WO2019237719A1 - 耐高压低弯曲损耗的光纤 - Google Patents

耐高压低弯曲损耗的光纤 Download PDF

Info

Publication number
WO2019237719A1
WO2019237719A1 PCT/CN2018/125078 CN2018125078W WO2019237719A1 WO 2019237719 A1 WO2019237719 A1 WO 2019237719A1 CN 2018125078 W CN2018125078 W CN 2018125078W WO 2019237719 A1 WO2019237719 A1 WO 2019237719A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
optical fiber
refractive index
cladding layer
inner cladding
Prior art date
Application number
PCT/CN2018/125078
Other languages
English (en)
French (fr)
Inventor
蒋新力
许维维
范艳层
成煜
王见青
沈一春
Original Assignee
中天科技精密材料有限公司
江苏中天科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中天科技精密材料有限公司, 江苏中天科技股份有限公司 filed Critical 中天科技精密材料有限公司
Publication of WO2019237719A1 publication Critical patent/WO2019237719A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/0365Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +

Definitions

  • the invention relates to the field of optical fibers, and in particular, to an optical fiber capable of withstanding high voltage and low bending loss.
  • Optical fiber cables can transmit data at high speeds and steadily over long distances under water. Its transmission rate is high, its diameter is small, and its weight is light. Ordinary optical fibers can basically meet the requirements for data transmission in shallow seas. The optical fiber will eventually be unable to transmit data due to the continuous increase of additional losses.
  • submarine signal transmission is mainly through the selection of suitable reinforcement and gluing materials on the outer layer of conventional G652 or G657 single-mode optical fibers, and the use of reinforcing fibers and gluing one-shot molding processes to improve surface radius uniformity, thereby reducing microbending loss.
  • the maximum diving depth is 7000 meters underwater, the maximum change of loss at 1310nm wavelength is 0.015dB / km, and the maximum change of optical loss at 1550nm is 0.059dB / km. Its excessive loss at 11,000 meters underwater makes data transmission impossible, unable to Meets the needs of applications in the depth of 11,000 meters.
  • the invention provides an optical fiber with high voltage resistance and low bending loss.
  • the optical fiber includes a core layer, an inner cladding layer, a sagging layer, and an outer layer.
  • the core layer is doped with SiO 2 and GeO 2.
  • the radius of the core layer is determined by the The core layer is formed to extend outward by a distance R1, the refractive index of the core layer is n1, the width of the inner cladding layer is the distance that extends outward R2-R1 at the edge R1 of the core layer, and the cross section of the inner cladding layer passes It is formed by doping a small amount of Ge and F.
  • the refractive index of the inner cladding layer is n2.
  • the depressed layer is formed by deep doping F from the outer edge of the inner cladding layer.
  • the width and refractive index of the depressed layer are R3-R2 and n3
  • the thickness and refractive index of the cladding layer are Rc-R3 and nc, respectively
  • the refractive index profile of the optical fiber is a step-type distribution.
  • the core layer radius R1 is set between 2.5 ⁇ m and 4 ⁇ m
  • the inner cladding layer width R2-R1 is set between 2.5 ⁇ m and 8 ⁇ m
  • the depression layer width R3-R2 is set between Between 3 ⁇ m and 10 ⁇ m
  • the radius Rc of the outer cladding layer is set between 40 ⁇ m and 125 ⁇ m
  • the refractive index difference n1-nc of the core layer and the outer cladding layer is between 0.01 and 0.016
  • the refractive index difference n2-nc of the cladding layer is between -0.003 and 0.001
  • the refractive index difference n3-nc of the sagging layer and the cladding layer is between -0.003 and -0.01.
  • the refractive index difference of the sagging layer satisfies n1-n3> 0.016.
  • the outer layer is a pure quartz glass layer, and the refractive index of the outer layer is 1.4572.
  • the concentration range of the core layer doped GeO 2 is set between 14% and 19%, and the concentration of the inner cladding layer doped GeO 2 is set between 0.8% and 2%.
  • concentration range of the doped layer dopant F is set between 0.5% and 1.5%.
  • the doping depth of the depressed layer is set at -0.0035 to -0.0053.
  • the change value of the transmission loss of the optical fiber at a wavelength of 1550 nm under a pressure of 125 MPa is not more than 0.001 dB / km.
  • the optical fiber has an attenuation of less than 0.5 dB / km at a wavelength of 1310 nm and an attenuation of less than 0.33 dB / km at a wavelength of 1550 nm.
  • the width of the sag layer is greater than one half of the mode field diameter of the optical fiber.
  • the deep doping of the depressed layer is achieved by MCVD.
  • the high-pressure-resistant, low-bend-loss optical fiber of the present invention by doping F in the sunken layer, reduces the doping amount of GeO 2 in the core layer while the refractive index difference meets the design requirements, thereby reducing the scattering loss caused by GeO 2 and passing Selecting the appropriate F doping amount and sag width effectively increases the high-pressure resistance of the fiber, and the overall additional bending loss is reduced, ensuring that the fiber's transmission performance is not affected in 11,000 meters of deep water, which is suitable for underwater navigation equipment.
  • the remote transmission of large-capacity data such as remote control, operation monitoring and video signals has broad application prospects.
  • FIG. 1 is a schematic cross-sectional and refractive index cross-sectional view of the optical fiber according to an embodiment of the present invention.
  • FIG. 2 is a data parameter diagram of the cross-sectional structure of the optical fiber according to an embodiment of the present invention.
  • FIG. 3 is a test data chart of the optical fiber according to an embodiment of the present invention.
  • a component when considered to be “set on” another component, it may be directly set on another component or there may be a centered component at the same time.
  • FIG. 1 is a schematic diagram of a cross section and a refractive index profile of the optical fiber according to an embodiment of the present invention.
  • the optical fiber is used for signal transmission in 11,000 meters of deep water. Core layer, inner cladding layer, sag layer and outer layer.
  • the optical fiber is a single-mode optical fiber.
  • the radius of the core layer is formed by a distance R1 extending from the center of the core layer, the refractive index of the core layer is n1, the radius of the core layer R1 is set between 2.5 ⁇ m and 4 ⁇ m, and the core layer and The refractive index difference ⁇ 1 of the cladding layer is set between 0.01 and 0.016.
  • the core layer is doped with SiO 2 and GeO 2 , and the concentration range of the core layer doped GeO 2 is set between 14% and 19% to reduce the GeO 2 doping in the core layer. The amount can effectively reduce the scattering loss caused by GeO 2.
  • the core layer can also be doped with a small amount of F.
  • the inner cladding layer is coated on the core layer, and the center of the core layer extends outwardly at a distance R2 of the width of the core layer and the inner cladding layer, that is, the width of the inner cladding layer is R2-R1, and the inner cladding layer
  • the refractive index of N2 is n2
  • the width R2-R1 of the inner cladding layer is set between 2.5 ⁇ m and 8 ⁇ m
  • the refractive index difference ⁇ 2 between the inner cladding layer and the outer cladding layer is set between -0.003 and 0.001.
  • the cross-section of the inner cladding layer is formed by doping a small amount of Ge and F
  • the concentration range of the inner cladding layer doped with GeO 2 is set between 0.8% and 2%.
  • the sag layer is coated on the inner cladding layer, and the sag layer is formed by deep doping F from the outer edge of the inner cladding layer.
  • Doping F is used to reduce the refractive index.
  • the bending loss of the optical fiber varies with the width and depth of the sag layer. It increases and gradually decreases. Setting the doping depth of the depressed layer to about -0.005 can improve the bending loss performance of the optical fiber.
  • the doped depth of the depressed layer is set to -0.0035 to -0.0053.
  • the concentration range of the dopant F of the depressed layer is set between 0.5% and 1.5%, and the doped F in the depressed layer is realized by an MCVD process. In other embodiments, doping F in the sagging layer may also be achieved by PCVD.
  • the extension distance R3 of the core layer center is the total width of the core layer, the inner cladding layer and the depression layer, that is, the width of the depression layer is R3-R2, and the width of the depression layer R3-R2 is set at 3 ⁇ m Between -10 ⁇ m, due to the influence of the width of the sag layer on the cut-off wavelength and bending loss performance, the width of the sag layer is set to be larger than one half of the mode field diameter of the optical fiber, and the refraction of the sag layer The rate is n3, and the refractive index difference ⁇ 3 between the sagging layer and the cladding layer is set between -0.003 and -0.01. In this embodiment, a refractive index difference between the core layer and the depressed layer satisfies n1-n3> 0.016.
  • the radius Rc of the outer layer is set between 40 ⁇ m and 125 ⁇ m, and the refractive index of the outer layer is nc.
  • the outer layer is a pure quartz glass layer, so the refractive index of the outer layer is nc is 1.4572.
  • the refractive index profile of the optical fiber is a step-type distribution.
  • the attenuation of the optical fiber is less than 0.5 dB / km at a wavelength of 1310 nm and less than 0.33 dB / km at a wavelength of 1550 nm.
  • the cut-off wavelength of the optical fiber should be Satisfaction is between 1450nm and 1530nm.
  • the core layer radius R1 is 2.95 ⁇ m
  • the refractive index difference ⁇ 1 between the core layer and the outer cladding layer is 0.0152
  • the inner cladding layer thickness R2-R1 is 5.05 ⁇ m
  • the refraction of the inner cladding layer and the outer cladding layer The rate difference ⁇ 2 is 0.001
  • the F-doped depth of the sag layer is -0.0035
  • the width R3-R2 of the sag layer is 6.1 ⁇ m
  • the radius Rc of the cladding layer is 62.5 ⁇ m
  • the refractive index difference n1-n3 of the layer is 0.0187
  • the mode field diameter corresponding to the optical fiber under this design is 6.2 ⁇ m
  • the cut-off wavelength of the optical fiber is 1462 nm.
  • the core layer radius R1 is 3.25 ⁇ m
  • the refractive index difference ⁇ 1 between the core layer and the outer cladding layer is 0.013
  • the inner cladding layer thickness R2-R1 is 4.95 ⁇ m
  • the refraction of the inner cladding layer and the outer cladding layer The rate difference ⁇ 2 is -0.0007
  • the F-doped depth of the sagging layer is -0.0053
  • the width R3-R2 of the sagging layer is 5.6 ⁇ m
  • the radius Rc of the outer cladding layer is 62.5 ⁇ m
  • the refractive index difference n1-n3 of the sagging layer is 0.0183
  • the mode field diameter of the optical fiber corresponding to the design is 6.6 ⁇ m
  • the cut-off wavelength of the optical fiber is 1479 nm.
  • the core layer radius R1 is 3.65 ⁇ m
  • the refractive index difference ⁇ 1 between the core layer and the outer cladding layer is 0.0116
  • the inner cladding layer thickness R2-R1 is 4.9 ⁇ m
  • the refraction of the inner cladding layer and the outer cladding layer The rate difference ⁇ 2 is -0.0007
  • the F-doped depth of the depression layer is -0.0053
  • the width R3-R2 of the depression layer is 5.9 ⁇ m
  • the radius Rc of the outer cover layer is 62.5 ⁇ m
  • the refractive index difference n1-n3 of the sagging layer is 0.0183
  • the mode field diameter corresponding to the optical fiber under this design is 7.4 ⁇ m
  • the cut-off wavelength of the optical fiber is 1484 nm.
  • FIG. 2 is a data parameter diagram of the cross-sectional structure of the optical fiber described in Example 2.
  • the horizontal axis is the radius and the vertical axis is the refractive index.
  • Figure 3 shows the results of the withstand voltage test of the optical fiber described in Example 2 under a gradually increasing pressure of 0-125 MPa. It can be seen that the optical fiber designed in Example 2 has a loss change value of 0.001 at a wavelength of 1550 nm under a pressure of 125 MPa. dB / km, which can meet the needs of data transmission at 110MPa in the deep sea.
  • the high-pressure-resistant, low-bend-loss optical fiber of the present invention by doping F in the sunken layer, reduces the doping amount of GeO 2 in the core layer while the refractive index difference meets the design requirements, thereby reducing the scattering loss caused by GeO 2 and passing Selecting the appropriate F doping amount and sag width effectively increases the high-pressure resistance of the fiber, and the overall additional bending loss is reduced, ensuring that the fiber's transmission performance is not affected in 11,000 meters of deep water, which is suitable for underwater navigation equipment.
  • the remote transmission of large-capacity data such as remote control, operation monitoring and video signals has broad application prospects.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

一种耐高压低弯曲损耗的光纤,所述光纤包括芯层、内包层、下陷层及外包层,所述芯层掺有SiO 2和GeO 2,所述芯层的半径由所述芯层中心向外延伸距离R1形成,所述芯层的折射率为n1,所述内包层的宽度为所述芯层边缘R1处向外延伸R2-R1的距离,所述内包层的剖面通过掺少量Ge和F形成,所述内包层的折射率为n2,所述下陷层从所述内包层外边缘向外深掺F形成,所述下陷层的宽度和折射率分别为R3-R2和n3,所述外包层的厚度和折射率分别为Rc-R3和nc,所述光纤的折射率剖面为阶跃型分布。本发明提供的光纤在11000米深水中仍能使光纤传输性能不受影响。

Description

耐高压低弯曲损耗的光纤 技术领域
本发明涉及光纤领域,尤其涉及一耐高压低弯曲损耗的光纤。
背景技术
海洋中蕴藏着丰富的水、石油、天然气及矿物资源,对人类的生存和发展具有重要的意义。光缆可以在水下进行高速率、远距离稳定地传输数据,其传输率高且直径小和重量轻,普通光纤在浅海区域基本能够满足数据的传输要求,但随着下潜深度的增加,普通光纤会因附加损耗的不断增大最终无法进行数据传输。目前海底信号传输主要通过在在常规G652或G657单模光纤外层选择合适的增强和胶合材料,利用增强纤维和涂胶一次成型工艺来提高表面半径均匀性,从而减小微弯损耗。其极限下潜深度为水下7000米,1310nm波长处损耗最大变化为0.015dB/km,1550nm的光损耗最大变化为0.059dB/km,其在11000米深水下损耗过大造成数据无法传输,无法满足在11000米深水下的应用需求。
发明内容
有鉴于此,有必要提供一种耐高压低弯曲损耗的光纤,其在高压力条件下,光纤损耗低,传输性能不受影响。
本发明提供一种耐高压低弯曲损耗的光纤,所述光纤包括芯层、内包层、下陷层及外包层,所述芯层掺有SiO 2和GeO 2,所述芯层的半径由所述芯层中心向外延伸距离R1形成,所述芯层的折射率为n1,所述内包层的宽度为所述芯层边缘R1处向外延伸R2-R1的距离,所述内包层的剖面通过掺少量Ge和F形成,所述内包层的折射率为n2,所述下陷层从所述内包层外边缘向外深掺F形成,所述下陷层的宽度和折射率分别为R3-R2和n3,所述外包层的厚度和折射率分别为Rc-R3和nc,所述光纤的折射率剖面为阶跃型分布。
进一步的,所述芯层半径R1设定在2.5μm~4μm之间,所述内包层的宽度R2-R1设定在2.5μm~8μm之间,所述下陷层的宽度R3-R2设定在3μm~ 10μm之间,所述外包层的半径Rc设定在40μm~125μm之间,所述芯层与所述外包层的折射率差n1-nc在0.01~0.016之间,所述内包层与所述外包层的折射率差n2-nc在-0.003~0.001之间,所述下陷层与所述外包层的折射率差n3-nc在-0.003~-0.01之间,所述芯层与所述下陷层的折射率差满足n1-n3>0.016。
进一步的,所述外包层为纯石英玻璃层,所述外包层的折射率为1.4572。
进一步的,所述芯层掺杂GeO 2的浓度范围设置在14%-19%之间,所述内包层掺杂GeO 2的浓度范围设置在0.8%-2%之间。
进一步的,所述下陷层掺杂物F的浓度范围设置在0.5%-1.5%之间。
进一步的,所述下陷层的掺杂深度设置在-0.0035~-0.0053。
进一步的,所述光纤在125MPa压力下,1550nm波长处传输损耗变化值不大于0.001dB/km。
进一步的,所述光纤在1310nm波长处光纤衰减小于0.5dB/km,在1550nm波长处衰减小于0.33dB/km。
进一步的,所述下陷层的宽度大于所述光纤的模场直径的二分之一。
进一步的,所述下陷层深掺F通过MCVD实现。
本发明的耐高压低弯曲损耗的光纤,通过在下陷层掺杂F,在折射率差满足设计要求的同时,减少芯层中GeO 2掺杂量,从而降低GeO 2引起的散射损耗,并通过选择合适的F掺杂量和下陷宽度,有效增加了光纤耐高压性能,整体附加弯曲损耗得到降低,保证光纤在11000米深水中仍能使光纤传输性能不受影响,适用于水下航行设备的远程遥控、运行监测及视频信号等大容量数据的远程传输,具有广阔的应用前景。
附图说明
图1为本发明一实施方式中的所述光纤的截面及折射率剖面示意图。
图2为本发明一实施方式中的所述光纤剖面结构的数据参数图。
图3为本发明一实施方式中的所述光纤的耐压测试数据图。
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1,图1为本发明一实施方式中的所述光纤的截面及折射率剖面示意图,所述光纤用于在11000米深水中的信号传输,所述光纤包括由内向外依次包覆的芯层、内包层、下陷层及外包层。在本实施方式中,所述光纤为单模光纤。
所述芯层的半径由所述芯层中心向外延伸距离R1形成,所述芯层的折射率为n1,所述芯层半径R1设定在2.5μm~4μm之间,所述芯层与所述外包层的折射率差Δ1设置在0.01~0.016之间。在本实施方式中,所述芯层掺有SiO 2和GeO 2,所述芯层掺杂GeO 2的浓度范围设置在14%-19%之间,减少所述芯层中的GeO 2掺杂量可有效降低GeO 2引起的散射损耗,在其他实施方式中,所述芯层还可掺杂少量的F。
所述内包层包覆在所述芯层上,所述芯层中心向外延伸距离R2为所述芯层和内包层的宽度,即所述内包层的宽度为R2-R1,所述内包层的折射率为n2,所述内包层的宽度R2-R1设定在2.5μm~8μm之间,所述内包层与所述外包层的折射率差Δ2设定在-0.003~0.001之间。在本实施方式中,所述内包层的剖面通过掺少量Ge和F形成,所述内包层掺杂GeO 2的浓度范围设置在0.8%-2%之间。
所述下陷层包覆在所述内包层上,所述下陷层从所述内包层外边缘向外深 掺F形成,掺杂F用于降低折射率,光纤弯曲损耗随下陷层宽度和深度的增加而逐渐减小,所述下陷层的掺杂深度设置在-0.005左右能够很好的改善光纤弯曲损耗性能,在本实施方式中,所述下陷层的掺杂深度设置在-0.0035~-0.0053,所述下陷层掺杂物F的浓度范围设置在0.5%-1.5%之间,在所述下陷层中掺杂F通过MCVD工艺实现。在其他实施方式中,在所述下陷层中掺杂F还可以通过PCVD实现。
所述芯层中心向外延伸距离R3为所述芯层、内包层及下陷层总的宽度,即所述下陷层的宽度为R3-R2,所述下陷层的宽度R3-R2设定在3μm~10μm之间,因所述下陷层的宽度对截止波长和弯曲损耗性能的影响,所述下陷层的宽度设置为大于所述光纤的模场直径的二分之一,所述下陷层的折射率为n3,所述下陷层与所述外包层的折射率差Δ3设定在-0.003~-0.01之间。在本实施方式,所述芯层与所述下陷层的折射率差满足n1-n3>0.016。
所述外包层的半径Rc设定在40μm~125μm之间,所述外包层的折射率为nc,在本实施方式中,所述外包层为纯石英玻璃层,所以所述外包层的折射率nc为1.4572。
所述光纤的折射率剖面为阶跃型分布,在1310nm波长处光纤衰减小于0.5dB/km,在1550nm波长处衰减小于0.33dB/km,为了提高光纤的抗弯曲性能,所述光纤截止波长应满足在1450nm~1530nm之间。
下面将结合具体的实施例对本发明做进一步说明。
例子1
所述芯层半径R1为2.95μm,所述芯层与所述外包层的折射率差Δ1为0.0152,所述内包层厚度R2-R1为5.05μm,所述内包层与所述外包层的折射率差Δ2为0.001,所述下陷层的掺F深度为-0.0035,所述下陷层的宽度R3-R2为6.1μm,所述外包层的半径Rc为62.5μm,所述芯层与所述下陷层的折射率差n1-n3为0.0187,该设计下的光纤对应的模场直径为6.2μm,光纤的截止波长为1462nm。
例子2
所述芯层半径R1为3.25μm,所述芯层与所述外包层的折射率差Δ1为0.013,所述内包层厚度R2-R1为4.95μm,所述内包层与所述外包层的折射率差Δ2为-0.0007,所述下陷层的掺F深度为-0.0053,所述下陷层的宽度R3-R2 为5.6μm,所述外包层的半径Rc为62.5μm,所述芯层与所述下陷层的折射率差n1-n3为0.0183,该设计下的光纤对应的模场直径为6.6μm,光纤的截止波长为1479nm。
例子3
所述芯层半径R1为3.65μm,所述芯层与所述外包层的折射率差Δ1为0.0116,所述内包层厚度R2-R1为4.9μm,所述内包层与所述外包层的折射率差Δ2为-0.0007,所述下陷层的掺F深度为-0.0053,所述下陷层的宽度R3-R2为5.9μm,所述外包层的半径Rc为62.5μm,所述芯层与所述下陷层的折射率差n1-n3为0.0183,该设计下的光纤对应的模场直径为7.4μm,光纤的截止波长为1484nm。
请参阅图2及图3,图2为实施例2中所述光纤剖面结构的数据参数图,其中横轴为半径,纵轴为折射率。图3为例2中所述的光纤在0-125MPa逐渐递增压力条件下耐压测试结果,由此可以看出,例2中所设计的光纤在125MPa压力下,1550nm波长处损耗变化值为0.001dB/km,能够满足深海110MPa下数据传输使用需求。
本发明的耐高压低弯曲损耗的光纤,通过在下陷层掺杂F,在折射率差满足设计要求的同时,减少芯层中GeO 2掺杂量,从而降低GeO 2引起的散射损耗,并通过选择合适的F掺杂量和下陷宽度,有效增加了光纤耐高压性能,整体附加弯曲损耗得到降低,保证光纤在11000米深水中仍能使光纤传输性能不受影响,适用于水下航行设备的远程遥控、运行监测及视频信号等大容量数据的远程传输,具有广阔的应用前景。
本技术领域的普通技术人员应当认识到,以上的实施方式仅是用来说明本发明,而并非用作为对本发明的限定,只要在本发明的实质精神范围的内,对以上实施方式所作的适当改变和变化都落在本发明要求保护的范围的内。

Claims (10)

  1. 一种耐高压低弯曲损耗的光纤,其特征在于:所述光纤包括芯层、内包层、下陷层及外包层,所述芯层掺有SiO 2和GeO 2,所述芯层的半径由所述芯层中心向外延伸距离R1形成,所述芯层的折射率为n1,所述内包层的宽度为所述芯层边缘R1处向外延伸R2-R1的距离,所述内包层的剖面通过掺少量Ge和F形成,所述内包层的折射率为n2,所述下陷层从所述内包层外边缘向外深掺F形成,所述下陷层的宽度和折射率分别为R3-R2和n3,所述外包层的厚度和折射率分别为Rc-R3和nc,所述光纤的折射率剖面为阶跃型分布。
  2. 如权利要求1所述的耐高压低弯曲损耗的光纤,其特征在于:所述芯层半径R1设定在2.5μm~4μm之间,所述内包层的宽度R2-R1设定在2.5μm~8μm之间,所述下陷层的宽度R3-R2设定在3μm~10μm之间,所述外包层的半径Rc设定在40μm~125μm之间,所述芯层与所述外包层的折射率差n1-nc在0.01~0.016之间,所述内包层与所述外包层的折射率差n2-nc在-0.003~0.001之间,所述下陷层与所述外包层的折射率差n3-nc在-0.003~-0.01之间,所述芯层与所述下陷层的折射率差满足n1-n3>0.016。
  3. 如权利要求1所述的耐高压低弯曲损耗的光纤,其特征在于:所述外包层为纯石英玻璃层,所述外包层的折射率为1.4572。
  4. 如权利要求1所述的耐高压低弯曲损耗的光纤,其特征在于:所述芯层掺杂GeO 2的浓度范围设置在14%-19%之间,所述内包层掺杂GeO 2的浓度范围设置在0.8%-2%之间。
  5. 如权利要求1所述的耐高压低弯曲损耗的光纤,其特征在于:所述下陷层掺杂物F的浓度范围设置在0.5%-1.5%之间。
  6. 如权利要求1所述的耐高压低弯曲损耗的光纤,其特征在于:所述下陷层的掺杂深度设置在-0.0035~-0.0053。
  7. 如权利要求1所述的耐高压低弯曲损耗的光纤,其特征在于:所述光纤在125MPa压力下,1550nm波长处传输损耗变化值不大于0.001dB/km。
  8. 如权利要求1所述的耐高压低弯曲损耗的光纤,其特征在于:所述光纤在1310nm波长处光纤衰减小于0.5dB/km,在1550nm波长处衰减小于0.33dB/km。
  9. 如权利要求1所述的耐高压低弯曲损耗的光纤,其特征在于:所述下陷层的宽度大于所述光纤的模场直径的二分之一。
  10. 如权利要求1所述的耐高压低弯曲损耗的光纤,其特征在于:所述下陷层深掺F通过MCVD实现。
PCT/CN2018/125078 2018-06-14 2018-12-28 耐高压低弯曲损耗的光纤 WO2019237719A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810615913.2 2018-06-14
CN201810615913.2A CN110609351A (zh) 2018-06-14 2018-06-14 耐高压低弯曲损耗的光纤

Publications (1)

Publication Number Publication Date
WO2019237719A1 true WO2019237719A1 (zh) 2019-12-19

Family

ID=68842720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125078 WO2019237719A1 (zh) 2018-06-14 2018-12-28 耐高压低弯曲损耗的光纤

Country Status (2)

Country Link
CN (1) CN110609351A (zh)
WO (1) WO2019237719A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104316994A (zh) * 2014-10-29 2015-01-28 长飞光纤光缆股份有限公司 一种低衰减弯曲不敏感单模光纤
US20150125114A1 (en) * 2012-06-26 2015-05-07 Corning Incorporated Light diffusing fibers with integrated mode shaping lenses
CN105425335A (zh) * 2015-12-17 2016-03-23 长飞光纤光缆股份有限公司 一种通信用抗弯多芯光纤
CN107678088A (zh) * 2017-11-09 2018-02-09 长飞光纤光缆股份有限公司 低衰减大有效面积的单模光纤
CN208477146U (zh) * 2018-06-14 2019-02-05 中天科技精密材料有限公司 耐高压低弯曲损耗的光纤

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105137535B (zh) * 2015-09-18 2018-10-09 长飞光纤光缆股份有限公司 一种单模光纤及其制造方法
US9851501B2 (en) * 2016-03-29 2017-12-26 Corning Incorporated Low bend loss optical fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150125114A1 (en) * 2012-06-26 2015-05-07 Corning Incorporated Light diffusing fibers with integrated mode shaping lenses
CN104316994A (zh) * 2014-10-29 2015-01-28 长飞光纤光缆股份有限公司 一种低衰减弯曲不敏感单模光纤
CN105425335A (zh) * 2015-12-17 2016-03-23 长飞光纤光缆股份有限公司 一种通信用抗弯多芯光纤
CN107678088A (zh) * 2017-11-09 2018-02-09 长飞光纤光缆股份有限公司 低衰减大有效面积的单模光纤
CN208477146U (zh) * 2018-06-14 2019-02-05 中天科技精密材料有限公司 耐高压低弯曲损耗的光纤

Also Published As

Publication number Publication date
CN110609351A (zh) 2019-12-24

Similar Documents

Publication Publication Date Title
CN102645699B (zh) 一种低衰减弯曲不敏感单模光纤
CN106772788B (zh) 一种截止波长位移单模光纤
CN102819063B (zh) 单模光纤及其制造方法
JP6298893B2 (ja) 損失低下を示す、台形コアを有するシングルモードファイバ
WO2017020456A1 (zh) 一种超低衰耗弯曲不敏感单模光纤
CN111458789B (zh) 光纤
KR101731743B1 (ko) 대유효면적 광섬유
CN112904474B (zh) 一种小外径低衰减弯曲不敏感单模光纤
CN104316994A (zh) 一种低衰减弯曲不敏感单模光纤
WO2021082978A1 (zh) 低色散单模光纤
WO2016173253A1 (zh) 一种超低衰耗弯曲不敏感单模光纤
US10048437B2 (en) Optical fiber and colored optical fiber
CN109839694A (zh) 一种截止波长位移单模光纤
CN105334570A (zh) 一种低衰减弯曲不敏感单模光纤
WO2022027796A1 (zh) 一种抗弯曲光纤的制造方法及其对应的光纤
CN111399113B (zh) 一种小外径弯曲不敏感单模光纤
CN106443875A (zh) 一种超低衰减弯曲不敏感单模光纤
CN110488411B (zh) 一种抗弯曲单模光纤
CN100424529C (zh) 一种低弯曲损耗的超细低水峰光纤
CN113608298B (zh) 一种大模场直径弯曲不敏感单模光纤
CN103250079A (zh) 光纤
CN111381314B (zh) 一种小外径单模光纤
WO2019237719A1 (zh) 耐高压低弯曲损耗的光纤
CN217506180U (zh) 一种制导光纤
CN110749953A (zh) 一种低色散单模光纤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922432

Country of ref document: EP

Kind code of ref document: A1