based upon murine leukemia virus (MuLV) , gibbon ape leukemia virus (GaLV) , Simian Immuno deficiency virus (SIV) , human immuno deficiency virus (HIV) , and combinations thereof.
- MoLV murine leukemia virus
- GaLV gibbon ape leukemia virus
- SIV Simian Immuno deficiency virus
- HAV human immuno deficiency virus
- adenoviral-based systems can be used to deliver a polynucleotide to a host cell.
- Adenoviral-based systems can lead to transient expression of the transgene.
- Adenoviral based vectors can have high transduction efficiency in cells and may not require cell division. High titer and levels of expression can be obtained with adenoviral based vectors.
- Adeno-associated virus ( “AAV” ) vectors can be used to transduce cells with target nucleic acids, e.g., in the in vitro production of nucleic acids and peptides, and for in vivo and ex vivo gene therapy procedures.
- Packaging cells can be used to form virus particles capable of infecting a host cell.
- Such cells can include 293 cells, (e.g., for packaging adenovirus) , and Psi2 cells or PA317 cells (e.g., for packaging retrovirus) .
- Viral vectors can be generated by producing a cell line that packages a nucleic acid vector into a viral particle.
- the vectors can contain the minimal viral sequences required for packaging and subsequent integration into a host.
- the vectors can contain other viral sequences being replaced by an expression cassette for the polynucleotide (s) to be expressed.
- the missing viral functions can be supplied in trans by the packaging cell line.
- AAV vectors can comprise ITR sequences from the AAV genome which are required for packaging and integration into the host genome.
- Viral DNA can be packaged in a cell line, which can contain a helper plasmid encoding the other AAV genes, namely rep and cap, while lacking ITR sequences.
- the cell line can also be infected with adenovirus as a helper.
- the helper virus can promote replication of the AAV vector and expression of AAV genes from the helper plasmid. Contamination with adenovirus can be reduced by, e.g., heat treatment to which adenovirus is more sensitive than AAV.
- a host cell can be transiently or non-transiently transfected with one or more vectors described herein.
- a cell can be transfected as it naturally occurs in a subject.
- a cell can be taken or derived from a subject and transfected.
- a cell can be derived from cells taken from a subject, such as a cell line.
- a cell transfected with one or more vectors described herein is used to establish a new cell line comprising one or more vector-derived sequences.
- a cell transiently transfected with the compositions of the disclosure (such as by transient transfection of one or more vectors, or transfection with RNA) is used to establish a new cell line comprising cells containing the modification but lacking any other exogenous sequence.
- vectors for eukaryotic host cells include pXT1, pSG5 pSVK3, pBPV, pMSG, and pSVLSV40
- a “transposon system” refers to a plasmid-based gene transfer system comprising a transposon and a transposase.
- a transposon expression construct can be used to deliver a polynucleotide to a host cell.
- a transposon expression construct can comprise a polynucleotide encoding a neoantigen.
- an exogenous neoantigen or immunogenicity enhancer is introduced to a host cell using a transposon expression construct.
- a “transposon” or “transposable element” refers to a mobile genetic unit that can move positions within a DNA molecule in the presence of a transposase.
- Transposons mobilize through a cut-and-paste mechanism in which a transposase enzyme binds to DNA at inverted repeats and catalyzes the excision of the element from a DNA molecule and inserts the element in another location in the DNA. This process of horizontal gene transfer can be used to introduce a gene into a cell.
- Transposons that can be used to introduce an exogenous gene into a cell include, for example, the sleeping beauty transposon and the piggyBac transposon.
- Contacting the cells with a composition of the disclosure can occur in any culture media and under any culture conditions that promote the survival of the cells.
- cells may be suspended in any appropriate nutrient medium that is convenient, such as Iscove’s modified DMEM or RPMI 1640, supplemented with fetal calf serum or heat inactivated goat serum (about 5-10%) , L-glutamine, a thiol, particularly 2-mercaptoethanol, and antibiotics, e.g. penicillin and streptomycin.
- the culture may contain growth factors to which the cells are responsive.
- Growth factors as defined herein, are molecules capable of promoting survival, growth, and/or differentiation of cells, either in culture or in the intact tissue, through specific effects on a transmembrane receptor. Growth factors can include polypeptides and non-polypeptide factors.
- the chosen delivery system is targeted to specific tissue or cell types.
- tissue-or cell-targeting of the delivery system is achieved by binding the delivery system to tissue-or cell-specific markers, such as cell surface proteins.
- tissue-or cell-specific markers such as cell surface proteins.
- Viral and non-viral delivery systems can be customized to target tissue or cell-types of interest.
- compositions containing molecules (e.g., polypeptides and/or nucleic acids encoding polypeptides) or immune cells described herein can be administered for prophylactic and/or therapeutic treatments.
- the compositions can be administered to a subject already suffering from a disease or condition, in an amount sufficient to cure or at least partially arrest the symptoms of the disease or condition, or to cure, heal, improve, or ameliorate the condition.
- Amounts effective for this use can vary based on the severity and course of the disease or condition, previous therapy, the subject’s health status, weight, and response to the drugs, and the judgment of the treating physician.
- Multiple therapeutic agents can be administered in any order or simultaneously. If simultaneously, the multiple therapeutic agents can be provided in a single, unified form, or in multiple forms, for example, as multiple separate pills.
- the molecules can be packed together or separately, in a single package or in a plurality of packages.
- One or all of the therapeutic agents can be given in multiple doses. If not administered simultaneously, the timing between the multiple doses may vary to as much as about a month.
- Molecules described herein can be administered before, during, or after the occurrence of a disease or condition, and the timing of administering the composition containing a compound can vary.
- the pharmaceutical compositions can be used as a prophylactic and can be administered continuously to subjects with a propensity to conditions or diseases in order to prevent the occurrence of the disease or condition.
- the molecules and pharmaceutical compositions can be administered to a subject during or as soon as possible after the onset of the symptoms.
- the administration of the molecules can be initiated within the first 48 hours of the onset of the symptoms, within the first 24 hours of the onset of the symptoms, within the first 6 hours of the onset of the symptoms, or within 3 hours of the onset of the symptoms.
- the initial administration can be via any route practical, such as by any route described herein using any formulation described herein.
- a molecule can be administered as soon as is practicable after the onset of a disease or condition is detected or suspected, and for a length of time necessary for the treatment of the disease, such as, for example, from about 1 month to about 3 months.
- the length of treatment can vary for each subject.
- a molecule can be packaged into a biological compartment.
- a biological compartment comprising the molecule can be administered to a subject.
- Biological compartments can include, but are not limited to, viruses (lentivirus, adenovirus) , nanospheres, liposomes, quantum dots, nanoparticles, microparticles, nanocapsules, vesicles, polyethylene glycol particles, hydrogels, and micelles.
- a biological compartment can comprise a liposome.
- a liposome can be a self-assembling structure comprising one or more lipid bilayers, each of which can comprise two monolayers containing oppositely oriented amphipathic lipid molecules.
- Amphipathic lipids can comprise a polar (hydrophilic) headgroup covalently linked to one or two or more non-polar (hydrophobic) acyl or alkyl chains.
- Energetically unfavorable contacts between the hydrophobic acyl chains and a surrounding aqueous medium induce amphipathic lipid molecules to arrange themselves such that polar headgroups can be oriented towards the bilayer’s surface and acyl chains are oriented towards the interior of the bilayer, effectively shielding the acyl chains from contact with the aqueous environment.
- Examples of preferred amphipathic compounds used in liposomes can include phosphoglycerides and sphingolipids, representative examples of which include phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidic acid, phoasphatidylglycerol, palmitoyloleoyl phosphatidylcholine, lysophosphatidylcholine, lysophosphatidylethanolamine, dimyristoylphosphatidylcholine (DMPC) , dipalmitoylphosphatidylcholine (DPPC) , dioleoylphosphatidylcholine, distearoylphosphatidylcholine (DSPC) , dilinoleoylphosphatidylcholine and egg sphingomyelin, or any combination thereof.
- DMPC dimyristoylphosphatidy
- a biological compartment can comprise a nanoparticle.
- a nanoparticle can comprise a diameter of from about 40 nanometers to about 1 . 5 micrometers, from about 50 nanometers to about 1 . 2 micrometers, from about 60 nanometers to about 1 micrometer, from about 70 nanometers to about 800 nanometers, from about 80 nanometers to about 600 nanometers, from about 90 nanometers to about 400 nanometers, from about 100 nanometers to about 200 nanometers.
- the release rate can be slowed or prolonged and as the size of the nanoparticle decreases, the release rate can be increased.
- the amount of albumin in the nanoparticles can range from about 5%to about 85%albumin (v/v) , from about 10%to about 80%, from about 15%to about 80%, from about 20%to about 70%albumin (v/v) , from about 25%to about 60%, from about 30%to about 50%, or from about 35%to about 40%.
- the pharmaceutical composition can comprise up to 30, 40, 50, 60, 70 or 80%or more of the nanoparticle.
- the nucleic acid molecules of the disclosure can be bound to the surface of the nanoparticle.
- a biological compartment can comprise a virus.
- the virus can be a delivery system for the pharmaceutical compositions of the disclosure.
- Exemplary viruses can include lentivirus, retrovirus, adenovirus, herpes simplex virus I or II, parvovirus, reticuloendotheliosis virus, and adeno-associated virus (AAV) .
- Pharmaceutical compositions of the disclosure can be delivered to a cell using a virus.
- the virus can infect and transduce the cell in vivo, ex vivo, or in vitro. In ex vivo and in vitro delivery, the transduced cells can be administered to a subject in need of therapy.
- compositions can be packaged into viral delivery systems.
- the compositions can be packaged into virions by a HSV-1 helper virus-free packaging system.
- Viral delivery systems can be administered by direct injection, stereotaxic injection, intracerebroventricularly, by minipump infusion systems, by convection, catheters, intravenous, parenteral, intraperitoneal, and/or subcutaenous injection, to a cell, tissue, or organ of a subject in need.
- cells can be transduced in vitro or ex vivo with viral delivery systems.
- the transduced cells can be administered to a subject having a disease.
- a stem cell can be transduced with a viral delivery system comprising a pharmaceutical composition and the stem cell can be implanted in the patient to treat a disease.
- the dose of transduced cells given to a subject can be about 1 ⁇ 10 5 cells/kg, about 5 ⁇ 10 5 cells/kg, about 1 ⁇ 10 6 cells/kg, about 2 ⁇ 10 6 cells/kg, about 3 ⁇ 10 6 cells/kg, about 4 ⁇ 10 6 cells/kg, about 5 ⁇ 10 6 cells/kg, about 6 ⁇ 10 6 cells/kg, about 7 ⁇ 10 6 cells/kg, about 8 ⁇ 10 6 cells/kg, about 9 ⁇ 10 6 cells/kg, about 1 ⁇ 10 7 cells/kg, about 5 ⁇ 10 7 cells/kg, about 1 ⁇ 10 8 cells/kg, or more in one single dose.
- Introduction of the biological compartments into cells can occur by viral or bacteriophage infection, transfection, conjugation, protoplast fusion, lipofection, electroporation, calcium phosphate precipitation, polyethyleneimine (PEI) -mediated transfection, DEAE-dextran mediated transfection, liposome-mediated transfection, particle gun technology, calcium phosphate precipitation, direct micro-injection, nanoparticle-mediated nucleic acid delivery, and the like.
- PEI polyethyleneimine
- immune cells expressing a subject system are administered.
- Immune cells expressing a subject system can be administered before, during, or after the occurrence of a disease or condition, and the timing of administering the immune cells can vary.
- immune cells expressing a subject system can be used as a prophylactic and can be administered continuously to subjects with a propensity to conditions or diseases in order to prevent the occurrence of the disease or condition.
- the immune cells can be administered to a subject during or as soon as possible after the onset of the symptoms. The administration can be initiated within the first 48 hours of the onset of the symptoms, within the first 24 hours of the onset of the symptoms, within the first 6 hours of the onset of the symptoms, or within 3 hours of the onset of the symptoms.
- the initial administration can be via any suitable route, such as by any route described herein using any formulation described herein.
- Immune cells can be administered as soon as is practicable after the onset of a disease or condition is detected or suspected, and for a length of time necessary for the treatment of the disease, such as, for example, from about 1 month to about 3 months.
- the length of treatment can vary for each subject.
- a molecule (e.g., polypeptide and/or nucleic acid) described herein can be present in a composition in a range of from about 1 mg to about 2000 mg; from about 5 mg to about 1000 mg, from about 10 mg to about 25 mg to 500 mg, from about 50 mg to about 250 mg, from about 100 mg to about 200 mg, from about 1 mg to about 50 mg, from about 50 mg to about 100 mg, from about 100 mg to about 150 mg, from about 150 mg to about 200 mg, from about 200 mg to about 250 mg, from about 250 mg to about 300 mg, from about 300 mg to about 350 mg, from about 350 mg to about 400 mg, from about 400 mg to about 450 mg, from about 450 mg to about 500 mg, from about 500 mg to about 550 mg, from about 550 mg to about 600 mg, from about 600 mg to about 650 mg, from about 650 mg to about 700 mg, from about 700 mg to about 750 mg, from about 750 mg to about 800 mg, from about 800 mg to about 850 mg, from about 850 mg to about 900
- a molecule (e.g., polypeptide and/or nucleic acid) described herein can be present in a composition in an amount of about 1 mg, about 2 mg, about 3 mg, about 4 mg, about 5 mg, about 10 mg, about 15 mg, about 20 mg, about 25 mg, about 30 mg, about 35 mg, about 40 mg, about 45 mg, about 50 mg, about 55 mg, about 60 mg, about 65 mg, about 70 mg, about 75 mg, about 80 mg, about 85 mg, about 90 mg, about 95 mg, about 100 mg, about 125 mg, about 150 mg, about 175 mg, about 200 mg, about 250 mg, about 300 mg, about 350 mg, about 400 mg, about 450 mg, about 500 mg, about 550 mg, about 600 mg, about 650 mg, about 700 mg, about 750 mg, about 800 mg, about 850 mg, about 900 mg, about 950 mg, about 1000 mg, about 1050 mg, about 1100 mg, about 1150 mg, about 1200 mg, about 1250 mg, about 1300 mg, about 1350 mg,
- a molecule (e.g., polypeptide and/or nucleic acid) described herein can be present in a composition that provides at least 0.1, 0.5, 1, 1.5, 2, 2.5 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 10, or more units of activity/mg molecule.
- the activity can be regulation of gene expression.
- the total number of units of activity of the molecule delivered to a subject is at least 25,000, 30,000, 35,000, 40,000, 45,000, 50,000, 60,000, 70,000, 80,000, 90,000, 110,000, 120,000, 130,000, 140,000, 150,000, 160,000, 170,000, 180,000, 190,000, 200,000, 210,000, 220,000, 230,000, 250,000, or more units.
- the total number of units of activity of the molecule delivered to a subject is at most 25,000, 30,000, 35,000, 40,000, 45,000, 50,000, 60,000, 70,000, 80,000, 90,000, 110,000, 120,000, 130,000, 140,000, 150,000, 160,000, 170,000, 180,000, 190,000, 200,000, 210,000, 220,000, 230,000, 250,000, or more units.
- pharmacokinetic and pharmacodynamic data can be obtained.
- Appropriate pharmacokinetic and pharmacodynamic profile components describing a particular composition can vary due to variations in drug metabolism in human subjects.
- Pharmacokinetic and pharmacodynamic profiles can be based on the determination of the mean parameters of a group of subjects.
- the group of subjects includes any reasonable number of subjects suitable for determining a representative mean, for example, 5 subjects, 10 subjects, 15 subjects, 20 subjects, 25 subjects, 30 subjects, 35 subjects, or more.
- the mean can be determined by calculating the average of all subject's measurements for each parameter measured.
- a dose can be modulated to achieve a desired pharmacokinetic or pharmacodynamics profile, such as a desired or effective blood profile, as described herein.
- the pharmacokinetic parameters can be any parameters suitable for describing a molecule.
- the Cmax can be, for example, not less than about 25 ng/mL; not less than about 50 ng/mL; not less than about 75 ng/mL; not less than about 100 ng/mL; not less than about 200 ng/mL; not less than about 300 ng/mL; not less than about 400 ng/mL; not less than about 500 ng/mL; not less than about 600 ng/mL; not less than about 700 ng/mL; not less than about 800 ng/mL; not less than about 900 ng/mL; not less than about 1000 ng/mL; not less than about 1250 ng/mL; not less than about 1500 ng/mL; not less than about 1750 ng/mL; not less than about 2000 ng/mL; or any other Cmax appropriate for describing a pharmacokinetic profile of a molecule described herein.
- the Tmax of a molecule described herein can be, for example, not greater than about 0.5 hours, not greater than about 1 hours, not greater than about 1.5 hours, not greater than about 2 hours, not greater than about 2.5 hours, not greater than about 3 hours, not greater than about 3.5 hours, not greater than about 4 hours, not greater than about 4.5 hours, not greater than about 5 hours, or any other Tmax appropriate for describing a pharmacokinetic profile of a molecule described herein.
- the AUC (0-inf) of a molecule described herein can be, for example, not less than about 50 ng ⁇ hr/mL, not less than about 100 ng/hr/mL, not less than about 150 ng/hr/mL, not less than about 200 ng ⁇ hr/mL, not less than about 250 ng/hr/mL, not less than about 300 ng/hr/mL, not less than about 350 ng/hr/mL, not less than about 400 ng/hr/mL, not less than about 450 ng/hr/mL, not less than about 500 ng/hr/mL, not less than about 600 ng/hr/mL, not less than about 700 ng/hr/mL, not less than about 800 ng/hr/mL, not less than about 900 ng/hr/mL, not less than about 1000 ng ⁇ hr/mL, not less than about 1250 ng/hr/mL, not less than about 1500
- the plasma concentration of a molecule described herein about one hour after administration can be, for example, not less than about 25 ng/mL, not less than about 50 ng/mL, not less than about 75 ng/mL, not less than about 100 ng/mL, not less than about 150 ng/mL, not less than about 200 ng/mL, not less than about 300 ng/mL, not less than about 400 ng/mL, not less than about 500 ng/mL, not less than about 600 ng/mL, not less than about 700 ng/mL, not less than about 800 ng/mL, not less than about 900 ng/mL, not less than about 1000 ng/mL, not less than about 1200 ng/mL, or any other plasma concentration of a molecule described herein.
- the pharmacodynamic parameters can be any parameters suitable for describing pharmaceutical compositions of the disclosure.
- the pharmacodynamic profile can exhibit decreases in factors associated with inflammation after, for example, about 2 hours, about 4 hours, about 8 hours, about 12 hours, or about 24 hours.
- a subject can be a human.
- a subject can be a mammal (e.g., rat, mouse, cow, dog, pig, sheep, horse) .
- a subject can be a vertebrate or an invertebrate.
- a subject can be a laboratory animal.
- a subject can be a patient.
- a subject can be suffering from a disease.
- a subject can display symptoms of a disease.
- a subject may not display symptoms of a disease, but still have a disease.
- a subject can be under medical care of a caregiver (e.g., the subject is hospitalized and is treated by a physician) .
- a subject can be a plant or a crop.
- the disclosure provides methods for preparing a modified APC comprising a neoantigen.
- anAPC can be obtained autologously from a tumor or cancer patient, or an allogenic donor.
- the isolated APC can be B cells, dendritic cells, or a combination thereof.
- a neoantigen specific to a tumor to be targeted can be identified, for example, by analyzing somatic cell mutations in a tumor in a subject.
- the identified neoantigen can beintroduced into the isolated APC to generate modified APCs comprising the neontigen.
- Neoantigens can be introduced into APCs as polynucleotides (e.g., DNA, RNA, vector) encoding the neoantigen, or as a polypeptide.
- Neoantigen presentation by the APC can be induced using a combination of the immune cell machinery and/or in vitro cultivation methods.
- neoantigen loading on APCs can be performed by disrupting tumor cells from a patient to release tumor proteins. The tumor proteins can then be mixed with the APC to allow immune cell uptake via endocytosis and result in neoantigen presentation by the APC.
- Neoantigen loading can be performed before or after in vitro cultivation of the immune cell during the proliferation process.
- the present disclosure provides a method of preparing a composition comprising a modifiedAPC comprising a neoantigen and an immune cell such as a T cell capable of specifically recognizing the neoantigen.
- a modified APC comprising a neoantigen can be mixed or co-cultivated with an immune cell such as a T cell of peripheral origin or a tumor infiltrating lymphocyte (TIL) from a tumor in vitro to generate modified T cells capable of specifically recognizing and binding the neoantigen.
- the modified T cells can then be isolated from the mixture.
- the T cells can be genetically modified before or after exposure to the neoantigen, for example, to introduce the switch molecule.
- the modified T cells can be used in combination with a modified APCin vivo such that the modified T cell and the modified APC share an overlapping time window of action and the infused modified T cell can be further activated in vivo by the modified APC.
- the modified T cell and the modified APC may not be infused together.
- a modified antigen-presenting cell comprising a neoantigen.
- neoantigen comprises a peptide fragment of a protein encoded by a mutated gene, wherein the gene is selected from ABL1, ACOl 1997, ACVR2A, AFP, AKT1, ALK, ALPPL2, ANAPC1, APC, ARID1A, AR, AR-v7, ASCL2, ⁇ 2 ⁇ , BRAF, BTK, C15ORF40, CDH1, CLDN6, CNOT1, CT45A5, CTAG1B, DCT, DKK4, EEF1B2, EEF1DP3, EGFR, EIF2B3, env, EPHB2, ERBB3, ESR1, ESRP1, FAM11 IB, FGFR3, FRG1B, GAGE1, GAGE 10, GATA3, GBP3, HER2, IDH1, JAK1, KIT, KRAS, LMAN1, MABEB 16, MAGEA1, MAGEA10, MAGEA4, MAGEA8, MAGEB 17, MAGEB4, MAG
- composition comprising:
- a T cell capable of specifically binding said neoantigen of said modified APC.
- composition of embodiment 6, wherein said T cell is a T cell having contactedwith said modified APC.
- ECD extracellular domain of a protein that, in an unmodified T cell, elicits an immune cell inactivation signal upon binding to a ligand of said protein, wherein said ECD is fused to an intracellular domain (ICD) of a co-stimulatory molecule that mediates an immune cell activation signal,
- ICD intracellular domain
- binding of said switch molecule to said ligand of said protein yields said immune cell activation signal in said modified T cell instead of said immune cell inactivation signal.
- composition of embodiment 8, wherein said protein that elicits the immune cell inactivation signal is a signaling receptor.
- composition of embodiment 8, wherein said protein that elicits the immune cell inactivation signal is selected from the group consisting of: a signaling receptor, a checkpoint receptor, a cytokine receptor, a chemokine receptor, a growth factor receptor, and a hormone receptor.
- composition of embodiment 8, wherein said protein that elicits the immune cell inactivation signal is selected from the group consisting of: transforming growth factor-beta receptor (TGF-beta-R) , programmed cell death 1 (PD-1) , cytotoxic T-lymphocyte associated protein 4 (CTLA-4) , B and T lymphocyte attenuator (BTLA) , a killer immunoglobulin-like receptor (KIR) , indoleamine 2, 3-dioxygenase (IDO) , lymphocyte activation gene-3 (LAG3) , T cell immunoglobulin mucin 3 (TIM-3) , and TIGIT.
- TGF-beta-R transforming growth factor-beta receptor
- PD-1 programmed cell death 1
- CTLA-4 cytotoxic T-lymphocyte associated protein 4
- B and T lymphocyte attenuator BTLA
- KIR killer immunoglobulin-like receptor
- IDO indoleamine 2, 3-dioxygenase
- composition of any one of embodiments 8-11, wherein said co-stimulatory molecule is selected from the group consisting of: interleukin-2 receptor (IL-2R) , interleukin-12 receptor (IL-12R) , B7-H3, CD2, CD3, CD4, CD7, CD8, CD27, CD28, CD30, CD40, 4-1BB/CD137, ICOS, lymphocyte function-associated antigen-1 (LFA-1) , LIGHT, NKG2C, OX40, and PD-1.
- IL-2R interleukin-2 receptor
- IL-12R interleukin-12 receptor
- B7-H3, CD2, CD3, CD4, CD7, CD8, CD27, CD28, CD30, CD40, 4-1BB/CD137, ICOS lymphocyte function-associated antigen-1 (LFA-1) , LIGHT, NKG2C, OX40, and PD-1.
- LFA-1 lymphocyte function-associated antigen-1
- composition of embodiment 12, wherein said activation factor is a soluble cytokine, a soluble chemokine, or a growth factor.
- composition of embodiment 12, wherein said activation factor is a soluble cytokine, and wherein said soluble cytokine is IL-1, IL-2, IL-6, IL-7, IL-8, IL-10, IL-12, IL-15, IL-21, TNF, TGF, IFN, or any functional fragment or variant thereof.
- said immune cell activation signal comprises a clonal expansion of said modified T cell; cytokine release by said modified T cell; cytotoxicity of said modified T cell; proliferation of said modified T cell; differentiation, dedifferentiation or transdifferentiation of said modified T cell; movement and/or trafficking of said modified T cell; exhaustion and/or reactivation of said modified T cell; and release of other intercellular molecules, metabolites, chemical compounds, or combinations thereof by said modified T cell.
- composition of any one of embodiments 8-16 wherein upon binding of said switch molecule of said modified T cell to said ligand of said protein, said modified T cell exhibits enhanced neoantigen binding as compared to an unmodified T cell.
- composition of embodiment 19, wherein said cytokine is IFN-gamma or IL-2.
- composition of any one of embodiments, wherein said modified T cell comprises a T cell receptor (TCR) complex capable of specifically binding to said neoantigen.
- TCR T cell receptor
- composition of embodiment 20, wherein said TCR complex is an endogenous TCR complex.
- composition of embodiment 20, wherein said TCR complex is an exogenous TCR complex.
- a vaccine comprising a modified APC of any one of embodiments 1-5 or a composition of any one of embodiments 6-27.
- a method of treating a disorder in a subject expressing said neoantigen comprising administering a modified APC of any one of embodiments 1-5, a composition of any one of embodiments 6-27, or a vaccine of embodiment 28.
- a method for immune cell enrichment comprising administering to a subject expressing said neoantigen a composition of any one of embodiments 6-27 or a vaccine of embodiment 28.
- T cell capable of specifically binding said neoantigen of said modified APC
- modified APC and the T cell are administered concurrently or separately to the subject.
- T cell is a modified T cell comprising a switch molecule, wherein said switch molecule comprises:
- ECD extracellular domain of a protein that, in an unmodified T cell, elicits an immune cell inactivation signal upon binding to a ligand of said protein, wherein said ECD is fused to an intracellular domain (ICD) of a co-stimulatory molecule that mediates an immune cell activation signal,
- ICD intracellular domain
- binding of said switch molecule to said ligand of said protein yields said immune cell activation signal in said modified T cell instead of said immune cell inactivation signal.
- said protein that elicits the immune cell inactivation signal is selected from the group consisting of: a signaling receptor, a checkpoint receptor, a cytokine receptor, a chemokine receptor, a growth factor receptor, and a hormone receptor.
- TGF-beta-R transforming growth factor-beta receptor
- PD-1 programmed cell death 1
- CTLA-4 cytotoxic T-lymphocyte associated protein 4
- B and T lymphocyte attenuator BTLA
- KIR killer immunoglobulin-like receptor
- IDO indoleamine 2, 3-dioxygenase
- LAG3 lymphocyte activation gene-3
- TIM-3 T cell immunoglobulin mucin 3
- TIGIT transforming growth factor-beta receptor
- IL-2R interleukin-2 receptor
- IL-12R interleukin-12 receptor
- LFA-1 lymphocyte function-associated antigen-1
- activation factor is a soluble cytokine, a soluble chemokine, or a growth factor.
- said activation factor is a soluble cytokine
- said soluble cytokine is IL-1, IL-2, IL-6, IL-7, IL-8, IL-10, IL-12, IL-15, IL-21, TNF, TGF, IFN, or any functional fragment or variant thereof.
- said immune cell activation signal comprises a clonal expansion of said modified T cell; cytokine release by said modified T cell; cytotoxicity of said modified T cell; proliferation of said modified T cell; differentiation, dedifferentiation or transdifferentiation of said modified T cell; movement and/or trafficking of said modified T cell; exhaustion and/or reactivation of said modified T cell; and release of other intercellular molecules, metabolites, chemical compounds, or combinations thereof by said modified T cell.
- TCR complex is an endogenous TCR complex.
- Example 1 Preparation of neoantigen-loaded B cell vaccine (neoB) and neoantigen-loaded dendritic cell (DC) vaccine (neoDC) .
- PMBCs peripheral blood mononuclear cells
- B cells Peripheral blood was collected from veins of patients. PMBCs were isolated using lymphocyte separation solution. CD19+ B cells were sorted and quantitated using magnetic beads using an anti-CD19 antibody. B cells were amplified by cultivating in relevant media and cytokines. On Day 12, amplified B cells were collected and quantitated, resulting in 10-to 30-fold amplification.
- PBMCs peripheral blood was collected directly from veins of patients or by cytapheresis. PBMCs were isolated with lymphocyte separation solution and allowed to adhere to wall for about 2 hours. Adhered monocytes were then isolated and relevant cytokines were added to the monocytes to promote DC differentiation and maturation. Mature DC cells were collected after 7 to 8 days of cultivation.
- RNA sequencing analysis was conducted on tumor tissues obtained from the patients.
- Candidate neoantigen mutations were in vitro synthesized and in vitro transcribed into RNA, which were transformed intoB cells or DCs by electroporation to yield neoBorneoDC, respectively.
- Example 2 Activation and enrichment of neoantigen-reactive T cells (neoT) by neoB and neoDC vaccines in vitro.
- neoT neoantigen-reactive T cells
- TILs Tumor infiltrating T lymphocytes
- PMBCs Tumor infiltrating T lymphocytes
- the T cells were co-cultivated for one day with mixtures prepared from autologous cells of the patient containing either neoB or neoDC.
- the percentage of CD137+ T cells (i.e., neoT) to the total T cells were determined by flow cytometry for each patient tumor sample. The results are shown in TABLE 1 below:
- NeoB Stimulation 1 21.3% 22.1% 2 6.3% 6.5% 3 3.6% 3.8% 4 33.7% 34.1% 5 5.7% 5.9%
- CD137+ T cells varied significantly among individual patients for both neoB and neoDC stimulated groups. However, for the same patient, the percentage of CD137+ T cells stimulated with either neoB or neoDC was very similar. The results indicate that neoT activation and enrichment by neoB is very similar to neoT activation and enrichment by neoDC.
- Example 3 Preparation of normal and enhanced neoT.
- TILs Tumor infiltrating T lymphocytes
- PMBCs Tumor infiltrating T lymphocytes
- Activated T cells were sorted using magnetic beads using an anti-CD137 antibody to obtain neoT.
- a lentivirus vector for a switch receptor of PD1/4-1BB was transfected into neoT with a transfection efficiency of about 60%.
- PD1+T cells were sorted by flow cytometry or magnetic beads to construct enhanced neoT (ENT) .
- the remaining PD1-T cells were normal (non-enhanced) neoT.
- Example 4 Amplification and enrichment of normal neoT and enhanced neoT (ENT) using neoB and neoDC, and cell viability of the neoB and neoDC vaccines.
- mice The amplification and enrichment effects of neoB and neoDC on normal neoT and ENT are determined using immunodeficient mice. The mice are divided into 4 test groups to accept re-infusion via the tail vein, as shown in TABLE 2.
- Group A neoB Group B: neoDC A1: neoT + neoB B1: neoT + neoDC A2: ENT + neoB B2: ENT + neoDC
- NeoT, ENT, neoB, and neoDC are administered at an initial dose of 10 5 cells per mouse.
- mouse peripheral blood is collected within 20 minutes to determine the number of neoB and neoDC.
- mouse peripheral blood is collected to monitor the quantity of neoT and ENT.
- the number of ENT is expected to be greater than the number of neoT after administration of the same vaccine (group A or group B) . It is expected that ENT is more prone to activation by an antigen-presenting cell.
- neoDC In both neoT or ENT groups, the number of neoDC is expected to decrease significantly after re-infusion, for example, because neoB can be more viable (i.e., more resistant to cell killing by the T cells) than neoDC. NeoB is expected to exhibit a stronger activation and amplification effect on the T cells than neoDC. Thus, neoB is expected to be a better neoantigen vaccine than neoDC.
- Example 5 Dose-dependent amplification and enrichment of ENT cells using neoB and neoDC.
- Immunodeficienct mice used for this experiment are divided into 8 test groups to accept re-infusion via the tail vein, as shown in TABLE 3.
- ENT is administered at an initial dose of 10 6 cells per mouse.
- the neoantigen vaccine (neoB or neoDC) is re-infused earlier than ENT.
- the number of ENT, neoB, and neoDC are determined weekly for six consecutive weeks.
- the number of ENT is expected to be positively correlated with the dose of vaccine infusion, which would demonstrate that the vaccine dosage can play a crucial role in the amplification and enrichment of ENT.
- All neoBtest groups are expected to have a significantly greater number of ENT than the neoDCtest groups. Because neoB is expected to have a higher rate of cell viability thanneoDC, the neoB group is expected to induce ENT proliferation more effectively than the neoDC groups. After initial infusion, the number of neoDC is expected to sharply decline after being killed by the T cells. As a result, the neoDC may no longer stimulate T cells. Conversely, neoB, by virtue of having a higher survival rate, is expected to be able to continuously stimulate the T cells.
- This example demonstrates that increasing the number of neoantigen-loaded antigen-presenting cells can amplify the number of tumor-recognizing T cells (or neoantigen reactive T cells) .
- B cells that are capable of proliferation can be preferable neoantigen vaccine vehicles over DCs, which may not be capable of proliferation, for enrichment and amplification of neoantigen reactive T cells.
- Example 6 Enrichment and amplification of ENT cells by repeated administrations of neoB and neoDC.
- Immunodeficient mice used for this experiment are divided into 8 test groups to accept re-infusion via the tail vein, as shown in TABLE 4.
- ENT is administered at an initial dose of 10 5 .
- neoB and neoDC are re-infused at a dose of 10 5 on the same day as ENT.
- one dose of vaccine infusion is administered each week, with each additional dose being double the previous amount. For example, two doses: 2 x 10 5 (groups A3-A5 and B3-B5) , three doses: 4 x 10 5 (groups A4-A5 and B4-B5) , and four doses: 8 x 10 5 (groups A5 andB5) .
- blood is drawn to determine the number of neoB, neoDC, and ENT.
- neoB The amplification of ENT after administration of neoB in all doses is expected to be significantly greater than the amplification of ENT after administration of each corresponding dose of neoDC.
- neoB In test groups in which repeated multiple doses of vaccines are administered, neoBis expected to exhibit a significantly greater amplification effect on ENT than neoDC.
- NeoBis expected to exhibit a significantly higher rate of survival than neoDC.
- test groups in which multiple does of vaccines are infused e.g., groups A3-A6 and B3-B6
- the number of neoDCs is expected to be almost undetectable at later doses, whereas the number of B cells remains similar to the initial re-infusion amount.
- NeoDC is expected to only activate T cells at the first dose of re-infusion.
- the ENT may kill the neoDC and prevent the neoDC from exerting continuous activation effect on the ENT.
- the number of neoDC may sharply decline after being killed by the T cells. As a result, the neoDC may no longer stimulate the T cells.
- neoB by virtue of having a higher survival rate, is expected to be able to continuously stimulate the T cells.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Immunology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- Hematology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
Abstract
The present disclosure provides compositions and methods for treating cancer. The compositions and methods comprise modified antigen-presenting cells comprising neoantigen.
Description
CROSS-REFERENCE
This application claims benefit of PCT International Application No. PCT/CN2018/090634 filed on June 11, 2018, which is incorporated herein by reference in their entirety.
Immunotherapy can involve modifying a patient’s own immune cells to redirect cellular cytotoxicity to cells of interest, for example tumor cells. One mechanism can involve T-cell recognition of epitopes that are displayed on the surface of tumor cells. Immunotherapies that boost the ability of T cells to recognize and destroy tumor cells can enhance therapeutic efficacy.
Conventional methods of immunotherapy suffer from various deficiencies. Such deficiencies include inability to customize therapy to a subject, inadequate specificity of modified immune cells for diseased cells such as tumor cells (e.g., on-target off-tumor effects and toxicities) , insufficient activation of tumor cell recognizing T cells, and activation of immunosuppressive mechanisms, all of which can minimize the effect of immune responses.
SUMMARY
In view of the foregoing, there exists a considerable need for alternative compositions and methods to carry out immunotherapy. The compositions and methods of the present disclosure address this need, and provide additional advantages as well. In particular, the various aspects of the disclosure provide amodified antigen-presenting cell (APC) comprising a neoantigen.
An aspect of the present disclosure provides a modified antigen-presenting cell (APC) comprising a neoantigen. In some embodiments, the APC may be a B cell. In some embodiments, the APC may be a dendritic cell.
In some embodiments, the neoantigen may comprise a peptide fragment of a protein encoded by a mutated gene, wherein the gene is selected from ABL1, ACOl 1997, ACVR2A, AFP, AKT1, ALK, ALPPL2, ANAPC1, APC, ARID1A, AR, AR-v7, ASCL2, β2Μ, BRAF, BTK, C15ORF40, CDH1, CLDN6, CNOT1, CT45A5, CTAG1B, DCT, DKK4, EEF1B2, EEF1DP3, EGFR, EIF2B3, env, EPHB2, ERBB3, ESR1, ESRP1, FAM11 IB, FGFR3, FRG1B, GAGE1, GAGE 10, GATA3, GBP3, HER2, IDH1, JAK1, KIT, KRAS, LMAN1, MABEB 16, MAGEA1, MAGEA10, MAGEA4, MAGEA8, MAGEB 17, MAGEB4, MAGEC1, MEK, MLANA, MLL2, MMP13, MSH3, MSH6, MYC, NDUFC2, NRAS, PAGE2, PAGE5, PDGFRa, PIK3CA, PMEL, pol protein, POLE, PTEN, RAC1, RBM27, RNF43, RPL22, RUNX1, SEC31A, SEC63, SF3B 1, SLC35F5, SLC45A2, SMAP1, SMAP1, SPOP, TFAM, TGFBR2, THAP5, TP53, TTK, TYR, UBR5, VHL, and XPOT. In some embodiments, the neoantigen may comprise a peptide fragment of a protein encoded by a mutated gene, wherein the gene is selected from JAK2, KRAS, BRAF, TP53, PIK3CA, EGFR, IDH1, NRAS, CTNNB1, NPM1, CALR, FGFR3, CDKN2A, KIT, MYD88, APC, HRAS, MED12, DNMT3A, GNAS, IDH2, KCNJ5, PTEN, NOTCH1, SF3B1, FLT3, ASXL1, SRSF2, FOXL2, PTPN11, GNAQ, RET, HLA-A, MPL, IKZF1, KMT2C, TET2, PDGFRA, FBXW7, H3F3A, ALK, CEBPA, ESR1, AKT1, RUNX1, GNA11, VHL, WT1, U2AF1, ABL1, ERBB2, DICER1, NOTCH4, EZH2, HNF1A, SMARCB1, CXCR4, PLCG1, TSHR, PRKACA, RHOA, STAT3, POLE, SETBP1, MET, AR, STK11, NF2, CBL, HLA-B, PRKCB, ATR, PPP2R1A, CASC5, CD79B, PBRM1, PTK2B, GATA2, KMT2D, SULT1A1, FLNB, PRPF8, RNF43, MSH6, FGFR2, SMAD4, JAK3, USP8, DLC1, ESRP1, LRP1B, MYH11, BRCA1, CARD11, HSP90AB1, MAP3K9, ADAMTSL3, PDGFRB, RPTOR, ROS1, NFKBIE, AMER1, KLF4, RAC1, TERT, MYOD1, ATP1A1, CSF3R, NOTCH2, CCR4, PAX5, SPTAN1, MLH1, CUBN, RNF213, SMO, ABCC4, AXIN2, CSF1R, PER1, PKHD1, IL7R, RB1, ARID1A, ATM, FES, MTHFR, PTCH2, FANCI, CDH5, CIC, IL6ST, MYH9, NF1, TGFBR2, INSR, PTPN12, TNFAIP3, MEN1, NSD1, SLITRK6, SYT1, TNKS, CCND3, PSMD13, CYP2D6, HELQ, LPHN3, PRAME, STAT5B, BCL6, CCDC6, CCND1, FLCN, LMO2, MUC1, NFKBIZ, NRP2, CTCF, HIST1H3B, KEAP1, SLC22A2, ABCC2, EED, GATA1, GLI3, IKZF3, PIK3CG, XPO1, CHRNA3, MAP2K1, SETD2, ZNF668, CCND2, FLT4, NT5C2, RECQL4, SSX1, ALOX12B, CDKN1B, ELF3, INPP4B, MARVELD3, MLLT4, MLPH, NTRK3, SPOP, BCL2, EPHB1, ERCC4, ERCC6, ETNK1, JAK1, LRP2, MUTYH, NFKBIA, ARNT, BRCA2, and CDH2. In some embodiments, the neoantigen is selected based on a genetic profile of a tumor sample from a subject. In some embodiments, the neoantigen is selected based on a somatic mutation profile of a tumor sample from an individual.
In some embodiments, the neoantigen may be selected based on a genetic profile of a tumor sample from a subject. In some embodiments, the neoantigen may be selected based on a somatic mutation profile of a tumor sample from an individual.
In an aspect, the present disclosure may provide a composition comprising: a modified APC and a T cell capable of specifically binding the neoantigen of the modified APC.
In some embodiments, the T cell may be a T cell having contacted with the modified APC.
In some embodiments, the T cell may be a modified T cell that comprises a switch molecule, wherein the switch molecule comprises: an extracellular domain (ECD) of a protein that, in an unmodified T cell, elicits an immune cell inactivation signal upon binding to a ligand of the protein, wherein the ECD is fused to an intracellular domain (ICD) of a co-stimulatory molecule that mediates an immune cell activation signal, wherein binding of the switch molecule to the ligand yields the immune cell activation signal in the modified T cell instead of the immune cell inactivation signal.
In some embodiments, the protein that elicits an immune cell inactivation signal upon binding to the ligand of the protein may be a signaling receptor.
In some embodiments, the protein may elicit an immune cell inactivation signal upon binding to the ligand of the protein is selected from the group consisting of: a signaling receptor, a checkpoint receptor, a cytokine receptor, a chemokine receptor, a growth factor receptor, and a hormone receptor.
In some embodiments, the protein that elicits an immune cell inactivation may be selected from the group consisting of: transforming growth factor-beta receptor (TGF-beta-R) , programmed cell death 1 (PD-1) , cytotoxic T-lymphocyte associated protein 4 (CTLA-4) , B and T lymphocyte attenuator (BTLA) , a killer immunoglobulin-like receptor (KIR) , indoleamine 2, 3-dioxygenase (IDO) , lymphocyte activation gene-3 (LAG3) , T cell immunoglobulin mucin 3 (TIM-3) , and TIGIT.
In some embodiments, the co-stimulatory molecule may be selected from the group consisting of: interleukin-2 receptor (IL-2R) , interleukin-12 receptor (IL-12R) , B7-H3, CD2, CD3, CD4, CD7, CD8, CD27, CD28, CD30, CD40, 4-1BB/CD137, ICOS, lymphocyte function-associated antigen-1 (LFA-1) , LIGHT, NKG2C, OX40, and PD-1.
In some embodiments, the immune cell activation signal may be mediated by an activation factor. In some embodiments, the activation factor is a soluble cytokine, a soluble chemokine, or a growth factor. In some embodiments, the activation factor may be a soluble cytokine, and wherein the soluble cytokine is IL-1, IL-2, IL-6, IL-7, IL-8, IL-10, IL-12, IL-15, IL-21, TNF, TGF, IFN, or any functional fragment or variant thereof.
In some embodiments, the immune cell activation signal may comprise a clonal expansion of the modified T cell; cytokine release by the modified T cell; cytotoxicity of the modified T cell; proliferation of the modified T cell; differentiation, dedifferentiation or transdifferentiation of the modified T cell; movement and/or trafficking of the modified T cell; exhaustion and/or reactivation of the modified T cell; and release of other intercellular molecules, metabolites, chemical compounds, or combinations thereof by the modified T cell.
In some embodiments, the modified T cell may exhibit enhanced neoantigen binding as compared to an unmodified T cell.
In some embodiments, the modified T cell may exhibit increased cytotoxicity against a target cell as compared to an unmodified T cell when the switch molecule binds to the ligand and the modified T cell binds to the neoantigen present on the target cell.
In some embodiments, the modified T cell may exhibit increased secretion of a cytokine as compared to an unmodified T cell, when the switch molecule binds the ligand and the modified T cell binds to the neoantigen present on a target cell.
In some embodiments, the cytokine may be IFN-gamma or IL-2.
In some embodiments, the modified T cell may comprise a T cell receptor (TCR) complex capable of specifically binding to the neoantigen. In some embodiments, the TCR complex may be an endogenous TCR complex. In some embodiments, TCR complex may be an exogenous TCR complex.
In some embodiments, the T cell may exhibit enhanced proliferation in a subject administered the composition and expressing the neoantigen, compared to a composition lacking the modified APC.
In some embodiments, the T cell may exhibit at least a 2-fold increase in proliferation compared to a composition lacking the modified APC. In some embodiments, the T cell may exhibit at least a 10-fold increase in proliferation compared to a composition lacking the modified APC.
In some embodiments, the amount of the modified APC may remain about the same over time in a subject administered the composition.
In some aspects, the present disclosure provides a vaccine comprising a modified APC or a composition disclosed herein.
In some aspects, the present disclosure provides a method of treating a disorder in a subject expressing the neoantigen, the method comprising administering a modified APC or a composition disclosed herein.
In some aspects, the present disclosure provides a method for immune cell enrichment comprising administering to a subject expressing the neoantigen a composition or a vaccine disclosed herein.
In an aspect, the present disclosure provides a method of treating a disorder in a subject in need thereof, the method comprising administering to the subject a modified APC disclosed herein and a T cell capable of specifically binding the neoantigen of the modified APC, wherein the modified APC and the T cell are administered concurrently or separately to the subject.
In some embodiments, the modified APC may be administered prior to the modified T cell.
In some embodiments, the T cell may be administered prior to the modified APC.
In some embodiments, the modified APC and the T cell may be administered concurrently to the subject.
In some embodiments, the T cell may be a T cell having contacted with the modified APC.
In some embodiments, the T cell may be a modified T cell comprising a switch molecule, wherein the switch molecule comprises: an extracellular domain (ECD) of a protein that, in an unmodified T cell, elicits an immune cell inactivation signal upon binding to a ligand of the protein, wherein the ECD is fused to an intracellular domain (ICD) of a co-stimulatory molecule that mediates an immune cell activation signal, wherein binding of the switch molecule to the ligand of the protein yields the immune cell activation signal in the modified T cell instead of the immune cell inactivation signal.
In some embodiments, the protein that elicits the immune cell inactivation signal may be a signaling receptor.
In some embodiments, the protein that elicits the immune cell inactivation signal may be selected from the group consisting of: a signaling receptor, a checkpoint receptor, a cytokine receptor, a chemokine receptor, a growth factor receptor, and a hormone receptor.
In some embodiments, the protein that elicits the immune cell inactivation signal may be selected from the group consisting of: transforming growth factor-beta receptor (TGF-beta-R) , programmed cell death 1 (PD-1) , cytotoxic T-lymphocyte associated protein 4 (CTLA-4) , B and T lymphocyte attenuator (BTLA) , a killer immunoglobulin-like receptor (KIR) , indoleamine 2, 3-dioxygenase (IDO) , lymphocyte activation gene-3 (LAG3) , T cell immunoglobulin mucin 3 (TIM-3) , and TIGIT.
In some embodiments, the co-stimulatory molecule may be selected from the group consisting of: interleukin-2 receptor (IL-2R) , interleukin-12 receptor (IL-12R) , B7-H3, CD2, CD3, CD4, CD7, CD8, CD27, CD28, CD30, CD40, 4-1BB/CD137, ICOS, lymphocyte function-associated antigen-1 (LFA-1) , LIGHT, NKG2C, OX40, and PD-1.
In some embodiments, the immune cell activation signal may be mediated by an activation factor.
In some embodiments, the activation factor may be a soluble cytokine, a soluble chemokine, or a growth factor.
In some embodiments, the activation factor may be a soluble cytokine, and wherein the soluble cytokine is IL-1, IL-2, IL-6, IL-7, IL-8, IL-10, IL-12, IL-15, IL-21, TNF, TGF, IFN, or any functional fragment or variant thereof.
In some embodiments, the immune cell activation signal may comprise a clonal expansion of the modified T cell; cytokine release by the modified T cell; cytotoxicity of the modified T cell; proliferation of the modified T cell; differentiation, dedifferentiation or transdifferentiation of the modified T cell; movement and/or trafficking of the modified T cell; exhaustion and/or reactivation of the modified T cell; and release of other intercellular molecules, metabolites, chemical compounds, or combinations thereof by the modified T cell.
In some embodiments, upon binding of the switch molecule of the modified T cell to the ligand of the protein, the modified T cell may exhibit enhanced neoantigen binding as compared to an unmodified T cell.
In some embodiments, the modified T cell may exhibit increased cytotoxicity against a target cell as compared to an unmodified T cell, when the switch molecule binds to the ligand and the modified T cell binds to the neoantigen present on the target cell.
In some embodiments, the modified T cell may exhibit increased secretion of a cytokine as compared to an unmodified T cell, when the switch molecule binds the ligand and the modified T cell binds to the neoantigen present on a target cell.
In some embodiments, the cytokine may be IFN-gamma or IL-2.
In some embodiments, the modified T cell may comprise a T cell receptor (TCR) complex capable of specifically binding to the neoantigen.
In some embodiments, the TCR complex may be an endogenous TCR complex.
In some embodiments, the TCR complex may be an exogenous TCR complex.
In some embodiments, the modified T cell may exhibit enhanced proliferation in the subject relative to a subject administered the modified T cell but not the modified APC.
In some embodiments, the modified T cell may exhibit at least a 2-fold increase in proliferation.
In some embodiments, the modified T cell may exhibit at least a 10-fold increase in proliferation.
In some embodiments, an amount of the modified APC may remain about the same over time in a subject administered the composition.
In some embodiments, the subject may be a human.
In some embodiments, the disorder may be a cancer.
INCORPORATION BY REFERENCE
All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
The practice of some methods disclosed herein employ, unless otherwise indicated, conventional techniques of immunology, biochemistry, chemistry, molecular biology, microbiology, cell biology, genomics and recombinant DNA, which are within the skill of the art. See for example Sambrook and Green, Molecular Cloning: A Laboratory Manual, 4th Edition (2012) ; the series Current Protocols in Molecular Biology (F. M. Ausubel, et al. eds. ) ; the series Methods In Enzymology (Academic Press, Inc. ) , PCR 2: A Practical Approach (M.J. MacPherson, B.D. Hames and G.R. Taylor eds. (1995) ) , Harlow and Lane, eds. (1988) Antibodies, A Laboratory Manual, and Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications, 6th Edition (R.I. Freshney, ed. (2010) ) .
As used in the specification and claims, the singular forms “a” , “an, ” and “the” include plural references unless the context clearly dictates otherwise. For example, “amodified antigen-presenting cell” includes a plurality of antigen-presenting cells.
The term “about” or “approximately” means within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, i.e., the limitations of the measurement system. For example, “about” can mean within 1 or more than 1 standard deviation, per the practice in the art. Alternatively, “about” can mean a range of up to 20%, up to 10%, up to 5%, or up to 1%of a given value. Alternatively, particularly with respect to biological systems or processes, the term can mean within an order of magnitude, preferably within 5-fold, and more preferably within 2-fold, of a value. Where particular values are described in the application and claims, unless otherwise stated, the term “about” meaning within an acceptable error range for the particular value should be assumed.
As used herein, a “cell” can generally refer to a biological cell. A cell can be the basic structural, functional and/or biological unit of a living organism. A cell can originate from any organism having one or more cells. Some non-limiting examples include: a prokaryotic cell, eukaryotic cell, a bacterial cell, an archaeal cell, a cell of a single-cell eukaryotic organism, a protozoa cell, a cell from a plant (e.g. cells from plant crops, fruits, vegetables, grains, soy bean, corn, maize, wheat, seeds, tomatoes, rice, cassava, sugarcane, pumpkin, hay, potatoes, cotton, cannabis, tobacco, flowering plants, conifers, gymnosperms, ferns, clubmosses, hornworts, liverworts, mosses) , an algal cell, (e.g., Botryococcusbraunii, Chlamydomonasreinhardtii, Nannochloropsisgaditana, Chlorella pyrenoidosa, Sargassum patens C. Agardh, and the like) , seaweeds (e.g. kelp) , a fungal cell (e.g., a yeast cell, a cell from a mushroom) , an animal cell, a cell from an invertebrate animal (e.g. fruit fly, cnidarian, echinoderm, nematode, etc. ) , a cell from a vertebrate animal (e.g., fish, amphibian, reptile, bird, mammal) , a cell from a mammal (e.g., a pig, a cow, a goat, a sheep, a rodent, a rat, a mouse, a non-human primate, a human, etc. ) , and etcetera. Sometimes a cell is not originating from a natural organism (e.g. a cell can be a synthetically made, sometimes termed an artificial cell) .
The term “antigen, ” as used herein, refers to a molecule or a fragment thereof capable of being bound by a selective binding agent. As an example, an antigen can be a ligand that can be bound by a selective binding agent such as a receptor. As another example, an antigen can be an antigenic molecule that can be bound by a selective binding agent such as an immunological protein (e.g., an antibody) . An antigen can also refer to a molecule or fragment thereof capable of being used in an animal to produce antibodies capable of binding to that antigen.
The term “neoantigen, ” as used herein, generally refers to tumor-specific antigens arising from mutations in a gene. The resulting mutated proteins, or fragments thereof, can trigger an antitumor T cell response. Neoantigens can be unique to a tumor cell (e.g., absent in a normal cell) . A subject and/or a tumor can have a unique set of neoantigens. A neoantigen can refer to an “exogenous neoantigen” . An “exogenous neoantigen” can refer to a neoantigen not normally found in the host cell.
The term “gene, ” as used herein, refers to a nucleic acid (e.g., DNA such as genomic DNA and cDNA) and its corresponding nucleotide sequence that is involved in encoding an RNA transcript. The term as used herein with reference to genomic DNA includes intervening, non-coding regions as well as regulatory regions and can include 5' and 3' ends. In some uses, the term encompasses the transcribed sequences, including 5' and 3' untranslated regions (5'-UTR and 3'-UTR) , exons and introns. In some genes, the transcribed region will contain “open reading frames” that encode polypeptides. In some uses of the term, a “gene” comprises only the coding sequences (e.g., an “open reading frame” or “coding region” ) necessary for encoding a polypeptide. In some cases, genes do not encode a polypeptide, for example, ribosomal RNA genes (rRNA) and transfer RNA (tRNA) genes. In some cases, the term “gene” includes not only the transcribed sequences, but in addition, also includes non-transcribed regions including upstream and downstream regulatory regions, enhancers and promoters. A gene can refer to an “endogenous gene” or a native gene in its natural location in the genome of an organism. A gene can refer to an “exogenous gene” or a non-native gene. A non-native gene can refer to a gene not normally found in the host organism but which is introduced into the host organism by gene transfer. A non-native gene can also refer to a gene not in its natural location in the genome of an organism. A non-native gene can also refer to a naturally occurring nucleic acid or polypeptide sequence that comprises mutations, insertions and/or deletions (e.g., non-native sequence) .
The term “antibody, ” as used herein, refers to a proteinaceous binding molecule with immunoglobulin-like functions. The term antibody includes antibodies (e.g., monoclonal and polyclonal antibodies) , as well as derivatives, variants, and fragments thereof. Antibodies include, but are not limited to, immunoglobulins (Ig’s ) of different classes (i.e. IgA, IgG, IgM, IgD and IgE) and subclasses (such as IgG1, IgG2, etc. ) . A derivative, variant, or fragment thereof can refer to a functional derivative or fragment which retains the binding specificity (e.g., complete and/or partial) of the corresponding antibody. Antigen-binding fragments include Fab, Fab', F (ab')
2, variable fragment (Fv) , single chain variable fragment (scFv) , minibodies, diabodies, and single-domain antibodies ( “sdAb” or “nanobodies” or “camelids” ) . The term antibody includes antibodies and antigen-binding fragments of antibodies that have been optimized, engineered or chemically conjugated. Examples of antibodies that have been optimized include affinity-matured antibodies. Examples of antibodies that have been engineered include Fc optimized antibodies (e.g., antibodies optimized in the fragment crystallizable region) and multispecific antibodies (e.g., bispecific antibodies) .
The term “nucleotide, ” as used herein, generally refers to a base-sugar-phosphate combination. A nucleotide can comprise a synthetic nucleotide. A nucleotide can comprise a synthetic nucleotide analog. Nucleotides can be monomeric units of a nucleic acid sequence (e.g. deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) ) . The term nucleotide can include ribonucleoside triphosphates adenosine triphosphate (ATP) , uridine triphosphate (UTP) , cytosine triphosphate (CTP) , guanosine triphosphate (GTP) and deoxyribonucleoside triphosphates such as dATP, dCTP, dITP, dUTP, dGTP, dTTP, or derivatives thereof. Such derivatives can include, for example, [αS] dATP, 7-deaza-dGTP and 7-deaza-dATP, and nucleotide derivatives that confer nuclease resistance on the nucleic acid molecule containing them. The term nucleotide as used herein can refer to dideoxyribonucleoside triphosphates (ddNTPs) and their derivatives. Illustrative examples of dideoxyribonucleoside triphosphates can include, but are not limited to, ddATP, ddCTP, ddGTP, ddITP, and ddTTP. A nucleotide can be unlabeled or detectably labeled by well-known techniques. Labeling can also be carried out with quantum dots. Detectable labels can include, for example, radioactive isotopes, fluorescent labels, chemiluminescent labels, bioluminescent labels and enzyme labels.
The terms “polynucleotide, ” “oligonucleotide, ” and “nucleic acid” are used interchangeably to refer to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides, or analogs thereof, either in single-, double-, or multi-stranded form. A polynucleotide can be exogenous or endogenous to a cell. A polynucleotide can exist in a cell-free environment. A polynucleotide can be a gene or fragment thereof. A polynucleotide can be DNA. A polynucleotide can be RNA. A polynucleotide can have any three dimensional structure, and can perform any function, known or unknown. A polynucleotide can comprise one or more analogs (e.g. altered backbone, sugar, or nucleobase) . If present, modifications to the nucleotide structure can be imparted before or after assembly of the polymer. Some non-limiting examples of analogs include: 5-bromouracil, peptide nucleic acid, xeno nucleic acid, morpholinos, locked nucleic acids, glycol nucleic acids, threose nucleic acids, dideoxynucleotides, cordycepin, 7-deaza-GTP, fluorophores (e.g. rhodamine or fluorescein linked to the sugar) , thiol containing nucleotides, biotin linked nucleotides, fluorescent base analogs, CpG islands, methyl-7-guanosine, methylated nucleotides, inosine, thiouridine, pseudourdine, dihydrouridine, queuosine, and wyosine. Non-limiting examples of polynucleotides include coding or non-coding regions of a gene or gene fragment, loci (locus) defined from linkage analysis, exons, introns, messenger RNA (mRNA) , transfer RNA (tRNA) , ribosomal RNA (rRNA) , short interfering RNA (siRNA) , short-hairpin RNA (shRNA) , micro-RNA (miRNA) , ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, cell-free polynucleotides including cell-free DNA (cfDNA) and cell-free RNA (cfRNA) , nucleic acid probes, and primers. The sequence of nucleotides can be interrupted by non-nucleotide components.
The terms “expression” or “expressing” refer to one or more processes by which a polynucleotide is transcribed from a DNA template (such as into an mRNA or other RNA transcript) and/or the process by which a transcribed mRNA is subsequently translated into peptides, polypeptides, or proteins. Transcripts and encoded polypeptides can be collectively referred to as “gene product. ” If the polynucleotide is derived from genomic DNA, expression can include splicing of the mRNA in a eukaryotic cell. “Up-regulated, ” with reference to expression, generally refers to an increased expression level of a polynucleotide (e.g., RNA such as mRNA) and/or polypeptide sequence relative to its expression level in a wild-type state while “down-regulated” generally refers to a decreased expression level of a polynucleotide (e.g., RNA such as mRNA) and/or polypeptide sequence relative to its expression in a wild-type state.
The terms “complement, ” “complements, ” “complementary, ” and “complementarity, ” as used herein, generally refer to a sequence that is fully complementary to and hybridizable to the given sequence. In some cases, a sequence hybridized with a given nucleic acid is referred to as the “complement” or “reverse-complement” of the given molecule if its sequence of bases over a given region is capable of complementarily binding those of its binding partner, such that, for example, A-T, A-U, G-C, and G-U base pairs are formed. In general, a first sequence that is hybridizable to a second sequence is specifically or selectively hybridizable to the second sequence, such that hybridization to the second sequence or set of second sequences is preferred (e.g. thermodynamically more stable under a given set of conditions, such as stringent conditions commonly used in the art) to hybridization with non-target sequences during a hybridization reaction. Typically, hybridizable sequences share a degree of sequence complementarity over all or a portion of their respective lengths, such as between 25%-100%complementarity, including at least 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, and 100%sequence complementarity. Sequence identity, such as for the purpose of assessing percent complementarity, can be measured by any suitable alignment algorithm, including but not limited to the Needleman-Wunsch algorithm (see e.g. the EMBOSS Needle aligner available at www. ebi. ac. uk/Tools/psa/emboss_needle/nucleotide. html, optionally with default settings) , the BLAST algorithm (see e.g. the BLAST alignment tool available at blast. ncbi. nlm. nih. gov/Blast. cgi, optionally with default settings) , or the Smith-Waterman algorithm (see e.g. the EMBOSS Water aligner available at www. ebi. ac. uk/Tools/psa/emboss_water/nucleotide. html, optionally with default settings) . Optimal alignment can be assessed using any suitable parameters of a chosen algorithm, including default parameters.
Complementarity can be perfect or substantial/sufficient. Perfect complementarity between two nucleic acids can mean that the two nucleic acids can form a duplex in which every base in the duplex is bonded to a complementary base by Watson-Crick pairing. Substantial or sufficient complementary can mean that a sequence in one strand is not completely and/or perfectly complementary to a sequence in an opposing strand, but that sufficient bonding occurs between bases on the two strands to form a stable hybrid complex in set of hybridization conditions (e.g., salt concentration and temperature) . Such conditions can be predicted by using the sequences and standard mathematical calculations to predict the Tm of hybridized strands, or by empirical determination of Tm by using routine methods.
The term “regulating” with reference to expression or activity, as used herein, refers to altering the level of expression or activity. Regulation can occur at the transcription level and/or translation level.
The terms “peptide, ” “polypeptide, ” and “protein” are used interchangeably herein to refer to a polymer of at least two amino acid residues joined by peptide bond (s) . This term does not connote a specific length of polymer, nor is it intended to imply or distinguish whether the peptide is produced using recombinant techniques, chemical or enzymatic synthesis, or is naturally occurring. The terms apply to naturally occurring amino acid polymers as well as amino acid polymers comprising at least one modified amino acid. In some cases, the polymer can be interrupted by non-amino acids. The terms include amino acid chains of any length, including full length proteins, and proteins with or without secondary and/or tertiary structure (e.g., domains) . The terms also encompass an amino acid polymer that has been modified, for example, by disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, oxidation, and any other manipulation such as conjugation with a labeling component. The terms “amino acid” and “amino acids, ” as used herein, generally refer to natural and non-natural amino acids, including, but not limited to, modified amino acids and amino acid analogues. Modified amino acids can include natural amino acids and non-natural amino acids, which have been chemically modified to include a group or a chemical moiety not naturally present on the amino acid. Amino acid analogues can refer to amino acid derivatives. The term “amino acid” includes both D-amino acids and L-amino acids.
The terms “derivative, ” “variant, ” and “fragment, ” when used herein with reference to a polypeptide, refers to a polypeptide related to a wild type polypeptide, for example either by amino acid sequence, structure (e.g., secondary and/or tertiary) , activity (e.g., enzymatic activity) and/or function. Derivatives, variants and fragments of a polypeptide can comprise one or more amino acid variations (e.g., mutations, insertions, and deletions) , truncations, modifications, or combinations thereof compared to a wild type polypeptide.
The term “percent (%) identity, ” as used herein, refers to the percentage of amino acid (or nucleic acid) residues of a candidate sequence that are identical to the amino acid (or nucleic acid) residues of a reference sequence after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent identity (i.e., gaps can be introduced in one or both of the candidate and reference sequences for optimal alignment and non-homologous sequences can be disregarded for comparison purposes) . Alignment, for purposes of determining percent identity, can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, ALIGN, or Megalign (DNASTAR) software. Percent identity of two sequences can be calculated by aligning a test sequence with a comparison sequence using BLAST, determining the number of amino acids or nucleotides in the aligned test sequence that are identical to amino acids or nucleotides in the same position of the comparison sequence, and dividing the number of identical amino acids or nucleotides by the number of amino acids or nucleotides in the comparison sequence.
As used herein, “fusion” can refer to a protein and/or nucleic acid comprising one or more non-native sequences (e.g., moieties) . A fusion can comprise one or more of the same non-native sequences. A fusion can comprise one or more of different non-native sequences. A fusion can be a chimera. A fusion can comprise a nucleic acid affinity tag. A fusion can comprise a barcode. A fusion can comprise a peptide affinity tag. A fusion can provide for subcellular localization of the site-directed polypeptide (e.g., a nuclear localization signal (NLS) for targeting to the nucleus, a mitochondrial localization signal for targeting to the mitochondria, a chloroplast localization signal for targeting to a chloroplast, an endoplasmic reticulum (ER) retention signal, and the like) . A fusion can provide a non-native sequence (e.g., affinity tag) that can be used to track or purify. A fusion can be a small molecule such as biotin or a dye such as Alexa fluor dyes, Cyanine3 dye, Cyanine5 dye.
The phrase “exogenous T cell receptor (TCR) complex” or “exogenous TCR complex, ” as used herein, refers to a TCR complex in which one or more chains of the TCR are introduced into the genome of an immune cell that may or may not endogenously express the TCR. In some cases, an exogenous TCR complex can refer to a TCR complex in which one or more chains of an endogenous TCR complex have one or more mutated sequences, for example at either the nucleic acid or amino acid level. Expression of an exogenous TCR on an immune cell can confer binding specificity for an epitope or antigen (e.g., an epitope or antigen preferentially present on the surface of a cancer cell or other disease-causing cell or particle) . An exogenous TCR complex can comprise a TCR-alpha, a TCR-beta chain, a CD3-gamma chain, a CD3-delta chain, a CD3-zeta chain, or any combination thereof, which is introduced into the genome. In some cases, the chain introduced into the genome may replace the endogenously occurring chain.
The terms “subject, ” “individual, ” and “patient” are used interchangeably herein to refer to a vertebrate, preferably a mammal such as a human. Mammals include, but are not limited to, murines, simians, humans, farm animals, sport animals, and pets. Tissues, cells and their progeny of a biological entity obtained in vivo or cultured in vitro are also encompassed.
The terms “treatment” and “treating, ” as used herein, refer to an approach for obtaining beneficial or desired results including but not limited to a therapeutic benefit and/or a prophylactic benefit. For example, a treatment can comprise administering a system or cell population disclosed herein. By therapeutic benefit is meant any therapeutically relevant improvement in or effect on one or more diseases, conditions, or symptoms under treatment. For prophylactic benefit, a composition can be administered to a subject at risk of developing a particular disease, condition, or symptom, or to a subject reporting one or more of the physiological symptoms of a disease, even though the disease, condition, or symptom may not have yet been manifested.
As used herein, “administer, ” “administering, ” “administration, ” and derivatives thereof refer to the methods that may be used to enable delivery of agents or compositions to the desired site of biological action. These methods include, but are not limited to, parenteral administration (e.g., intravenous, subcutaneous, intraperitoneal, intramuscular, intravascular, intrathecal, intranasal, intravitreal, infusion and local injection) , transmucosal injection, oral administration, administration as a suppository, and topical administration. Administration is by any route, including parenteral. Parenteral administration includes, e.g., intravenous, intramuscular, intra-arteriole, intradermal, subcutaneous, intraperitoneal, intraventricular, and intracranial. Other modes of delivery include, but are not limited to, the use of liposomal formulations, intravenous infusion, transplantation, etc. One skilled in the art will know of additional methods for administering a therapeutically effective amount of a composition of the present disclosure for preventing or relieving one or more symptoms associated with a disease.
The term “effective amount” or “therapeutically effective amount” refers to the quantity of a composition, for example a composition comprising immune cells such as lymphocytes (e.g., B lymphocytes and/or T lymphocytes) of the present disclosure, that is sufficient to result in a desired activity upon administration to a subject in need thereof. Within the context of the present disclosure, the term “therapeutically effective” refers to that quantity of a composition that is sufficient to delay the manifestation, arrest the progression, relieve or alleviate at least one symptom of a disorder treated by the methods of the present disclosure.
The term “genetic profile, ” as used herein, refers to information about specific genes, including variations and gene expression in an individual or in a certain type of tissue. A genetic profile can be used for neoantigen selection. The term “somatic mutation profile, ” as used herein, refers to information about specific genes associated with somatic mutation, including but not limited to specific genes resulted from somatic mutation. A somatic mutation profile can be used for neoantigen selection.
In an aspect, the present disclosure provides a modified antigen-presenting cell (APC) that comprises a neoantigen. APCs can mediate cellular immune responses by processing and presenting antigens for recognition by certain lymphocytes, such as T cells. An APC can be, for example, B cell, dendritic cell, natural killer (NK) cell, a macrophage, monocyte, megakaryocyte, mast cell, thrombocyte, erythrocyte, and granulocyte. In some embodiments, the APC is a B cell. In some embodiments, the APC is a dendritic cell.
In some embodiments, the modified APC is a modified B cell comprising a neoantigen (also referred to as neoantigen-loaded B cell or neoB) . In some cases, a neoB can have a stronger amplification capability in vitro as compared to another modified APC, for example, a modified dendritic cell loaded with the neoantigen (also referred to as neoantigen-loaded DC or neoDC) . In some cases, aneoB cell can have a stronger efficacy in continuously activating tumor-specific T cells with repeated re-infusion in vivo as compared to neoDC. In some cases, the neoB cell can produce enhanced proliferation of T cells that recognize the neoantigen compared with neoDC. In some cases, neoB can have a greater half-life than neoDC in a subject.
In some embodiments, a modified APC comprises a neoantigen. An APC can be modified to express a neoantigen for presentation to a T cell. A T cell can specifically bind a neoantigen. Neoantigens generally refer to tumor-specific mutations that trigger an antitumor T cell response. For example, these endogenous mutations can be identified using a whole-exomic-sequencing approach. Tran E, et al., “Cancer immunotherapy based on mutation-specific CD4+T cells in a patient with epithelial cancer, ” Science 344: 641-644 (2014) . In some cases, a neoantigen or neoepitope can be encoded by a mutated gene, for example, from a tumor cell. The gene can be selected from the group consisting of: ABL1, ACOl 1997, ACVR2A, AFP, AKT1, ALK, ALPPL2, ANAPC1, APC, ARID1A, AR, AR-v7, ASCL2, β2Μ, BRAF, BTK, C15ORF40, CDH1, CLDN6, CNOT1, CT45A5, CTAG1B, DCT, DKK4, EEF1B2, EEF1DP3, EGFR, EIF2B3, env, EPHB2, ERBB3, ESR1, ESRP1, FAM11 IB, FGFR3, FRG1B, GAGE1, GAGE 10, GATA3, GBP3, HER2, IDH1, JAK1, KIT, KRAS, LMAN1, MABEB 16, MAGEA1, MAGEA10, MAGEA4, MAGEA8, MAGEB 17, MAGEB4, MAGEC1, MEK, MLANA, MLL2, MMP13, MSH3, MSH6, MYC, NDUFC2, NRAS, NY-ESO, PAGE2, PAGE5, PDGFRa, PIK3CA, PMEL, pol protein, POLE, PTEN, RAC1, RBM27, RNF43, RPL22, RUNX1, SEC31A, SEC63, SF3B 1, SLC35F5, SLC45A2, SMAP1, SMAP1, SPOP, TFAM, TGFBR2, THAP5, TP53, TTK, TYR, UBR5, VHL, and XPOT. In some embodiments, the neoantigen is selected based on a genetic profile of a tumor sample from an individual. In some embodiments, the neoantigenis selected based on a somatic mutation profile of a tumor sample from an individual. In some embodiments, the neoantigen is an exogenous neoantigen. For example, the neoantigen can be exogenously introduced into an APC such as B cell.
In one aspect, the present disclosure provides compositions comprising a modified APC comprising a neoantigen and animmune cell capable of specifically binding the neoantigen of the modified APC. In some embodiments, an immune cell is a T cell. A T cell capable of specifically binding to a neoantigen can also be referred to as a neoantigen-experienced T cell or neoT. The T cell can be a natural T cell or a modified T cell. In some embodiments, an immune cell is a modified immune cell.
In some embodiments, an immune cell is a modified immune cell generated by contacting an immune cell with aneoantigen. In some embodiments, the modified immune cell is a modified T cell generated by contacting a T cell with a neoantigen. For example, a neoantigen-experienced T cell can be generatedby contacting a T cell to the neoantigen presented by a modified APC (e.g. B cell or dendritic cell expressing the neoantigen) . During subsequent encounters with the neoantigen, for example, from the surface of tumor cells in a subject, theneoantigen-experienced T cells can quickly reproduce to elicit a faster and stronger immune response as compared to the first time the T cell comes into contact with the neoantigen.
In some embodiments, an immune cell is a modified immune cell comprising a switch molecule. In some embodiments, the modified immune is a modified T cell comprising a switch molecule. The switch molecule can comprise an extracellular domain (ECD) of a protein that, in an unmodified immune cell, elicits an immune cell inactivation signal upon binding to its ligand. The ECD may be fused to an intracellular domain (ICD) of a co-stimulatory molecule that mediates an immune cell activation signal. Binding of the switch molecule to the ligand can yield the immune cell activation signal in the modified immune cell instead of the immune cell inactivation signal.
Binding ofan immune cell such as a T cell to a neoantigen, such as that present on a modified APC, can activate the immune cell. The switch molecule can be used to provide further control over immune cell activities, such as, but not limited to, immune cell activation and expansion. Binding of the switch molecule to its ligand in the modified immune cell, can elicit an immune cell activation signal in the modified immune cell instead of the immune cell inactivation signal. Eliciting the immune cell activation signal in the modified immune cell instead of the immune cell inactivation signal may minimize an immune-suppressive effect in the immune cell. Minimizing an immune-suppressive effect in the immune cell can increase the effectiveness of the immune cell in an immune response, for example, by increasing immune cell cytotoxicity against a target cell, such as a tumor cell.
The switch molecule can comprise an extracellular domain (ECD) of a protein that, in an unmodified immune cell, elicits an immune cell inactivation signal upon binding to its ligand. The protein can be a signaling receptor or any functional fragment, derivative, or variant thereof. In some cases, the signaling receptor can be a membrane bound receptor. A signaling receptor can, in response to ligand binding, induce one or more signaling pathways in a cell. In some cases, the signaling receptor can be a non-membrane bound receptor. The switch molecule can comprise a fragment, for example, an extracellular domain of a receptor selected from a G-protein coupled receptor (GPCR) ; an integrin receptor; a cadherin receptor; a catalytic receptor (e.g., kinases) ; a death receptor; a checkpoint receptor; a cytokine receptor; a chemokine receptor; a growth factor receptor; a hormone receptor; or an immune receptor.
In some embodiments, the switch molecule comprises a fragment of an immune checkpoint receptor, which may be involved in regulation of the immune system. Non-limiting examples of such receptors include, but are not limited to, programmed cell death 1 (PD-1) , cytotoxic T-lymphocyte associated protein 4 (CTLA-4) , B and T lymphocyte attenuator (BTLA) , a killer immunoglobulin-like receptor (KIR) , indoleamine 2, 3-dioxygenase (IDO) , lymphocyte activation gene-3 (LAG3) , T cell immunoglobulin mucin 3 (TIM-3) , and T cell immunoreceptor with Ig and ITIM domains (TIGIT) .
A switch molecule comprising an immune checkpoint receptor, or any derivative, variant, or fragment thereof, can bind an antigen comprising any suitable immune checkpoint receptor ligand, or any derivative, variant, or fragment thereof. Non-limiting examples of such ligands include, but are not limited to, B7-1, B7-H3, B7-H4, HVEM (Herpesvirus Entry Mediator) , AP2M1, CD80, CD86, SHP-2, PPP2R5A, MHC (e.g., class I, class II) , PD-L1, and PD-L2.
In some embodiments, the switch molecule comprises a fragment of a cytokine receptor. Cytokine receptors can serve a variety of functions, non-limiting examples of which include immune cell regulation and mediating inflammation. In some embodiments, the switch molecule comprises a cytokine receptor, for example, a type-I cytokine receptor or a type-II cytokine receptor, or any derivative, variant, or fragment thereof. In some embodiments, the switch molecule comprises an interleukin receptor (e.g., IL-2R, IL-3R, IL-4R, IL-5R, IL-6R, IL-7R, IL-9R, IL-11R, IL-12R, IL-13R, IL-15R, IL-21R, IL-23R, IL-27R, and IL-31R) , a colony-stimulating factor receptor (e.g., erythropoietin receptor, CSF-1R, CSF-2R, GM-CSFR, and G-CSFR) , a hormone receptor/neuropeptide receptor (e.g., growth hormone receptor, prolactin receptor, and leptin receptor) , or any derivative, variant, or fragment thereof. In some embodiments, the switch molecule comprises a type-II cytokine receptor, or any derivative, variant, or fragment thereof. In some embodiments, the switch molecule comprises an interferon receptor (e.g., IFNAR1, IFNAR2, and IFNGR) , an interleukin receptor (e.g., IL-10R, IL-20R, IL-22R, and IL-28R) , a tissue factor receptor (also called platelet tissue factor) , or any derivative, variant, or fragment thereof.
Cytokines refer to proteins (e.g., chemokines, interferons, lymphokines, interleukins, and tumor necrosis factors) released by cells which can affect cell behavior. Cytokines are produced by a broad range of cells, including immune cells, such as macrophages, B lymphocytes, T lymphocytes, mast cells, endothelial cells, fibroblasts, and various stromal cells. A given cytokine can be produced by more than one type of cell. Cytokines can be involved in producing systemic or local immunomodulatory effects.
Certain cytokines can function as pro-inflammatory cytokines. Pro-inflammatory cytokines refer to cytokines involved in inducing or amplifying an inflammatory reaction. Pro-inflammatory cytokines can work with various cells of the immune system, such as neutrophils and leukocytes, to generate an immune response. Certain cytokines can function as anti-inflammatory cytokines. Anti-inflammatory cytokines refer to cytokines involved in the reduction of an inflammatory reaction. Anti-inflammatory cytokines, in some cases, can regulate a pro-inflammatory cytokine response. Some cytokines can function as both pro-and anti- inflammatory cytokines. Certain cytokines, e.g., chemokines, can function in chemotaxis. Chemokines can induce directed chemotaxis in nearby responsive cells.
In some embodiments, the expression of a cytokine having pro-inflammatory and/or chemotactic functions can be up-regulated in an immune cell. Up-regulating the expression of a cytokine having pro-inflammatory and/or chemotactic functions can be useful, for example, to stimulate an immune response against a target cell in immunotherapy.
Examples of cytokines that can be overexpressed by immune cells provided herein include, but are not limited to, lymphokines, monokines, and traditional polypeptide hormones. Included among the cytokines are growth hormones, such as human growth hormone, N-methionyl human growth hormone, and bovine growth hormone; parathyroid hormone; thyroxine; insulin; proinsulin; relaxin; prorelaxin; glycoprotein hormones such as follicle stimulating hormone (FSH) , thyroid stimulating hormone (TSH) , and luteinizing hormone (LH) ; hepatic growth factor; fibroblast growth factor; prolactin; placental lactogen; tumor necrosis factor-alpha ; mullerian-inhibiting substance; mouse gonadotropin-associated peptide; inhibin; activin; vascular endothelial growth factor; integrin; thrombopoietin (TPO) ; nerve growth factors such as NGF-alpha; platelet-growth factor; transforming growth factors (TGFs) such as TGF-alpha, TGF-beta, TGF-beta1, TGF-beta2, and TGF-beta3; insulin-like growth factor-I and -II; erythropoietin (EPO) ; Flt-3L; stem cell factor (SCF) ; osteoinductive factors; interferons (IFNs) such as IFN-α, IFN-β, IFN-γ; colony stimulating factors (CSFs) such as macrophage-CSF (M-CSF) ; granulocyte-macrophage-CSF (GM-CSF) ; granulocyte-CSF (G-CSF) ; macrophage stimulating factor (MSP) ; interleukins (ILs) such as IL-1, IL-1a, IL-1b, IL-1RA, IL-18, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-20;a tumor necrosis factor such as CD154, LT-beta, TNF-alpha, TNF-beta, 4-1BBL, APRIL, CD70, CD153, CD178, GITRL, LIGHT, OX40L, TALL-1, TRAIL, TWEAK, TRANCE; and other polypeptide factors including LIF, oncostatin M (OSM) and kit ligand (KL) . Cytokine receptors refer to the receptor proteins which bind cytokines. Cytokine receptors may be both membrane-bound and soluble.
In some embodiments, the overexpressed cytokine is an interleukin (IL) family member (e.g., ligand) , an IL-1 receptor family member, an interleukin-6 (IL-6) family member (e.g., ligand) , an IL-6 receptor, an interleukin-10 (IL-10) family member (e.g., ligand) , an IL-10 receptor, an interleukin-12 (IL-12) family member (e.g., ligand) , an IL-12 receptor, an interleukin-17 (IL-17) family member (e.g., ligand) , or an IL-17 receptor.
In some embodiments, the overexpressed cytokine is an interleukin-1 (IL-1) family member or related protein; a tumor necrosis factor (TNF) family member or related protein; an interferon (IFN) family member or related protein; an interleukin-6 (IL-6) family member or related protein; or a chemokine or related protein. In some embodiments, the cytokine is selected from IL18, IL18BP, IL1A, IL1B, IL1F10, IL1F3/IL1RA, IL1F5, IL1F6, IL1F7, IL1F8, IL1RL2, IL1F9, IL33, BAFF/BLyS/TNFSF138, 4-1BBL, CD153/CD30L/TNFSF8, CD40LG, CD70, Fas Ligand/FASLG/CD95L/CD178, EDA-A1, TNFSF14/LIGHT/CD258, TNFA, LTA/TNFB/TNFSF1, LTB/TNFC, CD70/CD27L/TNFSF7, TNFSF10/TRAIL/APO-2L (CD253) , RANKL/OPGL/TNFSF11 (CD254) , TNFSF12, TNF-alpha/TNFA, TNFSF13, TL1A/TNFSF15, OX-40L/TNFSF4/CD252, CD40L/CD154/TNFSF5, IFNA1, IFNA10, IFNA13, IFNA14, IFNA2, IFNA4, IFNA7, IFNB1, IFNE, IFNG, IFNZ, IFNA8, IFNA5/IFNaG, IFNω/IFNW1, CLCF1, CNTF, IL11, IL31, IL6, Leptin, LIF, OSM, CCL1/TCA3, CCL11, CCL12/MCP-5,CCL13/MCP-4, CCL14, CCL15, CCL16, CCL17/TARC, CCL18, CCL19, CCL2/MCP-1, CCL20, CCL21, CCL22/MDC, CCL23, CCL24, CCL25, CCL26, CCL27, CCL28, CCL3, CCL3L3, CCL4, CCL4L1/LAG-1, CCL5, CCL6, CCL7, CCL8, CCL9, CX3CL1, CXCL1, CXCL10, CXCL11, CXCL12, CXCL13, CXCL14, CXCL15, CXCL16, CXCL17, CXCL2/MIP-2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7/Ppbp, CXCL9, IL8/CXCL8, XCL1, XCL2, FAM19A1, FAM19A2, FAM19A3, FAM19A4, and FAM19A5.
Cytokine expression can be evaluated using a variety of methods. Cytokine expression can be evaluated by assaying cell culture media (e.g., in vitro production) in which the modified immune cells are grown or sera (e.g., in vivo production) obtained from a subject having the modified immune cells for the presence of one or more cytokines. Cytokine levels can be quantified in various suitable units, including concentration, using any suitable assay. In some embodiments, cytokine protein is detected. In some embodiments, mRNA transcripts of cytokines are detected. Examples of cytokine assays include enzyme-linked immunosorbent assays (ELISA) , immunoblot, immunofluorescence assays, radioimmunoassays, antibody arrays which allow various cytokines in a sample to be detected in parallel, bead-based arrays, quantitative PCR, microarray, etc. Other suitable methods may include proteomics approaches (2-D gels, MS analysis etc) .
In some embodiments, the cytokine overexpressed by a modified immune cell provided herein is a chemokine. The chemokine can be, for example, a CC chemokine, a CXC chemokine, a C chemokine, and a CX3C chemokine. In some embodiments, the chemokine overexpressed by a modified immune cell is a CC chemokine selected from CCL1, CCL2, CCL3, CCL4, CCL5, CCL6, CCL7, CCL8, CCL9, CCL10, CCL11, CCL12, CCL13, CCL14, CCL15, CCL16, CCL17, CCL18, CCL19, CCL20, CCL21, CCL22, CCL23, CCL24, CCL25, CCL26, CCL27, and CCL28. . In some embodiments, the chemokine is a CXC chemokine selected from CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8, CXCL9, CXCL10, CXCL11, CXCL12, CXCL13, CXCL14, CXCL15, CXCL16, and CXCL17. In some embodiments, the chemokine overexpressed by a modified immune cell is a C chemokine selected from XCL1 and XCL2. In some embodiments, the chemokine overexpressed by an immune cell is a CX3C chemokine, and the CX3C chemokine is CX3CL1.
In some embodiments, the switch molecule can comprise at least an extracellular region (e.g., ligand binding domain) of a catalytic receptor such as a receptor tyrosine kinase (RTK) , or any derivative, variant, or fragment thereof. In some embodiments, the switch molecule comprises a class I RTK (e.g., the epidermal growth factor (EGF) receptor family including EGFR; the ErbB family including ErbB-2, ErbB-3, and ErbB-4) , a class II RTK (e.g., the insulin receptor family including INSR, IGF-1R, and IRR) , a class III RTK (e.g., the platelet-derived growth factor (PDGF) receptor family including PDGFR-α, PDGFR-β, CSF-1R, KIT/SCFR, and FLK2/FLT3) , a class IV RTK (e.g., the fibroblast growth factor (FGF) receptor family including FGFR-1, FGFR-2, FGFR-3, and FGFR-4) , a class V RTK (e.g., the vascular endothelial growth factor (VEGF) receptor family including VEGFR1, VEGFR2, and VEGFR3) , a class VI RTK (e.g., the hepatocyte growth factor (HGF) receptor family including hepatocyte growth factor receptor (HGFR/MET) and RON) , a class VII RTK (e.g., the tropomyosin receptor kinase (Trk) receptor family including TRKA, TRKB, and TRKC) , a class VIII RTK (e.g., the ephrin (Eph) receptor family including EPHA1, EPHA2, EPHA3, EPHA4, EPHA5, EPHA6, EPHA7, EPHA8, EPHB1, EPHB2, EPHB3, EPHB4, EPHB5, and EPHB6) , a class IX RTK (e.g., AXL receptor family such as AXL, MER, and TRYO3) , a class X RTK (e.g., LTK receptor family such as LTK and ALK) , a class XI RTK (e.g., TIE receptor family such as TIE and TEK) , a class XII RTK (e.g., ROR receptor family ROR1 and ROR2) , a class XIII RTK (e.g., the discoidin domain receptor (DDR) family such as DDR1 and DDR2) , a class XIV RTK (e.g., RET receptor family such as RET) , a class XV RTK (e.g., KLG receptor family including PTK7) , a class XVI RTK (e.g., RYK receptor family including Ryk) , a class XVII RTK (e.g., MuSK receptor family such as MuSK) , or any derivative, variant, or fragment thereof.
A switch molecule comprising a RTK, or any derivative, variant, or fragment thereof, can bind an antigen comprising any suitable RTK ligand, or any derivative, variant, or fragment thereof. Non limiting examples of RTK ligands include growth factors, cytokines, and hormones. Growth factors include, for example, members of the epidermal growth factor family (e.g., epidermal growth factor or EGF, heparin-binding EGF-like growth factor or HB-EGF, transforming growth factor-α or TGF-α, amphiregulin or AR, epiregulin or EPR, epigen, betacellulin or BTC, neuregulin-1 or NRG1, neuregulin-2 or NRG2, neuregulin-3 or NRG3, and neuregulin-4 or NRG4) , the fibroblast growth factor family (e.g., FGF1, FGF2, FGF3, FGF4, FGF5, FGF6, FGF7, FGF8, FGF9, FGF10, FGF11, FGF12, FGF13, FGF14, FGF15/19, FGF16, FGF17, FGF18, FGF20, FGF21, and FGF23) , the vascular endothelial growth factor family (e.g., VEGF-A, VEGF-B, VEGF-C, VEGF-D, and PIGF) , and the platelet-derived growth factor family (e.g., PDGFA, PDGFB, PDGFC, and PDGFD) . Hormones include, for example, members of the insulin/IGF/relaxin family (e.g., insulin, insulin-like growth factors, relaxin family peptides including relaxin1, relaxin2, relaxin3, Leydig cell-specific insulin-like peptide (gene INSL3) , early placenta insulin-like peptide (ELIP) (gene INSL4) , insulin-like peptide 5 (gene INSL5) , and insulin-like peptide 6) .
In some embodiments, a switch molecule comprises at least an extracellular region (e.g., ligand binding domain) of a catalytic receptor such as a receptor threonine/serine kinase (RTSK) , or any derivative, variant, or fragment thereof. A switch molecule can comprise a type I RTSK, type II RTSK, or any derivative, variant, or fragment thereof. A switch molecule can comprise a type I receptor, or any derivative, variant, or fragment thereof, selected from the group consisting of: ALK1 (ACVRL1) , ALK2 (ACVR1A) , ALK3 (BMPR1A) , ALK4 (ACVR1B) , ALK5 (TGFβR1) , ALK6 (BMPR1B) , and ALK7 (ACVR1C) . A switch molecule can comprise a type II receptor, or any derivative, variant, or fragment thereof, selected from the group consisting of: TGFβR2, BMPR2, ACVR2A, ACVR2B, and AMHR2 (AMHR) . In some embodiments, the switch molecule comprises a TGF-β receptor, or any derivative, variant, or fragment thereof.
A switch molecule comprising a RTSK, or any derivative, variant, or fragment thereof, can bind an antigen comprising any suitable RTSK ligand, or any derivative, variant, or fragment thereof.
The switch molecule can comprise an intracellular domain (ICD) of a co-stimulatory molecule that elicits an immune cell activation signal. The co-stimulatory molecule may bind a ligand. In some cases, the co-stimulatory molecule may be activated by a ligand responsive protein. In some embodiments, the co-stimulatory molecule is operable to regulate a proliferative and/or survival signal in the immune cell. In some embodiments, the ICD is an intracellular domain of a co-stimulatory molecule selected from an MHC class I protein, an MHC class II protein, a TNF receptor protein, an immunoglobulin-like protein, a cytokine receptor, an integrin, a signaling lymphocytic activation molecule (SLAM protein) , an activating NK cell receptor, BTLA, or a Toll ligand receptor. In some embodiments, the co-stimulatory domain comprises a signaling domain of a molecule selected from the group consisting of: 2B4/CD244/SLAMF4, 4-1BB/TNFSF9/CD137, B7-1/CD80, B7-2/CD86, B7-H1/PD-L1, B7-H2, B7-H3, B7-H4, B7-H6, B7-H7, BAFF R/TNFRSF13C, BAFF/BLyS/TNFSF13B, BLAME/SLAMF8, BTLA/CD272, CD100 (SEMA4D) , CD103, CD11a, CD11b, CD11c, CD11d, CD150, CD160 (BY55) , CD18, CD19, CD2, CD200, CD229/SLAMF3, CD27 Ligand/TNFSF7, CD27/TNFRSF7, CD28, CD29, CD2F-10/SLAMF9, CD3, CD30 Ligand/TNFSF8, CD30/TNFRSF8, CD300a/LMIR1, CD4, CD40 Ligand/TNFSF5, CD40/TNFRSF5, CD48/SLAMF2, CD49a, CD49D, CD49f, CD5, CD53, CD58/LFA-3, CD69, CD7, CD8 α, CD8 β, CD82/Kai-1, CD84/SLAMF5, CD90/Thy1, CD96, CDS, CEACAM1, CRACC/SLAMF7, CRTAM, CTLA-4, DAP12, Dectin-1/CLEC7A, DNAM1 (CD226) , DPPIV/CD26, DR3/TNFRSF25, EphB6, GADS, Gi24/VISTA/B7-H5, GITR Ligand/TNFSF18, GITR/TNFRSF18, HLA Class I, HLA-DR, HVEM/TNFRSF14, IA4, ICAM-1, ICOS/CD278, Ikaros, IL2R β, IL2R γ, IL7R α, IL-12R, Integrin α4/CD49d, Integrin α4β1, Integrin α4β7/LPAM-1, IPO-3, ITGA4, ITGA6, ITGAD, ITGAE, ITGAL, ITGAM, ITGAX, ITGB1, ITGB2, ITGB7, KIRDS2, LAG-3, LAT, LIGHT/TNFSF14, LTBR, Ly108, Ly9 (CD229) , lymphocyte function associated antigen-1 (LFA-1) , Lymphotoxin-α/TNF-β, NKG2C, NKG2D, NKp30, NKp44, NKp46, NKp80 (KLRF1) , NTB-A/SLAMF6, OX40 Ligand/TNFSF4, OX40/TNFRSF4, PAG/Cbp, PD-1, PDCD6, PD-L2/B7-DC, PSGL1, RELT/TNFRSF19L, SELPLG (CD162) , SLAM (SLAMF1) , SLAM/CD150, SLAMF4 (CD244) , SLAMF6 (NTB-A) , SLAMF7, SLP-76, TACI/TNFRSF13B, TCL1A, TCL1B, TIM-1/KIM-1/HAVCR, TIM-4, TL1A/TNFSF15, TNF RII/TNFRSF1B, TNF-α, TRANCE/RANKL, TSLP, TSLP R, VLA1, and VLA-6.
The ECD and the ICD of a switch molecule can be joined by a transmembrane domain, for example by a membrane spanning segment. In some embodiments, the membrane spanning segment comprises a polypeptide. The membrane spanning polypeptide can have any suitable polypeptide sequence. In some cases, the membrane spanning polypeptide comprises a polypeptide sequence of a membrane spanning portion of an endogenous or wild-type membrane spanning protein. In some embodiments, the membrane spanning polypeptide comprises a polypeptide sequence having at least 1 (e.g., at least 2, 3, 4, 5, 6, 7, 8, 9, 10 or greater) of an amino acid substitution, deletion, and insertion compared to a membrane spanning portion of an endogenous or wild-type membrane spanning protein. In some embodiments, the membrane spanning polypeptide comprises a non-natural polypeptide sequence, such as the sequence of a polypeptide linker. The polypeptide linker may be flexible or rigid. The polypeptide linker can be structured or unstructured. In some embodiments, the membrane spanning polypeptide transmits a signal from the ECD to the ICD, for example a signal indicating ligand-binding.
The various domains of switch molecules provided herein can be linked by means of chemical bond, e.g., an amide bond or a disulfide bond; a small, organic molecule (e.g., a hydrocarbon chain) ; an amino acid sequence such as a peptide linker (e.g., an amino acid sequence about 3-200 amino acids in length) , or a combination of a small, organic molecule and peptide linker. Peptide linkers can provide desirable flexibility to permit the desired expression, activity and/or conformational positioning of the chimeric polypeptide. The peptide linker can be of any appropriate length to connect at least two domains of interest and is preferably designed to be sufficiently flexible so as to allow the proper-folding and/or function and/or activity of one or both of the domains it connects. The peptide linker can have a length of at least 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 amino acids. In some embodiments, a peptide linker has a length between about 0 and 200 amino acids, between about 10 and 190 amino acids, between about 20 and 180 amino acids, between about 30 and 170 amino acids, between about 40 and 160 amino acids, between about 50 and 150 amino acids, between about 60 and 140 amino acids, between about 70 and 130 amino acids, between about 80 and 120 amino acids, or between about 90 and 110 amino acids. In some embodiments, the linker sequence can comprise an endogenous protein sequence. In some embodiments, the linker sequence comprises glycine, alanine, and/or serine amino acid residues. In some embodiments, a linker can contain motifs, e.g., multiple or repeating motifs, of GS, GGS, GGGGS, GGSG, or SGGG. The linker sequence can include any naturally occurring amino acids, non-naturally occurring amino acids, or combinations thereof.
Binding of a ligand to the switch molecule can yield an immune cell activation signal in the modified immune cell. In some embodiments, the immune cell activation signal is mediated by an activation factor. The activation factor can be an immunomodulating molecule. The activation factor may bind, activate, or stimulate T cells or other immune cells to modulate their activity. In some embodiments, the activation factor can be secreted from the immune cell. The activation factor can be, for example, a soluble cytokine, a soluble chemokine, or a growth factor molecule. Non-limiting examples of activation factors which can mediate the immune cell activation include a soluble cytokine, such as IL-1, IL-2, IL-6, IL-7, IL-8, IL-10, IL-12, IL-15, IL-21, tumor necrosis factor (TNF) , transforming growth factor (TGF) , interferon (IFN) , or any functional fragment or variant thereof.
The immune cell activation signal can comprise or result in a clonal expansion of the modified immune cell; cytokine release by the modified immune cell; cytotoxicity of the modified immune cell; proliferation of the modified immune cell; differentiation, dedifferentiation or transdifferentiation of the modified immune cell; movement and/or trafficking of the modified immune cell; exhaustion and/or reactivation of the modified immune cell; and release of other intercellular molecules, metabolites, chemical compounds, or combinations thereof by the modified immune cell.
In some embodiments, the immune cell activity comprises or results in clonal expansion of the immune cell (e.g., modified T cell) . Clonal expansion can comprise the generation of daughter cells arising from the immune cell. The daughter cells resulting from clonal expansion can comprise the switch molecule. Clonal expansion of the modified immune cell can be greater than that of a comparable immune cell lacking the switch molecule. Clonal expansion of the modified immune cell can be about 5-fold to about 10-fold, about 10-fold to about 20-fold, about 20-fold to about 30-fold, about 30-fold to about 40-fold, about 40-fold to about 50-fold, about 50-fold to about 60-fold, about 60-fold to about 70-fold, about 70-fold to about 80-fold, about 80-fold to about 90-fold, about 90-fold to about 100-fold, about100-fold to about 200-fold, about 200-fold to about 300-fold, about 300-fold to about 400-fold, about 400-fold to about 500-fold, about 500-fold to about 600-fold, or about 600-fold to about 700-fold greater than a comparable immune cell lacking the switch molecule. In some embodiments, determining clonal expansion can comprise quantifying a number of immune cells, for example with and without switch molecules and after ligand binding to the switch molecule. Quantifying a number of immune cells can be achieved by a variety of techniques, non-limiting examples of which include flow cytometry, Trypan Blue exclusion, and hemocytometry.
In some embodiments, the immune cell activity comprises or results in cytokine release by the immune cell. In some embodiments, the immune cell activity comprises or results in the release of intercellular molecules, metabolites, chemical compounds or combinations thereof. Cytokine release by the modified immune cell can comprise the release of IL-1, IL-2, IL-4, IL-5, IL-6, IL-13, IL-17, IL-21, IL-22, IFNγ, TNFα, CSF, TGFβ, granzyme, and the like. In some embodiments, cytokine release may be quantified using enzyme-linked immunosorbent assay (ELISA) , flow cytometry, western blot, and the like. Cytokine release by a modified immune cell can be greater than that of a comparable immune cell lacking the switch molecule. A modified immune cell provided herein can generate about 1-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 11-fold, 12-fold, 13-fold, 14-fold, 15-fold, 20-fold, 30-fold, 40-fold, 50-fold, 60-fold, 70-fold, 80-fold, 90-fold, 100-fold, 150-fold, 200-fold, 250-fold, or over 300-fold greater cytokine release as compared to a comparable immune cell lacking the switch molecule. The modified immune cell can exhibit increased cytokine secretion as compared to a comparable immune cell lacking the switch molecule (e.g., unmodified) , when the switch molecule binds to the ligand and the modified immune cell binds to the neoantigen present on a target cell. In some embodiments, the cytokine secreted is IFNγ or IL-2. In some embodiments, cytokine release can be quantified in vitro or in vivo.
In some embodiments, the immune cell activity comprises or results in cytotoxicity of the immune cell (e.g., T cell) . In some cases, cytotoxicity of the modified immune cells provided herein can be used for killing a target cell. An immune cell or population of immune cells expressing a switch molecule can induce death of a target cell. Killing of a target cell can be useful for a variety of applications, including, but not limited to, treating a disease or disorder in which a cell population is desired to be eliminated or its proliferation desired to be inhibited. Cytotoxicity can also refer to the release of cytotoxic cytokines, for example IFNγ or granzyme, by the immune cell. In some cases, modified immune cells provided herein may have altered (i) release of cytotoxins such as perforin, granzymes, and granulysin and/or (ii) induction of apoptosis via Fas-Fas ligand interaction between the T cells and target cells. In some embodiments, cytotoxicity can be quantified by a cytotoxicity assay including, a co-culture assay, ELISPOT, chromium release cytotoxicity assay, and the like. Cytotoxicity of a modified immune cell provided herein can be greater than that of a comparable immune cell lacking the switch molecule. The modified immune cell can exhibit increased cytotoxicity against a target cell as compared to a comparable immune cell lacking the switch molecule (e.g., unmodified) , when the switch molecule binds to the ligand and the modified immune cell binds to the neoantigen present on the target cell. A modified immune cell of the disclosure can be about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 125%, 150%, 175%, or 200%more cytotoxic to target cells as compared to a comparable immune cell lacking the switch molecule. A modified immune cell of the disclosure can induce death of target cells that is at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 125%, 150%, 175%, or 200%greater than that of a comparable immune cell lacking the switch molecule. In some embodiments, an immune cell provided herein can induce apoptosis in target cells displaying target epitopes (e.g., neoantigens) on their surface. In some embodiments, cytotoxicity can be determined in vitro or in vivo. In some embodiments, determining cytotoxicity can comprise determining a level of disease after administration of a composition provided herein as compared to a level of disease prior to the administration. In some embodiments, determining cytotoxicity can comprise determining a level of disease after administration of a composition provided herein and a level of disease after administration of comparable immune cells lacking the switch molecule.
In some embodiments, immune cell activity comprises or results in proliferation of the immune cell (e.g., T cell) . Proliferation of the immune cell can refer to expansion of the immune cell. Proliferation of the immune cell can refer to phenotypic changes of the immune cell. Proliferation of a modified immune cell of the disclosure can be greater than that of a comparable immune cell lacking the switch molecule. Proliferation of a modified immune cell provided herein can be about 5-fold to about 10-fold, about 10-fold to about 20-fold, about 20-fold to about 30-fold, about 30-fold to about 40-fold, about 40-fold to about 50-fold, about 50-fold to about 60-fold, about 60-fold to about 70-fold, about 70-fold to about 80-fold, about 80-fold to about 90-fold, about 90-fold to about 100-fold, about 100-fold to about 200-fold, from about 200-fold to about 300-fold, from about 300-fold to about 400-fold, from about 400-fold to about 500-fold, from about 500-fold to about 600-fold, or from about 600-fold to about 700-fold greater than the proliferation of a comparable immune cell lacking the switch molecule. In some embodiments, proliferation can be determined by quantifying a number of immune cells. Quantifying a number of immune cells can comprise flow cytometry, Trypan Blue exclusion, and/or hemocytometry. Proliferation can also be determined by phenotypic analysis of the immune cells.
In some embodiments, immune cell activity can comprise or result in differentiation, dedifferentiation, or transdifferentiation of the immune cell (e.g., modified T cell) . Differentiation, dedifferentiation, or transdifferentation of an immune cell can be determined by evaluating phenotypic expression of markers of differentiation, dedifferentiation, or transdifferentation on a cell surface by flow cytometry. In some embodiments, a modified immune cell provided herein has increased differentiation ability as compared to a comparable immune cell lacking the switch molecule. In some embodiments, a modified immune cell provided herein has increased dedifferentiation ability as compared to a comparable immune cell lacking the switch molecule. In some embodiments, a modified immune cell provided herein has greater transdifferentiation ability as compared to a comparable immune cell lacking the switch molecule.
In some embodiments, immune cell activity can comprise or result in movement and/or trafficking of the immune cell (e.g., modified T cell) . In some embodiments, movement can be determined by quantifying localization of the immune cell to a target site. For example, modified immune cells provided herein can be quantified at a target site after administration, for example at a site that is not the target site. Quantification can be performed by isolating a lesion and quantifying a number of immune cells, for example tumor infiltrating lymphocytes, comprising the switch molecule. Movement and/or trafficking of an immune cell comprising a switch molecule can be greater than that of a comparable immune cell lacking the switch molecule. In some embodiments, the number of immune cells comprising the switch molecule at a target site, for example a tumor lesion, can be about 5X, 10X, 15X, 20X, 25X, 30X, 35X, or 40X that of the number of comparable immune cells lacking the switch molecule. Trafficking can also be determined in vitro utilizing a transwell migration assay. In some embodiments, the number of immune cells comprising the switch molecule at a target site, for example in a transwell migration assay, can be about 5X, 10X, 15X, 20X, 25X, 30X, 35X, or 40X that of the number of comparable immune cells lacking the switch molecule.
In some embodiments, immune cell activity can comprise or result in exhaustion and/or activation of the immune cell (e.g., modified T cell) . Exhaustion and/or activation of an immune cell can be determined by phenotypic analysis by flow cytometry or microscopic analysis. For example, expression levels of markers of exhaustion, for instance programmed cell death protein 1 (PD1) , lymphocyte activation gene 3 protein (LAG3) , 2B4, CD160, Tim3, and T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) , can be determined quantitatively and/or qualitatively. In some cases, immune cells, such as T cells, can lose effector functions in a hierarchical manner and become exhausted. As a result of exhaustion, functions such as IL-2 production and cytokine expression, as well as high proliferative capacity, can be lost. Exhaustion can also be followed by defects in the production of IFNγ, TNF, and chemokines, as well as in degranulation. Exhaustion or activation of a modified immune cell provided herein can be greater than that of a comparable immune cell lacking the switch molecule. In some embodiments, the immune cell provided herein can undergo at least about a 1-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 11-fold, 12-fold, 13-fold, 14-fold, 15-fold, 20-fold, 30-fold, 40-fold, 50-fold, 60-fold, 70-fold, 80-fold, 90-fold, 100-fold, 150-fold, 200-fold, 250-fold, or over 300 increase in exhaustion or activation as compared to a comparable immune cell lacking the switch molecule. In some embodiments, the immune cell comprising provided herein can undergo at least about a 1-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 11-fold, 12-fold, 13-fold, 14-fold, 15-fold, 20-fold, 30-fold, 40-fold, 50-fold, 60-fold, 70-fold, 80-fold, 90-fold, 100-fold, 150-fold, 200-fold, 250-fold, or over 300 decrease in exhaustion or activation as compared to a comparable immune cell lacking the switch molecule.
In some embodiments, upon binding of the switch molecule to the ligand, the modified immune cell (e.g., modified T cell) exhibits enhanced neoantigen binding as compared to a comparable T cell lacking the switch molecule.
In some embodiments, a modified T cell comprises a T cell receptor (TCR) complex which exhibits specific binding to a neoantigen. In some embodiments, the TCR complex is an endogenous TCR complex. In some embodiments, the TCR is an exogenous TCR complex. The TCR complex, e.g., endogenous or exogenous, of the modified immune cell can confer the antigen binding specificity (e.g., neoantigen binding) of the immune cell.
In some embodiments, animmune cellexhibits enhanced proliferation in a subject administered a composition comprising the immune cell and a modified APC expressing aneoantigen recognized by the immune cell, compared to a comparable composition lacking the modified APC. Amodified APC (e.g., modified B cell) in combination with animmune cell can enhance the ability of the modified APC to stimulate the immune cell in vivo. Proliferation of the immune cell can refer to expansion of the immune cell. Proliferation of the immune cell can refer to phenotypic changes of the immune cell. Proliferation of an immune cell can be about 2 fold, 10 fold, 2 fold to about 10 fold, 5 fold to about 10 fold, about 10 fold to about 20 fold, about 20 fold to about 30 fold, about 30 fold to about 40 fold, about 40 fold to about 50 fold, about 50 fold to about 60 fold, about 60 fold to about 70 fold, about 70 fold to about 80 fold, about 80 fold to about 90 fold, about 90 fold to about 100 fold, about 100 fold to about 200 fold, from about 200 fold to about 300 fold, from about 300 fold to about 400 fold, from about 400 fold to about 500 fold, from about 500 fold to about 600 fold, from about 600 fold to about 700 fold greater than the proliferation of a comparable immune cell administered without a modified APC. In some embodiments, theimmune cell exhibits at least a 2-fold increase in proliferation compared to a comparable composition lacking a modified APC. In some embodiments, the immune cell exhibits at least a 10-fold increase in proliferation compared to a comparable composition lacking a modified APC. Proliferation of an immune cell can be about 2 fold, 10 fold, 2 fold to about 10 fold, about 5 fold to about 10 fold, about 10 fold to about 20 fold, about 20 fold to about 30 fold, about 30 fold to about 40 fold, about 40 fold to about 50 fold, about 50 fold to about 60 fold, about 60 fold to about 70 fold, about 70 fold to about 80 fold, about 80 fold to about 90 fold, about 90 fold to about 100 fold, about 100 fold to about 200 fold, from about 200 fold to about 300 fold, from about 300 fold to about 400 fold, from about 400 fold to about 500 fold, from about 500 fold to about 600 fold, from about 600 fold to about 700 fold greater than the proliferation of a comparable immune cell administered without a modified APC, and wherein the proliferation is ascertained at least about 12, 24, 36, 48, 60, 72, 84, or 96 hours after administration of the composition comprising the modified APC and the immune cell. The enhanced proliferation can be ascertained either in vitro or in vivo. In some embodiments, proliferation can comprise quantifying the number of immune cells. Quantifying a number of immune cells can comprise flow cytometry, Trypan Blue exclusion, and/or hemocytometry. Proliferation can also be determined by phenotypic analysis of the immune cells.
In some embodiments, the amount of modified APC administered to a subject can remain about the same over time in the subject. The modified APC may not be degraded over time, thus retaining the amount administered to the subject. In some cases, the modified APC that does not degrade over time is a modified B cell. The decrease in the amount of modified APC can be less than about 1%, 2%, 3%, 5%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90%relative to the amount administered, and wherein the decrease is ascertained at least about 12, 24, 36, 48, 60, 72, 84, or 96 hours after administration of the modified APC.
In one aspect, the present disclosure provides a vaccine comprising a modified APC or a composition described herein. In some embodiments, the composition comprises a modified APC comprising a neoantigen and a T cell that is capable of specifically binding the neoantigen.
In one aspect, the present disclosure provides methods of treating a disorder in a subject expressing the neoantigen comprising administering a modified APC, a composition, or a vaccine described herein. In some embodiments, the disorder is cancer.
In one aspect, the present disclosure provides a method for immune cell enrichment comprising administering to a subject expressing the neoantigen, amodified APC, a composition, or a vaccine described herein.
In various embodiments of the aspects herein, the disclosure provides a method of treating a disorder in a subject in need thereof. An exemplary methodcan comprise administering to the subject a modified APC comprising a neoantigen and a T cellcapable of specifically binding the neoantigen of the modified APC. In some embodiments, the modified APC and the T cell are administered concurrently. In some embodiments, the modified APC is administered prior to the T cell. In some embodiments, the T cell is administered prior to the modified APC.
In various embodiments of the aspects herein, a modified APC can comprise immune checkpoint inhibitors and/or cytokines described herein.
In various embodiments of the aspects herein, an immune cell described herein further comprises a kill switch. A kill switch can be activated to eliminate the immune cell in cases of severe toxicity, such as hypercytokinemia. This can occur when the immune system has such a strong response that too many inflammatory cytokines are released, which triggermild to severe symptoms including fever, headache, rash, rapid heartbeat, low blood pressure, and breathing difficulties. A kill switch can be a drug-inducible kill-switch. The kill switch can comprise an inducible caspase-9.
Various embodiments of the aspects herein comprise a cell, for example, an immune cell or a modified form thereof. Cells, for example, immune cells (e.g., lymphocytes including T cells and NK cells) , can be obtained from a subject. Non-limiting examples of subjects include humans, dogs, cats, mice, rats, and transgenic species thereof. Examples of samples from a subject from which cells can be derived include, for example, skin, heart, lung, kidney, bone marrow, breast, pancreas, liver, muscle, smooth muscle, bladder, gall bladder, colon, intestine, brain, prostate, esophagus, thyroid, serum, saliva, urine, gastric and digestive fluid, tears, stool, semen, vaginal fluid, interstitial fluids derived from tumorous tissue, ocular fluids, sweat, mucus, earwax, oil, glandular secretions, spinal fluid, hair, fingernails, plasma, nasal swab or nasopharyngeal wash, spinal fluid, cerebral spinal fluid, tissue, throat swab, biopsy, placental fluid, amniotic fluid, cord blood, emphatic fluids, cavity fluids, sputum, pus, microbiota, meconium, breast milk, and/or other excretions or body tissues.
In some cases, a cell can be a population of T cells, NK cell, B cells, and the like obtained from a subject. T cells can be obtained from a number of sources, including PBMCs, bone marrow, lymph node tissue, cord blood, thymus tissue, and tissue from a site of infection, ascites, pleural effusion, spleen tissue, and tumors. In some embodiments, T cells can be obtained from a unit of blood collected from a subject using any number of techniques, such as
separation. In one embodiment, cells from the circulating blood of an individual are obtained by apheresis. The apheresis product typically contains lymphocytes, including T cells, monocytes, granulocytes, B cells, other nucleated white blood cells, red blood cells, and platelets. The cells collected by apheresis can be washed to remove the plasma fraction and placed in appropriate buffers or media for subsequent processing steps.
Any of a variety of immune cells can be utilized in the aspects herein. In some embodiments, immune cells comprise granulocytes, such as asophils, eosinophils, and neutrophils; mast cells; monocytes, which can develop into macrophages; antigen-presenting cells such as dendritic cells; and lymphocytes, such as natural killer cells (NK cells) , B cells, and T cells. In some embodiments, an immune cell is an immune effector cell. An immune effector cell refers to an immune cell that can perform a specific function in response to a stimulus. In some embodiments, an immune cell is an immune effector cell which can induce cell death. In some embodiments, the immune cell is a lymphocyte. In some embodiments the lymphocyte is a T cell. In some embodiments, the T cell is an activated T cell. T cells include both naive and memory cells (e.g. central memory or TCM, effector memory or TEM and effector memory RA or TEMRA) , effector cells (e.g. cytotoxic T cells or CTLs or Tc cells) , helper cells (e.g. Thl, Th2, Th3, Th9, Th7, TFH) , regulatory cells (e.g. Treg, and Trl cells) , natural killer T cells (NKT cells) , tumor infiltrating lymphocytes (TILs) , lymphocyte-activated killer cells (LAKs) , αβ Τcells, γδ Τ cells, and similar unique classes of the T cell lineage. T cells can be divided into two broad categories: CD8+ T cells and CD4+ T cells, based on which protein is present on the cell's surface. T cells expressing a subject system can carry out multiple functions, including killing infected cells and activating or recruiting other immune cells. CD8+ T cells are referred to as cytotoxic T cells or cytotoxic T lymphocytes (CTLs) . CTLs expressing a subject system can be involved in recognizing and removing virus-infected cells and cancer cells. CTLs have specialized compartments, or granules, containing cytotoxins that cause apoptosis, e.g., programmed cell death. CD4+ T cells can be subdivided into four sub-sets –Th1, Th2, Th17, and Treg, with “Th” referring to “T helper cell, ” although additional sub-sets may exist. Th1 cells can coordinate immune responses against intracellular microbes, especially bacteria. They can produce and secrete molecules that alert and activate other immune cells, like bacteria-ingesting macrophages. Th2 cells are involved in coordinating immune responses against extracellular pathogens, like helminths (parasitic worms) , by alerting B cells, granulocytes, and mast cells. Th17 cells can produce interleukin 17 (IL-17) , a signaling molecule that activates immune and non-immune cells. Th17 cells are important for recruiting neutrophils.
In some embodiments, a population of immune cells provided herein can be heterogeneous. In some embodiments, cells used can be composed of a heterogeneous mixture of CD4 and CD8 T cells. The CD4 and CD8 cells can have phenotypic characteristics of circulating effector T cells. The CD4 and CD8 cells can also have a phenotypic characteristic of effector-memory cells. In some embodiment, cells can be central-memory cells.
In some embodiments, cells include peripheral blood mononuclear cells (PBMC) , peripheral blood lymphocytes (PBL) , and other blood cell subsets such as, but not limited to, T cell, a natural killer cell, a monocyte, a natural killer T cell, a monocyte-precursor cell, a hematopoietic stem cell or a non-pluripotent stem cell. In some cases, the cell can be any immune cell, including any Tcell such as tumor infiltrating cells (TILs) , such as CD3+ Tcells, CD4+ Tcells, CD8+ Tcells, or any other type of Tcell. The T cell can also include memory T cells, memory stem T cells, or effector T cells. The T cells can also be selected from a bulk population, for example, selecting T cells from whole blood. The T cells can also be expanded from a bulk population. The T cells can also be skewed towards particular populations and phenotypes. For example, the T cells can be skewed to phenotypically comprise, CD45RO (-) , CCR7 (+) , CD45RA (+) , CD62L (+) , CD27 (+) , CD28 (+) and/or IL-7Rα (+) . Suitable cells can be selected that comprise one of more markers selected from a list comprising: CD45RO (-) , CCR7 (+) , CD45RA (+) , CD62L (+) , CD27 (+) , CD28 (+) and/or IL-7Rα (+) . Cells also include stem cells such as, by way of example, embryonic stem cells, induced pluripotent stem cells, hematopoietic stem cells, neuronal stem cells and mesenchymal stem cells. Cells can comprise any number of primary cells, such as human cells, non-human cells, and/or mouse cells. Cells can be progenitor cells. Cells can be derived from the subject to be treated (e.g., patient) . Cells can be derived from a human donor. Host cells can be stem memory TSCM cells comprised of CD45RO (-) , CCR7 (+) , CD45RA (+) , CD62L+ (L-selectin) , CD27+, CD28+ and IL-7Rα+, the stem memory cells can also express CD95, IL-2Rβ, CXCR3, and LFA-1, and show numerous functional attributes distinctive of the stem memory cells. Host cells can be central memory TCM cells comprising L-selectin and CCR7, the central memory cells can secrete, for example, IL-2, but not IFNγ or IL-4. Cells can also be effector memory TEM cells comprising L-selectin or CCR7 and produce, for example, effector cytokines such as IFNγ and IL-4.
In various embodiments of the aspects herein, an immune cell comprises a lymphocyte. In some embodiments, the lymphocyte is a T cell. T cells can be obtained from a number of sources, including peripheral blood mononuclear cells, bone marrow, lymph node tissue, spleen tissue, umbilical cord, and tumors. In some embodiments, the lymphocyte is a natural killer cell (NK cell) . In some embodiments, any number of T cell lines available can be used. Immune cells such as lymphocytes (e.g., cytotoxic lymphocytes) can preferably be autologous cells, although heterologous cells can also be used. T cells can be obtained from a unit of blood collected from a subject using any number of techniques, such as
separation. Cells from the circulating blood of an individual can be obtained by apheresis or leukapheresis. The apheresis product typically contains lymphocytes, including T cells, monocytes, granulocytes, B cells, other nucleated white blood cells, red blood cells, and platelets. The cells collected by apheresis can be washed to remove the plasma fraction and to place the cells in an appropriate buffer or media, such as phosphate buffered saline (PBS) , for subsequent processing steps. After washing, the cells can be resuspended in a variety of biocompatible buffers, such as Ca-free, Mg-free PBS. Alternatively, the undesirable components of the apheresis sample can be removed and the cells directly resuspended in culture media. Samples can be provided directly by the subject, or indirectly through one or more intermediaries, such as a sample collection service provider or a medical provider (e.g. a physician or nurse) . In some embodiments, isolating T cells from peripheral blood leukocytes can include lysing the red blood cells and separating peripheral blood leukocytes from monocytes by, for example, centrifugation through, e.g., a
gradient.
A specific subpopulation of T cells, such as CD4+ or CD8+ T cells, can be further isolated by positive or negative selection techniques. Negative selection of a T cell population can be accomplished, for example, with a combination of antibodies directed to surface markers unique to the cells negatively selected. One suitable technique includes cell sorting via negative magnetic immunoadherence, which utilizes a cocktail of monoclonal antibodies directed to cell surface markers present on the cells negatively selected. For example, to isolate CD4+ cells, a monoclonal antibody cocktail can include antibodies to CD14, CD20, CD1 lb, CD16, HLA-DR, and CD8. The process of negative selection can be used to produce a desired T cell population that is primarily homogeneous. In some embodiments, a composition comprises a mixture of two or more (e.g. 2, 3, 4, 5, or more) different kind of Tcells.
In some embodiments, the immune cell is a member of an enriched population of cells. One or more desired cell types can be enriched by any suitable method, non-limiting examples of which include treating a population of cells to trigger expansion and/or differentiation to a desired cell type, treatment to stop the growth of undesired cell type (s) , treatment to kill or lyse undesired cell type (s) , purification of a desired cell type (e.g. purification on an affinity column to retain desired or undesired cell types on the basis of one or more cell surface markers) . In some embodiments, the enriched population of cells is a population of cells enriched in cytotoxic lymphocytes selected from cytotoxic T cells (also variously known as cytotoxic T lymphocytes, CTLs, T killer cells, cytolytic T cells, CD8+ T cells, and killer T cells) , natural killer (NK) cells, and lymphokine-activated killer (LAK) cells.
For isolation of a desired population of cells by positive or negative selection, the concentration of cells and surface (e.g., particles such as beads) can be varied. In certain embodiments, it can be desirable to significantly decrease the volume in which beads and cells are mixed together (i.e., increase the concentration of cells) , to ensure maximum contact of cells and beads. For example, a concentration of 2 billion cells/mL can be used. In some embodiments, a concentration of 1 billion cells/mL is used. In some embodiments, greater than 100 million cells/mL are used. A concentration of cells of 10, 15, 20, 25, 30, 35, 40, 45, or 50 million cells/mL can be used. In yet another embodiment, a concentration of cells from 75, 80, 85, 90, 95, or 100 million cells/mL can be used. In further embodiments, concentrations of 125 or 150 million cells/mL can be used. Using high concentrations can result in increased cell yield, cell activation, and cell expansion.
A variety of target cells can be killed using the systems and methods of the subject disclosure. A target cell to which this method can be applied includes a wide variety of cell types. A target cell can be in vitro. A target cell can be in vivo. A target cell can be ex vivo. A target cell can be an isolated cell. A target cell can be a cell inside of an organism. A target cell can be an organism. A target cell can be a cell in a cell culture. A target cell can be one of a collection of cells. A target cell can be a mammalian cell or derived from a mammalian cell. A target cell can be a rodent cell or derived from a rodent cell. A target cell can be a human cell or derived from a human cell. A target cell can be a prokaryotic cell or derived from a prokaryotic cell. A target cell can be a bacterial cell or can be derived from a bacterial cell. A target cell can be an archaeal cell or derived from an archaeal cell. A target cell can be a eukaryotic cell or derived from a eukaryotic cell. A target cell can be a pluripotent stem cell. A target cell can be a plant cell or derived from a plant cell. A target cell can be an animal cell or derived from an animal cell. A target cell can be an invertebrate cell or derived from an invertebrate cell. A target cell can be a vertebrate cell or derived from a vertebrate cell. A target cell can be a microbe cell or derived from a microbe cell. A target cell can be a fungi cell or derived from a fungi cell. A target cell can be from a specific organ or tissue.
A target cell can be a stem cell or progenitor cell. Target cells can include stem cells (e.g., adult stem cells, embryonic stem cells, induced pluripotent stem (iPS) cells) and progenitor cells (e.g., cardiac progenitor cells, neural progenitor cells, etc. ) . Target cells can include mammalian stem cells and progenitor cells, including rodent stem cells, rodent progenitor cells, human stem cells, human progenitor cells, etc. Clonal cells can comprise the progeny of a cell. A target cell can comprise a target nucleic acid. A target cell can be in a living organism. A target cell can be a genetically modified cell. A target cell can be a host cell.
A target cell can be a primary cell. For example, cultures of primary cells can be passaged 0 times, 1 time, 2 times, 4 times, 5 times, 10 times, 15 times or more. Cells can be unicellular organisms. Cells can be grown in culture.
A target cell can be a diseased cell. A diseased cell can have altered metabolic, gene expression, and/or morphologic features. A diseased cell can be a cancer cell, a diabetic cell, and a apoptotic cell. A diseased cell can be a cell from a diseased subject. Exemplary diseases can include blood disorders, cancers, metabolic disorders, eye disorders, organ disorders, musculoskeletal disorders, cardiac disease, and the like.
If the target cells are primary cells, they may be harvested from an individual by any method. For example, leukocytes may be harvested by apheresis, leukocytapheresis, density gradient separation, etc. Cells from tissues such as skin, muscle, bone marrow, spleen, liver, pancreas, lung, intestine, stomach, etc. can be harvested by biopsy. An appropriate solution may be used for dispersion or suspension of the harvested cells. Such solution can generally be a balanced salt solution, (e.g. normal saline, phosphate-buffered saline (PBS) , Hank’s balanced salt solution, etc. ) , conveniently supplemented with fetal calf serum or other naturally occurring factors, in conjunction with an acceptable buffer at low concentration. Buffers can include HEPES, phosphate buffers, lactate buffers, etc. Cells may be used immediately, or they may be stored (e.g., by freezing) . Frozen cells can be thawed and can be capable of being reused. Cells can be frozen in a DMSO, serum, medium buffer (e.g., 10%DMSO, 50%serum, 40%buffered medium) , and/or some other such common solution used to preserve cells at freezing temperatures.
Non-limiting examples of cells which can be target cells include, but are not limited to, lymphoid cells, such as B cell, T cell (Cytotoxic T cell, Natural Killer T cell, Regulatory T cell, T helper cell) , NK cell, cytokine-induced killer (CIK) cells; myeloid cells, such as granulocytes (Basophil granulocyte, Eosinophil granulocyte, Neutrophilgranulocyte/Hypersegmented neutrophil) , Monocyte/Macrophage, Red blood cell (Reticulocyte) , Mast cell, Thrombocyte/Megakaryocyte, Dendritic cell; cells from the endocrine system, including thyroid (Thyroid epithelial cell, Parafollicular cell) , parathyroid (Parathyroid chief cell, Oxyphil cell) , adrenal (Chromaffin cell) , pineal (Pinealocyte) cells; cells of the nervous system, including glial cells (Astrocyte, Microglia) , Magnocellular neurosecretory cell, Stellate cell, Boettcher cell, and pituitary (Gonadotrope, Corticotrope, Thyrotrope, Somatotrope, Lactotroph ) ; cells of the Respiratory system, includingPneumocyte (Type I pneumocyte, Type II pneumocyte) , Clara cell, Goblet cell, Dust cell; cells of the circulatory system, including Myocardiocyte, Pericyte; cells of the digestive system, including stomach (Gastric chief cell, Parietal cell) , Goblet cell, Paneth cell, G cells, D cells, ECL cells, I cells, K cells, S cells; enteroendocrine cells, including enterochromaffm cell, APUD cell, liver (Hepatocyte, Kupffer cell) , Cartilage/bone/muscle; bone cells, including Osteoblast, Osteocyte, Osteoclast, teeth (Cementoblast, Ameloblast) ; cartilage cells, including Chondroblast, Chondrocyte; skin cells, including Trichocyte, Keratinocyte, Melanocyte (Nevus cell) ; muscle cells, including Myocyte; urinary system cells, including Podocyte, Juxtaglomerular cell, Intraglomerular mesangial cell/Extraglomerular mesangial cell, Kidney proximal tubule brush border cell, Macula densa cell; reproductive system cells, including Spermatozoon, Sertoli cell, Leydig cell, Ovum; and other cells, including Adipocyte, Fibroblast, Tendon cell, Epidermal keratinocyte (differentiating epidermal cell) , Epidermal basal cell (stem cell) , Keratinocyte of fingernails and toenails, Nail bed basal cell (stem cell) , Medullary hair shaft cell, Cortical hair shaft cell, Cuticular hair shaft cell, Cuticular hair root sheath cell, Hair root sheath cell of Huxley's layer, Hair root sheath cell of Henle's layer, External hair root sheath cell, Hair matrix cell (stem cell) , Wet stratified barrier epithelial cells, Surface epithelial cell of stratified squamous epithelium of cornea, tongue, oral cavity, esophagus, anal canal, distal urethra and vagina, basal cell (stem cell) of epithelia of cornea, tongue, oral cavity, esophagus, anal canal, distal urethra and vagina, Urinary epithelium cell (lining urinary bladder and urinary ducts) , Exocrine secretory epithelial cells, Salivary gland mucous cell (polysaccharide-rich secretion) , Salivary gland serous cell (glycoprotein enzyme-rich secretion) , Von Ebner’s gland cell in tongue (washes taste buds) , Mammary gland cell (milk secretion) , Lacrimal gland cell (tear secretion) , Ceruminous gland cell in ear (wax secretion) , Eccrine sweat gland dark cell (glycoprotein secretion) , Eccrine sweat gland clear cell (small molecule secretion) . Apocrine sweat gland cell (odoriferous secretion, sex-hormone sensitive) , Gland of Moll cell in eyelid (specialized sweat gland) , Sebaceous gland cell (lipid-rich sebum secretion) , Bowman's gland cell in nose (washes olfactory epithelium) , Brunner's gland cell in duodenum (enzymes and alkaline mucus) , Seminal vesicle cell (secretes seminal fluid components, including fructose for swimming sperm) , Prostate gland cell (secretes seminal fluid components) , Bulbourethral gland cell (mucus secretion) , Bartholin's gland cell (vaginal lubricant secretion) , Gland of Littre cell (mucus secretion) , Uterus endometrium cell (carbohydrate secretion) , Isolated goblet cell of respiratory and digestive tracts (mucus secretion) , Stomach lining mucous cell (mucus secretion) , Gastric gland zymogenic cell (pepsinogen secretion) , Gastric gland oxyntic cell (hydrochloric acid secretion) , Pancreatic acinar cell (bicarbonate and digestive enzyme secretion) , Paneth cell of small intestine (lysozyme secretion) , Type II pneumocyte of lung (surfactant secretion) , Clara cell of lung, Hormone secreting cells, Anterior pituitary cells, Somatotropes, Lactotropes, Thyrotropes, Gonadotropes, Corticotropes, Intermediate pituitary cell, Magnocellular neurosecretory cells, Gut and respiratory tract cells, Thyroid gland cells, thyroid epithelial cell, parafollicular cell, Parathyroid gland cells, Parathyroid chief cell, Oxyphil cell, Adrenal gland cells, chromaffin cells, Ley dig cell of testes, Theca interna cell of ovarian follicle, Corpus luteum cell of ruptured ovarian follicle, Granulosa lutein cells, Theca lutein cells, Juxtaglomerular cell (renin secretion) , Macula densa cell of kidney, Metabolism and storage cells, Barrier function cells (Lung, Gut, Exocrine Glands and Urogenital Tract) , Kidney, Type I pneumocyte (lining air space of lung) , Pancreatic duct cell (centroacinar cell) , Nonstriated duct cell (of sweat gland, salivary gland, mammary gland, etc. ) , Duct cell (of seminal vesicle, prostate gland, etc. ) , Epithelial cells lining closed internal body cavities, Ciliated cells with propulsive function, Extracellular matrix secretion cells, Contractile cells; Skeletal muscle cells, stem cell, Heart muscle cells, Blood and immune system cells, Erythrocyte (red blood cell) , Megakaryocyte (platelet precursor) , Monocyte, Connective tissue macrophage (various types) , Epidermal Langerhans cell, Osteoclast (in bone) , Dendritic cell (in lymphoid tissues) , Microglial cell (in central nervous system) , Neutrophil granulocyte, Eosinophil granulocyte, Basophil granulocyte, Mast cell, Helper T cell, Suppressor T cell, Cytotoxic T cell, Natural Killer T cell, B cell, Natural killer cell, Reticulocyte, Stem cells and committed progenitors for the blood and immune system (various types) , Pluripotent stem cells, Totipotent stem cells, Induced pluripotent stem cells, adult stem cells, Sensory transducer cells, Autonomic neuron cells, Sense organ and peripheral neuron supporting cells, Central nervous system neurons and glial cells, Lens cells, Pigment cells, Melanocyte, Retinal pigmented epithelial cell, Germ cells, Oogonium/Oocyte, Spermatid, Spermatocyte, Spermatogonium cell (stem cell for spermatocyte) , Spermatozoon, Nurse cells, Ovarian follicle cell, Sertoli cell (in testis) , Thymus epithelial cell, Interstitial cells, and Interstitial kidney cells.
Of particular interest are cancer cells. In some embodiments, the target cell is a cancer cell. Non-limiting examples of cancer cells include cells of cancers including Acanthoma, Acinic cell carcinoma, Acoustic neuroma, Acral lentiginous melanoma, Acrospiroma, Acute eosinophilic leukemia, Acute lymphoblastic leukemia, Acute megakaryoblastic leukemia, Acute monocytic leukemia, Acute myeloblastic leukemia with maturation, Acute myeloid dendritic cell leukemia, Acute myeloid leukemia, Acute promyelocytic leukemia, Adamantinoma, Adenocarcinoma, Adenoid cystic carcinoma, Adenoma, Adenomatoid odontogenic tumor, Adrenocortical carcinoma, Adult Tcell leukemia, Aggressive NK-cell leukemia, AIDS-Related Cancers, AIDS-related lymphoma, Alveolar soft part sarcoma, Ameloblastic fibroma, Anal cancer, Anaplastic large cell lymphoma, Anaplastic thyroid cancer, Angioimmunoblastic Tcell lymphoma, Angiomyolipoma, Angiosarcoma, Appendix cancer, Astrocytoma, Atypical teratoidrhabdoid tumor, Basal cell carcinoma, Basal-like carcinoma, B-cell leukemia, B-cell lymphoma, Bellini duct carcinoma, Biliary tract cancer, Bladder cancer, Blastoma, Bone Cancer, Bone tumor, Brain Stem Glioma, Brain Tumor, Breast Cancer, Brenner tumor, Bronchial Tumor, Bronchioloalveolar carcinoma, Brown tumor, Burkitt's lymphoma, Cancer of Unknown Primary Site, Carcinoid Tumor, Carcinoma, Carcinoma in situ, Carcinoma of the penis, Carcinoma of Unknown Primary Site, Carcinosarcoma, Castleman's Disease, Central Nervous System Embryonal Tumor, Cerebellar Astrocytoma, Cerebral Astrocytoma, Cervical Cancer, Cholangiocarcinoma, Chondroma, Chondrosarcoma, Chordoma, Choriocarcinoma, Choroid plexus papilloma, Chronic Lymphocytic Leukemia, Chronic monocytic leukemia, Chronic myelogenous leukemia, Chronic Myeloproliferative Disorder, Chronic neutrophilic leukemia, Clear-cell tumor, Colon Cancer, Colorectal cancer, Craniopharyngioma, Cutaneous Tcell lymphoma, Degos disease, Dermatofibrosarcoma protuberans, Dermoid cyst, Desmoplastic small round cell tumor, Diffuse large B cell lymphoma, Dysembryoplasticneuroepithelial tumor, Embryonal carcinoma, Endodermal sinus tumor, Endometrial cancer, Endometrial Uterine Cancer, Endometrioid tumor, Enteropathy-associated Tcell lymphoma, Ependymoblastoma, Ependymoma, Epithelioid sarcoma, Erythroleukemia, Esophageal cancer, Esthesioneuroblastoma, Ewing Family of Tumor, Ewing Family Sarcoma, Ewing's sarcoma, Extracranial Germ Cell Tumor, Extragonadal Germ Cell Tumor, Extrahepatic Bile Duct Cancer, Extramammary Paget's disease, Fallopian tube cancer, Fetus in fetu, Fibroma, Fibrosarcoma, Follicular lymphoma, Follicular thyroid cancer, Gallbladder Cancer, Gallbladder cancer, Ganglioglioma, Ganglioneuroma, Gastric Cancer, Gastric lymphoma, Gastrointestinal cancer, Gastrointestinal Carcinoid Tumor, Gastrointestinal Stromal Tumor, Gastrointestinal stromal tumor, Germ cell tumor, Germinoma, Gestational choriocarcinoma, Gestational Trophoblastic Tumor, Giant cell tumor of bone, Glioblastoma multiforme, Glioma, Gliomatosiscerebri, Glomus tumor, Glucagonoma, Gonadoblastoma, Granulosa cell tumor, Hairy Cell Leukemia, Hairy cell leukemia, Head and Neck Cancer, Head and neck cancer, Heart cancer, Hemangioblastoma, Hemangiopericytoma, Hemangiosarcoma, Hematological malignancy, Hepatocellular carcinoma, Hepatosplenic Tcell lymphoma, Hereditary breast-ovarian cancer syndrome, Hodgkin Lymphoma, Hodgkin's lymphoma, Hypopharyngeal Cancer, Hypothalamic Glioma, Inflammatory breast cancer, Intraocular Melanoma, Islet cell carcinoma, Islet Cell Tumor, Juvenile myelomonocytic leukemia, Kaposi Sarcoma, Kaposi’s sarcoma, Kidney Cancer, Klatskin tumor, Krukenberg tumor, Laryngeal Cancer, Laryngeal cancer, Lentigomaligna melanoma, Leukemia, Leukemia, Lip and Oral Cavity Cancer, Liposarcoma, Lung cancer, Luteoma, Lymphangioma, Lymphangiosarcoma, Lymphoepithelioma, Lymphoid leukemia, Lymphoma, Macroglobulinemia, Malignant Fibrous Histiocytoma, Malignant fibrous histiocytoma, Malignant Fibrous Histiocytoma of Bone, Malignant Glioma, Malignant Mesothelioma, Malignant peripheral nerve sheath tumor, Malignant rhabdoid tumor, Malignant triton tumor, MALT lymphoma, Mantle cell lymphoma, Mast cell leukemia, Mediastinal germ cell tumor, Mediastinal tumor, Medullary thyroid cancer, Medulloblastoma, Medulloblastoma, Medulloepithelioma, Melanoma, Melanoma, Meningioma, Merkel Cell Carcinoma, Mesothelioma, Mesothelioma, Metastatic Squamous Neck Cancer with Occult Primary, Metastatic urothelial carcinoma, Mixed Mullerian tumor, Monocytic leukemia, Mouth Cancer, Mucinous tumor, Multiple Endocrine Neoplasia Syndrome, Multiple Myeloma, Multiple myeloma, Mycosis Fungoides, Mycosis fungoides, Myelodysplastic Disease, Myelodysplastic Syndromes, Myeloid leukemia, Myeloid sarcoma, Myeloproliferative Disease, Myxoma, Nasal Cavity Cancer, Nasopharyngeal Cancer, Nasopharyngeal carcinoma, Neoplasm, Neurinoma, Neuroblastoma, Neuroblastoma, Neurofibroma, Neuroma, Nodular melanoma, Non-Hodgkin Lymphoma, Non-Hodgkin lymphoma, Nonmelanoma Skin Cancer, Non-Small Cell Lung Cancer, Ocular oncology, Oligoastrocytoma, Oligodendroglioma, Oncocytoma, Optic nerve sheath meningioma, Oral Cancer, Oral cancer, Oropharyngeal Cancer, Osteosarcoma, Osteosarcoma, Ovarian Cancer, Ovarian cancer, Ovarian Epithelial Cancer, Ovarian Germ Cell Tumor, Ovarian Low Malignant Potential Tumor, Paget's disease of the breast, Pancoast tumor, Pancreatic Cancer, Pancreatic cancer, Papillary thyroid cancer, Papillomatosis, Paraganglioma, Paranasal Sinus Cancer, Parathyroid Cancer, Penile Cancer, Perivascular epithelioid cell tumor, Pharyngeal Cancer, Pheochromocytoma, Pineal Parenchymal Tumor of Intermediate Differentiation, Pineoblastoma, Pituicytoma, Pituitary adenoma, Pituitary tumor, Plasma Cell Neoplasm, Pleuropulmonaryblastoma, Polyembryoma, Precursor T-lymphoblastic lymphoma, Primary central nervous system lymphoma, Primary effusion lymphoma, Primary Hepatocellular Cancer, Primary Liver Cancer, Primary peritoneal cancer, Primitive neuroectodermal tumor, Prostate cancer, Pseudomyxomaperitonei, Rectal Cancer, Renal cell carcinoma, Respiratory Tract Carcinoma Involving the NUT Gene on Chromosome 15, Retinoblastoma, Rhabdomyoma, Rhabdomyosarcoma, Richter's transformation, Sacrococcygealteratoma, Salivary Gland Cancer, Sarcoma, Schwannomatosis, Sebaceous gland carcinoma, Secondary neoplasm, Seminoma, Serous tumor, Sertoli-Leydig cell tumor, Sex cord-stromal tumor, Sezary Syndrome, Signet ring cell carcinoma, Skin Cancer, Small blue round cell tumor, Small cell carcinoma, Small Cell Lung Cancer, Small cell lymphoma, Small intestine cancer, Soft tissue sarcoma, Somatostatinoma, Soot wart, Spinal Cord Tumor, Spinal tumor, Splenic marginal zone lymphoma, Squamous cell carcinoma, Stomach cancer, Superficial spreading melanoma, Supratentorial Primitive Neuroectodermal Tumor, Surface epithelial-stromal tumor, Synovial sarcoma, Tcell acute lymphoblastic leukemia, T cell large granular lymphocyte leukemia, Tcell leukemia, Tcell lymphoma, Tcell prolymphocytic leukemia, Teratoma, Terminal lymphatic cancer, Testicular cancer, Thecoma, Throat Cancer, Thymic Carcinoma, Thymoma, Thyroid cancer, Transitional Cell Cancer of Renal Pelvis and Ureter, Transitional cell carcinoma, Urachal cancer, Urethral cancer, Urogenital neoplasm, Uterine sarcoma, Uveal melanoma, Vaginal Cancer, Verner Morrison syndrome, Verrucous carcinoma, Visual Pathway Glioma, Vulvar Cancer, Waldenstrom'smacroglobulinemia, Warthin’s tumor, Wilms’ tumor, and combinations thereof. In some embodiments, the targeted cancer cell represents a subpopulation within a cancer cell population, such as a cancer stem cell. In some embodiments, the cancer is of a hematopoietic lineage, such as a lymphoma. The antigen can be a tumor associated antigen.
In some embodiments, the target cells form a tumor. A tumor treated with the methods herein can result in stabilized tumor growth (e.g., one or more tumors do not increase more than 1%, 5%, 10%, 15%, or 20%in size, and/or do not metastasize) . In some embodiments, a tumor is stabilized for at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or more weeks. In some embodiments, a tumor is stabilized for at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or more months. In some embodiments, a tumor is stabilized for at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more years. In some embodiments, the size of a tumor or the number of tumor cells is reduced by at least about 5%, 10%, 15%, 20%, 25, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%or more. In some embodiments, the tumor is completely eliminated, or reduced below a level of detection. In some embodiments, a subject remains tumor free (e.g. in remission) for at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or more weeks following treatment. In some embodiments, a subject remains tumor free for at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or more months following treatment. In some embodiments, a subject remains tumor free for at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more years after treatment.
Death of target cells can be determined by any suitable method, including, but not limited to, counting cells before and after treatment, or measuring the level of a marker associated with live or dead cells (e.g. live or dead target cells) . Degree of cell death can be determined by any suitable method. In some embodiments, degree of cell death is determined with respect to a starting condition. For example, an individual can have a known starting amount of target cells, such as a starting cell mass of known size or circulating target cells at a known concentration. In such cases, degree of cell death can be expressed as a ratio of surviving cells after treatment to the starting cell population. In some embodiments, degree of cell death can be determined by a suitable cell death assay. A variety of cell death assays are available, and can utilize a variety of detection methodologies. Examples of detection methodologies include, without limitation, the use of cell staining, microscopy, flow cytometry, cell sorting, and combinations of these.
When a tumor is subject to surgical resection following completion of a therapeutic period, the efficacy of treatment in reducing tumor size can be determined by measuring the percentage of resected tissue that is necrotic (i.e., dead) . In some embodiments, a treatment is therapeutically effective if the necrosis percentage of the resected tissue is greater than about 20%(e.g., at least about 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100%) . In some embodiments, the necrosis percentage of the resected tissue is 100%, that is, no living tumor tissue is present or detectable.
Exposing a target cell to an immune cell or population of immune cells disclosed herein can be conducted either in vitro or in vivo. Exposing a target cell to an immune cell or population of immune cells generally refers to bringing the target cell in contact with the immune cell and/or in sufficient proximity such that an antigen of a target cell (e.g., membrane bound or non-membrane bound) can bind to the switch molecule and/or TCR complexexpressed in the immune cell. Exposing a target cell to an immune cell or population of immune cells in vitro can be accomplished by co-culturing the target cells and the immune cells. Target cells and immune cells can be co-cultured, for example, as adherent cells or alternatively in suspension. Target cells and immune cells can be co-cultured in various suitable types of cell culture media, for example with supplements, growth factors, ions, etc. Exposing a target cell to an immune cell or population of immune cells in vivo can be accomplished, in some cases, by administering the immune cells to a subject, for example a human subject, and allowing the immune cells to localize to the target cell via the circulatory system. In some cases, an immune cell can be delivered to the immediate area where a target cell is localized, for example, by direct injection.
Exposing can be performed for any suitable length of time, for example at least 1 minute, at least 5 minutes, at least 10 minutes, at least 30 minutes, at least 1 hour, at least 2 hours, at least 3 hours, at least 4 hours, at least 5 hours, at least 6 hours, at least 7 hours, at least 8 hours, at least 12 hours, at least 16 hours, at least 20 hours, at least 24 hours, at least 2 days, at least 3 days, at least 4 days, at least 5 days, at least 6 days, at least 1 week, at least 2 weeks, at least 3 weeks, at least 1 month, or longer.
Any suitable delivery method can be used for introducing compositions and molecules (e.g., polypeptides and/or nucleic acid encoding polypeptides) of the disclosure into a host cell, such as an immune cell. The various components can be delivered simultaneously or temporally separated. The choice of method can be dependent on the type of cell being transformed and/or the circumstances under which the transformation is taking place (e.g., in vitro, ex vivo, or in vivo) .
A method of delivery can involve contacting a target polynucleotide or introducing into a cell (or a population of cells such as immune cells) one or more nucleic acids comprising nucleotide sequences encoding the compositions of the disclosure. Suitable nucleic acids comprising nucleotide sequences encoding the compositions of the disclosure can include expression vectors, where an expression vector comprising a nucleotide sequence encoding one or more compositions of the disclosure is a recombinant expression vector.
Non-limiting examples of delivery methods or transformation include, for example, viral or bacteriophage infection, transfection, conjugation, protoplast fusion, lipofection, electroporation, calcium phosphate precipitation, polyethyleneimine (PEI) -mediated transfection, DEAE-dextran mediated transfection, liposome-mediated transfection, particle gun technology, calcium phosphate precipitation, direct micro injection, and nanoparticle-mediated nucleic acid delivery.
In some aspects, the present disclosure provides methods comprising delivering one or more polynucleotides encoding a gene described herein, or one or more vectors, or one or more transcripts thereof, and/or one or proteins transcribed therefrom, to a host cell. In some aspects, the disclosure further provides cells produced by such methods, and organisms (such as animals, plants, or fungi) comprising or produced from such cells.
Conventional viral and non-viral based gene transfer methods can be used to introduce nucleic acids in mammalian cells or target tissues. Such methods can be used to administer nucleic acids encoding compositions of the disclosure to cells in culture, or in a host organism. Non-viral vector delivery systems can include DNA plasmids, RNA (e.g. a transcript of a vector described herein) , naked nucleic acid, and nucleic acid complexed with a delivery vehicle, such as a liposome. Viral vector delivery systems can include DNA and RNA viruses, which can have either episomal or integrated genomes after delivery to the cell.
Methods of non-viral delivery of nucleic acids can include lipofection, nucleofection, microinjection, biolistics, virosomes, liposomes, immunoliposomes, polycation or lipid: nucleic acid conjugates, naked DNA, artificial virions, and agent-enhanced uptake of DNA. Cationic and neutral lipids that are suitable for efficient receptor-recognition lipofection of polynucleotides can be used. Delivery can be to cells (e.g. in vitro or ex vivo administration) or target tissues (e.g. in vivo administration) . The preparation of lipid: nucleic acid complexes, including targeted liposomes such as immunolipid complexes, can be used.
RNA or DNA viral based systems can be used to target specific cells in the body and trafficking the viral payload to the nucleus of the cell. Viral vectors can be administered directly (in vivo) or they can be used to treat cells in vitro, and the modified cells can optionally be administered (ex vivo) . Viral based systems can include retroviral, lentivirus, adenoviral, adeno-associated and herpes simplex virus vectors for gene transfer. Integration in the host genome can occur with the retrovirus, lentivirus, and adeno-associated virus gene transfer methods, which can result in long term expression of the inserted transgene. High transduction efficiencies can be observed in many different cell types and target tissues.
The tropism of a retrovirus can be altered by incorporating foreign envelope proteins, expanding the potential target population of target cells. Lentiviral vectors are retroviral vectors that can transduce or infect non-dividing cells and produce high viral titers. Selection of a retroviral gene transfer system can depend on the target tissue. Retroviral vectors can comprise cis-acting long terminal repeats with packaging capacity for up to 6-10 kb of foreign sequence. The minimum cis-acting LTRs can be sufficient for replication and packaging of the vectors, which can be used to integrate the therapeutic gene into the target cell to provide permanent transgene expression. Retroviral vectors can include those based upon murine leukemia virus (MuLV) , gibbon ape leukemia virus (GaLV) , Simian Immuno deficiency virus (SIV) , human immuno deficiency virus (HIV) , and combinations thereof.
In some embodiments, adenoviral-based systems can be used to deliver a polynucleotide to a host cell. Adenoviral-based systems can lead to transient expression of the transgene. Adenoviral based vectors can have high transduction efficiency in cells and may not require cell division. High titer and levels of expression can be obtained with adenoviral based vectors. Adeno-associated virus ( “AAV” ) vectors can be used to transduce cells with target nucleic acids, e.g., in the in vitro production of nucleic acids and peptides, and for in vivo and ex vivo gene therapy procedures.
Packaging cells can be used to form virus particles capable of infecting a host cell. Such cells can include 293 cells, (e.g., for packaging adenovirus) , and Psi2 cells or PA317 cells (e.g., for packaging retrovirus) . Viral vectors can be generated by producing a cell line that packages a nucleic acid vector into a viral particle. The vectors can contain the minimal viral sequences required for packaging and subsequent integration into a host. The vectors can contain other viral sequences being replaced by an expression cassette for the polynucleotide (s) to be expressed. The missing viral functions can be supplied in trans by the packaging cell line. For example, AAV vectors can comprise ITR sequences from the AAV genome which are required for packaging and integration into the host genome. Viral DNA can be packaged in a cell line, which can contain a helper plasmid encoding the other AAV genes, namely rep and cap, while lacking ITR sequences. The cell line can also be infected with adenovirus as a helper. The helper virus can promote replication of the AAV vector and expression of AAV genes from the helper plasmid. Contamination with adenovirus can be reduced by, e.g., heat treatment to which adenovirus is more sensitive than AAV.
A host cell can be transiently or non-transiently transfected with one or more vectors described herein. A cell can be transfected as it naturally occurs in a subject. A cell can be taken or derived from a subject and transfected. A cell can be derived from cells taken from a subject, such as a cell line. In some embodiments, a cell transfected with one or more vectors described herein is used to establish a new cell line comprising one or more vector-derived sequences. In some embodiments, a cell transiently transfected with the compositions of the disclosure (such as by transient transfection of one or more vectors, or transfection with RNA) is used to establish a new cell line comprising cells containing the modification but lacking any other exogenous sequence.
Any suitable vector compatible with the host cell can be used with the methods of the disclosure. Non-limiting examples of vectors for eukaryotic host cells include pXT1, pSG5
pSVK3, pBPV, pMSG, and pSVLSV40
As used herein, a “transposon system” refers to a plasmid-based gene transfer system comprising a transposon and a transposase. In some embodiments, a transposon expression construct can be used to deliver a polynucleotide to a host cell. For example, a transposon expression construct can comprise a polynucleotide encoding a neoantigen. In some embodiments, an exogenous neoantigen or immunogenicity enhancer is introduced to a host cell using a transposon expression construct. A “transposon” or “transposable element” refers to a mobile genetic unit that can move positions within a DNA molecule in the presence of a transposase. Transposons mobilize through a cut-and-paste mechanism in which a transposase enzyme binds to DNA at inverted repeats and catalyzes the excision of the element from a DNA molecule and inserts the element in another location in the DNA. This process of horizontal gene transfer can be used to introduce a gene into a cell. Transposons that can be used to introduce an exogenous gene into a cell include, for example, the sleeping beauty transposon and the piggyBac transposon.
Contacting the cells with a composition of the disclosure can occur in any culture media and under any culture conditions that promote the survival of the cells. For example, cells may be suspended in any appropriate nutrient medium that is convenient, such as Iscove’s modified DMEM or RPMI 1640, supplemented with fetal calf serum or heat inactivated goat serum (about 5-10%) , L-glutamine, a thiol, particularly 2-mercaptoethanol, and antibiotics, e.g. penicillin and streptomycin. The culture may contain growth factors to which the cells are responsive. Growth factors, as defined herein, are molecules capable of promoting survival, growth, and/or differentiation of cells, either in culture or in the intact tissue, through specific effects on a transmembrane receptor. Growth factors can include polypeptides and non-polypeptide factors.
In numerous embodiments, the chosen delivery system is targeted to specific tissue or cell types. In some cases, tissue-or cell-targeting of the delivery system is achieved by binding the delivery system to tissue-or cell-specific markers, such as cell surface proteins. Viral and non-viral delivery systems can be customized to target tissue or cell-types of interest.
Pharmaceutical compositions containing molecules (e.g., polypeptides and/or nucleic acids encoding polypeptides) or immune cells described herein can be administered for prophylactic and/or therapeutic treatments. In therapeutic applications, the compositions can be administered to a subject already suffering from a disease or condition, in an amount sufficient to cure or at least partially arrest the symptoms of the disease or condition, or to cure, heal, improve, or ameliorate the condition. Amounts effective for this use can vary based on the severity and course of the disease or condition, previous therapy, the subject’s health status, weight, and response to the drugs, and the judgment of the treating physician.
Multiple therapeutic agents can be administered in any order or simultaneously. If simultaneously, the multiple therapeutic agents can be provided in a single, unified form, or in multiple forms, for example, as multiple separate pills. The molecules can be packed together or separately, in a single package or in a plurality of packages. One or all of the therapeutic agents can be given in multiple doses. If not administered simultaneously, the timing between the multiple doses may vary to as much as about a month.
Molecules described herein can be administered before, during, or after the occurrence of a disease or condition, and the timing of administering the composition containing a compound can vary. For example, the pharmaceutical compositions can be used as a prophylactic and can be administered continuously to subjects with a propensity to conditions or diseases in order to prevent the occurrence of the disease or condition. The molecules and pharmaceutical compositions can be administered to a subject during or as soon as possible after the onset of the symptoms. The administration of the molecules can be initiated within the first 48 hours of the onset of the symptoms, within the first 24 hours of the onset of the symptoms, within the first 6 hours of the onset of the symptoms, or within 3 hours of the onset of the symptoms. The initial administration can be via any route practical, such as by any route described herein using any formulation described herein. A molecule can be administered as soon as is practicable after the onset of a disease or condition is detected or suspected, and for a length of time necessary for the treatment of the disease, such as, for example, from about 1 month to about 3 months. The length of treatment can vary for each subject.
A molecule can be packaged into a biological compartment. A biological compartment comprising the molecule can be administered to a subject. Biological compartments can include, but are not limited to, viruses (lentivirus, adenovirus) , nanospheres, liposomes, quantum dots, nanoparticles, microparticles, nanocapsules, vesicles, polyethylene glycol particles, hydrogels, and micelles.
For example, a biological compartment can comprise a liposome. A liposome can be a self-assembling structure comprising one or more lipid bilayers, each of which can comprise two monolayers containing oppositely oriented amphipathic lipid molecules. Amphipathic lipids can comprise a polar (hydrophilic) headgroup covalently linked to one or two or more non-polar (hydrophobic) acyl or alkyl chains. Energetically unfavorable contacts between the hydrophobic acyl chains and a surrounding aqueous medium induce amphipathic lipid molecules to arrange themselves such that polar headgroups can be oriented towards the bilayer’s surface and acyl chains are oriented towards the interior of the bilayer, effectively shielding the acyl chains from contact with the aqueous environment.
Examples of preferred amphipathic compounds used in liposomes can include phosphoglycerides and sphingolipids, representative examples of which include phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidic acid, phoasphatidylglycerol, palmitoyloleoyl phosphatidylcholine, lysophosphatidylcholine, lysophosphatidylethanolamine, dimyristoylphosphatidylcholine (DMPC) , dipalmitoylphosphatidylcholine (DPPC) , dioleoylphosphatidylcholine, distearoylphosphatidylcholine (DSPC) , dilinoleoylphosphatidylcholine and egg sphingomyelin, or any combination thereof.
A biological compartment can comprise a nanoparticle. A nanoparticle can comprise a diameter of from about 40 nanometers to about 1 . 5 micrometers, from about 50 nanometers to about 1 . 2 micrometers, from about 60 nanometers to about 1 micrometer, from about 70 nanometers to about 800 nanometers, from about 80 nanometers to about 600 nanometers, from about 90 nanometers to about 400 nanometers, from about 100 nanometers to about 200 nanometers.
In some instances, as the size of the nanoparticle increases, the release rate can be slowed or prolonged and as the size of the nanoparticle decreases, the release rate can be increased.
The amount of albumin in the nanoparticles can range from about 5%to about 85%albumin (v/v) , from about 10%to about 80%, from about 15%to about 80%, from about 20%to about 70%albumin (v/v) , from about 25%to about 60%, from about 30%to about 50%, or from about 35%to about 40%. The pharmaceutical composition can comprise up to 30, 40, 50, 60, 70 or 80%or more of the nanoparticle. In some instances, the nucleic acid molecules of the disclosure can be bound to the surface of the nanoparticle.
A biological compartment can comprise a virus. The virus can be a delivery system for the pharmaceutical compositions of the disclosure. Exemplary viruses can include lentivirus, retrovirus, adenovirus, herpes simplex virus I or II, parvovirus, reticuloendotheliosis virus, and adeno-associated virus (AAV) . Pharmaceutical compositions of the disclosure can be delivered to a cell using a virus. The virus can infect and transduce the cell in vivo, ex vivo, or in vitro. In ex vivo and in vitro delivery, the transduced cells can be administered to a subject in need of therapy.
Pharmaceutical compositions can be packaged into viral delivery systems. For example, the compositions can be packaged into virions by a HSV-1 helper virus-free packaging system.
Viral delivery systems (e.g., viruses comprising the pharmaceutical compositions of the disclosure) can be administered by direct injection, stereotaxic injection, intracerebroventricularly, by minipump infusion systems, by convection, catheters, intravenous, parenteral, intraperitoneal, and/or subcutaenous injection, to a cell, tissue, or organ of a subject in need. In some instances, cells can be transduced in vitro or ex vivo with viral delivery systems. The transduced cells can be administered to a subject having a disease. For example, a stem cell can be transduced with a viral delivery system comprising a pharmaceutical composition and the stem cell can be implanted in the patient to treat a disease. In some instances, the dose of transduced cells given to a subject can be about 1×10
5 cells/kg, about 5×10
5 cells/kg, about 1×10
6 cells/kg, about 2×10
6 cells/kg, about 3×10
6 cells/kg, about 4×10
6 cells/kg, about 5×10
6 cells/kg, about 6×10
6 cells/kg, about 7×10
6 cells/kg, about 8×10
6 cells/kg, about 9×10
6 cells/kg, about 1×10
7 cells/kg, about 5×10
7 cells/kg, about 1×10
8 cells/kg, or more in one single dose.
Introduction of the biological compartments into cells can occur by viral or bacteriophage infection, transfection, conjugation, protoplast fusion, lipofection, electroporation, calcium phosphate precipitation, polyethyleneimine (PEI) -mediated transfection, DEAE-dextran mediated transfection, liposome-mediated transfection, particle gun technology, calcium phosphate precipitation, direct micro-injection, nanoparticle-mediated nucleic acid delivery, and the like.
In some embodiments, immune cells expressing a subject system are administered. Immune cells expressing a subject system can be administered before, during, or after the occurrence of a disease or condition, and the timing of administering the immune cells can vary. For example, immune cells expressing a subject system can be used as a prophylactic and can be administered continuously to subjects with a propensity to conditions or diseases in order to prevent the occurrence of the disease or condition. The immune cells can be administered to a subject during or as soon as possible after the onset of the symptoms. The administration can be initiated within the first 48 hours of the onset of the symptoms, within the first 24 hours of the onset of the symptoms, within the first 6 hours of the onset of the symptoms, or within 3 hours of the onset of the symptoms. The initial administration can be via any suitable route, such as by any route described herein using any formulation described herein. Immune cells can be administered as soon as is practicable after the onset of a disease or condition is detected or suspected, and for a length of time necessary for the treatment of the disease, such as, for example, from about 1 month to about 3 months. The length of treatment can vary for each subject.
A molecule (e.g., polypeptide and/or nucleic acid) described herein can be present in a composition in a range of from about 1 mg to about 2000 mg; from about 5 mg to about 1000 mg, from about 10 mg to about 25 mg to 500 mg, from about 50 mg to about 250 mg, from about 100 mg to about 200 mg, from about 1 mg to about 50 mg, from about 50 mg to about 100 mg, from about 100 mg to about 150 mg, from about 150 mg to about 200 mg, from about 200 mg to about 250 mg, from about 250 mg to about 300 mg, from about 300 mg to about 350 mg, from about 350 mg to about 400 mg, from about 400 mg to about 450 mg, from about 450 mg to about 500 mg, from about 500 mg to about 550 mg, from about 550 mg to about 600 mg, from about 600 mg to about 650 mg, from about 650 mg to about 700 mg, from about 700 mg to about 750 mg, from about 750 mg to about 800 mg, from about 800 mg to about 850 mg, from about 850 mg to about 900 mg, from about 900 mg to about 950 mg, or from about 950 mg to about 1000 mg.
A molecule (e.g., polypeptide and/or nucleic acid) described herein can be present in a composition in an amount of about 1 mg, about 2 mg, about 3 mg, about 4 mg, about 5 mg, about 10 mg, about 15 mg, about 20 mg, about 25 mg, about 30 mg, about 35 mg, about 40 mg, about 45 mg, about 50 mg, about 55 mg, about 60 mg, about 65 mg, about 70 mg, about 75 mg, about 80 mg, about 85 mg, about 90 mg, about 95 mg, about 100 mg, about 125 mg, about 150 mg, about 175 mg, about 200 mg, about 250 mg, about 300 mg, about 350 mg, about 400 mg, about 450 mg, about 500 mg, about 550 mg, about 600 mg, about 650 mg, about 700 mg, about 750 mg, about 800 mg, about 850 mg, about 900 mg, about 950 mg, about 1000 mg, about 1050 mg, about 1100 mg, about 1150 mg, about 1200 mg, about 1250 mg, about 1300 mg, about 1350 mg, about 1400 mg, about 1450 mg, about 1500 mg, about 1550 mg, about 1600 mg, about 1650 mg, about 1700 mg, about 1750 mg, about 1800 mg, about 1850 mg, about 1900 mg, about 1950 mg, or about 2000 mg.
A molecule (e.g., polypeptide and/or nucleic acid) described herein can be present in a composition that provides at least 0.1, 0.5, 1, 1.5, 2, 2.5 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 10, or more units of activity/mg molecule. The activity can be regulation of gene expression. In some embodiments, the total number of units of activity of the molecule delivered to a subject is at least 25,000, 30,000, 35,000, 40,000, 45,000, 50,000, 60,000, 70,000, 80,000, 90,000, 110,000, 120,000, 130,000, 140,000, 150,000, 160,000, 170,000, 180,000, 190,000, 200,000, 210,000, 220,000, 230,000, 250,000, or more units. In some embodiments, the total number of units of activity of the molecule delivered to a subject is at most 25,000, 30,000, 35,000, 40,000, 45,000, 50,000, 60,000, 70,000, 80,000, 90,000, 110,000, 120,000, 130,000, 140,000, 150,000, 160,000, 170,000, 180,000, 190,000, 200,000, 210,000, 220,000, 230,000, 250,000, or more units.
In various embodiments of the aspects herein, pharmacokinetic and pharmacodynamic data can be obtained. Various experimental techniques for obtaining such data are available. Appropriate pharmacokinetic and pharmacodynamic profile components describing a particular composition can vary due to variations in drug metabolism in human subjects. Pharmacokinetic and pharmacodynamic profiles can be based on the determination of the mean parameters of a group of subjects. The group of subjects includes any reasonable number of subjects suitable for determining a representative mean, for example, 5 subjects, 10 subjects, 15 subjects, 20 subjects, 25 subjects, 30 subjects, 35 subjects, or more. The mean can be determined by calculating the average of all subject's measurements for each parameter measured. A dose can be modulated to achieve a desired pharmacokinetic or pharmacodynamics profile, such as a desired or effective blood profile, as described herein.
The pharmacokinetic parameters can be any parameters suitable for describing a molecule. For example, the Cmax can be, for example, not less than about 25 ng/mL; not less than about 50 ng/mL; not less than about 75 ng/mL; not less than about 100 ng/mL; not less than about 200 ng/mL; not less than about 300 ng/mL; not less than about 400 ng/mL; not less than about 500 ng/mL; not less than about 600 ng/mL; not less than about 700 ng/mL; not less than about 800 ng/mL; not less than about 900 ng/mL; not less than about 1000 ng/mL; not less than about 1250 ng/mL; not less than about 1500 ng/mL; not less than about 1750 ng/mL; not less than about 2000 ng/mL; or any other Cmax appropriate for describing a pharmacokinetic profile of a molecule described herein.
The Tmax of a molecule described herein can be, for example, not greater than about 0.5 hours, not greater than about 1 hours, not greater than about 1.5 hours, not greater than about 2 hours, not greater than about 2.5 hours, not greater than about 3 hours, not greater than about 3.5 hours, not greater than about 4 hours, not greater than about 4.5 hours, not greater than about 5 hours, or any other Tmax appropriate for describing a pharmacokinetic profile of a molecule described herein.
The AUC (0-inf) of a molecule described herein can be, for example, not less than about 50 ng·hr/mL, not less than about 100 ng/hr/mL, not less than about 150 ng/hr/mL, not less than about 200 ng·hr/mL, not less than about 250 ng/hr/mL, not less than about 300 ng/hr/mL, not less than about 350 ng/hr/mL, not less than about 400 ng/hr/mL, not less than about 450 ng/hr/mL, not less than about 500 ng/hr/mL, not less than about 600 ng/hr/mL, not less than about 700 ng/hr/mL, not less than about 800 ng/hr/mL, not less than about 900 ng/hr/mL, not less than about 1000 ng·hr/mL, not less than about 1250 ng/hr/mL, not less than about 1500 ng/hr/mL, not less than about 1750 ng/hr/mL, not less than about 2000 ng/hr/mL, not less than about 2500 ng/hr/mL, not less than about 3000 ng/hr/mL, not less than about 3500 ng/hr/mL, not less than about 4000 ng/hr/mL, not less than about 5000 ng/hr/mL, not less than about 6000 ng/hr/mL, not less than about 7000 ng/hr/mL, not less than about 8000 ng/hr/mL, not less than about 9000 ng/hr/mL, not less than about 10,000 ng/hr/mL, or any other AUC (0-inf) appropriate for describing a pharmacokinetic profile of a molecule described herein.
The plasma concentration of a molecule described herein about one hour after administration can be, for example, not less than about 25 ng/mL, not less than about 50 ng/mL, not less than about 75 ng/mL, not less than about 100 ng/mL, not less than about 150 ng/mL, not less than about 200 ng/mL, not less than about 300 ng/mL, not less than about 400 ng/mL, not less than about 500 ng/mL, not less than about 600 ng/mL, not less than about 700 ng/mL, not less than about 800 ng/mL, not less than about 900 ng/mL, not less than about 1000 ng/mL, not less than about 1200 ng/mL, or any other plasma concentration of a molecule described herein.
The pharmacodynamic parameters can be any parameters suitable for describing pharmaceutical compositions of the disclosure. For example, the pharmacodynamic profile can exhibit decreases in factors associated with inflammation after, for example, about 2 hours, about 4 hours, about 8 hours, about 12 hours, or about 24 hours.
In various embodiments of the aspects herein, methods of the disclosure are performed in a subject. A subject can be a human. A subject can be a mammal (e.g., rat, mouse, cow, dog, pig, sheep, horse) . A subject can be a vertebrate or an invertebrate. A subject can be a laboratory animal. A subject can be a patient. A subject can be suffering from a disease. A subject can display symptoms of a disease. A subject may not display symptoms of a disease, but still have a disease. A subject can be under medical care of a caregiver (e.g., the subject is hospitalized and is treated by a physician) . A subject can be a plant or a crop.
In one aspect, the disclosure provides methods for preparing a modified APC comprising a neoantigen. In an exemplary method, anAPC can be obtained autologously from a tumor or cancer patient, or an allogenic donor. The isolated APC can be B cells, dendritic cells, or a combination thereof. A neoantigen specific to a tumor to be targeted can be identified, for example, by analyzing somatic cell mutations in a tumor in a subject. The identified neoantigen can beintroduced into the isolated APC to generate modified APCs comprising the neontigen. Neoantigens can be introduced into APCs as polynucleotides (e.g., DNA, RNA, vector) encoding the neoantigen, or as a polypeptide. Neoantigen presentation by the APC can be induced using a combination of the immune cell machinery and/or in vitro cultivation methods. In some cases, neoantigen loading on APCs can be performed by disrupting tumor cells from a patient to release tumor proteins. The tumor proteins can then be mixed with the APC to allow immune cell uptake via endocytosis and result in neoantigen presentation by the APC. Neoantigen loading can be performed before or after in vitro cultivation of the immune cell during the proliferation process.
In one aspect, the present disclosure provides a method of preparing a composition comprising a modifiedAPC comprising a neoantigen and an immune cell such as a T cell capable of specifically recognizing the neoantigen.
In an exemplary method, a modified APC comprising a neoantigen can be mixed or co-cultivated with an immune cell such as a T cell of peripheral origin or a tumor infiltrating lymphocyte (TIL) from a tumor in vitro to generate modified T cells capable of specifically recognizing and binding the neoantigen. The modified T cells can then be isolated from the mixture. The T cells can be genetically modified before or after exposure to the neoantigen, for example, to introduce the switch molecule.
The modified T cells can be used in combination with a modified APCin vivo such that the modified T cell and the modified APC share an overlapping time window of action and the infused modified T cell can be further activated in vivo by the modified APC. In some embodiments, the modified T cell and the modified APC may not be infused together.
Further embodiments of the present invention are explicitly described as follows.
1. A modified antigen-presenting cell (APC) comprising a neoantigen.
2. The modified APC of embodiment 1, wherein said APC is a B cell.
3. The modified APC of embodiment 1, wherein said APC is a dendritic cell.
4. The modified APC of any one of embodiments 1-3, wherein said neoantigen comprises a peptide fragment of a protein encoded by a mutated gene, wherein the gene is selected from ABL1, ACOl 1997, ACVR2A, AFP, AKT1, ALK, ALPPL2, ANAPC1, APC, ARID1A, AR, AR-v7, ASCL2, β2Μ, BRAF, BTK, C15ORF40, CDH1, CLDN6, CNOT1, CT45A5, CTAG1B, DCT, DKK4, EEF1B2, EEF1DP3, EGFR, EIF2B3, env, EPHB2, ERBB3, ESR1, ESRP1, FAM11 IB, FGFR3, FRG1B, GAGE1, GAGE 10, GATA3, GBP3, HER2, IDH1, JAK1, KIT, KRAS, LMAN1, MABEB 16, MAGEA1, MAGEA10, MAGEA4, MAGEA8, MAGEB 17, MAGEB4, MAGEC1, MEK, MLANA, MLL2, MMP13, MSH3, MSH6, MYC, NDUFC2, NRAS, PAGE2, PAGE5, PDGFRa, PIK3CA, PMEL, pol protein, POLE, PTEN, RAC1, RBM27, RNF43, RPL22, RUNX1, SEC31A, SEC63, SF3B 1, SLC35F5, SLC45A2, SMAP1, SMAP1, SPOP, TFAM, TGFBR2, THAP5, TP53, TTK, TYR, UBR5, VHL, and XPOT.
5. The modified APC of any one of embodiments 1-4, wherein said neoantigen is selected based on a somatic mutation profile of a tumor sample from a subject.
6. A composition comprising:
a. a modified APC of any one of embodiments 1-5; and
b. a T cell capable of specifically binding said neoantigen of said modified APC.
7. The composition of embodiment 6, wherein said T cell is a T cell having contactedwith said modified APC.
8. The composition of embodiment 6, wherein said T cell is a modified T cell comprising a switch molecule, wherein said switch molecule comprises:
an extracellular domain (ECD) of a protein that, in an unmodified T cell, elicits an immune cell inactivation signal upon binding to a ligand of said protein, wherein said ECD is fused to an intracellular domain (ICD) of a co-stimulatory molecule that mediates an immune cell activation signal,
wherein binding of said switch molecule to said ligand of said protein yields said immune cell activation signal in said modified T cell instead of said immune cell inactivation signal.
9. The composition of embodiment 8, wherein said protein that elicits the immune cell inactivation signal is a signaling receptor.
10. The composition of embodiment 8, wherein said protein that elicits the immune cell inactivation signal is selected from the group consisting of: a signaling receptor, a checkpoint receptor, a cytokine receptor, a chemokine receptor, a growth factor receptor, and a hormone receptor.
11. The composition of embodiment 8, wherein said protein that elicits the immune cell inactivation signal is selected from the group consisting of: transforming growth factor-beta receptor (TGF-beta-R) , programmed cell death 1 (PD-1) , cytotoxic T-lymphocyte associated protein 4 (CTLA-4) , B and T lymphocyte attenuator (BTLA) , a killer immunoglobulin-like receptor (KIR) , indoleamine 2, 3-dioxygenase (IDO) , lymphocyte activation gene-3 (LAG3) , T cell immunoglobulin mucin 3 (TIM-3) , and TIGIT.
12. The composition of any one of embodiments 8-11, wherein said co-stimulatory molecule is selected from the group consisting of: interleukin-2 receptor (IL-2R) , interleukin-12 receptor (IL-12R) , B7-H3, CD2, CD3, CD4, CD7, CD8, CD27, CD28, CD30, CD40, 4-1BB/CD137, ICOS, lymphocyte function-associated antigen-1 (LFA-1) , LIGHT, NKG2C, OX40, and PD-1.
13. The composition of any one of embodiments 8-12, wherein said immune cell activation signal is mediated by an activation factor.
14. The composition of embodiment 12, wherein said activation factor is a soluble cytokine, a soluble chemokine, or a growth factor.
15. The composition of embodiment 12, wherein said activation factor is a soluble cytokine, and wherein said soluble cytokine is IL-1, IL-2, IL-6, IL-7, IL-8, IL-10, IL-12, IL-15, IL-21, TNF, TGF, IFN, or any functional fragment or variant thereof.
16. The composition of any one of embodiments 8-15, wherein said immune cell activation signal comprises a clonal expansion of said modified T cell; cytokine release by said modified T cell; cytotoxicity of said modified T cell; proliferation of said modified T cell; differentiation, dedifferentiation or transdifferentiation of said modified T cell; movement and/or trafficking of said modified T cell; exhaustion and/or reactivation of said modified T cell; and release of other intercellular molecules, metabolites, chemical compounds, or combinations thereof by said modified T cell.
17. The composition of any one of embodiments 8-16, wherein upon binding of said switch molecule of said modified T cell to said ligand of said protein, said modified T cell exhibits enhanced neoantigen binding as compared to an unmodified T cell.
18. The composition of any one of embodiments 8-17, wherein said modified T cell exhibits increased cytotoxicity against a target cell as compared to an unmodified T cell, when said switch molecule binds to said ligand and said modified T cell binds to said neoantigen present on said target cell.
19. The composition of any one of embodiments 8-18, wherein said modified T cell exhibits increased secretion of a cytokine as compared to an unmodified T cell, when said switch molecule binds said ligand and said modified T cell binds to said neoantigen present on a target cell.
20. The composition of embodiment 19, wherein said cytokine is IFN-gamma or IL-2.
21. The composition of any one of embodiments, wherein said modified T cell comprises a T cell receptor (TCR) complex capable of specifically binding to said neoantigen.
22. The composition of embodiment 20, wherein said TCR complex is an endogenous TCR complex.
23. The composition of embodiment 20, wherein said TCR complex is an exogenous TCR complex.
24. The composition of any one of embodiments 6-22, wherein said T cell exhibits enhanced proliferation in a subject administered said composition and expressing said neoantigen, compared to a composition lacking said modified APC.
25. The composition of embodiment 24, wherein said T cell exhibits at least a 2-fold increase in proliferation compared to a composition lacking said modified APC.
26. The composition of embodiment 24, wherein said T cell exhibits at least a 10-fold increase in proliferation compared to a composition lacking said modified APC.
27. The composition of any one of embodiments 6-26, wherein an amount of said modified APC remains about the same over time in a subject administered said composition.
28. A vaccine comprising a modified APC of any one of embodiments 1-5 or a composition of any one of embodiments 6-27.
29. A method of treating a disorder in a subject expressing said neoantigen, said method comprising administering a modified APC of any one of embodiments 1-5, a composition of any one of embodiments 6-27, or a vaccine of embodiment 28.
30. A method for immune cell enrichment, said method comprising administering to a subject expressing said neoantigen a composition of any one of embodiments 6-27 or a vaccine of embodiment 28.
31. A method of treating a disorder in a subject in need thereof, the method comprising administering to the subject:
a. a modified APC of any one of embodiments 1-5; and
b. a T cell capable of specifically binding said neoantigen of said modified APC;
wherein the modified APC and the T cell are administered concurrently or separately to the subject.
32. The method of embodiment 31, wherein the modified APC is administered prior to the modified T cell.
33. The method of embodiment 31, wherein the T cell is administered prior to the modified APC.
34. The method of embodiment 31, wherein the modified APC and the T cell are administered concurrently to the subject.
35. The method of any one of embodiments 31-0, wherein said T cell is a T cell having contacted with said modified APC.
36. The method of any one of embodiments 31-0, wherein said T cell is a modified T cell comprising a switch molecule, wherein said switch molecule comprises:
an extracellular domain (ECD) of a protein that, in an unmodified T cell, elicits an immune cell inactivation signal upon binding to a ligand of said protein, wherein said ECD is fused to an intracellular domain (ICD) of a co-stimulatory molecule that mediates an immune cell activation signal,
wherein binding of said switch molecule to said ligand of said protein yields said immune cell activation signal in said modified T cell instead of said immune cell inactivation signal.
37. The method of embodiment 0, wherein said protein that elicits the immune cell inactivation signal is a signaling receptor.
38. The method of embodiment 0, wherein said protein that elicits the immune cell inactivation signal is selected from the group consisting of: a signaling receptor, a checkpoint receptor, a cytokine receptor, a chemokine receptor, a growth factor receptor, and a hormone receptor.
39. The method of embodiment 0, wherein said protein that elicits the immune cell inactivation signal is selected from the group consisting of: transforming growth factor-beta receptor (TGF-beta-R) , programmed cell death 1 (PD-1) , cytotoxic T-lymphocyte associated protein 4 (CTLA-4) , B and T lymphocyte attenuator (BTLA) , a killer immunoglobulin-like receptor (KIR) , indoleamine 2, 3-dioxygenase (IDO) , lymphocyte activation gene-3 (LAG3) , T cell immunoglobulin mucin 3 (TIM-3) , and TIGIT.
40. The method of any one of embodiments 36-39, wherein said co-stimulatory molecule is selected from the group consisting of: interleukin-2 receptor (IL-2R) , interleukin-12 receptor (IL-12R) , B7-H3, CD2, CD3, CD4, CD7, CD8, CD27, CD28, CD30, CD40, 4-1BB/CD137, ICOS, lymphocyte function-associated antigen-1 (LFA-1) , LIGHT, NKG2C, OX40, and PD-1.
41. The method of any one of embodiments 36-39, wherein said immune cell activation signal is mediated by an activation factor.
42. The method of embodiment 41, wherein said activation factor is a soluble cytokine, a soluble chemokine, or a growth factor.
43. The method of embodiment 41, wherein said activation factor is a soluble cytokine, and wherein said soluble cytokine is IL-1, IL-2, IL-6, IL-7, IL-8, IL-10, IL-12, IL-15, IL-21, TNF, TGF, IFN, or any functional fragment or variant thereof.
44. The method of any one of embodiments 36-43, wherein said immune cell activation signal comprises a clonal expansion of said modified T cell; cytokine release by said modified T cell; cytotoxicity of said modified T cell; proliferation of said modified T cell; differentiation, dedifferentiation or transdifferentiation of said modified T cell; movement and/or trafficking of said modified T cell; exhaustion and/or reactivation of said modified T cell; and release of other intercellular molecules, metabolites, chemical compounds, or combinations thereof by said modified T cell.
45. The method of any one of embodiments 36-44, wherein upon binding of said switch molecule of said modified T cell to said ligand of said protein, said modified T cell exhibits enhanced neoantigen binding as compared to an unmodified T cell.
46. The method of any one of embodiments 36-45, wherein said modified T cell exhibits increased cytotoxicity against a target cell as compared to an unmodified T cell, when said switch molecule binds to said ligand and said modified T cell binds to said neoantigen present on said target cell.
47. The method of any one of embodiments 36-46, wherein said modified T cell exhibits increased secretion of a cytokine as compared to an unmodified T cell, when said switch molecule binds said ligand and said modified T cell binds to said neoantigen present on a target cell.
48. The method of embodiment 47, wherein said cytokine is IFN-gamma or IL-2.
49. The method of any one of embodiments 36-48, wherein said modified T cell comprises a T cell receptor (TCR) complex capable of specifically binding to said neoantigen.
50. The method of embodiment 49, wherein said TCR complex is an endogenous TCR complex.
51. The method of embodiment 49, wherein said TCR complex is an exogenous TCR complex.
52. The method of any one of embodiments 31-51, wherein said modified T cell exhibits enhanced proliferation in said subject relative to a subject administered said modified T cell but not said modified APC.
53. The method of embodiment 52, wherein said modified T cell exhibits at least a 2-fold increase in proliferation.
54. The method of embodiment 52, wherein said modified T cell exhibits at least a 10-fold increase in proliferation.
55. The method of any one of embodiments 31-54, wherein an amount of said modified APC remains about the same over time in a subject administered said composition.
56. The method any one of embodiments 31-55, whereinthe subject is a human.
57. The method any one of embodiments 31-56, wherein the disorder is a cancer.
EXAMPLES
The following examples are given for the purpose of illustrating various embodiments of the disclosure and are not meant to limit the present disclosure in any fashion. The present examples, along with the methods described herein are presently representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the disclosure.
Example 1: Preparation of neoantigen-loaded B cell vaccine (neoB) and neoantigen-loaded dendritic cell (DC) vaccine (neoDC) .
B cells and DCs were isolated from peripheral blood mononuclear cells (PMBCs) from tumor patients.
Isolation and proliferation of B cells: Peripheral blood was collected from veins of patients. PMBCs were isolated using
lymphocyte separation solution. CD19+ B cells were sorted and quantitated using magnetic beads using an anti-CD19 antibody. B cells were amplified by cultivating in relevant media and cytokines. On Day 12, amplified B cells were collected and quantitated, resulting in 10-to 30-fold amplification.
Isolation, differentiation, and maturation of DCs: Peripheral blood was collected directly from veins of patients or by cytapheresis. PBMCs were isolated with
lymphocyte separation solution and allowed to adhere to wall for about 2 hours. Adhered monocytes were then isolated and relevant cytokines were added to the monocytes to promote DC differentiation and maturation. Mature DC cells were collected after 7 to 8 days of cultivation.
Genetic sequencing analysis was conducted on tumor tissues obtained from the patients. Candidate neoantigen mutations were in vitro synthesized and in vitro transcribed into RNA, which were transformed intoB cells or DCs by electroporation to yield neoBorneoDC, respectively.
Example 2: Activation and enrichment of neoantigen-reactive T cells (neoT) by neoB and neoDC vaccines in vitro.
Tumor infiltrating T lymphocytes (TILs) were isolated from autologous tissues of a tumor patient. Alternatively, T cells were isolated from PMBCs of a tumor patient. The T cells were co-cultivated for one day with mixtures prepared from autologous cells of the patient containing either neoB or neoDC. The percentage of CD137+ T cells (i.e., neoT) to the total T cells were determined by flow cytometry for each patient tumor sample. The results are shown in TABLE 1 below:
TABLE 1
Patient | NeoB Stimulation | NeoDC Stimulation |
1 | 21.3% | 22.1% |
2 | 6.3% | 6.5% |
3 | 3.6% | 3.8% |
4 | 33.7% | 34.1% |
5 | 5.7% | 5.9% |
The percentage of CD137+ T cells varied significantly among individual patients for both neoB and neoDC stimulated groups. However, for the same patient, the percentage of CD137+ T cells stimulated with either neoB or neoDC was very similar. The results indicate that neoT activation and enrichment by neoB is very similar to neoT activation and enrichment by neoDC.
Example 3: Preparation of normal and enhanced neoT.
Tumor infiltrating T lymphocytes (TILs) were isolated from autologous tissues of a tumor patient. Alternatively, T cells were isolated from PMBCs of a tumor patient. The T cells were co-cultivated for one day independently with neoB and neoDC mixtures, each of which was prepared from autologous cells of the patient. Activated T cells were sorted using magnetic beads using an anti-CD137 antibody to obtain neoT.
A lentivirus vector for a switch receptor of PD1/4-1BB was transfected into neoT with a transfection efficiency of about 60%. PD1+T cells were sorted by flow cytometry or magnetic beads to construct enhanced neoT (ENT) . The remaining PD1-T cells were normal (non-enhanced) neoT.
Example 4: Amplification and enrichment of normal neoT and enhanced neoT (ENT) using neoB and neoDC, and cell viability of the neoB and neoDC vaccines.
The amplification and enrichment effects of neoB and neoDC on normal neoT and ENT are determined using immunodeficient mice. The mice are divided into 4 test groups to accept re-infusion via the tail vein, as shown in TABLE 2.
TABLE 2
Group A: neoB | Group B: neoDC |
A1: neoT + neoB | B1: neoT + neoDC |
A2: ENT + neoB | B2: ENT + neoDC |
NeoT, ENT, neoB, and neoDC are administered at an initial dose of 10
5 cells per mouse. Three days after re-infusion, mouse peripheral blood is collected within 20 minutes to determine the number of neoB and neoDC. One week after re-infusion, mouse peripheral blood is collected to monitor the quantity of neoT and ENT.
The number of ENT is expected to be greater than the number of neoT after administration of the same vaccine (group A or group B) . It is expected that ENT is more prone to activation by an antigen-presenting cell.
In both neoT or ENT groups, the number of neoDC is expected to decrease significantly after re-infusion, for example, because neoB can be more viable (i.e., more resistant to cell killing by the T cells) than neoDC. NeoB is expected to exhibit a stronger activation and amplification effect on the T cells than neoDC. Thus, neoB is expected to be a better neoantigen vaccine than neoDC.
Example 5: Dose-dependent amplification and enrichment of ENT cells using neoB and neoDC.
Immunodeficienct mice used for this experiment are divided into 8 test groups to accept re-infusion via the tail vein, as shown in TABLE 3.
TABLE 3
In all groups, ENT is administered at an initial dose of 10
6 cells per mouse. The neoantigen vaccine (neoB or neoDC) is re-infused earlier than ENT. The number of ENT, neoB, and neoDC are determined weekly for six consecutive weeks.
In both group A and group B, the number of ENT is expected to be positively correlated with the dose of vaccine infusion, which would demonstrate that the vaccine dosage can play a crucial role in the amplification and enrichment of ENT.
All neoBtest groups are expected to have a significantly greater number of ENT than the neoDCtest groups. Because neoB is expected to have a higher rate of cell viability thanneoDC, the neoB group is expected to induce ENT proliferation more effectively than the neoDC groups. After initial infusion, the number of neoDC is expected to sharply decline after being killed by the T cells. As a result, the neoDC may no longer stimulate T cells. Conversely, neoB, by virtue of having a higher survival rate, is expected to be able to continuously stimulate the T cells.
This example demonstrates that increasing the number of neoantigen-loaded antigen-presenting cells can amplify the number of tumor-recognizing T cells (or neoantigen reactive T cells) . Thus, B cells that are capable of proliferation, can be preferable neoantigen vaccine vehicles over DCs, which may not be capable of proliferation, for enrichment and amplification of neoantigen reactive T cells.
Example 6: Enrichment and amplification of ENT cells by repeated administrations of neoB and neoDC.
Immunodeficient mice used for this experiment are divided into 8 test groups to accept re-infusion via the tail vein, as shown in TABLE 4.
TABLE 4
In all groups, ENT is administered at an initial dose of 10
5. For the initial dose, neoB and neoDC are re-infused at a dose of 10
5on the same day as ENT. For test groups with multiple administrations of vaccine, one dose of vaccine infusion is administered each week, with each additional dose being double the previous amount. For example, two doses: 2 x 10
5 (groups A3-A5 and B3-B5) , three doses: 4 x 10
5 (groups A4-A5 and B4-B5) , and four doses: 8 x 10
5 (groups A5 andB5) . Each week, blood is drawn to determine the number of neoB, neoDC, and ENT.
The amplification of ENT after administration of neoB in all doses is expected to be significantly greater than the amplification of ENT after administration of each corresponding dose of neoDC. In test groups in which repeated multiple doses of vaccines are administered, neoBis expected to exhibit a significantly greater amplification effect on ENT than neoDC.
NeoBis expected to exhibit a significantly higher rate of survival than neoDC. In test groups in which multiple does of vaccines are infused (e.g., groups A3-A6 and B3-B6) , the number of neoDCs is expected to be almost undetectable at later doses, whereas the number of B cells remains similar to the initial re-infusion amount. NeoDC is expected to only activate T cells at the first dose of re-infusion. After the second dose, the ENT may kill the neoDC and prevent the neoDC from exerting continuous activation effect on the ENT. The number of neoDC may sharply decline after being killed by the T cells. As a result, the neoDC may no longer stimulate the T cells. Conversely, neoB, by virtue of having a higher survival rate, is expected to be able to continuously stimulate the T cells.
These experiments can demonstrate that combined administration of neoB and ENT can significantly amplify the quantity of ENT. In sum, continuous and repeated infusion of the neoantigen vaccine may be needed to allow the vaccine to amplify neoT or ENT in vivo. Due to greater T cell proliferation ability and viability of neoB, neoB can be more effective than neoDC in continuous amplification of neoT and ENT.
While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.
Claims (31)
- A modified antigen-presenting cell (APC) comprising a neoantigen.
- The modified APC of claim 1, wherein said APC is a B cell.
- The modified APC of claim 1, wherein said APC is a dendritic cell.
- The modified APC of any one of claims 1-3, wherein said neoantigen comprises a peptide fragment of a protein encoded by a mutated gene, wherein the gene is selected from ABL1, ACOl 1997, ACVR2A, AFP, AKT1, ALK, ALPPL2, ANAPC1, APC, ARID1A, AR, AR-v7, ASCL2, β2Μ, BRAF, BTK, C15ORF40, CDH1, CLDN6, CNOT1, CT45A5, CTAG1B, DCT, DKK4, EEF1B2, EEF1DP3, EGFR, EIF2B3, env, EPHB2, ERBB3, ESR1, ESRP1, FAM11 IB, FGFR3, FRG1B, GAGE1, GAGE 10, GATA3, GBP3, HER2, IDH1, JAK1, KIT, KRAS, LMAN1, MABEB 16, MAGEA1, MAGEA10, MAGEA4, MAGEA8, MAGEB 17, MAGEB4, MAGEC1, MEK, MLANA, MLL2, MMP13, MSH3, MSH6, MYC, NDUFC2, NRAS, PAGE2, PAGE5, PDGFRa, PIK3CA, PMEL, pol protein, POLE, PTEN, RAC1, RBM27, RNF43, RPL22, RUNX1, SEC31A, SEC63, SF3B 1, SLC35F5, SLC45A2, SMAP1, SMAP1, SPOP, TFAM, TGFBR2, THAP5, TP53, TTK, TYR, UBR5, VHL, and XPOT.
- The modified APC of any one of claims 1-4, wherein said neoantigen is selected based on a somatic mutation profile of a tumor sample from a subject.
- A composition comprising:a. a modified APC of any one of claims 1-5; andb. a T cell capable of specifically binding said neoantigen of said modified APC.
- The composition of claim 6, wherein said T cell is a T cell having contactedwith said modified APC.
- The composition of claim 6, wherein said T cell is a modified T cell comprising a switch molecule, wherein said switch molecule comprises:an extracellular domain (ECD) of a protein that, in an unmodified T cell, elicits an immune cell inactivation signal upon binding to a ligand of said protein, wherein said ECD is fused to an intracellular domain (ICD) of a co-stimulatory molecule that mediates an immune cell activation signal,wherein binding of said switch molecule to said ligand of said protein yields said immune cell activation signal in said modified T cell instead of said immune cell inactivation signal.
- The composition of claim 8, wherein said protein that elicits the immune cell inactivation signal is a signaling receptor.
- The composition of claim 8, wherein said protein that elicits the immune cell inactivation signal is selected from the group consisting of: a signaling receptor, a checkpoint receptor, a cytokine receptor, a chemokine receptor, a growth factor receptor, and a hormone receptor.
- The composition of claim 8, wherein said protein that elicits the immune cell inactivation signal is selected from the group consisting of: transforming growth factor-beta receptor (TGF-beta-R) , programmed cell death 1 (PD-1) , cytotoxic T-lymphocyte associated protein 4 (CTLA-4) , B and T lymphocyte attenuator (BTLA) , a killer immunoglobulin-like receptor (KIR) , indoleamine 2, 3-dioxygenase (IDO) , lymphocyte activation gene-3 (LAG3) , T cell immunoglobulin mucin 3 (TIM-3) , and TIGIT.
- The composition of any one of claims 8-11, wherein said co-stimulatory molecule is selected from the group consisting of: interleukin-2 receptor (IL-2R) , interleukin-12 receptor (IL-12R) , B7-H3, CD2, CD3, CD4, CD7, CD8, CD27, CD28, CD30, CD40, 4-1BB/CD137, ICOS, lymphocyte function-associated antigen-1 (LFA-1) , LIGHT, NKG2C, OX40, and PD-1.
- The composition of any one of claims 8-12, wherein said immune cell activation signal is mediated by an activation factor.
- The composition of claim 12, wherein said activation factor is a soluble cytokine, a soluble chemokine, or a growth factor.
- The composition of claim 12, wherein said activation factor is a soluble cytokine, and wherein said soluble cytokine is IL-1, IL-2, IL-6, IL-7, IL-8, IL-10, IL-12, IL-15, IL-21, TNF, TGF, IFN, or any functional fragment or variant thereof.
- The composition of any one of claims 8-15, wherein said immune cell activation signal comprises a clonal expansion of said modified T cell; cytokine release by said modified T cell; cytotoxicity of said modified T cell; proliferation of said modified T cell; differentiation, dedifferentiation or transdifferentiation of said modified T cell; movement and/or trafficking of said modified T cell; exhaustion and/or reactivation of said modified T cell; and release of other intercellular molecules, metabolites, chemical compounds, or combinations thereof by said modified T cell.
- The composition of any one of claims 8-16, wherein upon binding of said switch molecule of said modified T cell to said ligand of said protein, said modified T cell exhibits enhanced neoantigen binding as compared to an unmodified T cell.
- The composition of any one of claims 8-17, wherein said modified T cell exhibits increased cytotoxicity against a target cell as compared to an unmodified T cell, when said switch molecule binds to said ligand and said modified T cell binds to said neoantigen present on said target cell.
- The composition of any one of claims 8-18, wherein said modified T cell exhibits increased secretion of a cytokine as compared to an unmodified T cell, when said switch molecule binds said ligand and said modified T cell binds to said neoantigen present on a target cell.
- The composition of claim 19, wherein said cytokine is IFN-gamma or IL-2.
- The composition of any one of claims, wherein said modified T cell comprises a T cell receptor (TCR) complex capable of specifically binding to said neoantigen.
- The composition of claim 20, wherein said TCR complex is an endogenous TCR complex.
- The composition of claim 20, wherein said TCR complex is an exogenous TCR complex.
- The composition of any one of claims 6-22, wherein said T cell exhibits enhanced proliferation in a subject administered said composition and expressing said neoantigen, compared to a composition lacking said modified APC.
- The composition of claim 24, wherein said T cell exhibits at least a 2-fold increase in proliferation compared to a composition lacking said modified APC.
- The composition of claim 24, wherein said T cell exhibits at least a 10-fold increase in proliferation compared to a composition lacking said modified APC.
- The composition of any one of claims 6-26, wherein an amount of said modified APC remains about the same over time in a subject administered said composition.
- A vaccine comprising a modified APC of any one of claims 1-5 or a composition of any one of claims 6-27.
- A method of treating a disorder in a subject expressing said neoantigen, said method comprising administering a modified APC of any one of claims 1-5, a composition of any one of claims 6-27, or a vaccine of claim 28.
- A method for immune cell enrichment, said method comprising administering to a subject expressing said neoantigen a composition of any one of claims 6-27 or a vaccine of claim 28.
- A method of treating a disorder in a subject in need thereof, the method comprising administering to the subject:a. a modified APC of any one of claims 1-5; andb. a T cell capable of specifically binding said neoantigen of said modified APC;wherein the modified APC and the T cell are administered concurrently or separately to the subject.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNPCT/CN2018/090634 | 2018-06-11 | ||
CN2018090634 | 2018-06-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019238023A1 true WO2019238023A1 (en) | 2019-12-19 |
Family
ID=68842728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/090633 WO2019238023A1 (en) | 2018-06-11 | 2019-06-11 | Neoantigen vaccines and uses thereof |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019238023A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200222478A1 (en) * | 2019-01-10 | 2020-07-16 | Janssen Biotech, Inc. | Prostate neoantigens and their uses |
CN111690609A (en) * | 2020-06-30 | 2020-09-22 | 深圳裕泰抗原科技有限公司 | Method for testing immunogenicity of neoantigen |
CN113398249A (en) * | 2021-07-08 | 2021-09-17 | 中国人民解放军空军军医大学 | Application of over-expressed chemokine CCL14 in preparation of medicine for treating tumors under participation of immune system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105153315A (en) * | 2015-10-09 | 2015-12-16 | 重庆倍思益生物科技有限公司 | Chimeric receptor combining immunosuppression receptor and tumor antigen receptor and application of chimeric receptor |
WO2017147139A1 (en) * | 2016-02-22 | 2017-08-31 | Oceanside Biotechnology | Neoantigen compositions and methods of using the same in immunooncotherapy |
-
2019
- 2019-06-11 WO PCT/CN2019/090633 patent/WO2019238023A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105153315A (en) * | 2015-10-09 | 2015-12-16 | 重庆倍思益生物科技有限公司 | Chimeric receptor combining immunosuppression receptor and tumor antigen receptor and application of chimeric receptor |
WO2017147139A1 (en) * | 2016-02-22 | 2017-08-31 | Oceanside Biotechnology | Neoantigen compositions and methods of using the same in immunooncotherapy |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200222478A1 (en) * | 2019-01-10 | 2020-07-16 | Janssen Biotech, Inc. | Prostate neoantigens and their uses |
US11793843B2 (en) * | 2019-01-10 | 2023-10-24 | Janssen Biotech, Inc. | Prostate neoantigens and their uses |
CN111690609A (en) * | 2020-06-30 | 2020-09-22 | 深圳裕泰抗原科技有限公司 | Method for testing immunogenicity of neoantigen |
CN111690609B (en) * | 2020-06-30 | 2022-04-05 | 深圳裕泰抗原科技有限公司 | Method for testing immunogenicity of neoantigen |
CN113398249A (en) * | 2021-07-08 | 2021-09-17 | 中国人民解放军空军军医大学 | Application of over-expressed chemokine CCL14 in preparation of medicine for treating tumors under participation of immune system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240247231A1 (en) | Modified immune cells and uses thereof | |
ES2875747T3 (en) | Chimeric proteins and immunotherapy methods | |
RU2751921C2 (en) | Products of a certain composition containing genetically modified t cells | |
US20230293689A1 (en) | Strengthened receptor for improving immune cell function | |
WO2019238022A1 (en) | Modified immune cells and uses thereof | |
EP3926042A1 (en) | Adjuvant capable of promoting expansion of immune cells in vivo | |
WO2019183572A1 (en) | Gene regulation via conditional nuclear localization of gene modulating polypeptides | |
CN113710691A (en) | Amplification of natural killer and chimeric antigen receptor modified cells | |
WO2019238023A1 (en) | Neoantigen vaccines and uses thereof | |
US20220162288A1 (en) | Cellular therapeutics engineered with signal modulators and methods of use thereof | |
WO2021119349A1 (en) | Chimeric receptor polypeptide and methods of activation thereof | |
EP4435101A1 (en) | Membrane surface protein containing gpi anchor region | |
TW202039540A (en) | Anti-lmp2 tcr-t cell therapy for the treatment of ebv-associated cancers | |
US20230226213A1 (en) | Methods and compositions for modulating cells and cellular membranes | |
CN117460742A (en) | Materials and methods for enhanced stem cell-like memory T cell engineering | |
CN111676195A (en) | UCAR immune cell for treating T cell tumor | |
WO2021204204A1 (en) | Antigen gene transfection cell vaccine and related immune cell | |
WO2023144355A1 (en) | Ex vivo human model designed to evaluate the vaccine potential of a composition | |
WO2024206155A1 (en) | Utilizing t cells derived from tumor draining lymph nodes for chimeric antigen receptor (car) t cell therapy for the treatment of cancer | |
CN116514997A (en) | Construction and application of chimeric antigen receptor with enhanced expression |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19818575 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19818575 Country of ref document: EP Kind code of ref document: A1 |