WO2019237277A1 - 一种基于区块链技术的多级节点任务闭环系统 - Google Patents

一种基于区块链技术的多级节点任务闭环系统 Download PDF

Info

Publication number
WO2019237277A1
WO2019237277A1 PCT/CN2018/091021 CN2018091021W WO2019237277A1 WO 2019237277 A1 WO2019237277 A1 WO 2019237277A1 CN 2018091021 W CN2018091021 W CN 2018091021W WO 2019237277 A1 WO2019237277 A1 WO 2019237277A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
closed loop
reward
loop
closed
Prior art date
Application number
PCT/CN2018/091021
Other languages
English (en)
French (fr)
Inventor
汪华东
Original Assignee
汪华东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 汪华东 filed Critical 汪华东
Priority to PCT/CN2018/091021 priority Critical patent/WO2019237277A1/zh
Publication of WO2019237277A1 publication Critical patent/WO2019237277A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes

Definitions

  • the invention relates to a blockchain system, and in particular to a multi-level node task closed loop system based on the blockchain technology.
  • the blockchain In a narrow sense, the blockchain is a chain data structure that combines data blocks in a sequential manner in a chronological order, and is guaranteed to be tamper-resistant and unforgeable in a cryptographic manner.
  • Distributed ledger Broadly speaking, blockchain technology uses blockchain data structures to verify and store data, uses distributed node consensus algorithms to generate and update data, uses cryptography to ensure the security of data transmission and access, and uses automated scripting.
  • a plurality of nodes including a blockchain are established in a unified environment platform to form a blockchain operating system, which has excellent tamper-resistant functions.
  • Hash (hash function): Hash, generally translated as “hash”, but also directly transliterated as “hash”, that is, any length of input (also known as pre-image), through the hash algorithm, transform Into a fixed-length output, which is the hash value.
  • This conversion is a compression map, that is, the space of the hash value is usually much smaller than the space of the input. Different inputs may be hashed into the same output, so it is impossible to determine the unique input value from the hash value. But the same input will necessarily get the same output. Simply put, it is a function that compresses messages of any length to a fixed-length message digest.
  • Block The so-called block is used to receive broadcast data. All nodes record at the same time, and then after a certain period of time, the node device that has obtained the accounting right performs a seal and broadcasts the value used for the seal to other nodes. If all nodes successfully seal the block by using the value for sealing, the block has the authenticity recognized by the entire system. For example, the current Bitcoin blockchain system performs block seals every ten minutes.
  • Each node performs a large number of HASH operations on the block to be sealed at the same time.
  • the first node that calculates the value of the block that can be sealed has the accounting right, it broadcasts the value to other nodes for verification.
  • mining The so-called mining is that each node obtains accounting rights through a large number of operations.
  • the computer used for mining is called a mining machine. Because the mining process consumes a lot of electricity, manpower, and computing power, mining is a very huge carbon emission process and is very unfriendly to the environment. And for the same block, only the first mining machine that has completed mining can get the right to book. In this process, all kinds of energy consumed by other nodes are wasteful resources.
  • Digital currency A virtual currency based on the above-mentioned blockchain technology. At the beginning of the introduction of blockchain technology, in order to encourage each node to mine, the first node that successfully obtained the right to keep accounts is rewarded. Rewards are generated out of thin air without value attributes, such as Bitcoin in the prior art. But digital currency is recorded by computer language at every node in the blockchain system, and has technical attributes.
  • the present invention aims to provide a multi-level node task closed-loop system based on blockchain technology that is environmentally friendly and can be directly used in commercial applications.
  • a multi-level node task closed-loop system based on blockchain technology includes: a closed-loop reward for generating digital currency and a main closed-loop that receives the digital currency and distributes it proportionally to each node of its own closed-loop;
  • the reward closed loop includes a central reward node for mining and a plurality of discrete reward nodes of the same structure. Each node of the reward closed loop is distributed for bookkeeping, and the central reward node performs mining and mining. Value broadcast to other discrete reward nodes; when the first block is generated by each node in the reward closed loop, the initial output of the digital currency and the rate of decline of the output are set in advance according to the needs of the main closed loop; All digital currencies are sent to the main closed loop;
  • the main closed loop includes a central node for mining and a plurality of discrete nodes of the same structure.
  • Each node in the main closed loop performs distributed accounting, and the central node performs mining and broadcasts the value obtained by mining to Other discrete nodes; the main closed loop receives the digital currency sent by the reward closed loop and distributes it to each node according to a preset ratio.
  • the allocated digital currency is processed. Accounting processing.
  • the multi-level node task closed loop system based on the blockchain technology of the present invention has the advantage that the closed loop for rewards for generating digital currency and the main closed loop for main bookkeeping functions are independent. Nodes do not need to compete for accounting rights. Each of the two closed loops completes all block seal calculations by a fixed node. If N closed nodes are included in the closed loop, the carbon emissions will be close to 1 / N of the carbon emissions generated by the existing technology. It will waste the resources of other nodes, realize the functions of central mining and distributed accounting, which is very environmentally friendly, while maintaining the original anti-tampering function of the blockchain technology. At the same time, the digital currency available in the main closed loop can have a certain amount of cash in advance, and the incremental closed loop provides continuous increments to provide a basis for use in commercial applications.
  • the number of the reward closed-loop nodes is 3 or more.
  • the structure of the closed-loop rewards is minimized, which effectively reduces the workload and carbon emissions caused by the central rewards nodes, and improves the environmental protection effect.
  • any node of the main closed loop completes the sealing of a block, it is determined whether the digital currency of the node is allocated to each record recorded in the block by a random proportion, and the allocation result is recorded below In a continuous block.
  • This technical feature can be directly applied to the business model. For example, the corresponding work link of the node has a large amount of records, and the number of records will increase. The probability that each individual participating in the work link can be allocated to digital currency increases. Increased enthusiasm for work.
  • the random ratio is "with / without allocation", and the random ratio is adjustable.
  • the central reward node and the central node are set to the same node.
  • Two independent closed loops integrate the nodes used for mining, which can complete huge computational work through the same equipment, further effectively reducing carbon emissions, and the relationship between the two different closed loops is improved. The process is more secure and accurate.
  • the discrete reward node is a virtual node or a node composed of a real device.
  • the discrete reward node is virtually set on the central reward node.
  • any node of the reward closed loop or the main closed loop is provided with a secondary blockchain, and after the secondary blockchain passes the HASH operation, the HASH value is recorded in the block of the upper-level blockchain.
  • the blockchain can be infinitely extended in multiple levels, enabling a block to The recorded information is arbitrarily expanded, and at the same time, the security of the blockchain at any level is protected by the blockchain at the upper level, so that the tamper-resistant modification of the overall blockchain at all levels is guaranteed.
  • the improved technology here can be directly applied to the multi-level subcontracting work in the business model.
  • the data of the lower-level work links are included in the top-level blockchain data. Combined with the above-mentioned random proportions, the The record can be distributed in various forms, so that the monotonous digital currency can be used in a variety of ways.
  • FIG. 1 is a schematic structural diagram of a multi-level node task closed loop system based on blockchain technology according to the present invention
  • FIG. 2 is a schematic diagram of a multi-level node structure of any node according to the present invention.
  • FIG. 3 is a schematic structural diagram of another embodiment of a multi-level node task closed loop system based on blockchain technology according to the present invention.
  • a multi-level node task closed-loop system based on blockchain technology includes: a reward closed-loop 100 for generating digital currency, and receiving the digital currency and distributing it to its own closed-loop in proportion.
  • the main closed loop 200 of each node includes: a reward closed-loop 100 for generating digital currency, and receiving the digital currency and distributing it to its own closed-loop in proportion.
  • the main closed loop 200 of each node includes: a reward closed-loop 100 for generating digital currency, and receiving the digital currency and distributing it to its own closed-loop in proportion.
  • the reward closed loop 100 includes a central reward node 110 for mining and a plurality of discrete reward nodes 120 of the same structure. Each of the reward closed loop 100 accounts is distributed, and the central reward node 110 performs mining and Broadcast the value obtained by mining to other discrete reward nodes 120; when the first block is generated by each node in the reward closed loop 100, the initial output of the digital currency and the rate of decline of the output are set in advance according to the needs of the main closed loop 200; the reward closed loop 100 sends all digital currency obtained by the central reward node 110 to the main closed loop 200.
  • the number of the reward closed-loop 100 nodes is 3 or more, and the overall setting is simpler than the design of the main closed-loop 200. The number of nodes in the main closed loop 200 can be increased at any time according to the needs of use.
  • the main closed loop 200 includes a central node 210 for mining and a plurality of discrete nodes of the same structure. Each of the main closed loop 200 nodes performs distributed accounting. The central node 210 performs mining and obtains the mining results. Value is broadcast to other discrete nodes; the main closed loop 200 receives the digital currency sent by the reward closed loop 100 and distributes it to each node according to a preset ratio. When each node in the main closed loop 200 generates the first block, The assigned digital currency will be processed for accounting. After any node of the main closed loop 200 completes the sealing of a block, it determines whether to allocate the digital currency of the node to each record recorded in the block by a random proportion, and records the allocation result to the next continuous In the block. The random ratio is "perform allocation / no allocation", and the random ratio is adjustable.
  • any node of the reward closed loop 100 or the main closed loop 200 is provided with a secondary blockchain.
  • the secondary blockchain passes the HASH operation, the HASH value is recorded at the upper level.
  • Blocks in the blockchain Taking the entirety of the secondary blockchain as the HASH operation object and recording the obtained HASH value in the block of the upper-level blockchain, the blockchain can be infinitely extended in multiple levels, enabling a block to The recorded information is arbitrarily expanded, and at the same time, the security of the blockchain at any level is protected by the blockchain at the upper level, so that the tamper-resistant modification of the overall blockchain at all levels is guaranteed.
  • the improved technology here can be directly applied to the multi-level subcontracting work in the business model.
  • the data of the lower-level work links are included in the top-level blockchain data. Combined with the above-mentioned random ratio, it can be applied to all levels of blockchains.
  • the record can be distributed in various forms, so that the monotonous digital currency can be used in a variety of ways.
  • the first can be set independently of each other, and each node corresponds to an independent computer, as shown in FIG.
  • the second method can be to integrate the nodes used for mining to the same computer and set the same node, and other nodes each correspond to a computer, as shown in Figure 3.
  • other methods can also be extended.
  • the reward closed-loop 100 that mainly provides digital currency operations is integrated into a computer as a whole, and the operation of the reward closed-loop 100 is virtualized through software.
  • An enterprise such as an crocodile product series production chain
  • its production chain includes at least: feeding units, flesh processing units, proteolysis units, peptide product units, transportation units, sales units, server units, etc.
  • Enterprises in the production chain can adapt to apply the multi-level node task closed-loop system of the present invention.
  • a central reward node 110 is configured on a server unit with computing capability and two discrete reward nodes 120 are simulated through program simplification to form the most simplified reward closed loop 100.
  • the central node 210 is reconfigured in the server unit, and the central node 210 is data-connected with the central reward node 110; the first discrete node 220-1 is configured in the feeding unit; the second discrete node 220-2 is configured in the proteolytic unit;
  • the product unit is configured with a third discrete node 220-3; the sales unit is configured with a fourth discrete node 220-4 ... and so on.
  • corresponding nodes can be configured on each functional unit.
  • the main closed loop 200 is formed.
  • the initial output of the digital currency and the rate of decline of the output are set in advance according to the needs of the main closed loop 200; for example, the initial output of the digital currency is one million and the rate of decrease To halve production every 30 days.
  • the reward closed loop 100 then writes the same, virtual, simplified value in each node to reduce the difficulty of the central reward node 110 mining; and sends all digital currency obtained by the central reward node 110 to the main closed loop 200.
  • an initial output of one million digital currencies is directly sent to the main closed loop 200, and after half a day, half a million digital currencies obtained by mining are sent to the main closed loop 200.
  • the main closed loop 200 receives the digital currency sent by the reward closed loop 100 and allocates it to each node according to a preset ratio. When each node in the main closed loop 200 generates the first block, the allocated digital currency is recorded. Account processing. For example, according to the weight ratio on the product series production chain: 10% is allocated at the central node 210, that is, 50,000 digital currencies are allocated in the initial output, and 25,000 digital currencies are allocated after 30 days; at the first discrete node 220-1 allocates 15%, that is, 75,000 digital currencies are distributed in the initial output, and 37,500 digital currencies are distributed after 30 days; 20% is allocated at the second discrete node 220-2, that is, in 100,000 digital currencies were distributed in the initial output, and 50,000 digital currencies were distributed after 30 days; 25% was distributed at the third discrete node 220-3, that is, 125,000 digital currencies were distributed in the initial output.
  • any node of the main closed loop 200 determines whether to allocate the digital currency of the node to each record recorded in the block by a random proportion, and records the allocation result to the next continuous In the block.
  • the random ratio is "perform allocation / no allocation", and the random ratio is adjustable.
  • the functional units of the industrial chain corresponding to each node will record the data on the block after completing the work once. After completing the work multiple times, multiple corresponding data will be recorded on the block. After the block is full, it will be performed by the central node 210. Sealing, that is, calculating the value that can seal the block through the HASH algorithm, and then broadcasting to other nodes for use.
  • the allocation arrangement is made for each piece of data.
  • digital currency distribution can be obtained once for every ten pieces of data, so that the employees of the functional unit of the production chain corresponding to this node will work hard based on the nature of profitability to improve their writing on the block.
  • Into the ratio so as to get more digital currency distribution.
  • each functional unit in the production chain will automatically work without the need to set up the company's management in the existing technology. Even if the company's management is disbanded, each functional unit will still actively and autonomously operate for profit, achieving management
  • the good results of decentralization, decentralization of bookkeeping, and centralization of mining have achieved great commercial value and obvious carbon reduction and environmental protection.
  • the digital currency according to the present invention may be defined as a "crocodile coin”.
  • any node of the reward closed-loop 100 or main closed-loop 200 is provided with a secondary blockchain.
  • the secondary blockchain passes the HASH operation, the HASH value is recorded in the block of the upper-level blockchain. in.
  • a functional unit will distribute its own workload to auxiliary units of other peripherals, that is, multi-level subcontracting of workload.
  • tamper-resistant records and work data records at the beginning of the corresponding multi-level subcontracting must be entered. Therefore, it is necessary to record the subcontracted workload records and the initial work data on the same block.
  • the data that can be recorded in a block is very limited, and the number of secondary levels cannot be predicted, so the multi-level nodes set by the inventive concept can achieve this.
  • the first block of the secondary block chain appears for the first time, the corresponding block in the upper block chain at the same time period can be recorded by the secondary block chain, and then the two layers are different Hierarchical blockchains operate on the same timeline, each recording corresponding information.
  • the entire secondary blockchain is used as the overall input of the hash algorithm, and the value of the hash output is recorded to the superior blockchain corresponding to the completion time of the secondary blockchain In the block.
  • the technical improvements of the secondary blockchain can be applied to multi-level task allocation.
  • the first task assignment data is recorded on the original blockchain, and the second task assignment is performed on the functional unit where each node is located.
  • a lower level task assignment will be recorded on the blockchain where the corresponding level is assigned.
  • the task completion status is recorded upward from the task at the last layer, and the secondary blockchain at any level of the recorded task is recorded into the corresponding upper-level blockchain.
  • the work enthusiasm of each functional unit can be mobilized.
  • a functional unit involved in a drug development process may include a research laboratory, a tester, an inspection department, and a sales department.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Economics (AREA)
  • Finance (AREA)
  • Marketing (AREA)
  • Strategic Management (AREA)
  • Technology Law (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种基于区块链技术的多级节点任务闭环系统,包括:用于生成数字货币的奖励闭环(100)和接收数字货币并按比例分配至自身闭环各节点的主闭环(200);由中心奖励节点(110)进行挖矿,将挖矿得到的所有数字货币发送至主闭环(200)。主闭环(200)接收数字货币并按预设比例分配至各节点,将分配到的数字货币进行记账处理。优点在于,奖励闭环(100)和主闭环(200)分别独立,每个节点无需进行记账权的竞争。两个闭环均各自由一个固定的节点完成所有的区块封印计算,不会浪费了其他节点的资源,实现中心挖矿、分布记账的功能,非常环保,同时也能保持区块链技术原有的防篡改功能。主闭环(200)可用的数字货币可以预先存有一定的现量,并由奖励闭环(100)连续提供增量,为商业应用带来的使用基础。

Description

一种基于区块链技术的多级节点任务闭环系统 技术领域
本发明涉及一种区块链系统,尤其涉及一种基于区块链技术的多级节点任务闭环系统。
背景技术
区块链的含义:狭义来讲,区块链是一种按照时间顺序将数据区块以顺序相连的方式组合成的一种链式数据结构,并以密码学方式保证的不可篡改和不可伪造的分布式账本。广义来讲,区块链技术是利用块链式数据结构来验证与存储数据、利用分布式节点共识算法来生成和更新数据、利用密码学的方式保证数据传输和访问的安全、利用由自动化脚本代码组成的智能合约来编程和操作数据的一种全新的分布式基础架构与计算方式。即所谓区块链是包含了“区块”和“链”两个不同概念。包含区块链的多个节点建立在统一环境平台中形成区块链的运作系统,具有优良的防篡改功能。
Hash(散列函数):Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入(又叫做预映射,pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来确定唯一的输入值,但是相同的输入必然会得到相同的输出。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。
区块:所谓区块用于接收到的广播数据,所有的节点同时进行记录,然后在一定时间后由获得记账权的节点设备进行封印,并将用于封印的值广播到其他节点,当所有节点通过所述用于封印的值成功对该区块进行封印,则该区块具有全系统承认的真实性。例如当前比特币区块链的系统就是每十分钟进行一次区块封印。
记账权:每个节点同时对该待封印的区块进行大量的HASH运算,当第一个算出可以封印该区块的值的节点具有记账权,并将该值广播至其他节点验算。
挖矿:所谓挖矿就是每个节点通过大量的运算竞争获取记账权,用于挖矿的计算机被称为挖矿机。由于挖矿的过程消耗大量的电力、人力、运算力,因此挖矿是一个非常巨大的碳排放过程,非常不环保。而且对于同一个区块,只有第一台完成挖矿的 挖矿机才能获得记账权,而在这过程中,其他节点所消耗的各种能源均为浪费的资源。
数字货币:一种基于上述区块链技术的虚拟货币,在区块链技术面世之初,为了激励每一节点进行挖矿,对第一个挖矿成功获得记账权的节点进行奖励,该奖励凭空生成而不具有价值属性,例如现有技术中的比特币。但是数字货币由计算机语言在该区块链系统中的每一个节点进行记录,具有技术属性。
此外,目前由于区块链技术基本只能运用于与记账有关的工作上,无法直接应用到商业模式。对于大量的碳排放工作,现有区块链技术是非常浪费自然资源和社会资源。
发明内容
为了解决上述现有技术存在的问题,本发明目的在于提供一种环保的、可直接用于商业应用的基于区块链技术的多级节点任务闭环系统。
本发明所述的一种基于区块链技术的多级节点任务闭环系统,包括:用于生成数字货币的奖励闭环和接收所述数字货币并按比例分配至自身闭环各节点的主闭环;
所述的奖励闭环包括用于挖矿的中心奖励节点和多个相同结构的离散奖励节点,所述的奖励闭环每个节点分布式记账,由中心奖励节点进行挖矿并将挖矿得到的值广播至其他离散奖励节点;在奖励闭环内各节点产生第一块区块时,根据主闭环的需要预先设定数字货币的初次产量以及产量递减速度;奖励闭环将中心奖励节点挖矿得到的所有数字货币发送至主闭环;
所述的主闭环包括用于挖矿的中心节点和多个相同结构的离散节点,所述的主闭环每个节点分布式记账,由中心节点进行挖矿并将挖矿得到的值广播至其他离散节点;所述的主闭环接收奖励闭环发送的所述数字货币并按预设比例分配至各节点,主闭环内每个节点在产生第一块区块时,将分配到的数字货币进行记账处理。
本发明所述的一种基于区块链技术的多级节点任务闭环系统,其优点在于,用于产生数字货币的奖励闭环和用于主要记账功能的主闭环分别独立,则主闭环每个节点无需进行记账权的竞争。两个闭环均各自由一个固定的节点完成所有的区块封印计算,如果闭环内包括了N个节点,则碳排放量将会接近利用现有技术所产生的碳排放量的1/N,不会浪费了其他节点的资源,实现中心挖矿、分布记账的功能,非常环保,同时也能保持区块链技术原有的防篡改功能。同时,主闭环可用的数字货币可以预先存有一定的现量,并由奖励闭环连续提供增量,为商业应用带来的使用基础。
优选地,所述的奖励闭环节点数量为3个或以上。为了适用于商业应用且各节点 间不具有竞争性,将奖励闭环的结构最小化设计,有效减少中心奖励节点在挖矿时的工作量和造成的碳排放,提高环保效果。
优选地,所述主闭环的任一节点在完成一个区块的封印后,通过随机比例判断是否给该区块所记载的每条记录分配该节点的数字货币,并将分配结果记入到下一连续的区块中。该技术特征可直接应用到商业模式中,例如该节点对应的工作环节工作量大,则其记录的数量就更多,每个参与该工作环节的个体能分配到数字货币的几率就增大,提高了工作的积极性。
优选地,所述的随机比例为“进行分配/不进行分配”,且随机比例可调。在应用到商业模式中时,可根据该节点对应的工作环节,将随机比例调节为任意数值,使其获得相对其他节点更容易分配数字货币或更不容易获得数字货币的效果。例如,进行分配=1、不进行分配=9,则随机比例为1/9,每条记录获得分配的几率为1÷9=11.11%。
优选地,所述的中心奖励节点和中心节点设置为同一个节点。两个独立的闭环将各自用于挖矿的节点整合,可以将巨大的运算工作通过同一个设备完成,进一步有效减少碳排放,而且两个不同闭环的关联性得到提升,在数字货币发送和接收的过程更加安全和准确。
优选地,所述的离散奖励节点为虚拟的节点或由真实设备构成的节点。
优选地,所述的离散奖励节点虚拟设置在中心奖励节点上。
优选地,所述奖励闭环或主闭环的任一节点设有次级区块链,所述次级区块链通过HASH运算后,将HASH值记录在上一级区块链的区块中。将次级区块链的整体作为HASH运算对象,并将得到的HASH值记录在上一级区块链的区块中,可以将区块链进行多级的无限延伸,使一个区块所能记录的信息得到任意扩展,同时任一级的区块链的安全性由上一级区块链进行保护,使得整体各级区块链的防篡改性都得到保障。本处改进技术可直接应用于商业模式中的多级分包工作,下级的工作环节数据均被涵盖在最上级的区块链数据中,结合上述的随机比例,可对各级区块链中的记录进行多种的分配形式,使单调的数字货币得到多样性应用。
附图说明
图1是本发明所述基于区块链技术的多级节点任务闭环系统的结构示意图;
图2是本发明所述任一节点的多级节点结构示意图;
图3是本发明所述基于区块链技术的多级节点任务闭环系统另一实施方式的结 构示意图。
附图标记:100奖励闭环、110中心奖励节点、120离散奖励节点;200主闭环、210中心节点、220-1第一离散节点、220-2第二离散节点、220-3第三离散节点、220-4第四离散节点。
具体实施方式
如图1所示,本发明所述的一种基于区块链技术的多级节点任务闭环系统,包括:用于生成数字货币的奖励闭环100和接收所述数字货币并按比例分配至自身闭环各节点的主闭环200。
所述的奖励闭环100包括用于挖矿的中心奖励节点110和多个相同结构的离散奖励节点120,所述的奖励闭环100每个节点分布式记账,由中心奖励节点110进行挖矿并将挖矿得到的值广播至其他离散奖励节点120;在奖励闭环100内各节点产生第一块区块时,根据主闭环200的需要预先设定数字货币的初次产量以及产量递减速度;奖励闭环100将中心奖励节点110挖矿得到的所有数字货币发送至主闭环200。所述的奖励闭环100节点数量为3个或以上,整体设置要比主闭环200的设计简化。而主闭环200的节点数量可以根据使用需要随时增加。
所述的主闭环200包括用于挖矿的中心节点210和多个相同结构的离散节点,所述的主闭环200每个节点分布式记账,由中心节点210进行挖矿并将挖矿得到的值广播至其他离散节点;所述的主闭环200接收奖励闭环100发送的所述数字货币并按预设比例分配至各节点,主闭环200内每个节点在产生第一块区块时,将分配到的数字货币进行记账处理。所述主闭环200的任一节点在完成一个区块的封印后,通过随机比例判断是否给该区块所记载的每条记录分配该节点的数字货币,并将分配结果记入到下一连续的区块中。所述的随机比例为“进行分配/不进行分配”,且随机比例可调。
优选地,如图2所示,所述奖励闭环100或主闭环200的任一节点设有次级区块链,所述次级区块链通过HASH运算后,将HASH值记录在上一级区块链的区块中。将次级区块链的整体作为HASH运算对象,并将得到的HASH值记录在上一级区块链的区块中,可以将区块链进行多级的无限延伸,使一个区块所能记录的信息得到任意扩展,同时任一级的区块链的安全性由上一级区块链进行保护,使得整体各级区块链的防篡改性都得到保障。本处改进技术可直接应用于商业模式中的多级分包工作,下级的工作环节数据均被涵盖在最上级的区块链数据中,结合上述的随机比例,可对各级区块 链中的记录进行多种的分配形式,使单调的数字货币得到多样性应用。
奖励闭环100和主闭环200的设置方式至少可以有两种,第一种可以是相互独立地设置,每个节点对应一个独立的计算机,如图1所示。第二种可以是将用于挖矿的节点整合设置到同一个计算机且设置为同一个节点,而且其他节点则各自对应一个计算机,如图3所示。还可以基于上述的两种设置方式构思上,延伸出其他的方式,例如将主要提供数字货币运算的奖励闭环100整体整合到一个计算机中,通过软件虚拟实现奖励闭环100的运作。
基于上述多级节点任务闭环系统的整体结构,可以直接运用到各种商业模式中,下面提供一种商业模式的应用示例。
一企业,例如一鳄鱼产品系列生产链的企业,其生产链至少包括:饲养单元、皮肉加工单元、蛋白酶解单元、肽制品单元、运输单元、销售单元、服务器单元等等,对于其他具有产品系列生产链的企业,可以适应性调整以应用本发明所述的多级节点任务闭环系统。
以下闭环系统节点的分配方式为示例,解析本发明所述的多级节点任务闭环系统的具体运作,但不作为对本发明的保护范围限定。
在具有运算能力的服务器单元配置中心奖励节点110和通过程序简化模拟出两个离散奖励节点120,形成最简化的奖励闭环100。在服务器单元同时再配置中心节点210,且将中心节点210与中心奖励节点110数据连接;在饲养单元配置第一离散节点220-1;在蛋白酶解单元配置第二离散节点220-2;在肽制品单元配置第三离散节点220-3;在销售单元配置第四离散节点220-4……如此类推,可以根据实际的企业产品系列生产链的结构,在每个功能单元上配置对应的节点,形成主闭环200。
首先在奖励闭环100内各节点产生第一块区块时,根据主闭环200的需要预先设定数字货币的初次产量以及产量递减速度;例如数字货币的初次产量为一百万个,产量递减速度为每30天产量减半。然后奖励闭环100在各节点内写入相同的、虚拟的、简化的数值,以降低中心奖励节点110挖矿的难度;将中心奖励节点110挖矿得到的所有数字货币发送至主闭环200。根据本实施例所述举例参数,初次产量一百万个数字货币直接发送至主闭环200,30天后再将挖矿得到的五十万个数字货币发送到主闭环200。
以下的论述均采用相同的参数基础为例。
所述的主闭环200接收奖励闭环100发送的所述数字货币并按预设比例分配至各 节点,主闭环200内每个节点在产生第一块区块时,将分配到的数字货币进行记账处理。例如根据在产品系列生产链上的权重比例:在中心节点210分配10%,即在初次产量中分得五万个数字货币、在30天后分配二万五千个数字货币;在第一离散节点220-1分配15%,即在初次产量中分得七万五千个数字货币、在30天后分配三万七千五百个数字货币;在第二离散节点220-2分配20%,即在初次产量中分得十万个数字货币、在30天后分配五万个数字货币;在第三离散节点220-3分配25%,即在初次产量中分得十二万五千个数字货币、在30天后分配六万二千五百个数字货币;在第四离散节点220-4分配30%,即在初次产量中分得十五万个数字货币、在30天后分配七万五千个数字货币;以后每次中心奖励节点110挖矿所得的数字货币分配比例相同,主闭环200各节点获得的数字货币数量如此类推;将分配结果记入到下一连续的区块中。
所述主闭环200的任一节点在完成一个区块的封印后,通过随机比例判断是否给该区块所记载的每条记录分配该节点的数字货币,并将分配结果记入到下一连续的区块中。所述的随机比例为“进行分配/不进行分配”,且随机比例可调。各节点对应的产业链功能单元完成一次工作后会将数据记录到区块上,多次完成工作就会在该区块上记录多条对应的数据,区块写满后会由中心节点210进行封印,即通过HASH算法算出能封印该区块的数值,然后广播至其他节点使用。通过预先设置“进行分配/不进行分配”的随机比例,例如在第二离散节点220-2上的随机比例为1/9,对每条数据进行分配安排。在绝对理想的概率情况下,每十条数据就可以得到一次数字货币的分配,这样该节点对应的生产链功能单元的员工就会基于趋利的本性努力工作,以提高自身在区块上的写入比例,从而获得更多的数字货币分配。基于该效果,生产链上的每个功能单元都会自动工作,无需设置现有技术中的公司管理层,就算公司管理层解散了,各功能单元依然会主动自主地运作以获利,实现了管理的去中心化、记账的去中心化、挖矿中心化的良好效果,取得了巨大的商业价值和明显的减碳环保。
本发明所述的数字货币可定义为“鳄鱼币”。
优选地,所述奖励闭环100或主闭环200的任一节点设有次级区块链,所述次级区块链通过HASH运算后,将HASH值记录在上一级区块链的区块中。在日常生产工作中,经常一个功能单元会将自身的工作量分配到其他外设的辅助性单元上,即工作量多级分包协作。这样对于每个次级的工作量也必须进防篡改的记录和对应多级分包之初的工作数据记录,因此需要将分包的工作量记录和最初的工作数据记录在同一个区 块上,然而一个区块所能记录的数据非常有限,而次级的级数则无法预判,因此通过本发明构思设置的多级节点就可以对此实现。可以在第一次出现次级区块链的第一区块时,对上一级区块链中同时间段下的对应的区块进行该次级区块链生成的记录,然后两层不同层级的区块链在同一时间轴上运作,各自记录所在的对应信息。当所述次级区块链完成所有记录后,将该次级区块链整体作为Hash算法的整体输入,把Hash输出的值记录到所述次级区块链完成时刻对应的上级区块链的区块中。
次级区块链的技术改进可以应用到多级任务分配,例如在最初的区块链上记录了任务的第一次分配数据,在各节点所在的功能单元上进行第二次任务分配,每一次层级更低的任务分配都会被记录在分配对应层级的区块链上。然后从最末层的任务往上记录任务完成状况,将所记录所在任务的任一层级的次级区块链记录到对应的上一级区块链中。由于任务可以多级分配,且无限切割,可以将各功能单元的工作积极性调动起来。例如一药物研发过程涉及功能单元可以包括研究室、试药人、检验部门、销售部门等。药企可以将任务下分至研究室、试药人等,通过多层次的次级区块链进行记录,每一功能单元独立完成其对应的任务并记录到不同的层级区块链中,最后通过Hash算法将多任务的数据记录到上一层的区块中。所有的数据均得到有效的防篡改功能,也能实现在区块链技术中的多层级分割的技术效果。
对于本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及形变,而所有的这些改变以及形变都应该属于本发明权利要求的保护范围之内。

Claims (10)

  1. 一种基于区块链技术的多级节点任务闭环系统,其特征在于,包括:用于生成数字货币的奖励闭环(100)和接收所述数字货币并按比例分配至自身闭环各节点的主闭环(200);
    所述的奖励闭环(100)包括用于挖矿的中心奖励节点(110)和多个相同结构的离散奖励节点(120),所述的奖励闭环(100)每个节点分布式记账,由中心奖励节点(110)进行挖矿并将挖矿得到的值广播至其他离散奖励节点(120);在奖励闭环(100)内各节点产生第一块区块时,根据主闭环(200)的需要预先设定数字货币的初次产量以及产量递减速度;奖励闭环(100)将中心奖励节点(110)挖矿得到的所有数字货币发送至主闭环(200);
    所述的主闭环(200)包括用于挖矿的中心节点(210)和多个相同结构的离散节点,所述的主闭环(200)每个节点分布式记账,由中心节点(210)进行挖矿并将挖矿得到的值广播至其他离散节点;所述的主闭环(200)接收奖励闭环(100)发送的所述数字货币并按预设比例分配至各节点,主闭环(200)内每个节点在产生第一块区块时,将分配到的数字货币进行记账处理。
  2. 根据权利要求1所述基于区块链技术的多级节点任务闭环系统,其特征在于,所述的奖励闭环(100)节点数量为3个或以上。
  3. 根据权利要求1所述基于区块链技术的多级节点任务闭环系统,其特征在于,所述主闭环(200)的任一节点在完成一个区块的封印后,通过随机比例判断是否给该区块所记载的每条记录分配该节点的数字货币。
  4. 根据权利要求3所述基于区块链技术的多级节点任务闭环系统,其特征在于,所述的主闭环(200)将分配结果记入到下一连续的区块中。
  5. 根据权利要求3所述基于区块链技术的多级节点任务闭环系统,其特征在于,所述的随机比例为“进行分配/不进行分配”。
  6. 根据权利要求5所述基于区块链技术的多级节点任务闭环系统,其特征在于,随机比例可调。
  7. 根据权利要求1所述基于区块链技术的多级节点任务闭环系统,其特征在于,所述的中心奖励节点(110)和中心节点(210)设置为同一个节点。
  8. 根据权利要求1所述基于区块链技术的多级节点任务闭环系统,其特征在于,所述的离散奖励节点(120)为虚拟的节点。
  9. 根据权利要求8所述基于区块链技术的多级节点任务闭环系统,其特征在于, 所述的离散奖励节点(120)虚拟设置在中心奖励节点(110)上。
  10. 根据权利要求1所述基于区块链技术的多级节点任务闭环系统,其特征在于,所述奖励闭环(100)或主闭环(200)的任一节点设有次级区块链,所述次级区块链通过HASH运算后,将HASH值记录在上一级区块链的区块中。
PCT/CN2018/091021 2018-06-13 2018-06-13 一种基于区块链技术的多级节点任务闭环系统 WO2019237277A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/091021 WO2019237277A1 (zh) 2018-06-13 2018-06-13 一种基于区块链技术的多级节点任务闭环系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/091021 WO2019237277A1 (zh) 2018-06-13 2018-06-13 一种基于区块链技术的多级节点任务闭环系统

Publications (1)

Publication Number Publication Date
WO2019237277A1 true WO2019237277A1 (zh) 2019-12-19

Family

ID=68842408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091021 WO2019237277A1 (zh) 2018-06-13 2018-06-13 一种基于区块链技术的多级节点任务闭环系统

Country Status (1)

Country Link
WO (1) WO2019237277A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170140375A1 (en) * 2015-11-15 2017-05-18 Michael Kunstel System and Method for Permissioned Distributed Block Chain
CN106790431A (zh) * 2016-12-05 2017-05-31 同济大学 基于区块链的云制造服务交易信息记录系统与方法
CN107147708A (zh) * 2017-04-27 2017-09-08 北京众享比特科技有限公司 一种对等网络冗余数据平衡方法和系统
CN107180350A (zh) * 2017-03-31 2017-09-19 唐晓领 一种基于区块链的多方共享交易元数据的方法、装置及系统
CN107239940A (zh) * 2017-05-11 2017-10-10 北京博晨技术有限公司 基于区块链系统的网络交易方法及装置
CN107424066A (zh) * 2017-07-19 2017-12-01 武汉凤链科技有限公司 一种基于价值量建立共识机制的方法及其系统
US20180060836A1 (en) * 2016-08-29 2018-03-01 Bank Of America Corporation Application life-cycle transition record recreation system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170140375A1 (en) * 2015-11-15 2017-05-18 Michael Kunstel System and Method for Permissioned Distributed Block Chain
US20180060836A1 (en) * 2016-08-29 2018-03-01 Bank Of America Corporation Application life-cycle transition record recreation system
CN106790431A (zh) * 2016-12-05 2017-05-31 同济大学 基于区块链的云制造服务交易信息记录系统与方法
CN107180350A (zh) * 2017-03-31 2017-09-19 唐晓领 一种基于区块链的多方共享交易元数据的方法、装置及系统
CN107147708A (zh) * 2017-04-27 2017-09-08 北京众享比特科技有限公司 一种对等网络冗余数据平衡方法和系统
CN107239940A (zh) * 2017-05-11 2017-10-10 北京博晨技术有限公司 基于区块链系统的网络交易方法及装置
CN107424066A (zh) * 2017-07-19 2017-12-01 武汉凤链科技有限公司 一种基于价值量建立共识机制的方法及其系统

Similar Documents

Publication Publication Date Title
EP3533174B1 (en) Method and system for directing an exchange associated with an anonymously held token on a blockchain
JP6995762B2 (ja) ブロックチェーンからのデータのセキュアな抽出のための暗号方法及びシステム
CA3136622A1 (en) Systems, devices, and methods for dlt-based data management platforms and data products
Pandey et al. Blocksim: A practical simulation tool for optimal network design, stability and planning
Oberhauser Blockchain for environmental governance: can smart contracts reinforce payments for ecosystem services in Namibia?
WO2020082611A1 (zh) 基于区块链平台进行深度学习的方法、电子装置
Babel et al. Enabling end-to-end digital carbon emission tracing with shielded NFTs
CN109559213A (zh) 税务业务的处理方法及装置
CN112308465A (zh) 一种业务指标的处理方法及装置
Philip et al. Macroeconomic and household welfare impact of increase in minimum wage in Nigeria: A computable general equilibrium model
CN108563784A (zh) 一种数字资源引用关系记录方法及系统
CN107392736A (zh) 一种数据处理方法、装置及设备
KR20200093089A (ko) 블록체인 기반의 작업 요청 및 결과물의 거래 방법 및 시스템
Gandhi et al. A blockchain-based data-driven trustworthy approval process system
Chen et al. A cost-efficient and reliable resource allocation model based on cellular automaton entropy for cloud project scheduling
CN109615261A (zh) 一种数字资源收益分配方法及存储介质
WO2019237277A1 (zh) 一种基于区块链技术的多级节点任务闭环系统
CN110782354A (zh) 披露基金投资的方法及装置
Budeli Improving project monitoring and control performance using Blockchain technology
JP7348878B2 (ja) 分散台帳管理方法、分散台帳システム、およびノード
CN112184225B (zh) 一种基于区块链的云渲染资源兑换方法
CN115470958A (zh) 联邦学习方法、装置、计算机可读介质及电子设备
CN111144851B (zh) 一种区块链分销系统
Kautish Edge Computing and Intelligent Blockchain in the Construction of Agricultural Supply Chain System
Bhole et al. Allocation and Tracking of Public Funds using Blockchain

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922793

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 02/06/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18922793

Country of ref document: EP

Kind code of ref document: A1