WO2019235896A1 - 적응적 모션 벡터 레졸루션을 이용하는 비디오 신호 처리 방법 및 장치 - Google Patents

적응적 모션 벡터 레졸루션을 이용하는 비디오 신호 처리 방법 및 장치 Download PDF

Info

Publication number
WO2019235896A1
WO2019235896A1 PCT/KR2019/006913 KR2019006913W WO2019235896A1 WO 2019235896 A1 WO2019235896 A1 WO 2019235896A1 KR 2019006913 W KR2019006913 W KR 2019006913W WO 2019235896 A1 WO2019235896 A1 WO 2019235896A1
Authority
WO
WIPO (PCT)
Prior art keywords
resolution
motion vector
current block
difference value
available
Prior art date
Application number
PCT/KR2019/006913
Other languages
English (en)
French (fr)
Inventor
고건중
김동철
손주형
정재홍
곽진삼
Original Assignee
주식회사 윌러스표준기술연구소
(주)휴맥스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020207033872A priority Critical patent/KR102493418B1/ko
Priority to CN202410332398.2A priority patent/CN118233653A/zh
Priority to CN202410332230.1A priority patent/CN118233652A/zh
Priority to EP19814257.2A priority patent/EP3806461A4/en
Priority to CN201980038112.7A priority patent/CN112237001B/zh
Priority to CN202410332229.9A priority patent/CN118233651A/zh
Priority to CN202410332393.XA priority patent/CN118250474A/zh
Priority to KR1020237002898A priority patent/KR20230018548A/ko
Application filed by 주식회사 윌러스표준기술연구소, (주)휴맥스 filed Critical 주식회사 윌러스표준기술연구소
Priority to JP2020568219A priority patent/JP7159354B2/ja
Publication of WO2019235896A1 publication Critical patent/WO2019235896A1/ko
Priority to US17/113,215 priority patent/US11166040B2/en
Priority to US17/460,117 priority patent/US11706440B2/en
Priority to JP2022164143A priority patent/JP2022185121A/ja
Priority to US18/328,246 priority patent/US20230308676A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/53Multi-resolution motion estimation; Hierarchical motion estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/57Motion estimation characterised by a search window with variable size or shape
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/597Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Definitions

  • the present invention relates to a method and apparatus for processing a video signal, and more particularly, to a video signal processing method and apparatus for encoding or decoding a video signal.
  • Compression coding refers to a series of signal processing techniques for transmitting digitized information through a communication line or for storing in a form suitable for a storage medium.
  • the object of compression encoding includes objects such as voice, video, text, and the like.
  • a technique of performing compression encoding on an image is called video image compression.
  • Compression coding on a video signal is performed by removing redundant information in consideration of spatial correlation, temporal correlation, and stochastic correlation.
  • An object of the present invention is to improve the coding efficiency of a video signal.
  • the present invention has an object to increase the signaling efficiency associated with the motion information set of the current block.
  • the present invention provides a video signal processing apparatus and a video signal processing method as follows.
  • a motion vector predictor (MVP) candidate for motion compensation of a current block using any one of a first method and a second method Constructing a list; Obtaining a motion vector predictor of the current block based on the configured MVP candidate list; Obtaining a motion vector difference value representing a difference between the motion vector of the current block and the motion vector predictor; Modifying the motion vector difference value based on a resolution of the motion vector difference value of the current block, wherein the resolution of the motion vector difference value is any one of a plurality of available resolutions included in the resolution set, The configuration of the plurality of available resolutions included in the resolution set depends on which of the first and second methods is used to construct an MVP candidate list of the current block; Obtaining a motion vector of the current block based on the motion vector predictor and the modified motion vector difference value; And reconstructing the current block based on the obtained motion vector.
  • MVP motion vector predictor
  • a video signal decoding apparatus comprising a processor, wherein the processor is a motion vector predictor for motion compensation of a current block using any one of a first method and a second method.
  • a motion vector difference constructing a candidate motion list (MV) candidate list, obtaining a motion vector predictor of the current block based on the configured MVP candidate list, and indicating a difference between the motion vector of the current block and the motion vector predictor Obtain a value and modify the motion vector difference value based on a resolution of the motion vector difference value of the current block, wherein the resolution of the motion vector difference value is one of a plurality of available resolutions included in the resolution set.
  • MV candidate motion list
  • the configuration of the plurality of available resolutions included in the resolution set may be any one of the first method and phase.
  • the resolution of the motion vector difference value is determined from one of a first resolution set and a second resolution set, respectively, depending on which of the first and second methods the MVP candidate list of the current block is constructed.
  • the second resolution set may include at least one other available resolution other than a plurality of available resolutions included in the first resolution set.
  • the MVP candidate list is constructed using the first method based on an affine model
  • the resolution of the motion vector differential value is obtained from the first resolution set
  • the MVP candidate list is the affine model.
  • the second method that is not based on the resolution of the motion vector differential value may be obtained from the second resolution set.
  • the largest first available resolution among the plurality of available resolutions included in the first resolution set may be smaller than the second largest available resolution among the plurality of available resolutions included in the second resolution set.
  • the processor obtains an indicator indicating a resolution of a motion vector difference value of the current block among a plurality of available resolutions included in one of the first resolution set and the second resolution set, and indicates the indicator.
  • the motion vector difference value may be modified based on resolution.
  • the value of the indicator is a first value
  • the resolution indicated by the first value may vary depending on which of the first and second methods the MVP candidate list is configured. .
  • the first value indicates a first available resolution that is one of the available resolutions included in the first resolution set, and the MVP candidate list is the second.
  • the first value represents a second soluble resolution that is one of the soluble resolutions included in the second resolution set, and the first soluble resolution and the second soluble resolution may be different.
  • the first resolution set and the second resolution set both include a first available resolution, and when the MVP candidate list is configured using the second method, the first available resolution is the first value of the indicator. It may be indicated by a second value that is different from.
  • the indicator is represented by a variable length bit, and the first value may be any one of a plurality of values represented by the variable length bit.
  • the third value different from the first value of the indicator is a value represented by a bit having the shortest length among the plurality of values, and when the MVP candidate list is configured in the second method, the third value is the second value. If the resolution set indicates the smallest available resolution among a plurality of available resolution sets and the MVP candidate list is configured by the first method, the third value is a plurality of available resolutions included in the first resolution set. It is possible to indicate other soluble resolutions other than the smallest soluble resolution of the set.
  • a video signal encoding apparatus comprising a processor
  • the processor obtains a motion vector of the current block based on a position of a reference block referred to for motion compensation of the current block And constructing a motion vector predictor (MVP) candidate list for motion compensation of the current block using any one of a first method and a second method, wherein the plurality of candidates included in the MVP candidate list Obtain a motion vector difference value based on a difference between any one of the current block and the motion vector of the current block, and determine a signaled motion vector difference value based on a resolution of the motion vector difference value of the current block,
  • the resolution of the motion vector difference value is any one of a plurality of available resolutions included in the resolution set
  • the configuration of the plurality of available resolutions included in the solution set depends on whether the MVP candidate list of the current block is constructed using one of the first method and the second method.
  • An encoding apparatus is provided for generating a bitstream that includes.
  • the processor determines an indicator indicating any one of a plurality of available resolutions included in one of the first resolution set and the second resolution set, and includes the indicator and the signaled motion vector difference value.
  • a bitstream can be generated.
  • the value of the indicator is a first value
  • the resolution indicated by the first value may vary depending on which of the first and second methods the MVP candidate list is configured. .
  • the bitstream is characterized by that of the current block is modified based on the resolution of the motion vector difference value of the current block.
  • a modified motion vector difference value wherein the resolution of the motion vector difference value is any one of a plurality of available resolutions included in the resolution set, and wherein the configuration of the plurality of available resolutions included in the resolution set includes: a first method and Provided is a computer readable recording medium storing a bitstream that depends on which of the second methods is used to construct a motion vector prediction (MVP) candidate list for motion compensation of the current block.
  • MVP motion vector prediction
  • the bitstream may further include an indicator indicating a resolution of a motion vector difference value of the current block among a plurality of available resolutions included in one of the first resolution set and the second resolution set.
  • the value of the indicator is a first value
  • the resolution indicated by the first value may vary depending on which of the first and second methods the MVP candidate list is configured.
  • coding efficiency of a video signal may be increased.
  • signaling efficiency regarding inter prediction of a current block may be increased.
  • FIG. 1 is a schematic block diagram of a video signal encoding apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of a video signal decoding apparatus according to an embodiment of the present invention.
  • FIG. 3 illustrates an embodiment in which a coding tree unit is divided into coding units within a picture.
  • FIG. 4 illustrates one embodiment of a method for signaling the splitting of a quad tree and a multi-type tree.
  • 5 and 6 show an intra prediction method in more detail according to an embodiment of the present invention.
  • FIG 7 illustrates an inter prediction method according to an embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a method of signaling a motion vector of a current block according to an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a method of signaling a motion vector difference value of a current block according to an embodiment of the present invention.
  • FIG. 10 is a diagram illustrating a method in which a resolution of a motion vector difference value of a current block is signaled according to an embodiment of the present invention.
  • 11 and 12 are diagrams illustrating a method in which a resolution of a motion vector difference value of a current block is signaled according to another embodiment of the present invention.
  • FIG. 13 is a diagram illustrating an embodiment in which a configuration of available resolutions included in a resolution set is changed.
  • FIG. 14 is a diagram illustrating an embodiment of a method in which a resolution of a motion vector difference value of a current block is signaled according to a motion vector predictor of a current block.
  • 15 is a diagram illustrating another embodiment of a method in which a resolution of a motion vector difference value is signaled according to a motion vector predictor of a current block.
  • 16 is a diagram illustrating a method of obtaining a resolution of a motion vector difference value based on a template matching method according to an embodiment of the present invention.
  • 17 is a diagram illustrating a method of obtaining a resolution of a motion vector difference value based on a bilateral matching method according to an embodiment of the present invention.
  • FIG. 18 is a diagram illustrating a method in which a resolution of a motion vector difference value is signaled for each reference picture list of a current block according to an embodiment of the present invention.
  • 19 is a diagram illustrating an embodiment of a method in which a resolution of a motion vector difference value of a current block is signaled according to a resolution of a picture.
  • 20 is a diagram illustrating a method of resolution of a motion vector difference value based on a size of a reference picture of a current block according to an embodiment of the present invention.
  • 21 is a flowchart illustrating a method of obtaining a resolution of a motion vector difference value of a current block according to an embodiment of the present invention.
  • FIG. 22 is a flowchart illustrating a method of obtaining a resolution of a motion vector difference value of a current block according to an embodiment of the present invention.
  • FIG. 23 is a flowchart illustrating a method of obtaining a motion vector of a current block according to an embodiment of the present invention.
  • 24 is a flowchart illustrating a method of obtaining a motion vector of a current block according to an embodiment of the present invention.
  • FIG. 25 is a diagram illustrating a method in which a sign bit of a motion vector difference value of a current block is implicitly signaled according to an embodiment of the present invention.
  • FIG. 26 is a diagram illustrating a method in which a sign bit of a motion vector difference value of a current block is implicitly signaled according to an embodiment of the present invention.
  • FIG. 27 is a diagram illustrating a method in which a sign bit of a motion vector difference value of a current block is implicitly signaled according to an embodiment of the present invention.
  • FIG. 28 is a diagram illustrating an example of syntax for the embodiments of FIGS. 25 to 27.
  • FIG. 29 is a diagram illustrating a resolution of a motion vector difference value of a current block and a method of predicting a motion vector predictor according to an embodiment of the present invention.
  • FIG. 30 is a diagram illustrating a method of deriving a motion vector of a current block based on a plurality of motion vector difference values according to an embodiment of the present invention.
  • FIG. 31 is a diagram illustrating motion compensation based on an affine model according to an embodiment of the present invention.
  • 32 illustrates one embodiment of a four-parameter affine motion compensation method.
  • 33 illustrates one embodiment of a six-parameter affine motion compensation method.
  • 35, 36, 37 and 38 illustrate embodiments of a method of obtaining a set of control point motion vectors for prediction of the current block.
  • FIG. 39 is a diagram illustrating a method of obtaining a control point motion vector of a current block according to another embodiment of the present invention.
  • FIG. 40 illustrates a method of obtaining a control point motion vector of a current block according to an embodiment of the present invention.
  • 41 is a view illustrating a method of controlling a control point motion vector difference value of a current block according to an embodiment of the present invention.
  • FIG. 42 is a view illustrating a method of obtaining a control point motion vector of a current block according to another embodiment of the present invention.
  • FIG. 43 illustrates a method in which a control point motion vector difference value is signaled when a control point motion vector of a current block is obtained according to the embodiment described with reference to FIG. 42.
  • 44 is a diagram illustrating a method of signaling a control point motion vector difference value of a current block according to an embodiment of the present invention.
  • 45 is a diagram illustrating a method of obtaining a motion vector using a difference predictor for control point motion vector difference values of a current block according to one embodiment of the present invention.
  • 46 is a diagram illustrating a method of obtaining a control point motion vector of a current block using a difference predictor, according to an embodiment of the present invention.
  • FIG. 47 is a diagram illustrating a method of obtaining a control point motion vector of a current block using a difference predictor according to another embodiment of the present invention.
  • 48 is a diagram illustrating a method of obtaining a difference predictor according to an embodiment of the present invention.
  • FIG. 49 illustrates a method of determining a difference vector predictor of a current block according to an embodiment of the present invention.
  • 50 is a diagram illustrating how a control point motion vector difference value of a current block is signaled.
  • 51 is a diagram illustrating a method of deriving a control point motion vector of a current block according to another embodiment of the present invention.
  • FIG. 52 is a diagram illustrating a method of deriving a plurality of control point motion vectors for affine motion compensation of a current block according to one embodiment of the present invention.
  • FIG. 53 illustrates various embodiments in which a current block is divided into a plurality of subblocks.
  • 54 illustrates a method of dividing a current block according to an intra prediction mode of the current block.
  • 55 illustrates a method of dividing a current block into a plurality of subblocks based on sample values of reference samples of the current block according to an embodiment of the present invention.
  • FIG. 56 illustrates a method of determining a primary subblock group and a secondary subblock group according to an embodiment of the present invention.
  • 57 illustrates a method for predicting a primary subblock group and a secondary subblock group according to an embodiment of the present invention.
  • 58 illustrates an order in which coding tree units are processed according to an embodiment of the present invention.
  • FIG. 59 illustrates a bidirectional intra prediction method according to an embodiment of the present invention.
  • 60 is a view illustrating a method of predicting each of a plurality of subblocks divided from a current block according to an embodiment of the present invention.
  • Coding may optionally be interpreted as encoding or decoding.
  • an apparatus for generating a video signal bitstream by encoding (encoding) a video signal is referred to as an encoding apparatus or an encoder, and an apparatus for reconstructing a video signal by performing decoding (decoding) of a video signal bitstream is decoded.
  • device or decoder referred to as device or decoder.
  • the video signal processing apparatus is used herein as a term of a concept including both an encoder and a decoder.
  • Information is a term that includes values, parameters, coefficients, elements, and the like. In some cases, meanings may be interpreted differently, and thus the present invention is not limited thereto.
  • 'Unit' is used to refer to a basic unit of image processing or a specific position of a picture, and refers to an image region including both a luma component and a chroma component.
  • 'block' refers to an image region including a luma component and a specific component of chroma components (ie, Cb and Cr).
  • terms such as 'unit', 'block', 'partition', and 'region' may be used interchangeably.
  • a unit may be used as a concept including a coding unit, a prediction unit, and a transform unit.
  • a picture refers to a field or frame, and in some embodiments, the terms may be used interchangeably.
  • the encoding apparatus 100 of the present invention includes a transformer 110, a quantizer 115, an inverse quantizer 120, an inverse transformer 125, a filter 130, and a predictor 150. ) And the entropy coding unit 160.
  • the transform unit 110 obtains a transform coefficient value by converting a residual signal that is a difference between the input video signal and the prediction signal generated by the predictor 150.
  • a discrete cosine transform DCT
  • DST discrete sine transform
  • the discrete cosine transform and the discrete sine transform divide the input picture signal into a block to perform the transform.
  • the coding efficiency may vary depending on the distribution and the characteristics of the values in the transform domain.
  • the quantization unit 115 quantizes the transform coefficient value output from the transform unit 110.
  • the prediction unit 150 predicts the picture using a region already coded, and adds a residual value between the original picture and the predictive picture to the predicted picture to increase the coding efficiency.
  • the method of obtaining is used.
  • information that is also available at the decoder should be used when performing prediction at the encoder.
  • the encoder performs a process of restoring the encoded current block again.
  • the inverse quantization unit 120 inverse quantizes the transform coefficient value, and the inverse transform unit 125 restores the residual value by using the inverse quantized transform coefficient value.
  • the filtering unit 130 performs a filtering operation for improving the quality of the reconstructed picture and improving the coding efficiency.
  • a deblocking filter For example, a sample adaptive offset (SAO), an adaptive loop filter, and the like may be included.
  • the filtered picture is output or stored in a decoded picture buffer (DPB) 156 for use as a reference picture.
  • DPB decoded picture buffer
  • the predictor 150 includes an intra predictor 152 and an inter predictor 154.
  • the intra predictor 152 performs intra prediction in the current picture, and the inter predictor 154 predicts the current picture using the reference picture stored in the decoded picture buffer 156. Do this.
  • the intra prediction unit 152 performs intra prediction from reconstructed samples in the current picture, and transmits the intra encoding information to the entropy coding unit 160.
  • the intra encoding information may include at least one of an intra prediction mode, a Most Probable Mode (MPM) flag, and an MPM index.
  • the inter predictor 154 may include a motion estimator 154a and a motion compensator 154b.
  • the motion estimation unit 154a obtains a motion vector value of the current region by referring to a specific region of the reconstructed reference picture.
  • the motion estimator 154a transmits a motion information set (reference picture index, motion vector information, etc.) for the reference region to the entropy coding unit 160.
  • the motion compensator 154b performs motion compensation using the motion vector value transmitted from the motion estimator 154a.
  • the inter prediction unit 154 transfers inter encoding information including the motion information set for the reference region to the entropy coding unit 160.
  • the predictor 150 may include an intra block copy (BC) predictor (not shown).
  • the intra BC prediction unit performs intra BC prediction from reconstructed samples in the current picture, and transmits the intra BC encoding information to the entropy coding unit 160.
  • the intra BC predictor obtains a block vector value indicating a reference region used for prediction of the current region by referring to a specific region in the current picture.
  • the intra BC predictor may perform intra BC prediction using the obtained block vector value.
  • the intra BC predictor transfers the intra BC encoding information to the entropy coding unit 160.
  • the intra BC encoding information may include block vector information.
  • the transform unit 110 obtains a transform coefficient value by converting a residual value between the original picture and the predictive picture.
  • the transformation may be performed in a specific block unit in the picture, and the size of the specific block may vary within a preset range.
  • the quantization unit 115 quantizes the transform coefficient value generated by the transform unit 110 and transmits the quantized unit 115 to the entropy coding unit 160.
  • the entropy coding unit 160 entropy-codes the quantized transform coefficients, intra encoding information, inter encoding information, and the like to generate a video signal bitstream.
  • a variable length coding (VLC) method and an arithmetic coding method may be used.
  • the variable length coding (VLC) scheme converts input symbols into consecutive codewords, which may have a variable length. For example, frequently occurring symbols are represented by short codewords and infrequently occurring symbols by long codewords.
  • a context-based adaptive variable length coding (CAVLC) method may be used as a variable length coding method.
  • Arithmetic coding converts consecutive data symbols into a single prime number, which can obtain the optimal fractional bits needed to represent each symbol.
  • Context-based Adaptive Binary Arithmetic Code (CABAC) may be used as the arithmetic coding.
  • CABAC Context-based Adaptive Binary Arithmetic Code
  • the generated bitstream is encapsulated in a NAL unit.
  • the NAL unit includes coded integer coding tree units.
  • a bitstream In order to decode a bitstream in a video decoder, a bitstream must first be divided into NAL unit units, and then each separated NAL unit must be decoded.
  • information necessary for decoding the video signal bitstream is a higher level set such as a picture parameter set (PPS), a sequence parameter set (SPS), a video parameter set (VPS), or the like. It may be transmitted through the Raw Byte Sequence Payload (RBSP).
  • PPS picture parameter set
  • SPS sequence parameter set
  • VPN video parameter set
  • RBSP Raw Byte Sequence Payload
  • FIG. 1 illustrates an encoding apparatus 100 according to an embodiment of the present invention, in which blocks marked separately represent logically distinguishing elements of the encoding apparatus 100. Therefore, the above-described elements of the encoding apparatus 100 may be mounted in one chip or in a plurality of chips according to the design of the device. According to an embodiment, the operation of each element of the encoding apparatus 100 described above may be performed by a processor (not shown).
  • the decoding apparatus 200 of the present invention includes an entropy decoding unit 210, an inverse quantization unit 220, an inverse transform unit 225, a filtering unit 230, and a prediction unit 250.
  • the entropy decoding unit 210 entropy decodes the video signal bitstream to extract transform coefficients, intra encoding information, inter encoding information, and the like for each region.
  • the inverse quantizer 220 inverse quantizes the entropy decoded transform coefficient, and the inverse transform unit 225 restores the residual value by using the inverse quantized transform coefficient.
  • the video signal processing apparatus 200 reconstructs the original pixel value by summing the residual value obtained by the inverse transformer 225 with a predictor obtained by the predictor 250.
  • the filtering unit 230 performs filtering on the picture to improve the picture quality. This may include a deblocking filter to reduce block distortion and / or an adaptive loop filter to remove distortion of the entire picture.
  • the filtered picture is output or stored in a decoded picture buffer (DPB) 256 for use as a reference picture for the next picture.
  • DPB decoded picture buffer
  • the predictor 250 includes an intra predictor 252 and an inter predictor 254.
  • the predictor 250 generates a predictive picture by using the encoding type decoded by the entropy decoding unit 210 described above, transform coefficients for each region, intra / inter encoding information, and the like.
  • a decoded area of the current picture or other pictures including the current block may be used.
  • a picture (or tile / slice) that can be performed is called an inter picture (or tile / slice).
  • a picture (or tile / slice) using at most one motion vector and reference picture index to predict the sample values of each block among the inter pictures (or tiles / slices) is a predictive picture or a P picture (or , A tile / slice), and a picture (or tile / slice) using at most two motion vectors and a reference picture index is called a bi-predictive picture or a B picture (or tile / slice).
  • the P picture (or tile / slice) uses up to one set of motion information to predict each block
  • the B picture (or tile / slice) uses up to two motion information to predict each block.
  • the motion information set includes one or more motion vectors and one reference picture index.
  • the intra prediction unit 252 generates a prediction block by using the intra encoding information and the reconstructed samples in the current picture.
  • the intra encoding information may include at least one of an intra prediction mode, a Most Probable Mode (MPM) flag, and an MPM index.
  • MPM Most Probable Mode
  • the intra predictor 252 predicts sample values of the current block by using reconstructed samples located on the left and / or top of the current block as reference samples.
  • reconstructed samples, reference samples, and samples of the current block may represent pixels.
  • sample values may represent pixel values.
  • the reference samples may be samples included in the neighboring block of the current block.
  • the reference samples may be samples adjacent to the left boundary of the current block and / or samples adjacent to the upper boundary. Further, the reference samples are located on a line within a predetermined distance from the upper boundary of the current block and / or on a line within a predetermined distance from the left boundary of the current block among the samples of the neighboring blocks of the current block. May be samples.
  • the neighboring block of the current block is a left (L) block, an upper (A) block, a lower left (BL) block, an upper right (AR) block, or an upper left (Above Left) adjacent to the current block.
  • AL may include at least one of the blocks.
  • the inter prediction unit 254 generates a prediction block by using the reference picture and inter encoding information stored in the decoded picture buffer 256.
  • the inter encoding information may include a motion information set (reference picture index, motion vector information, etc.) of the current block with respect to the reference block.
  • Inter prediction may include L0 prediction, L1 prediction, and bi-prediction.
  • L0 prediction means prediction using one reference picture included in the L0 picture list
  • L1 prediction means prediction using one reference picture included in the L1 picture list.
  • one set of motion information eg, a motion vector and a reference picture index
  • up to two reference regions may be used, and these two reference regions may exist in the same reference picture or may exist in different pictures, respectively.
  • up to two sets of motion information may be used, and two motion vectors may correspond to the same reference picture index or may be different from each other. It may also correspond.
  • the reference pictures may be displayed (or output) before or after the current picture in time.
  • the inter predictor 254 may obtain a reference block of the current block by using the motion vector and the reference picture index.
  • the reference block exists in the reference picture corresponding to the reference picture index.
  • a sample value of the block specified by the motion vector or an interpolated value thereof may be used as a predictor of the current block.
  • an 8-tap interpolation filter can be used for luma signals and a 4-tap interpolation filter can be used for chroma signals.
  • the interpolation filter for motion prediction in the subpel unit is not limited thereto.
  • the inter predictor 254 performs motion compensation to predict the texture of the current unit from the previously reconstructed picture. In this case, the inter predictor may use the motion information set.
  • the predictor 250 may include an intra BC predictor (not shown).
  • the intra BC prediction unit performs intra BC prediction from reconstructed samples in the current picture, and transmits the intra BC encoding information to the entropy coding unit 160.
  • the intra BC predictor obtains a block vector value of the current region indicating a specific region in the current picture.
  • the intra BC predictor may perform intra BC prediction using the obtained block vector value.
  • the intra BC predictor transfers the intra BC encoding information to the entropy coding unit 160.
  • the intra BC encoding information may include block vector information.
  • the predictor output from the intra predictor 252 or the inter predictor 254 and the residual value output from the inverse transform unit 225 are added to generate a reconstructed video picture. That is, the video signal decoding apparatus 200 reconstructs the current block by using the prediction block generated by the predictor 250 and the residual obtained by the inverse transform unit 225.
  • FIG. 2 illustrates a decoding apparatus 200 according to an embodiment of the present invention, in which blocks separately displayed are logically distinguished elements of the decoding apparatus 200. Therefore, the above-described elements of the decoding apparatus 200 may be mounted in one chip or in a plurality of chips according to the design of the device. According to an embodiment, the operation of each element of the above-described decoding apparatus 200 may be performed by a processor (not shown).
  • FIG. 3 illustrates an embodiment in which a coding tree unit (CTU) is divided into coding units (CUs) in a picture.
  • CTU coding tree unit
  • CUs coding units
  • a picture may be divided into a sequence of coding tree units (CTUs).
  • the coding tree unit consists of an NXN block of luma samples and two blocks of corresponding chroma samples.
  • the coding tree unit may be divided into a plurality of coding units.
  • the coding tree unit may be a leaf node without splitting. In this case, the coding tree unit itself may be a coding unit.
  • the coding unit refers to a basic unit for processing a picture in the processing of the video signal described above, that is, in the process of intra / inter prediction, transformation, quantization, and / or entropy coding.
  • the size and shape of the coding unit in one picture may not be constant.
  • the coding unit may have a square or rectangular shape.
  • the rectangular coding unit (or rectangular block) includes a vertical coding unit (or vertical block) and a horizontal coding unit (or horizontal block).
  • the vertical block is a block whose height is larger than the width
  • the horizontal block is a block whose width is larger than the height.
  • non-square blocks may refer to rectangular blocks in the present specification, the present invention is not limited thereto.
  • a coding tree unit is first divided into a quad tree (QT) structure. That is, in a quad tree structure, one node having a size of 2NX2N may be divided into four nodes having a size of NXN.
  • a quad tree may also be referred to as a quaternary tree. Quad tree splitting can be performed recursively, and not all nodes need to be split to the same depth.
  • the above-described leaf node of the quad tree may be further divided into a multi-type tree (MTT) structure.
  • MTT multi-type tree
  • one node in a multi-type tree structure, one node may be divided into a binary or ternary tree structure of horizontal or vertical division. That is, there are four partition structures in the multi-type tree structure: vertical binary partition, horizontal binary partition, vertical ternary partition, and horizontal ternary partition.
  • the width and height of each node in each tree structure may have a power of two.
  • BT binary tree
  • a 2NX2N sized node may be divided into two NX2N nodes by vertical binary division and two 2NXN nodes by horizontal binary division.
  • a 2NX2N sized node is divided into nodes of (N / 2) X2N, NX2N and (N / 2) X2N by vertical ternary division, and the horizontal ternary By splitting, it can be split into nodes of 2NX (N / 2), 2NXN and 2NX (N / 2).
  • This multi-type tree split may be performed recursively.
  • Leaf nodes of the multi-type tree may be coding units. If no splitting for a coding unit is indicated or if the coding unit is not large relative to the maximum transform length, then that coding unit is used as the unit of prediction and transform without further splitting. Meanwhile, at least one of the following parameters in the aforementioned quad tree and multi-type tree may be previously defined or transmitted through an RBSP of a higher level set such as PPS, SPS, VPS, and the like.
  • Preset flags may be used to signal the division of the aforementioned quad tree and multi-type tree.
  • a flag 'qt_split_flag' indicating whether a quad tree node is split
  • a flag 'mtt_split_flag' indicating whether a multi-type tree node is split
  • a flag 'mtt_split_vertical_flag' indicating a split direction of a multi-type tree node
  • at least one of a flag 'mtt_split_binary_flag' indicating a split shape of the multi-type tree node.
  • a coding tree unit is a root node of a quad tree and may be first divided into quad tree structures.
  • 'qt_split_flag' is signaled for each node 'QT_node'. If the value of 'qt_split_flag' is 1, the node is divided into 4 square nodes. If the value of 'qt_split_flag' is 0, the node becomes the leaf node 'QT_leaf_node' of the quad tree.
  • Each quad tree leaf node 'QT_leaf_node' may be further divided into a multi-type tree structure.
  • 'mtt_split_flag' is signaled for each node 'MTT_node'. If the value of 'mtt_split_flag' is 1, the node is divided into a plurality of rectangular nodes. If the value of 'mtt_split_flag' is 0, the node becomes the leaf node 'MTT_leaf_node' of the multi-type tree.
  • the node 'MTT_node' is divided into two rectangular nodes, and when the value of 'mtt_split_binary_flag' is 0, the node 'MTT_node' is divided into three rectangular nodes.
  • Picture prediction (motion compensation) for coding is directed to coding units (i.e. leaf nodes of the coding unit tree) that are no longer divided.
  • the basic unit for performing such prediction is hereinafter referred to as a prediction unit or a prediction block.
  • the term unit used in the present specification may be used as a term to replace the prediction unit, which is a basic unit for performing prediction.
  • the present invention is not limited thereto and may be broadly understood as a concept including the coding unit.
  • the intra predictor predicts the sample values of the current block using reconstructed samples located on the left and / or top of the current block as reference samples.
  • FIG. 5 shows one embodiment of reference samples used for prediction of the current block in intra prediction mode.
  • the reference samples may be samples adjacent to the left boundary of the current block and / or samples adjacent to the upper boundary.
  • the size of the current block is WXH and samples of a single reference line adjacent to the current block are used for intra prediction, at most 2W + 2H + 1 located on the left and / or top of the current block.
  • Reference samples may be set using the four peripheral samples.
  • samples on the plurality of reference lines may be used for intra prediction of the current block.
  • the plurality of reference lines may be composed of n lines located within a preset distance from the boundary of the current block.
  • separate reference line information indicating at least one reference line used for intra prediction of the current block may be signaled.
  • the reference line information may include an index indicating one of the plurality of reference lines.
  • the intra predictor may obtain a reference sample by performing a reference sample padding process.
  • the intra predictor may perform a reference sample filtering process to reduce the error of the intra prediction. That is, the filtered reference samples may be obtained by filtering the reference samples acquired by the neighboring samples and / or the reference sample padding process.
  • the intra predictor predicts the samples of the current block using unfiltered reference samples or filtered reference samples.
  • the peripheral samples may include samples on at least one reference line.
  • the peripheral samples may include adjacent samples on a line adjacent to the boundary of the current block.
  • intra prediction mode information indicating an intra prediction direction may be signaled.
  • the intra prediction mode information indicates any one of a plurality of intra prediction modes constituting an intra prediction mode set. If the current block is an intra predicted block, the decoder receives the intra prediction mode information of the current block from the bitstream. The intra prediction unit of the decoder performs intra prediction on the current block based on the extracted intra prediction mode information.
  • the intra prediction mode set may include all intra prediction modes (eg, a total of 67 intra prediction modes) used for intra prediction. More specifically, the set of intra prediction modes may include planar mode, DC mode, and a plurality of (eg, 65) angular modes (ie, directional modes). In some embodiments, the intra prediction mode set may be configured with some of all intra prediction modes. Each intra prediction mode may be indicated through a preset index (ie, an intra prediction mode index). For example, as shown in FIG. 6, the intra prediction mode index 0 indicates the planar mode, and the intra prediction mode index 1 indicates the DC mode. In addition, the intra prediction mode indexes 2 to 66 may indicate different angle modes, respectively.
  • the intra prediction mode index 0 indicates the planar mode
  • the intra prediction mode index 1 indicates the DC mode.
  • the intra prediction mode indexes 2 to 66 may indicate different angle modes, respectively.
  • the intra prediction mode index 2 indicates a horizontal diagonal (HDIA) mode
  • the intra prediction mode index 18 indicates a horizontal (HOR) mode
  • the intra prediction mode index 34 indicates a diagonal (Diagonal, DIA).
  • the intra prediction mode index 50 indicates a vertical (VER) mode
  • intra prediction mode index 66 indicates a vertical diagonal (VDIA) mode.
  • the inter prediction method may include a general inter prediction method optimized for translation motion and an affine model based inter prediction method which will be described later with reference to FIGS. 31 to 52.
  • the motion vector may include at least one of a general motion vector for motion compensation and a control point motion vector for affine motion compensation according to the general inter prediction method.
  • the decoder may predict the current block with reference to reconstructed samples of another decoded picture.
  • the decoder obtains a reference block 702 in the reference picture 720 based on the motion information set of the current block 701.
  • the motion information set may include a reference picture index and a motion vector 703.
  • the reference picture index indicates a reference picture 720 including a reference block for inter prediction of the current block in the reference picture list.
  • the reference picture list may include at least one of the above-described L0 picture list or L1 picture list.
  • the motion vector 703 represents the offset between the coordinate value of the current block 701 in the current picture 710 and the coordinate value of the reference block 702 in the reference picture 720.
  • the decoder obtains the predictor of the current block 701 based on the sample values of the reference block 702 and uses the predictor to reconstruct the current block 701.
  • the encoder may search for a block similar to the current block in the pictures whose reconstruction order is earlier to obtain the aforementioned reference block.
  • the encoder may search for a reference block in which the sum of the difference between the current block and the sample value is the minimum in the preset search range.
  • at least one of sum of absolute difference (SAD) or sum of Hadamard transformed difference (SATD) may be used to measure the similarity between samples of the current block and the reference block.
  • SAD may be a value obtained by adding up the absolute values of the respective differences between the sample values included in the two blocks.
  • the SATD may be a sum of all absolute values of Hadamard transform coefficients obtained by Hadamard transform of the difference between sample values included in two blocks.
  • the current block may be predicted using one or more reference regions. As described above, the current block may be inter predicted through a bi-prediction scheme using two or more reference regions.
  • the decoder may obtain two reference blocks based on two sets of motion information of the current block.
  • the decoder may obtain a first predictor and a second predictor of the current block based on sample values of each of the two reference blocks obtained.
  • the decoder may reconstruct the current block using the first predictor and the second predictor. For example, the decoder may reconstruct the current block based on a sample-averaged average of the first predictor and the second predictor.
  • one or more sets of motion information may be signaled for motion compensation of the current block.
  • similarity between motion information sets for motion compensation of each of the plurality of blocks may be used.
  • the motion information set used for the prediction of the current block may be derived from the motion information set used for the prediction of any one of the other reconstructed samples. This allows the encoder and decoder to reduce signaling overhead.
  • various embodiments in which the motion information set of the current block is signaled will be described.
  • the motion vector of the current block may be derived from the motion vector predictor (MVP) of the current block.
  • the motion vector predictor referenced to derive the motion vector of the current block may be obtained using a motion vector predictor (MVP) candidate list.
  • the MVP candidate list may include a predetermined number of MVP candidates (Candidate 1, Candidate 2, ..., Candidate N).
  • the MVP candidate list may include at least one of a spatial candidate or a temporal candidate.
  • the spatial candidate may be a set of motion information used for prediction of neighboring blocks within a certain range from the current block within the current picture.
  • the spatial candidate may be configured based on available neighboring blocks of neighboring blocks of the current block.
  • the temporal candidate may be a set of motion information used for prediction of blocks in a picture different from the current picture.
  • a temporal candidate may be configured based on a specific block corresponding to the position of the current block within a specific reference picture. In this case, the position of the specific block indicates the position of the top-left sample of the specific block within the reference picture.
  • the MVP candidate list may include a zero motion vector.
  • a rounding process for the MVP candidate included in the MVP candidate list of the current block may be performed.
  • a resolution of the motion vector difference value of the current block which will be described later, may be used.
  • MVP candidates of the current block may each be rounded based on the resolution of the motion vector difference value of the current block.
  • ATMVP advanced temporal motion vector prediction
  • STMVP subblock-based temporal motion vecto prediction
  • the encoder 810 and the decoder 820 may construct an MVP candidate list for motion compensation of the current block. For example, there may be candidates corresponding to samples that may have been predicted based on a motion information set that is the same as or similar to the motion information set of the current block among samples reconstructed before the current block.
  • the encoder 810 and the decoder 820 may construct an MVP candidate list of the current block based on the plurality of candidate blocks.
  • the encoder 810 and the decoder 820 may configure the MVP candidate list according to a predefined rule between the encoder 810 and the decoder 820. That is, MVP candidate lists configured in each of the encoder 810 and the decoder 820 may be identical to each other.
  • the predefined rule may vary according to the prediction mode of the current block.
  • the encoder and the decoder may construct the MVP candidate list of the current block using a first method based on the affine model.
  • the first method may be a method of obtaining a control point motion vector candidate list. This will be described in detail with reference to FIGS. 31 to 52.
  • the encoder and the decoder may construct the MVP candidate list of the current block using a second method not based on the affine model. .
  • the first method and the second method may be different methods.
  • the decoder 820 may derive the motion vector of the current block based on any one of at least one MVP candidate included in the MVP candidate list of the current block.
  • the encoder 810 may signal an MVP index indicating the motion vector predictor referenced to derive the motion vector of the current block.
  • the decoder 820 may obtain a motion vector predictor of the current block based on the signaled MVP index.
  • the decoder 820 may derive the motion vector of the current block using the motion vector predictor.
  • the decoder 820 may use the motion vector predictor obtained from the MVP candidate list as the motion vector of the current block without a separate motion vector difference value.
  • the decoder 820 may reconstruct the current block based on the motion vector of the current block.
  • the inter prediction mode in which the motion vector predictor obtained from the MVP candidate list is used as the motion vector of the current block without a separate motion vector difference value may be referred to as a merge mode.
  • the decoder 820 may obtain a separate motion vector difference value for the motion vector of the current block.
  • the decoder 820 may obtain the motion vector of the current block by summing the motion vector predictor obtained from the MVP candidate list and the motion vector difference value of the current block.
  • the encoder 810 may signal a motion vector difference value (MV difference) indicating a difference between the motion vector of the current block and the motion vector predictor.
  • MV difference motion vector difference value
  • the decoder 820 may obtain the motion vector of the current block based on the motion vector difference value (MV difference).
  • the decoder 820 may reconstruct the current block based on the motion vector of the current block.
  • a reference picture index for motion compensation of the current block may be signaled.
  • the encoder 810 of the prediction mode of the current block may signal a reference picture index indicating a reference picture including the reference block.
  • the decoder 820 may obtain a POC of the reference picture referred to for reconstruction of the current block based on the signaled reference picture index.
  • the POC of the reference picture may be different from the POC of the reference picture corresponding to the MVP that is referenced to derive the motion vector of the current block.
  • the decoder 820 may perform motion vector scaling. That is, the decoder 820 may obtain the MVP 'by scaling the MVP.
  • the motion vector scaling may be performed based on the POC of the current picture, the POC of the signaled reference picture of the current block, and the POC of the reference picture corresponding to the MVP.
  • the decoder 820 may use MVP 'as a motion vector predictor of the current block.
  • the motion vector of the current block may be obtained by summing the motion vector predictor and the motion vector difference value of the current block.
  • the motion vector difference value may be signaled from the encoder.
  • the encoder may generate and signal information indicative of the motion vector difference value by encoding the motion vector difference value.
  • the information representing the motion vector difference value may include at least one of absolute value information of the motion vector difference value or sign information of the motion vector difference value.
  • the absolute value and the sign of the motion vector difference value may be encoded separately.
  • the absolute value of the motion vector differential value may not be signaled by the value itself.
  • the encoder can reduce the magnitude of the signaled value using at least one flag representing the nature of the absolute value of the motion vector differential value.
  • the decoder may derive the absolute value of the motion vector differential value using at least one flag from the signaled value.
  • the at least one flag may include a first flag indicating whether the absolute value of the motion vector difference value is greater than N.
  • N may be an integer. If the magnitude of the absolute value of the motion vector difference value is greater than N, the value (absolute value of the motion vector difference value -N) with the activated first flag may be signaled.
  • the activated flag may represent a case where the magnitude of the absolute value of the motion vector difference value is larger than N.
  • the decoder may obtain an absolute value of the motion vector difference value based on the activated first flag and the signaled value.
  • a second flag abs_mvd_greater0_flag indicating whether an absolute value of a motion vector difference value is greater than '0' may be signaled.
  • the second flag abs_mvd_greater0_flag [] indicates that the absolute value of the motion vector difference value is not greater than '0'
  • the absolute value of the motion vector difference value may be '0'.
  • the decoder may obtain the absolute value of the motion vector difference value using other information about the motion vector difference value. have.
  • a third flag (abs_mvd_greater1_flag) indicating whether the absolute value of the motion vector difference value is greater than '1' may be signaled.
  • the decoder may determine that the absolute value of the motion vector difference value is '1'.
  • the decoder may obtain the absolute value of the motion vector difference value using another information about the motion vector difference value.
  • the value (abs_mvd_minus2) absolute value of the motion vector difference value-2) may be signaled. This is because the absolute value of the motion vector difference value may be 2 or more when the absolute value of the motion vector difference value is larger than '1'.
  • the absolute value of the motion vector difference value of the current block may be modified in at least one flag.
  • the modified absolute value of the motion vector difference value may represent (absolute value of the motion vector difference value-N) according to the magnitude of the motion vector difference value.
  • the modified absolute value of the motion vector differential value may be signaled via at least one bit.
  • the number of bits signaled to indicate the modified absolute value of the motion vector difference value may be variable.
  • the encoder can encode the modified absolute value of the motion vector difference value using a variable length binarization method.
  • the encoder may use at least one of the variable length binarization method of truncated unary binarization, unary binarization, truncated rice or exp-Golomb binarization.
  • the sign of the motion vector difference value may be signaled through a sign flag (mvd_sign_flag). Meanwhile, the sign of the motion vector difference value may be implicitly signaled by sign-bit-hiding. This will be described with reference to FIGS. 23 to 28.
  • the aforementioned motion vector difference value of the current block may be signaled in a specific resolution unit.
  • the resolution of the motion vector difference value may indicate a unit in which the motion vector difference value is signaled. That is, in the present disclosure, the resolution excluding the resolution of the picture may indicate a precision to granularity in which a motion vector difference value is signaled.
  • the resolution of the motion vector difference value may be expressed in units of samples or pixels. For example, the resolution of motion vector differential values may be expressed using units of samples, such as quarter, half, integer, two, four sample units. Also, as the resolution of the motion vector difference value of the current block is smaller, the precision of the motion vector difference value of the current block may increase.
  • the motion vector difference value may be signaled based on various resolutions.
  • the absolute value or the transformed absolute value of the motion vector differential value may be signaled as an integer sample unit value.
  • the absolute value of the motion vector difference value may be signaled as a value of 1 / 2-subpel units. That is, the resolution of the motion vector difference value may be set differently depending on the situation.
  • the encoder and the decoder according to an embodiment of the present invention can efficiently signal the motion vector difference value of the current block by appropriately utilizing various resolutions for the motion vector difference value.
  • the resolution of the motion vector difference value may be set to a different value for each unit of at least one of a block, a coding unit, a slice, or a tile.
  • the first resolution of the motion vector difference value of the first block may be 1/4 sample unit.
  • '64' which is a value obtained by dividing the absolute value '16' of the motion vector difference value by the first resolution
  • the second resolution of the motion vector difference value of the second block may be an integer sample unit.
  • '16' which is a value obtained by dividing the absolute value '16' of the second motion vector difference value by the second resolution, may be signaled.
  • the encoder may signal information indicative of the motion vector differential value based on the resolution of the motion vector differential value.
  • the decoder may obtain a modified motion vector difference value from the signaled motion vector difference value.
  • the decoder may modify the motion vector difference value based on the resolution of the resolution difference value.
  • the relationship between the signaled motion vector difference value (valuePerResoultion) and the modified motion vector difference value (value Determined) of the current block is shown in Equation 1 below.
  • the motion vector difference value represents a modified motion vector difference value (Determined).
  • the signaled motion vector difference value represents a value before being corrected by resolution.
  • resoultion represents a resolution of a motion vector difference value of the current block. That is, the decoder may obtain the corrected motion vector difference value by multiplying the signaled motion vector difference value and resolution of the current block. Next, the decoder may obtain the motion vector of the current block based on the modified motion vector difference value. Also, the decoder may reconstruct the current block based on the motion vector of the current block.
  • the signaled value itself may be increased to increase signaling overhead for the motion vector difference value of the current block.
  • the signaling overhead for the motion vector difference value can be reduced by reducing the size of the signaled value.
  • the motion vector difference value of the current block may be signaled through fewer bits than when the resolution of the motion vector difference value of the current block is small.
  • it may be difficult to express the motion vector difference value of the current block in detail.
  • the encoder and decoder may select an advantageous resolution to signal a motion vector difference value according to the situation from among the plurality of resolutions.
  • the encoder can signal the selected resolution based on the situation.
  • the decoder may obtain a motion vector difference value of the current block based on the signaled resolution.
  • the resolution of the motion vector difference value of the current block may be any one of a plurality of available resolutions included in the resolution set.
  • the plurality of available resolutions may represent the resolutions available in a particular situation.
  • the type and number of available resolutions included in the resolution set may vary depending on the situation.
  • FIG. 10 is a diagram illustrating a method in which a resolution of a motion vector difference value of a current block is signaled according to an embodiment of the present invention.
  • a resolution indicator indicating a resolution of the motion vector difference value of the current block among the plurality of available resolutions may be signaled.
  • the encoder may signal a resolution indicator with information indicating the motion vector difference value.
  • the decoder may obtain a resolution of the motion vector difference value of the current block based on a resolution indicator indicating any one of a plurality of available resolutions included in the resolution set of the current block.
  • the decoder may obtain the motion vector difference value of the current block based on the resolution of the obtained motion vector difference value.
  • the resolution indicator may be represented by a variable length bit.
  • the resolution indicator may indicate any one of the resolution indices indicating each of the plurality of available resolutions in the resolution set of the current block.
  • the resolution index may be represented by a variable length bit having a preset maximum length.
  • the resolution indicator may include two or more flags each represented by one bit.
  • the preset maximum length may be a length determined according to the number of available resolutions. For example, if the available resolution set includes three available resolutions, the preset maximum length may be '2'.
  • the resolution index may be referred to as the value of the resolution indicator. Referring to FIG. 10, the value of the resolution indicator may be one of 0, 10, or 11.
  • the resolution set for motion compensation of the current block may include available resolutions in units of 1/4, 1, 4 samples.
  • the resolution of the motion vector difference value of the current block may be any one of the available resolutions 1/4, 1, and 4 shown in FIG. 10.
  • the smallest available resolution (ie, the highest precision resolution) of the plurality of available resolutions may be signaled by the indicator value using the shortest bit length.
  • an available resolution of 1/4 sample units which is the smallest value of available resolutions in units of 1/4, 1, and 4 samples, may be indicated by '0', which is an indicator value using the shortest bit length.
  • the remaining available resolutions may be indicated by indicator values represented by '10' and '11', respectively.
  • the signaling overhead may be reduced when the available resolution indicated by using the shortest length bit is used as the resolution of the motion vector difference value of the current block.
  • the available resolution having a high probability of being selected as a resolution of the motion vector difference value of the current block may be set to be signaled using the shortest bit length. That is, the available resolution indicated by the resolution indicator of the same indicator value may vary depending on the situation. This will be described in detail with reference to FIGS. 11 to 12.
  • the resolution set of the current block may consist of advantageous available resolutions depending on the situation. That is, the configuration of the plurality of available resolutions included in the resolution set of the current block may vary depending on the situation. This will be described in detail with reference to FIG. 13.
  • FIG. 11 and 12 are diagrams illustrating a method in which a resolution of a motion vector difference value of a current block is signaled according to another embodiment of the present invention.
  • FIG. 11 illustrates that the resolution set includes three available resolutions, the present disclosure is not limited thereto.
  • the resolution set may include a first available resolution (Resolution 1), a second available resolution (Resolution 2), and a third available resolution (Resolution 3).
  • the resolution indicator indicating each of the plurality of available resolutions included in the resolution set may be one of 0, 10, and 11.
  • the available resolution indicated by the resolution indicator of the same indicator value may vary depending on the situation.
  • an indicator value using the shortest bit of the values of the resolution indicator indicates the first available resolution in the first situation (case 1), and indicates the second available resolution in the second situation (case 2). can do.
  • the first soluble resolution and the second soluble resolution may be different from each other.
  • the first available resolution (Resolution 1), the second available resolution (Resolution 2), and the third available resolution (Resolution 3) are 0, 10, and 11 respectively. May be the available resolution indicated.
  • the first available resolution (Resolution 1), the second available resolution (Resolution 2), and the third available resolution (Resolution 3) are respectively 10, It may be an available resolution indicated in the case of 0 and 11.
  • the resolution of the motion vector difference value of the current block may be signaled by the method of FIG. 12 (a) or the method of FIG. 12 (b).
  • the resolution set may include available resolutions in units of 1/4, 1 and 4 samples.
  • each of the available resolutions may be indicated by different indicator values depending on the situation. For example, referring to FIG. 12A, available resolutions in units of 1/4, 1, and 4 samples may be signaled by 10, 0, and 11, respectively. That is, the smallest available resolution among the plurality of available resolutions may be indicated by an indicator value using the shortest bit length.
  • This signaling method may be used in situations where it is advantageous to signal the motion vector differential value of the current block based on the smallest available resolution among the plurality of available resolutions.
  • available resolutions in units of 1/4, 1, and 4 samples may be signaled by 10, 11, and 0, respectively. That is, according to an embodiment of the present invention, it may be advantageous to signal the motion vector difference value of the current block based on the available resolution rather than the smallest available resolution among the plurality of available resolutions according to the situation.
  • the available resolution that is not the smallest available resolution among the plurality of available resolutions may be indicated by the indicator value using the shortest bit length.
  • the largest available resolution among the plurality of available resolutions may be indicated by an indicator value using the shortest bit length.
  • FIG. 13 is a diagram illustrating an embodiment in which a configuration of available resolutions included in a resolution set is changed.
  • the resolution of the motion vector difference value in the first situation (case1) is obtained from the first situation resolution set
  • the resolution of the motion vector difference value in the second situation (case2) is the second situation resolution. Can be obtained from a set.
  • the first situation resolution set may include a first available resolution (Resolution 1), a second available resolution (Resolution 2), and a third available resolution (Resolution 3).
  • the second situation resolution set may include a fourth available resolution (A), a fifth available resolution (B), and a sixth available resolution (C).
  • some of the available resolutions included in the first situation resolution set and some of the available resolutions included in the second situation resolution set may be identical to each other. That is, certain available resolutions may be included in both the first situation resolution set and the second situation resolution set.
  • the first situation resolution set may consist of available resolutions in units of 1/4, 1, 4 samples.
  • the second situation resolution set may consist of available resolutions in units of 1/4, 1/2, 1 sample. That is, the second situation resolution set may include other available resolutions instead of the largest available resolution among the plurality of available resolutions included in the first situation resolution set.
  • the other soluble resolution may be a smaller soluble resolution than the largest soluble resolution.
  • the largest available resolution among the available resolutions included in the second situation resolution set may be smaller than the largest available resolution among the available resolutions included in the first situation resolution set.
  • the first situation resolution set may be advantageous in a situation in which signaling overhead needs to be reduced compared to a situation in which the precision of the motion vector difference value needs to be increased.
  • the second situation resolution set may be advantageous in situations where the precision of the motion vector differential value needs to be increased compared to the situation in which signaling overhead needs to be reduced.
  • the precision of the required motion vector difference value may vary according to the prediction mode of the current block.
  • motion compensation based on the affine model may be motion prediction for irregular motions other than translation motion. Accordingly, when the prediction mode of the current block is the motion compensation mode based on the affine model, it may be necessary to signal the motion vector difference value in detail compared to the conventional general inter prediction mode.
  • the MVP candidate list of the current block may be configured in different ways according to the prediction mode of the current block. Accordingly, the configuration of the plurality of available resolutions included in the resolution set of the current block may vary depending on how the MVP candidate list for motion compensation of the current block is constructed.
  • the probability that the similarity between the motion vector of the current block and the motion vector predictor is high may vary depending on how the MVP candidate list for motion compensation of the current block is constructed. Accordingly, the configuration of the plurality of available resolutions included in the resolution set of the current block may vary depending on how the MVP candidate list for motion compensation of the current block is constructed.
  • the situation referred to in the above-described embodiments through FIGS. 10 to 13 may refer to a method in which an MVP candidate list of the current block is configured.
  • the MVP candidate list for motion compensation of the current block may be configured based on any one of a plurality of methods.
  • the MVP candidate list of the current block may be configured in different ways according to the prediction mode of the current block. That is, the situation mentioned in the above embodiments may be defined according to which of the plurality of methods the MVP candidate list for the motion compensation of the current block is configured.
  • the configuration of the plurality of available resolutions included in the resolution set of the current block may vary according to a method of constructing an MVP candidate list of the current block.
  • the encoder and the decoder may construct an MVP candidate list for motion compensation of the current block by using any one of the first method and the second method described above.
  • the configuration of the plurality of available resolutions included in the resolution set of the current block may vary depending on which of the first and second methods described above is used to construct the MVP candidate list of the current block.
  • resolution of the motion vector difference value of the current block may be obtained from the first resolution set.
  • the resolution of the motion vector difference value of the current block may be obtained from the second resolution set.
  • some of the plurality of available resolutions constituting the first resolution set and the plurality of available resolutions constituting the second resolution set may be different from each other.
  • the second resolution set may include at least one other available resolution other than the plurality of available resolutions included in the first resolution set.
  • the first method may be a method for constructing an MVP candidate list based on an affine model
  • the second method may be a method for constructing an MVP candidate list based on an affine model.
  • Motion compensation based on the affine model may be motion prediction for irregular motions other than translation motion. Accordingly, it may be necessary to signal the motion vector difference value in detail as compared with the conventional general inter prediction method.
  • the first resolution set may include other available resolutions instead of the largest available resolution among the plurality of available resolutions included in the second resolution set.
  • the other soluble resolution may be a smaller soluble resolution than the largest soluble resolution.
  • the largest available resolution among the available resolutions included in the first resolution set may be smaller than the largest available resolution among the available resolutions included in the second resolution set.
  • the largest available resolution among the available resolutions included in the first resolution set may be resolution of one sample unit.
  • the largest available resolution among the available resolutions included in the second resolution set may be resolution of 4 sample units.
  • the first resolution set may be composed of available resolutions in units of 1/4, 1/2, 1 sample.
  • the second resolution set may be composed of available resolutions in units of 1/4, 1, 4 samples.
  • the first resolution set may be composed of available resolutions in units of 1/16, 1/4, 1 sample.
  • the second resolution set may be composed of available resolutions in units of 1/4, 1, 4 samples.
  • the decoder may use the signaled resolution indicator to determine the resolution of the motion vector difference value of the current block. For example, the decoder may obtain a resolution indicator indicating a resolution of a motion vector difference value of the current block among a plurality of available resolutions included in either one of the first resolution set and the second resolution set. Also, the decoder may obtain the modified motion vector difference value of the current block based on the resolution indicator. The decoder may reconstruct the current block based on the modified motion vector difference value.
  • the available resolution indicated by a particular value of resolution indicator values may vary depending on which of the first and second methods the MVP candidate list is constructed.
  • the decoder may obtain a resolution indicator having the first value. If the MVP candidate list for motion compensation of the current block is configured using the first method, the available resolution indicated by the first value may be the seventh available resolution. If the MVP candidate list for motion compensation of the current block is configured using the second method, the available resolution indicated by the first value may be an eighth available resolution. In this case, the seventh soluble resolution and the eighth soluble resolution may be different resolutions.
  • the seventh soluble resolution may be an soluble resolution that includes both the first resolution set and the second resolution set.
  • the seventh available resolution may be indicated by a second value different from the first value.
  • the first value may be any one of '10 and 11 'or one of '00 and 01'.
  • the second value may be any one different from the first value among '10 and 11 'or one different from the first value among '00 and 01'.
  • the smallest available resolution among the available resolutions included in the first resolution set may be smaller than the smallest available resolution among the available resolutions included in the second resolution set.
  • the available resolutions included in the second resolution set may be relatively large resolutions. Accordingly, when the MVP candidate list for motion compensation of the current block is configured using the second method, it may be necessary to increase the precision of the motion vector difference value. As mentioned above, when there is a need to increase the precision of the motion vector difference value, it may be advantageous to signal the smallest available resolution using the shortest length of bits among the plurality of available resolutions.
  • the third value may be a value expressed using a bit having the shortest length among the values of the resolution indicator.
  • the third value may indicate the smallest available resolution among the plurality of available resolutions included in the second resolution set. Can be. According to one embodiment, the smallest available resolution among the available resolutions included in the second resolution set may be 1/4.
  • the available resolutions included in the first resolution set may be relatively small resolutions. Accordingly, when the MVP candidate list for motion compensation of the current block is configured using the first method, it may be necessary to reduce signaling overhead for the motion vector difference value. Therefore, when the MVP candidate list for motion compensation of the current block is configured using the first method, the third value indicates an available resolution other than the smallest available resolution among the plurality of available resolutions included in the first resolution set. can do. According to one embodiment, the third value may indicate the largest available resolution, the second smallest available resolution, or the second largest available resolution among the available resolutions included in the first resolution set. For example, the available resolution other than the smallest available resolution among the plurality of available resolutions included in the first resolution set may be any one of 1/4, 1/2, 1, and 4.
  • the configuration of available resolutions included in the resolution set of the current block may vary depending on the MVP index indicating the motion vector predictor of the current block.
  • the MVP index may indicate the number of candidates in the MVP candidate list of the current block that is referenced to derive the motion vector of the current block.
  • the decoder may obtain an MVP index indicating a motion vector predictor referenced for motion compensation of the current block from the MVP candidate list for motion compensation of the current block.
  • the available resolution indicated by the specific value of the resolution indicator of the current block may vary depending on whether the MVP index is larger or smaller than the preset index.
  • the motion vector predictor candidate corresponding to the small MVP index may have a higher probability of being similar to the motion vector of the current block.
  • the absolute value of the motion vector difference value of the current block may be smaller. Accordingly, when the MVP index corresponding to the motion vector predictor of the current block is smaller than the preset MVP index, the smallest available resolution among the plurality of available resolutions included in the resolution set of the current block is the shortest among the values of the resolution indicator. It can be indicated by a value expressed using bits of length.
  • a specific available resolution which is not the smallest available resolution among the plurality of available resolutions included in the resolution set of the current block, It may be indicated by a value expressed using the bit of the shortest length among the values.
  • the specific available resolution may be the largest resolution among the plurality of available resolutions.
  • the particular available resolution may be the second largest or second smallest resolution among the plurality of available resolutions.
  • the resolution set of the current block may include available resolutions in units of 1/4, 1, and 4 samples.
  • the MVP index for motion compensation of the current block is smaller than the preset MVP index (Candidate 1, Candidate 2)
  • the bit with the shortest bit of resolution, 1/4 unit, which is the smallest available resolution among 1/4, 1, and 4 May be signaled using.
  • the MVP index for motion compensation of the current block is greater than the preset MVP index (Candidate N)
  • Resolution of 1 or 4 units of 1/4, 1, 4 may be signaled using the smallest number of bits. Can be.
  • FIG. 15 is a diagram illustrating another embodiment of a method in which a resolution of a motion vector difference value is signaled according to a motion vector predictor of a current block. As described above with reference to FIG. 14, depending on the MVP index for the motion compensation of the current block, a method in which the resolution of the motion vector difference value of the current block is signaled may vary.
  • the MVP candidate list for motion compensation of the current block may include candidates obtained through various methods.
  • the MVP candidate list for motion compensation of the current block may include at least one of a spatial candidate, a temporal candidate, or a zero motion vector.
  • the configuration of the plurality of available resolutions included in the resolution set of the current block may vary depending on how the motion vector predictor of the current block is obtained. This is because similarity with the current block estimated according to the motion vector predictor candidate may be different. For example, it may be estimated that the spatial candidate has a high probability of being similar to the current block.
  • motion vector predictor candidates such as temporal candidates and zero motion vectors, may be estimated to be less likely to be similar to the current block than spatial candidates.
  • the smallest available resolution among the plurality of available resolutions included in the resolution set of the current block uses the shortest length of the resolution indicator values. It can be indicated by the value expressed.
  • a specific available resolution that is not the smallest available resolution among the plurality of available resolutions included in the resolution set of the current block is the shortest length among the values of the resolution indicator. It can be indicated by a value expressed using the bits of.
  • the specific available resolution may be the largest resolution among the plurality of available resolutions.
  • the particular available resolution may be the second largest or second smallest resolution among the plurality of available resolutions.
  • different resolution sets are shown to include the same number of available resolutions, but the present disclosure is not limited thereto.
  • different resolution sets may include different numbers of available resolutions.
  • the first resolution set may include three available resolutions.
  • the third resolution set used in the third situation may include two available resolutions.
  • the encoder and decoder may configure a resolution set that includes different numbers of available resolutions depending on the situation.
  • the motion information set may include a reference picture index that indicates a reference picture of the current block.
  • the decoder may obtain the POC of the reference picture of the current block from the signaled reference picture index.
  • the configuration of the plurality of available resolutions included in the resolution set of the current block may vary according to the POC of the current picture and the POC of the reference picture. According to one embodiment, based on the POC of the current picture and the POC of the reference picture, some of the available resolutions that make up the resolution set of the current block may be excluded.
  • the resolution of the motion vector difference value of the current block may be obtained from the fourth resolution set.
  • the resolution of the motion vector difference value of the current block may be obtained from the fifth resolution set.
  • the fourth resolution set may be configured of the remaining available resolutions except the smallest available resolution among the available resolutions included in the fifth resolution set. That is, according to the POC of the current picture and the POC of the reference picture, the number of available resolutions constituting the resolution set of the current block may vary.
  • the resolution of the motion vector difference value of the current block may be signaled in another way according to the quantization parameter (QP).
  • QP quantization parameter
  • any of the signaling methods described above with reference to FIGS. 11 through 15 may be determined according to the QP of the current block.
  • the resolution of the motion vector difference value of the current block may be signaled using the determined signaling method.
  • the smaller the QP of the current block the smaller the resolution of the motion vector difference value of the current block.
  • the resolution of the motion vector difference value of the current block may be signaled in different ways according to the frame rate.
  • any of the signaling methods described above with reference to FIGS. 11 through 15 may be determined according to a frame rate of a video signal including a current block.
  • the resolution of the motion vector difference value of the current block may be signaled using the determined signaling method.
  • the higher the frame rate of the video signal the shorter the time interval between the frames, the higher the probability that the motion vector is smaller. Accordingly, the higher the frame rate of the current block, the smaller the resolution of the motion vector difference value of the current block.
  • the resolution of the motion vector difference value of the current block may be signaled in another way according to the size ratio or size difference between the current block and the neighboring blocks of the current block.
  • any of the signaling methods described above with reference to FIGS. 11 through 15 may be determined according to a size ratio or a size difference between a current block and neighboring blocks of the current block.
  • the above-described embodiments may be applied in the same or corresponding manner even when a motion vector that is not a motion vector difference value is directly signaled.
  • the encoder and the decoder may modify the motion vector predictor before adding the motion vector difference value.
  • modification may be performed to the motion vector predictor only when some of the motion vector predictor candidates included in the MVP candidate list of the current block are selected as the motion vector predictor of the current block. For example, when a motion vector predictor candidate corresponding to an MVP index smaller than a predetermined MVP index among the motion vector predictor candidates included in the MVP candidate list of the current block is used as the motion vector predictor of the current block, the corresponding motion vector Modifications to the predictor can be performed.
  • a method of signaling a plurality of available resolutions included in the resolution set may vary depending on whether modification to the motion vector predictor is performed. For example, when the motion vector predictor of the current block is modified, the smallest available resolution among the plurality of available resolutions included in the resolution set may be signaled using the smallest number of bits. In addition, when the motion vector predictor of the current block is not modified, any one of the resolutions other than the smallest available resolution among the plurality of available resolutions included in the resolution set may be signaled using the least number of bits. .
  • the motion vector predictor may be modified after adding the motion vector difference values.
  • the resolution of the motion vector difference value of the current block may be signaled in a different way than if the motion vector predictor is modified before adding the motion vector difference value.
  • the prediction error can be reduced through the motion vector correction process even if the precision of the motion vector difference value is low.
  • any one of the other resolutions other than the smallest available resolution among the plurality of resolutions included in the resolution set has the least number of bits. May be signaled using.
  • the motion vector predictor of the current block is not modified before adding the motion vector difference value, the smallest available resolution among the plurality of available resolutions included in the resolution set may be signaled using the least number of bits.
  • the motion vector modification process performed later may vary depending on which candidate the motion vector or motion vector predictor of the current block is.
  • the process of modifying the motion vector may include a process for searching for a more accurate motion vector.
  • the decoder may search for a block matching the current block according to a predefined method from the reference point.
  • the reference point may be a position corresponding to the determined motion vector or the motion vector predictor.
  • Motion vector search can be performed by various methods. For example, template matching or bilateral matching may be used for the search. In this case, the degree of movement from the reference point may vary according to a predefined method. Different motion vector correction processes may be different degrees of movement from the reference point.
  • the correct motion vector predictor candidate may begin with a detailed correction process and the incorrect motion vector predictor candidate may begin with a less detailed correction process.
  • the correct motion vector predictor candidate and the incorrect motion vector predictor candidate may be determined according to a position in the MVP candidate list.
  • the correct motion vector predictor candidate and the incorrect motion vector predictor candidate may be determined according to how each of the motion vector predictor candidates was generated. How the motion vector predictor candidate is generated may indicate which position among the spatial candidates of the current block.
  • a more detailed and less detailed modification can be whether the block is searched little by little or a lot more.
  • a process of searching by moving a little more may be added from the best matching block found while moving a lot.
  • the above-described template matching method may be a method of obtaining a comparison target block having the smallest difference from the template of the current block based on a value difference between templates of the comparison target block to be compared with the template of the current block.
  • the template of a particular block may be obtained based on the surrounding samples of the particular block.
  • 16 is a diagram illustrating a method of obtaining a resolution of a motion vector difference value based on a template matching method according to an embodiment of the present invention.
  • the resolution of the motion vector difference value of the current block may not be signaled.
  • the decoder may obtain a resolution of the current block based on a cost calculation, such as a template matching method.
  • the reference block may be obtained based on the motion vector predictor and the motion vector difference value.
  • the motion vector difference value may be a motion vector difference value modified by the resolution of the motion vector difference value of the current block. Accordingly, the position of the reference block in the reference picture may vary according to the resolution of the motion vector difference value of the current block.
  • the resolution set for motion compensation of the current block may be configured with preset available resolutions.
  • the resolution set of the current block may include a first available resolution (Resolution 1), a second available resolution (Resolution 2), and a third available resolution (Resolution 3).
  • a plurality of reference block candidates corresponding to each of the available resolutions included in the resolution set of the current block may be obtained based on the reference point 1601 indicated by the motion vector predictor of the current block.
  • Reference block candidates of the available resolution number included in the resolution set may be obtained.
  • the plurality of reference block candidates correspond to the first reference block candidate 1602 corresponding to the first available resolution, the second reference block candidate 1603 corresponding to the second available resolution, and the third available resolution.
  • the third reference block candidate 1604 may be included.
  • the decoder may use any one of the plurality of reference block candidates as a reference block of the current block. For example, the decoder may select a reference block candidate having the lowest cost as a reference block of the current block based on each of the plurality of reference block candidates and the current block based on a template matching result. Also, the decoder may reconstruct the current block based on the reference block.
  • the resolution of the motion vector difference value of the current block may be signaled based on a template matching result between each of the aforementioned reference block candidates and the current block.
  • the template matching operation described above may be performed in the same manner as in the decoder.
  • the encoder may signal the available resolution corresponding to the lowest cost reference block candidate using the least number of bits based on the template matching result.
  • the encoder and the decoder may perform template matching only on some of the plurality of reference block candidates.
  • the template matching with the current block may be performed only.
  • the bit having the shortest length among the available resolutions included in the resolution set of the current block is used.
  • the available resolution that is signaled can be determined. Either of the first available resolution and the second available resolution may be signaled using the bit of the shortest length.
  • the third available resolution corresponding to the reference block candidate that has not performed template matching with the other of the first available resolution and the second available resolution may be signaled using additional bits.
  • the encoder and the decoder may reduce the amount of computation required for the template matching method.
  • whether the embodiment described with reference to FIG. 16 may be applied may be determined according to the magnitude of the signaled motion vector difference value.
  • the template matching method may be used only when the signaled motion vector difference value is larger than the preset value. This is because the template matching cost difference between reference block candidates according to resolution may not be obvious when the signaled motion vector difference value is smaller than the preset value.
  • FIG. 17 is a diagram illustrating a method of obtaining a resolution of a motion vector difference value based on a bilateral matching method according to an embodiment of the present invention.
  • the two-side matching method may be used in place of the template matching method described with reference to FIG. 16.
  • the bilateral matching method represents a method of reconstructing a current block based on reference blocks of each of two or more reference pictures along a motion trajectory.
  • the two-side matching method may be to obtain a set having the smallest difference based on the difference between the reference blocks of each of the two or more reference pictures.
  • the current block when the current block is a pair prediction block, the current block may be reconstructed based on two or more reference blocks of two or more different reference pictures.
  • reference block candidates corresponding to a specific available resolution may be configured for each of a first reference picture and a second reference picture.
  • the encoder and decoder determine a reference in the first reference picture 1 based on a bilateral matching result between the reference block candidate in the first reference picture 1 and the reference block candidate in the second reference picture 2.
  • Reference blocks within the block and the second reference picture 2 may be obtained. 17 may be applied to the embodiments of FIG. 17 in the same or corresponding manner.
  • two motion vector difference values may be separately signaled.
  • resolutions applied to each of the two motion vector difference values may be the same or different from each other.
  • the resolution of the motion vector difference value for each reference picture list may be determined based on the above-described two-side matching method.
  • resolution sets corresponding to each of the two reference picture lists may be configured independently of each other.
  • the resolution set corresponding to the first reference picture list L0 may include m available resolutions.
  • the resolution set corresponding to the second reference picture list L1 may include n available resolutions.
  • the encoder and the decoder determine a motion vector difference value of each of the reference picture list based on a bilateral matching result between n reference block candidates corresponding to the first reference picture list and m reference block candidates corresponding to the second reference picture list. Resolution of can be obtained.
  • the encoder and the decoder may need to perform (nxm) bilateral matching.
  • a resolution set common to a plurality of reference picture lists may be used for the resolution of the motion vector difference value.
  • a resolution set commonly used for the first reference picture list L0 and the second reference picture list L1 may include n available resolutions.
  • the same resolution may be applied to the motion vector difference values corresponding to each of the first reference picture list L0 and the second reference picture list L1.
  • the encoder and the decoder may obtain a resolution of motion vector difference values of each of the first reference picture list L0 and the second reference picture list L1 based on n two-sided matching results.
  • the difference between the motion vector predictor corresponding to the specific reference picture list and the motion vector and the difference between the motion vector predictor corresponding to the other reference picture list and the motion vector may be similar.
  • the resolution of the motion vector difference value corresponding to the specific reference picture list may be the same as the resolution of the motion vector difference value corresponding to the other reference picture list.
  • the resolution of the motion vector difference value corresponding to the specific reference picture list of the current block may be the same as the resolution of the motion vector difference value corresponding to the other reference picture list of the current block.
  • FIG. 18 is a diagram illustrating a method in which a resolution of a motion vector difference value is signaled for each reference picture list of a current block according to an embodiment of the present invention.
  • a first list resolution indicator indicating a resolution of a motion vector difference value corresponding to the first reference picture list L0 and a second indicating a resolution of a motion vector difference value corresponding to the second reference picture list L1.
  • the list resolution indicator may be signaled respectively.
  • the decoder may obtain a resolution of the motion vector difference value corresponding to the first reference picture list based on the first list resolution set and the first list resolution indicator.
  • the decoder may obtain a resolution of the motion vector difference value corresponding to the second reference picture list based on the second list resolution set and the second list resolution indicator.
  • one of the available resolutions included in the second list resolution set may be resolution (L0 resolution) depending on the resolution of the motion vector difference value corresponding to the first reference picture list.
  • the decoder may determine a motion vector corresponding to the second reference picture list based on the resolution of the motion vector difference value corresponding to the first reference picture list.
  • the resolution of the difference value can be determined.
  • the decoder may use the same resolution as the resolution of the motion vector difference value corresponding to the first reference picture list as the resolution of the motion vector difference value corresponding to the second reference picture list.
  • the preset value may be a value expressed using the least number of bits among the values of the second list resolution indicator.
  • other values of the second list resolution indicator may be used as indicator values indicating remaining available resolutions (Remaining resolution 1, Remaining resolution 2), respectively.
  • the resolution of the motion vector difference value corresponding to the first reference picture list L0 is determined before the resolution of the motion vector difference value corresponding to the second reference picture list L1.
  • the present disclosure is not limited thereto.
  • the first list resolution set may include a resolution that depends on the resolution of the motion vector difference value corresponding to the second reference picture list L1.
  • FIG. 19 is a diagram illustrating an embodiment of a method in which a resolution of a motion vector difference value of a current block is signaled according to a resolution of a picture.
  • the resolution of the motion vector difference value of the current block may be signaled in another way according to at least one of the resolution or size of the picture.
  • Information about the resolution or size of the picture may be signaled from the encoder.
  • the decoder can obtain information about the resolution or size of the signaled picture.
  • the resolution of the motion vector difference value of a specific block may be different in each of a low resolution picture and a high resolution picture. Referring to FIG.
  • the distance is determined in the high resolution picture.
  • the value to represent may be greater than the value to indicate the corresponding distance in the low resolution picture.
  • the resolution of the motion vector difference value of the current block may be set to a value larger than the resolution of the motion vector difference value of another picture in which the resolution of the picture is lower than the current picture including the current block.
  • the smallest available resolution among the plurality of available resolutions may not be indicated by a value expressed using the shortest bit length.
  • the available resolution rather than the smallest available resolution among the plurality of available resolutions may be indicated by a value represented using the shortest bit length.
  • the resolution of the motion vector difference value may be signaled based on the size of the reference picture of the current block.
  • 20 shows reference block candidates corresponding to each of the available resolutions included in the resolution set of the current block based on the reference point 2001 indicated by the motion vector predictor of the current block.
  • the third reference block candidate corresponding to the third available resolution 3 is located outside the reference picture.
  • the available resolution may be excluded from the signaling target. That is, when the point indicated by the motion vector difference value modified based on the specific available resolution based on the reference point 2001 is outside the boundary of the current picture, the available resolution may not be signaled.
  • a resolution set may include N available resolutions.
  • a resolution indicator indicating any one of (N-M) except for M available resolutions among N available resolutions may be signaled.
  • the reference block candidate corresponding to each of the M available resolutions may be a reference block candidate outside the boundary of the reference picture.
  • the resolution set may include a first soluble resolution, a second soluble resolution, and a third soluble resolution.
  • the encoder may signal a resolution indicator indicating any one of the first available resolution and the second available resolution except for the third available resolution.
  • the encoder may signal a resolution indicator indicating one of the first available resolution and the second available resolution using one bit.
  • the decoder may determine an available resolution to be excluded from the signaling object based on the size of the reference picture of the current block and the signaled motion vector difference value. In the embodiment of FIG. 20, the decoder may recognize that the third available resolution will not be signaled. The decoder may obtain a resolution of the motion vector difference value of the current block based on the resolution indicator signaled through one bit.
  • whether or not to use the method described above with reference to FIG. 20 may be determined based on the position of the reference point indicated by the motion vector predictor. For example, when the position of the reference point is within a preset distance from the boundary of the reference picture, the method described with reference to FIG. 20 may be used.
  • whether the embodiment described with reference to FIG. 20 may be applied may be determined according to the magnitude of the signaled motion vector difference value. For example, only when the signaled motion vector difference value is greater than the preset value, the encoder and decoder may examine whether there is an available resolution that generates a reference block candidate that deviates from the reference picture. When the signaled motion vector difference value is smaller than the preset value, the encoder and the decoder may not use the method described with reference to FIG. 20.
  • a new available resolution may be used in place of the available resolution excluded from the signaling subject. For example, if a reference block candidate corresponding to a motion vector difference value modified based on a particular available resolution is located outside the boundary of the reference picture, an indicator value indicating a specific available resolution may be used to determine an available resolution that is different from the specific available resolution. Can be directed. For example, other soluble resolutions may be smaller than certain soluble resolutions.
  • the resolution set of the current block may consist of available resolutions in units of 1/4, 1, 4 samples. At least a part of the reference block candidate corresponding to the available resolution in units of 4 samples may be located outside the boundary of the reference picture of the current block. In this case, the resolution indicator value indicating the available resolution in units of 4 samples may indicate the available resolution in units of 2 samples.
  • the resolution set of the current block includes available resolutions in units of 1/4, 1, and 4 samples, the present disclosure is not limited thereto. For example, at least some of the available resolutions in 1/4, 1, 4 sample units may be replaced by some of the available resolutions in 1/2, 2, 1/8, 1/16 sample units.
  • the decoder may parse the bitstream to obtain a signaled motion vector difference value of the current block (S2101).
  • the signaled motion vector difference value may be a value expressed in a resolution unit of the motion vector difference value.
  • the decoder may obtain a resolution indicator indicating a resolution of the motion vector difference value of the current block.
  • the resolution indicator may indicate any one of a plurality of values represented by bits of variable length.
  • the decoder may parse the first bit of the resolution indicator (S2103). Next, the decoder may determine whether the first bit of the resolution indicator is '0' (S2105). If the first bit is '0', an available resolution of 1/4 unit may be used as a resolution of the motion vector difference value of the current block. In this case, the resolution indicator may not include the second bit, which will be described later.
  • the decoder may determine whether a reference block candidate corresponding to an available resolution in units of four samples is located within a boundary of the reference picture (S2107).
  • the reference block candidate corresponding to the available resolution in units of 4 samples may be a reference block candidate indicated by the motion vector candidate obtained based on the available resolution in units of 4 samples.
  • the motion vector candidate may be a value obtained by adding a motion vector difference value modified based on available resolution in units of 4 samples from the signaled motion vector difference value of step S2101 to the motion vector predictor of the current block.
  • the available resolution in units of one sample may be used as a resolution of the motion vector difference value of the current block.
  • the resolution indicator may not include the second bit, which will be described later.
  • the decoder may parse the second bit of the resolution indicator (S2109). Next, the decoder may determine the resolution of the motion vector difference value of the current block based on the second bit of the resolution indicator (S2111). For example, the indicator value indicating the available resolution in units of one sample may be '10', and the indicator value indicating the available resolution in units of four samples may be '11'. When the second bit of the resolution indicator is '0', the decoder may use the available resolution of one sample unit as the resolution of the motion vector difference value of the current block. Conversely, when the second bit of the resolution indicator is '1', the decoder may use the available resolution of 4 samples as a resolution of the motion vector difference value of the current block.
  • step S2101 the step of obtaining the signaled motion vector difference value (S2101) is shown to precede the step (S2103) of parsing the first bit of the resolution indicator, but the present disclosure is not limited thereto.
  • step S2101 may follow step S2103.
  • each bit may be implemented through a separate index or flag on a syntax for video signal processing.
  • parsing the second bit of the resolution indicator may be performed after obtaining at least the motion vector predictor of the current block.
  • the second bit of the resolution indicator may be determined whether to parse according to a position indicated by the motion vector predictor of the current block.
  • signaling for the corresponding available resolution may be omitted. That is, the second bit of the resolution indicator on the syntax in which the video signal is encoded or decoded may be parsed later than the motion vector predictor information of the current block.
  • parsing the second bit of the resolution indicator may be performed after obtaining at least the signaled motion vector differential value of the current block.
  • the second bit of the resolution indicator may be determined whether to parse according to the signaled motion vector difference value of the current block. That is, the second bit of the resolution indicator on the syntax at which the video signal is encoded or decoded may be parsed later than the information indicating the motion vector difference value of the current block.
  • a decoder may parse a bitstream to obtain a signaled motion vector difference value of a current block (2001).
  • the signaled motion vector difference value may be a value expressed in a resolution unit of the motion vector difference value.
  • the decoder may obtain a resolution indicator indicating a resolution of the motion vector difference value of the current block.
  • the decoder may parse the nth bit of the resolution indicator (S2205).
  • n may be an integer from 1 to N.
  • n may be a value sequentially increasing from 1 to N in accordance with a loop operation. If the nth bit of the resolution indicator is '0', the decoder may use the nth available resolution as a resolution of the motion vector difference value of the current block. In this case, the nth available resolution may be an available resolution indicated by an nth indicator value among available resolutions included in the resolution set of the current block.
  • the decoder may exclude the nth available resolution from the previous resolution set (S2207).
  • the decoder may obtain the first current resolution set by excluding the nth available resolution from the previous resolution set (S2207).
  • the decoder may obtain the first current resolution set by excluding the nth available resolution from the initial resolution set.
  • the decoder may determine whether the number of available resolutions included in the first current resolution set is one (S2209). When the number of available resolutions included in the first current resolution set is one, the decoder may use the available resolutions included in the first current resolution set as a resolution of the motion vector difference value of the current block.
  • the decoder may exclude the available resolutions corresponding to the reference block candidates located outside the boundary of the reference picture in the first current resolution set (S2211).
  • the decoder may obtain the second current resolution set by excluding an available resolution corresponding to a reference block candidate located outside the boundary of the reference picture in the first current resolution set.
  • the decoder may determine whether the number of available resolutions included in the second current resolution set is one (S2213). When the number of available resolutions included in the second current resolution set is one, the decoder may use the available resolutions included in the second current resolution set as the resolution of the motion vector difference value of the current block. If the number of available resolutions included in the first current resolution set is not one, the decoder may perform steps S2203 to 2013 again. In addition, the decoder may increase n by one. In this case, the decoder may use the second current resolution set as the previous resolution set in step S2207 of the next loop operation.
  • the information representing the motion vector difference value of the current block may include first information about the motion vector difference value and second information about the motion vector difference value.
  • the first information and the second information may be different information on the motion vector difference value, respectively.
  • the decoder may parse first information about a motion vector difference value.
  • the decoder may parse the second information about the motion vector difference value.
  • the decoder may obtain the motion vector of the current block based on the first information on the motion vector difference value and the second information on the motion vector difference value.
  • any one of parsing the first information or the second information on the motion vector difference value may be omitted.
  • a description will be given of a condition in which the first information or the second information about the motion vector difference value of the current block is parsed.
  • the information representing the motion vector difference value of the current block may include first information about the motion vector difference value and second information about the motion vector difference value.
  • the motion vector of the current block may be determined through either one of the first information about the motion vector difference value and the second information about the motion vector difference value.
  • the decoder may parse first information about a motion vector difference value.
  • the decoder may obtain a plurality of reference block candidates using the first information about the motion vector difference value.
  • the decoder may determine whether all of the plurality of reference block candidates are located within a boundary of the reference picture. When some of the plurality of reference block candidates are located outside the boundaries of the reference picture, the decoder may obtain the motion vector of the current block based on the first information about the motion vector difference value. If all of the plurality of reference block candidates are located within the boundary of the reference picture, the decoder may parse the second information about the motion vector difference value. Next, the decoder may obtain the motion vector of the current block based on the first information on the motion vector difference value and the second information on the motion vector difference value.
  • the first information about the motion vector difference value of the current block may be information excluding the sign information of the motion vector difference value.
  • the first information about the motion vector difference value of the current block may indicate an absolute value of the motion vector difference value of the current block.
  • the second information about the motion vector difference value of the current block may indicate a sign of the motion vector difference value of the current block.
  • the motion vector difference value of the specific block may be obtained without parsing the second information. Accordingly, the encoder and decoder can reduce the signaling overhead for motion vector difference values.
  • a method of implicitly signaling the sign information of the motion vector difference value of the current block will be described in detail.
  • FIG. 25 is a diagram illustrating a method in which a sign bit of a motion vector difference value of a current block is implicitly signaled according to an embodiment of the present invention.
  • the information representing the motion vector difference value may include at least one of absolute value information of the motion vector difference value and sign information of the motion vector difference value.
  • the sign information of the motion vector difference value may be either a negative sign ( ⁇ ) or a positive sign (+).
  • the information representing the motion vector difference value may include absolute value information and sign information for each component.
  • the motion vector difference value of the current block may consist of an x-axis component and a y-axis component.
  • the x-axis component of the motion vector difference value may include a distance (absolute value) and direction (sign) on the x-axis between the reference point indicated by the motion vector predictor of the current block and the position of the reference block.
  • the y-axis component of the motion vector difference value may include a distance (absolute value) and direction (sign) on the y-axis between the reference point indicated by the motion vector predictor of the current block and the position of the reference block.
  • Four reference block candidates (Candidate reference block 1) may be obtained. Also, based on the x-axis component of the motion vector difference value of the current block to which the positive sign (+) is applied and the y-axis component of the motion vector difference value of the current block to which the positive sign (-) is applied, the fifth reference block candidate Candidate reference block 2 may be obtained.
  • the motion of the current block may be heightened.
  • the encoder may not encode the heighted sign information.
  • the decoder may determine the code of the motion vector difference value corresponding to the coded coded information without performing a parsing process on the coded information.
  • a fourth reference block candidate (Candidate reference block 1) may be located outside the boundary of the reference picture.
  • the sign information of the x-axis component of the motion vector difference value of the current block may be heightened.
  • the decoder may acquire sign information of the x-axis component of the motion vector difference value without parsing sign information of the x-axis component of the motion vector difference value.
  • the decoder may use a positive sign as a sign of the x-axis component of the motion vector difference value.
  • FIG. 26 is a diagram illustrating a method in which a sign bit of a motion vector difference value of a current block is implicitly signaled according to an embodiment of the present invention.
  • the motion vector predictor of the current block may not be determined until the sign of the motion vector difference value of the current block is determined.
  • the sign of the motion vector difference value of the current block may be determined before the MVP index indicating the MVP of the current block is parsed on the syntax for video signal processing.
  • the decoder adds a motion vector difference value to which a negative sign or a positive sign is applied to each of the MVP candidates A and MVP candidate B, thereby adding a plurality of reference block candidates (Candidate reference block A-1 and Candidate). reference block A-2, Candidate reference block B-1, and Candidate reference block B-2).
  • the decoder may determine whether all of the candidate reference block A-1 and Candidate reference block B-1 based on a specific component of a motion vector difference value with a negative sign are located outside the boundary of the reference picture. Can be. If all of the plurality of reference block candidates based on a particular component of the negative vectored motion vector difference value are located outside the boundary of the reference picture, the decoder does not parse the sign information of the specific component, and thus the motion vector difference value of the current block is determined. The sign of a particular component can be determined. In this case, the decoder may use a positive sign as a sign of a specific component of the motion vector difference value of the current block.
  • the decoder may determine whether all of the plurality of reference block candidates (Candidate reference block A-2 and Candidate reference block B-2) based on a specific component of a motion vector difference value with a positive sign are located outside the boundary of the reference picture. have. If all of the plurality of reference block candidates based on the particular component of the positive vectored motion vector difference value are located outside the boundary of the reference picture, the decoder may determine the motion vector difference value of the current block without the operation of parsing the sign information of the specific component. The sign of a particular component can be determined. In this case, the decoder may use a negative sign as a sign of a specific component of the motion vector difference value of the current block.
  • FIG. 27 is a diagram illustrating a method in which a sign bit of a motion vector difference value of a current block is implicitly signaled according to an embodiment of the present invention.
  • the resolution of the motion vector difference value of the current block may not be determined until the component of the motion vector difference value of the current block is determined.
  • the sign of the motion vector difference value of the current block may be determined before the resolution indicator indicating the resolution of the motion vector difference value of the current block on the syntax for video signal processing is parsed.
  • the decoder multiplies either one of the plurality of available resolutions res2 and res2, and adds a motion vector difference value to which one of a negative sign and a positive sign is applied to the motion vector predictor of the current block.
  • Reference block candidates (Candidate reference block 1-1, Candidate reference block 1-2, Candidate reference block 2-1, Candidate reference block 2-2) may be obtained.
  • the decoder may determine whether all of the candidate reference block candidates Candidate reference block 1-1 based on a specific component of a motion vector difference value with a negative sign are located outside the boundary of the reference picture. Can be.
  • the available resolutions applied to the motion vector difference values may be different from each other to configure each of the plurality of reference block candidates based on a specific component of the motion vector difference value to which a negative sign is applied. If all of the plurality of reference block candidates based on a particular component of the negative vectored motion vector difference value are located outside the boundary of the reference picture, the decoder does not parse the sign information of the specific component, and thus the motion vector difference value of the current block is determined. The sign of a particular component can be determined. In this case, the decoder may use a positive sign as a sign of a specific component of the motion vector difference value of the current block.
  • the decoder may determine whether all of the plurality of reference block candidates (Candidate reference block 1-2 and Candidate reference block 2-2) based on a specific component of a motion vector difference value to which a positive sign is applied are located outside the boundary of the reference picture. have.
  • the available resolutions applied to the motion vector difference values may be different to form each of the plurality of reference block candidates based on a specific component of the motion vector difference value to which a positive sign is applied. If all of the plurality of reference block candidates based on the particular component of the positive vectored motion vector difference value are located outside the boundary of the reference picture, the decoder may determine the motion vector difference value of the current block without the operation of parsing the sign information of the specific component. The sign of a particular component can be determined. In this case, the decoder may use a negative sign as a sign of a specific component of the motion vector difference value of the current block.
  • 25 to 27 illustrate an x-axis component of a motion vector difference value as an example for convenience of description, but the present disclosure is not limited thereto.
  • the above-described embodiments can be applied in the same or corresponding way to the y-axis component of the motion vector difference value.
  • FIG. 28 is a diagram illustrating an example of syntax for the embodiments of FIGS. 25 to 27.
  • the decoder may determine whether to parse the sign information of the motion vector difference value based on the absolute value (
  • the decoder adds to the sign information of the motion vector difference value based on the absolute value (
  • the decoder may generate a motion based on the absolute value of the motion vector difference value (
  • FIG. 29 is a diagram illustrating a method of signaling a resolution and a MVP of a motion vector difference value of a current block according to an embodiment of the present invention.
  • two or more information related to the motion vector may be signaled based on one unified indicator.
  • the resolution of the motion vector difference value of the current block and the MVP of the current block may be signaled by one integration indicator (MVR Index).
  • MVR Index integration indicator
  • an available resolution mapped to each of the MVP indices may be preset.
  • the encoder and decoder may share a table in which each of the MVP indices and available resolutions are mapped to each other.
  • the encoder and the decoder may obtain a resolution of the MVP of the current block and the motion vector difference value of the current block based on the shared table and the merge indicator (MVR Index).
  • the accuracy of the motion vector may vary depending on the resolution used to correct the motion vector difference value. For example, the larger the resolution used to correct the motion vector difference value, the lower the accuracy of the motion vector. Accordingly, when a specific available resolution is used as a resolution of the motion vector difference value of the current block, an additional motion vector difference value of the current block may be signaled.
  • the additional motion vector difference value may be referred to as a second through n-th motion vector difference value.
  • the existing motion vector difference value except for the additional motion vector difference value may be referred to as a first motion vector difference value.
  • the motion vector of the current block may be obtained by using a plurality of motion vector difference values and corresponding resolutions, respectively.
  • an additional motion vector difference value may be signaled.
  • the resolution set of the current block may include available resolutions in units of 1/4, 1, 4 samples.
  • the additional motion vector difference value may be signaled.
  • the additional motion vector difference value may be signaled based on a resolution smaller than the resolution at which the existing motion vector difference value was signaled.
  • R1 represents a resolution of the first motion vector difference value
  • R2 represents a resolution of the second motion vector difference value
  • MVDval1 represents a first motion vector difference value signaled in units of R1
  • MVDval2 represents a second motion vector difference value signaled in units of R2.
  • the decoder may additionally obtain the signaled second motion vector difference value MVDval2.
  • the resolution R2 of the second motion vector difference value may be smaller than the resolution R1 of the first motion vector difference value of the current block.
  • the inter prediction method or the motion compensation method for the current block may include an affine model based motion compensation (hereinafter, referred to as affine motion compensation).
  • affine motion compensation an affine model based motion compensation
  • the existing inter prediction method inter prediction is performed using only one motion vector for each L0 prediction and L1 prediction for the current block.
  • the conventional general inter prediction method is optimized for the prediction of translation motion.
  • reference blocks of various shapes and sizes need to be used.
  • FIG. 31 is a diagram illustrating motion compensation based on an affine model according to an embodiment of the present invention.
  • prediction of the current block 3101 may be performed using a reference block 3102 having a different size, shape, and / or direction than the current block 3101. That is, the reference block 3102 may have a non-rectangular shape and may be larger or smaller in size than the current block 3101.
  • the reference block 3102 may be obtained by performing an affine transformation on the current block 3101. Scaling, rotation, shearing, reflection, or orthogonal projection of the current block may be performed through the affine transformation.
  • the affine transformation may be performed using a plurality of control point motion vectors (CPMVs).
  • CPMVs control point motion vectors
  • the affine transformation may include a six-parameter affine transformation using three control point motion vectors and a four-parameter affine transformation using two control point motion vectors. Specific embodiments thereof will be described later.
  • affine motion compensation may be performed using a predetermined number of control point motion vectors (CPMVs).
  • the control point motion vector (CPMV) is a motion vector corresponding to a specific control point (or sample position) of the current block.
  • the particular control point may include at least one of the corners of the current block.
  • the CPMV corresponding to the upper left corner of the current block is v0 (or the first CPMV), and the CPMV corresponding to the upper right corner of the current block is v1 (or the second CPMV).
  • Each CPMV corresponding to the lower left corner of the block is referred to as v2 (or third CPMV).
  • a CPMV set including at least two CPMVs can be used for affine motion compensation.
  • 4-parameter affine motion compensation may be performed using v0 and v1.
  • the current block 3201 indicated by the solid line may be predicted using the reference block 3202 at the position indicated by the dotted line.
  • Each sample of the current block 3201 may be mapped to different reference samples through an affine transformation.
  • the motion vector (v x , v y ) at the sample position (x, y) of the current block 3201 may be derived by Equation 2 below.
  • the sample position may indicate relative coordinates within the current block.
  • the sample position (x, y) may be a coordinate that sets the position of the upper left sample of the current block as the origin (0, 0).
  • (v 0x , v 0y ) is the first CPMV corresponding to the upper left corner of the current block 3201
  • (v 1x , v 1y ) is the second CPMV corresponding to the upper right corner of the current block.
  • w is the width of the current block 3201.
  • affine motion compensation using three or more CPMVs can be performed.
  • six-parameter affine motion compensation may be performed using three CPMVs, namely v0, v1, and v2.
  • v0 is a CPMV corresponding to the upper left corner of the current block
  • v1 is a CPMV corresponding to the upper right corner of the current block
  • v2 is a CPMV corresponding to the lower left corner of the current block.
  • the motion vector of each subblock of the current block may be calculated based on the v0, v1, and v2. According to the embodiment of FIG.
  • the current block 3301 indicated by the solid line may be predicted using the reference block 3302 at the position indicated by the dotted line.
  • Each sample of the current block 3301 may be mapped to different reference samples through an affine transformation. More specifically, the motion vector (mv x , mv y ) at the sample position (x, y) of the current block 3301 may be derived by Equation 3 below.
  • (mv 0 x , mv 0 y ) is the first CPMV corresponding to the upper left corner of the current block 3301
  • (mv 1 x , mv 1 y ) is the second CPMV corresponding to the upper right corner
  • (mv 2 x , mv 2 y ) is the third CPMV corresponding to the lower left corner
  • w is the width of the current block 3301
  • h is the height of the current block 3301.
  • the current block may include a plurality of subblocks.
  • a representative motion vector of each subblock may be obtained based on the CPMV sets v0, v1, and v2.
  • the representative motion vector of each subblock may be a motion vector corresponding to the center sample position of the subblock.
  • a motion vector of higher accuracy than a general motion vector may be used for the motion vector of the subblock.
  • a motion compensation interpolation filter may be applied.
  • the size of the subblock in which the affine motion compensation is performed may be set in various ways.
  • the subblock may have a preset size, such as 4X4 or 8X8.
  • the size MXN of the subblock may be determined by Equation 4 below.
  • (v 2x , v 2y ) is the third CPMV corresponding to the lower left corner of the current block.
  • the third CPMV may be calculated by Equation 2 described above. max (a, b) returns the greater of a and b, and abs (x) returns the absolute value of x. Also, clip3 (x, y, z) returns x if z ⁇ x, y if z> y, and z otherwise.
  • the decoder obtains the motion vector of each subblock of the current block using the CPMVs of the CPMV set.
  • the decoder may obtain a predictor of each subblock of the current block by using the representative motion vector of each subblock.
  • the predictor of the current block may be obtained by combining the predictors of each subblock, and the decoder may reconstruct the current block by using the predictor of the current block thus obtained.
  • the CPMV set for affine motion compensation of the current block may be obtained in various ways. More specifically, the CPMV set for prediction of the current block may be obtained with reference to the motion vector information set of one or more neighboring blocks. Also, a motion vector information set refers to a collection of motion vector information of one or more blocks.
  • the neighboring block may refer to a block including a preset peripheral position of the current block. In this case, the neighboring block may be a coding unit including a preset peripheral position or an area of a preset unit (eg, 4X4, 8X8) including the peripheral position.
  • a CPMV indicator indicating a set of motion vector information to be referred to for deriving a motion vector of each subblock of the current block may be signaled.
  • the encoder can signal the CPMV indicator.
  • the CPMV indicator may indicate a motion vector information set of neighboring block (s) to be referred to to derive the motion vector of each subblock of the current block.
  • the decoder may obtain the indicator and obtain each CPMV of the CPMV set for the current block by referring to the motion vector information set of the neighboring block (s) indicated by the indicator.
  • the encoder and decoder may generate a CPMV candidate list composed of one or more motion vector information set candidates.
  • Each motion vector information set candidate constituting the CPMV candidate list is a motion vector set of neighboring blocks usable for deriving the motion vector of the current block.
  • the CPMV indicator may be an index indicating one set of motion vector information from the CPMV candidate list.
  • the CPMVs of the current block may be obtained with reference to the set of motion vector information selected based on the CPMV indicator (ie, index) in the CPMV candidate list.
  • various embodiments of a motion vector information set candidate that may be included in a CPMV candidate list for deriving motion vector information (or CPMV set) of a current block will be described.
  • the CPMV set of the current block includes two CPMVs, that is, v0 and v1.
  • the CPMV of the current block may be derived from the motion vector of the neighboring block adjacent to the point.
  • v0 may be derived from a motion vector of any one of neighboring blocks A, B and C adjacent to the point
  • v1 may be a motion vector of any one of neighboring blocks D and E adjacent to the point. Can be derived from.
  • a motion vector information set that may be included in the CPMV candidate list may be derived as in Equation 5 below. Can be.
  • a (v0, v1) pair consisting of v0 selected from vA, vB, and vC and v1 selected from vD and vE may be obtained.
  • v0 is derived from the motion vector of the block adjacent to the upper left corner of the current block
  • v1 is derived from the motion vector of the block adjacent to the upper right corner of the current block.
  • motion vector scaling may be performed based on a picture order count (POC) of a current block, a POC of a reference picture of a neighboring block, and a POC of a reference picture of a current block.
  • POC picture order count
  • a CPMV candidate list including the motion vector information set candidate obtained as described above may be generated, and a CPMV indicator indicating any one of the CPMV candidate list may be signaled.
  • the CPMV candidate list may include a motion vector information set candidate for another method of inter prediction.
  • the CPMV candidate list may include a motion vector information set candidate obtained based on an MVP candidate for existing inter prediction.
  • the decoder may derive the CPMVs of the current block based on the set of motion vector information obtained in the candidate list. According to an embodiment, the decoder may perform a merge merge by using the motion vectors of the motion vector information set obtained from the candidate list as the CPMV of the current block without a separate motion vector difference value.
  • This affine motion compensation method may be referred to as affine merge prediction mode.
  • the decoder may obtain a separate motion vector difference value for the CPMV of the current block.
  • the decoder may add the motion vectors of the motion vector information set obtained from the CPMV candidate list with the motion vector difference value to obtain the CPMV of the current block.
  • This affine motion compensation method may be referred to as affine inter prediction mode.
  • a flag or index indicating whether the decoder uses a separate motion vector difference value for the affine motion compensation of the current block may be separately signaled.
  • whether a separate motion vector difference value is used for affine motion compensation of the current block may be determined based on the size of the current block (eg, CU size). For example, when the size of the current block is greater than or equal to a preset size, the encoder and the decoder may be set to use separate motion vector difference values for affine motion compensation of the current block.
  • the CPMV of the current block may be derived from the motion vector information of the neighboring block on which the affine motion compensation is performed. That is, the CPMV of the current block may be derived from the CPMV or motion vector of the neighboring block.
  • the neighboring block may include a left neighboring block of the current block and an upper neighboring block of the current block. Referring to FIG. 36 (a), the left peripheral block includes blocks adjacent to the lower left corner of the current block, that is, the left block A and the lower left block D.
  • the upper peripheral block includes a block adjacent to the upper left corner of the current block, that is, the upper left block E, and blocks adjacent to the upper right corner of the current block, that is, the upper block B and the upper right block C.
  • the decoder checks whether the neighboring blocks have affine motion compensation performed in a predetermined order.
  • the preset order may be A, B, C, D, E.
  • the decoder obtains the CPMV set of the current block by using the CPMV set (or motion vector) of the neighboring block. Referring to the embodiment of FIG.
  • the CPMV set of the left block A may be used to derive the CPMV set of the current block. That is, the CPMV set (v0, v1) of the current block may be obtained based on the CPMV sets (v2, v3, v4) of the left block A.
  • each of the CPMV sets of neighboring blocks of the current block may be a motion vector information set candidate constituting the aforementioned CPMV candidate list according to a preset order. More specifically, the motion vector information set candidate is derived from the first candidate derived from the CPMVs (or motion vectors) of the left neighboring block of the current block, and from the CPMVs (or motion vectors) of the upper neighboring block of the current block.
  • the second candidate may be included.
  • the left peripheral block is a block adjacent to the lower left corner of the current block
  • the upper peripheral block is a block adjacent to the upper left corner of the current block or a block adjacent to the upper right corner of the current block.
  • a CPMV candidate list including the motion vector information set candidate obtained as described above may be generated, and a CPMV indicator indicating any one of the CPMV candidate list may be signaled.
  • the CPMV indicator may indicate location information of the neighboring block (s) referenced to derive the motion vector of each subblock of the current block.
  • the decoder may obtain the CPMV set of the current block by referring to the CPMV set (or motion vector) of the neighboring block indicated by the CPMV indicator.
  • the CPMV of the current block may be derived based on the CPMV of the neighboring block close to the point.
  • v0 may be obtained by referring to the CPMV of the left neighboring block
  • v1 may be obtained by referring to the CPMV of the upper neighboring block.
  • v0 may be obtained by referring to the CPMV of the neighboring block A, D or E
  • v1 may be obtained by referring to the CPMV of the neighboring block B or C.
  • the CPMV of the current block may be derived from the CPMV or motion vector of the block on which the affine motion compensation is performed.
  • the CPMV of the current block may be derived from the CPMV set or at least one motion vector of the corresponding block.
  • the preset positions may be A0 and A1 adjacent to the lower left corner of the current block, B0 and B1 adjacent to the upper right corner, and the upper left B2 position.
  • the preset position may include a position not adjacent to the current block.
  • the preset position may include a position corresponding to the position of the current block in a picture other than the current picture. That is, the CPMV set of the current block may be derived from a spatial candidate or a temporal candidate corresponding to a preset position.
  • the motion information set candidate obtained by the method described with reference to FIG. 37 may be referred to as an inherited candidate or an affine merge candidate.
  • the CPMV of the current block may be derived from the motion vector information of the neighboring block on which the affine motion compensation is performed.
  • the CPMV set ((v_0x, v_0y), (v_1x, v_1y)) for 4-parameter affine motion compensation for the current block may be derived as shown in Equation 6.
  • (v_E0x, v_E0y) represents the motion vector used for the affine motion compensation of the upper left block of the current block
  • (v_E1x, v_E1y) represents the motion vector used for the affine motion compensation of the upper right block of the current block
  • (V_E2x, v_E2y) may represent the motion vector used for the affine motion compensation of the lower left block of the current block.
  • the CPMV of the current block may be obtained with reference to one or more motion vectors around the current block.
  • the one or more motion vectors around the current block may include a motion vector other than the motion vector used for the affine motion compensation.
  • the CPMV of the current block may be derived from a motion vector of a preset position based on the corresponding point.
  • the preset position may be a position included in a block within a predetermined distance from a point corresponding to the CPMV to be derived.
  • the first CPMV (mv0), the second CPMV (mv1), and the third CPMV (mv2) for affine motion compensation of the current block may be derived from the above-described motion vector of the predetermined position.
  • the first CPMV (mv0) may be derived from motion vector information of positions A, B, and C around the upper left corner.
  • the second CPMV mv1 may be derived from the motion vector information of the positions D and E around the upper right corner.
  • the third CPMV (mv2) may be derived from the motion vector information of the positions F and G around the lower left corner.
  • the decoder may check the availability of the motion vector around the CPMV in a predetermined order. If a usable motion vector is found, the decoder can obtain the CPMV using the motion vector. In addition, a predetermined combination of the peripheral positions referenced to derive the CPMV for each point of the current block may be used.
  • the motion information set candidate obtained by the method described with reference to FIG. 38 may be referred to as a constructed candidate or an affine inter candidate.
  • the motion vector information sets described with reference to FIGS. 35 to 38 may be motion vector information set candidates constituting a CPMV candidate list in a predetermined order.
  • FIG. 39 is a diagram illustrating a method of obtaining a control point motion vector of a current block according to another embodiment of the present invention.
  • a plurality of CPMVs may be used for affine motion compensation of the current block.
  • some of the plurality of CPMVs included in the CPMV set for motion compensation of the current block may be derived based on the other part.
  • the encoder and decoder can obtain CPMVs corresponding to each of the two points of the current block in the manner described above.
  • the encoder and the decoder may derive the CPMV corresponding to another point of the current block from the previously obtained CPMV.
  • a third CPMV (mv 2 x , mv 2 y ) is derived from the first CPMV (mv 0 x , mv 0 y ) and the second CPMV (mv 1 x , mv 1 y ), or the first CPMV (mv 0 x , mv 0 y )
  • a second CPMV (mv 1 x , mv 1 y ) may be derived from CPMV (mv 0 x , mv 0 y ) and third CPMV (mv 2 x , mv 2 y ).
  • w and h may each be the width and height of the current block.
  • the CPMV set of the current block may consist of a plurality of CPMVs.
  • the CPMV predictor may be obtained based on a difference value between the CPMV predictor and the motion vector.
  • the motion vector difference value of the CPMV may be signaled from the encoder to the decoder. That is, the motion vector difference value used to derive the CPMV for each CPMV for the affine motion compensation of the current block may be signaled.
  • the motion vector difference value of the CPMV may be referred to as a CPMV difference value.
  • mv0, mv1, and mv2 indicated by the upper bars may represent CPMV predictors of the first CPMV (mv0), the second CPMV (mv1), and the third CPMV (mv2), respectively.
  • FIG. 40 (a) illustrates how the first CPMV (mv0) and the second CPMV (mv1) of the current block are obtained when the 4-parameter affine motion compensation is performed.
  • the first CPMV difference value mvd0 and the second CPMV difference value mvd1 for each of the first CPMV mv0 and the second CPMV mv1 may be signaled, respectively.
  • FIG. 40 (b) shows how the first CPMV (mv0), the second CPMV (mv1), and the third CPMV (mv2) of the current block are obtained when 6-parameter affine motion compensation is performed.
  • the first CPMV difference value (mvd0), the second CPMV difference value (mvd1), and the third CPMV difference value (mvd2) for the first CPMV (mv0), the second CPMV (mv1), and the third CPMV (mv2), respectively, Each may be signaled.
  • the CPMV difference value of the current block may be signaled according to the syntax described above with reference to FIG. 9.
  • the decoder may obtain the CPMV difference value (lMVD) of the current block based on at least one information on the signaled motion vector difference value.
  • compIdx may be 0 or 1 as an index indicating a component of a motion vector difference value.
  • compIdx may indicate any one of an x-axis component or a y-axis component of a motion vector difference value.
  • the CPMV difference value of the current block may be different for each reference picture list.
  • L0 represents a first reference picture list and L1 represents a second reference picture list.
  • the CPMV difference value corresponding to a specific point of the current block may be similar to the CPMV difference value corresponding to another point of the current block. Accordingly, the CPMV difference value corresponding to the specific point of the current block may be obtained based on the CPMV difference value corresponding to another point of the current block. This allows the encoder and decoder to reduce the signaling overhead for CPMV differential values.
  • a CPMV set for affine motion compensation of a current block may be derived based on at least one common CPMV difference value.
  • the CPMV corresponding to a specific point of the current block may be obtained based on the CPMV difference value corresponding to another point of the current block.
  • the encoder may signal one common CPMV differential value and at least one additional differential value for affine motion compensation of the current block.
  • the decoder may obtain a CPMV set for affine motion compensation of the block by using one common CPMV difference value and at least one additional difference value.
  • mv0, mv1, and mv2 indicated by the upper bars may represent CPMV predictors of the first CPMV (mv0), the second CPMV (mv1), and the third CPMV (mv2), respectively.
  • FIG. 42A illustrates how the first CPMV (mv0) and the second CPMV (mv1) of the current block are obtained when 4-parameter affine motion compensation is performed.
  • the first CPMV difference value mvd0 for the first CPMV mv0 may be signaled.
  • a first additional difference value mvd1 ′ used to obtain a second CPMV difference value may be signaled.
  • the second CPMV difference value may be expressed as a value obtained by adding the first additional difference value mvd1 'to the first CPMV difference value mvd0.
  • the second CPMV mv1 may be obtained based on the second CPMV predictor, the first CPMV difference value mvd0, and the first additional difference value mvd1 ′.
  • the first additional difference value mvd1 ' may be smaller than the second CPMV difference value. Accordingly, the encoder and decoder can reduce the signaling overhead for the CPMV difference value, compared to the method described with reference to FIG. 40.
  • FIG. 42 (b) shows how the first CPMV (mv0), the second CPMV (mv1), and the third CPMV (mv2) of the current block are obtained when the 6-parameter affine motion compensation is performed.
  • the first CPMV difference value mvd0 for the first CPMV mv0 may be signaled.
  • a first additional difference value mvd1 'and a second additional difference value mvd2' used to obtain each of the second CPMV difference value and the third CPMV difference value may be signaled.
  • the second CPMV difference value may be expressed as a value obtained by adding the first additional difference value mvd1 'to the first CPMV difference value mvd0.
  • the third CPMV difference value may be expressed as a value obtained by adding a second additional difference value mvd2 'to the first CPMV difference value mvd0.
  • FIG. 43 illustrates a method in which a control point motion vector difference value is signaled when a control point motion vector of a current block is obtained according to the embodiment described with reference to FIG. 42.
  • the CPMV set for affine motion compensation of the current block may include a plurality of CPMVs.
  • the CPMV difference value MvdLX of some of the plurality of CPMVs may be obtained based on the difference value and the additional difference value of another CPMV.
  • lMvd may be either a difference value of a preset CPMV or at least one additional difference value.
  • cpIdx may indicate a control point index of the current block.
  • cpIdx when 4-parameter affine motion compensation is performed on the current block, cpIdx may be 0 or 1.
  • 6-parameter affine motion compensation is performed for the current block, cpIdx may be 0, 1 or 2.
  • the CPMV difference value MvdLx may be determined in different ways according to cpIdx. For example, when cpIdx is a preset value (eg, '0'), MvdLx may be a difference value (1Mvd [0] [compIdx]) of the preset CPMV.
  • MvdLx may be a value obtained by adding an additional difference value corresponding to the corresponding index to the difference value (lMvd [0] [compIdx]) of the preset CPMV.
  • MvdLx may represent a difference between the CPMV and the CPMV predictor. That is, MvdLx may be (CPMV-CPMV predictor).
  • compIdx is an index indicating a component of a motion vector difference value and may be 0 or 1.
  • compIdx may indicate any one of an x-axis component or a y-axis component of a motion vector difference value.
  • the CPMV difference value of the current block may be different for each reference picture list.
  • L0 represents a first reference picture list and L1 represents a second reference picture list.
  • the CPMV difference value may be encoded in a similar manner to the signaling method of the motion vector difference value described above with reference to FIG. 9.
  • the encoder may generate at least one information on the CPMV difference value by separately encoding the CPMV difference value according to the aforementioned control point index cpIdx.
  • the encoder may signal at least one information about the encoded CPMV difference value.
  • the decoder may obtain the CPMV difference value for each control point index cpIdx based on at least one piece of information on the CPMV difference value.
  • Embodiments related to the resolution of the motion vector difference values described above may be applied in the same or corresponding manner to the CPMV difference values described through the embodiments of FIGS. 9, 43, and 44.
  • the signaled CPMV difference value may be modified based on R.
  • the decoder may obtain the modified CPMV difference value by multiplying the signaled CPMV difference value by the resolution (R).
  • a CPMV difference value indicating a difference between a CPMV and a CPMV predictor of a current block may be determined based on the difference predictor mvdp.
  • the difference predictor mvdp may represent a prediction value for the difference between the CPMV and the CPMV predictor.
  • the CPMV difference value may be obtained based on the difference predictor mvdp and the additional difference values mvd0 ′′, mvd1 ′′, mvd2 ′′.
  • the difference predictor mvdp and the additional difference values mvd0 ′′, mvd1 ′′, mvd2 ′′ may be signaled from the encoder to the decoder.
  • Each of mvdp, mvd0 ", mvd1 ", and mvd2 " (when six-parameter affine motion compensation is performed) can be encoded or decoded in the manner described above with reference to FIG.
  • mv0, mv1, and mv2 indicated by upper bars may represent CPMV predictors of each of the first CPMV (mv0), the second CPMV (mv1), and the third CPMV (mv2).
  • the encoder and decoder can use the differential predictor mvdp to reduce the signaling overhead for the CPMV differential value.
  • the difference predictor may be obtained based on at least one of the plurality of CPMVs included in the CPMV set of the current block.
  • the difference predictor may be a CPMV difference value of any one of a plurality of CPMVs included in the CPMV set of the current block.
  • a description will be given of how a differential predictor used to derive the CPMV set of the current block is obtained.
  • the encoder and the decoder may obtain the difference predictor mvdp of the current block using at least one of mvd0, mvd1, and mvd2 (hereinafter, mvdx) of the current block.
  • the difference predictor mvdp may be set to a value smaller than the absolute value of the smallest mvdx among the mvdx.
  • the difference predictor mvdp may be set to a value larger than the absolute value of the largest mvdx among the mvdx.
  • the signs of additional difference values (mvd0 ", mvd1 ", mvd2 " in FIG. 45) used to derive each of the plurality of CPMVs included in the CPMV set of the current block can match.
  • the additional difference value may indicate a difference between mvdx and the difference predictor mvdp.
  • the difference predictor mvdp is set to a value smaller than the absolute value of the smallest mvdx among the mvdx's, the difference predictor (mvvd) of mvd0 ", mvd1 ", mvd2 " The sign can be matched with a positive sign (+). Further, when the difference predictor mvdp is set to a value larger than the absolute value of the largest mvdx among the mvdx, the sign of the additional difference values (mvd0 '', mvd1 '', mvd2 '' in FIG. 45) Can be matched with a negative sign (-).
  • the difference predictor mvdp may be set to a value smaller than the absolute value of the smallest mvdx among the mvdx.
  • the horizontal broken line represents the smallest value of the absolute values of the x-axis component of each of the mvdx's
  • the vertical broken line represents the smallest value of the absolute values of the y-axis component of each of the mvdx's.
  • the value of the x-axis coordinate is larger as the right side
  • the value of the y-axis coordinate is larger as the upper side.
  • the difference predictor mvdp may be a value in the third quadrant mvdp area among the quadrants divided by the broken line.
  • each of the difference predictor mvdp and the additional difference values mvdx '' of the current block may be derived as shown in Equation 7 below.
  • information mvd_sign_flag indicating the sign of the difference predictor mvdp may be signaled.
  • the encoder may signal sign information of the difference predictor.
  • the decoder may obtain the CPMV set of the current block based on the sign information (mvd_sign_flag) of the difference predictor.
  • information representing the sign of each of the additional difference values mvdx '' may not be signaled.
  • an mvdp indicator indicating how to determine the difference predictor mvdp may be signaled.
  • the mvdp indicator may be a flag indicating whether the difference predictor mvdp is determined to be smaller than the minimum value of the mvdx or larger than the maximum value.
  • FIG. 47 is a diagram illustrating a method of obtaining a control point motion vector of a current block using a difference predictor according to another embodiment of the present invention.
  • the difference predictor of the current block may be a CPMV difference value of any one of a plurality of CPMVs included in the CPMV set of the current block.
  • a difference predictor may vary according to Method 0, Method 1, and Method 2.
  • the difference predictor in Method 0 may be mvd0.
  • the difference predictor may be mvd1.
  • the difference predictor may be mvd2.
  • an mvdp indicator (cpIdxPred) indicating which of the plurality of methods determines the difference predictor may be signaled.
  • the plurality of methods may include at least one of the methods described with reference to Method 0, Method 1, Method 2, and FIG. 46 of FIG. 47.
  • the encoder may signal an mvdp indicator (cpIdxPred) indicating any one of Method 0, Method 1, and Method 2.
  • the decoder may determine any one of Method 0, Method 1, and Method 2 based on the mvdp indicator (cpIdxPred).
  • the decoder may obtain the difference predictor of the current block according to the determined method.
  • the decoder may obtain a current block CPMV set based on the obtained difference predictor.
  • the mvdp indicator (cpIdxPred) may be implicitly signaled. That is, the encoder and decoder may determine the difference predictor of the current block without signaling for the mvdp indicator (cpIdxPred). This will be described in detail with reference to FIGS. 49 to 50.
  • FIG. 48 is a diagram illustrating a method of obtaining a difference predictor according to an embodiment of the present invention.
  • the difference predictor may be used as the difference value of the corresponding CPMV.
  • the difference value of the corresponding CPMV may be obtained based on the additional difference value and the difference predictor corresponding to cpIdx.
  • a mvdp indicator (cpIdxPred) indicating a method of high coding efficiency with respect to the motion vector difference value may be signaled.
  • lMvd may represent either a difference predictor or additional difference values.
  • MvdLX may represent a CPMV difference value.
  • LX may represent a reference picture list L0 or L1.
  • the mvdp indicator may be represented by a variable length bit.
  • the mvdp indicator can be signaled via a truncated unary method.
  • 46 to 48 may be performed for each component of a motion vector difference value.
  • Embodiments related to the resolution of the motion vector difference values described above may be applied in the same or corresponding manner to the CPMV difference values described through the embodiments of FIGS. 46 to 48.
  • the signaled CPMV difference value may be modified based on R.
  • the decoder may obtain the modified CPMV difference value by multiplying the signaled CPMV difference value by the resolution (R).
  • the mvdp indicator in a manner that reduces the signaling of the lMvd to the control point index other than the mvdp indicator (cpIdxPred).
  • the mvdp indicator can be signaled so that the sign of lMvd for the control point index matches the mvdp indicator.
  • the difference predictor may be determined without explicit signaling. This will be described later with reference to FIGS. 49 to 51.
  • the difference predictor of the current block when the difference predictor of the current block is determined as the minimum value or the maximum value among the absolute values of the CPMV difference values of the current block, the signs between the lMvds for the control point indexes may match. In this case, when the control point index is different from the mvdp indicator, the sign information may not be signaled.
  • the absolute value of the CPMV difference value is the minimum or maximum may mean that the absolute value of the specific component is the minimum or maximum. For example, if the mvdp indicator indicates any one of three values, one of the mvdp indicators may be signaled using one bit and two two bits in a cutting unary method.
  • the mvdp indicator may be a CPMV difference value corresponding to a middle or middle value among absolute values of the CPMV difference value.
  • one sign of lMvd may be (+) and one may be ( ⁇ ). Accordingly, one bit may be used to signal sign information of each of the two CPMV difference values.
  • the encoder and the decoder may reduce signaling overhead for sign information of the CPMV difference value.
  • the mvdp indicator (cpIdxPred) indicating a method of determining the difference predictor of the current block may be implicitly signaled.
  • the method of determining the difference predictor of the current block may be determined based on other information. More specifically, the encoder and the decoder may determine the difference value of the CPMV having the largest absolute value among the CPMV difference values of the current block as the difference predictor. If the motion vector difference value is signaled, it may be advantageous that the greater the absolute value of the difference predictor used to derive the plurality of CPMVs.
  • FIG. 49 illustrates a method of determining a difference vector predictor of a current block according to an embodiment of the present invention.
  • FIG. 49 three CPMVs may be used for affine motion compensation of a current block.
  • the x-axis component is described as an example for convenience of description, but the present disclosure is not limited thereto. Embodiments to be described later may be applied to the y-axis component in the same or corresponding method.
  • the control point index indicating the CPMV of which the absolute value of the x-axis component among the CPMV difference values Mvd0, Mvd1, and Mvd2 of each of the CPMVs of the current block is minimum may be '1'.
  • the broken line indicates the value of the x-axis component of the reference predictor.
  • the encoder can omit signaling for the mvdp indicator.
  • the decoder can derive the CPMV set of the current block without the mvdp indicator.
  • FIG. 50 is a diagram illustrating how a control point motion vector difference value of a current block is signaled.
  • signaling of sign information when the control point index and the mvdp indicator are different may be omitted.
  • the sign information mvd_sign_flag of the motion vector difference value may be parsed when the control point index and the mvdp indicator are the same. Conversely, if the control point index and the mvdp indicator are different, they may not be performed.
  • 0 and 1 in [0] and [1] represent a component index, and may represent an x-axis component and a y-axis component, respectively.
  • the information on the motion vector difference value may be sequentially parsed according to a preset order.
  • the preset order may be a preset order based on the control point index.
  • the preset order may be an order determined based on the mvdp indicator.
  • a function for coding a motion vector difference value there may be a function for coding a motion vector difference value.
  • an example of a function for coding a motion vector difference value may be the mvd_coding syntax of FIG. 50.
  • the decoder may parse information about a motion vector difference value according to the control point index.
  • the mvd_coding syntax of FIG. 50 may be performed for each control point index.
  • the preset order may be performed as in Equation 8 below. According to Equation 8, parsing may always be performed in the same order.
  • mvd_coding (.., .., .., cpIdx 0)
  • mvd_coding (.., .., .., cpIdx 1)
  • mvd_coding (.., .., .., cpIdx 2)
  • the information about the CPMV difference value corresponding to the mvdp indicator may be parsed before the information about the difference value of another CPMV not corresponding to the mvdp indicator.
  • the CPMV difference value corresponding to the control point index can be calculated immediately.
  • the information on the CPMV difference value corresponding to the mvdp indicator may not be parsed earlier than the information on the difference value of another CPMV not corresponding to the mvdp indicator. In this case, even after decoding the additional difference value corresponding to the specific control point index, it may take a wait time to calculate the CPMV difference value corresponding to the control point index.
  • the mvd_coding syntax may be expressed by Equation 9 below.
  • mvd_coding (.., .., .., cpIdx 1)
  • mvd_coding (.., .., .., cpIdx 0)
  • mvd_coding (.., .., .., cpIdx 2)
  • the mvd_coding syntax may be expressed by Equation 10 below.
  • mvd_coding (.., .., .., cpIdx 2)
  • mvd_coding (.., .., .., cpIdx 0)
  • mvd_coding (.., .., .., cpIdx 1)
  • lMvd may represent a difference predictor or an additional difference value.
  • a difference predictor may be calculated based on sign information. Alternatively, if the specific control point index is different from the mvdp indicator, the sign information may not be used to calculate the additional difference value.
  • different resolutions may be used for each of the plurality of CPMVs for motion compensation of the current block.
  • the resolution at which the CPMV difference value is signaled for each control point index may be different.
  • a resolution of the motion vector difference value may be different for each of the plurality of CPMVs of the current block.
  • the CPMV difference value of a specific control point index may be used as the difference predictor of the current block.
  • a resolution for the CPMV difference value corresponding to the control point index may be signaled.
  • the CPMV difference value corresponding to the control point index may be signaled based on the resolution.
  • the CPMV difference value corresponding to the remaining control point index except for the control point index may be signaled based on a preset resolution.
  • a resolution indicating a unit in which the CPMV difference value corresponding to the remaining control point index except for the corresponding control point index is signaled may not be signaled.
  • the preset resolution may be a default value.
  • the CPMV difference value used as the difference predictor of the current block may be signaled based on a resolution of a relatively small unit.
  • the CPMV difference value of a control point other than the CPMV difference value used as the difference predictor of the current block may be signaled based on a resolution of a relatively large unit.
  • a plurality of CPMVs for affine motion compensation of the current block may be obtained from a single CPMV predictor.
  • the plurality of CPMVs may be derived using a single CPMV and a plurality of CPMV difference values.
  • the encoder and the decoder may increase the coding efficiency of the CPMV difference value.
  • the encoder and decoder can reduce the signaling overhead of CPMV differential values.
  • a first CPMV difference value Mvd0 and a second CPMV difference value Mvd1 may be obtained based on a common difference predictor mvdp and a single absolute absolute value mvdd.
  • the first CPMV difference value Mvd0 may be obtained based on the sum of mvdp and mvdd.
  • the first CPMV difference value Mvd1 may be obtained based on the sum of mvdp and -mvdd.
  • the encoder can signal a common difference predictor mvdp and an absolute difference value mvdd.
  • the decoder may obtain CPMV difference values corresponding to each of the plurality of control points of the current block based on the common difference predictor mvdp and the absolute difference value mvdd. 52 is shown for four-parameter affine motion compensation, but the disclosure is not so limited. For example, when 6-parameter affine motion compensation is performed, some of the CPMVs included in the CPMV set of the current block may be derived using CPMV predictors and CPMV difference values of other CPMVs.
  • the current block may be further divided according to the prediction mode of the current block.
  • the encoder and the decoder may divide the current block into a plurality of subblocks and perform intra prediction on each subblock.
  • the decoder may receive the above-described intra prediction mode information from the bitstream.
  • the decoder may determine whether to divide the current block into a plurality of subblocks based on the intra prediction mode information. In this case, information on how the current block is divided into a plurality of subblocks may be additionally signaled.
  • the encoder and the decoder may split the current block using a preset method between the encoder and the decoder according to the intra prediction mode information.
  • the decoder may perform intra prediction on each of the current block or a plurality of sub blocks based on the intra prediction mode information of the current block.
  • the current block may be used as a term indicating a coding unit.
  • the SCUs (Sub-CUs) of FIGS. 53 to 60 represent a plurality of subblocks divided from the current block.
  • a method of dividing the current block into a plurality of subblocks will be described in detail.
  • 53 illustrates various embodiments in which a current block is divided into a plurality of subblocks.
  • 53 (a) and 53 (b) show subblocks that are squarely divided from the current block.
  • the current block may be divided into subblocks of a preset size.
  • the preset size may be a size negotiated in advance between the encoder and the decoder.
  • the preset size may be an NxN size having the same height and width.
  • the preset size may be 4 ⁇ 4.
  • the preset size may be a value set based on the size of a transform kernel.
  • the preset size may be a value set based on the conversion unit.
  • the preset size may be the size of the conversion unit.
  • the current block may be divided into subblocks of a size determined according to the size of the current block. For example, when the size of the current block is larger than the first threshold, the current block may be divided into subblocks of a larger size than the blocks smaller in size than the first threshold.
  • the operation of dividing into subblocks may be limited according to the size of the current block. For example, if the size of the current block is smaller than the second threshold, the encoder and decoder may not split the current block into a plurality of blocks. If the size of the current block is relatively small, compared to the case where the size of the current block is relatively large, the performance gain according to the method of performing intra prediction by dividing the current block may not be large.
  • the form in which the subblocks are divided may be determined independently of the shape of the current block. For example, even when the current block is square, the shape of the plurality of subblocks divided from the current block may be non-square. 53 (c) and 53 (d) show subblocks divided into non-squares from the current block.
  • the current block may be divided into non-square subblocks of a preset size. In this case, the height and the width of the above-described preset size may be different from each other.
  • the preset size may be 4x8 or 8x4. As described above, the preset size may be a value set according to the size of the current block.
  • the encoder and decoder may support a 4 ⁇ 8 or 8 ⁇ 4 nonsquare transform kernel.
  • the preset size may be a value set based on the non-square transform unit.
  • the current block may be divided into a plurality of subblocks in a form similar to that of the current block.
  • 53 (e) and 53 (f) show subblocks divided from the current block when the current block is a non-square block.
  • the current block may be divided into non-square subblocks similar to the shape of the current block.
  • FIG. 53 (e) when the height of the current block is longer than the width, the current block may be divided into a plurality of sub blocks having a height that is longer than the width.
  • the current block when the width of the current block is longer than the height, the current block may be divided into a plurality of sub blocks having a width longer than the height.
  • the form in which the current block is divided may be determined based on the prediction mode of the current block. For example, at least one of the size or direction in which the current block is divided may vary according to the intra prediction mode (angle mode, DC mode, or planar mode) of the current block.
  • 54 illustrates a method of dividing a current block according to an intra prediction mode of the current block. Referring to FIG. 54A, a plurality of intra prediction modes may be classified into an directional mode corresponding to an intra prediction mode index 2 to 66 and a non-directional mode such as a planar mode or a DC mode.
  • the residual signal of the subblocks far from the reference samples of the current block among the subblocks divided from the current block may be relatively large. Accordingly, samples having similar distances from the reference sample of the current block may be divided to belong to the same subblock.
  • the current block when the intra prediction mode of the current block is the non-directional mode, the current block may be divided into a plurality of square subblocks as shown in FIG. 54 (b).
  • the intra prediction mode of the current block when the intra prediction mode of the current block is any one of the above-described horizontal diagonal mode, diagonal mode, and vertical diagonal mode, the current block may be divided into a plurality of square subblocks.
  • the intra prediction mode of the current block when the intra prediction mode of the current block is an angle mode around any one of the horizontal diagonal mode, the diagonal mode, and the vertical diagonal mode, the current block may be divided into a plurality of square subblocks.
  • the current block is divided into a plurality of non-square subblocks as shown in FIG. 54 (c) or 54 (d) according to the intra prediction mode of the current block.
  • the intra prediction mode of the current block is the angular mode around one of the horizontal mode and the vertical mode
  • the current block may be divided into a plurality of non-square subblocks. Through this, the current block may be divided such that samples having similar distances from the reference sample of the current block belong to the same subblock.
  • the current block when the prediction mode of the current block is any one of the horizontal mode or the angular modes around the horizontal mode, the current block may be divided as shown in FIG. 54 (c). When the prediction mode of the current block is one of the vertical mode or the angular modes around the vertical mode, the current block may be divided as shown in FIG. 54 (d). Another prediction method may be applied to a subblock located far from the reference samples of the current block.
  • the current block may be divided based on sample values of reference samples of the current block.
  • the encoder and decoder may determine a reference sample edge based on the sample values of the reference samples of the current block.
  • the reference sample edge may be a reference point for dividing an area where the sample value of the reference sample varies by more than a threshold value.
  • the reference sample edge may represent a point at which a difference in sample values between reference samples adjacent to each other is greater than or equal to a threshold.
  • the encoder and the decoder may compare the sample values of the reference samples of the current block to determine the reference sample edge of the current block. For example, the position of the reference sample whose difference from the average value of the predetermined number of reference samples around the specific reference sample is greater than or equal to the threshold may be determined as the reference sample edge.
  • the encoder and the decoder may determine one or more reference sample edges for each of the upper reference sample set and the left reference sample set.
  • the upper reference sample set of the current block may be a set including reference samples located in the upper line of the current block.
  • the left reference sample set of the current block may be a set including reference samples located in the left line of the current block.
  • the encoder and the decoder may split the current block based on a line segment connecting the reference sample edge of the upper reference sample set and the reference sample edge of the left reference sample set. For example, when one reference sample edge is detected for each of the upper reference sample set and the left reference sample set, the current block may be divided into a total of two subblocks SCU1 and SCU2. In addition, when two or more reference sample edges are detected for each of the upper reference sample set and the left reference sample set, the current block may be divided into a plurality of subblocks.
  • the reference sample for intra prediction of the current block may include samples on the plurality of reference lines.
  • a current block may be divided based on a sample value of reference samples on the plurality of reference lines.
  • a reference sample edge of the current block may be determined based on the sample value of the reference samples on the plurality of reference lines.
  • the encoder and the decoder may determine one or more reference sample edges per reference line.
  • the encoder and the decoder may first segment a current block by extending a line segment connecting reference sample edges for each upper reference line.
  • Two subblocks SCU1 and SCU2 may be obtained by the first partitioning.
  • the encoder and the decoder may second segment the current block by extending a line segment connecting reference sample edges for each left reference line.
  • Two subblocks SCU2 and SCU3 may be obtained by the second partitioning. Accordingly, the current block may be divided even when either the reference sample edge for each upper reference line or the reference sample edge for each left reference line is not detected.
  • 55 (c) illustrates a method in which a current block is divided when either one of a reference sample edge per upper reference line or a reference sample edge per left reference line is not detected or the reference sample edges are not arranged in one straight line.
  • a reference sample edge may not be detected in some of the left reference lines. If a reference sample edge is detected at at least two reference lines, the encoder and decoder may split the current block based on the corresponding reference sample edges.
  • the above-described embodiment may be applied even when a reference sample edge is not detected in some of the upper reference lines.
  • reference sample edges for each upper reference line may not be arranged in one straight line.
  • the current block may be divided based on the median of the reference sample edges on the line not adjacent to the current block and the line segment passing the reference sample edge on the line adjacent to the current block.
  • 55 (b) and 55 (c) illustrate an embodiment in which three reference lines are used, but the present disclosure is not limited thereto.
  • the plurality of subblocks partitioned from the current block are primary sub-blocks (PSBs) that are first predicted according to the intra prediction mode of the current block, and second predicted later. It may be classified into secondary sub-blocks (SSBs).
  • PSBs primary sub-blocks
  • SSB group secondary subblock group
  • a subblock group composed of PSBs may be referred to as a primary subblock group (hereinafter, referred to as a PSB group)
  • a subblock group composed of SSBs may be referred to as a secondary subblock group (hereinafter referred to as an SSB group).
  • the PSB group may be configured of subblocks within a predetermined distance from reference samples referenced to intra prediction of the current block among a plurality of subblocks divided from the current block.
  • the SSB group may be configured of subblocks outside a preset distance from reference samples referenced to intra prediction of the current block among the plurality of subblocks.
  • the current block may be divided into a total of 16 subblocks.
  • the intra prediction mode of the current block is one of the horizontal diagonal mode, the vertical diagonal mode, and the angle modes around the horizontal diagonal mode and the vertical diagonal mode
  • the PSB group and the SSB group of the current block are as shown in FIG. 56 (a). Can be determined. That is, among the 16 subblocks divided from the current block, four upper right subblocks may be SSBs, and the remaining subblocks except this may be PSBs.
  • PSB group and the SSB group are determined when the intra prediction mode of the current block is any one of HDIA, HOR, DIA, VER, VDIA, and respective angular modes.
  • the methods are shown.
  • PSB and SSB may be distinguished in consideration of a relative distance from a reference sample to be used in each prediction mode.
  • the present disclosure is not limited thereto, and other divisions in a form similar to the examples described in FIG. 56 are also possible.
  • the encoder and decoder may first perform intra prediction on the PSBs based on the intra prediction mode of the current block. Next, the encoder and decoder may perform intra prediction on SSBs.
  • intra prediction methods for the SSB of the current block will be described in detail.
  • the encoder and the decoder may perform prediction for SSBs of the current block based on the reconstructed sample value of the PSBs of the current block. For example, the encoder and decoder may first reconstruct the PSBs of the current block based on the intra prediction mode and the reference samples of the current block. Next, the encoder and the decoder are adjacent to each of the SSBs of the current block, and may perform intra prediction on SSBs of the current block with reference to the reconstructed samples. The encoder and decoder may perform intra prediction on SSBs of the current block based on the intra prediction mode of the current block. In this case, the reconstructed samples may be samples included in each of the PSBs.
  • Samples included in each of the PSBs may be samples closer to the SSB of the current block than the reference sample of the current block. Accordingly, even when the same prediction mode is used for the SSB of the current block, prediction accuracy for the SSB may be higher than that of the conventional method.
  • the encoder and the decoder may predict using different intra prediction modes for each of the PSB group and the SSB group of the current block.
  • the PSBs of the current block may be predicted based on a primary mode (PM), which is an intra prediction mode of the current block.
  • the SSBs of the current block can be predicted based on a variable secondary mode (SM).
  • the SM may be an intra prediction mode applied only to SSBs among a plurality of subblocks of the current block.
  • the SM may be signaled separately.
  • the SM may be signaled in the form of an offset based on the PM.
  • the SM may be an intra prediction mode corresponding to an intra prediction mode index added by an offset based on the PM.
  • the offset may be a value within a preset maximum value. This may reduce the amount of computation for the encoder to select a particular offset.
  • the SSB of the current block can be predicted based on the opposite angle mode of the PM.
  • the SM may be a vertical diagonal mode corresponding to the intra prediction mode index 66.
  • the SM may be a horizontal diagonal mode corresponding to the intra prediction mode index 2.
  • the SM may be a preset prediction mode.
  • the SSB of the current block may be predicted based on a preset prediction mode.
  • the SSB of the current block may be subblocks outside a preset distance from the reference samples of the current block. Accordingly, it may be advantageous in terms of the residual signal to predict the SSB of the current block based on the non-directional mode. That is, the preset SM may be either a planar mode or a DC mode.
  • the final prediction block of the SSB of the current block may be obtained based on the first prediction SSB predicted based on the PM of the current block, and the second prediction SSB predicted based on the non-directional mode described above.
  • the encoder and decoder may obtain a final prediction block corresponding to the SSB based on an average between the first prediction SSB and the second prediction SSB of the current block.
  • the encoder and the decoder may reconstruct the SSB by summing up the last prediction block and the residual signal corresponding to the SSB.
  • the current block may be divided into a total of four subblocks.
  • the PSB group and the SSB group of the current block may be determined as shown in FIG. 57 (a). That is, among the four subblocks divided from the current block, the right lower subblock SCU 4 is the SSB of the current block, and the remaining subblocks SCU 1, SCU 2, and SCU 3 except for this are the PSBs of the current block. Can be.
  • the SSB of the current block may be reconstructed with reference to samples included in each of the PSBs of the current block.
  • the encoder and decoder may first reconstruct the PSBs of the current block based on the intra prediction mode and the reference samples of the current block.
  • the encoder and the decoder may perform intra prediction on the SSB using the sample value of the samples adjacent to the SSB among the reconstructed samples of the PSBs of the current block.
  • the SSB (SCU 4) of the current block may be reconstructed based on the sample value and the residual signal of the reconstructed samples of the PSBs SCU1, SCU 2, and SCU 3.
  • the PSB group and the SSB group of the current block may be determined as shown in FIG. 57 (b). That is, among the four subblocks divided from the current block, the upper right subblock SCU 2 is the SSB of the current block, and the remaining subblocks SCU 1, SCU 3, and SCU 4 except for this are the PSBs of the current block. Can be.
  • the SSB (SCU 2) of the current block is equal to the sample value of samples adjacent to the SSB (SCU 2) among the reconstructed samples of the PSBs SCU1, SCU 3, and SCU 4 of the current block. Can be restored on the basis of
  • some of the reference samples of the current block may be adjacent to the SSB of the current block.
  • some of the reference samples of the current block may be reference samples that are not used for intra prediction of the current block.
  • the SSB of the current block may be predicted based on the SM, which is a prediction mode different from that of the current block. For example, when the PM of the current block is an angle mode, the SM of the current block may be an opposite angle mode of the PM. As shown in FIG. 57B, when the PM of the current block is in the horizontal diagonal mode, the SM may be in the vertical diagonal mode.
  • the last predictive block of the SSB of the current block is the first predicted SSB predicted based on the PM of the current block, and the second predicted SSB predicted based on the opposite angle mode of the PM. It can be obtained based on. 56 (a) and (e), it is possible to use the angular mode in the opposite direction to the PM mode, and when the reference sample adjacent to the boundary of the SSB is present, the above-described embodiment can be applied.
  • a picture may be divided into a sequence of coding tree units (CTUs).
  • CTUs coding tree units
  • 58 illustrates an order in which coding tree units are processed according to an embodiment of the present invention.
  • the encoder and decoder may encode or decode per CTU within a slice / tile partitioned from a current picture or a current picture including the current block.
  • the encoder and the decoder may encode or decode the plurality of CTUs according to a predefined processing order.
  • the encoder may signal the corresponding order to the decoder.
  • FIG. 58 (a) shows a raster scan sequence in which the CTUs of the next row are processed after the transverse processing is performed from the CTU of the top left of the picture, slice, or tile.
  • 58 (b) shows an embodiment in which the position of the first block A (CTU) that is first processed in a picture, slice, or tile is explicitly signaled.
  • the encoder can signal the location of the first CTU.
  • the decoder may first process the CTU based on the position of the signaled first CTU.
  • the decoder may decode the CTUs corresponding to the previous position in the raster scan order based on the position of the first CTU in the inverse-raster scan order.
  • CTUs corresponding to subsequent positions in the raster scan order based on the position of the first CTU may be decoded according to the raster scan order described above.
  • the CTUs processed according to the inverse raster scan order and the CTUs processed according to the raster scan order may be processed in the order of crossing each one CTU, or the CTUs in either direction may be preferentially processed. .
  • the plurality of CTUs may include a second CTU (Blcok B) and a third CTU (Block C).
  • the encoder may signal the location of each of the second CTU (Blcok B) and the third CTU (Block C).
  • the position of the second CTU that is processed first among the plurality of CTUs that are processed first may be additionally signaled.
  • the decoder may first decode a second CTU (Block B) based on the position of the signaled second CTU.
  • the decoder may decode the third CTU (Block C).
  • CTUs between the position of the second CTU and the position of the third CTU may be decoded.
  • the decoder may decode CTUs following the second CTU to the CTU before the third CTU in the raster scan order according to the raster scan order or the reverse raster scan order.
  • the decoder may decode the CTUs corresponding to the previous positions in the raster scan order based on the position of the second CTU (Block B) in the inverse-raster scan order.
  • CTUs corresponding to subsequent positions in the raster scan order based on the position of the third CTU (Block C) may be decoded according to the above-described raster scan order.
  • FIG. 58 (c) shows another embodiment in which a position of a plurality of CTUs that are preferentially processed in a picture, slice, or tile in a form similar to that of FIG. 58 (d) is explicitly signaled.
  • the current block may be predicted using a bidirectional intra prediction method according to the distribution of usable reference samples of the current block.
  • 56 and 58 when a plurality of subblocks divided from the current block or the current block are encoded or decoded, the previously reconstructed samples of the lower side and the right side of the block as well as the reconstructed samples of the left and upper sides of the block as well. Samples can be used as reference samples of the block.
  • the specific block may be predicted according to the bi-directional intra prediction method using the reconstructed samples of the right and the bottom of the periphery of the block.
  • a specific block represents a current block or a plurality of subblocks divided from the current block.
  • a specific block may be divided into two parts based on the prediction mode of the current block.
  • the prediction mode of the current block is the angular mode
  • the specific block may be divided into two parts based on a line segment perpendicular to the prediction mode of the current block.
  • the first portion of the bipartite specific block may be reconstructed based on the prediction mode and the first reference samples of the current block.
  • the first part may be a part including upper and left sides of the specific block.
  • the first reference samples may be reference samples of the left and upper lines of a particular block.
  • the second portion of the bipartite specific block may be reconstructed based on the secondary prediction mode and the second reference samples.
  • the second part may be a part including a right side and a lower side of a specific block.
  • the second reference samples may be reference samples of the right and bottom lines of the particular block.
  • the secondary prediction mode may be the SM described with reference to FIGS. 56 and 57.
  • a specific block may not be further divided.
  • the particular block may be reconstructed based on the first prediction block and the second prediction block.
  • the first prediction block may be a prediction block predicted based on the prediction mode of the current block and the first reference samples.
  • the second prediction block may be a prediction block predicted based on the secondary prediction mode and the first reference samples.
  • the decoder may reconstruct a specific block by weighting the first prediction block and the second prediction block.
  • 59 (c) and 59 (d) illustrate an embodiment of a method in which a current block is predicted when there are previously reconstructed samples only on three of four surfaces of a specific block.
  • the particular block may be divided into two parts based on the prediction mode of the current block. For example, a region corresponding to a side where no pre-reconstructed samples exist among regions of a specific block may be predicted by extending a prediction mode from another side.
  • the specific block is reconstructed based on a plurality of prediction blocks for the specific block without further dividing the specific block. An embodiment may be applied.
  • a plurality of subblocks divided from the current block may be predicted based on an intra prediction mode used for prediction of neighboring blocks of the current block.
  • FIG. 60 (a) shows the positions AL, A, AR, R, L, and BL of each of the plurality of neighboring blocks of the current block.
  • the block of the position may be inter predicted or the decoding of the block of the position may not be performed according to the raster scan order or the CU processing order.
  • the first subblock SCU1 may be predicted using an intra prediction mode corresponding to the upper left position AL closest to the first subblock SCU1.
  • the second subblock SCU2 may be predicted using an intra prediction mode corresponding to the upper position A adjacent to the second subblock SCU2.
  • the intra prediction mode corresponding to the upper position A does not exist, the second subblock SCU2 may be predicted using the intra prediction mode corresponding to another peripheral position (for example, the upper right position). Can be.
  • the fourth subblock SCU4 when both the upper side and the left side are in the current block, the block may be predicted using the intra prediction mode of the neighboring block located on the remote straight line.
  • the first subblock SCU1, the second subblock SCU2, and the third subblock SCU3 may be predicted based on the intra prediction mode of the current block.
  • the first subblock SCU1, the second subblock SCU2, and the third subblock SCU3 may be the primary subblocks described above with reference to FIGS. 56 and 57.
  • the fourth subblock SCU4 may be predicted based on an intra prediction mode different from the intra prediction mode of the current block.
  • the fourth subblock SCU4 may be predicted using the intra prediction mode corresponding to the right position R.
  • the fourth subblock SCU4 may be predicted using an intra prediction mode of a neighboring block located on a straight line remotely.
  • Embodiments of the present invention described above may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • a method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of a module, a procedure, or a function that performs the functions or operations described above.
  • the software code may be stored in memory and driven by the processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • Computer readable media can be any available media that can be accessed by a computer and includes both volatile and nonvolatile media, removable and non-removable media.
  • the computer readable medium may include both computer storage media and communication media.
  • Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data.
  • Communication media typically includes computer-readable instructions, data structures or other data in a modulated data signal such as program modules, or other transmission mechanisms, and includes any information delivery media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

비디오 신호를 인코딩하거나 디코딩하는 비디오 신호 처리 방법 및 장치가 개시된다. 더욱 구체적으로, 제1 방법 및 제2 방법 중 어느 하나를 사용하여 현재 블록의 모션 보상을 위한 모션 벡터 예측자(motion vector prediction, MVP) 후보 리스트를 구성하는 단계, 상기 구성된 MVP 후보 리스트에 기초하여 현재 블록의 모션 벡터 예측자를 획득하는 단계, 상기 현재 블록의 모션 벡터와 상기 모션 벡터 예측자 간의 차이를 나타내는 모션 벡터 차분 값을 획득하는 단계, 상기 현재 블록의 모션 벡터 차분 값의 레졸루션(resolution)에 기초하여, 상기 모션 벡터 차분 값을 수정하는 단계, 상기 모션 벡터 차분 값의 레졸루션은 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중 어느 하나이고, 상기 레졸루션 세트가 포함하는 복수의 가용 레졸루션들의 구성은 상기 제1 방법 및 상기 제2 방법 중에서 어느 방법을 사용하여 상기 현재 블록의 MVP 후보 리스트가 구성되는지에 따라 달라짐, 상기 모션 벡터 예측자 및 상기 수정된 모션 벡터 차분 값에 기초하여 상기 현재 블록의 모션 벡터를 획득하는 단계 및 상기 획득된 모션 벡터에 기초하여 상기 현재 블록을 복원하는 단계를 포함하는, 비디오 신호 처리 방법 및 이를 수행하는 비디오 신호 처리 장치가 개시된다.

Description

적응적 모션 벡터 레졸루션을 이용하는 비디오 신호 처리 방법 및 장치
본 발명은 비디오 신호의 처리 방법 및 장치에 관한 것으로, 보다 상세하게는 비디오 신호를 인코딩하거나 디코딩하는 비디오 신호 처리 방법 및 장치에 관한 것이다.
압축 부호화란 디지털화한 정보를 통신 회선을 통해 전송하거나, 저장 매체에 적합한 형태로 저장하기 위한 일련의 신호 처리 기술을 의미한다. 압축 부호화의 대상에는 음성, 영상, 문자 등의 대상이 존재하며, 특히 영상을 대상으로 압축 부호화를 수행하는 기술을 비디오 영상 압축이라고 일컫는다. 비디오 신호에 대한 압축 부호화는 공간적인 상관관계, 시간적인 상관관계, 확률적인 상관관계 등을 고려하여 잉여 정보를 제거함으로써 이루어진다. 그러나 최근의 다양한 미디어 및 데이터 전송 매체의 발전으로 인해, 더욱 고효율의 비디오 신호 처리 방법 및 장치가 요구되고 있다.
본 발명의 목적은 비디오 신호의 코딩 효율을 높이고자 함에 있다. 또한, 본 발명은 현재 블록의 모션 정보 세트와 관련된 시그널링 효율을 높이기 위한 목적을 가지고 있다.
상기와 같은 과제를 해결하기 위해, 본 발명은 다음과 같은 비디오 신호 처리 장치 및 비디오 신호 처리 방법을 제공한다.
먼저 본 발명의 일 실시예에 따르면, 비디오 신호의 처리 방법에 있어서, 제1 방법 및 제2 방법 중 어느 하나를 사용하여 현재 블록의 모션 보상을 위한 모션 벡터 예측자(motion vector prediction, MVP) 후보 리스트를 구성하는 단계; 상기 구성된 MVP 후보 리스트에 기초하여 현재 블록의 모션 벡터 예측자를 획득하는 단계; 상기 현재 블록의 모션 벡터와 상기 모션 벡터 예측자 간의 차이를 나타내는 모션 벡터 차분 값을 획득하는 단계; 상기 현재 블록의 모션 벡터 차분 값의 레졸루션(resolution)에 기초하여, 상기 모션 벡터 차분 값을 수정하는 단계, 상기 모션 벡터 차분 값의 레졸루션은 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중 어느 하나이고, 상기 레졸루션 세트가 포함하는 복수의 가용 레졸루션들의 구성은 상기 제1 방법 및 상기 제2 방법 중에서 어느 방법을 사용하여 상기 현재 블록의 MVP 후보 리스트가 구성되는지에 따라 달라짐; 상기 모션 벡터 예측자 및 상기 수정된 모션 벡터 차분 값에 기초하여 상기 현재 블록의 모션 벡터를 획득하는 단계; 및 상기 획득된 모션 벡터에 기초하여 상기 현재 블록을 복원하는 단계를 포함하는, 비디오 신호 처리 방법이 제공된다.
또한, 본 발명의 실시예에 따르면, 비디오 신호 디코딩 장치에 있어서, 프로세서를 포함하고, 상기 프로세서는, 제1 방법 및 제2 방법 중 어느 하나를 사용하여 현재 블록의 모션 보상을 위한 모션 벡터 예측자(motion vector prediction, MVP) 후보 리스트를 구성하고, 상기 구성된 MVP 후보 리스트에 기초하여 현재 블록의 모션 벡터 예측자를 획득하고, 상기 현재 블록의 모션 벡터와 상기 모션 벡터 예측자 간의 차이를 나타내는 모션 벡터 차분 값을 획득하고, 상기 현재 블록의 모션 벡터 차분 값의 레졸루션(resolution)에 기초하여, 상기 모션 벡터 차분 값을 수정하되, 상기 모션 벡터 차분 값의 레졸루션은 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중 어느 하나이고, 상기 레졸루션 세트가 포함하는 복수의 가용 레졸루션들의 구성은 상기 제1 방법 및 상기 제2 방법 중에서 어느 방법을 사용하여 상기 현재 블록의 MVP 후보 리스트가 구성되는지에 따라 달라짐, 상기 모션 벡터 예측자 및 상기 수정된 모션 벡터 차분 값에 기초하여 상기 현재 블록의 모션 벡터를 획득하고, 상기 획득된 모션 벡터에 기초하여 상기 현재 블록을 복원하는, 비디오 신호 디코딩 장치가 제공된다.
상기 모션 벡터 차분 값의 레졸루션은 상기 현재 블록의 MVP 후보 리스트가 상기 제1 방법 및 상기 제2 방법 중 어느 방법을 사용하여 구성되는지에 따라, 각각 제1 레졸루션 세트 및 제2 레졸루션 세트 중 어느 하나로부터 획득되고, 상기 제2 레졸루션 세트는 상기 제1 레졸루션 세트가 포함하는 복수의 가용 레졸루션들이 아닌 다른 가용 레졸루션을 적어도 하나 포함할 수 있다.
상기 MVP 후보 리스트가 어파인(affine) 모델에 기반한 상기 제1 방법을 사용하여 구성되는 경우, 상기 모션 벡터 차분 값의 레졸루션은 상기 제1 레졸루션 세트로부터 획득되고, 상기 MVP 후보 리스트가 상기 어파인 모델에 기반하지 않은 상기 제2 방법을 사용하여 구성되는 경우, 상기 모션 벡터 차분 값의 레졸루션은 상기 제2 레졸루션 세트로부터 획득될 수 있다.
상기 제1 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중 가장 큰 제1 가용 레졸루션은, 상기 제2 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중 가장 큰 제2 가용 레졸루션 보다 작을 수 있다.
상기 프로세서는, 상기 제1 레졸루션 세트 및 상기 제2 레졸루션 세트 중 어느 하나가 포함하는 복수의 가용 레졸루션들 중에서 상기 현재 블록의 모션 벡터 차분 값의 레졸루션을 지시하는 지시자를 획득하고, 상기 지시자가 지시하는 레졸루션에 기초하여 상기 모션 벡터 차분 값을 수정할 수 있다. 이때, 상기 지시자의 값이 제1 값인 경우, 상기 제1 값에 의해 지시되는 상기 레졸루션은 상기 MVP 후보 리스트가 상기 제1 방법 및 상기 제2 방법 중 어느 방법을 사용하여 구성되는지에 따라 달라질 수 있다.
상기 MVP 후보 리스트가 상기 제1 방법을 사용하여 구성되는 경우, 상기 제1 값은 제1 레졸루션 세트가 포함하는 가용 레졸루션들 중 하나인 제1 가용 레졸루션을 지시하고, 상기 MVP 후보 리스트가 상기 제2 방법을 사용하여 구성되는 경우, 상기 제1 값은 제2 레졸루션 세트가 포함하는 가용 레졸루션들 중 하나인 제2 가용 레졸루션을 나타내며, 상기 제1 가용 레졸루션과 상기 제2 가용 레졸루션은 서로 다를 수 있다.
상기 제1 레졸루션 세트 및 상기 제2 레졸루션 세트는 모두 제1 가용 레졸루션을 포함하고, 상기 MVP 후보 리스트가 상기 제2 방법을 사용하여 구성되는 경우, 상기 제1 가용 레졸루션은 상기 지시자의 상기 제1 값과 다른 값인 제2 값에 의해 지시될 수 있다.
상기 지시자는 가변 길이의 비트로 표현되며, 상기 제1 값은 상기 가변 길이의 비트로 표현되는 복수의 값들 중 어느 하나일 수 있다.
상기 지시자의 상기 제1 값과 다른 제3 값은 상기 복수의 값들 중 가장 짧은 길이의 비트로 표현되는 값이고, 상기 MVP 후보 리스트가 상기 제2 방법으로 구성되는 경우, 상기 제3 값은 상기 제2 레졸루션 세트가 포함하는 복수의 가용 레졸루션 세트 중에서 가장 작은 가용 레졸루션을 지시하고, 상기 MVP 후보 리스트가 상기 제1 방법으로 구성되는 경우, 상기 제3 값은 상기 제1 레졸루션 세트가 포함하는 복수의 가용 레졸루션 세트 중에서 가장 작은 가용 레졸루션 이외의 다른 가용 레졸루션을 지시할 수 있다.
또한, 본 발명의 실시예에 따르면, 비디오 신호 인코딩 장치에 있어서, 프로세서를 포함하고, 상기 프로세서는, 현재 블록의 모션 보상을 위해 참조되는 참조 블록의 위치에 기초하여 상기 현재 블록의 모션 벡터를 획득하고, 제1 방법 및 제2 방법 중 어느 하나를 사용하여 상기 현재 블록의 모션 보상을 위한 모션 벡터 예측자(motion vector prediction, MVP) 후보 리스트를 구성하고, 상기 MVP 후보 리스트가 포함하는 복수의 후보들 중 어느 하나와 상기 현재 블록의 모션 벡터 간의 차이에 기초하여 모션 벡터 차분 값을 획득하고, 상기 현재 블록의 모션 벡터 차분 값의 레졸루션(resolution)에 기초하여, 시그널링되는 모션 벡터 차분 값을 결정하되, 상기 모션 벡터 차분 값의 레졸루션은 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중 어느 하나이고, 상기 레졸루션 세트가 포함하는 복수의 가용 레졸루션들의 구성은 상기 제1 방법 및 상기 제2 방법 중에서 어느 방법을 사용하여 상기 현재 블록의 MVP 후보 리스트가 구성되는지에 따라 달라짐, 상기 시그널링되는 모션 벡터 차분 값을 포함하는 비트스트림을 생성하는, 인코딩 장치가 제공된다.
상기 프로세서는, 상기 제1 레졸루션 세트 및 상기 제2 레졸루션 세트 중 어느 하나가 포함하는 복수의 가용 레졸루션들 중 어느 하나를 지시하는 지시자를 결정하고, 상기 지시자 및 상기 시그널링되는 모션 벡터 차분 값을 포함하는 비트스트림을 생성할 수 있다. 이때, 상기 지시자의 값이 제1 값인 경우, 상기 제1 값에 의해 지시되는 상기 레졸루션은 상기 MVP 후보 리스트가 상기 제1 방법 및 상기 제2 방법 중 어느 방법을 사용하여 구성되는지에 따라 달라질 수 있다.
또한, 본 발명의 실시예에 따르면, 비트스트림을 저장하는 컴퓨터로 판독 가능한 기록 매체에 있어서, 상기 비트스트림은, 현재 블록의 모션 벡터 차분 값의 레졸루션(resolution)에 기초하여 수정된 상기 현재 블록의 수정된 모션 벡터 차분 값을 포함하되, 상기 모션 벡터 차분 값의 레졸루션은 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중 어느 하나이고, 상기 레졸루션 세트가 포함하는 복수의 가용 레졸루션들의 구성은 제1 방법 및 제2 방법 중에서 어느 방법을 사용하여 상기 현재 블록의 모션 보상을 위한 모션 벡터 예측자(motion vector prediction, MVP) 후보 리스트가 구성되는지에 따라 달라지는, 비트스트림을 저장하는 컴퓨터로 판독 가능한 기록 매체가 제공된다.
상기 비트스트림은, 상기 제1 레졸루션 세트 및 상기 제2 레졸루션 세트 중 어느 하나가 포함하는 복수의 가용 레졸루션들 중 상기 현재 블록의 모션 벡터 차분 값의 레졸루션을 지시하는 지시자를 더 포함할 수 있다. 이때, 상기 지시자의 값이 제1 값인 경우, 상기 제1 값에 의해 지시되는 상기 레졸루션은 상기 MVP 후보 리스트가 상기 제1 방법 및 상기 제2 방법 중 어느 방법을 사용하여 구성되는지에 따라 달라질 수 있다.
본 발명의 실시예에 따르면, 비디오 신호의 코딩 효율이 높아질 수 있다. 또한, 본 발명의 일 실시예에 따르면, 현재 블록의 인터 예측에 관한 시그널링 효율이 높아질 수 있다.
도 1은 본 발명의 일 실시예에 따른 비디오 신호 인코딩 장치의 개략적인 블록도이다.
도 2는 본 발명의 일 실시예에 따른 비디오 신호 디코딩 장치의 개략적인 블록도이다.
도 3은 픽쳐 내에서 코딩 트리 유닛이 코딩 유닛들로 분할되는 실시예를 도시한다.
도 4는 쿼드 트리 및 멀티-타입 트리의 분할을 시그널링하는 방법의 일 실시예를 도시한다.
도 5 및 도 6은 본 발명의 실시예에 따른 인트라 예측 방법을 더욱 구체적으로 도시한다.
도 7은 본 발명의 일 실시예에 따른 인터 예측 방법을 도시한다.
도 8은 본 발명의 일 실시예에 따라 현재 블록의 모션 벡터가 시그널링되는 방법을 나타내는 도면이다.
도 9는 본 발명의 일 실시예에 따라 현재 블록의 모션 벡터 차분 값이 시그널링되는 방법을 나타내는 도면이다.
도 10은 본 발명의 일 실시예에 따라 현재 블록의 모션 벡터 차분 값의 레졸루션이 시그널링되는 방법을 나타내는 도면이다.
도 11 및 도 12는 본 발명의 다른 일 실시예에 따라 현재 블록의 모션 벡터 차분 값의 레졸루션이 시그널링되는 방법을 나타내는 도면이다.
도 13은 레졸루션 세트가 포함하는 가용 레졸루션들의 구성이 달라지는 일 실시예를 나타내는 도면이다.
도 14는 현재 블록의 모션 벡터 예측자에 따라 현재 블록의 모션 벡터 차분 값의 레졸루션이 시그널링되는 방법의 일 실시예를 나타내는 도면이다.
도 15는 현재 블록의 모션 벡터 예측자에 따라 모션 벡터 차분 값의 레졸루션이 시그널링되는 방법의 다른 일 실시예를 나타내는 도면이다.
도 16은 본 발명의 일 실시예에 따라 템플릿 매칭 방법에 기초하여 모션 벡터 차분 값의 레졸루션이 획득되는 방법을 나타내는 도면이다.
도 17은 본 발명의 일 실시예에 따라 양측 매칭 방법에 기초하여 모션 벡터 차분 값의 레졸루션이 획득되는 방법을 나타내는 도면이다.
도 18은 본 발명의 일 실시예에 따라 현재 블록의 참조 픽쳐 리스트 별로 모션 벡터 차분 값의 레졸루션이 시그널링되는 방법을 나타내는 도면이다.
도 19는 현재 블록의 모션 벡터 차분 값의 레졸루션이 픽쳐의 레졸루션에 따라 시그널링되는 방법의 일 실시예를 나타내는 도면이다.
도 20은 본 발명의 일 실시예에 따라 현재 블록의 참조 픽쳐의 크기에 기초하여 모션 벡터 차분 값의 레졸루션이 시그날링되는 방법을 나타내는 도면이다.
도 21은 본 발명의 일 실시예에 따라 현재 블록의 모션 벡터 차분 값의 레졸루션이 획득되는 방법을 나타내는 흐름도이다.
도 22는 본 발명의 일 실시예에 따라 현재 블록의 모션 벡터 차분 값의 레졸루션이 획득되는 방법을 나타내는 흐름도이다.
도 23은 본 발명의 일 실시예에 따라 현재 블록의 모션 벡터가 획득되는 방법을 나타내는 흐름도이다.
도 24는 본 발명의 일 실시예에 따라 현재 블록의 모션 벡터가 획득되는 방법을 나타내는 흐름도이다.
도 25는 본 발명의 일 실시예에 따라 현재 블록의 모션 벡터 차분 값의 부호 비트가 묵시적으로 시그널링되는 방법을 나타내는 도면이다.
도 26은 본 발명의 일 실시예에 따라 현재 블록의 모션 벡터 차분 값의 부호 비트가 묵시적으로 시그널링되는 방법을 나타내는 도면이다.
도 27은 본 발명의 일 실시예에 따라 현재 블록의 모션 벡터 차분 값의 부호 비트가 묵시적으로 시그널링되는 방법을 나타내는 도면이다.
도 28은 도 25 내지 도 27의 실시예들에 대한 신택스의 예시를 나타내는 도면이다.
도 29는 본 발명의 일 실시예에 따라 현재 블록의 모션 벡터 차분 값의 레졸루션 및 모션 벡터 예측자가 시그널링되는 방법을 나타내는 도면이다.
도 30은 본 발명의 일 실시예에 따라 복수의 모션 벡터 차분 값에 기초하여 현재 블록의 모션 벡터가 유도되는 방법을 나타내는 도면이다.
도 31은 본 발명의 일 실시예에 따라 어파인 모델에 기반하는 모션 보상을 나타내는 도면이다.
도 32는 4-파라미터 어파인 모션 보상 방법의 일 실시예를 도시한다.
도 33은 6-파라미터 어파인 모션 보상 방법의 일 실시예를 도시한다.
도 34는 서브블록 기반의 어파인 모션 보상 방법의 일 실시예를 도시한다.
도 35, 도 36, 도 37 및 도 38은 현재 블록의 예측을 위한 컨트롤 포인트 모션 벡터 세트를 획득하는 방법의 실시예들을 도시한다.
도 39는 본 발명의 다른 일 실시예에 따라 현재 블록의 컨트롤 포인트 모션 벡터가 획득되는 방법을 나타내는 도면이다.
도 40은 본 발명의 일 실시예에 따라 현재 블록의 컨트롤 포인트 모션 벡터가 획득되는 방법을 나타낸다.
도 41은 본 발명의 일 실시예에 따라 현재 블록의 컨트롤 포인트 모션 벡터 차분 값이 시그널링되는 방법을 나타낸다.
도 42는 본 발명의 다른 일 실시예에 따라 현재 블록의 컨트롤 포인트 모션 벡터가 획득되는 방법을 나타낸다.
도 43은 도 42를 통해 설명된 실시예에 따라 현재 블록의 컨트롤 포인트 모션 벡터가 획득되는 경우, 컨트롤 포인트 모션 벡터 차분 값이 시그널링되는 방법을 나타낸다.
도 44는 본 발명의 일 실시예에 따른 현재 블록의 컨트롤 포인트 모션 벡터 차분 값이 시그널링되는 방법을 나타내는 도면이다.
도 45는 본 발명의 일 실시예에 따라 현재 블록의 컨트롤 포인트 모션 벡터 차분 값에 대한 차분 예측자를 이용하여 모션 벡터가 획득되는 방법을 나타내는 도면이다.
도 46은 본 발명의 일 실시예에 따라 차분 예측자를 이용하여 현재 블록의 컨트롤 포인트 모션 벡터가 획득되는 방법을 나타내는 도면이다.
도 47은 본 발명의 다른 일 실시예에 따라 차분 예측자를 이용하여 현재 블록의 컨트롤 포인트 모션 벡터가 획득되는 방법을 나타내는 도면이다.
도 48는 본 발명의 일 실시예에 따라 차분 예측자가 획득되는 방법을 나타내는 도면이다.
도 49는 본 발명의 일 실시예에 따라 현재 블록의 차분 벡터 예측자가 결정되는 방법을 나타내는 도면이다.
도 50은 현재 블록의 컨트롤 포인트 모션 벡터 차분 값이 시그널링되는 방법을 나타내는 도면이다.
도 51은 본 발명의 다른 일 실시예에 따라, 현재 블록의 컨트롤 포인트 모션 벡터가 유도되는 방법을 나타내는 도면이다.
도 52는 본 발명의 일 실시예에 따라 현재 블록의 어파인 모션 보상을 위한 복수의 컨트롤 포인트 모션 벡터가 유도되는 방법을 나타내는 도면이다.
도 53은 현재 블록이 복수의 서브블록들로 분할되는 형태의 다양한 실시예를 도시한 것이다.
도 54는 현재 블록의 인트라 예측 모드에 따라 현재 블록이 분할되는 방법을 도시한 것이다.
도 55는 본 발명의 일 실시예에 따라 현재 블록의 참조 샘플들의 샘플 값에 기초하여 현재 블록이 복수의 서브블록들로 분할되는 방법을 도시한 것이다.
도 56은 본 발명의 일 실시예에 따라 1차적 서브블록 그룹과 2차적 서브블록 그룹이 결정되는 방법을 도시한 것이다.
도 57은 본 발명의 일 실시예에 따라 1차적 서브블록 그룹과 2차적 서브블록 그룹이 예측되는 방법을 도시한 것이다.
도 58은 본 발명의 일 실시예에 따라 코딩 트리 유닛들이 처리되는 순서를 도시한 것이다.
도 59는 본 발명의 일 실시예에 따른 양방향 인트라 예측 방법을 도시한 것이다.
도 60은 본 발명의 일 실시예에 따라 현재 블록으로부터 분할된 복수의 서브블록들 각각이 예측되는 방법을 도시한 것이다.
본 명세서에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도, 관례 또는 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한 특정 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 그 의미를 기재할 것이다. 따라서 본 명세서에서 사용되는 용어는, 단순한 용어의 명칭이 아닌 그 용어가 가진 실질적인 의미와 본 명세서의 전반에 걸친 내용을 토대로 해석되어야 함을 밝혀두고자 한다.
본 명세서에서 일부 용어들은 다음과 같이 해석될 수 있다. 코딩은 경우에 따라 인코딩 또는 디코딩으로 해석될 수 있다. 본 명세서에서 비디오 신호의 인코딩(부호화)을 수행하여 비디오 신호 비트스트림을 생성하는 장치는 인코딩 장치 혹은 인코더로 지칭되며, 비디오 신호 비트스트림의 디코딩(복호화)을 수행하여 비디오 신호를 복원하는 장치는 디코딩 장치 혹은 디코더로 지칭된다. 또한, 본 명세서에서 비디오 신호 처리 장치는 인코더 및 디코더를 모두 포함하는 개념의 용어로 사용된다. 정보(information)는 값(values), 파라미터(parameter), 계수(coefficients), 성분(elements) 등을 모두 포함하는 용어로서, 경우에 따라 의미는 달리 해석될 수 있으므로 본 발명은 이에 한정되지 아니한다. '유닛'은 영상 처리의 기본 단위 또는 픽쳐의 특정 위치를 지칭하는 의미로 사용되며, 루마(luma) 성분과 크로마(chroma) 성분을 모두 포함하는 이미지 영역을 가리킨다. 또한, ‘블록’은 루마 성분 및 크로마 성분들(즉, Cb 및 Cr) 중 특정 성분을 포함하는 이미지 영역을 가리킨다. 다만, 실시예에 따라서 ‘유닛’, '블록', '파티션' 및 '영역' 등의 용어는 서로 혼용하여 사용될 수 있다. 또한, 본 명세서에서 유닛은 코딩 유닛, 예측 유닛, 변환 유닛을 모두 포함하는 개념으로 사용될 수 있다. 픽쳐는 필드 혹은 프레임을 가리키며, 실시예에 따라 상기 용어들은 서로 혼용하여 사용될 수 있다.
도 1은 본 발명의 일 실시예에 따른 비디오 신호 인코딩 장치(100)의 개략적인 블록도이다. 도 1을 참조하면, 본 발명의 인코딩 장치(100)는 변환부(110), 양자화부(115), 역양자화부(120), 역변환부(125), 필터링부(130), 예측부(150) 및 엔트로피 코딩부(160)를 포함한다.
변환부(110)는 입력 받은 비디오 신호와 예측부(150)에서 생성된 예측 신호의 차이인 레지듀얼 신호를 변환하여 변환 계수 값을 획득한다. 예를 들어, 이산 코사인 변환(Discrete Cosine Transform, DCT), 이산 사인 변환(Discrete Sine Transform, DST) 또는 웨이블릿 변환(Wavelet Transform) 등이 사용될 수 있다. 이산 코사인 변환 및 이산 사인 변환은 입력된 픽쳐 신호를 블록 형태로 나누어 변환을 수행하게 된다. 변환에 있어서 변환 영역 내의 값들의 분포와 특성에 따라서 코딩 효율이 달라질 수 있다. 양자화부(115)는 변환부(110)에서 출력된 변환 계수 값을 양자화한다.
코딩 효율을 높이기 위하여 픽쳐 신호를 그대로 코딩하는 것이 아니라, 예측부(150)를 통해 이미 코딩된 영역을 이용하여 픽쳐를 예측하고, 예측된 픽쳐에 원본 픽쳐와 예측 픽쳐 간의 레지듀얼 값을 더하여 복원 픽쳐를 획득하는 방법이 사용된다. 인코더와 디코더에서 미스매치가 발생되지 않도록 하기 위해, 인코더에서 예측을 수행할 때에는 디코더에서도 사용 가능한 정보를 사용해야 한다. 이를 위해, 인코더에서는 부호화한 현재 블록을 다시 복원하는 과정을 수행한다. 역양자화부(120)에서는 변환 계수 값을 역양자화하고, 역변환부(125)에서는 역양자화된 변환 계수값을 이용하여 레지듀얼 값을 복원한다. 한편, 필터링부(130)는 복원된 픽쳐의 품질 개선 및 부호화 효율 향상을 위한 필터링 연산을 수행한다. 예를 들어, 디블록킹 필터, 샘플 적응적 오프셋(Sample Adaptive Offset, SAO) 및 적응적 루프 필터 등이 포함될 수 있다. 필터링을 거친 픽쳐는 출력되거나 참조 픽쳐로 이용하기 위하여 복호 픽쳐 버퍼(Decoded Picture Buffer, DPB, 156)에 저장된다.
예측부(150)는 인트라 예측부(152)와 인터 예측부(154)를 포함한다. 인트라 예측부(152)는 현재 픽쳐 내에서 인트라(intra) 예측을 수행하며, 인터 예측부(154)는 복호 픽쳐 버퍼(156)에 저장된 참조 픽쳐를 이용하여 현재 픽쳐를 예측하는 인터(inter) 예측을 수행한다. 인트라 예측부(152)는 현재 픽쳐 내의 복원된 샘플들로부터 인트라 예측을 수행하여, 인트라 부호화 정보를 엔트로피 코딩부(160)에 전달한다. 인트라 부호화 정보는 인트라 예측 모드, MPM(Most Probable Mode) 플래그, MPM 인덱스 중 적어도 하나를 포함할 수 있다. 인터 예측부(154)는 모션 추정부(154a) 및 모션 보상부(154b)를 포함하여 구성될 수 있다. 모션 추정부(154a)는 복원된 참조 픽쳐의 특정 영역을 참조하여 현재 영역의 모션 벡터값을 획득한다. 모션 추정부(154a)는 참조 영역에 대한 모션 정보 세트(참조 픽쳐 인덱스, 모션 벡터 정보 등)를 엔트로피 코딩부(160)로 전달한다. 모션 보상부(154b)는 모션 추정부(154a)에서 전달된 모션 벡터값을 이용하여 모션 보상을 수행한다. 인터 예측부(154)는 참조 영역에 대한 모션 정보 세트를 포함하는 인터 부호화 정보를 엔트로피 코딩부(160)에 전달한다.
추가적인 실시예에 따라, 예측부(150)는 인트라 블록 카피(block copy, BC) 예측부(미도시)를 포함할 수 있다. 인트라 BC 예측부는 현재 픽쳐 내의 복원된 샘플들로부터 인트라 BC 예측을 수행하여, 인트라 BC 부호화 정보를 엔트로피 코딩부(160)에 전달한다. 인트라 BC 예측부는 현재 픽쳐 내의 특정 영역을 참조하여 현재 영역의 예측에 이용되는 참조 영역을 나타내는 블록 벡터값을 획득한다. 인트라 BC 예측부는 획득된 블록 벡터값을 이용하여 인트라 BC 예측을 수행할 수 있다. 인트라 BC 예측부는 인트라 BC 부호화 정보를 엔트로피 코딩부(160)로 전달한다. 인트라 BC 부호화 정보는 블록 벡터 정보를 포함할 수 있다.
위와 같은 픽쳐 예측이 수행될 경우, 변환부(110)는 원본 픽쳐와 예측 픽쳐 간의 레지듀얼 값을 변환하여 변환 계수 값을 획득한다. 이때, 변환은 픽쳐 내에서 특정 블록 단위로 수행될 수 있으며, 특정 블록의 크기는 기 설정된 범위 내에서 가변할 수 있다. 양자화부(115)는 변환부(110)에서 생성된 변환 계수 값을 양자화하여 엔트로피 코딩부(160)로 전달한다.
엔트로피 코딩부(160)는 양자화된 변환 계수, 인트라 부호화 정보, 및 인터 부호화 정보 등을 엔트로피 코딩하여 비디오 신호 비트스트림을 생성한다. 엔트로피 코딩부(160)에서는 가변 길이 코딩(Variable Length Coding, VLC) 방식과 산술 코딩(arithmetic coding) 방식 등이 사용될 수 있다. 가변 길이 코딩(VLC) 방식은 입력되는 심볼들을 연속적인 코드워드로 변환하는데, 코드워드의 길이는 가변적일 수 있다. 예를 들어, 자주 발생하는 심볼들을 짧은 코드워드로, 자주 발생하지 않은 심볼들은 긴 코드워드로 표현하는 것이다. 가변 길이 코딩 방식으로서 컨텍스트 기반 적응형 가변 길이 코딩(Context-based Adaptive Variable Length Coding, CAVLC) 방식이 사용될 수 있다. 산술 코딩은 연속적인 데이터 심볼들을 하나의 소수로 변환하는데, 산술 코딩은 각 심볼을 표현하기 위하여 필요한 최적의 소수 비트를 얻을 수 있다. 산술 코딩으로서 컨텍스트 기반 적응형 산술 부호화(Context-based Adaptive Binary Arithmetic Code, CABAC)가 이용될 수 있다.
상기 생성된 비트스트림은 NAL(Network Abstraction Layer) 유닛을 기본 단위로 캡슐화 된다. NAL 유닛은 부호화된 정수 개의 코딩 트리 유닛(coding tree unit)을 포함한다. 비디오 디코더에서 비트스트림을 복호화하기 위해서는 먼저 비트스트림을 NAL 유닛 단위로 분리한 후, 분리된 각각의 NAL 유닛을 복호화해야 한다. 한편, 비디오 신호 비트스트림의 복호화를 위해 필요한 정보들은 픽쳐 파라미터 세트(Picture Parameter Set, PPS), 시퀀스 파라미터 세트(Sequence Parameter Set, SPS), 비디오 파라미터 세트(Video Parameter Set, VPS) 등과 같은 상위 레벨 세트의 RBSP(Raw Byte Sequence Payload)를 통해 전송될 수 있다.
한편, 도 1의 블록도는 본 발명의 일 실시예에 따른 인코딩 장치(100)를 나타낸 것으로서, 분리하여 표시된 블록들은 인코딩 장치(100)의 엘리먼트들을 논리적으로 구별하여 도시한 것이다. 따라서 전술한 인코딩 장치(100)의 엘리먼트들은 디바이스의 설계에 따라 하나의 칩으로 또는 복수의 칩으로 장착될 수 있다. 일 실시예에 따르면, 전술한 인코딩 장치(100)의 각 엘리먼트의 동작은 프로세서(미도시)에 의해 수행될 수 있다.
도 2는 본 발명의 일 실시예에 따른 비디오 신호 디코딩 장치(200)의 개략적인 블록도이다. 도 2를 참조하면 본 발명의 디코딩 장치(200)는 엔트로피 디코딩부(210), 역양자화부(220), 역변환부(225), 필터링부(230) 및 예측부(250)를 포함한다.
엔트로피 디코딩부(210)는 비디오 신호 비트스트림을 엔트로피 디코딩하여, 각 영역에 대한 변환 계수, 인트라 부호화 정보, 인터 부호화 정보 등을 추출한다. 역양자화부(220)는 엔트로피 디코딩된 변환 계수를 역양자화하고, 역변환부(225)는 역양자화된 변환 계수를 이용하여 레지듀얼 값을 복원한다. 비디오 신호 처리 장치(200)는 역변환부(225)에서 획득된 레지듀얼 값을 예측부(250)에서 획득된 예측자(predictor)와 합산하여 원래의 화소값을 복원한다.
한편, 필터링부(230)는 픽쳐에 대한 필터링을 수행하여 화질을 향상시킨다. 여기에는 블록 왜곡 현상을 감소시키기 위한 디블록킹 필터 및/또는 픽쳐 전체의 왜곡 제거를 위한 적응적 루프 필터 등이 포함될 수 있다. 필터링을 거친 픽쳐는 출력되거나 다음 픽쳐에 대한 참조 픽쳐로 이용하기 위하여 복호 픽쳐 버퍼(DPB, 256)에 저장된다.
예측부(250)는 인트라 예측부(252) 및 인터 예측부(254)를 포함한다. 예측부(250)는 전술한 엔트로피 디코딩부(210)를 통해 복호화된 부호화 타입, 각 영역에 대한 변환 계수, 인트라/인터 부호화 정보 등을 활용하여 예측 픽쳐를 생성한다. 복호화가 수행되는 현재 블록을 복원하기 위해서, 현재 블록이 포함된 현재 픽쳐 또는 다른 픽쳐들의 복호화된 영역이 이용될 수 있다. 복원에 현재 픽쳐만을 이용하는, 즉 인트라 예측 또는 인트라 BC 예측만을 수행하는 픽쳐(또는, 타일/슬라이스)를 인트라 픽쳐 또는 I 픽쳐(또는, 타일/슬라이스), 인트라 예측, 인터 예측 및 인트라 BC 예측을 모두 수행할 수 있는 픽쳐(또는, 타일/슬라이스)를 인터 픽쳐(또는, 타일/슬라이스)라고 한다. 인터 픽쳐(또는, 타일/슬라이스) 중 각 블록의 샘플 값들을 예측하기 위하여 최대 하나의 모션 벡터 및 참조 픽쳐 인덱스를 이용하는 픽쳐(또는, 타일/슬라이스)를 예측 픽쳐(predictive picture) 또는 P 픽쳐(또는, 타일/슬라이스)라고 하며, 최대 두 개의 모션 벡터 및 참조 픽쳐 인덱스를 이용하는 픽쳐(또는, 타일/슬라이스)를 쌍예측 픽쳐(Bi-predictive picture) 또는 B 픽쳐(또는, 타일/슬라이스) 라고 한다. 다시 말해서, P 픽쳐(또는, 타일/슬라이스)는 각 블록을 예측하기 위해 최대 하나의 모션 정보 세트를 이용하고, B 픽쳐(또는, 타일/슬라이스)는 각 블록을 예측하기 위해 최대 두 개의 모션 정보 세트를 이용한다. 여기서, 모션 정보 세트는 하나 이상의 모션 벡터와 하나의 참조 픽쳐 인덱스를 포함한다.
인트라 예측부(252)는 인트라 부호화 정보 및 현재 픽쳐 내의 복원된 샘플들을 이용하여 예측 블록을 생성한다. 전술한 바와 같이, 인트라 부호화 정보는 인트라 예측 모드, MPM(Most Probable Mode) 플래그, MPM 인덱스 중 적어도 하나를 포함할 수 있다. 인트라 예측부(252)는 현재 블록의 좌측 및/또는 상측에 위치한 복원된 샘플들을 참조 샘플들로 이용하여 현재 블록의 샘플 값들을 예측한다. 본 개시에서, 복원된 샘플들, 참조 샘플들 및 현재 블록의 샘플들은 픽셀들을 나타낼 수 있다. 또한, 샘플 값(sample value)들은 픽셀 값들을 나타낼 수 있다.
일 실시예에 따르면, 참조 샘플들은 현재 블록의 주변 블록에 포함된 샘플들일 수 있다. 예를 들어, 참조 샘플들은 현재 블록의 좌측 경계에 인접한 샘플들 및/또는 상측 경계에 인접한 샘플들일 수 있다. 또한, 참조 샘플들은 현재 블록의 주변 블록의 샘플들 중 현재 블록의 좌측 경계로부터 기 설정된 거리 이내의 라인 상에 위치하는 샘플들 및/또는 현재 블록의 상측 경계로부터 기 설정된 거리 이내의 라인 상에 위치하는 샘플들일 수 있다. 이때, 현재 블록의 주변 블록은 현재 블록에 인접한 좌측(L) 블록, 상측(A) 블록, 하좌측(Below Left, BL) 블록, 상우측(Above Right, AR) 블록 또는 상좌측(Above Left, AL) 블록 중 적어도 하나를 포함할 수 있다.
인터 예측부(254)는 복호 픽쳐 버퍼(256)에 저장된 참조 픽쳐 및 인터 부호화 정보를 이용하여 예측 블록을 생성한다. 인터 부호화 정보는 참조 블록에 대한 현재 블록의 모션 정보 세트(참조 픽쳐 인덱스, 모션 벡터 정보 등)를 포함할 수 있다. 인터 예측에는 L0 예측, L1 예측 및 쌍예측(Bi-prediction)이 있을 수 있다. L0 예측은 L0 픽쳐 리스트에 포함된 1개의 참조 픽쳐를 이용한 예측이고, L1 예측은 L1 픽쳐 리스트에 포함된 1개의 참조 픽쳐를 이용한 예측을 의미한다. 이를 위해서는 1세트의 모션 정보(예를 들어, 모션 벡터 및 참조 픽쳐 인덱스)가 필요할 수 있다. 쌍예측 방식에서는 최대 2개의 참조 영역을 이용할 수 있는데, 이 2개의 참조 영역은 동일한 참조 픽쳐에 존재할 수도 있고, 서로 다른 픽쳐에 각각 존재할 수도 있다. 즉, 쌍예측 방식에서는 최대 2세트의 모션 정보(예를 들어, 모션 벡터 및 참조 픽쳐 인덱스)가 이용될 수 있는데, 2개의 모션 벡터가 동일한 참조 픽쳐 인덱스에 대응될 수도 있고 서로 다른 참조 픽쳐 인덱스에 대응될 수도 있다. 이때, 참조 픽쳐들은 시간적으로 현재 픽쳐 이전이나 이후 모두에 표시(또는 출력)될 수 있다.
인터 예측부(254)는 모션 벡터 및 참조 픽쳐 인덱스를 이용하여 현재 블록의 참조 블록을 획득할 수 있다. 상기 참조 블록은 참조 픽쳐 인덱스에 대응하는 참조 픽쳐 내에 존재한다. 또한, 모션 벡터에 의해서 특정된 블록의 샘플 값 또는 이의 보간(interpolation)된 값이 현재 블록의 예측자(predictor)로 이용될 수 있다. 서브펠(sub-pel) 단위의 픽셀 정확도를 갖는 모션 예측을 위하여 이를 테면, 루마 신호에 대하여 8-탭 보간 필터가, 크로마 신호에 대하여 4-탭 보간 필터가 사용될 수 있다. 다만, 서브펠 단위의 모션 예측을 위한 보간 필터는 이에 한정되지 않는다. 이와 같이 인터 예측부(254)는 이전에 복원된 픽쳐로부터 현재 유닛의 텍스쳐를 예측하는 모션 보상(motion compensation)을 수행한다. 이때, 인터 예측부는 모션 정보 세트를 이용할 수 있다.
추가적인 실시예에 따라, 예측부(250)는 인트라 BC 예측부(미도시)를 포함할 수 있다. 인트라 BC 예측부는 현재 픽쳐 내의 복원된 샘플들로부터 인트라 BC 예측을 수행하여, 인트라 BC 부호화 정보를 엔트로피 코딩부(160)에 전달한다. 인트라 BC 예측부는 현재 픽쳐 내의 특정 영역을 지시하는 현재 영역의 블록 벡터값을 획득한다. 인트라 BC 예측부는 획득된 블록 벡터값을 이용하여 인트라 BC 예측을 수행할 수 있다. 인트라 BC 예측부는 인트라 BC 부호화 정보를 엔트로피 코딩부(160)로 전달한다. 인트라 BC 부호화 정보는 블록 벡터 정보를 포함할 수 있다.
상기 인트라 예측부(252) 또는 인터 예측부(254)로부터 출력된 예측자, 및 역변환부(225)로부터 출력된 레지듀얼 값이 더해져서 복원된 비디오 픽쳐가 생성된다. 즉, 비디오 신호 디코딩 장치(200)는 예측부(250)에서 생성된 예측 블록과 역변환부(225)로부터 획득된 레지듀얼을 이용하여 현재 블록을 복원한다.
한편, 도 2의 블록도는 본 발명의 일 실시예에 따른 디코딩 장치(200)를 나타낸 것으로서, 분리하여 표시된 블록들은 디코딩 장치(200)의 엘리먼트들을 논리적으로 구별하여 도시한 것이다. 따라서 전술한 디코딩 장치(200)의 엘리먼트들은 디바이스의 설계에 따라 하나의 칩으로 또는 복수의 칩으로 장착될 수 있다. 일 실시예에 따르면, 전술한 디코딩 장치(200)의 각 엘리먼트의 동작은 프로세서(미도시)에 의해 수행될 수 있다.
도 3은 픽쳐 내에서 코딩 트리 유닛(Coding Tree Unit, CTU)이 코딩 유닛들(Coding Units, CUs)로 분할되는 실시예를 도시한다. 비디오 신호의 코딩 과정에서, 픽쳐는 코딩 트리 유닛(CTU)들의 시퀀스로 분할될 수 있다. 코딩 트리 유닛은 루마(luma) 샘플들의 NXN 블록과, 이에 대응하는 크로마(chroma) 샘플들의 2개의 블록들로 구성된다. 코딩 트리 유닛은 복수의 코딩 유닛들로 분할될 수 있다. 코딩 트리 유닛은 분할되지 않고 리프 노드가 될 수도 있다. 이 경우, 코딩 트리 유닛 자체가 코딩 유닛이 될 수 있다. 코딩 유닛은 상기에서 설명한 비디오 신호의 처리 과정, 즉 인트라/인터 예측, 변환, 양자화 및/또는 엔트로피 코딩 등의 과정에서 픽쳐를 처리하기 위한 기본 단위를 가리킨다. 하나의 픽쳐 내에서 코딩 유닛의 크기 및 모양은 일정하지 않을 수 있다. 코딩 유닛은 정사각형 혹은 직사각형의 모양을 가질 수 있다. 직사각형 코딩 유닛(혹은, 직사각형 블록)은 수직 코딩 유닛(혹은, 수직 블록)과 수평 코딩 유닛(혹은, 수평 블록)을 포함한다. 본 명세서에서, 수직 블록은 높이가 너비보다 큰 블록이며, 수평 블록은 너비가 높이보다 큰 블록이다. 또한, 본 명세서에서 정사각형이 아닌(non-square) 블록은 직사각형 블록을 가리킬 수 있지만, 본 발명은 이에 한정되지 않는다.
도 3을 참조하면, 코딩 트리 유닛은 먼저 쿼드 트리(Quad Tree, QT) 구조로 분할된다. 즉, 쿼드 트리 구조에서 2NX2N 크기를 가지는 하나의 노드는 NXN 크기를 가지는 네 개의 노드들로 분할될 수 있다. 본 명세서에서 쿼드 트리는 4진(quaternary) 트리로도 지칭될 수 있다. 쿼드 트리 분할은 재귀적으로 수행될 수 있으며, 모든 노드들이 동일한 깊이로 분할될 필요는 없다.
한편, 전술한 쿼드 트리의 리프 노드(leaf node)는 멀티-타입 트리(Multi-Type Tree, MTT) 구조로 더욱 분할될 수 있다. 본 발명의 실시예에 따르면, 멀티 타입 트리 구조에서는 하나의 노드가 수평 혹은 수직 분할의 2진(binary, 바이너리) 혹은 3진(ternary, 터너리) 트리 구조로 분할될 수 있다. 즉, 멀티-타입 트리 구조에는 수직 바이너리 분할, 수평 바이너리 분할, 수직 터너리 분할 및 수평 터너리 분할의 4가지 분할 구조가 존재한다. 본 발명의 실시예에 따르면, 상기 각 트리 구조에서 노드의 너비 및 높이는 모두 2의 거듭제곱 값을 가질 수 있다. 예를 들어, 바이너리 트리(Binary Tree, BT) 구조에서, 2NX2N 크기의 노드는 수직 바이너리 분할에 의해 2개의 NX2N 노드들로 분할되고, 수평 바이너리 분할에 의해 2개의 2NXN 노드들로 분할될 수 있다. 또한, 터너리 트리(Ternary Tree, TT) 구조에서, 2NX2N 크기의 노드는 수직 터너리 분할에 의해 (N/2)X2N, NX2N 및 (N/2)X2N의 노드들로 분할되고, 수평 터너리 분할에 의해 2NX(N/2), 2NXN 및 2NX(N/2)의 노드들로 분할될 수 있다. 이러한 멀티-타입 트리 분할은 재귀적으로 수행될 수 있다.
멀티-타입 트리의 리프 노드는 코딩 유닛이 될 수 있다. 코딩 유닛에 대한 분할이 지시되지 않거나 코딩 유닛이 최대 변환 길이에 비해 크지 않은 경우, 해당 코딩 유닛은 더 이상의 분할 없이 예측 및 변환의 단위로 사용된다. 한편, 전술한 쿼드 트리 및 멀티-타입 트리에서 다음의 파라메터들 중 적어도 하나가 사전에 정의되거나 PPS, SPS, VPS 등과 같은 상위 레벨 세트의 RBSP를 통해 전송될 수 있다. 1) CTU 크기: 쿼드 트리의 루트 노드(root node) 크기, 2) 최소 QT 크기(MinQtSize): 허용된 최소 QT 리프 노드 크기, 3) 최대 BT 크기(MaxBtSize): 허용된 최대 BT 루트 노드 크기, 4) 최대 TT 크기(MaxTtSize): 허용된 최대 TT 루트 노드 크기, 5) 최대 MTT 깊이(MaxMttDepth): QT의 리프 노드로부터의 MTT 분할의 최대 허용 깊이, 6) 최소 BT 크기(MinBtSize): 허용된 최소 BT 리프 노드 크기, 7) 최소 TT 크기(MinTtSize): 허용된 최소 TT 리프 노드 크기.
도 4는 쿼드 트리 및 멀티-타입 트리의 분할을 시그널링하는 방법의 일 실시예를 도시한다. 전술한 쿼드 트리 및 멀티-타입 트리의 분할을 시그널링하기 위해 기 설정된 플래그들이 사용될 수 있다. 도 4를 참조하면, 쿼드 트리 노드의 분할 여부를 지시하는 플래그 ‘qt_split_flag’, 멀티-타입 트리 노드의 분할 여부를 지시하는 플래그 ‘mtt_split_flag’, 멀티-타입 트리 노드의 분할 방향을 지시하는 플래그 ‘mtt_split_vertical_flag’ 또는 멀티-타입 트리 노드의 분할 모양을 지시하는 플래그 ‘mtt_split_binary_flag’ 중 적어도 하나가 사용될 수 있다.
본 발명의 실시예에 따르면, 코딩 트리 유닛은 쿼드 트리의 루트 노드이며, 쿼드 트리 구조로 우선 분할될 수 있다. 쿼드 트리 구조에서는 각각의 노드 ‘QT_node’ 별로 ‘qt_split_flag’가 시그널링된다. ‘qt_split_flag’의 값이 1일 경우 해당 노드는 4개의 정사각형 노드들로 분할되며, ‘qt_split_flag’의 값이 0일 경우 해당 노드는 쿼드 트리의 리프 노드 ‘QT_leaf_node’가 된다.
각각의 쿼드 트리 리프 노드 ‘QT_leaf_node’는 멀티-타입 트리 구조로 더 분할될 수 있다. 멀티-타입 트리 구조에서는 각각의 노드 ‘MTT_node’ 별로 ‘mtt_split_flag’가 시그널링된다. ‘mtt_split_flag’의 값이 1일 경우 해당 노드는 복수의 직사각형 노드들로 분할되며, ‘mtt_split_flag’의 값이 0일 경우 해당 노드는 멀티-타입 트리의 리프 노드 ‘MTT_leaf_node’가 된다. 멀티-타입 트리 노드 ‘MTT_node’가 복수의 직사각형 노드들로 분할될 경우(즉, ‘mtt_split_flag’의 값이 1일 경우), 노드 ‘MTT_node’를 위한 ‘mtt_split_vertical_flag’ 및 ‘mtt_split_binary_flag’가 추가로 시그널링될 수 있다. ‘mtt_split_vertical_flag’의 값이 1일 경우 노드 ‘MTT_node’의 수직 분할이 지시되며, ‘mtt_split_vertical_flag’의 값이 0일 경우 노드 ‘MTT_node’의 수평 분할이 지시된다. 또한, ‘mtt_split_binary_flag’의 값이 1일 경우 노드 ‘MTT_node’는 2개의 직사각형 노드들로 분할되며, ‘mtt_split_binary_flag’의 값이 0일 경우 노드 ‘MTT_node’는 3개의 직사각형 노드들로 분할된다.
코딩을 위한 픽쳐 예측(모션 보상)은 더 이상 나누어지지 않는 코딩 유닛(즉 코딩 유닛 트리의 리프 노드)을 대상으로 이루어진다. 이러한 예측을 수행하는 기본 단위를 이하에서는 예측 유닛(prediction unit) 또는 예측 블록(prediction block)이라고 한다.
이하, 본 명세서에서 사용되는 유닛이라는 용어는 예측을 수행하는 기본 단위인 상기 예측 유닛을 대체하는 용어로 사용될 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니며, 더욱 광의적으로는 상기 코딩 유닛을 포함하는 개념으로 이해될 수 있다.
도 5 및 도 6은 본 발명의 실시예에 따른 인트라 예측 방법을 더욱 구체적으로 도시한다. 전술한 바와 같이, 인트라 예측부는 현재 블록의 좌측 및/또는 상측에 위치한 복원된 샘플들을 참조 샘플들로 이용하여 현재 블록의 샘플 값들을 예측한다.
먼저, 도 5는 인트라 예측 모드에서 현재 블록의 예측을 위해 사용되는 참조 샘플들의 일 실시예를 도시한다. 일 실시예에 따르면, 참조 샘플들은 현재 블록의 좌측 경계에 인접한 샘플들 및/또는 상측 경계에 인접한 샘플들일 수 있다. 도 5에 도시된 바와 같이, 현재 블록의 크기가 WXH이고 현재 블록에 인접한 단일 참조 라인(line)의 샘플들이 인트라 예측에 사용될 경우, 현재 블록의 좌측 및/또는 상측에 위치한 최대 2W+2H+1개의 주변 샘플들을 사용하여 참조 샘플들이 설정될 수 있다.
본 발명의 추가적인 실시예에 따르면, 현재 블록의 인트라 예측을 위해 복수의 참조 라인들 상의 샘플들이 사용될 수 있다. 복수의 참조 라인들은 현재 블록의 경계로부터 기 설정된 거리 이내에 위치한 n개의 라인들로 구성될 수 있다. 이 경우, 현재 블록의 인트라 예측을 위해 사용되는 적어도 하나의 참조 라인을 지시하는 별도의 참조 라인 정보가 시그널링될 수 있다. 구체적으로, 참조 라인 정보는 복수의 참조 라인들 중 어느 하나를 지시하는 인덱스를 포함할 수 있다.
또한, 참조 샘플로 사용될 적어도 일부의 샘플이 아직 복원되지 않은 경우, 인트라 예측부는 참조 샘플 패딩 과정을 수행하여 참조 샘플을 획득할 수 있다. 또한, 인트라 예측부는 인트라 예측의 오차를 줄이기 위해 참조 샘플 필터링 과정을 수행할 수 있다. 즉, 주변 샘플들 및/또는 참조 샘플 패딩 과정에 의해 획득된 참조 샘플들에 필터링을 수행하여 필터링된 참조 샘플들을 획득할 수 있다. 인트라 예측부는 필터링되지 않은 참조 샘플들 또는 필터링된 참조 샘플들을 이용하여 현재 블록의 샘플들을 예측한다. 본 개시에서, 주변 샘플들은 적어도 하나의 참조 라인 상의 샘플들을 포함할 수 있다. 예를 들어, 주변 샘플들은 현재 블록의 경계에 인접한 라인 상의 인접 샘플들을 포함할 수 있다.
다음으로, 도 6은 인트라 예측에 사용되는 예측 모드들의 일 실시예를 도시한다. 인트라 예측을 위해, 인트라 예측 방향을 지시하는 인트라 예측 모드 정보가 시그널링될 수 있다. 인트라 예측 모드 정보는 인트라 예측 모드 세트를 구성하는 복수의 인트라 예측 모드들 중 어느 하나를 지시한다. 현재 블록이 인트라 예측된 블록일 경우, 디코더는 비트스트림으로부터 현재 블록의 인트라 예측 모드 정보를 수신한다. 디코더의 인트라 예측부는 추출된 인트라 예측 모드 정보에 기초하여 현재 블록에 대한 인트라 예측을 수행한다.
본 발명의 실시예에 따르면, 인트라 예측 모드 세트는 인트라 예측에 사용되는 모든 인트라 예측 모드들(예, 총 67개의 인트라 예측 모드들)을 포함할 수 있다. 더욱 구체적으로, 인트라 예측 모드 세트는 평면 모드, DC 모드 및 복수의(예, 65개의) 각도 모드들(즉, 방향 모드들)을 포함할 수 있다. 일부 실시예에서, 인트라 예측 모드 세트는 모든 인트라 예측 모드들 중 일부로 구성될 수도 있다. 각각의 인트라 예측 모드는 기 설정된 인덱스(즉, 인트라 예측 모드 인덱스)를 통해 지시될 수 있다. 예를 들어, 도 6에 도시된 바와 같이 인트라 예측 모드 인덱스 0은 평면 모드를 지시하고, 인트라 예측 모드 인덱스 1은 DC 모드를 지시한다. 또한, 인트라 예측 모드 인덱스 2 내지 66은 서로 다른 각도 모드들을 각각 지시할 수 있다. 이때, 인트라 예측 모드 인덱스 2는 수평 대각(Horizontal Diagonal, HDIA) 모드를 지시하고, 인트라 예측 모드 인덱스 18은 수평(Horizontal, HOR) 모드를 지시하고, 인트라 예측 모드 인덱스 34는 대각(Diagonal, DIA) 모드를 지시하고, 인트라 예측 모드 인덱스 50은 수직(Vertical, VER) 모드를 지시하며, 인트라 예측 모드 인덱스 66은 수직 대각(Vertical Diagonal, VDIA) 모드를 지시한다.
이하, 도 7을 참조하여 본 발명의 일 실시예에 따른 인터 예측 방법에 대해 설명하도록한다. 본 개시에서, 인터 예측 방법은 병진 운동(translation motion)에 최적화된 일반 인터 예측 방법 및 도 31 내지 도 52를 통해 후술할 어파인(affine) 모델 기반의 인터 예측 방법을 포함할 수 있다. 또한, 모션 벡터는 일반 인터 예측 방법에 따른 모션 보상을 위한 일반 모션 벡터 및 어파인 모션 보상을 위한 컨트롤 포인트 모션 벡터(control point motion vector) 중 적어도 하나를 포함할 수 있다.
도 7은 본 발명의 일 실시예에 따른 인터 예측 방법을 도시한다. 전술한 바와 같이, 디코더는 복호화된 다른 픽쳐의 복원된 샘플들을 참조하여 현재 블록을 예측할 수 있다. 도 7을 참조하면, 디코더는 현재 블록(701)의 모션 정보 세트에 기초하여 참조 픽쳐(720) 내의 참조 블록(702)을 획득한다. 이때, 모션 정보 세트는 참조 픽쳐 인덱스 및 모션 벡터(703)를 포함할 수 있다. 참조 픽쳐 인덱스는 참조 픽쳐 리스트에서 현재 블록의 인터 예측을 위한 참조 블록이 포함된 참조 픽쳐(720)를 지시한다. 일 실시예에 따라, 참조 픽쳐 리스트는 전술한 L0 픽쳐 리스트 또는 L1 픽쳐 리스트 중 적어도 하나를 포함할 수 있다. 모션 벡터(703)는 현재 픽쳐(710) 내에서 현재 블록(701)의 좌표 값과 참조 픽쳐(720) 내에서 참조 블록(702)의 좌표 값 간의 오프셋을 나타낸다. 디코더는 참조 블록(702)의 샘플 값들에 기초하여 현재 블록(701)의 예측자를 획득하고, 상기 예측자를 이용하여 현재 블록(701)을 복원한다.
구체적으로, 인코더는 복원 순서가 앞선 픽쳐들에서 현재 블록과 유사한 블록을 탐색하여 전술한 참조 블록을 획득할 수 있다. 예를 들어, 인코더는 기 설정된 탐색 영역 내에서 현재 블록과 샘플 값 차이의 합이 최소가 되는 참조 블록을 탐색할 수 있다. 이때, 현재 블록과 참조 블록의 샘플들 간의 유사도를 측정하기 위해, SAD (Sum Of Absolute Difference) 또는 SATD (Sum of Hadamard Transformed Difference) 중 적어도 하나가 사용될 수 있다. 여기에서, SAD는 두 블록에 포함된 샘플 값들의 차이 각각의 절대값을 모두 더한 값일 수 있다. 또한, SATD는 두 블록에 포함된 샘플 값들의 차이를 하다마드 변환(Hadamard Transform)하여 획득된 하다마드 변환 계수의 절대값을 모두 더한 값일 수 있다.
한편, 현재 블록은 하나 이상의 참조 영역을 이용하여 예측될 수도 있다. 전술한 바와 같이, 현재 블록은 2개 이상의 참조 영역을 이용하는 쌍예측 방식을 통해 인터 예측될 수 있다. 일 실시예에 따라, 디코더는 현재 블록의 2개의 모션 정보 세트에 기초하여 2개의 참조 블록을 획득할 수 있다. 또한, 디코더는 획득된 2개의 참조 블록 각각의 샘플 값들에 기초하여 현재 블록의 제1 예측자 및 제2 예측자를 획득할 수 있다. 또한, 디코더는 제1 예측자 및 제2 예측자를 이용하여 현재 블록을 복원할 수 있다. 예를 들어, 디코더는 제1 예측자 및 제2 예측자의 샘플 별 평균에 기초하여 현재 블록을 복원할 수 있다.
전술한 바와 같이, 현재 블록의 모션 보상을 위해, 하나 이상의 모션 정보 세트가 시그널링될 수 있다. 이때, 복수의 블록 각각의 모션 보상을 위한 모션 정보 세트 간의 유사성이 이용될 수 있다. 예를 들어, 현재 블록의 예측에 사용되는 모션 정보 세트는 기 복원된 다른 샘플들 중 어느 하나의 예측에 사용된 모션 정보 세트로부터 유도될 수 있다. 이를 통해, 인코더 및 디코더는 시그널링 오버헤드를 감소시킬 수 있다. 이하에서는, 현재 블록의 모션 정보 세트가 시그널링되는 다양한 실시예들에 대해 설명하도록 한다.
도 8은 본 발명의 일 실시예에 따라, 현재 블록의 모션 벡터가 시그널링되는 방법을 나타내는 도면이다. 본 발명의 일 실시예에 따라, 현재 블록의 모션 벡터는 현재 블록의 모션 벡터 예측자(motion vector predictor, MVP)로부터 유도될 수 있다. 일 실시예에 따라, 현재 블록의 모션 벡터를 유도하기 위해 참조되는 모션 벡터 예측자는 모션 벡터 예측자(motion vector predictor, MVP) 후보 리스트를 이용하여 획득될 수 있다. MVP 후보 리스트는 기 설정된 개수의 MVP 후보(Candidate 1, Candidate 2, ..., Candidate N)를 포함할 수 있다.
일 실시예에 따라, MVP 후보 리스트는 공간적 후보 또는 시간적 후보 중 적어도 하나를 포함할 수 있다. 공간적 후보는 현재 픽쳐 내에서 현재 블록으로부터 일정한 범위 이내의 주변 블록의 예측에 사용된 모션 정보 세트일 수 있다. 공간적 후보는 현재 블록의 주변 블록들 중 이용 가능한 주변 블록들을 기초로 구성될 수 있다. 또한, 시간적 후보는 현재 픽쳐와 다른 픽쳐 내의 블록의 예측에 사용된 모션 정보 세트일 수 있다. 예를 들어, 시간적 후보는 특정 참조 픽쳐 내에서 현재 블록의 위치에 대응하는 특정 블록을 기초로 구성될 수 있다. 이때, 특정 블록의 위치는 상기 참조 픽쳐 내에서 특정 블록의 좌상단(top-left) 샘플의 위치를 나타낸다. 추가적인 실시예에 따라, MVP 후보 리스트는 제로 모션 벡터를 포함할 수 있다. 추가적인 실시예에 따라, 현재 블록의 MVP 후보 리스트가 포함하는 MVP 후보에 대한 라운딩(rounding) 프로세스가 수행될 수 있다. 이때, 후술할 현재 블록의 모션 벡터 차분 값의 레졸루션이 이용될 수 있다. 예를 들어, 현재 블록의 MVP 후보들은 각각 현재 블록의모션 벡터 차분 값의 레졸루션에 기초하여 라운딩될 수 있다.
본 개시에서, MVP 후보 리스트는 개선된 시간적 모션 벡터 후보 (advanced temporal motion vector prediction, ATMVP) 리스트, 머지 인터 예측을 위한 머지 후보 리스트, 어파인 모션 보상을 위한 컨트롤 포인트 모션 벡터 후보 리스트, 서브블록 기반의 모션 보상을 위한 시간적 모션 벡터 후보(subblock-based temporal motion vecto prediction, STMVP) 리스트, 및 이들의 조합을 포함할 수 있다.
일 실시예에 따라, 인코더(810) 및 디코더(820)는 현재 블록의 모션 보상을 위한 MVP 후보 리스트를 구성할 수 있다. 예를 들어, 현재 블록보다 먼저 복원된 샘플들 중에서 현재 블록의 모션 정보 세트와 동일 또는 유사한 모션 정보 세트에 기초하여 예측되었을 가능성이 있는 샘플에 대응하는 후보들이 존재할 수 있다. 인코더(810) 및 디코더(820)는 해당 복수의 후보 블록들을 기초로 현재 블록의 MVP 후보 리스트를 구성할 수 있다. 이때, 인코더(810) 및 디코더(820)는 인코더(810)와 디코더(820) 간에 미리 정의된 규칙에 따라 MVP 후보 리스트를 구성할 수 있다. 즉, 인코더(810)와 디코더(820) 각각에서 구성된 MVP 후보 리스트는 서로 동일할 수 있다.
또한, 미리 정의된 규칙은 현재 블록의 예측 모드에 따라 달라질 수 있다. 예를 들어, 현재 블록의 예측 모드가 어파인 모델 기반의 어파인 예측 모드인 경우, 인코더 및 디코더는 어파인 모델에 기반한 제1 방법을 이용하여 현재 블록의 MVP 후보 리스트를 구성할 수 있다. 제1 방법은 컨트롤 포인트 모션 벡터 후보 리스트를 획득하는 방법일 수 있다. 이에 대해서는 도 31 내지 52를 통해 구체적으로 설명하도록 한다. 반면, 현재 블록의 예측 모드가 어파인 모델에 기반하지 않은 일반 인터 예측 모드인 경우, 인코더 및 디코더는 어파인 모델에 기반하지 않은 제2 방법을 이용하여 현재 블록의 MVP 후보 리스트를 구성할 수 있다. 이때, 제1 방법과 제2 방법은 서로 다른 방법일 수 있다.
디코더(820)는 현재 블록의 MVP 후보 리스트가 포함하는 적어도 하나의 MVP 후보 중 어느 하나에 기초하여 현재 블록의 모션 벡터를 유도할 수 있다. 예를 들어, 인코더(810)는 현재 블록의 모션 벡터를 유도하기 위해 참조되는 모션 벡터 예측자를 지시하는 MVP 인덱스(index)를 시그널링할 수 있다. 디코더(820)는 시그널링된 MVP 인덱스에 기초하여 현재 블록의 모션 벡터 예측자를 획득할 수 있다. 디코더(820)는 모션 벡터 예측자를 이용하여 현재 블록의 모션 벡터를 유도할 수 있다. 일 실시예에 따라, 디코더(820)는 MVP 후보 리스트에서 획득된 모션 벡터 예측자를 별도의 모션 벡터 차분값 없이, 현재 블록의 모션 벡터로 사용할 수 있다. 디코더(820)는 현재 블록의 모션 벡터에 기초하여 현재 블록을 복원할 수 있다. MVP 후보 리스트로부터 획득된 모션 벡터 예측자가 별도의 모션 벡터 차분값 없이 현재 블록의 모션 벡터로 사용되는 인터 예측 모드는 머지 모드로 지칭될 수 있다.
다른 일 실시예에 따라, 디코더(820)는 현재 블록의 모션 벡터를 위한 별도의 모션 벡터 차분 값(motion vector difference)을 획득할 수 있다. 디코더(820)는 MVP 후보 리스트로부터 획득된 모션 벡터 예측자와 현재 블록의 모션 벡터 차분 값을 합산하여 현재 블록의 모션 벡터를 획득할 수 있다. 이 경우, 인코더(810)는 현재 블록의 모션 벡터와 모션 벡터 예측자 간의 차이를 나타내는 모션 벡터 차분 값(MV difference)을 시그널링할 수 있다. 모션 벡터 차분 값이 시그널링되는 방법에 대해서는 도 9를 통해 구체적으로 설명하도록 한다. 디코더(820)는 모션 벡터 차분 값(MV difference)에 기초하여 현재 블록의 모션 벡터를 획득할 수 있다. 디코더(820)는 현재 블록의 모션 벡터에 기초하여 현재 블록을 복원할 수 있다.
추가적으로, 현재 블록의 모션 보상을 위한 참조 픽쳐 인덱스가 시그널링될 수 있다. 현재 블록의 예측 모드가 인코더(810)는 참조 블록을 포함하는 참조 픽쳐를 지시하는 참조 픽쳐 인덱스를 시그널링할 수 있다. 디코더(820)는 시그널링된 참조 픽쳐 인덱스에 기초하여 현재 블록의 복원에 참조되는 참조 픽쳐의 POC를 획득할 수 있다. 이때, 참조 픽쳐의 POC가 현재 블록의 모션 벡터를 유도하기 위해 참조되는 MVP에 대응하는 참조 픽쳐의 POC와 서로 다를 수 있다. 이 경우, 디코더(820)는 모션 벡터 스케일링을 수행할 수 있다. 즉, 디코더(820)는 MVP를 스케일링하여 MVP'를 획득할 수 있다. 이때, 모션 벡터 스케일링은 현재 픽쳐의 POC, 현재 블록의 시그널링된 참조 픽쳐의 POC 및 MVP에 대응하는 참조 픽쳐의 POC에 기초하여 수행될 수 있다. 또한, 디코더(820)는 MVP'를 현재 블록의 모션 벡터 예측자로 사용할 수 있다.
전술한 바와 같이, 현재 블록의 모션 벡터는 현재 블록의 모션 벡터 예측자와 모션 벡터 차분 값을 합산하여 획득될 수 있다. 이때, 모션 벡터 차분 값은 인코더로부터 시그널링될 수 있다. 인코더는 모션 벡터 차분 값을 인코딩하여 모션 벡터 차분 값을 나타내는 정보를 생성하고, 시그널링할 수 있다. 이하에서는 본 발명의 일 실시예에 따라 모션 벡터 차분 값이 시그널링되는 방법에 대해 설명하도록 한다.
도 9는 본 발명의 일 실시예에 따라 현재 블록의 모션 벡터 차분 값이 시그널링되는 방법을 나타내는 도면이다. 일 실시예에 따라, 모션 벡터 차분 값을 나타내는 정보는 모션 벡터 차분 값의 절대값 정보 또는 모션 벡터 차분 값의 부호 정보 중 적어도 하나를 포함할 수 있다. 모션 벡터 차분 값의 절대값과 부호는 별도로 인코딩될 수 있다.
일 실시예에 따라, 모션 벡터 차분 값의 절대값은 값 자체로 시그널링되지 않을 수도 있다. 인코더는 모션 벡터 차분 값의 절대값의 특성을 나타내는 적어도 하나의 플래그를 이용하여 시그널링되는 값의 크기를 줄일 수 있다. 디코더는 시그널링된 값으로부터 적어도 하나의 플래그를 이용하여 모션 벡터 차분 값의 절대값을 유도할 수 있다.
예를 들어, 적어도 하나의 플래그는 모션 벡터 차분 값의 절대값이 N보다 큰지를 나타내는 제1 플래그를 포함할 수 있다. 이때, N은 정수일 수 있다. 모션 벡터 차분 값의 절대값의 크기가 N 보다 큰 경우, 활성화된 제1 플래그와 함께 (모션 벡터 차분 값의 절대값- N) 값이 시그널링될 수 있다. 이때, 활성화된 플래그는 모션 벡터 차분 값의 절대값의 크기가 N보다 큰 경우를 나타낼 수 있다. 디코더는 활성화된 제1 플래그 및 시그널링된 값에 기초하여 모션 벡터 차분 값의 절대값을 획득할 수 있다.
도 9를 참조하면, 모션 벡터 차분 값의 절대값이 '0'보다 큰지를 나타내는 제2 플래그(abs_mvd_greater0_flag)가 시그널링될 수 있다. 제2 플래그(abs_mvd_greater0_flag[])가 모션 벡터 차분 값의 절대값이 '0'보다 크지 않음을 나타내는 경우, 모션 벡터 차분 값의 절대값은 '0' 일 수 있다. 또한, 제2 플래그(abs_mvd_greater0_flag)가 모션 벡터 차분 값의 절대값이 '0'보다 큰 것을 나타내는 경우, 디코더는 모션 벡터 차분 값에 대한 다른 정보를 이용하여 모션 벡터 차분 값의 절대값을 획득할 수 있다.
일 실시예에 따라, 모션 벡터 차분 값의 절대값이 '1'보다 큰지를 나타내는 제3 플래그(abs_mvd_greater1_flag)가 시그널링될 수 있다. 제3 플래그(abs_mvd_greater1_flag)가 모션 벡터 차분 값의 절대값이 '1'보다 크지 않음을 나타내는 경우, 디코더는 모션 벡터 차분 값의 절대값이 '1'인 것으로 판단할 수 있다.
반대로, 제3 플래그(abs_mvd_greater1_flag)가 모션 벡터 차분 값의 절대값이 '1' 보다 큰 것을 나타내는 경우, 디코더는 모션 벡터 차분 값에 대한 또 다른 정보를 이용하여 모션 벡터 차분 값의 절대값을 획득할 수 있다. 예를 들어, (모션 벡터 차분 값의 절대값 - 2) 값(abs_mvd_minus2)이 시그널링될 수 있다. 모션 벡터 차분 값의 절대값이 '1' 보다 큰 경우, 모션 벡터 차분 값의 절대값은 2 이상의 값일 수 있기 때문이다.
전술한 바와 같이, 현재 블록의 모션 벡터 차분 값의 절대값은 적어도 하나의 플래그에 변형될 수 있다. 예를 들어, 모션 벡터 차분 값의 변형된 절대 값은 모션 벡터 차분 값의 크기에 따라 (모션 벡터 차분 값의 절대값 - N)을 나타낼 수 있다. 일 실시예에 따라, 모션 벡터 차분 값의 변형된 절대값은 적어도 하나의 비트를 통해 시그널링될 수 있다. 이때, 모션 벡터 차분 값의 변형된 절대값을 지시하기 위해 시그널링되는 비트의 개수는 가변적일 수 있다. 인코더는 모션 벡터 차분 값의 변형된 절대값을 가변 길이 이진화 방법을 사용하여 인코딩할 수 있다. 예를 들어, 인코더는 가변 길이 이진화 방법은 절삭 단항(truncated unary) 이진화, 단항(unary) 이진화, 절삭 라이스(truncated rice) 또는 지수 골룸(exp-Golomb) 이진화 중 적어도 하나를 사용할 수 있다.
또한, 모션 벡터 차분 값의 부호는 부호 플래그(mvd_sign_flag)를 통해 시그널링될 수 있다. 한편, 모션 벡터 차분 값의 부호는 부호 비트 하이딩(sign-bit-hiding)에 의해 묵시적으로 시그널링될 수도 있다. 이에 대해서는 도 23 내지 도 28을 통해 설명하도록 한다.
한편, 전술한 현재 블록의 모션 벡터 차분 값은 특정 레졸루션 단위로 시그널링될 수 있다. 본 개시에서, 모션 벡터 차분 값의 레졸루션은 모션 벡터 차분 값이 시그널링되는 단위를 나타낼 수 있다. 즉, 본 개시에서, 픽쳐의 레졸루션을 제외한 레졸루션은 모션 벡터 차분 값이 시그널링되는 정밀도(precision) 내지 세밀도(granularity)를 나타낼 수 있다. 모션 벡터 차분 값의 레졸루션은 샘플 또는 픽셀의 단위로 표현될 수 있다. 예를 들어, 모션 벡터 차분 값의 레졸루션은 1/4(quarter), 1/2(half), 1(integer), 2, 4 샘플 단위와 같이, 샘플의 단위를 사용하여 표현될 수 있다. 또한, 현재 블록의 모션 벡터 차분 값의 레졸루션이 작을수록, 현재 블록의 모션 벡터 차분 값의 정밀도는 증가할 수 있다.
본 발명의 일 실시예에 따르면, 모션 벡터 차분 값은 다양한 레졸루션에 기초하여 시그널링될 수 있다. 일 실시예에 따라, 모션 벡터 차분 값의 절대값 또는 변형된 절대값은 정수 샘플 단위의 값으로 시그널링될 수 있다. 또는 모션 벡터 차분 값의 절대값은 1/2-서브펠 단위의 값으로 시그널링될 수도 있다. 즉, 모션 벡터 차분 값의 레졸루션은 상황에 따라 다르게 설정될 수 있다. 본 발명의 일 실시예에 따른 인코더 및 디코더는 모션 벡터 차분 값을 위한 다양한 레졸루션을 적절히 활용하여 현재 블록의 모션 벡터 차분 값을 효율적으로 시그널링할 수 있다.
일 실시예에 따라, 모션 벡터 차분 값의 레졸루션은 블록, 코딩 유닛, 슬라이스 또는 타일 중 적어도 하나의 단위 마다 다른 값으로 설정될 수 있다. 예를 들어, 제1 블록의 모션 벡터 차분 값의 제1 레졸루션은 1/4 샘플 단위일 수 있다. 이 경우, 모션 벡터 차분 값의 절대값 '16'을 제1 레졸루션으로 나눈 값인 '64'가 시그널링될 수 있다. 또한, 제2 블록의 모션 벡터 차분 값의 제2 레졸루션은 정수 샘플 단위일 수 있다. 이 경우, 제2 모션 벡터 차분 값의 절대값 '16'을 제2 레졸루션으로 나눈 값인 '16'이 시그널링될 수 있다. 이와 같이, 모션 벡터 차분 값의 절대값이 동일한 경우에도, 레졸루션에 따라 다른 값이 시그널링될 수 있다. 이때, 모션 벡터 차분 값의 절대값을 레졸루션으로 나눈 값이 소수점 이하 자리를 포함하는 경우, 해당 값에 라운딩 함수가 적용될 수 있다.
인코더는 모션 벡터 차분 값의 레졸루션에 기초하여 모션 벡터 차분 값을 나타내는 정보를 시그널링할 수 있다. 디코더는 시그널링된 모션 벡터 차분 값으로부터 수정된 모션 벡터 차분 값을 획득할 수 있다. 디코더는 레졸루션 차분 값의 레졸루션에 기초하여 모션 벡터 차분 값을 수정할 수 있다. 현재 블록의 시그널링된 모션 벡터 차분 값(valuePerResoultion)과 수정된 모션 벡터 차분 값(valueDetermined) 사이의 관계는 아래 [수학식 1]과 같다. 이하 본 개시에서, 특별한 언급이 없는 한 모션 벡터 차분 값은 수정된 모션 벡터 차분 값(valueDetermined)을 나타낸다. 또한, 시그널링된 모션 벡터 차분 값은 레졸루션에 의해 수정되기 이전의 값을 나타낸다.
[수학식 1]
valueDetermined = resolution*valuePerResolution
[수학식 1]에서, resoultion은 현재 블록의 모션 벡터 차분 값의 레졸루션을 나타낸다. 즉, 디코더는 현재 블록의 시그널링된 모션 벡터 차분 값과 레졸루션을 곱하여 수정된 모션 벡터 차분 값을 획득할 수 있다. 다음으로, 디코더는 수정된 모션 벡터 차분 값에 기초하여 현재 블록의 모션 벡터를 획득할 수 있다. 또한, 디코더는 현재 블록의 모션 벡터에 기초하여 현재 블록을 복원할 수 있다.
현재 블록의 모션 벡터 차분 값의 레졸루션으로 상대적으로 작은 값이 사용되는 경우(즉, 정밀도가 높은 경우), 현재 블록의 모션 벡터 차분 값을 더욱 세밀하게 나타내기가 유리할 수 있다. 그러나 이 경우, 시그널링되는 값 자체가 커져 현재 블록의 모션 벡터 차분 값을 위한 시그널링 오버헤드가 증가할 수 있다. 반대로, 현재 블록의 모션 벡터 차분 값의 레졸루션으로 상대적으로 큰 값이 사용되는 경우(즉, 정밀도가 낮은 경우), 시그널링되는 값의 크기를 줄여 모션 벡터 차분 값을 위한 시그널링 오버헤드를 감소시킬 수 있다. 즉, 모션 벡터 차분 값의 레졸루션이 큰 경우, 현재 블록의 모션 벡터 차분 값은 현재 블록의 모션 벡터 차분 값의 레졸루션이 작은 경우에 비해 적은 개수의 비트를 통해 시그널링될 수 있다. 그러나 이 경우, 현재 블록의 모션 벡터 차분 값을 세밀하게 나타내기 어려울 수 있다.
이에 따라, 인코더 및 디코더는 복수의 레졸루션들 중에서 상황에 따라 모션 벡터 차분 값을 시그널링하기 위해 유리한 레졸루션을 선택할 수 있다. 예를 들어, 인코더는 상황에 기반하여 선택된 레졸루션을 시그널링할 수 있다. 또한, 디코더는 시그널링된 레졸루션에 기초하여 현재 블록의 모션 벡터 차분 값을 획득할 수 있다. 이하에서는, 본 발명의 일 실시예에 따라 현재 블록의 모션 벡터 차분 값의 레졸루션이 시그널링되는 방법에 대해 서술하도록 한다. 본 발명의 일 실시예에 따라, 현재 블록의 모션 벡터 차분 값의 레졸루션은 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중 어느 하나일 수 있다. 여기에서, 복수의 가용 레졸루션들은 특정 상황에서 사용 가능한 레졸루션들을 나타낼 수 있다. 또한, 레졸루션 세트가 포함하는 가용 레졸루션들의 종류 및 개수는 상황에 따라 달라질 수 있다.
도 10은 본 발명의 일 실시예에 따라 현재 블록의 모션 벡터 차분 값의 레졸루션이 시그널링되는 방법을 나타내는 도면이다. 일 실시예에 따라, 복수의 가용 레졸루션들 중에서 현재 블록의 모션 벡터 차분 값의 레졸루션을 지시하는 레졸루션 지시자가 시그널링될 수 있다. 인코더는 모션 벡터 차분 값을 나타내는 정보와 함께 레졸루션 지시자를 시그널링할 수 있다. 디코더는 현재 블록의 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중에서 어느 하나를 지시하는 레졸루션 지시자에 기초하여 현재 블록의 모션 벡터 차분 값의 레졸루션을 획득할 수 있다. 디코더는 획득된 모션 벡터 차분 값의 레졸루션에 기초하여 현재 블록의 모션 벡터 차분 값을 획득할 수 있다.
일 실시예에 따라, 레졸루션 지시자는 가변 길이의 비트로 표현될 수 있다. 예를 들어, 레졸루션 지시자는 현재 블록의 레졸루션 세트에서 복수의 가용 레졸루션들 각각을 지시하는 레졸루션 인덱스들 중 어느 하나를 나타낼 수 있다. 이때, 레졸루션 인덱스는 기 설정된 최대 길이를 가지는 가변 길이의 비트로 표현될 수 있다. 예를 들어, 레졸루션 지시자는 각각 하나의 비트로 표현되는 둘 이상의 플래그를 포함할 수 있다. 기 설정된 최대 길이는 복수의 가용 레졸루션들의 개수에 따라 결정된 길이일 수 있다. 예를 들어, 가용 레졸루션 세트가 3개의 가용 레졸루션들을 포함하는 경우, 기 설정된 최대 길이는 '2'일 수 있다. 본 개시에서, 레졸루션 인덱스는 레졸루션 지시자의 값으로 지칭될 수도 있다. 도 10을 참조하면, 레졸루션 지시자의 값은 0, 10, 또는 11 중 어느 하나일 수 있다.
도 10의 실시예에서, 현재 블록의 모션 보상을 위한 레졸루션 세트는 1/4, 1, 4 샘플 단위의 가용 레졸루션들을 포함할 수 있다. 이때, 현재 블록의 모션 벡터 차분 값의 레졸루션은 도 10에 도시된 가용 레졸루션들(1/4, 1, 4) 중 어느 하나일 수 있다. 일 실시예에 따라, 복수의 가용 레졸루션들 중에서 가장 작은 가용 레졸루션(즉, 정밀도가 가장 큰 레졸루션)이 가장 짧은 길이의 비트를 사용하는 지시자 값에 의해 시그널링될 수 있다. 예를 들어, 1/4, 1, 4 샘플 단위의 가용 레졸루션들 중 가장 작은 값인 1/4 샘플 단위의 가용 레졸루션이 가장 짧은 길이의 비트를 사용하는 지시자 값인 '0'에 의해 지시될 수 있다. 또한, 나머지 가용 레졸루션들은 각각 '10', '11'로 표현되는 지시자 값에 의해 지시될 수 있다.
한편, 레졸루션 지시자가 가변 길이의 비트로 표현되는 경우, 가장 짧은 길이의 비트를 사용하여 지시되는 가용 레졸루션이 현재 블록의 모션 벡터 차분 값의 레졸루션으로 사용될 때, 시그널링 오버헤드가 감소될 수 있다. 이에 따라, 복수의 가용 레졸루션들 중에서, 현재 블록의 모션 벡터 차분 값의 레졸루션으로 선택될 확률이 높은 가용 레졸루션을 가장 짧은 길이의 비트를 사용하여 시그널링되도록 설정할 수 있다. 즉, 동일한 지시자 값의 레졸루션 지시자가 지시하는 가용 레졸루션은 상황에 따라 달라질 수 있다. 이에 대해서는 도 11 내지 도 12를 통해 구체적으로 설명하도록 한다. 또한, 현재 블록의 레졸루션 세트는 상황에 따라 유리한 가용 레졸루션들로 구성될 수 있다. 즉, 현재 블록의 레졸루션 세트가 포함하는 복수의 가용 레졸루션들의 구성은 상황에 따라 달라질 수 있다. 이에 대해서는 도 13을 통해 구체적으로 설명하도록 한다.
도 11 및 도 12는 본 발명의 다른 일 실시예에 따라 현재 블록의 모션 벡터 차분 값의 레졸루션이 시그널링되는 방법을 나타내는 도면이다. 도 11에서는 레졸루션 세트가 3개의 가용 레졸루션을 포함하는 것으로 도시하고 있으나, 본 개시가 이에 제한되는 것은 아니다. 도 11의 실시예에서, 레졸루션 세트는 제1 가용 레졸루션(Resolution 1), 제2 가용 레졸루션(Resolution 2), 및 제3 가용 레졸루션(Resolution 3)을 포함할 수 있다. 또한, 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 각각을 지시하는 레졸루션 지시자의 값은 0, 10, 11 중 어느 하나일 수 있다.
이때, 동일한 지시자 값의 레졸루션 지시자가 지시하는 가용 레졸루션은 상황에 따라 달라질 수 있다. 예를 들어, 레졸루션 지시자의 값들 중 가장 짧은 길이의 비트를 사용하는 지시자 값은 제1 상황(case 1)에서 제1 가용 레졸루션을 지시하고, 제2 상황(case 2)에서는 제2 가용 레졸루션을 지시할 수 있다. 제1 가용 레졸루션과 제2 가용 레졸루션은 서로 다를 수 있다.
도 11의 'case 1'을 참조하면, 제1 가용 레졸루션(Resolution 1), 제2 가용 레졸루션(Resolution 2), 및 제3 가용 레졸루션(Resolution 3)은 각각 레졸루션 지시자의 값이 0, 10, 11인 경우에 지시되는 가용 레졸루션일 수 있다. 이와 달리, 도 11의 'case 2'를 참조하면, 제1 가용 레졸루션(Resolution 1), 제2 가용 레졸루션(Resolution 2), 및 제3 가용 레졸루션(Resolution 3)은 각각 레졸루션 지시자의 값이 10, 0, 11인 경우에 지시되는 가용 레졸루션일 수 있다.
도 12는 도 11의 실시예를 더욱 구체적으로 도시한다. 상황에 따라 현재 블록의 모션 벡터 차분 값의 레졸루션은 도 12(a)의 방법 또는 도 12(b)의 방법으로 시그널링될 수 있다. 도 12의 실시예에서, 레졸루션 세트는 1/4, 1 및 4 샘플 단위의 가용 레졸루션들을 포함할 수 있다. 또한, 각각의 가용 레졸루션들은 상황에 따라 다른 지시자 값에 의해 지시될 수 있다. 예를 들어, 도 12(a)를 참조하면, 1/4, 1 및 4 샘플 단위의 가용 레졸루션들은 각각 10, 0, 11에 의해 시그널링될 수 있다. 즉, 복수의 가용 레졸루션들 중에서 가장 작은 가용 레졸루션이 가장 짧은 길이의 비트를 사용하는 지시자 값에 의해 지시될 수 있다. 이러한 시그널링 방법은 복수의 가용 레졸루션들 중에서 가장 작은 가용 레졸루션에 기초하여 현재 블록의 모션 벡터 차분 값을 시그널링하는 것이 유리한 상황에서 사용될 수 있다.
또한, 도 12(b)를 참조하면, 1/4, 1 및 4 샘플 단위의 가용 레졸루션들은 각각 10, 11, 0에 의해 시그널링될 수 있다. 즉, 본 발명의 일 실시예에 따르면, 상황에 따라 복수의 가용 레졸루션들 중에서 가장 작은 가용 레졸루션이 아닌 가용 레졸루션에 기초하여 현재 블록의 모션벡터 차분 값을 시그널링하는 것이 유리할 수 있다. 이 경우, 복수의 가용 레졸루션들 중에서 가장 작은 가용 레졸루션이 아닌 가용 레졸루션이, 가장 짧은 길이의 비트를 사용하는 지시자 값에 의해 지시될 수 있다. 예를 들어, 복수의 가용 레졸루션들 중에서 가장 큰 가용 레졸루션이 가장 짧은 길이의 비트를 사용하는 지시자 값에 의해 지시될 수 있다.
또한, 레졸루션 세트가 포함하는 복수의 가용 레졸루션들의 구성은 상황에 따라 달라질 수 있다. 도 13은 레졸루션 세트가 포함하는 가용 레졸루션들의 구성이 달라지는 일 실시예를 나타내는 도면이다. 본 발명의 일 실시예에 따라, 제1 상황(case1)에서 모션 벡터 차분 값의 레졸루션은 제1 상황 레졸루션 세트로부터 획득되고, 제2 상황(case2)에서 모션 벡터 차분 값의 레졸루션은 제2 상황 레졸루션 세트로부터 획득될 수 있다.
일 실시예에 따라, 제1 상황 레졸루션 세트는 제1 가용 레졸루션(Resolution 1), 제2 가용 레졸루션(Resolution 2), 및 제3 가용 레졸루션(Resolution 3)을 포함할 수 있다. 또한, 제2 상황 레졸루션 세트는 제4 가용 레졸루션(Resolution A), 제5 가용 레졸루션(Resolution B), 및 제6 가용 레졸루션(Resolution C)을 포함할 수 있다. 이때, 제1 상황 레졸루션 세트가 포함하는 가용 레졸루션들 중 일부와 제2 상황 레졸루션 세트가 포함하는 가용 레졸루션들 중 일부는 서로 동일할 수 있다. 즉, 특정 가용 레졸루션은 제1 상황 레졸루션 세트 및 제2 상황 레졸루션 세트 모두에 포함될 수도 있다.
구체적인 실시예에 따라, 제1 상황 레졸루션 세트는 1/4, 1, 4 샘플 단위의 가용 레졸루션들로 구성될 수 있다. 또한, 제2 상황 레졸루션 세트는 1/4, 1/2, 1 샘플 단위의 가용 레졸루션들로 구성될 수 있다. 즉, 제2 상황 레졸루션 세트는 제1 상황 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중 가장 큰 가용 레졸루션 대신 다른 가용 레졸루션을 포함할 수 있다. 이때, 다른 가용 레졸루션은 상기 가장 큰 가용 레졸루션 보다 작은 가용 레졸루션일 수 있다. 또한, 제2 상황 레졸루션 세트가 포함하는 가용 레졸루션들 중 가장 큰 가용 레졸루션은 제1 상황 레졸루션 세트가 포함하는 가용 레졸루션들 중 가장 큰 가용 레졸루션 보다 작을 수 있다. 일 실시예에 따라, 제1 상황 레졸루션 세트는 모션 벡터 차분 값의 정밀도를 증가시켜야하는 상황에 비해 시그널링 오버헤드를 감소가 필요한 상황에서 유리할 수 있다. 반대로, 제2 상황 레졸루션 세트는 시그널링 오버헤드를 감소가 필요한 상황에 비해 모션 벡터 차분 값의 정밀도를 증가시켜야하는 상황에서 유리할 수 있다.
한편, 현재 블록의 예측 모드에 따라 요구되는 모션 벡터 차분 값의 정밀도가 달라질 수 있다. 예를 들어, 어파인 모델에 기반한 모션 보상은 병진 운동(translation motion) 외의 불규칙적인 운동에 대한 모션 예측일 수 있다. 이에 따라, 현재 블록의 예측 모드가 어파인 모델에 기반한 모션 보상 모드인 경우, 기존의 일반 인터 예측 모드에 비해 모션 벡터 차분 값을 세밀하게 시그널링하는 것이 필요할 수 있다. 현재 블록의 MVP 후보 리스트는 현재 블록의 예측 모드에 따라 다른 방법으로 구성될 수 있다. 이에 따라, 현재 블록의 레졸루션 세트가 포함하는 복수의 가용 레졸루션들의 구성은 현재 블록의 모션 보상을 위한 MVP 후보 리스트가 구성되는 방법에 따라 달라질 수 있다.
또한, 현재 블록의 모션 벡터 차분 값의 레졸루션이 클수록, 시그널링되는 모션 벡터 차분 값의 크기가 작아질 수 있다. 이에 따라, 현재 블록의 모션 벡터 차분 값의 절대값이 상대적으로 큰 경우, 현재 블록의 모션 벡터 차분 값이 작은 경우에 비해, 모션 벡터 차분 값을 큰 레졸루션 단위로 시그널링하는 것이 바람직할 수 있다. 이때, 모션 벡터 차분 값은 모션 벡터와 모션 벡터 예측자 간의 차이를 나타내는 값이다. 따라서, 현재 블록의 모션 벡터 예측자가 현재 블록의 모션 벡터와 유사할수록 현재 블록의 모션 벡터 차분 값의 절대값이 작아질 수 있다. 한편, 현재 블록의 모션 벡터와 모션 벡터 예측자 간의 유사도가 높을 확률은 현재 블록의 모션 보상을 위한 MVP 후보 리스트가 구성되는 방법에 따라 달라질 수 있다. 이에 따라, 현재 블록의 레졸루션 세트가 포함하는 복수의 가용 레졸루션들의 구성은 현재 블록의 모션 보상을 위한 MVP 후보 리스트가 구성되는 방법에 따라 달라질 수 있다.
일 실시예에 따라, 도 10 내지 도 13을 통해 전술한 실시예들에서 언급된 상황은 현재 블록의 MVP 후보 리스트가 구성된 방법을 의미할 수 있다. 도 8을 통해 전술한 바와 같이, 현재 블록의 모션 보상을 위한 MVP 후보 리스트는 복수의 방법들 중 어느 하나에 기초하여 구성될 수 있다. 현재 블록의 MVP 후보 리스트는 현재 블록의 예측 모드에 따라 다른 방법으로 구성될 수 있다. 즉, 전술한 실시예들에서 언급된 상황은 현재 블록의 모션 보상을 위한 MVP 후보 리스트가 복수의 방법들 중 어느 방법을 사용하여 구성되었는지에 따른 것으로 정의될 수 있다.
본 발명의 일 실시예 따라, 현재 블록의 레졸루션 세트가 포함하는 복수의 가용 레졸루션들의 구성은 현재 블록의 MVP 후보 리스트를 구성하는 방법에 따라 달라질 수 있다. 예를 들어, 인코더 및 디코더는 전술한 제1 방법 및 제2 방법 중 어느 하나를 사용하여, 현재 블록의 모션 보상을 위한 MVP 후보 리스트를 구성할 수 있다. 이 경우, 현재 블록의 레졸루션 세트가 포함하는 복수의 가용 레졸루션들의 구성은 전술한 제1 방법 및 제2 방법 중에서 어느 방법을 사용하여 현재 블록의 MVP 후보 리스트가 구성되는지에 따라 달라질 수 있다.
일 실시예에 따라, 현재 블록의 모션 보상을 위한 MVP 후보 리스트가 제1 방법을 사용하여 구성된 경우, 현재 블록의 모션 벡터 차분 값의 레졸루션은 제1 레졸루션 세트로부터 획득될 수 있다. 현재 블록의 모션 보상을 위한 MVP 후보 리스트가 제2 방법을 사용하여 구성된 경우, 현재 블록의 모션 벡터 차분 값의 레졸루션은 제2 레졸루션 세트로부터 획득될 수 있다. 이때, 제1 레졸루션 세트를 구성하는 복수의 가용 레졸루션들과 제2 레졸루션 세트를 구성하는 복수의 가용 레졸루션들 중 일부는 서로 다를 수 있다. 예를 들어, 제2 레졸루션 세트는 제1 레졸루션 세트가 포함하는 복수의 가용 레졸루션들이 아닌 다른 가용 레졸루션을 적어도 하나 포함할 수 있다.
전술한 바와 같이, 제1 방법은 어파인 모델에 기반하여 MVP 후보 리스트를 구성하는 방법이고, 제2 방법은 어파인 모델에 기반하지 않고 MVP 후보 리스트를 구성하는 방법일 수 있다. 어파인 모델에 기반한 모션 보상은 병진 운동(translation motion) 외의 불규칙적인 운동에 대한 모션 예측일 수 있다. 이에 따라, 기존의 일반 인터 예측 방법에 비해 모션 벡터 차분 값을 세밀하게 시그널링하는 것이 필요할 수 있다.
이에 따라, 제1 레졸루션 세트는 제2 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중 가장 큰 가용 레졸루션 대신 다른 가용 레졸루션을 포함할 수 있다. 이때, 다른 가용 레졸루션은 상기 가장 큰 가용 레졸루션 보다 작은 가용 레졸루션일 수 있다. 또한, 제1 레졸루션 세트가 포함하는 가용 레졸루션들 중 가장 큰 가용 레졸루션은 제2 레졸루션 세트가 포함하는 가용 레졸루션들 중 가장 큰 가용 레졸루션 보다 작을 수 있다. 예를 들어, 제1 레졸루션 세트가 포함하는 가용 레졸루션들 중 가장 큰 가용 레졸루션은 1 샘플 단위의 레졸루션일 수 있다. 이때, 제2 레졸루션 세트가 포함하는 가용 레졸루션들 중 가장 큰 가용 레졸루션은 4 샘플 단위의 레졸루션일 수 있다.
구체적인 실시예에 따라, 제1 레졸루션 세트는 1/4, 1/2, 1 샘플 단위의 가용 레졸루션들로 구성될 수 있다. 이때, 제2 레졸루션 세트는 1/4, 1, 4 샘플 단위의 가용 레졸루션들로 구성될 수 있다. 다른 구체적인 실시예에 따라, 제1 레졸루션 세트는 1/16, 1/4, 1 샘플 단위의 가용 레졸루션들로 구성될 수 있다. 이때, 제2 레졸루션 세트는 1/4, 1, 4 샘플 단위의 가용 레졸루션들로 구성될 수 있다.
전술한 바와 같이, 디코더는 시그널링된 레졸루션 지시자를 이용하여 현재 블록의 모션 벡터 차분 값의 레졸루션을 결정할 수 있다. 예를 들어, 디코더는 제1 레졸루션 세트 및 제2 레졸루션 세트 중 어느 하나가 포함하는 복수의 가용 레졸루션들 중 현재 블록의 모션 벡터 차분 값의 레졸루션을 지시하는 레졸루션 지시자를 획득할 수 있다. 또한, 디코더는 레졸루션 지시자에 기초하여 현재 블록의 수정된 모션 벡터 차분 값을 획득할 수 있다. 디코더는 수정된 모션 벡터 차분 값에 기초하여 현재 블록을 복원할 수 있다.
본 발명의 일 실시예에 따라, 레졸루션 지시자 값들 중 특정 값에 의해 지시되는 가용 레졸루션은 MVP 후보 리스트가 제1 방법 및 제2 방법 중 어느 방법을 사용하여 구성되는지에 따라 달라질 수 있다. 일 실시예에 따라, 디코더는 제1 값을 가지는 레졸루션 지시자를 획득할 수 있다. 현재 블록의 모션 보상을 위한 MVP 후보 리스트가 제1 방법을 사용하여 구성된 경우, 제1 값에 의해 지시되는 가용 레졸루션은 제7 가용 레졸루션일 수 있다. 현재 블록의 모션 보상을 위한 MVP 후보 리스트가 제2 방법을 사용하여 구성된 경우, 제1 값에 의해 지시되는 가용 레졸루션은 제8 가용 레졸루션일 수 있다. 이때, 제7 가용 레졸루션과 제8 가용 레졸루션은 서로 다른 레졸루션일 수 있다.
일 실시예에 따라, 제7 가용 레졸루션은 제1 레졸루션 세트 및 제2 레졸루션 세트 모두가 포함하는 가용 레졸루션일 수 있다. 현재 블록의 모션 보상을 위한 MVP 후보 리스트가 제2 방법을 사용하여 구성된 경우, 제7 가용 레졸루션은 제1 값과 다른 제2 값에 의해 지시될 수 있다. 예를 들어, 제1 값은 '10, 11' 중 어느 하나이거나 '00, 01' 중 어느 하나일 수 있다. 이때, 제2 값은 '10, 11' 중 제1 값과 다른 어느 하나이거나 '00, 01' 중 제1 값과 다른 어느 하나일 수 있다.
한편, 전술한 바와 같이, 복수의 가용 레졸루션들 중에서 현재 블록의 모션 벡터 차분 값의 레졸루션으로 선택될 확률이 가장 높은 가용 레졸루션을 가장 짧은 길이의 비트를 사용하여 시그널링하는 것이 유리할 수 있다. 일 실시예에 따라, 제1 레졸루션 세트가 포함하는 가용 레졸루션들 중 가장 작은 가용 레졸루션은 제2 레졸루션 세트가 포함하는 가용 레졸루션들 중 가장 작은 가용 레졸루션 보다 작을 수 있다.
즉, 제2 레졸루션 세트가 포함하는 가용 레졸루션들은 상대적으로 큰 레졸루션들일 수 있다. 이에 따라, 현재 블록의 모션 보상을 위한 MVP 후보 리스트가 제2 방법을 사용하여 구성된 경우, 모션 벡터 차분 값의 정밀도를 증가시킬 필요가 있을 수 있다. 전술한 바와 같이, 모션 벡터 차분 값의 정밀도를 증가시킬 필요가 있는 경우, 복수의 가용 레졸루션들 중에서 가장 작은 가용 레졸루션을 가장 짧은 길이의 비트를 사용하여 시그널링하는 것이 유리할 수 있다. 일 실시예에 따라, 제3 값은 레졸루션 지시자의 값들 중 가장 짧은 길이의 비트를 사용하여 표현되는 값일 수 있다.
일 실시예에 따라, 현재 블록의 모션 보상을 위한 MVP 후보 리스트가 제2 방법을 사용하여 구성된 경우, 제3 값은 제2 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중에서 가장 작은 가용 레졸루션을 지시할 수 있다. 일 실시예에 따라, 제2 레졸루션 세트가 포함하는 가용 레졸루션들 중에서 가장 작은 가용 레졸루션은 1/4일 수 있다.
또한, 제1 레졸루션 세트가 포함하는 가용 레졸루션들은 상대적으로 작은 레졸루션들일 수 있다. 이에 따라, 현재 블록의 모션 보상을 위한 MVP 후보 리스트가 제1 방법을 사용하여 구성된 경우, 모션 벡터 차분 값을 위한 시그널링 오버헤드를 감소시킬 필요가 있을 수 있다. 따라서, 현재 블록의 모션 보상을 위한 MVP 후보 리스트가 제1 방법을 사용하여 구성된 경우, 제3 값은 제1 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중에서 가장 작은 가용 레졸루션 이외의 다른 가용 레졸루션을 지시할 수 있다. 일 실시예에 따라, 제3 값은 제1 레졸루션 세트가 포함하는 가용 레졸루션들 중에서 가장 큰 가용 레졸루션, 두 번째로 작은 가용 레졸루션, 또는 두 번째로 큰 가용 레졸루션을 지시할 수 있다. 예를 들어, 제1 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중에서 가장 작은 가용 레졸루션 이외의 다른 가용 레졸루션은 1/4, 1/2, 1, 4 중 어느 하나일 수 있다.
한편, 본 발명의 다른 일 실시예에 따라, 현재 블록의 레졸루션 세트가 포함하는 가용 레졸루션들의 구성은 현재 블록의 모션 벡터 예측자를 지시하는 MVP 인덱스에 따라 달라질 수 있다. MVP 인덱스는 현재 블록의 모션 벡터를 유도하기 위해 참조 되는 모션 벡터 예측자가 현재 블록의 MVP 후보 리스트에서 몇번째 후보인지를 나타낼 수 있다.
도 14는 현재 블록의 모션 벡터 예측자에 따라 현재 블록의 모션 벡터 차분 값의 레졸루션이 시그널링되는 방법의 일 실시예를 나타내는 도면이다. 예를 들어, 디코더는 현재 블록의 모션 보상을 위한 MVP 후보 리스트 중에서 현재 블록의 모션 보상을 위해 참조되는 모션 벡터 예측자를 지시하는 MVP 인덱스를 획득할 수 있다. 이때, 현재 블록의 레졸루션 지시자의 특정 값에 의해 지시되는 가용 레졸루션은 MVP 인덱스가 기 설정된 인덱스보다 크거나 작은지에 따라 달라질 수 있다.
현재 블록의 MVP 후보 리스트 내에서, 작은 MVP 인덱스에 대응하는 모션 벡터 예측자 후보일수록, 현재 블록의 모션 벡터와 유사할 확률이 높을 수 있다. 또한, 현재 블록의 모션 벡터 예측자가 현재 블록의 모션 벡터와 유사할수록 현재 블록의 모션 벡터 차분 값의 절대값이 작아질 수 있다. 이에 따라, 현재 블록의 모션 벡터 예측자에 대응하는 MVP 인덱스가 기 설정된 MVP 인덱스 보다 작은 경우, 현재 블록의 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중에서 가장 작은 가용 레졸루션은 레졸루션 지시자의 값들 중에서 가장 짧은 길이의 비트를 사용하여 표현되는 값에 의해 지시될 수 있다.
반대로, 현재 블록의 모션 벡터 예측자에 대응하는 MVP 인덱스가 기 설정된 MVP 인덱스 보다 큰 경우, 현재 블록의 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중에서 가장 작은 가용 레졸루션이 아닌 특정 가용 레졸루션이 레졸루션 지시자의 값들 중에서 가장 짧은 길이의 비트를 사용하여 표현되는 값에 의해 지시될 수 있다. 이때, 특정 가용 레졸루션은 복수의 가용 레졸루션들 중에서 가장 큰 레졸루션일 수 있다. 또는 특정 가용 레졸루션은 복수의 가용 레졸루션들 중에서 두번째로 크거나, 두번째로 작은 레졸루션일 수 있다.
도 14를 참조하면, 현재 블록의 레졸루션 세트는 1/4, 1, 4 샘플 단위의 가용 레졸루션을 포함할 수 있다. 또한, 현재 블록의 모션 보상을 위한 MVP 인덱스가 기 설정된 MVP 인덱스 보다 작은(Candidate 1, Candidate 2) 경우, 1/4, 1, 4 중에서 가장 작은 가용 레졸루션인 1/4 단위의 레졸루션이 가장 짧은 비트를 사용하여 시그널링될 수 있다. 반면, 현재 블록의 모션 보상을 위한 MVP 인덱스가 기 설정된 MVP 인덱스 보다 큰(Candidate N) 경우, 1/4, 1, 4 중에서 1 또는 4 단위의 레졸루션이 가장 적은 개수의 비트를 사용하여 시그날링될 수 있다.
도 15는 현재 블록의 모션 벡터 예측자에 따라 모션 벡터 차분 값의 레졸루션이 시그널링되는 방법의 다른 일 실시예를 나타내는 도면이다. 도 14를 통해 전술한 바와 같이, 현재 블록의 모션 보상을 위한 MVP 인덱스에 따라, 현재 블록의 모션 벡터 차분 값의 레졸루션이 시그널링되는 방법이 달라질 수 있다.
전술한 바와 같이, 현재 블록의 모션 보상을 위한 MVP 후보 리스트는 다양한 방법을 통해 획득된 후보들을 포함할 수 있다. 일 실시예에 따라, 현재 블록의 모션 보상을 위한 MVP 후보 리스트는 공간적 후보, 시간적 후보, 또는 제로 모션 벡터 중 적어도 하나를 포함할 수 있다. 이때, 현재 블록의 모션 벡터 예측자가 어떤 방식으로 획득된 후보인지에 따라 현재 블록의 레졸루션 세트가 포함하는 복수의 가용 레졸루션들의 구성이 달라질 수 있다. 모션 벡터 예측자 후보에 따라 추정되는 현재 블록과의 유사도가 다를 수 있기 때문이다. 예를 들어, 공간적 후보의 경우 현재 블록과 유사할 확률이 큰 것으로 추정될 수 있다. 또한, 시간적 후보, 제로 모션 벡터와 같은 모션 벡터 예측자 후보들은 공간적 후보에 비해 현재 블록과 유사할 확률이 작은 것으로 추정될 수 있다.
예를 들어, 현재 블록의 모션 벡터 예측자가 공간적 후보 중 어느 하나인 경우, 현재 블록의 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중에서 가장 작은 가용 레졸루션은 레졸루션 지시자의 값들 중에서 가장 짧은 길이의 비트를 사용하여 표현되는 값에 의해 지시될 수 있다.
또한, 현재 블록의 모션 벡터 예측자가 공간적 후보 중 어느 하나가 아닌 경우, 현재 블록의 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중에서 가장 작은 가용 레졸루션이 아닌 특정 가용 레졸루션이 레졸루션 지시자의 값들 중에서 가장 짧은 길이의 비트를 사용하여 표현되는 값에 의해 지시될 수 있다. 이때, 특정 가용 레졸루션은 복수의 가용 레졸루션들 중에서 가장 큰 레졸루션일 수 있다. 또는 특정 가용 레졸루션은 복수의 가용 레졸루션들 중에서 두번째로 크거나, 두번째로 작은 레졸루션일 수 있다.
한편, 도 13 내지 도 15에서는 서로 다른 레졸루션 세트 각각이 동일한 개수의 가용 레졸루션들을 포함하는 것으로 도시되어있으나, 본 개시가 이에 제한되는 것은 아니다. 본 발명의 일 실시예에 따라, 레졸루션 세트 별로 서로 다른 개수의 가용 레졸루션들을 포함할 수도 있다. 예를 들어, 제1 레졸루션 세트는 3개의 가용 레졸루션들을 포함할 수 있다. 반면, 제3 상황에서 사용되는 제3 레졸루션 세트는 2개의 가용 레졸루션들을 포함할 수 있다. 인코더 및 디코더는 상황에 따라 서로 다른 개수의 가용 레졸루션들을 포함하는 레졸루션 세트를 구성할 수 있다.
전술한 바와 같이, 모션 정보 세트는 현재 블록의 참조 픽쳐를 나타내는 참조 픽쳐 인덱스를 포함할 수 있다. 디코더는 시그널링된 참조 픽쳐 인덱스로부터 현재 블록의 참조 픽쳐의 POC를 획득할 수 있다. 본 발명의 일 실시예에 따라, 현재 블록의 레졸루션 세트가 포함하는 복수의 가용 레졸루션들의 구성은 현재 픽쳐의 POC 및 참조 픽쳐의 POC에 따라 달라질 수 있다. 일 실시예에 따라, 현재 픽쳐의 POC 및 참조 픽쳐의 POC에 기초하여, 현재 블록의 레졸루션 세트를 구성하는 가용 레졸루션들 중 일부가 제외될 수 있다.
예를 들어, 참조 픽쳐의 POC가 현재 픽쳐의 POC와 동일한 경우, 현재 블록의 모션 벡터 차분 값의 레졸루션은 제4 레졸루션 세트로부터 획득될 수 있다. 또한, 참조 픽쳐의 POC가 현재 픽쳐의 POC와 동일하지 않은 경우, 현재 블록의 모션 벡터 차분 값의 레졸루션은 제5 레졸루션 세트로부터 획득될 수 있다. 이때, 제4 레졸루션 세트는 제5 레졸루션 세트가 포함하는 가용 레졸루션들 중에서 가장 작은 가용 레졸루션을 제외한 나머지 가용 레졸루션으로 구성될 수 있다. 즉, 현재 픽쳐의 POC 및 참조 픽쳐의 POC에 따라, 현재 블록의 레졸루션 세트를 구성하는 가용 레졸루션들의 개수가 달라질 수 있다.
본 발명의 다른 일 실시예를 따르면, 현재 블록의 모션 벡터 차분 값의 레졸루션은 양자화 파라미터(quantization parameter, QP)에 따라 다른 방법으로 시그날링될 수 있다. 예를 들어, 현재 블록의 QP에 따라 도 11 내지 도 15를 통해 전술한 시그널링 방법들 중 어느 하나가 결정될 수 있다. 또한, 현재 블록의 모션 벡터 차분 값의 레졸루션은 결정된 시그널링 방법을 사용하여 시그널링될 수 있다. 일 실시예에 따라, 현재 블록의 QP가 작을 수록, 현재 블록의 모션 벡터 차분 값의 레졸루션이 작아질 수 있다.
본 발명의 또 다른 일 실시예를 따르면, 현재 블록의 모션 벡터 차분 값의 레졸루션은 프레임 레이트(frame rate)에 따라 다른 방법으로 시그널링될 수 있다. 예를 들어, 현재 블록을 포함하는 비디오 신호의 프레임 레이트에 따라 도 11 내지 도 15를 통해 전술한 시그널링 방법들 중 어느 하나가 결정될 수 있다. 또한, 현재 블록의 모션 벡터 차분 값의 레졸루션은 결정된 시그널링 방법을 사용하여 시그널링될 수 있다. 일 실시예에 따라, 비디오 신호의 프레임 레이트가 높을 수록, 프레임 간의 시간 간격이 짧아 모션 벡터가 작을 확률이 높아질 수 있다. 이에 따라, 현재 블록의 프레임 레이트가 높을 수록, 현재 블록의 모션 벡터 차분 값의 레졸루션이 작아질 수 있다.
본 발명의 또 다른 일 실시예를 따르면, 현재 블록의 모션 벡터 차분 값의 레졸루션은 현재 블록과 현재 블록의 주변 블록 간의 크기 비율 또는 크기 차이에 따라 다른 방법으로 시그널링될 수 있다. 예를 들어, 현재 블록과 현재 블록의 주변 블록 간의 크기 비율 또는 크기 차이에 따라 도 11 내지 도 15를 통해 전술한 시그널링 방법들 중 어느 하나가 결정될 수 있다. 전술한 실시예들은 모션 벡터 차분 값이 아닌 모션 벡터가 직접적으로 시그널링되는 경우에도 동일 또는 상응하는 방법으로 적용될 수 있다.
한편, 본 발명의 추가적인 실시예에 따라, 인코더 및 디코더는 모션 벡터 차분 값을 더하기 전에 모션 벡터 예측자를 수정할 수 있다. 이를 통해, 현재 블록의 모션 벡터를 획득하기 위해 사용되는 모션 벡터 차분 값의 크기를 감소시킬 수 있다. 이때, 현재 블록의 MVP 후보 리스트가 포함하는 모션 벡터 예측자 후보들 중 일부가 현재 블록의 모션 벡터 예측자로 선택된 경우에만, 모션 벡터 예측자에 대한 수정이 수행될 수 있다. 예를 들어, 현재 블록의 MVP 후보 리스트가 포함하는 모션 벡터 예측자 후보들 중에서 기 설정된 MVP 인덱스보다 작은 MVP 인덱스에 대응하는 모션 벡터 예측자 후보가 현재 블록의 모션 벡터 예측자로 사용되는 경우, 해당 모션 벡터 예측자에 대한 수정이 수행될 수 있다.
일 실시예에 따라, 모션 벡터 예측자에 대한 수정이 수행되는지에 따라 레졸루션 세트가 포함하는 복수의 가용 레졸루션들을 시그널링하는 방법이 달라질 수 있다. 예를 들어, 현재 블록의 모션 벡터 예측자가 수정된 경우, 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중에서 가장 작은 가용 레졸루션이 가장 적은 개수의 비트를 사용하여 시그널링될 수 있다. 또한, 현재 블록의 모션 벡터 예측자가 수정되지 않은 경우, 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중에서 가장 작은 가용 레졸루션이 아닌 다른 레졸루션들 중 어느 하나가 가장 적은 개수의 비트를 사용하여 시그널링될 수 있다.
다른 일 실시예에 따라, 모션 벡터 예측자는 모션 벡터 차분 값을 더한 후에 수정될 수도 있다. 이 경우, 현재 블록의 모션 벡터 차분 값의 레졸루션이 모션 벡터 예측자가 모션 벡터 차분 값을 더하기 전에 수정되는 경우와 다른 방법으로 시그널링될 수 있다. 모션 벡터 예측자가 모션 벡터 차분 값이 더해진 뒤에 수정되는 경우, 모션 벡터 차분 값의 정밀도가 낮더라도 모션 벡터 수정 과정을 통해 예측 오차를 줄일수 있다. 이에 따라, 현재 블록의 모션 벡터 예측자가 모션 벡터 차분 값을 더하기 전에 수정되는 경우, 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중에서 가장 작은 가용 레졸루션이 아닌 다른 레졸루션들 중 어느 하나가 가장 적은 개수의 비트를 사용하여 시그널링될 수 있다. 반대로, 현재 블록의 모션 벡터 예측자가 모션 벡터 차분 값을 더하기 전에 수정되지 않는 경우, 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중에서 가장 작은 가용 레졸루션이 가장 적은 개수의 비트를 사용하여 시그널링될 수 있다.
추가적인 실시예에 따라, 현재 블록의 모션 벡터 또는 모션 벡터 예측자가 어떤 후보인지에 따라 후에 수행되는 모션 벡터 수정 과정이 달라질 수 있다. 모션 벡터를 수정하는 과정은 더 정확한 모션 벡터를 탐색하기 위한 과정을 포함할 수 있다. 예를 들어, 디코더는 기준점으로부터 기 정의된 방법에 따라 현재 블록과 매칭되는 블록을 탐색할 수 있다. 기준점은 결정된 모션 벡터 또는 모션 벡터 예측자에 해당하는 위치일 수 있다. 모션 벡터 탐색은 다양한 방법에 의해 수행될 수 있다. 예를 들어, 탐색에는 템플릿 매칭(templete matching) 또는 양측 매칭(bilateral matching)이 사용될 수 있다. 이때, 기 정의된 방법에 따라 기준점으로부터 움직이는 정도가 달라질 수 있다. 모션 벡터 수정 과정을 다르게 한다는 것은 기준점으로부터 움직이는 정도를 다르게 하는 것일 수 있다.
예를 들어, 정확한 모션 벡터 예측자 후보에 대해서는 자세한 수정 과정으로부터 시작할 수 있고, 부정확한 모션 벡터 예측자 후보에 대해서는 덜 자세한 수정 과정으로부터 시작할 수 있다. 본 개시에서, 정확한 모션 벡터 예측자 후보 및 부정확한 모션 벡터 예측자 후보는 MVP 후보 리스트 내에서의 위치에 따라 결정될 수 있다. 또한, 정확한 모션 벡터 예측자 후보 및 부정확한 모션 벡터 예측자 후보는 모션 벡터 예측자 후보 각각이 어떠한 방법으로 생성되었는지에 따라 결정될 수 있다. 어떠한 방법으로 모션 벡터 예측자 후보가 생성되었는지는 현재 블록의 공간적 후보들 중에서 어느 위치에 대응하는 후보인지를 나타낼 수 있다. 또한 자세하고 덜 제세한 수정은 블록을 기준점으로부터 조금씩 움직이면서 탐색할지 많이 움직이면서 탐색할지일 수 있다. 또한, 많이 움직이면서 탐색하는 경우, 많이 움직이면서 찾은 가장 잘 매칭되는 블록으로부터 추가적으로 조금씩 움직이면서 탐색하는 과정을 추가할 수 있다.
전술한 템플릿 매칭 방법은 현재 블록의 템플릿과 비교하려는 비교 대상 블록의 템플릿 간의 값 차이에 기초하여 현재 블록의 템플릿과 가장 차이가 적은 비교 대상 블록을 획득하는 방법일 수 있다. 특정 블록의 템플릿은 특정 블록의 주변 샘플들에 기초하여 획득될 수 있다. 도 16은 본 발명의 일 실시예에 따라 템플릿 매칭 방법에 기초하여 모션 벡터 차분 값의 레졸루션이 획득되는 방법을 나타내는 도면이다. 본 발명의 일 실시예에 따라, 현재 블록의 모션벡터 차분 값의 레졸루션은 시그널링되지 않을 수도 있다. 일 실시예에 따라, 디코더는 템플릿 매칭 방법과 같은 코스트(cost) 계산에 기초하여 현재 블록의 레졸루션을 획득할 수 있다. 전술한 바와 같이, 참조 블록은 모션 벡터 예측자 및 모션 벡터 차분 값에 기초하여 획득될 수 있다. 이때, 모션 벡터 차분 값은 현재 블록의 모션 벡터 차분 값의 레졸루션에 의해 수정된 모션 벡터 차분 값일 수 있다. 이에 따라, 현재 블록의 모션 벡터 차분 값의 레졸루션에 따라 참조 픽쳐 내에서 참조 블록의 위치가 달라질 수 있다.
일 실시예에 따라, 현재 블록의 모션 보상을 위한 레졸루션 세트는 기 설정된 가용 레졸루션들로 구성될 수 있다. 도 16을 참조하면, 현재 블록의 레졸루션 세트는 제1 가용 레졸루션(Resolution 1), 제2 가용 레졸루션(Resolution 2) 및 제3 가용 레졸루션(Resolution 3)을 포함할 수 있다. 현재 블록의 모션 벡터 예측자에 의해 지시되는 기준점(1601)에 기초하여 현재 블록의 레졸루션 세트가 포함하는 가용 레졸루션들 각각에 대응하는 복수의 참조 블록 후보들이 획득될 수 있다. 레졸루션 세트가 포함하는 가용 레졸루션 개수의 참조 블록 후보가 획득될 수 있다. 구체적인 실시예에 따라, 복수의 참조 블록 후보들은 제1 가용 레졸루션에 대응하는 제1 참조 블록 후보(1602), 제2 가용 레졸루션에 대응하는 제2 참조 블록 후보(1603) 및 제3 가용 레졸루션에 대응하는 제3 참조 블록 후보(1604)를 포함할 수 있다. 디코더는 복수의 참조 블록 후보들 중 어느 하나를 현재 블록의 참조 블록으로 사용할 수 있다. 예를 들어, 디코더는 복수의 참조 블록 후보들 각각과 현재 블록을 템플릿 매칭 결과에 기초하여 코스트가 가장 낮은 참조 블록 후보를 현재 블록의 참조 블록으로 선택할 수 있다. 또한, 디코더는 해당 참조 블록에 기초하여 현재 블록을 복원할 수 있다.
다른 일 실시예에 따라, 전술한 참조 블록 후보들 각각과 현재 블록 간의 템플릿 매칭 결과에 기초하여 현재 블록의 모션 벡터 차분 값의 레졸루션이 시그널링될 수도 있다. 예를 들어, 전술한 템플릿 매칭 동작은 디코더와 마찬가지로 인코더에서 동일하게 수행될 수 있다. 또한, 인코더는 템플릿 매칭 결과에 기초하여 코스트가 가장 낮은 참조 블록 후보에 대응하는 가용 레졸루션을 가장 적은 개수의 비트를 사용하여 시그널링할 수 있다.
이 경우, 인코더 및 디코더는 복수의 참조 블록 후보들 중 일부에 대해서만 템플릿 매칭을 수행할 수도 있다. 예를 들어, 도 16의 제1 참조 블록 후보(1602), 제2 참조 블록 후보(1603) 및 제3 참조 블록 후보(1604) 중에서 제1 참조 블록 후보(1602), 제2 참조 블록 후보(1603)에 대해서만 현재 블록과의 템플리 매칭이 수행될 수 있다. 또한, 제1 참조 블록 후보(1602) 및 제2 참조 블록 후보(1603) 각각와 현재 블록 간의 템플릿 매칭 결과에 기초하여, 현재 블록의 레졸루션 세트가 포함하는 가용 레졸루션들 중에서 가장 짧은 길이의 비트를 사용하여 시그널링되는 가용 레졸루션이 결정될 수 있다. 제1 가용 레졸루션 및 제2 가용 레졸루션 중 어느 하나가 가장 짧은 길이의 비트를 사용하여 시그널링될 수 있다. 또한, 제1 가용 레졸루션 및 제2 가용 레졸루션 중 나머지 하나와 템플릿 매칭을 수행하지 않은 참조 블록 후보에 대응하는 제3 가용 레졸루션은 추가적인 비트를 사용하여 시그널링될 수 있다. 이를 통해, 인코더 및 디코더는 템플릿 매칭 방법에 필요한 연산량을 감소시킬 수 있다.
일 실시예에 따라 도 16을 통해 설명된 실시예는 시그널링된 모션 벡터 차분 값의 크기에 따라 적용 여부가 결정될 수도 있다. 예를 들어, 시그널링된 모션 벡터 차분 값이 기 설정된 값 보다 큰 경우에만 템플릿 매칭 방법이 사용될 수도 있다. 시그널링된 모션 벡터 차분 값이 기 설정된 값 보다 작은 경우, 레졸루션에 따른 참조 블록 후보들간의 템플릿 매칭 코스트 차이가 분명하지 않을 수 있기 때문이다.
도 17은 본 발명의 일 실시예에 따라 양측 매칭 방법에 기초하여 모션 벡터 차분 값의 레졸루션이 획득되는 방법을 나타내는 도면이다. 본 발명의 일 실시예에 따라, 도 16을 통해 설명한 템플릿 매칭 방법에 대체하여 양측 매칭 방법이 사용될 수 있다. 양측 매칭 방법은 모션 궤적을 따라 2개 이상의 참조 픽쳐 각각의 참조 블록에 기초하여 현재 블록을 복원하는 방법을 나타낸다. 양측 매칭 방법은 2개 이상의 참조 픽쳐 각각의 참조 블록들 간의 차이에 기초하여 차이가 가장 작은 세트를 획득하는 것일 수 있다.
전술한 바와 같이, 현재 블록이 쌍예측 블록인 경우, 현재 블록은 서로 다른 2개 이상의 참조 픽쳐의 2개 이상의 참조 블록에 기초하여 복원될 수 있다. 도 17을 참조하면, 제1 참조 픽쳐(Reference picture 1) 및 제2 참조 픽쳐(Reference picture 2) 별로 특정 가용 레졸루션에 대응하는 참조 블록 후보들이 구성될 수 있다. 인코더 및 디코더는 제1 참조 픽쳐(Reference picture 1) 내의 참조 블록 후보와 제2 참조 픽쳐(Reference picture 2) 내의 참조 블록 후보 간의 양측 매칭 결과에 기초하여, 제1 참조 픽쳐(Reference picture 1) 내의 참조 블록 및 제2 참조 픽쳐(Reference picture 2) 내의 참조 블록을 획득할 수 있다. 도 17의 실시예에는 도 16을 통해 전술한 실시예들이 동일 또는 상응하는 방법으로 적용될 수 있다.
일 실시예에 따라, 현재 블록이 서로 다른 참조 리스트에 대응하는 2개의 모션 정보 세트에 기초하여 인터 예측되는 경우, 2개의 모션 벡터 차분 값이 별도로 시그널링될 수 있다. 이 경우, 2개의 모션 벡터 차분 값 각각에 적용되는 레졸루션은 서로 동일하거나 다를 수 있다. 이하에서는, 현재 블록의 참조 픽쳐 리스트 별 레졸루션이 시그널링되는 다양한 방법에 대해 설명하도록 한다.
본 발명의 일 실시예에 따라, 참조 픽쳐 리스트 별 모션 벡터 차분 값의 레졸루션은 전술한 양측 매칭 방법에 기초하여 결정될 수 있다. 일 실시예에 따라, 2 개의 참조 픽쳐 리스트 각각에 대응하는 레졸루션 세트는 서로 독립적으로 구성될 수 있다. 예를 들어, 제1 참조 픽쳐 리스트(L0)에 대응하는 레졸루션 세트는 m개의 가용 레졸루션을 포함할 수 있다. 또한, 제2 참조 픽쳐 리스트(L1)에 대응하는 레졸루션 세트는 n개의 가용 레졸루션을 포함할 수 있다. 이 경우, 인코더 및 디코더는 제1 참조 픽쳐 리스트에 대응하는 n개의 참조 블록 후보 및 제2 참조 픽쳐 리스트에 대응하는 m개의 참조 블록 후보들 간의 양측 매칭 결과에 기초하여 참조 픽쳐 리스트 각각의 모션 벡터 차분 값의 레졸루션을 획득할 수 있다. 이 경우, 인코더 및 디코더는 (nxm)번의 양측 매칭을 수행해야할 수 있다.
또는 모션 벡터 차분 값의 레졸루션은 복수의 참조 픽쳐 리스트들에 대해 공통적인 레졸루션 세트가 사용될 수도 있다. 예를 들어, 제1 참조 픽쳐 리스트(L0) 및 제2 참조 픽쳐 리스트(L1)에 대해 공통적으로 사용되는 레졸루션 세트는 n개의 가용 레졸루션을 포함할 수 있다. 일 실시예에 따라, 제1 참조 픽쳐 리스트(L0) 및 제2 참조 픽쳐 리스트(L1) 각각에 대응하는 모션 벡터 차분 값에 대해 서로 동일한 레졸루션이 적용되도록 설정될 수 있다. 이 경우, 인코더 및 디코더는 n 번의 양측 매칭 결과에 기초하여 제1 참조 픽쳐 리스트(L0) 및 제2 참조 픽쳐 리스트(L1) 각각의 모션 벡터 차분 값의 레졸루션을 획득할 수 있다.
한편, 특정 참조 픽쳐 리스트에 대응하는 모션 벡터 예측자와 모션 벡터 간의 차이와 다른 참조 픽쳐 리스트에 대응하는 모션 벡터 예측자와 모션 벡터 간의 차이가 유사할 수 있다. 이 경우, 특정 참조 픽쳐 리스트에 대응하는 모션 벡터 차분 값의 레졸루션은 다른 참조 픽쳐 리스트에 대응하는 모션 벡터 차분 값의 레졸루션과 동일한 가능성이 높을 수 있다. 따라서, 본 발명의 일 실시예에 따르면, 현재 블록의 특정 참조 픽쳐 리스트에 대응하는 모션 벡터 차분 값의 레졸루션은 현재 블록의 다른 참조 픽쳐 리스트에 대응하는 모션 벡터 차분 값의 레졸루션과 동일할 수 있다.
도 18은 본 발명의 일 실시예에 따라 현재 블록의 참조 픽쳐 리스트 별로 모션 벡터 차분 값의 레졸루션이 시그널링되는 방법을 나타내는 도면이다. 도 18을 참조하면, 제1 참조 픽쳐 리스트(L0)에 대응하는 제1 리스트 레졸루션 세트(L0 MVD resolution signaling)와 제2 참조 픽쳐 리스트(L1)에 대응하는 제2 리스트 레졸루션 세트(L1 MVD resolution signaling)가 각각 구성될 수 있다. 또한, 제1 참조 픽쳐 리스트(L0)에 대응하는 모션 벡터 차분 값의 레졸루션을 지시하는 제1 리스트 레졸루션 지시자와 제2 참조 픽쳐 리스트(L1)에 대응하는 모션 벡터 차분 값의 레졸루션을 지시하는 제2 리스트 레졸루션 지시자가 각각 시그널링될 수 있다.
예를 들어, 디코더는 제1 리스트 레졸루션 세트 및 제1 리스트 레졸루션 지시자에 기초하여 제1 참조 픽쳐 리스트에 대응하는 모션 벡터 차분 값의 레졸루션을 획득할 수 있다. 다음으로, 디코더는 제2 리스트 레졸루션 세트 및 제2 리스트 레졸루션 지시자에 기초하여 제2 참조 픽쳐 리스트에 대응하는 모션 벡터 차분 값의 레졸루션을 획득할 수 있다. 이때, 제2 리스트 레졸루션 세트가 포함하는 가용 레졸루션들 중 어느 하나는 제1 참조 픽쳐 리스트에 대응하는 모션 벡터 차분 값의 레졸루션에 의존하는 레졸루션(L0 resolution)일 수 있다.
구체적인 실시예에 따라, 제2 리스트 레졸루션 지시자가 기 설정된 값(0)인 경우, 디코더는 제1 참조 픽쳐 리스트에 대응하는 모션 벡터 차분 값의 레졸루션에 기초하여 제2 참조 픽쳐 리스트에 대응하는 모션 벡터 차분 값의 레졸루션을 결정할 수 있다. 이 경우, 디코더는 제1 참조 픽쳐 리스트에 대응하는 모션 벡터 차분 값의 레졸루션과 동일한 레졸루션을 제2 참조 픽쳐 리스트에 대응하는 모션 벡터 차분 값의 레졸루션으로 사용할 수 있다. 이때, 기 설정된 값은 제2 리스트 레졸루션 지시자의 값 중에서 가장 적은 개수의 비트를 사용하여 표현되는 값일 수 있다. 또한, 제2 리스트 레졸루션 지시자의 다른 값들은 각각 나머지 가용 레졸루션들(Remaining resolution 1, Remaining resolution 2)을 지시하는 지시자 값으로 사용될 수 있다.
도 18의 실시예에서, 제1 참조 픽쳐 리스트(L0)에 대응하는 모션 벡터 차분 값의 레졸루션이 제2 참조 픽쳐 리스트(L1)에 대응하는 모션 벡터 차분 값의 레졸루션 보다 먼저 결정되는 것으로 설명하고 있으나, 본 개시가 이에 제한되는 것은 아니다. 예를 들어, 제1 리스트 레졸루션 세트는 제2 참조 픽쳐 리스트(L1)에 대응하는 모션 벡터 차분 값의 레졸루션에 의존하는 레졸루션을 포함할 수 있다.
도 19는 현재 블록의 모션 벡터 차분 값의 레졸루션이 픽쳐의 레졸루션에 따라 시그널링되는 방법의 일 실시예를 나타내는 도면이다. 본 발명의 일 실시예에 따라, 현재 블록의 모션 벡터 차분 값의 레졸루션은 픽쳐의 레졸루션 또는 크기 중 적어도 하나에 따라 다른 방법으로 시그널링될 수 있다. 픽쳐의 레졸루션 또는 크기에 관한 정보는 인코더로부터 시그널링될 수 있다. 디코더는 시그널링된 픽쳐의 레졸루션 또는 크기에 관한 정보를 획득할 수 있다. 일 실시예에 따라, 저해상도 픽쳐(Low resolution picture)와 고해상도 픽쳐(high resolution picture) 각각에서 특정 블록의 모션 벡터 차분 값의 레졸루션이 시그널링되는 방법은 서로 다를 수 있다. 도 19를 참조하면, 저해상도 픽쳐(Low resolution picture)와 고해상도 픽쳐(high resolution picture) 각각에서 모션 벡터 예측자가 지시하는 기준점으로부터 참조 블록의 위치까지의 상대적인 거리가 동일한 경우라도, 고해상도 픽쳐에서 해당 거리를 나타내기 위한 값은 저해상도 픽쳐에서 해당 거리는 나타내는 값에 비해 클 수 있다.
이에 따라, 현재 블록의 모션 벡터 차분 값의 레졸루션은, 현재 블록을 포함하는 현재 픽쳐에 비해 픽쳐의 레졸루션이 떨어지는 다른 픽쳐의 모션 벡터 차분 값의 레졸루션 보다 큰 값으로 설정될 확률이 높을 수 있다. 따라서 현재 픽쳐가 고해상도 픽쳐인 경우, 복수의 가용 레졸루션들 중에서 가장 작은 가용 레졸루션이 가장 짧은 길이의 비트를 사용하여 표현되는 값에 의해 지시되지 않을 수 있다. 예를 들어, 현재 픽쳐가 고해상도 픽쳐인 경우, 복수의 가용 레졸루션들 중에서 가장 작은 가용 레졸루션이 아닌 가용 레졸루션이 가장 짧은 길이의 비트를 사용하여 표현되는 값에 의해 지시될 수 있다. 전술한 실시예는 스케일러블 비디오 코딩(scalable video coding)과 같이 비디오 신호가 포함하는 픽쳐의 레졸루션이나 크기가 변화하는 경우에 적용될 수도 있다.
도 20은 본 발명의 일 실시예에 따라 현재 블록의 참조 픽쳐의 크기에 기초하여 모션 벡터 차분 값의 레졸루션이 시그날링되는 방법을 나타내는 도면이다. 일 실시예에 따라, 모션 벡터 차분 값의 레졸루션은 현재 블록의 참조 픽쳐의 크기에 기초하여 시그널링될 수 있다. 도 20은 현재 블록의 모션 벡터 예측자에 의해 지시되는 기준점(2001)에 기초하여 현재 블록의 레졸루션 세트가 포함하는 가용 레졸루션들 각각에 대응하는 참조 블록 후보들을 나타낸다. 도 20에서, 제3 가용 레졸루션(Resolution 3)에 대응하는 제3 참조 블록 후보는 참조 픽쳐 밖에 위치한다. 이와 같이, 특정 가용 레졸루션을 기초로 구성된 참조 블록 후보의 적어도 일부가 참조 픽쳐의 경계 밖인 경우, 해당 가용 레졸루션은 시그널링 대상에서 제외될 수 있다. 즉, 기준점(2001)을 기준으로 특정 가용 레졸루션에 기초하여 수정된 모션 벡터 차분 값에 의해 지시되는 지점이 현재 픽쳐의 경계 밖인 경우, 해당 가용 레졸루션은 시그널링되지 않을 수 있다.
예를 들어, 레졸루션 세트가 N개의 가용 레졸루션을 포함할 수 있다. 이 경우, N개의 가용 레졸루션들 중 M개의 가용 레졸루션을 제외한 (N-M) 중에서 어느 하나를 지시하는 레졸루션 지시자가 시그널링될 수 있다. 이때, M개의 가용 레졸루션 각각에 대응하는 참조 블록 후보는 참조 픽쳐의 경계를 벗어나는 참조 블록 후보일 수 있다. 이를 통해, 인코더 및 디코더는 불필요한 가용 레졸루션을 제외하여 현재 블록의 모션 벡터 차분 값의 레졸루션을 위한 시그널링 오버헤드를 감소시킬 수 있다. 구체적인 예에 따라, 제1 가용 레졸루션(Resolution 1), 제2 가용 레졸루션(Resolution 2), 제3 가용 레졸루션(Resolution 3)들 중 어느 하나를 시그널링하는 경우, 최대 2비트가 사용될 수 있다. 반면 제1 가용 레졸루션(Resolution 1) 및 제2 가용 레졸루션(Resolution 2) 중에서 어느 하나를 시그널링하는 경우, 최대 1비트가 사용될 수 있다.
도 20을 참조하면, 레졸루션 세트는 제1 가용 레졸루션, 제2 가용 레졸루션 및 제3 가용 레졸루션을 포함할 수 있다. 이때, 현재 블록의 시그널링된 모션 벡터 차분 값이 제3 가용 레졸루션에 기초하여 수정되는 경우, 현재 블록의 모션 벡터는 참조 블록의 경계 밖의 지점을 지시하게 된다. 이에 따라, 인코더는 제3 가용 레졸루션을 제외한 제1 가용 레졸루션 및 제2 가용 레졸루션 중에서 어느 하나를 지시하는 레졸루션 지시자를 시그널링할 수 있다. 구체적인 실시예에 따라, 인코더는 하나의 비트를 사용하여 제1 가용 레졸루션 및 제2 가용 레졸루션 중에서 어느 하나를 지시하는 레졸루션 지시자를 시그널링할 수 있다.
또한, 디코더는 현재 블록의 참조 픽쳐의 크기 및 시그널링된 모션 벡터 차분 값에 기초하여 시그널링 대상에서 제외되는 가용 레졸루션을 판단할 수 있다. 도 20의 실시예에서, 디코더는 제3 가용 레졸루션이 시그널링되지 않을 것임을 인지할 수 있다. 디코더는 하나 비트를 통해 시그널링되는 레졸루션 지시자에 기초하여 현재 블록의 모션 벡터 차분 값의 레졸루션을 획득할 수 있다.
본 발명의 추가적인 실시예에 따라, 모션 벡터 예측자에 의해 지시되는 기준점의 위치에 기초하여 도 20을 통해 전술한 방법의 사용 여부가 결정될 수도 있다. 예를 들어, 기준점의 위치가 참조 픽쳐의 경계로부터 기 설정된 거리 이내인 경우, 도 20을 통해 설명된 방법이 사용될 수 있다.
일 실시예에 따라 도 20을 통해 설명된 실시예는 시그널링된 모션 벡터 차분 값의 크기에 따라 적용 여부가 결정될 수도 있다. 예를 들어, 시그널링된 모션 벡터 차분 값이 기 설정된 값 보다 큰 경우에만, 인코더 및 디코더는 참조 픽쳐를 벗어나는 참조 블록 후보를 생성하는 가용 레졸루션이 존재하는지 검토할 수 있다. 시그널링된 모션 벡터 차분 값이 기 설정된 값 보다 작은 경우, 인코더 및 디코더는 도 20을 통해 설명한 방법을 사용하지 않을 수 있다.
추가적인 실시예에 따라, 시그널링 대상에서 제외된 가용 레졸루션에 대체하여 새로운 가용 레졸루션이 사용될 수 있다. 예를 들어, 특정 가용 레졸루션에 기초하여 수정된 모션 벡터 차분 값에 대응하는 참조 블록 후보가 참조 픽쳐의 경계를 밖에 위치하는 경우, 특정 가용 레졸루션을 지시하는 지시자 값은 특정 가용 레졸루션과 다른 가용 레졸루션을 지시할 수 있다. 예를 들어, 다른 가용 레졸루션은 특정 가용 레졸루션 보다 작은 값일 수 있다. 구체적인 실시예에 따라, 현재 블록의 레졸루션 세트는 1/4, 1, 4 샘플 단위의 가용 레졸루션들로 구성될 수 있다. 4 샘플 단위의 가용 레졸루션에 대응하는 참조 블록 후보의 적어도 일부가 현재 블록의 참조 픽쳐의 경계 밖에 위치할 수 있다. 이 경우, 4 샘플 단위의 가용 레졸루션을 지시하는 레졸루션 지시자 값은 2 샘플 단위의 가용 레졸루션을 지시할 수 있다.
도 21은 본 발명의 일 실시예에 따라 현재 블록의 모션 벡터 차분 값의 레졸루션이 획득되는 방법을 나타내는 흐름도이다. 도 21에서는, 현재 블록의 레졸루션 세트가 1/4, 1, 4 샘플 단위의 가용 레졸루션들을 포함하는 것으로 도시하고 있으나, 본 개시가 이에 제한되는 것은 아니다. 예를 들어, 1/4, 1, 4 샘플 단위의 가용 레졸루션들 중 적어도 일부는 1/2, 2, 1/8, 1/16 샘플 단위의 가용 레졸루션들 중 일부에 의해 대체될 수 있다.
도 21을 참조하면, 디코더는 비트스트림을 파싱(parsing)하여 현재 블록의 시그널링된 모션 벡터 차분 값을 획득할 수 있다(S2101). 이때, 시그널링된 모션 벡터 차분 값은 모션 벡터 차분 값의 레졸루션 단위로 표현된 값일 수 있다.
또한, 디코더는 현재 블록의 모션 벡터 차분 값의 레졸루션을 지시하는 레졸루션 지시자를 획득할 수 있다. 일 실시예에 따라, 레졸루션 지시자는 가변 길이의 비트로 표현되는 복수의 값들 중 어느 하나를 나타낼 수 있다. 디코더는 레졸루션 지시자의 첫번째 비트를 파싱할 수 있다(S2103). 다음으로, 디코더는 레졸루션 지시자의 첫번째 비트가 '0'인지 판단할 수 있다(S2105). 첫번째 비트가 '0'인 경우, 1/4 단위의 가용 레졸루션이 현재 블록의 모션 벡터 차분 값의 레졸루션으로 사용될 수 있다. 이 경우, 레졸루션 지시자는 후술할 두번째 비트를 포함하지 않을 수 있다.
첫번째 비트가 '0'이 아닌 경우, 디코더는 4-샘플 단위의 가용 레졸루션에 대응하는 참조 블록 후보가 참조 픽쳐의 경계 내에 위치하는지 판단할 수 있다(S2107). 여기에서, 4 샘플 단위의 가용 레졸루션에 대응하는 참조 블록 후보는 4 샘플 단위의 가용 레졸루션에 기초하여 획득된 모션 벡터 후보가 지시하는 참조 블록 후보일 수 있다. 구체적으로, 상기 모션 벡터 후보는 단계 S2101의 시그널링된 모션 벡터 차분 값으로부터 4샘플 단위의 가용 레졸루션에 기초하여 수정된 모션 벡터 차분 값을, 현재 블록의 모션 벡터 예측자에 더한 값일 수 있다. 일 실시예에 따라, 4 샘플 단위의 가용 레졸루션에 대응하는 참조 블록 후보가 참조 픽쳐의 경계 내에 위치하지 않는 경우, 1 샘플 단위의 가용 레졸루션을 현재 블록의 모션 벡터 차분 값의 레졸루션으로 사용할 수 있다. 이 경우, 레졸루션 지시자는 후술할 두번째 비트를 포함하지 않을 수 있다.
4 샘플 단위의 가용 레졸루션에 대응하는 참조 블록 후보가 참조 픽쳐의 경계 내에 위치하는 경우, 디코더는 레졸루션 지시자의 두번째 비트를 파싱할 수 있다(S2109). 다음으로, 디코더는 레졸루션 지시자의 두번째 비트에 기초하여 현재 블록의 모션 벡터 차분 값의 레졸루션을 결정할 수 있다(S2111). 예를 들어, 1 샘플 단위의 가용 레졸루션을 지시하는 지시자 값은 '10'이고, 4 샘플 단위의 가용 레졸루션을 지시하는 지시자 값은 '11'일 수 있다. 레졸루션 지시자의 두번째 비트가 '0'인 경우, 디코더는 1 샘플 단위의 가용 레졸루션을 현재 블록의 모션 벡터 차분 값의 레졸루션으로 사용할 수 있다. 반대로, 레졸루션 지시자의 두번째 비트가 '1'인 경우, 디코더는 4 샘플 단위의 가용 레졸루션을 현재 블록의 모션 벡터 차분 값의 레졸루션으로 사용할 수 있다.
도 21에서, 시그널링된 모션 벡터 차분 값을 획득하는 단계(S2101)는 레졸루션 지시자의 첫번재 비트를 파싱하는 단계(S2103) 보다 선행하는 것으로 도시되어 있으나, 본 개시가 이에 제한되는 것은 아니다. 예를 들어, 단계 S2101은 단계 S2103에 후속할 수 있다. 일 실시예에 따라, 레졸루션 지시자가 복수의 비트로 표현되는 경우, 각각의 비트들은 비디오 신호 처리를 위한 신택스(syntax) 상에서 별도의 인덱스 또는 플래그(flag)를 통해 구현될 수 있다.
추가적인 실시예에 따라, 레졸루션 지시자의 두번째 비트를 파싱하는 단계(S2109)는 적어도 현재 블록의 모션 벡터 예측자를 획득하는 단계 이후에 수행될 수 있다. 레졸루션 지시자의 두번째 비트는 현재 블록의 모션 벡터 예측자가 지시하는 위치에 따라 파싱 여부가 결정될 수 있다. 전술한 바와 같이, 특정 가용 레졸루션에 대응하는 참조 블록 후보가 참조 픽쳐의 경계 밖에 위치하는 경우, 해당 가용 레졸루션을 위한 시그널링이 생략될 수 있기 때문이다. 즉, 비디오 신호가 인코딩 또는 디코딩되는 신택스 상에서 레졸루션 지시자의 두번째 비트는 현재 블록의 모션 벡터 예측자 정보보다 이후에 파싱될 수 있다.
또한, 레졸루션 지시자의 두번째 비트를 파싱하는 단계(S2109)는 적어도 현재 블록의 시그널링된 모션 벡터 차분 값을 획득하는 단계 이후에 수행될 수 있다. 레졸루션 지시자의 두번째 비트는 현재 블록의 시그널링된 모션 벡터 차분 값에 따라 파싱 여부가 결정될 수 있다. 즉, 비디오 신호가 인코딩 또는 디코딩되는 신택스(syntax) 상에서 레졸루션 지시자의 두번째 비트는 현재 블록의 모션 벡터 차분 값을 나타내는 정보보다 이후에 파싱될 수 있다.
도 22는 본 발명의 일 실시예에 따라 현재 블록의 모션 벡터 차분 값의 레졸루션이 획득되는 방법을 나타내는 흐름도이다. 도 22을 참조하면, 디코더는 비트스트림을 파싱하여 현재 블록의 시그널링된 모션 벡터 차분 값을 획득할 수 있다(2001). 이때, 시그널링된 모션 벡터 차분 값은 모션 벡터 차분 값의 레졸루션 단위로 표현된 값일 수 있다. 또한, 디코더는 현재 블록의 모션 벡터 차분 값의 레졸루션을 지시하는 레졸루션 지시자를 획득할 수 있다. 디코더는 레졸루션 지시자의 n번째 비트를 파싱할 수 있다(S2205). 여기에서, n은 1 부터 N까지의 정수일 수 있다. n은 1부터 N까지 루프 연산에 따라 순차적으로 증가하는 값일 수 있다. 레졸루션 지시자의 n번째 비트가 '0'인 경우, 디코더는 n번째 가용 레졸루션을 현재 블록의 모션 벡터 차분 값의 레졸루션으로 사용할 수 있다. 이때, n번째 가용 레졸루션은 현재 블록의 레졸루션 세트가 포함하는 가용 레졸루션들 중에서 n번째 지시자 값에 의해 지시되는 가용 레졸루션일 수 있다.
레졸루션 지시자의 n번째 비트가 '0'이 아닌 경우, 디코더는 이전 레졸루션 세트로부터 n 번째 가용 레졸루션을 제외할 수 있다(S2207). 디코더는 이전 레졸루션 세트로부터 n 번째 가용 레졸루션을 제외하여 제1 현재 레졸루션 세트를 획득할 수 있다(S2207). 일 실시예에 따라, n이 1인 경우, 디코더는 초기 레졸루션 세트(initial resolution set)로부터 n 번째 가용 레졸루션을 제외하여 제1 현재 레졸루션 세트를 획득할 수 있다. 다음으로, 디코더는 제1 현재 레졸루션 세트가 포함하는 가용 레졸루션의 개수가 1개인지 판단할 수 있다(S2209). 제1 현재 레졸루션 세트가 포함하는 가용 레졸루션의 개수가 1개인 경우, 디코더는 제1 현재 레졸루션 세트가 포함하는 가용 레졸루션을 현재 블록의 모션 벡터 차분 값의 레졸루션으로 사용할 수 있다.
제1 현재 레졸루션 세트가 포함하는 가용 레졸루션의 개수가 1개가 아닌 경우, 디코더는 제1 현재 레졸루션 세트에서 참조 픽쳐의 경계 밖에 위치하는 참조 블록 후보에 대응하는 가용 레졸루션을 제외할 수 있다(S2211). 디코더는 제1 현재 레졸루션 세트에서 참조 픽쳐의 경계 밖에 위치하는 참조 블록 후보에 대응하는 가용 레졸루션을 제외하여 제2 현재 레졸루션 세트를 획득할 수 있다.
다음으로, 디코더는 제2 현재 레졸루션 세트가 포함하는 가용 레졸루션의 개수가 1개인지 판단할 수 있다(S2213). 제2 현재 레졸루션 세트가 포함하는 가용 레졸루션의 개수가 1개인 경우, 디코더는 제2 현재 레졸루션 세트가 포함하는 가용 레졸루션을 현재 블록의 모션 벡터 차분 값의 레졸루션으로 사용할 수 있다. 제1 현재 레졸루션 세트가 포함하는 가용 레졸루션의 개수가 1개가 아닌 경우, 디코더는 단계 S2203 내지 단계 2013을 다시 수행할 수 있다. 또한, 디코더는 n을 1 증가시킬 수 있다. 이때, 디코더는 다음 루프 연산의 단계 S2207에서 제2 현재 레졸루션 세트를 이전 레졸루션 세트로 사용할 수 있다.
도 23은 본 발명의 일 실시예에 따라 현재 블록의 모션 벡터가 획득되는 방법을 나타내는 흐름도이다. 본 발명의 일 실시예에 따라, 현재 블록의 모션 벡터 차분 값을 나타내는 정보는 모션 벡터 차분 값에 대한 제1 정보 및 모션 벡터 차분 값에 대한 제2 정보를 포함할 수 있다. 이때, 제1 정보 및 제2 정보는 각각 모션 벡터 차분 값에 대한 서로 다른 정보일 수 있다. 도 23을 참조하면, 디코더는 모션 벡터 차분 값에 대한 제1 정보를 파싱할 수 있다. 또한, 디코더는 모션 벡터 차분 값에 대한 제2 정보를 파싱할 수 있다. 다음으로, 디코더는 모션 벡터 차분 값에 대한 제1 정보 및 모션 벡터 차분 값에 대한 제2 정보에 기초하여 현재 블록의 모션 벡터를 획득할 수 있다. 본 발명의 일 실시예에 따라, 도 23에서, 모션 벡터 차분 값에 대한 제1 정보 또는 제2 정보를 파싱하는 단계 중 어느 하나는 생략될 수 있다. 이하에서는, 현재 블록의 모션 벡터 차분 값에 대한 제1 정보 또는 제2 정보가 파싱되는 조건에 대해 설명하도록 한다.
도 24는 본 발명의 일 실시예에 따라 현재 블록의 모션 벡터가 획득되는 방법을 나타내는 흐름도이다. 본 발명의 일 실시예에 따라, 현재 블록의 모션 벡터 차분 값을 나타내는 정보는 모션 벡터 차분 값에 대한 제1 정보 및 모션 벡터 차분 값에 대한 제2 정보를 포함할 수 있다. 특정 상황에서, 모션 벡터 차분 값에 대한 제1 정보 및 모션 벡터 차분 값에 대한 제2 정보 중 어느 하나를 통해 현재 블록의 모션 벡터가 결정될 수 있다. 반면, 다른 상황에서는, 모션 벡터 차분 값에 대한 제1 정보 및 모션 벡터 차분 값에 대한 제2 정보 중 어느 하나 만으로는 하나의 모션 벡터가 결정되기 어려울 수도 있다.
도 24를 참조하면, 디코더는 모션 벡터 차분 값에 대한 제1 정보를 파싱할 수 있다. 다음으로, 디코더는 모션 벡터 차분 값에 대한 제1 정보를 사용하여 복수의 참조 블록 후보들을 획득할 수 있다. 디코더는 복수의 참조 블록 후보들 전부가 참조 픽쳐의 경계 내에 위치하는지 판단할 수 있다. 복수의 참조 블록 후보들 중 일부가 참조 픽쳐의 경계 밖에 위치하는 경우, 디코더는 모션 벡터 차분 값에 대한 제1 정보에 기초하여 현재 블록의 모션 벡터를 획득할 수 있다. 복수의 참조 블록 후보들 전부가 참조 픽쳐의 경계 내에 위치하는 경우, 디코더는 모션 벡터 차분 값에 대한 제2 정보를 파싱할 수 있다. 다음으로, 디코더는 모션 벡터 차분 값에 대한 제1 정보 및 모션 벡터 차분 값에 대한 제2 정보에 기초하여 현재 블록의 모션 벡터를 획득할 수 있다.
일 실시예에 따라, 현재 블록의 모션 벡터 차분 값에 대한 제1 정보는 모션 벡터 차분 값의 부호 정보를 제외한 정보일 수 있다. 예를 들어, 현재 블록의 모션 벡터 차분 값에 대한 제1 정보는 현재 블록의 모션 벡터 차분 값의 절대값을 나타낼 수 있다. 또한, 현재 블록의 모션 벡터 차분 값에 대한 제2 정보는 현재 블록의 모션 벡터 차분 값의 부호를 나타낼 수 있다. 전술한 실시예에 따라, 특정 블록의 모션 벡터 차분 값은 제2 정보에 대한 파싱 없이 획득될 수 있다. 이에 따라, 인코더 및 디코더는 모션 벡터 차분 값을 위한 시그널링 오버헤드를 감소시킬 수 있다. 이하에서는, 현재 블록의 모션 벡터 차분 값의 부호 정보가 묵시적으로 시그널링되는 방법에 대해 구체적으로 설명하도록 한다.
도 25는 본 발명의 일 실시예에 따라 현재 블록의 모션 벡터 차분 값의 부호 비트가 묵시적으로 시그널링되는 방법을 나타내는 도면이다. 도 9를 통해 전술한 바와 같이, 모션 벡터 차분 값을 나타내는 정보는 모션 벡터 차분 값의 절대값 정보와 모션 벡터 차분 값의 부호 정보 중 적어도 하나를 포함할 수 있다. 모션 벡터 차분 값의 부호 정보는 음의 부호(-) 또는 양의 부호(+) 중 어느 하나일 수 있다. 또한, 모션 벡터 차분 값을 나타내는 정보는 성분 별 절대값 정보 및 부호 정보를 포함할 수 있다. 예를 들어, 현재 블록의 모션 벡터 차분 값은 x축 성분 및 y축 성분으로 구성될 수 있다. 모션 벡터 차분 값의 x축 성분은 현재 블록의 모션 벡터 예측자에 의해 지시되는 기준점과 참조 블록의 위치 사이의 x축 상의 거리(절대값) 및 방향(부호)을 포함할 수 있다. 또한, 모션 벡터 차분 값의 y축 성분은 현재 블록의 모션 벡터 예측자에 의해 지시되는 기준점과 참조 블록의 위치 사이의 y축 상의 거리(절대값) 및 방향(부호)을 포함할 수 있다. 이때, 현재 블록의 모션 벡터 차분 값의 x축 성분의 부호 정보 또는 y축 성분의 부호 정보 중 적어도 하나는 묵시적으로 시그널링될 수 있다. 즉, 모션 벡터 차분 값의 x축 성분 및 y축 성분 각각에 대해 전술한 부호 비트 하이딩 동작이 수행될 수 있다.
도 25를 참조하면, 음의 부호(-)가 적용된 현재 블록의 모션 벡터 차분 값의 x축 성분 및 양의 부호(-)가 적용된 현재 블록의 모션 벡터 차분 값의 y축 성분에 기초하여, 제4 참조 블록 후보(Candidate reference block 1)가 획득될 수 있다. 또한, 양의 부호(+)가 적용된 현재 블록의 모션 벡터 차분 값의 x축 성분 및 양의 부호(-)가 적용된 현재 블록의 모션 벡터 차분 값의 y축 성분에 기초하여, 제5 참조 블록 후보(Candidate reference block 2)가 획득될 수 있다.
일 실시예에 따라, 제4 참조 블록 후보(Candidate reference block 1) 및 제5 참조 블록 후보(Candidate reference block 2) 중 어느 하나가 참조 픽쳐(Reference picture)의 경계 밖에 위치하는 경우, 현재 블록의 모션 벡터 차분 값의 x축 성분의 부호 정보는 하이딩될 수 있다. 이 경우, 인코더는 하이딩된 부호 정보를 인코딩하지 않을 수 있다. 또한, 디코더는 하이딩된 부호 정보에 대응하는 모션 벡터 차분 값의 부호를 해당 부호 정보에 대한 파싱 과정을 수행하지 않고 결정할 수 있다.
도 25에서, 제4 참조 블록 후보(Candidate reference block 1)는 참조 픽쳐의 경계 밖에 위치할 수 있다. 이 경우, 현재 블록의 모션 벡터 차분 값의 x축 성분의 부호 정보는 하이딩될 수 있다. 디코더는 모션 벡터 차분 값의 x축 성분의 부호 정보를 파싱하는 동작 없이, 모션 벡터 차분 값의 x축 성분의 부호 정보를 획득할 수 있다. 디코더는 모션 벡터 차분 값의 x축 성분의 부호로 양의 부호를 사용할 수 있다.
도 26은 본 발명의 일 실시예에 따라 현재 블록의 모션 벡터 차분 값의 부호 비트가 묵시적으로 시그널링되는 방법을 나타내는 도면이다. 일 실시예에 따라, 현재 블록의 모션 벡터 차분 값의 부호가 결정되기 전까지 현재 블록의 모션 벡터 예측자가 결정되지 않을 수 있다. 예를 들어, 비디오 신호 처리를 위한 신택스 상에서 현재 블록의 MVP를 지시하는 MVP 인덱스가 파싱되기 전에 현재 블록의 모션 벡터 차분 값의 부호가 결정될 수 있다. 이 경우, 디코더는 복수의 MVP 후보(MVP candidate A, MVP candidate B) 각각에 대해 음의 부호 또는 양의 부호가 적용된 모션 벡터 차분 값을 더해 복수의 참조 블록 후보들(Candidate reference block A-1, Candidate reference block A-2, Candidate reference block B-1, Candidate reference block B-2)을 획득할 수 있다.
다음으로, 디코더는 음의 부호가 적용된 모션 벡터 차분 값의 특정 성분에 기초한 복수의 참조 블록 후보들(Candidate reference block A-1, Candidate reference block B-1) 전부가 참조 픽쳐의 경계 밖에 위치하는지 판단할 수 있다. 음의 부호가 적용된 모션 벡터 차분 값의 특정 성분에 기초한 복수의 참조 블록 후보들 전부가 참조 픽쳐의 경계 밖에 위치하는 경우, 디코더는 특정 성분의 부호 정보를 파싱하는 동작 없이 현재 블록의 모션 벡터 차분 값의 특정 성분의 부호를 결정할 수 있다. 이 경우, 디코더는 양의 부호를 현재 블록의 모션 벡터 차분 값의 특정 성분의 부호로 사용할 수 있다.
또한, 디코더는 양의 부호가 적용된 모션 벡터 차분 값의 특정 성분에 기초한 복수의 참조 블록 후보들(Candidate reference block A-2, Candidate reference block B-2) 전부가 참조 픽쳐의 경계 밖에 위치하는지 판단할 수도 있다. 양의 부호가 적용된 모션 벡터 차분 값의 특정 성분에 기초한 복수의 참조 블록 후보들 전부가 참조 픽쳐의 경계 밖에 위치하는 경우, 디코더는 특정 성분의 부호 정보를 파싱하는 동작 없이 현재 블록의 모션 벡터 차분 값의 특정 성분의 부호를 결정할 수 있다. 이 경우, 디코더는 음의 부호를 현재 블록의 모션 벡터 차분 값의 특정 성분의 부호로 사용할 수 있다.
도 27은 본 발명의 일 실시예에 따라 현재 블록의 모션 벡터 차분 값의 부호 비트가 묵시적으로 시그널링되는 방법을 나타내는 도면이다. 일 실시예에 따라, 현재 블록의 모션 벡터 차분 값의 부소가 결정되기 전까지 현재 블록의 모션 벡터 차분 값의 레졸루션이 결정되지 않을 수 있다. 예를 들어, 비디오 신호 처리를 위한 신택스 상에서 현재 블록의 모션 벡터 차분 값의 레졸루션을 지시하는 레졸루션 지시자가 파싱되기 전에 현재 블록의 모션 벡터 차분 값의 부호가 결정될 수 있다. 이 경우, 디코더는 복수의 가용 레졸루션들(res1, res2) 중 어느 하나가 곱해지고, 음의 부호 및 양의 부호 중 어느 하나가 적용된 모션 벡터 차분 값을 현재 블록의 모션 벡터 예측자에 더해 복수의 참조 블록 후보들(Candidate reference block 1-1, Candidate reference block 1-2, Candidate reference block 2-1, Candidate reference block 2-2)을 획득할 수 있다.
다음으로, 디코더는 음의 부호가 적용된 모션 벡터 차분 값의 특정 성분에 기초한 복수의 참조 블록 후보들(Candidate reference block 2-1, Candidate reference block 1-1) 전부가 참조 픽쳐의 경계 밖에 위치하는지 판단할 수 있다. 이때, 음의 부호가 적용된 모션 벡터 차분 값의 특정 성분에 기초한 복수의 참조 블록 후보들 각각을 구성하기 위해 모션 벡터 차분 값에 적용된 가용 레졸루션은 서로 다를 수 있다. 음의 부호가 적용된 모션 벡터 차분 값의 특정 성분에 기초한 복수의 참조 블록 후보들 전부가 참조 픽쳐의 경계 밖에 위치하는 경우, 디코더는 특정 성분의 부호 정보를 파싱하는 동작 없이 현재 블록의 모션 벡터 차분 값의 특정 성분의 부호를 결정할 수 있다. 이 경우, 디코더는 양의 부호를 현재 블록의 모션 벡터 차분 값의 특정 성분의 부호로 사용할 수 있다.
또한, 디코더는 양의 부호가 적용된 모션 벡터 차분 값의 특정 성분에 기초한 복수의 참조 블록 후보들(Candidate reference block 1-2, Candidate reference block 2-2) 전부가 참조 픽쳐의 경계 밖에 위치하는지 판단할 수도 있다. 이때, 양의 부호가 적용된 모션 벡터 차분 값의 특정 성분에 기초한 복수의 참조 블록 후보들 각각을 구성하기 위해 모션 벡터 차분 값에 적용된 가용 레졸루션은 서로 다를 수 있다. 양의 부호가 적용된 모션 벡터 차분 값의 특정 성분에 기초한 복수의 참조 블록 후보들 전부가 참조 픽쳐의 경계 밖에 위치하는 경우, 디코더는 특정 성분의 부호 정보를 파싱하는 동작 없이 현재 블록의 모션 벡터 차분 값의 특정 성분의 부호를 결정할 수 있다. 이 경우, 디코더는 음의 부호를 현재 블록의 모션 벡터 차분 값의 특정 성분의 부호로 사용할 수 있다.
도 25 내지 27에서는 설명의 편의를 위해 모션 벡터 차분 값의 x축 성분을 예로 들어 설명하고 있으나, 본 개시가 이에 제한되는 것은 아니다. 예를 들어, 전술한 실시예들은 모션 벡터 차분 값의 y축 성분에 대해 동일 또는 상응하는 방법으로 적용될 수 있다.
도 28은 도 25 내지 도 27의 실시예들에 대한 신택스의 예시를 나타내는 도면이다. 도 28의 제1 신택스 오더(syntax order)(2801)를 참조하면, 디코더는 모션 벡터 차분 값의 절대값(|MVD|)에 기초하여 모션 벡터 차분 값의 부호 정보에 대한 파싱 여부를 결정할 수 있다. 도 28의 제2 신택스 오더(2802)를 참조하면, 디코더는 모션 벡터 차분 값의 절대값(|MVD|) 및 모션 벡터 차분 값의 레졸루션(MVD resolution)에 기초하여 모션 벡터 차분 값의 부호 정보에 대한 파싱 여부를 결정할 수 있다. 도 28의 제3 신택스 오더(2803)를 참조하면, 디코더는 모션 벡터 차분 값의 절대값(|MVD|), 모션 벡터 차분 값의 레졸루션(MVD resolution) 및 MVP 플래그(MVP flag)에 기초하여 모션 벡터 차분 값의 부호 정보에 대한 파싱 여부를 결정할 수 있다.
도 29는 본 발명의 일 실시예에 따라 현재 블록의 모션 벡터 차분 값의 레졸루션 및 MVP가 시그널링되는 방법을 나타내는 도면이다. 본 발명의 일 실시예에 따라, 하나의 통합 지시자에 기초하여 모션 벡터와 관련된 둘 이상의 정보가 시그널링될 수 있다. 예를 들어, 현재 블록의 모션 벡터 차분 값의 레졸루션과 현재 블록의 MVP는 하나의 통합 지시자(MVR Index)에 의해 시그널링될 수 있다.
도 29와 같이, MVP 인덱스들 각각에 매핑되는 가용 레졸루션이 사전 설정될 수 있다. 인코더 및 디코더는 MVP 인덱스들 각각과 가용 레졸루션이 서로 매핑된 테이블을 공유할 수 있다. 또한, 인코더 및 디코더는 공유된 테이블 및 통합 지시자(MVR Index)에 기초하여 현재 블록의 MVP 및 현재 블록의 모션 벡터 차분 값의 레졸루션을 획득할 수 있다.
한편, 모션 벡터 차분 값의 수정에 사용된 레졸루션에 따라 모션 벡터의 정확도가 달라질 수 있다. 예를 들어, 모션 벡터 차분 값의 수정에 사용된 레졸루션이 클수록, 모션 벡터의 정확도가 낮아질 수 있다. 이에 따라, 특정 가용 레졸루션이 현재 블록의 모션 벡터 차분 값의 레졸루션으로 사용되는 경우, 현재 블록의 추가적인 모션 벡터 차분 값이 시그널링될 수 있다. 이하에서, 추가적인 모션 벡터 차분 값은 제2 내지 제n 모션 벡터 차분 값으로 지칭될 수 있다. 또한, 추가적인 모션 벡터 차분 값을 제외한 기존의 모션 벡터 차분 값은 제1 모션 벡터 차분 값으로 지칭될 수 있다.
도 30은 본 발명의 일 실시예에 따라 복수의 모션 벡터 차분 값에 기초하여 현재 블록의 모션 벡터가 유도되는 방법을 나타내는 도면이다. 본 발명의 일 실시예에 따라, 복수의 모션 벡터 차분 값들 및 각각에 대응하는 레졸루션을 이용하여 현재 블록의 모션 벡터가 획득될 수 있다. 예를 들어, 현재 블록의 모션 벡터 차분 값의 레졸루션이 기 설정된 레졸루션 보다 큰 경우, 추가적인 모션 벡터 차분 값이 시그널링될 수 있다. 구체적인 실시예에 따라, 현재 블록의 레졸루션 세트가 1/4, 1, 4 샘플 단위의 가용 레졸루션들을 포함할 수 있다. 이때, 현재 블록의 모션 벡터 차분 값의 레졸루션이 '4'인 경우, 추가적인 모션 벡터 차분 값이 시그널링될 수 있다. 또한, 추가적인 모션 벡터 차분 값은 기존 모션 벡터 차분 값이 시그널링된 레졸루션에 보다 작은 레졸루션에 기초하여 시그널링될 수 있다. 이를 통해, 인코더 및 디코더는 모션 벡터의 정확도를 높이고, 예측 오차를 감소시킬 수 있다.
도 30을 참조하면, R1는 제1 모션 벡터 차분 값의 레졸루션을 나타내고, R2는 제2 모션 벡터 차분 값의 레졸루션을 나타낸다. 또한, MVDval1은 R1 단위로 시그널링된 제1 모션 벡터 차분 값을 나타내고, MVDval2은 R2 단위로 시그널링된 제2 모션 벡터 차분 값을 나타낸다. 예를 들어, 제1 모션 벡터 차분 값의 레졸루션(R1)이 기 설정된 레졸루션 보다 큰 경우, 디코더는 추가적으로 시그널링된 제2 모션 벡터 차분 값(MVDval2)을 획득할 수 있다. 이때, 제2 모션 벡터 차분 값의 레졸루션(R2)은 현재 블록의 제1 모션 벡터 차분 값의 레졸루션(R1) 보다 작을 수 있다.
한편, 본 발명의 일 실시예에 따라 현재 블록을 위한 인터 예측 방법 혹은 모션 보상 방법은 어파인(affine) 모델 기반의 모션 보상(이하, 어파인 모션 보상)을 포함할 수 있다. 기존의 인터 예측 방법에 따르면, 현재 블록에 대한 L0 예측 및 L1 예측 별로 오직 하나의 모션 벡터를 사용하여 인터 예측이 수행된다. 이에 따라, 기존의 일반 인터 예측 방법은 병진 운동(translation motion)의 예측에 최적화되어 있다. 그러나 줌 인/아웃, 회전 및 기타 불규칙적인 운동들에 대한 모션 보상을 효율적으로 수행하기 위해서는 다양한 모양과 크기의 참조 블록이 사용될 필요가 있다. 이하에서는, 본 발명의 일 실시예에 따라 어파인 모션 보상이 수행되는 방법에 대해 설명하도록 한다.
도 31은 본 발명의 일 실시예에 따라 어파인 모델에 기반하는 모션 보상을 나타내는 도면이다. 도 31을 참조하면, 어파인 모션 보상에서는 현재 블록(3101)과 다른 크기, 모양 및/또는 방향을 갖는 참조 블록(3102)을 이용하여 현재 블록(3101)의 예측이 수행될 수 있다. 즉, 참조 블록(3102)은 비-직사각형 형태를 가질 수 있으며, 현재 블록(3101) 보다 크기가 크거나 작을 수 있다. 참조 블록(3102)은 현재 블록(3101)에 어파인 변환을 수행하여 획득될 수 있다. 어파인 변환을 통해 현재 블록에 대한 스케일링, 로테이션, 시어링(shearing), 반전(reflection) 또는 직각 투영(orthogonal projection)가 수행될 수 있다. 일 실시예에 따라, 어파인 변환은 복수의 컨트롤 포인트 모션 벡터(Control Point Motion Vector, CPMV)를 이용하여 수행될 수 있다. 예를 들어, 어파인 변환은 3개의 컨트롤 포인트 모션 벡터를 이용하는 6-파라미터 어파인 변환과, 2개의 컨트롤 포인트 모션 벡터를 이용하는 4-파라미터 어파인 변환을 포함할 수 있다. 이에 대한 구체적인 실시예는 후술하도록 한다.
도 32는 4-파라미터 어파인 모션 보상 방법의 일 실시예를 도시한다. 어파인 변환의 연산량 및 시그널링 오버헤드를 줄이기 위해, 기 설정된 개수의 컨트롤 포인트 모션 벡터(CPMV)들을 사용하여 어파인 모션 보상이 수행될 수 있다. 컨트롤 포인트 모션 벡터(CPMV)는 현재 블록의 특정 컨트롤 포인트(혹은, 샘플 위치)에 대응하는 모션 벡터이다. 특정 컨트롤 포인트는 현재 블록의 모서리들 중 적어도 하나를 포함할 수 있다. 본 발명의 실시예에서는, 현재 블록의 상좌측 모서리에 대응하는 CPMV를 v0(혹은, 제1 CPMV)로, 현재 블록의 상우측 모서리에 대응하는 CPMV를 v1(혹은, 제2 CPMV)으로, 현재 블록의 하좌측 모서리에 대응하는 CPMV를 v2(혹은, 제3 CPMV)로 각각 지칭한다. 어파인 모션 보상을 위해 적어도 2개의 CPMV들을 포함하는 CPMV 세트가 사용될 수 있다.
도 32의 실시예에 따르면, v0와 v1을 사용하여 4-파라미터 어파인 모션 보상이 수행될 수 있다. 실선으로 표시된 현재 블록(3201)은 점선으로 표시된 위치의 참조 블록(3202)을 이용하여 예측될 수 있다. 현재 블록(3201)의 각 샘플은 어파인 변환을 통해 서로 다른 참조 샘플로 매핑될 수 있다. 더욱 구체적으로, 현재 블록(3201)의 샘플 위치 (x, y)에서의 모션 벡터(v x, v y)는 아래 수학식 2에 의해 유도될 수 있다. 본 개시에서, 샘플 위치는 현재 블록 내에서 상대적인 좌표를 나타낼 수 있다. 예를 들어, 샘플 위치 (x, y)는 현재 블록의 좌상단 샘플의 위치를 원점 (0, 0)으로하는 좌표일 수 있다.
[수학식 2]
Figure PCTKR2019006913-appb-img-000001
여기서, (v 0x, v 0y)는 현재 블록(3201)의 상좌측 모서리에 대응하는 제1 CPMV이며, (v 1x, v 1y)는 현재 블록의 상우측 모서리에 대응하는 제2 CPMV이다. 또한, w는 현재 블록(3201)의 너비이다.
도 33은 6-파라미터 어파인 모션 보상 방법의 일 실시예를 도시한다. 더욱 복잡한 모션에 대한 정확한 예측을 위해, 3개 이상의 CPMV를 사용한 어파인 모션 보상이 수행될 수 있다. 도 33을 참조하면, 6-파라미터 어파인 모션 보상은 3개의 CPMV 즉, v0, v1 및 v2를 이용하여 수행될 수 있다. 여기서, v0는 현재 블록의 상좌측 모서리에 대응하는 CPMV이고, v1은 현재 블록의 상우측 모서리에 대응하는 CPMV이며, v2는 현재 블록의 하좌측 모서리에 대응하는 CPMV이다. 현재 블록의 각 서브블록의 모션 벡터는 상기 v0, v1 및 v2에 기초하여 계산될 수 있다. 도 33의 실시예에 따르면, 실선으로 표시된 현재 블록(3301)은 점선으로 표시된 위치의 참조 블록(3302)을 이용하여 예측될 수 있다. 현재 블록(3301)의 각 샘플은 어파인 변환을 통해 서로 다른 참조 샘플로 매핑될 수 있다. 더욱 구체적으로, 현재 블록(3301)의 샘플 위치 (x, y)에서의 모션 벡터(mv x, mv y)는 아래 수학식 3에 의해 유도될 수 있다.
[수학식 3]
Figure PCTKR2019006913-appb-img-000002
여기서, (mv 0 x, mv 0 y)는 현재 블록(3301)의 상좌측 모서리에 대응하는 제1 CPMV이며, (mv 1 x, mv 1 y)는 상우측 모서리에 대응하는 제2 CPMV이며, (mv 2 x, mv 2 y)는 하좌측 모서리에 대응하는 제3 CPMV이다. 또한, w는 현재 블록(3301)의 너비이고, h는 현재 블록(3301)의 높이이다.
도 34는 서브블록 기반의 어파인 모션 보상 방법의 일 실시예를 도시한다. 어파인 모션 변환을 이용하면 현재 블록의 각 샘플 위치에서의 모션 벡터(즉, 모션 벡터 필드)가 유도될 수 있다. 그러나 연산량을 줄이기 위해, 도 34와 같이 서브블록 기반의 어파인 모션 보상이 수행될 수 있다. 도 34를 참조하면, 현재 블록은 복수의 서브블록들을 포함할 수 있다. 또한, 각 서브블록의 대표 모션 벡터가 CPMV 세트(v0, v1 및 v2)에 기초하여 획득될 수 있다. 일 실시예에 따라, 각 서브블록의 대표 모션 벡터는 해당 서브블록의 가운데 샘플 위치에 대응하는 모션 벡터일 수 있다. 추가적인 실시예에 따르면, 서브블록의 모션 벡터에는 일반적인 모션 벡터보다 정확도가 높은 모션 벡터가 사용될 수 있다. 이를 위해, 모션 보상 보간 필터가 적용될 수 있다.
어파인 모션 보상이 수행되는 서브블록의 크기는 다양한 방법으로 설정될 수 있다. 본 발명의 일 실시예에 따르면, 서브블록은 4X4 또는 8X8과 같이 기 설정된 크기를 가질 수 있다. 본 발명의 다른 실시예에 따르면, 서브블록의 크기 MXN은 아래 수학식 4에 의해 결정될 수 있다.
[수학식 4]
Figure PCTKR2019006913-appb-img-000003
여기서, w는 현재 블록의 너비이고, MvPre는 모션 벡터의 분수 단위 정확도이다. (v 2x, v 2y)는 현재 블록의 하좌측 모서리에 대응하는 제3 CPMV이다. 일 실시예에 따라, 제3CPMV는 전술한 수학식 2에 의해 계산될 수 있다. max(a, b)는 a와 b 중 더 큰 값을 반환하는 함수이며, abs(x)는 x의 절대값을 반환하는 함수이다. 또한, clip3(x, y, z)는 z<x인 경우 x를 반환하고, z>y인 경우 y를 반환하며, 그 외의 경우 z를 반환하는 함수이다.
디코더는 CPMV 세트의 CPMV들을 이용하여 현재 블록의 각 서브블록의 모션 벡터를 획득한다. 또한, 디코더는 각 서브블록의 대표 모션 벡터를 이용하여 현재 블록의 각 서브블록의 예측자를 획득할 수 있다. 각 서브블록의 예측자를 조합하여 현재 블록의 예측자가 획득될 수 있으며, 디코더는 이와 같이 획득된 현재 블록의 예측자를 이용하여 현재 블록을 복원할 수 있다.
도 35, 도 36, 도 37 및 도 38은 현재 블록의 예측을 위한 컨트롤 포인트 모션 벡터 세트를 획득하는 방법의 실시예들을 도시한다. 본 발명의 일 실시예에 따라, 현재 블록의 어파인 모션 보상을 위한 CPMV 세트는 다양한 방법으로 획득될 수 있다. 더욱 구체적으로, 현재 블록의 예측을 위한 CPMV 세트는 하나 이상의 주변 블록들의 모션 벡터 정보 세트를 참조하여 획득될 수 있다. 또한, 모션 벡터 정보 세트는 하나 이상의 블록들의 모션 벡터 정보의 집합을 가리킨다. 주변 블록은 현재 블록의 기 설정된 주변 위치를 포함하는 블록을 가리킬 수 있다. 이때, 주변 블록은 기 설정된 주변 위치를 포함하는 코딩 유닛이거나, 상기 주변 위치를 포함하는 기 설정된 단위(예, 4X4, 8X8)의 영역일 수 있다.
현재 블록의 CPMV들을 유도하기 위해 참조할 수 있는 복수의 후보들이 존재할 수 있다. 따라서, 현재 블록의 CPMV들을 유도하기 위해 참조할 주변 블록에 대한 정보가 별도로 시그널링 될 수 있다. 본 발명의 일 실시예에 따르면, 현재 블록의 각 서브블록의 모션 벡터를 유도하기 위해 참조할 모션 벡터 정보 세트를 지시하는 CPMV 지시자가 시그널링 될 수 있다. 인코더는 CPMV 지시자를 시그널링할 수 있다. CPMV 지시자는 현재 블록의 각 서브블록의 모션 벡터를 유도하기 위해 참조할 주변 블록(들)의 모션 벡터 정보 세트를 지시할 수 있다. 디코더는 상기 지시자를 획득하고, 지시자가 지시하는 주변 블록(들)의 모션 벡터 정보 세트를 참조하여 현재 블록을 위한 CPMV 세트의 각 CPMV를 획득할 수 있다.
더욱 구체적인 실시예에 따르면, 인코더 및 디코더는 하나 이상의 모션 벡터 정보 세트 후보로 구성된 CPMV 후보 리스트를 생성할 수 있다. CPMV 후보 리스트를 구성하는 각각의 모션 벡터 정보 세트 후보는 현재 블록의 모션 벡터를 유도하기 위해 사용 가능한 주변 블록의 모션 벡터 세트이다. 이때, CPMV 지시자는 CPMV 후보 리스트 중에서 어느 하나의 모션 벡터 정보 세트를 지시하는 인덱스일 수 있다. 현재 블록의 CPMV들은 CPMV 후보 리스트 중에서 CPMV 지시자(즉, 인덱스)에 기초하여 선택된 모션 벡터 정보 세트를 참조하여 획득될 수 있다. 이하, 현재 블록의 모션 벡터 정보(혹은, CPMV 세트) 유도를 위한 CPMV 후보 리스트에 포함될 수 있는 모션 벡터 정보 세트 후보의 다양한 실시예들에 대해 서술하도록 한다.
도 35는 현재 블록의 CPMV 세트를 획득하는 일 실시예를 도시한다. 도 35의 실시예에서는 현재 블록의 CPMV 세트가 2개의 CPMV 즉, v0와 v1을 포함하는 것으로 가정한다. 본 발명의 일 실시예에 따르면, 현재 블록의 CPMV는 해당 포인트에 인접한 주변 블록의 모션 벡터로부터 유도될 수 있다. 도 35를 참조하면, v0는 해당 포인트에 인접한 주변 블록들 A, B 및 C 중 어느 하나의 모션 벡터로부터 유도될 수 있고, v1은 해당 포인트에 인접한 주변 블록들 D 및 E 중 어느 하나의 모션 벡터로부터 유도될 수 있다. 주변 블록들 A, B, C, D 및 E의 모션 벡터를 각각 vA, vB, vC, vD 및 vE라 할 때, CPMV 후보 리스트에 포함될 수 있는 모션 벡터 정보 세트는 다음 수학식 5와 같이 유도될 수 있다.
[수학식 5]
Figure PCTKR2019006913-appb-img-000004
즉, vA, vB, vC 중에서 선택된 v0와, vD, vE 중에서 선택된 v1으로 구성된 (v0, v1) 쌍이 획득될 수 있다. 이때, v0는 현재 블록의 상좌측 모서리에 인접한 블록의 모션 벡터로부터 유도되고, v1은 현재 블록의 상우측 모서리에 인접한 블록의 모션 벡터로부터 유도된다. 추가적인 실시예에 따르면, 현재 블록의 POC(Picture Order Count), 주변 블록의 참조 픽쳐의 POC, 및 현재 블록의 참조 픽쳐의 POC에 기초하여 모션 벡터 스케일링이 수행될 수 있다.
이와 같이 획득된 모션 벡터 정보 세트 후보를 포함하는 CPMV 후보 리스트가 생성될 수 있으며, CPMV 후보 리스트 중 어느 하나의 모션 벡터 정보 세트를 지시하는 CPMV 지시자가 시그널링 될 수 있다. 본 발명의 추가적인 실시예에 따르면, CPMV 후보 리스트에는 다른 방식의 인터 예측을 위한 모션 벡터 정보 세트 후보가 포함될 수도 있다. 예를 들어, CPMV 후보 리스트는 기존의 인터 예측을 위한 MVP 후보에 기초하여 획득된 모션 벡터 정보 세트 후보를 포함할 수 있다.
디코더는 후보 리스트에서 획득된 모션 벡터 정보 세트에 기초하여 현재 블록의 CPMV들을 유도할 수 있다. 일 실시예에 따르면, 디코더는 후보 리스트에서 획득된 모션 벡터 정보 세트의 모션 벡터들을 별도의 모션 벡터 차분값 없이, 현재 블록의 CPMV로 사용함으로 어파인 머지(merge)예측을 수행할 수 있다. 이러한 어파인 모션 보상 방법은 어파인 머지 예측 모드로 지칭될 수 있다.
다른 실시예에 따르면, 디코더는 현재 블록의 CPMV를 위한 별도의 모션 벡터 차분 값을 획득할 수 있다. 디코더는 CPMV 후보 리스트에서 획득된 모션 벡터 정보 세트의 모션 벡터들을 상기 모션 벡터 차분 값과 합산하여 현재 블록의 CPMV를 획득할 수 있다. 이러한 어파인 모션 보상 방법은 어파인 인터 예측 모드로 지칭될 수 있다. 디코더가 현재 블록의 어파인 모션 보상을 위해 별도의 모션 벡터 차분 값을 사용할지 여부를 지시하는 플래그 또는 인덱스가 별도로 시그널링 될 수 있다. 추가적인 실시예에 따라, 현재 블록의 어파인 모션 보상을 위해 별도의 모션 벡터 차분 값이 사용되는지는 현재 블록의 크기(예, CU 크기)에 기초하여 결정될 수 있다. 예를 들어, 현재 블록의 크기가 기 설정된 크기 이상인 경우, 인코더 및 디코더가 현재 블록의 어파인 모션 보상을 위해 별도의 모션 벡터 차분 값을 사용하도록 설정될 수 있다.
도 36은 현재 블록의 CPMV 세트를 획득하는 다른 실시예를 도시한다. 본 발명의 다른 실시예에 따르면, 현재 블록의 CPMV는 어파인 모션 보상이 수행된 주변 블록의 모션 벡터 정보로부터 유도될 수 있다. 즉, 현재 블록의 CPMV는 주변 블록의 CPMV 또는 모션 벡터로부터 유도될 수 있다. 이때, 주변 블록은 현재 블록의 좌측 주변 블록과 현재 블록의 상측 주변 블록을 포함할 수 있다. 도 36(a)를 참조하면, 좌측 주변 블록은 현재 블록의 하좌측 모서리에 인접한 블록들 즉, 좌측 블록 A 및 하좌측 블록 D를 포함한다. 또한, 상측 주변 블록은 현재 블록의 상좌측 모서리에 인접한 블록 즉, 상좌측 블록 E와, 현재 블록의 상우측 모서리에 인접한 블록들 즉, 상측 블록 B 및 상우측 블록 C를 포함한다. 디코더는 기 설정된 순서대로 주변 블록이 어파인 모션 보상이 수행되었는지 확인한다. 일 실시예에 따라, 기 설정된 순서는 A, B, C, D, E일 수 있다. 어파인 모션 보상이 수행된 주변 블록이 발견되면, 디코더는 해당 주변 블록의 CPMV 세트(혹은, 모션 벡터)를 이용하여 현재 블록의 CPMV 세트를 획득한다. 도 36(b)의 실시예를 참조하면, 좌측 블록 A의 CPMV 세트가 현재 블록의 CPMV 세트를 유도하는데 사용될 수 있다. 즉, 좌측 블록 A의 CPMV 세트 (v2, v3, v4)에 기초하여 현재 블록의 CPMV 세트 (v0, v1)이 획득될 수 있다.
본 발명의 실시예에 따르면, 현재 블록의 CPMV를 유도하기 위해 참조할 주변 블록에 대한 정보가 별도로 시그널링 될 수 있다. 이때, 현재 블록의 주변 블록들의 CPMV 세트들 각각은 기 설정된 순서에 따라 전술한 CPMV 후보 리스트를 구성하는 모션 벡터 정보 세트 후보가 될 수 있다. 더욱 구체적으로, 모션 벡터 정보 세트 후보는 현재 블록의 좌측 주변 블록의 CPMV들(혹은, 모션 벡터)로부터 유도된 제1 후보와, 현재 블록의 상측 주변 블록의 CPMV들(혹은, 모션 벡터)로부터 유도된 제2 후보를 포함할 수 있다. 이때, 좌측 주변 블록은 현재 블록의 하좌측 모서리에 인접한 블록이며, 상측 주변 블록은 현재 블록의 상좌측 모서리에 인접한 블록 또는 현재 블록의 상우측 모서리에 인접한 블록이다. 이와 같이 획득된 모션 벡터 정보 세트 후보를 포함하는 CPMV 후보 리스트가 생성될 수 있으며, CPMV 후보 리스트 중 어느 하나의 모션 벡터 정보 세트를 지시하는 CPMV 지시자가 시그널링 될 수 있다. 일 실시예에 따르면, CPMV 지시자는 현재 블록의 각 서브블록의 모션 벡터를 유도하기 위해 참조되는 주변 블록(들)의 위치 정보를 나타낼 수 있다. 디코더는 CPMV 지시자가 지시하는 주변 블록의 CPMV 세트(혹은, 모션 벡터)를 참조하여 현재 블록의 CPMV 세트를 획득할 수 있다.
본 발명의 추가적인 실시예에 따르면, 현재 블록의 CPMV는 해당 포인트에서 가까운 주변 블록의 CPMV에 기초하여 유도될 수 있다. 예를 들어, v0는 좌측 주변 블록의 CPMV를 참조하여 획득되고, v1은 상측 주변 블록의 CPMV를 참조하여 획득될 수 있다. 또는, v0는 주변 블록 A, D 또는 E의 CPMV를 참조하여 획득되고, v1은 주변 블록 B 또는 C의 CPMV를 참조하여 획득될 수 있다.
현재 블록의 CPMV 세트를 획득하는 다른 실시예를 도시한다. 일 실시예에 따라, 현재 블록의 CPMV는 어파인 모션 보상이 수행된 블록의 CPMV 또는 모션 벡터로부터 유도될 수 있다. 예를 들어, 현재 블록을 기준으로 기 설정된 위치에 대응하는 블록이 어파인 모션 보상된 경우, 해당 블록의 CPMV 세트 또는 적어도 하나의 모션 벡터로부터 현재 블록의 CPMV가 유도될 수 있다. 도 37을 참조하면, 기 설정된 위치는 현재 블록의 하좌측 모서리에 인접한 A0 및 A1, 상우측 모서리에 인접한 B0 및 B1, 상좌측 B2 위치일 수 있다. 본 실시예에서, 기 설정된 위치는 현재 블록에 인접하지 않은 위치를 포함할 수 있다. 예를 들어, 기 설정된 위치는 현재 픽쳐가 아닌 다른 픽쳐 내에서 현재 블록의 위치에 대응하는 위치를 포함할 수 있다. 즉, 현재 블록의 CPMV 세트는 기 설정된 위치에 대응하는 공간적 후보 또는 시간적 후보로부터 유도될 수 있다. 도 37을 통해 설명한 방법으로 획득된 모션 정보 세트 후보는 내재적 후보(inherited candidate) 또는 어파인 머지 후보로 지칭될 수 있다.
도 36 및 도 37을 통해 설명한 바와 같이, 어파인 모션 보상이 수행된 주변 블록의 모션 벡터 정보로부터 현재 블록의 CPMV가 유도될 수 있다. 구체적인 실시예에 따라, 현재 블록에 대한 4-파라미터 어파인 모션 보상을 위한 CPMV 세트((v_0x, v_0y), (v_1x, v_1y))는 수학식 6과 같이 유도될 수 있다.
[수학식 6]
Figure PCTKR2019006913-appb-img-000005
여기서, (v_E0x, v_E0y)는 현재 블록의 상좌측 블록의 어파인 모션 보상에 사용된 모션 벡터를 나타내고, (v_E1x, v_E1y)는 현재 블록의 상우측 블록의 어파인 모션 보상에 사용된 모션 벡터를 나타내며, (v_E2x, v_E2y)는 현재 블록의 하좌측 블록의 어파인 모션 보상에 사용된 모션 벡터를 나타낼 수 있다.
도 38은 본 발명의 다른 일 실시예에 따라 현재 블록의 컨트롤 포인트 모션 벡터가 획득되는 방법을 나타내는 도면이다. 일 실시예에 따라, 현재 블록의 CPMV는 현재 블록 주변의 하나 이상의 모션 벡터를 참조하여 획득될 수 있다. 이때, 현재 블록 주변의 하나 이상의 모션 벡터는 어파인 모션 보상에 사용된 모션 벡터가 아닌 모션 벡터를 포함할 수 있다. 예를 들어, 현재 블록의 CPMV는 해당 포인트를 기준으로 기 설정된 위치의 모션 벡터로부터 유도될 수 있다. 예를 들어, 기 설정된 위치는 유도하려는 CPMV에 대응하는 포인트로부터 일정 거리 이내의 블록에 포함되는 위치일 수 있다.
도 38을 참조하면, 현재 블록의 어파인 모션 보상을 위한 제1 CPMV(mv0), 제2 CPMV(mv1), 및 제3 CPMV(mv2)는 전술한 기 설정된 위치의 모션 벡터로부터 유도될 수 있다. 예를 들어, 제1 CPMV(mv0)는 상좌측 모서리 주변의 위치 A, B, C 각각의 모션 벡터 정보로부터 유도될 수 있다. 제2 CPMV(mv1)는 상우측 모서리 주변의 위치 D, E 각각의 모션 벡터 정보로부터 유도될 수 있다. 제3 CPMV(mv2)는 하좌측 모서리 주변의 위치 F, G 각각의 모션 벡터 정보로부터 유도될 수 있다.
일 실시예에 따라, 디코더는 기 설정된 순서대로 CPMV 주변 위치의 모션 벡터에 대한 사용 가능성을 확인할 수 있다. 사용 가능한 모션 벡터가 발견되면, 디코더는 해당 모션 벡터를 이용하여 상기 CPMV를 획득할 수 있다. 또한, 현재 블록의 포인트 별로 CPMV를 유도하기 위해 참조되는 주변 위치에 대한 기 설정된 조합이 사용될 수도 있다. 도 38을 통해 설명한 방법으로 획득된 모션 정보 세트 후보는 컨스트럭티드 후보(constructed candidate) 또는 어파인 인터 후보(inter candidate)로 지칭될 수 있다. 도 35 내지 도 38에서 설명된 모션 벡터 정보 세트들은 기 설정된 순서에 따라 CPMV 후보 리스트를 구성하는 모션 벡터 정보 세트 후보가 될 수 있다.
도 39는 본 발명의 다른 일 실시예에 따라 현재 블록의 컨트롤 포인트 모션 벡터가 획득되는 방법을 나타내는 도면이다. 전술한 바와 같이, 현재 블록의 어파인 모션 보상을 위해 복수의 CPMV가 사용될 수 있다. 본 발명의 일 실시예에 따라, 현재 블록의 모션 보상을 위한 CPMV 세트가 포함하는 복수의 CPMV들 중 일부는 다른 일부에 기초하여 유도될 수 있다. 예를 들어, 인코더 및 디코더는 전술한 방법으로 현재 블록의 2개의 포인트 각각에 대응하는 CPMV들을 획득할 수 있다. 다음으로, 인코더 및 디코더는 기 획득된 CPMV 로부터 현재 블록의 다른 포인트에 대응하는 CPMV를 유도할 수 있다.
도 39를 참조하면, 제1 CPMV(mv 0 x, mv 0 y), 제2 CPMV(mv 1 x, mv 1 y)로부터 제3 CPMV(mv 2 x, mv 2 y)가 유도되거나, 제1 CPMV(mv 0 x, mv 0 y), 제3 CPMV(mv 2 x, mv 2 y)로부터 제2 CPMV(mv 1 x, mv 1 y)가 유도될 수 있다. 도 39의 수학식에서, w 및 h는 각각 현재 블록의 너비 및 높이일 수 있다.
도 40은 본 발명의 일 실시예에 따라 현재 블록의 컨트롤 포인트 모션 벡터가 획득되는 방법을 나타낸다. 전술한 바와 같이, 현재 블록의 CPMV 세트는 복수의 CPMV로 구성될 수 있다. 또한, 복수의 CPMV 별로 CPMV 예측자와 모션 벡터 차분 값에 기초하여 획득될 수 있다. CPMV의 모션 벡터 차분 값은 인코더로부터 디코더로 시그널링될 수 있다. 즉, 현재 블록의 어파인 모션 보상을 위한 CPMV 별로 CPMV를 유도하기 위해 이용되는 모션 벡터 차분 값이 시그널링될 수 있다. 이하에서, CPMV의 모션 벡터 차분 값은 CPMV 차분 값으로 지칭될 수 있다. 도 40에서 상단 바(bar) 표시된 mv0, mv1, 및 mv2는 각각 제1 CPMV(mv0), 제2 CPMV(mv1) 및 제3 CPMV(mv2) 각각의 CPMV 예측자를 나타낼 수 있다.
도 40(a)는 4-파라미터 어파인 모션 보상이 수행되는 경우, 현재 블록의 제1 CPMV(mv0) 및 제2 CPMV(mv1)가 획득되는 방법을 나타낸다. 제1 CPMV(mv0) 및 제2 CPMV(mv1) 각각에 대한 제1 CPMV 차분 값(mvd0) 및 제2 CPMV 차분 값(mvd1)이 각각 시그널링될 수 있다.
도 40(b)는 6-파라미터 어파인 모션 보상이 수행되는 경우, 현재 블록의 제1 CPMV(mv0), 제2 CPMV(mv1) 및 제3 CPMV(mv2)가 획득되는 방법을 나타낸다. 제1 CPMV(mv0), 제2 CPMV(mv1) 및 제3 CPMV(mv2) 각각에 대한 제1 CPMV 차분 값(mvd0), 제2 CPMV 차분 값(mvd1) 및 제3 CPMV 차분 값(mvd2)이 각각 시그널링될 수 있다.
도 41은 본 발명의 일 실시예에 따라 현재 블록의 컨트롤 포인트 모션 벡터 차분 값이 시그널링되는 방법을 나타낸다. 현재 블록의 CPMV 차분 값은 도 9를 통해 전술한 신택스에 따라 시그널링될 수 있다. 또한, 디코더는 시그널링된 모션 벡터 차분 값에 대한 적어도 하나의 정보에 기초하여 현재 블록의 CPMV 차분 값(lMVD)을 획득될 수 있다. 도 41에서, compIdx는 모션 벡터 차분 값의 성분을 나타내는 인덱스로 0 또는 1일 수 있다. 예를 들어, compIdx는 모션 벡터 차분 값의 x축 성분 또는 y축 성분 중에서 어느 하나를 지시할 수 있다. 또한, 현재 블록의 CPMV 차분 값은 참조 픽쳐 리스트 별로 다를 수 있다. 도 41에서, L0는 제1 참조 픽쳐 리스트를 나타내고, L1은 제2 참조 픽쳐 리스트를 나타낸다.
한편, 현재 블록의 특정 포인트에 대응하는 CPMV 차분 값은 현재 블록의 다른 포인트에 대응하는 CPMV 차분 값과 유사할 수 있다. 이에 따라, 현재 블록의 특정 포인트에 대응하는 CPMV 차분 값은 현재 블록의 다른 포인트에 대응하는 CPMV 차분 값에 기초하여 획득될 수 있다. 이를 통해, 인코더 및 디코더는 CPMV 차분 값에 대한 시그널링 오버헤드를 감소시킬 수 있다.
도 42는 본 발명의 다른 일 실시예에 따라 현재 블록의 컨트롤 포인트 모션 벡터가 획득되는 방법을 나타낸다. 도 42를 참조하면, 현재 블록의 어파인 모션 보상을 위한 CPMV 세트는 적어도 하나의 공통된 CPMV 차분 값에 기초하여 유도될 수 있다. 예를 들어, 현재 블록의 특정 포인트에 대응하는 CPMV는 현재 블록의 다른 포인트에 대응하는 CPMV 차분 값에 기초하여 획득될 수 있다.
인코더는 현재 블록의 어파인 모션 보상을 위한 하나의 공통 CPMV 차분 값 및 적어도 하나의 추가 차분 값을 시그널링할 수 있다. 또한, 디코더는 하나의 공통 CPMV 차분 값 및 적어도 하나의 추가 차분 값을 이용하여 블록의 어파인 모션 보상을 위한 CPMV 세트를 획득할 수 있다. 도 42에서 상단 바(bar) 표시된 mv0, mv1, 및 mv2는 각각 제1 CPMV(mv0), 제2 CPMV(mv1) 및 제3 CPMV(mv2) 각각의 CPMV 예측자를 나타낼 수 있다.
도 42(a)는 4-파라미터 어파인 모션 보상이 수행되는 경우, 현재 블록의 제1 CPMV(mv0) 및 제2 CPMV(mv1)가 획득되는 방법을 나타낸다. 제1 CPMV(mv0)에 대한 제1 CPMV 차분 값(mvd0) 이 시그널링될 수 있다. 또한, 제2 CPMV 차분 값을 획득하기 위해 사용되는 제1 추가 차분 값(mvd1')이 시그널링될 수 있다. 구체적으로, 제2 CPMV 차분 값은 제1 CPMV 차분 값(mvd0)에 제1 추가 차분 값(mvd1')을 더한 값으로 표현될 수 있다. 즉, 제2 CPMV(mv1)는 제2 CPMV 예측자, 제1 CPMV 차분 값(mvd0) 및 제1 추가 차분 값(mvd1')에 기초하여 획득될 수 있다. 제1 CPMV 차분 값과 제2 CPMV 차분 값이 유사한 경우, 제2 CPMV 차분 값에 비해 제1 추가 차분 값(mvd1')이 적을 수 있다. 이에 따라, 인코더 및 디코더는 도 40을 통해 설명된 방법에 비해, CPMV 차분 값에 대한 시그널링 오버헤드를 감소시킬 수 있다.
도 42(b)는 6-파라미터 어파인 모션 보상이 수행되는 경우, 현재 블록의 제1 CPMV(mv0), 제2 CPMV(mv1) 및 제3 CPMV(mv2)가 획득되는 방법을 나타낸다. 제1 CPMV(mv0)에 대한 제1 CPMV 차분 값(mvd0) 이 시그널링될 수 있다. 또한, 제2 CPMV 차분 값 및 제3 CPMV 차분 값 각각을 획득하기 위해 사용되는 제1 추가 차분 값(mvd1') 및 제2 추가 차분 값(mvd2')이 시그널링될 수 있다. 구체적으로, 제2 CPMV 차분 값은 제1 CPMV 차분 값(mvd0)에 제1 추가 차분 값(mvd1')을 더한 값으로 표현될 수 있다. 또한, 제3 CPMV 차분 값은 제1 CPMV 차분 값(mvd0)에 제2 추가 차분 값(mvd2')을 더한 값으로 표현될 수 있다.
도 43은 도 42를 통해 설명된 실시예에 따라 현재 블록의 컨트롤 포인트 모션 벡터가 획득되는 경우, 컨트롤 포인트 모션 벡터 차분 값이 시그널링되는 방법을 나타낸다. 전술한 바와 같이, 현재 블록의 어파인 모션 보상을 위한 CPMV 세트는 복수의 CPMV를 포함할 수 있다. 이때, 복수의 CPMV들 중 일부의 CPMV 차분 값(MvdLX)은 다른 CPMV의 차분 값 및 추가 차분 값에 기초하여 획득될 수 있다. 도 43에서, lMvd는 기 설정된 CPMV의 차분 값 또는 적어도 하나의 추가 차분 값 중 어느 하나일 수 있다.
도 43에서, cpIdx는 현재 블록의 컨트롤 포인트 인덱스를 나타낼 수 있다. 예를 들어, 현재 블록에 대해 4-파라미터 어파인 모션 보상이 수행되는 경우, cpIdx는 0 또는 1일 수 있다. 현재 블록에 대해 6-파라미터 어파인 모션 보상이 수행되는 경우, cpIdx는 0, 1 또는 2일 수 있다. 일 실시예에 따라, CPMV 차분 값(MvdLx)은 cpIdx에 따라 다른 방식으로 결정될 수 있다. 예를 들어, cpIdx가 기 설정된 값(예, '0')인 경우, MvdLx는 기 설정된 CPMV의 차분 값(lMvd[0][compIdx])일 수 있다. cpIdx가 기 설정된 값(예, '0')이 아닌 경우, MvdLx는 기 설정된 CPMV의 차분 값(lMvd[0][compIdx])에 해당 인덱스에 대응하는 추가 차분 값을 더한 값일 수 있다. 여기에서, MvdLx는 CPMV와 CPMV 예측자 간의 차이를 나타낼 수 있다. 즉, MvdLx는 (CPMV- CPMV 예측자)일 수 있다.
또한, compIdx는 모션 벡터 차분 값의 성분을 나타내는 인덱스로 0 또는 1일 수 있다. 예를 들어, compIdx는 모션 벡터 차분 값의 x축 성분 또는 y축 성분 중에서 어느 하나를 지시할 수 있다. 또한, 현재 블록의 CPMV 차분 값은 참조 픽쳐 리스트 별로 다를 수 있다. 도 41에서, L0는 제1 참조 픽쳐 리스트를 나타내고, L1은 제2 참조 픽쳐 리스트를 나타낸다.
도 44는 본 발명의 일 실시예에 따른 현재 블록의 컨트롤 포인트 모션 벡터 차분 값이 시그널링되는 방법을 나타내는 도면이다. 도 44를 참조하면, 도 9를 통해 전술한 모션 벡터 차분 값의 시그널링 방법과 유사한 방법으로 CPMV 차분 값이 인코딩될 수 있다. 예를 들어, 인코더는 전술한 컨트롤 포인트 인덱스(cpIdx)에 따라 별도로 CPMV 차분 값을 인코딩하여 CPMV 차분 값에 대한 적어도 하나의 정보를 생성할 수 있다. 또한, 인코더는 인코딩된 CPMV 차분 값에 대한 적어도 하나의 정보를 시그널링할 수 있다. 디코더는 CPMV 차분 값에 대한 적어도 하나의 정보에 기초하여, 컨트롤 포인트 인덱스(cpIdx) 별로 CPMV 차분 값을 획득할 수 있다.
전술한 모션 벡터 차분 값의 레졸루션과 관련된 실시예들은 도 9, 도 43, 및 도 44의 실시예를 통해 설명된 CPMV 차분 값들에 대해서도 동일 또는 상응하는 방법으로 적용될 수 있다. 예를 들어, 현재 블록의 CPMV 차분 값의 레졸루션이 R인 경우, 시그널링된 CPMV 차분 값은 R에 기초하여 수정될 수 있다. 이때, 디코더는 시그널링된 CPMV 차분 값에 레졸루션(R)을 곱해 수정된 CPMV 차분 값을 획득할 수 있다.
도 45는 본 발명의 일 실시예에 따라 현재 블록의 컨트롤 포인트 모션 벡터 차분 값에 대한 차분 예측자를 이용하여 모션 벡터가 획득되는 방법을 나타내는 도면이다. 도 45를 참조하면, 현재 블록의 CPMV와 CPMV 예측자 간의 차이를 나타내는 CPMV 차분 값은 차분 예측자(mvdp)에 기초하여 결정될 수 있다. 여기에서, 차분 예측자(mvdp)는 CPMV와 CPMV 예측자 간의 차이에 대한 예측 값을 나타낼 수 있다. 구체적으로, CPMV 차분 값은 차분 예측자(mvdp) 및 추가 차분 값(mvd0'', mvd1'', mvd2'')에 기초하여 획득될 수 있다.
예를 들어, 차분 예측자(mvdp) 및 추가 차분 값(mvd0'', mvd1'', mvd2'')은 인코더에서 디코더로 시그널링될 수 있다. mvdp, mvd0'', mvd1'', 및 mvd2''(6-파라미터 어파인 모션 보상이 수행되는 경우) 각각은 도 9 또는 도 44를 통해 전술한 방법으로 인코딩 또는 디코딩될 수 있다. 도 45에서 상단 바(bar) 표시된 mv0, mv1, 및 mv2는 각각 제1 CPMV(mv0), 제2 CPMV(mv1) 및 제3 CPMV(mv2) 각각의 CPMV 예측자를 나타낼 수 있다. 인코더 및 디코더는 차분 예측자(mvdp)를 이용하여 CPMV 차분 값을 위한 시그널링 오버헤드를 감소시킬 수 있다.
한편, 본 발명의 일 실시예에 따라, 차분 예측자는 현재 블록의 CPMV 세트가 포함하는 복수의 CPMV들 중 적어도 하나에 기초하여 획득될 수 있다. 예를 들어, 차분 예측자는 현재 블록의 CPMV 세트가 포함하는 복수의 CPMV들 중 어느 하나의 CPMV 차분 값일 수 있다. 이하에서는, 현재 블록의 CPMV 세트를 유도하기 위해 사용되는 차분 예측자가 획득되는 방법에 대해 서술하도록한다.
도 46은 본 발명의 일 실시예에 따라 차분 예측자를 이용하여 현재 블록의 컨트롤 포인트 모션 벡터가 획득되는 방법을 나타내는 도면이다. 본 발명의 일 실시예에 따라, 인코더 및 디코더는 현재 블록의 mvd0, mvd1, 및 mvd2 (이하, mvdx들) 중에서 적어도 하나를 이용하여 현재 블록의 차분 예측자(mvdp)를 획득할 수 있다. 일 실시예에 따라, 차분 예측자(mvdp)는 mvdx들 중 절대값이 가장 작은 mvdx의 절대값 보다 작은 값으로 설정될 수 있다. 또는, 차분 예측자(mvdp)는 mvdx들 중 절대값이 가장 큰 mvdx의 절대값 보다 큰 값으로 설정될 수 있다. 이 경우, 현재 블록의 CPMV 세트가 포함하는 복수의 CPMV들 각각을 유도하기 위해 사용되는 추가 차분 값들(도 45의 mvd0'', mvd1'', mvd2'')의 부호가 일치될 수 있다. 본 실시예에서 추가 차분 값은 mvdx와 차분 예측자(mvdp) 간의 차이를 나타낼 수 있다.
예를 들어, 차분 예측자(mvdp)는 mvdx들 중 절대값이 가장 작은 mvdx의 절대값 보다 작은 값으로 설정된 경우, 추가 차분 값들(도 45의 mvd0'', mvd1'', mvd2'')의 부호는 양의 부호(+)로 일치될 수 있다. 또한, 차분 예측자(mvdp)는 mvdx들 중 절대값이 가장 큰 mvdx의 절대값 보다 큰 값으로 설정된 경우, 추가 차분 값들(도 45의 mvd0'', mvd1'', mvd2'')의 부호는 음의 부호(-)로 일치될 수 있다.
도 46을 참조하면, 차분 예측자(mvdp)는 mvdx들 중 절대값이 가장 작은 mvdx의 절대값 보다 작은 값으로 설정될 수 있다. 도 46에서, 수평 파쇄선은 mvdx들 각각의 x축 성분의 절대값들 중 가장 작은 값을 나타내며, 수직 파쇄선은 mvdx들 각각의 y축 성분의 절대값들 중 가장 작은 값을 나타낸다. x축 좌표는 우측일수록 값이 커지고, y축 좌표는 상측일수록 값이 커질 수 있다. 이때, 차분 예측자(mvdp)는 파쇄선에 의해 구획된 사분면 중에서 제3사분면(mvdp area) 내의 값일 수 있다.
이 경우, 현재 블록의 추가 차분 값들의 부호는 모두 양의 부호(+)가 될 수 있다. 이에 따라, 추가 차분 값들에 대한 부호를 나타내는 정보가 별도로 시그널링되지 않을 수 있다. 구체적으로, 현재 블록의 차분 예측자(mvdp) 및 추가 차분 값들(mvdx'') 각각은 수학식 7과 같이 유도될 수 있다.
[수학식 7]
For mvdp, mvd_sign_flag,
lMvd[ cpIdx ][ compIdx ] = abs_mvd_greater0_flag[ cpIdx ][ compIdx ] * ( abs_mvd_minus2[ cpIdx ][ compIdx ] + 2 )*( 1  2 * mvd_sign_flag[ cpIdx ][ compIdx ] )
For mvdx'' (mvdx - mvdp), no mvd_sign_flag
lMvd[ cpIdx ][ compIdx ] = abs_mvd_greater0_flag[ cpIdx ][ compIdx ] *( abs_mvd_minus2[ cpIdx ][ compIdx ] + 2 )
수학식 7을 참조하면, 차분 예측자(mvdp)의 부호를 나타내는 정보(mvd_sign_flag)가 시그널링될 수 있다. 인코더는 차분 예측자의 부호 정보를 시그널링할 수 있다. 또한, 디코더는 차분 예측자의 부호 정보(mvd_sign_flag)에 기초하여 현재 블록의 CPMV 세트를 획득할 수 있다. 반면, 추가 차분 값(mvdx'') 각각의 부호를 나타내는 정보는 시그널링되지 않을 수 있다. 추가적인 실시예에 따라, 차분 예측자(mvdp)를 결정하는 방법을 나타내는 mvdp 지시자가 시그널링될 수도 있다. 예를 들어, mvdp 지시자는 차분 예측자(mvdp)를 mvdx들 중 최소값 보다 작은 값으로 결정할지 또는 최대값 보다 큰 값으로 결정할지를 나타내는 플래그일 수 있다.
도 47은 본 발명의 다른 일 실시예에 따라 차분 예측자를 이용하여 현재 블록의 컨트롤 포인트 모션 벡터가 획득되는 방법을 나타내는 도면이다. 본 발명의 일 실시예에 따라, 현재 블록의 차분 예측자는 현재 블록의 CPMV 세트가 포함하는 복수의 CPMV들 중 어느 하나의 CPMV 차분 값일 수 있다. 도 46을 참조하면, Method 0, Method 1, Method 2에 따라 차분 예측자가 달라질 수 있다. 예를 들어, Method 0에서 차분 예측자는 mvd0일 수 있다. 또한, Method 1에서 차분 예측자는 mvd1일 수 있다. Method 2에서 차분 예측자는 mvd2일 수 있다.
일 실시예에 따라, 복수의 방법들 중 어느 방법으로 차분 예측자가 결정되는지를 나타내는 mvdp 지시자(cpIdxPred)가 시그널링될 수 있다. 여기에서, 복수의 방법들은 도 47의 Method 0, Method 1, Method 2 및 도 46을 통해 설명한 방법들 중 적어도 하나를 포함할 수 있다. 도 47의 실시예에서, 인코더는 Method 0, Method 1, Method 2 중 어느 하나를 지시하는 mvdp 지시자(cpIdxPred)를 시그널링할 수 있다. 또한, 디코더는 mvdp 지시자(cpIdxPred)에 기초하여 Method 0, Method 1, Method 2 중 어느 하나를 결정할 수 있다. 또한, 디코더는 결정된 방법에 따라 현재 블록의 차분 예측자를 획득할 수 있다. 또한, 디코더는 획득된 차분 예측자에 기초하여 현재 블록으ㅔ CPMV 세트를 획득할 수 있다.
다른 실시예에에 따라, mvdp 지시자(cpIdxPred)는 묵시적으로 시그널링될 수도 있다. 즉, 인코더 및 디코더는 mvdp 지시자(cpIdxPred)에 대한 시그널링 없이 현재 블록의 차분 예측자를 결정할 수도 있다. 이에 대해서는, 도 49 내지 도 50을 통해 구체적으로 설명하도록 한다.
도 48는 본 발명의 일 실시예에 따라 차분 예측자가 획득되는 방법을 나타내는 도면이다. 본 발명의 일 실시예에 따라, 컨트롤 포인트 인덱스(cpIdx)가 mvdp 지시자(cpIdxPred)와 동일한 경우, 차분 예측자가 해당 CPMV의 차분 값으로 사용될 수 있다. 컨트롤 포인트 인덱스(cpIdx)가 mvdp 지시자(cpIdxPred)와 동일하지 않은 경우, cpIdx에 대응하는 추가 차분 값 및 차분 예측자에 기초하여 해당 CPMV의 차분 값이 획득될 수 있다. 모션 벡터 차분 값에 대한 코딩 효율이 높은 방법을 지시하는 mvdp 지시자(cpIdxPred)가 시그널링될 수 있다. 도 48에서, lMvd는 차분 예측자 또는 추가 차분 값들 중 어느 하나를 나타낼 수 있다. 또한, MvdLX는 CPMV 차분 값을 나타낼 수 있다.
도 48에서 LX는 참조 픽쳐 리스트 L0 또는 L1을 나타낼 수 있다. 또한, mvdp 지시자는 가변 길이의 비트로 표현될 수 있다. 예를 들어, mvdp 지시자는 절삭 단항(truncated unary) 방법을 통해 시그널링될 수 있다. 또한, 도 46 내지 도 48에서 전술한 실시예들은 모션 벡터 차분 값의 성분 별로 수행될 수 있다. 전술한 모션 벡터 차분 값의 레졸루션과 관련된 실시예들은 도 46 내지 48의 실시예를 통해 설명된 CPMV 차분 값들에 대해서도 동일 또는 상응하는 방법으로 적용될 수 있다. 예를 들어, 현재 블록의 CPMV 차분 값의 레졸루션이 R인 경우, 시그널링된 CPMV 차분 값은 R에 기초하여 수정될 수 있다. 이때, 디코더는 시그널링된 CPMV 차분 값에 레졸루션(R)을 곱해 수정된 CPMV 차분 값을 획득할 수 있다.
본 발명의 일 실시예를 따르면 mvdp 지시자(cpIdxPred)가 아닌 컨트롤 포인트 인덱스에 대한 lMvd의 시그날링을 줄이는 방식으로 mvdp 지시자를 시그날링하거나 결정하는 것이 가능하다. 예를 들어, mvdp 지시자가 아닌 컨트롤 포인트 인덱스에 대한 lMvd의 부호가 일치되도록 mvdp 지시자를 시그날링할 수 있다. 또는 명시적인 시그널링 없이 차분 예측자가 결정될 수도 있다. 이에 대해서는 도 49 내지 도 51을 통해 후술하도록한다.
전술한 바와 같이, 현재 블록의 차분 예측자가 현재 블록의 CPMV 차분 값의 절대값들 중에서 최소값 또는 최대값으로 결정되는 경우, 컨트롤 포인트 인덱스에 대한 lMvd들 간의 부호가 일치될 수 있다. 이때, 컨트롤 포인트 인덱스가 mvdp 지시자와 다른 경우, 부호 정보를 시그널링하지 않을 수 있다. 여기서, CPMV 차분 값의 절대값이 최소이거나 최대라는 것은 특정 성분의 절대값이 최소이거나 최대인 것을 의미할 수 있다. 예를 들어, mvdp 지시자가 3개의 값 중 어느 하나를 나타내는 경우, 절삭 단항 방법으로 mvdp 지시자 중 1개는 1비트, 2개는 2비트를 사용하여 시그널링될 수 있다.
본 발명의 다른 일 실시예에 따라, mvdp 지시자는 CPMV 차분 값의 절대값들 중 중앙 또는 중간 값에 해당하는 CPMV 차분 값일 수 있다. 이 경우, lMvd의 부호는 하나는 (+)이고, 하나는 (-)일 수 있다. 이에 따라, 1 비트를 사용하여 2개의 CPMV 차분 값 각각의 부호 정보를 시그널링할 수 있다. 이를 통해, 인코더 및 디코더는 CPMV 차분 값의 부호 정보를 위한 시그널링 오버헤드를 감소시킬 수 있다.
본 발명의 또 다른 일 실시예에 따라, 현재 블록의 차분 예측자를 결정하는 방법을 지시하는 mvdp 지시자(cpIdxPred)는 묵시적으로 시그널링될 수 있다. 예를 들어, 현재 블록의 차분 예측자를 결정하는 방법은 다른 정보에 기초하여 결정될 수 있다. 더욱 구체적으로, 인코더 및 디코더는 현재 블록의 CPMV 차분 값들 중 절대값이 가장 큰 CPMV의 차분 값을 차분 예측자로 결정할 수 있다. 모션 벡터 차분 값이 시그널링되는 경우, 복수의 CPMV들을 유도하는 사용되는 차분 예측자의 절대값이 클수록 유리할 수 있기 때문이다.
도 49는 본 발명의 일 실시예에 따라 현재 블록의 차분 벡터 예측자가 결정되는 방법을 나타내는 도면이다. 도 49를 참조하면, 세 개의 CPMV가 현재 블록의 어파인 모션 보상을 위해 사용될 수 있다. 이하에서는 설명의 편의를 위해 x축 성분을 예로 들어 설명하나, 본 개시가 이에 제한되는 것은 아니다. 후술할 실시예는 y축 성분에 대해서도 동일 또는 상응하는 방법으로 적용될 수 있다. 일 실시예에 따라, 현재 블록의 CPMV들 각각의 CPMV 차분 값인 Mvd0, Mvd1, 및 Mvd2 중 x축 성분의 절대값이 최소인 CPMV를 지시하는 컨트롤 포인트 인덱스는 '1'일 수 있다.
도 49에서, 파쇄선은 참조 예측자의 x축 성분의 값을 나타낸다. 도 49에서와 같이, CPMV 차분 값의 절대값이 최소인 CPMV 차분 값이 차분 예측자로 사용되는 경우, 차분 예측자로 선택되지 않은 나머지 CPMV 차분 값들 각각의 부호는 양의 부호(+)로 일치될 수 있다. 이에 따라, 인코더는 mvdp 지시자에 대한 시그널링을 생략할 수 있다. 또한, 디코더는 mvdp 지시자 없이 현재 블록의 CPMV 세트를 유도할 수 있다.
도 50은 현재 블록의 컨트롤 포인트 모션 벡터 차분 값이 시그널링되는 방법을 나타내는 도면이다. 도 48 내지 도 49를 통해 전술한 바와 같이, 부호 비트 하이딩 방법을 사용하는 경우, 컨트롤 포인트 인덱스와 mvdp 지시자가 상이한 경우의 부호 정보에 대한 시그널링이 생략될 수 있다. 도 50를 참조하면 모션 벡터 차분 값의 부호 정보(mvd_sign_flag)는 컨트롤 포인트 인덱스와 mvdp 지시자가 동일한 경우 파싱될 수 있다. 반대로, 컨트롤 포인트 인덱스와 mvdp 지시자가 상이한 경우 수행되지 않을 수 있다. 도 50에서, [0]과 [1]에서 0, 1은 성분 인덱스를 나타내며, 각각 x축 성분 및 y축 성분을 나타낼 수 있다.
본 발명의 일 실시예를 따라, 모션 벡터 차분 값에 대한 정보는 기 설정된 순서에 따라 순차적으로 파싱될 수 있다. 이때, 기 설정된 순서는 컨트롤 포인트 인덱스에 기초하여 설정된 순서일 수 있다. 일 실시예에 따라, 기 설정된 순서는 mvdp 지시자에 기초하여 결정된 순서일 수 있다.
본 발명의 일 실시예를 따르면 모션 벡터 차분 값을 코딩하는 함수가 존재할 수 있다. 또한, 모션 벡터 차분 값을 코딩하는 함수의 예는 도 50의 mvd_coding 신택스일 수 있다. 일 실시예에 따라, 디코더는 컨트롤 포인트 인덱스에 따라, 모션 벡터 차분 값에 대한 정보를 파싱할 수 있다. 예를 들어, 도 50의 mvd_coding 신택스는 컨트롤 포인트 인덱스 별로 수행될 수도 있다. 이때, 기 설정된 순서는 아래 수학식 8과 같이 수행될 수 있다. 수학식 8에 따르면, 항상 동일한 순서로 파싱이 수행될 수 있다.
[수학식 8]
mvd_coding(.., .., .., cpIdx 0)
mvd_coding(.., .., .., cpIdx 1)
mvd_coding(.., .., .., cpIdx 2)
다른 일 실시예에 따라, mvdp 지시자에 대응하는 CPMV 차분 값에 대한 정보는, mvdp 지시자에 대응하지 않는 다른 CPMV의 차분 값에 대한 정보 보다 먼저 파싱될 수 있다. 이 경우, 특정 컨트롤 포인트 인덱스에 대응하는 추가 차분 값을 디코딩한 후, 곧바로 해당 컨트롤 포인트 인덱스에 대응하는 CPMV 차분 값을 산출할 수 있다. 본 실시예와 다르게, mvdp 지시자에 대응하는 CPMV 차분 값에 대한 정보가 mvdp 지시자에 대응하지 않는 다른 CPMV의 차분 값에 대한 정보 보다 먼저 파싱되지 않을 수 있다. 이 경우, 특정 컨트롤 포인트 인덱스에 대응하는 추가 차분 값을 디코딩한 후에도 해당 컨트롤 포인트 인덱스에 대응하는 CPMV 차분 값을 산출하기까지 대기 시간이 소요될 수 있다. 구체적인 예로, mvdp 지시자가 '1'인 경우, mvd_coding 신택스는 아래 수학식 9와 같을 수 있다.
[수학식 9]
mvd_coding(.., .., .., cpIdx 1)
mvd_coding(.., .., .., cpIdx 0)
mvd_coding(.., .., .., cpIdx 2)
다른 구체적인 예로서, mvdp 지시자가 '2'인 경우, mvd_coding 신택스는 아래 수학식 10과 같을 수 있다.
[수학식 10]
mvd_coding(.., .., .., cpIdx 2)
mvd_coding(.., .., .., cpIdx 0)
mvd_coding(.., .., .., cpIdx 1)
도 51은 본 발명의 다른 일 실시예에 따라, 현재 블록의 컨트롤 포인트 모션 벡터가 유도되는 방법을 나타내는 도면이다. 도 51에서, lMvd는 차분 예측자 또는 추가 차분 값을 나타낼 수 있다. 도 51을 참조하면, 특정 컨트롤 포인트 인덱스가 mvdp 지시자와 동일한 경우, 부호 정보에 기초하여 차분 예측자가 산출될 수 있다. 이와 달리, 특정 컨트롤 포인트 인덱스가 mvdp 지시자와 상이한 경우, 추가 차분 값을 산출하는데 있어서 부호 정보를 사용하지 않을 수 있다.
한편, 본 발명의 일 실시예에 따라, 전술한 모션 벡터 차분 값의 레졸루션은 현재 블록의 모션 보상을 위한 복수의 CPMV 별로 각각 다른 값이 사용될 수 있다. 예를 들어, 컨트롤 포인트 인덱스 별로 CPMV 차분 값이 시그널링되는 레졸루션이 다를 수 있다. 일 실시예에 따라, 도 42, 도 45 및 도 47과 같이 차분 예측자가 이용되는 경우, 모션 벡터 차분 값의 레졸루션은 현재 블록의 복수의 CPMV 별로 각각 다른 값이 사용될 수 있다.
일 실시예에 따라, 특정 컨트롤 포인트 인덱스의 CPMV 차분 값이 현재 블록의 차분 예측자로 사용될 수 있다. 이 경우, 해당 컨트롤 포인트 인덱스에 대응하는 CPMV 차분 값을 위한 레졸루션이 시그널링될 수 있다. 또한, 해당 컨트롤 포인트 인덱스에 대응하는 CPMV 차분 값은 해당 레졸루션에 기초하여 시그널링될 수 있다. 반면, 해당 컨트롤 포인트 인덱스를 제외한 나머지 컨트롤 포인트 인덱스에 대응하는 CPMV 차분 값은 기 설정된 레졸루션에 기초하여 시그널링될 수 있다. 이때, 해당 컨트롤 포인트 인덱스를 제외한 나머지 컨트롤 포인트 인덱스에 대응하는 CPMV 차분 값이 시그널링되는 단위를 나타내는 레졸루션은 시그널링되지 않을 수 있다. 또한, 기 설정된 레졸루션은 디폴트 값일 수 있다.
다른 일 실시예에 따라, 현재 블록의 차분 예측자로 사용되는 CPMV 차분 값은 상대적으로 작은 단위의 레졸루션에 기초하여 시그널링될 수 있다. 또한, 현재 블록의 차분 예측자로 사용되는 CPMV 차분 값 이외의 다른 컨트롤 포인트의 CPMV 차분 값은 상대적으로 큰 단위의 레졸루션에 기초하여 시그널링될 수도 있다.
한편, 본 발명의 일 실시예에 따라, 현재 블록의 어파인 모션 보상을 위한 복수의 CPMV들은 단일의 CPMV 예측자로부터 획득될 수도 있다. 이 경우, 복수의 CPMV들은 단일의 CPMV 및 복수의 CPMV 차분 값들을 이용하여 유도될 수 있다. 이를 통해, 인코더 및 디코더는 CPMV 차분 값의 코딩 효율을 증가시킬 수 있다. 또한, 인코더 및 디코더는 CPMV 차분 값의 시그널링 오버헤드를 감소시킬 수 있다.
도 52는 본 발명의 일 실시예에 따라 현재 블록의 어파인 모션 보상을 위한 복수의 컨트롤 포인트 모션 벡터가 유도되는 방법을 나타내는 도면이다. 도 52를 참조하면, 제1 CPMV 차분 값(Mvd0) 및 제2 CPMV 차분 값(Mvd1)을 공통 차분 예측자(mvdp) 및 단일의 차분 절대값(mvdd)에 기초하여 획득할 수 있다. 예를 들어, 제1 CPMV 차분 값(Mvd0)은 mvdp와 mvdd의 합산에 기초하여 획득될 수 있다. 또한, 제1 CPMV 차분 값(Mvd1)은 mvdp와 -mvdd의 합산에 기초하여 획득될 수 있다.
예를 들어, 인코더는 공통 차분 예측자(mvdp) 및 차분 절대값(mvdd)을 시그널링할 수 있다. 디코더는 공통 차분 예측자(mvdp) 및 차분 절대값(mvdd)에 기초하여 현재 블록의 복수의 컨트롤 포인트 각각에 대응하는 CPMV 차분 값들을 획득할 수 있다. 도 52는 4-파라미터 어파인 모션 보상에 대해 나타내었으나 본 개시가 이에 제한되는 것은 아니다. 예를 들어, 6-파라미터 어파인 모션 보상이 수행되는 경우, 현재 블록의 CPMV 세트가 포함하는 CPMV들 중 일부는 다른 CPMV의 CPMV 예측자와 CPMV 차분 값을 이용하여 유도될 수 있다.
본 발명의 일 실시예에 따라, 현재 블록은 현재 블록의 예측 모드에 따라 추가적으로 분할될 수 있다. 예를 들어, 현재 블록의 예측 모드가 인트라 예측 모드인 경우, 인코더 및 디코더는 현재 블록을 복수의 서브 블록들로 분할하여 각각의 서브블록에 대해 인트라 예측을 수행할 수 있다. 디코더는 비트스트림으로부터 전술한 인트라 예측 모드 정보를 수신할 수 있다. 디코더는 인트라 예측 모드 정보에 기초하여 현재 블록을 복수의 서브블록들로 분할할지 결정할 수 있다. 이때, 현재 블록이 복수의 서브블록들로 분할되는 방법에 대한 정보가 추가적으로 시그널링될 수 있다. 또는 인코더 및 디코더는 인트라 예측 모드 정보에 따라 인코더 및 디코더 간에 기 설정된 방법을 이용하여 현재 블록을 분할할 수도 있다. 다음으로, 디코더는 현재 블록의 인트라 예측 모드 정보에 기초하여 현재 블록 또는 복수의 서브 블록 각각에 대한 인트라 예측을 수행할 수 있다. 이하, 도 53 내지 도 60의 실시예에서 현재 블록은 코딩 유닛을 나타내는 용어로 사용될 수 있다. 또한, 도 53 내지 도 60의 SCU(Sub-CU)들은 현재 블록으로부터 분할된 복수의 서브블록들을 나타낸다. 이하에서는, 현재 블록이 복수의 서브블록들로 분할되는 방법에 대해 구체적으로 설명하도록 한다.
도 53은 현재 블록이 복수의 서브블록들로 분할되는 형태의 다양한 실시예를 도시한 것이다. 도 53(a)와 53(b)는 현재 블록으로부터 정방형으로 분할된 서브블록을 도시한 것이다. 예를 들어, 현재 블록은 기 설정된 크기의 서브블록들로 분할될 수 있다. 이때, 기 설정된 크기는 인코더와 디코더 간에 사전 협의된 크기일 수 있다. 일 실시예에 따라, 기 설정된 크기는 높이와 너비가 서로 동일한 NxN 크기일 수 있다. 예를 들어, 기 설정된 크기는 4X4 일 수 있다. 일 실시예에 따라, 기 설정된 크기는 변환 커널(transform kernel)의 크기에 기초하여 설정된 값일 수 있다. 기 설정된 크기는 변환 유닛에 기초하여 설정된 값일 수 있다. 기 설정된 크기는 변환 유닛의 크기일 수 있다.
일 실시예에 따라, 현재 블록은 현재 블록의 크기에 따라 결정된 크기의 서브블록들로 분할될 수도 있다. 예를 들어, 현재 블록의 크기가 제1 임계값 보다 큰 경우, 현재 블록은 제1 임계값 보다 크기가 작은 블록들에 비해 큰 크기의 서브블록들로 분할될 수 있다. 또한, 현재 블록의 크기에 따라 서브블록들로 분할되는 동작이 제한될 수도 있다. 예를 들어, 현재 블록의 크기가 제2 임계값 보다 작은 경우, 인코더 및 디코더는 현재 블록을 복수의 블록들로 분할하지 않을 수 있다. 현재 블록의 크기가 상대적으로 작은 경우, 현재 블록의 크기가 상대적으로 큰 경우에 비해 현재 블록을 분할하여 인트라 예측을 수행하는 방법에 따른 성능 이득이 크지 않을 수 있기 때문이다.
일 실시예에 따라, 서브블록들이 분할되는 형태는 현재 블록의 형태와 독립적으로 결정될 수 있다. 예를 들어, 현재 블록이 정방형인 경우에도, 현재 블록으로부터 분할된 복수의 서브블록들의 형태는 비정방형일 수 있다. 도 53(c) 및 53(d)는 현재 블록으로부터 비정방형으로 분할된 서브블록을 도시한 것이다. 일 실시예에 따라, 현재 블록은 기 설정된 크기의 비정방형의 서브블록들로 분할될 수 있다. 이때, 전술한 기 설정된 크기의 높이와 너비가 서로 다를 수 있다. 예를 들어, 기 설정된 크기는 4X8 또는 8x4일 수 있다. 전술한 바와 같이, 기 설정된 크기는 현재 블록의 크기에 따라 설정된 값일 수도 있다. 일 실시예에 따라, 인코더 및 디코더가 4X8 또는 8x4 크기의 비정방형 변환 커널을 지원할 수 있다. 또한, 현재 블록이 비정방형의 서브블록들로 분할될 필요가 있는 경우, 기 설정된 크기는 비정방형 변환 유닛에 기초하여 설정된 값일 수 있다.
다른 일 실시예에 따라, 현재 블록은 현재 블록의 형태와 유사한 형태의 복수의 서브블록들로 분할될 수 있다. 도 53(e) 및 53(f)는 현재 블록이 비정방형 블록인 경우, 현재 블록으로부터 분할된 서브블록을 도시한 것이다. 예를 들어, 현재 블록이 비정방형인 경우, 현재 블록은 현재 블록의 형태와 유사한 비정방형의 서브블록들로 분할될 수 있다. 도 53(e)와 같이, 현재 블록의 높이가 너비보다 긴 경우, 현재 블록은 높이가 너비보다 긴 형태의 복수의 서브 블록들로 분할될 수 있다. 도 53(f)와 같이, 현재 블록의 너비가 높이보다 긴 경우, 현재 블록은 너비가 높이보다 긴 형태의 복수의 서브 블록들로 분할될 수 있다.
본 발명의 일 실시예에 따라, 현재 블록이 분할되는 형태는 현재 블록의 예측 모드에 기초하여 결정될 수 있다. 예를 들어, 현재 블록이 분할되는 크기 또는 방향 중 적어도 하나는 현재 블록의 인트라 예측 모드(각도 모드, DC 모드 또는 평면 모드)에 따라 달라질 수 있다. 도 54는 현재 블록의 인트라 예측 모드에 따라 현재 블록이 분할되는 방법을 도시한 것이다. 도 54(a)를 참조하면, 복수의 인트라 예측 모드들은 평면 모드 또는 DC 모드와 같은 무방향성 모드와 인트라 예측 모드 인덱스 2 내지 66 각각에 대응하는 각도 모드로 분류될 수 있다.
일 실시예에 따라, 현재 블록이 인트라 예측되는 경우, 현재 블록으로부터 분할된 서브블록들 중에서 현재 블록의 참조 샘플들과 먼 위치의 서브 블록들의 레지듀얼 신호가 상대적으로 클 수 있다. 이에 따라, 현재 블록의 참조 샘플로부터 거리가 유사한 샘플들끼리 동일한 서브블록에 속하도록 분할될 수 있다.
일 실시예에 따라, 현재 블록의 인트라 예측 모드가 무방향성 모드인 경우, 현재 블록은 도 54(b)와 같이 정방형의 복수의 서브블록들로 분할될 수 있다. 또한, 현재 블록의 인트라 예측 모드가 전술한 수평 대각 모드, 대각 모드, 및 수직 대각 모드 중 어느 하나인 경우, 현재 블록은 정방형의 복수의 서브블록들로 분할될 수 있다. 또한, 현재 블록의 인트라 예측 모드가 수평 대각 모드, 대각 모드, 및 수직 대각 모드 중 어느 하나의 주변의 각도 모드인 경우, 현재 블록은 정방형의 복수의 서브블록들로 분할될 수 있다.
반면, 현재 블록의 인트라 예측 모드가 수평 모드이거나 수직 모드인 경우, 현재 블록은 현재 블록의 인트라 예측 모드에 따라 도 54(c) 또는 54(d)와 같이 비정방형의 복수의 서브블록들로 분할될 수 있다. 또한, 현재 블록의 인트라 예측 모드가 수평 모드 및 수직 모드 중 어느 하나의 주변의 각도 모드인 경우, 현재 블록은 비정방형의 복수의 서브블록들로 분할될 수 있다. 이를 통해, 현재 블록은 현재 블록의 참조 샘플로부터 거리가 유사한 샘플들끼리 동일한 서브블록에 속하도록 분할될 수 있다.
예를 들어, 현재 블록의 예측 모드가 수평 모드 또는 수평 모드 주변의 각도 모드들 중 어느 하나인 경우, 현재 블록은 도 54(c)와 같이 분할될 수 있다. 현재 블록의 예측 모드가 수직 모드 또는 수직 모드 주변의 각도 모드들 중 어느 하나인 경우, 현재 블록은 도 54(d)와 같이 분할될 수 있다. 현재 블록의 참조 샘플들로부터 먼 위치의 서브 블록에 대해 다른 예측 방법을 적용할 수도 있다.
도 55는 본 발명의 일 실시예에 따라 현재 블록의 참조 샘플들의 샘플 값에 기초하여 현재 블록이 복수의 서브블록들로 분할되는 방법을 도시한 것이다. 본 발명의 일 실시예에 따라, 현재 블록은 현재 블록의 참조 샘플들의 샘플 값에 기초하여 분할될 수 있다. 일 실시예에 따라, 인코더 및 디코더는 현재 블록의 참조 샘플들의 샘플 값들에 기초하여 참조 샘플 에지(edge)를 결정할 수 있다. 예를 들어, 참조 샘플 에지는 참조 샘플의 샘플 값이 임계 값 이상 달라지는 영역을 분할하는 기준 지점일 수 있다. 또한, 참조 샘플 에지는 서로 인접한 참조 샘플 간의 샘플 값 차이가 임계값 이상인 지점을 나타낼 수도 있다.
도 55(a)를 참조하면, 인코더 및 디코더는 현재 블륵의 참조 샘플들의 샘플 값들을 비교하여 현재 블록의 참조 샘플 에지를 결정할 수 있다. 예를 들어, 특정 참조 샘플 주변의 기 설정된 개수의 참조 샘플들의 평균값과의 차이가 임계값 이상인 참조 샘플의 위치를 참조 샘플 에지로 결정할 수 있다. 또한, 인코더 및 디코더는 상측 참조 샘플 세트 및 좌측 참조 샘플 세트 별로 하나 이상의 참조 샘플 에지를 결정할 수 있다. 여기에서, 현재 블록의 상측 참조 샘플 세트는 현재 블록의 상측 라인에 위치된 참조 샘플들을 포함하는 세트일 수 있다. 또한, 현재 블록의 좌측 참조 샘플 세트는 현재 블록의 좌측 라인에 위치된 참조 샘플들을 포함하는 세트일 수 있다.
다음으로, 인코더 및 디코더는 상측 참조 샘플 세트의 참조 샘플 에지와 좌측 참조 샘플 세트의 참조 샘플 에지를 연결하는 선분을 기준으로 현재 블록을 분할할 수 있다. 예를 들어, 상측 참조 샘플 세트 및 좌측 참조 샘플 세트 별로 각각 1개의 참조 샘플 에지가 검출되는 경우, 현재 블록은 총 두 개의 서브블록들(SCU1, SCU2)로 분할될 수 있다. 또한, 상측 참조 샘플 세트 및 좌측 참조 샘플 세트 별로 각각 둘 이상의 참조 샘플 에지가 검출되는 경우, 현재 블록은 복수의 서브블록들로 분할될 수 있다.
한편, 전술한 바와 같이, 현재 블록의 인트라 예측을 위한 참조 샘플은 복수의 참조 라인들 상의 샘플들을 포함할 수 있다. 도 55(b) 및 도 55(c)를 참조하면, 복수의 참조 라인들 상의 참조 샘플들을 샘플 값에 기초하여 현재 블록이 분할될 수 있다. 예를 들어, 복수의 참조 라인들 상의 참조 샘플들을 샘플 값에 기초하여 현재 블록의 참조 샘플 에지가 결정될 수 있다. 복수의 참조 라인 상의 참조 샘플들이 사용되는 경우, 주변 블록에서 구성된 이미지 객체의 형태가 파악될 수 있다.
본 발명의 일 실시예에 따라, 인코더 및 디코더는 참조 라인 별로 하나 이상의 참조 샘플 에지를 결정할 수 있다. 도 55(b)를 참조하면, 인코더 및 디코더는 상측 참조 라인 별 참조 샘플 에지들을 연결하는 선분을 연장하여 현재 블록을 제1 분할할 수 있다. 제1 분할에 의해 두 개의 서브블록들(SCU1, SCU2)이 획득될 수 있다. 또한, 인코더 및 디코더는 좌측 참조 라인 별 참조 샘플 에지들을 연결하는 선분을 연장하여 현재 블록을 제2 분할할 수 있다. 제2 분할에 의해 두 개의 서브블록들(SCU2, SCU3)이 획득될 수 있다. 이에 따라, 상측 참조 라인 별 참조 샘플 에지 또는 좌측 참조 라인 별 참조 샘플 에지들 중 어느 하나가 검출되지 않는 경우에도 현재 블록은 분할될 수 있다.
도 55(c)는 상측 참조 라인 별 참조 샘플 에지 또는 좌측 참조 라인 별 참조 샘플 에지들 중 어느 하나가 검출되지 않거나, 참조 샘플 에지들이 하나의 직선으로 배열되지 않는 경우의 현재 블록이 분할되는 방법을 나타낸다. 도 55(c)의 좌측 참조 라인들과 같이, 좌측 참조 라인들 중 일부 참조 라인에서 참조 샘플 에지가 검출되지 않을 수 있다. 적어도 2개의 참조 라인에서 참조 샘플 에지가 검출된 경우, 인코더 및 디코더는 해당 참조 샘플 에지들에 기초하여 현재 블록을 분할 수 있다. 또한, 전술한 실시예는 상측 참조 라인들 중 일부 참조 라인에서 참조 샘플 에지가 검출되지 않는 경우에도 적용될 수 있다.
또한, 도 55(c)의 상측 참조 라인들과 같이, 상측 참조 라인 별 참조 샘플 에지가 하나의 직선으로 배열되지 않을 수 있다. 이 경우, 현재 블록에 인접하지 않은 라인 상의 참조 샘플 에지들의 중간값 및 현재 블록과 인접한 라인 상의 참조 샘플 에지를 지나는 선분에 기초하여 현재 블록이 분할될 수 있다. 도 55(b) 및 도 55(c)에서는, 3개의 참조 라인이 사용되는 실시예를 도시하고 있으나, 본 개시가 이에 제한되는 것은 아니다.
본 발명의 일 실시예에 따라, 현재 블록으로부터 분할된 복수의 서브블록들은 현재 블록의 인트라 예측 모드에 따라 우선적으로 예측되는 1차적 서브블록(primary sub-block, PSB)들과 이후 예측되는 2차적 서브블록(Secondary sub-block, SSB)들로 분류될 수 있다. 또한, PSB들로 구성된 서브블록 그룹은 1차적 서브블록 그룹(이하, PSB 그룹)으로, SSB들로 구성된 서브블록 그룹은 2차적 서브블록 그룹(이하, SSB 그룹)으로 지칭될 수 있다.
도 56은 본 발명의 일 실시예에 따라 1차적 서브블록 그룹과 2차적 서브블록 그룹이 결정되는 방법을 도시한 것이다. 일 실시예에 따라, PSB 그룹은 현재 블록으로부터 분할된 복수의 서브블록들 중 현재 블록의 인트라 예측에 참조되는 참조 샘플들로부터 기 설정된 거리 이내의 서브블록들로 구성될 수 있다. 또한, SSB 그룹은 복수의 서브블록들 중 현재 블록의 인트라 예측에 참조되는 참조 샘플들로부터 기 설정된 거리 밖의 서브블록들로 구성될 수 있다.
도 56를 참조하면, 현재 블록은 총 16개의 서브블록들로 분할될 수 있다. 현재 블록의 인트라 예측 모드가 수평 대각 모드, 수직 대각 모드, 및 수평 대각 모드와 수직 대각 모드 주변의 각도 모드들 중 어느 하나인 경우, 현재 블록의 PSB 그룹과 SSB 그룹은 도 56(a)와 같이 결정될 수 있다. 즉, 현재 블록으로부터 분할된 16개의 서브블록들 중 우상측 4개의 서브블록들이 SSB이고, 이를 제외한 나머지 서브블록들은 PSB일 수 있다.
도 56(a) 내지 56(e) 각각은 현재 블록의 인트라 예측 모드가 HDIA, HOR, DIA, VER, VDIA 및 각각의 주변의 각도 모드들 중 어느 하나인 경우, PSB 그룹과 SSB 그룹이 결정되는 방법들을 도시한다. 각각의 예측 모드에서 사용될 참조샘플과의 상대적인 거리를 고려하여 PSB와 SSB가 구분될 수 있다. 그러나 본 개시가 이에 제한되는 것은 아니며, 도 56에서 기술한 예시들과 유사한 형태의 다른 분할들도 가능하다.
일 실시예에 따라, 인코더 및 디코더는 현재 블록의 인트라 예측 모드에 기초하여 PSB들에 대해 먼저 인트라 예측을 수행할 수 있다. 다음으로, 인코더 및 디코더는 SSB들에 대한 인트라 예측을 수행할 수 있다. 이하에서는, 현재 블록의 SSB에 대한 다양한 인트라 예측 방법에 대해 구체적으로 설명하도록 한다.
일 실시예에 따라, 인코더 및 디코더는 현재 블록의 PSB들의 복원된 샘플 값에 기초하여 현재 블록의 SSB들에 대한 예측을 수행할 수 있다. 예를 들어, 인코더 및 디코더는 현재 블록의 인트라 예측 모드 및 참조 샘플들에 기초하여 현재 블록의 PSB들을 먼저 복원할 수 있다. 다음으로, 인코더 및 디코더는 현재 블록의 SSB들 각각에 인접하고, 기 복원된 샘플들을 참조하여 현재 블록의 SSB들에 대한 인트라 예측을 수행할 수 있다. 인코더 및 디코더는 현재 블록의 인트라 예측 모드에 기초하여 현재 블록의 SSB들에 대한 인트라 예측을 수행할 수 있다. 이때, 기 복원된 샘플들은 PSB들 각각이 포함하는 샘플들일 수 있다. 상기 PSB들 각각이 포함하는 샘플들은 현재 블록의 참조 샘플에 비해 현재 블록의 SSB와의 거리가 가까운 샘플들일 수 있다. 이에 따라, 현재 블록의 SSB에 대해 동일한 예측 모드가 사용되는 경우에도, 기존 방법에 비해 SSB에 대한 예측 정확도가 높아질 수 있다.
일 실시예에 따라, 인코더 및 디코더는 현재 블록의 PSB 그룹과 SSB 그룹 각각에 대해 서로 다른 인트라 예측 모드를 이용하여 예측할 수 있다. 예를 들어, 현재 블록의 PSB 들은 현재 블록의 인트라 예측 모드인 1차적 모드(primary mode, PM)에 기초하여 예측될 수 있다. 현재 블록의 SSB들은 가변적인 2차적 모드(secondary mode, SM)에 기초하여 예측될 수 있다. 예를 들어, SM은 현재 블록의 복수의 서브블록들 중 SSB들에 대해서만 적용되는 인트라 예측 모드일 수 있다. 이때, SM은 별도로 시그널링될 수 있다. 일 실시예에 따라, SM은 PM을 기준으로하는 오프셋 형태로 시그널링될 수 있다. 예를 들어, SM은 PM을 기준으로 오프셋만큼 더해진 인트라 예측 모드 인덱스에 대응하는 인트라 예측 모드일 수 있다. 이때, 오프셋은 기 설정된 최대 값 이내의 값일 수 있다. 이를 통해, 인코더가 특정 오프셋을 선택하기 위한 연산량을 감소시킬 수 있다.
또한, 현재 블록의 PM이 각도 모드이고, PM의 반대 각도 모드가 존재하는 경우, 현재 블록의 SSB는 PM의 반대 각도 모드에 기초하여 예측될 수 있다. 예를 들어, PM이 인트라 예측 모드 인덱스 2인 수평 대각 모드인 경우, SM은 인트라 예측 모드 인덱스 66에 해당하는 수직 대각 모드일 수 있다. 반대로, PM이 인트라 예측 모드 인덱스 66인 수직 대각 모드인 경우, SM은 인트라 예측 모드 인덱스 2에 해당하는 수평 대각 모드일 수 있다.
다른 일 실시예에 따라, SM은 기 설정된 예측 모드일 수 있다. 예를 들어, 현재 블록의 SSB는 기 설정된 예측 모드에 기초하여 예측될 수도 있다. 전술한 바와 같이, 현재 블록의 SSB는 현재 블록의 참조 샘플들로부터 기 설정된 거리 밖의 서브블록들일 수 있다. 이에 따라, 현재 블록의 SSB를 무방향성 모드에 기초하여 예측하는 것이, 레지듀얼 신호 측면에서 유리할 수 있다. 즉, 기 설정된 SM은 평면 모드 또는 DC 모드 중 어느 하나일 수 있다.
추가적인 실시예에 따라, 현재 블록의 SSB의 최종 예측 블록은 현재 블록의 PM에 기반하여 예측된 제1 예측 SSB, 및 전술한 무방향성 모드에 기반하여 예측된 제2 예측 SSB에 기초하여 획득될 수 있다. 예를 들어, 인코더 및 디코더는 현재 블록의 제1 예측 SSB 및 제2 예측 SSB 간의 평균에 기초하여 SSB에 대응하는 최종 예측 블록을 획득할 수 있다. 또한, 인코더 및 디코더는 SSB에 대응하는 최종 예측 블록와 레지듀얼 신호를 합산하여 SSB를 복원할 수 있다.
도 57은 본 발명의 일 실시예에 따라 1차적 서브블록 그룹과 2차적 서브블록 그룹이 예측되는 방법을 도시한 것이다. 도 57을 참조하면, 현재 블록은 총 4개의 서브블록들로 분할될 수 있다. 일 실시예에 따라, 현재 블록의 예측 모드가 대각 모드 및 대각 모드 주변의 각도 모드들 중 어느 하나인 경우, 현재 블록의 PSB 그룹과 SSB 그룹은 도 57(a)와 같이 결정될 수 있다. 즉, 현재 블록으로부터 분할된 4개의 서브블록들 중 우하측 서브블록(SCU 4)이 현재 블록의 SSB이고, 이를 제외한 나머지 서브블록들(SCU 1, SCU 2, SCU 3)은 현재 블록의 PSB들일 수 있다.
이 경우, 현재 블록의 SSB는 현재 블록의 PSB들 각각이 포함하는 샘플들을 참조하여 복원될 수 있다. 예를 들어, 인코더 및 디코더는 현재 블록의 인트라 예측 모드 및 참조 샘플들에 기초하여 현재 블록의 PSB들을 먼저 복원할 수 있다. 다음으로, 인코더 및 디코더는 현재 블록의 PSB들의 기 복원된 샘플들 중 SSB에 인접한 샘플들의 샘플 값을 이용하여 SSB에 대한 인트라 예측을 수행할 수 있다. 예를 들어, 현재 블록의 SSB(SCU 4)는 PSB들(SCU1, SCU 2, SCU 3)의 기 복원된 샘플들의 샘플 값 및 레지듀얼 신호에 기초하여 복원될 수 있다.
일 실시예에 따라, 현재 블록의 예측 모드가 수평 대각 모드 및 수평 대각 모드 주변의 각도 모드들 중 어느 하나인 경우, 현재 블록의 PSB 그룹과 SSB 그룹은 도 57(b)와 같이 결정될 수 있다. 즉, 현재 블록으로부터 분할된 4개의 서브블록들 중 우상측 서브블록(SCU 2)이 현재 블록의 SSB이고, 이를 제외한 나머지 서브블록들(SCU 1, SCU 3, SCU 4)은 현재 블록의 PSB들일 수 있다. 이 경우, 전술한 바와 같이, 현재 블록의 SSB(SCU 2)는 현재 블록의 PSB들(SCU1, SCU 3, SCU 4)의 기 복원된 샘플들 중 SSB(SCU 2)에 인접한 샘플들의 샘플 값에 기초하여 복원될 수 있다.
추가적인 실시예에 따라, 현재 블록의 참조 샘플들 중 일부가 현재 블록의 SSB에 인접할 수 있다. 이때, 현재 블록의 참조 샘플들 중 일부 현재 블록의 인트라 예측에 사용되지 않은 참조 샘플들일 수 있다. 이 경우, 현재 블록의 SSB는 현재 블록의 PM과 다른 예측 모드인 SM에 기초하여 예측될 수 있다. 예를 들어, 현재 블록의 PM이 각도 모드인 경우, 현재 블록의 SM은 PM의 반대 각도 모드일 수 있다. 도 57(b)와 같이, 현재 블록의 PM이 수평 대각 모드인 경우, SM은 수직 대각 모드일 수 있다.
또한, 현재 블록의 PM이 각도 모드인 경우, 현재 블록의 SSB의 최종 예측 블록은 현재 블록의 PM에 기반하여 예측된 제1 예측 SSB, 및 PM의 반대 각도 모드에 기반하여 예측된 제2 예측 SSB에 기초하여 획득될 수 있다. 도 56(a) 및 (e)와 같이 PM 모드와 반대 방향의 각도 모드를 사용하는 것이 가능하고, SSB의 경계에 인접한 참조 샘플이 존재하는 경우, 전술한 실시예가 적용될 수 있다.
전술한 바와 같이, 비디오 신호의 코딩 과정에서, 픽쳐는 코딩 트리 유닛(CTU)들의 시퀀스로 분할될 수 있다. 이하에서는, 픽쳐, 슬라이스 또는 타일 내에서 CTU들이 처리되는 순서에 대해 설명하도록 한다. 도 58은 본 발명의 일 실시예에 따라 코딩 트리 유닛들이 처리되는 순서를 도시한 것이다.
인코더 및 디코더는 현재 블록을 포함하는 현재 픽쳐 또는 현재 픽쳐로부터 분할된 슬라이스/타일 내에서 CTU 별로 인코딩하거나 디코딩할 수 있다. 이때, 인코더 및 디코더는 기 정의된 처리 순서에 따라 복수의 CTU들을 인코딩하거나 디코딩할 수 있다. 기 정의된 처리 순서와 다른 순서로 CTU들이 처리되는 경우, 인코더는 디코더에게 해당 순서를 시그널링 할 수 있다.
도 58(a)는 픽쳐, 슬라이스 또는 타일의 최상단 좌측의 CTU부터 횡방향 처리를 수행한 후 다음 행의 CTU들을 처리하는 래스터 스캔(raster scan) 순서를 나타낸다. 도 58(b)는 픽쳐, 슬라이스 또는 타일에서 최초로 처리되는 제1 CTU(Block A)의 위치가 명시적으로 시그널링되는 실시예를 나타낸다. 예를 들어, 인코더는 제1 CTU의 위치를 시그널링할 수 있다. 디코더는 시그널링된 제1 CTU의 위치에 기초하여 해당 CTU를 최우선적으로 처리할 수 있다. 디코더는 제1 CTU의 위치를 기준으로 래스터 스캔 순서 상으로 이전 위치에 해당하는 CTU들을 역-래스터(inverse-raster) 스캔 순서에 따라 디코딩할 수 있다. 또한, 제1 CTU의 위치를 기준으로 래스터 스캔 순서 상으로 이후 위치에 해당하는 CTU들은 전술한 래스터 스캔 순서에 따라 디코딩할 수 있다. 이때, 역-래스터 스캔 순서에 따라 처리되는 CTU들과 래스터 스캔 순서에 따라 처리되는 CTU들은 각각 1개의 CTU씩 교차하는 순서에 따라 처리되거나, 둘 중에서 어느 한 방향의 CTU들이 우선적으로 처리될 수 있다.
도 58(c) 및 도 58(d)는 픽쳐, 슬라이스 또는 타일에서 우선적으로 처리되는 복수의 CTU들의 위치가 명시적으로 시그널링되는 실시예를 나타낸다. 예를 들어, 복수의 CTU들은 제2 CTU(Blcok B) 및 제3 CTU(Block C)를 포함할 수 있다. 인코더는 제2 CTU(Blcok B) 및 제3 CTU(Block C) 각각의 위치를 시그널링할 수 있다. 또한, 우선적으로 처리되는 복수의 CTU들 중에서 최초로 처리되는 제2 CTU의 위치가 추가적으로 시그널링될 수 있다.
도 58(d)를 참조하면, 디코더는 시그널링된 제2 CTU의 위치에 기초하여 제2 CTU(Block B)를 최우선적으로 디코딩할 수 있다. 다음으로, 디코더는 제3 CTU(Block C)를 디코딩할 수 있다. 다음으로, 제2 CTU의 위치와 제3 CTU의 위치 사이의 CTU들이 디코딩될 수 있다. 예를 들어, 디코더는 래스터 스캔 순서 상으로 제2 CTU 다음 CTU부터 제3 CTU 이전 CTU까지의 CTU들을 래스터 스캔 순서 또는 역래스터 스캔 순서에 따라 디코딩할 수 있다. 또한, 디코더는 제2 CTU(Block B)의 위치를 기준으로 래스터 스캔 순서 상으로 이전 위치에 해당하는 CTU들을 역-래스터(inverse-raster) 스캔 순서에 따라 디코딩할 수 있다. 또한, 제3 CTU(Block C)의 위치를 기준으로 래스터 스캔 순서 상으로 이후 위치에 해당하는 CTU들은 전술한 래스터 스캔 순서에 따라 디코딩할 수 있다.
도 58(c)는 도 58(d)와 유사한 형태로 픽쳐, 슬라이스 또는 타일에서 우선적으로 처리되는 복수의 CTU들의 위치가 명시적으로 시그널링되는 또 다른 실시예를 나타낸다.
도 59는 본 발명의 일 실시예에 따른 양방향 인트라 예측 방법을 도시한 것이다. 본 발명의 일 실시예에 따라, 현재 블록은 현재 블록의 사용 가능한 참조 샘플들의 분포에 따라 양방향 인트라 예측 방법을 사용하여 예측될 수 있다. 도 56 및 도 58과 같이, 현재 블록 또는 현재 블록으로부터 분할된 복수의 서브블록들이 인코딩 또는 디코딩되는 경우, 해당 블록의 좌측 및 상측의 기 복원된 샘플들뿐만 아니라 해당 블록의 하측 및 우측의 기 복원된 샘플들이 해당 블록의 참조 샘플로 이용될 수 있다. 이에 따라, 특정 블록은 해당 블록의 주변의 우측 및 하측의 기 복원된 샘플들을 이용하는 양방향 인트라 예측 방법에 따라 예측될 수 있다. 이하에서, 특정 블록은 현재 블록 또는 현재 블록으로부터 분할된 복수의 서브블록들을 나타낸다.
도 59(a) 및 도 59(b)는 특정 블록의 4면 모두에 기 복원된 샘플들이 존재하는 경우 현재 블록이 예측되는 방법의 일 실시예를 도시한 것이다. 도 59(a)를 참조하면, 특정 블록은 현재 블록의 예측 모드에 기초하여 2등분될 수 있다. 예를 들어, 현재 블록의 예측 모드가 각도 모드인 경우, 특정 블록은 현재 블록의 예측 모드와 직각인 선분을 기준으로 2 등분될 수 있다. 또한, 2등분된 특정 블록의 제1 부분은 현재 블록의 예측 모드 및 제1 참조 샘플들에 기초하여 복원될 수 있다. 이때, 제1 부분은 특정 블록의 상측 및 좌측 변을 포함하는 부분일 수 있다. 또한, 제1 참조 샘플들은 특정 블록의 좌측 및 상측 라인의 참조 샘플들일 수 있다. 2등분된 특정 블록의 제2 부분은 2차적 예측 모드 및 제2 참조 샘플들에 기초하여 복원될 수 있다. 이때, 제2 부분은 특정 블록의 우측 및 하측 변을 포함하는 부분일 수 있다. 또한, 제2 참조 샘플들은 특정 블록의 우측 및 하측 라인의 참조 샘플들일 수 있다. 일 실시예에 따라, 2차적 예측 모드는 도 56 및 도 57을 통해 설명한 SM일 수 있다.
도 59(b)를 참조하면, 특정 블록은 추가적으로 분할되지 않을 수 있다. 예를 들어, 특정 블록은 제1 예측 블록 및 제2 예측 블록에 기초하여 복원될 수 있다. 이때, 제1 예측 블록은 현재 블록의 예측 모드 및 제1 참조 샘플들에 기초하여 예측된 예측 블록일 수 있다. 또한, 제2 예측 블록은 2차적 예측 모드 및 제1 참조 샘플들에 기초하여 예측된 예측 블록일 수 있다. 디코더는 제1 예측 블록과 제2 예측 블록을 가중합하여 특정 블록을 복원할 수 있다.
도 59(c) 및 도 59(d)는 특정 블록의 4면 중 3면에만 기 복원된 샘플들이 존재하는 경우, 현재 블록이 예측되는 방법의 일 실시예를 도시한 것이다. 이 경우, 특정 블록은 현재 블록의 예측 모드에 기초하여 2등분될 수 있다. 예를 들어, 특정 블록의 영역 중에서 기 복원된 샘플들이 존재하지 않는 변에 대응하는 영역은 다른 변으로부터 예측 모드를 확장하여 예측될 수 있다. 또한, 도 59(c)와 도 59(d)의 실시예에서도, 도 59(b)와 같이, 특정 블록을 추가적으로 분할하지 않고, 특정 블록에 대한 복수의 예측 블록들에 기초하여 특정 블록을 복원하는 실시예가 적용될 수 있다.
도 60은 본 발명의 일 실시예에 따라 현재 블록으로부터 분할된 복수의 서브블록들 각각이 예측되는 방법을 도시한 것이다. 본 발명의 일 실시예에 따라, 현재 블록으로부터 분할된 복수의 서브블록들은 현재 블록의 주변 블록들의 예측에 사용된 인트라 예측 모드에 기초하여 각각 예측될 수 있다.
도 60(a)은 현재 블록의 복수의 주변 블록들 각각의 위치(AL, A, AR, R, L, BL)를 도시한다. 이때, 주변 블록들 각각의 위치에 대응하는 인트라 예측 모드가 존재하지 않을 수 있다. 예를 들어, 해당 위치의 블록이 인터 예측되거나 래스터 스캔 순서 또는 CU 처리 순서에 따라 해당 위치의 블록에 대한 디코딩이 수행되지 않은 상태일 수 있다.
도 60(b)는 현재 블록이 총 4개의 서브블록들로 분할된 경우 각각의 서브블록들이 예측되는 방법을 나타낸다. 예를 들어, 제1 서브블록(SCU1)은 제1 서브블록(SCU1)에 가장 인접한 좌상측 위치(AL)에 대응하는 인트라 예측 모드를 사용하여 예측될 수 있다. 또한, 제2 서브블록(SCU2)은 제2 서브블록(SCU2)에 인접한 상측 위치(A)에 대응하는 인트라 예측 모드를 사용하여 예측될 수 있다. 또한, 상측 위치(A)에 대응하는 인트라 예측 모드가 존재하지 않는 경우, 제2 서브블록(SCU2)은 다른 주변 위치(예를 들어, 우상측 위치)에 대응하는 인트라 예측 모드를 사용하여 예측될 수 있다. 또한, 제4 서브블록(SCU4)과 같이, 상측변 및 좌측변이 모두 현재 블록 내인 경우, 해당 블록은 원격 직선상에 위치한 주변 블록의 인트라 예측 모드를 사용하여 예측될 수 있다.
도 60(c)는 현재 블록이 총 4개의 서브블록들로 분할된 경우 각각의 서브블록들이 예측되는 또 다른 방법을 나타낸다. 도 60(c)에서, 제1 서브블록(SCU1), 제2 서브블록(SCU2) 및 제3 서브블록(SCU3)은 현재 블록의 인트라 예측 모드에 기초하여 예측될 수 있다. 이때, 제1 서브블록(SCU1), 제2 서브블록(SCU2) 및 제3 서브블록(SCU3)은 도 56 및 도 57을 통해 전술한 1차적 서브블록들일 수 있다. 일 실시예에 따라, 제4 서브블록(SCU4)은 현재 블록의 인트라 예측 모드와 다른 인트라 예측 모드에 기초하여 예측될 수 있다. 예를 들어, 제4 서브블록(SCU4)은 우측 위치(R)에 대응하는 인트라 예측 모드를 사용하여 예측될 수 있다. 또는 제4 서브블록(SCU4)은 원격에 직선상에 위치한 주변 블록의 인트라 예측 모드를 사용하여 예측될 수 있다.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 프로세서의 내부 또는 외부에 위치할 수 있으며, 이미 공지된 다양한 수단에 의해 프로세서와 데이터를 주고받을 수 있다.
일부 실시예는 컴퓨터에 의해 실행되는 프로그램 모듈과 같은 컴퓨터에 의해 실행가능한 명령어를 포함하는 기록 매체의 형태로도 구현될 수 있다. 컴퓨터 판독 가능 매체는 컴퓨터에 의해 액세스될 수 있는 임의의 가용 매체일 수 있고, 휘발성 및 비휘발성 매체, 분리형 및 비분리형 매체를 모두 포함한다. 또한, 컴퓨터 판독 가능 매체는 컴퓨터 저장 매체 및 통신 매체를 모두 포함할 수 있다. 컴퓨터 저장 매체는 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈 또는 기타 데이터와 같은 정보의 저장을 위한 임의의 방법 또는 기술로 구현된 휘발성 및 비휘발성, 분리형 및 비분리형 매체를 모두 포함한다. 통신 매체는 전형적으로 컴퓨터 판독가능 명령어, 데이터 구조 또는 프로그램 모듈과 같은 변조된 데이터 신호의 기타 데이터, 또는 기타 전송 메커니즘을 포함하며, 임의의 정보 전달 매체를 포함한다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아는 것으로 해석해야 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (32)

  1. 비디오 신호 처리 방법에 있어서,
    제1 방법 및 제2 방법 중 어느 하나를 사용하여 현재 블록의 모션 보상을 위한 모션 벡터 예측자(motion vector prediction, MVP) 후보 리스트를 구성하는 단계;
    상기 구성된 MVP 후보 리스트에 기초하여 현재 블록의 모션 벡터 예측자를 획득하는 단계;
    상기 현재 블록의 모션 벡터와 상기 모션 벡터 예측자 간의 차이를 나타내는 모션 벡터 차분 값을 획득하는 단계;
    상기 현재 블록의 모션 벡터 차분 값의 레졸루션(resolution)에 기초하여, 상기 모션 벡터 차분 값을 수정하는 단계, 상기 모션 벡터 차분 값의 레졸루션은 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중 어느 하나이고, 상기 레졸루션 세트가 포함하는 복수의 가용 레졸루션들의 구성은 상기 제1 방법 및 상기 제2 방법 중에서 어느 방법을 사용하여 상기 현재 블록의 MVP 후보 리스트가 구성되는지에 따라 달라짐;
    상기 모션 벡터 예측자 및 상기 수정된 모션 벡터 차분 값에 기초하여 상기 현재 블록의 모션 벡터를 획득하는 단계; 및
    상기 획득된 모션 벡터에 기초하여 상기 현재 블록을 복원하는 단계를 포함하는, 비디오 신호 처리 방법.
  2. 제1 항에 있어서,
    상기 모션 벡터 차분 값의 레졸루션은 상기 현재 블록의 MVP 후보 리스트가 상기 제1 방법 및 상기 제2 방법 중 어느 방법을 사용하여 구성되는지에 따라, 각각 제1 레졸루션 세트 및 제2 레졸루션 세트 중 어느 하나로부터 획득되고,
    상기 제2 레졸루션 세트는 상기 제1 레졸루션 세트가 포함하는 복수의 가용 레졸루션들이 아닌 다른 가용 레졸루션을 적어도 하나 포함하는, 비디오 신호 처리 방법.
  3. 제2 항에 있어서,
    상기 MVP 후보 리스트가 어파인(affine) 모델에 기반한 상기 제1 방법을 사용하여 구성되는 경우, 상기 모션 벡터 차분 값의 레졸루션은 상기 제1 레졸루션 세트로부터 획득되고,
    상기 MVP 후보 리스트가 상기 어파인 모델에 기반하지 않은 상기 제2 방법을 사용하여 구성되는 경우, 상기 모션 벡터 차분 값의 레졸루션은 상기 제2 레졸루션 세트로부터 획득되는, 비디오 신호 처리 방법.
  4. 제3 항에 있어서,
    상기 제1 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중 가장 큰 제1 가용 레졸루션은, 상기 제2 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중 가장 큰 제2 가용 레졸루션 보다 작은, 비디오 신호 처리 방법.
  5. 제4 항에 있어서,
    상기 제1 가용 레졸루션은 1 샘플 단위의 레졸루션이고,
    상기 제2 가용 레졸루션은 4 샘플들 단위의 레졸루션인, 비디오 신호 처리 방법.
  6. 제2 항에 있어서,
    상기 모션 벡터 차분 값을 수정하는 단계는,
    상기 제1 레졸루션 세트 및 상기 제2 레졸루션 세트 중 어느 하나가 포함하는 복수의 가용 레졸루션들 중에서 상기 현재 블록의 모션 벡터 차분 값의 레졸루션을 지시하는 지시자를 획득하는 단계; 및
    상기 지시자가 지시하는 레졸루션에 기초하여 상기 모션 벡터 차분 값을 수정하는 단계를 포함하고,
    상기 지시자의 값이 제1 값인 경우, 상기 제1 값에 의해 지시되는 상기 레졸루션은 상기 MVP 후보 리스트가 상기 제1 방법 및 상기 제2 방법 중 어느 방법을 사용하여 구성되는지에 따라 달라지는, 비디오 신호 처리 방법.
  7. 제6 항에 있어서,
    상기 MVP 후보 리스트가 상기 제1 방법을 사용하여 구성되는 경우, 상기 제1 값은 제1 레졸루션 세트가 포함하는 가용 레졸루션들 중 하나인 제1 가용 레졸루션을 지시하고,
    상기 MVP 후보 리스트가 상기 제2 방법을 사용하여 구성되는 경우, 상기 제1 값은 제2 레졸루션 세트가 포함하는 가용 레졸루션들 중 하나인 제2 가용 레졸루션 을 나타내며,
    상기 제1 가용 레졸루션과 상기 제2 가용 레졸루션은 서로 다른, 비디오 신호 처리 방법.
  8. 제7 항에 있어서,
    상기 제1 레졸루션 세트 및 상기 제2 레졸루션 세트는 모두 제1 가용 레졸루션을 포함하고,
    상기 MVP 후보 리스트가 상기 제2 방법을 사용하여 구성되는 경우, 상기 제1 가용 레졸루션은 상기 지시자의 상기 제1 값과 다른 값인 제2 값에 의해 지시되는, 비디오 신호 처리 방법.
  9. 제6 항에 있어서,
    상기 지시자는 가변 길이의 비트로 표현되며,
    상기 제1 값은 상기 가변 길이의 비트로 표현되는 복수의 값들 중 어느 하나인, 비디오 신호 처리 방법.
  10. 제9 항에 있어서,
    상기 지시자의 상기 제1 값과 다른 제3 값은 상기 복수의 값들 중 가장 짧은 길이의 비트로 표현되는 값이고,
    상기 MVP 후보 리스트가 상기 제2 방법으로 구성되는 경우, 상기 제3 값은 상기 제2 레졸루션 세트가 포함하는 복수의 가용 레졸루션 세트 중에서 가장 작은 가용 레졸루션을 지시하고,
    상기 MVP 후보 리스트가 상기 제1 방법으로 구성되는 경우, 상기 제3 값은 상기 제1 레졸루션 세트가 포함하는 복수의 가용 레졸루션 세트 중에서 가장 작은 가용 레졸루션 이외의 다른 가용 레졸루션을 지시하는, 비디오 신호 처리 방법.
  11. 제2 항에 있어서,
    상기 제1 레졸루션 세트가 포함하는 가용 레졸루션의 개수와 상기 제2 레졸루션 세트가 포함하는 가용 레졸루션의 개수는 서로 다른, 비디오 신호 처리 방법.
  12. 제11 항에 있어서,
    상기 레졸루션 세트를 구성하는 가용 레졸루션의 개수는 상기 현재 블록의 모션 보상을 위한 참조 픽쳐의 픽쳐 순서 카운트(picture order count, POC)에 따라 달라지는, 비디오 신호 처리 방법.
  13. 제12 항에 있어서,
    상기 현재 블록의 모션 보상을 위한 참조 픽쳐의 픽쳐 순서 카운트(picture order count, POC)가 상기 현재 블록을 포함하는 현재 픽쳐의 POC와 동일한 경우, 상기 제1 레졸루션 세트로부터 상기 현재 블록의 모션 벡터 차분 값의 레졸루션이 획득되고,
    상기 현재 블록의 모션 보상을 위한 참조 픽쳐의 픽쳐 순서 카운트가 상기 현재 블록을 포함하는 현재 픽쳐의 POC와 동일하지 않은 경우, 상기 제2 레졸루션 세트로부터 상기 현재 블록의 모션 벡터 차분 값의 레졸루션이 획득되고,
    상기 제1 레졸루션 세트는 상기 제2 레졸루션 세트가 포함하는 가용 레졸루션들 중에서 가장 작은 가용 레졸루션을 제외한 나머지 가용 레졸루션으로 구성된, 비디오 신호 처리 방법.
  14. 비디오 신호 디코딩 장치에 있어서,
    프로세서를 포함하고,
    상기 프로세서는,
    제1 방법 및 제2 방법 중 어느 하나를 사용하여 현재 블록의 모션 보상을 위한 모션 벡터 예측자(motion vector prediction, MVP) 후보 리스트를 구성하고,
    상기 구성된 MVP 후보 리스트에 기초하여 현재 블록의 모션 벡터 예측자를 획득하고,
    상기 현재 블록의 모션 벡터와 상기 모션 벡터 예측자 간의 차이를 나타내는 모션 벡터 차분 값을 획득하고,
    상기 현재 블록의 모션 벡터 차분 값의 레졸루션(resolution)에 기초하여, 상기 모션 벡터 차분 값을 수정하되, 상기 모션 벡터 차분 값의 레졸루션은 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중 어느 하나이고, 상기 레졸루션 세트가 포함하는 복수의 가용 레졸루션들의 구성은 상기 제1 방법 및 상기 제2 방법 중에서 어느 방법을 사용하여 상기 현재 블록의 MVP 후보 리스트가 구성되는지에 따라 달라짐,
    상기 모션 벡터 예측자 및 상기 수정된 모션 벡터 차분 값에 기초하여 상기 현재 블록의 모션 벡터를 획득하고,
    상기 획득된 모션 벡터에 기초하여 상기 현재 블록을 복원하는, 비디오 신호 디코딩 장치.
  15. 제14 항에 있어서,
    상기 모션 벡터 차분 값의 레졸루션은 상기 현재 블록의 MVP 후보 리스트가 상기 제1 방법 및 상기 제2 방법 중 어느 방법을 사용하여 구성되는지에 따라, 각각 제1 레졸루션 세트 및 제2 레졸루션 세트 중 어느 하나로부터 획득되고,
    상기 제2 레졸루션 세트는 상기 제1 레졸루션 세트가 포함하는 복수의 가용 레졸루션들이 아닌 다른 가용 레졸루션을 적어도 하나 포함하는, 비디오 신호 디코딩 장치.
  16. 제15 항에 있어서,
    상기 MVP 후보 리스트가 어파인(affine) 모델에 기반한 상기 제1 방법을 사용하여 구성되는 경우, 상기 모션 벡터 차분 값의 레졸루션은 상기 제1 레졸루션 세트로부터 획득되고,
    상기 MVP 후보 리스트가 상기 어파인 모델에 기반하지 않은 상기 제2 방법을 사용하여 구성되는 경우, 상기 모션 벡터 차분 값의 레졸루션은 상기 제2 레졸루션 세트로부터 획득되는, 비디오 신호 디코딩 장치.
  17. 제16 항에 있어서,
    상기 제1 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중 가장 큰 제1 가용 레졸루션은, 상기 제2 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중 가장 큰 제2 가용 레졸루션 보다 작은, 비디오 신호 디코딩 장치.
  18. 제15 항에 있어서,
    상기 프로세서는,
    상기 제1 레졸루션 세트 및 상기 제2 레졸루션 세트 중 어느 하나가 포함하는 복수의 가용 레졸루션들 중에서 상기 현재 블록의 모션 벡터 차분 값의 레졸루션을 지시하는 지시자를 획득하고,
    상기 지시자가 지시하는 레졸루션에 기초하여 상기 모션 벡터 차분 값을 수정하며,
    상기 지시자의 값이 제1 값인 경우, 상기 제1 값에 의해 지시되는 상기 레졸루션은 상기 MVP 후보 리스트가 상기 제1 방법 및 상기 제2 방법 중 어느 방법을 사용하여 구성되는지에 따라 달라지는, 비디오 신호 디코딩 장치.
  19. 제18 항에 있어서,
    상기 지시자는 가변 길이의 비트로 표현되며,
    상기 제1 값은 상기 가변 길이의 비트로 표현되는 복수의 값들 중 어느 하나인, 비디오 신호 디코딩 장치.
  20. 제19 항에 있어서,
    상기 지시자의 상기 제1 값과 다른 제2 값은 상기 복수의 값들 중 가장 짧은 길이의 비트로 표현되는 값이고,
    상기 MVP 후보 리스트가 상기 제2 방법으로 구성되는 경우, 상기 제2 값은 상기 제2 레졸루션 세트가 포함하는 복수의 가용 레졸루션 세트 중에서 가장 작은 가용 레졸루션을 지시하고,
    상기 MVP 후보 리스트가 상기 제1 방법으로 구성되는 경우, 상기 제2 값은 상기 제1 레졸루션 세트가 포함하는 복수의 가용 레졸루션 세트 중에서 가장 작은 가용 레졸루션 이외의 다른 가용 레졸루션을 지시하는, 비디오 신호 디코딩 장치.
  21. 비디오 신호 인코딩 장치에 있어서,
    프로세서를 포함하고,
    상기 프로세서는,
    현재 블록의 모션 보상을 위해 참조되는 참조 블록의 위치에 기초하여 상기 현재 블록의 모션 벡터를 획득하고,
    제1 방법 및 제2 방법 중 어느 하나를 사용하여 상기 현재 블록의 모션 보상을 위한 모션 벡터 예측자(motion vector prediction, MVP) 후보 리스트를 구성하고,
    상기 MVP 후보 리스트가 포함하는 복수의 후보들 중 어느 하나와 상기 현재 블록의 모션 벡터 간의 차이에 기초하여 모션 벡터 차분 값을 획득하고,
    상기 현재 블록의 모션 벡터 차분 값의 레졸루션(resolution)에 기초하여, 시그널링되는 모션 벡터 차분 값을 결정하되, 상기 모션 벡터 차분 값의 레졸루션은 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중 어느 하나이고, 상기 레졸루션 세트가 포함하는 복수의 가용 레졸루션들의 구성은 상기 제1 방법 및 상기 제2 방법 중에서 어느 방법을 사용하여 상기 현재 블록의 MVP 후보 리스트가 구성되는지에 따라 달라짐,
    상기 시그널링되는 모션 벡터 차분 값을 포함하는 비트스트림을 생성하는, 비디오 신호 인코딩 장치.
  22. 제21 항에 있어서,
    상기 모션 벡터 차분 값의 레졸루션은 상기 현재 블록의 MVP 후보 리스트가 상기 제1 방법 및 상기 제2 방법 중 어느 방법을 사용하여 구성되는지에 따라, 각각 제1 레졸루션 세트 및 제2 레졸루션 세트 중 어느 하나로부터 획득되고,
    상기 제2 레졸루션 세트는 상기 제1 레졸루션 세트가 포함하는 복수의 가용 레졸루션들이 아닌 다른 가용 레졸루션을 적어도 하나 포함하는, 비디오 신호 인코딩 장치.
  23. 제22 항에 있어서,
    상기 제1 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중 가장 큰 제1 가용 레졸루션은, 상기 제2 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중 가장 큰 제2 가용 레졸루션 보다 작은, 비디오 신호 인코딩 장치.
  24. 제21 항에 있어서,
    상기 프로세서는,
    상기 제1 레졸루션 세트 및 상기 제2 레졸루션 세트 중 어느 하나가 포함하는 복수의 가용 레졸루션들 중 어느 하나를 지시하는 지시자를 결정하고,
    상기 지시자 및 상기 시그널링되는 모션 벡터 차분 값을 포함하는 비트스트림을 생성하되,
    상기 지시자의 값이 제1 값인 경우, 상기 제1 값에 의해 지시되는 상기 레졸루션은 상기 MVP 후보 리스트가 상기 제1 방법 및 상기 제2 방법 중 어느 방법을 사용하여 구성되는지에 따라 달라지는, 비디오 신호 인코딩 장치.
  25. 제24 항에 있어서,
    상기 지시자는 가변 길이의 비트로 표현되며,
    상기 제1 값은 상기 가변 길이의 비트로 표현되는 복수의 값들 중 어느 하나인, 비디오 신호 인코딩 장치.
  26. 제25 항에 있어서,
    상기 지시자의 상기 제1 값과 다른 제2 값은 상기 복수의 값들 중 가장 짧은 길이의 비트로 표현되는 값이고,
    상기 MVP 후보 리스트가 상기 제2 방법으로 구성되는 경우, 상기 제2 값은 상기 제2 레졸루션 세트가 포함하는 복수의 가용 레졸루션 세트 중에서 가장 작은 가용 레졸루션을 지시하고,
    상기 MVP 후보 리스트가 상기 제1 방법으로 구성되는 경우, 상기 제2 값은 상기 제1 레졸루션 세트가 포함하는 복수의 가용 레졸루션 세트 중에서 가장 작은 가용 레졸루션 이외의 다른 가용 레졸루션을 지시하는, 비디오 신호 인코딩 장치.
  27. 비트스트림을 저장하는 컴퓨터로 판독 가능한 기록 매체에 있어서,
    상기 비트스트림은,
    현재 블록의 모션 벡터 차분 값의 레졸루션(resolution)에 기초하여 수정된 상기 현재 블록의 수정된 모션 벡터 차분 값을 포함하되,
    상기 모션 벡터 차분 값의 레졸루션은 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중 어느 하나이고, 상기 레졸루션 세트가 포함하는 복수의 가용 레졸루션들의 구성은 제1 방법 및 제2 방법 중에서 어느 방법을 사용하여 상기 현재 블록의 모션 보상을 위한 모션 벡터 예측자(motion vector prediction, MVP) 후보 리스트가 구성되는지에 따라 달라지는, 컴퓨터로 판독 가능한 기록 매체.
  28. 제27 항에 있어서,
    상기 모션 벡터 차분 값의 레졸루션은 상기 현재 블록의 MVP 후보 리스트가 상기 제1 방법 및 상기 제2 방법 중 어느 방법을 사용하여 구성되는지에 따라, 각각 제1 레졸루션 세트 및 제2 레졸루션 세트 중 어느 하나로부터 획득되고,
    상기 제2 레졸루션 세트는 상기 제1 레졸루션 세트가 포함하는 복수의 가용 레졸루션들이 아닌 다른 가용 레졸루션을 적어도 하나 포함하는, 컴퓨터로 판독 가능한 기록 매체.
  29. 제28 항에 있어서,
    상기 제1 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중 가장 큰 제1 가용 레졸루션은, 상기 제2 레졸루션 세트가 포함하는 복수의 가용 레졸루션들 중 가장 큰 제2 가용 레졸루션 보다 작은, 컴퓨터로 판독 가능한 기록 매체.
  30. 제28 항에 있어서,
    상기 비트스트림은,
    상기 제1 레졸루션 세트 및 상기 제2 레졸루션 세트 중 어느 하나가 포함하는 복수의 가용 레졸루션들 중 상기 현재 블록의 모션 벡터 차분 값의 레졸루션을 지시하는 지시자를 더 포함하고,
    상기 지시자의 값이 제1 값인 경우, 상기 제1 값에 의해 지시되는 상기 레졸루션은 상기 MVP 후보 리스트가 상기 제1 방법 및 상기 제2 방법 중 어느 방법을 사용하여 구성되는지에 따라 달라지는, 컴퓨터로 판독 가능한 기록 매체.
  31. 제30 항에 있어서,
    상기 지시자는 가변 길이의 비트로 표현되며,
    상기 제1 값은 상기 가변 길이의 비트로 표현되는 복수의 값들 중 어느 하나인, 컴퓨터로 판독 가능한 기록 매체.
  32. 제31 항에 있어서,
    상기 지시자의 상기 제1 값과 다른 제2 값은 상기 복수의 값들 중 가장 짧은 길이의 비트로 표현되는 값이고,
    상기 MVP 후보 리스트가 상기 제2 방법으로 구성되는 경우, 상기 제2 값은 상기 제2 레졸루션 세트가 포함하는 복수의 가용 레졸루션 세트 중에서 가장 작은 가용 레졸루션을 지시하고,
    상기 MVP 후보 리스트가 상기 제1 방법으로 구성되는 경우, 상기 제2 값은 상기 제1 레졸루션 세트가 포함하는 복수의 가용 레졸루션 세트 중에서 가장 작은 가용 레졸루션 이외의 다른 가용 레졸루션을 지시하는, 컴퓨터로 판독 가능한 기록 매체.
PCT/KR2019/006913 2018-06-07 2019-06-07 적응적 모션 벡터 레졸루션을 이용하는 비디오 신호 처리 방법 및 장치 WO2019235896A1 (ko)

Priority Applications (13)

Application Number Priority Date Filing Date Title
CN202410332393.XA CN118250474A (zh) 2018-06-07 2019-06-07 使用自适应运动矢量分辨率的视频信号处理方法及装置
CN202410332230.1A CN118233652A (zh) 2018-06-07 2019-06-07 使用自适应运动矢量分辨率的视频信号处理方法及装置
EP19814257.2A EP3806461A4 (en) 2018-06-07 2019-06-07 VIDEO SIGNAL PROCESSING METHOD AND APPARATUS USING ADAPTIVE MOTION VECTOR RESOLUTION
CN201980038112.7A CN112237001B (zh) 2018-06-07 2019-06-07 使用自适应运动矢量分辨率的视频信号处理方法及装置
CN202410332229.9A CN118233651A (zh) 2018-06-07 2019-06-07 使用自适应运动矢量分辨率的视频信号处理方法及装置
KR1020207033872A KR102493418B1 (ko) 2018-06-07 2019-06-07 적응적 모션 벡터 레졸루션을 이용하는 비디오 신호 처리 방법 및 장치
KR1020237002898A KR20230018548A (ko) 2018-06-07 2019-06-07 적응적 모션 벡터 레졸루션을 이용하는 비디오 신호 처리 방법 및 장치
CN202410332398.2A CN118233653A (zh) 2018-06-07 2019-06-07 使用自适应运动矢量分辨率的视频信号处理方法及装置
JP2020568219A JP7159354B2 (ja) 2018-06-07 2019-06-07 適応的動きベクトル解像度を用いるビデオ信号処理方法及び装置
US17/113,215 US11166040B2 (en) 2018-06-07 2020-12-07 Video signal processing method and apparatus using adaptive motion vector resolution
US17/460,117 US11706440B2 (en) 2018-06-07 2021-08-27 Video signal processing method and apparatus using adaptive motion vector resolution
JP2022164143A JP2022185121A (ja) 2018-06-07 2022-10-12 適応的動きベクトル解像度を用いるビデオ信号処理方法及び装置
US18/328,246 US20230308676A1 (en) 2018-06-07 2023-06-02 Video signal processing method and apparatus using adaptive motion vector resolution

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2018-0065688 2018-06-07
KR20180065688 2018-06-07
KR10-2018-0067864 2018-06-14
KR20180067864 2018-06-14
KR10-2018-0078513 2018-07-06
KR20180078513 2018-07-06
KR20180091270 2018-08-06
KR10-2018-0091270 2018-08-06

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/006913 Continuation WO2019235896A1 (ko) 2018-06-07 2019-06-07 적응적 모션 벡터 레졸루션을 이용하는 비디오 신호 처리 방법 및 장치

Related Child Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2019/006913 Continuation WO2019235896A1 (ko) 2018-06-07 2019-06-07 적응적 모션 벡터 레졸루션을 이용하는 비디오 신호 처리 방법 및 장치
US17/113,215 Continuation US11166040B2 (en) 2018-06-07 2020-12-07 Video signal processing method and apparatus using adaptive motion vector resolution

Publications (1)

Publication Number Publication Date
WO2019235896A1 true WO2019235896A1 (ko) 2019-12-12

Family

ID=68770812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/006913 WO2019235896A1 (ko) 2018-06-07 2019-06-07 적응적 모션 벡터 레졸루션을 이용하는 비디오 신호 처리 방법 및 장치

Country Status (6)

Country Link
US (3) US11166040B2 (ko)
EP (1) EP3806461A4 (ko)
JP (2) JP7159354B2 (ko)
KR (2) KR102493418B1 (ko)
CN (5) CN118250474A (ko)
WO (1) WO2019235896A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022500909A (ja) * 2018-09-19 2022-01-04 北京字節跳動網絡技術有限公司Beijing Bytedance Network Technology Co., Ltd. 適応動きベクトル解像度によるアフィンモードへの構文の使用
JP2022521157A (ja) * 2019-02-28 2022-04-06 テンセント・アメリカ・エルエルシー 映像復号のための方法、装置、及びコンピュータプログラム
US20220124366A1 (en) * 2019-06-27 2022-04-21 Samsung Electronics Co., Ltd. Method and apparatus for decoding video, and method and apparatus for encoding video
US11477458B2 (en) 2018-06-19 2022-10-18 Beijing Bytedance Network Technology Co., Ltd. Mode dependent motion vector difference precision set
US11997286B2 (en) 2020-04-10 2024-05-28 Samsung Electronics Co., Ltd. Device and method for encoding motion vector, and device and method for decoding motion vector

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020002373A1 (en) * 2018-06-27 2020-01-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Contour mode prediction
MX2020012688A (es) 2018-06-27 2021-02-15 Kt Corp Metodo y aparato para procesar se?ales de video.
KR20220051842A (ko) * 2019-09-18 2022-04-26 삼성전자주식회사 움직임 정보의 부호화 장치 및 방법, 및 복호화 장치 및 방법
CA3227220A1 (en) * 2021-09-28 2023-04-06 Qualcomm Incorporated Motion vector difference sign prediction for video coding
US20230139186A1 (en) * 2021-10-28 2023-05-04 Tencent America LLC Template-matching based adaptive motion vector resolution (amvr)
US20230134017A1 (en) * 2021-11-01 2023-05-04 Tencent America LLC Template-matching based adaptive motion vector resolution (amvr) for bi-prediction and an affine mode
US20230199213A1 (en) * 2021-12-17 2023-06-22 Tencent America LLC Template-matching based adaptive motion vector resolution by using an adaptive order of motion vector resolutions
CN114826400B (zh) * 2022-02-28 2023-08-08 北京邮电大学 一种基于可见光通信的信号补偿方法及相关设备
WO2023177799A1 (en) * 2022-03-16 2023-09-21 Beijing Dajia Internet Information Technology Co., Ltd. Adaptive picture modifications for video coding

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017052000A1 (ko) * 2015-09-24 2017-03-30 엘지전자 주식회사 영상 코딩 시스템에서 움직임 벡터 정제 기반 인터 예측 방법 및 장치
WO2017194773A1 (en) * 2016-05-13 2017-11-16 Telefonaktiebolaget Lm Ericsson (Publ) Motion vector difference coding and decoding
US20180098063A1 (en) * 2016-10-05 2018-04-05 Qualcomm Incorporated Motion vector prediction for affine motion models in video coding
US20180098089A1 (en) * 2016-10-04 2018-04-05 Qualcomm Incorporated Adaptive motion vector precision for video coding
WO2018095313A1 (en) * 2016-11-22 2018-05-31 Mediatek Inc. Method and apparatus for motion vector sign prediction in video coding

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10531116B2 (en) * 2014-01-09 2020-01-07 Qualcomm Incorporated Adaptive motion vector resolution signaling for video coding
CN111741312B (zh) * 2014-10-31 2024-03-19 三星电子株式会社 用于对运动矢量进行编码/解码的方法和装置
EP3414900A4 (en) 2016-03-15 2019-12-11 Mediatek Inc. METHOD AND DEVICE FOR VIDEO CODING WITH AFFINE MOTION COMPENSATION
WO2017156705A1 (en) * 2016-03-15 2017-09-21 Mediatek Inc. Affine prediction for video coding
US11089323B2 (en) * 2016-05-28 2021-08-10 Mediatek Inc. Method and apparatus of current picture referencing for video coding
EP3264768A1 (en) * 2016-06-30 2018-01-03 Thomson Licensing Method and apparatus for video coding with adaptive motion information refinement
EP3497932A4 (en) 2016-08-15 2020-03-25 Nokia Technologies Oy VIDEO CODING AND DECODING
CN117221573A (zh) * 2016-10-04 2023-12-12 英迪股份有限公司 图像解码方法、图像编码方法以及发送比特流的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017052000A1 (ko) * 2015-09-24 2017-03-30 엘지전자 주식회사 영상 코딩 시스템에서 움직임 벡터 정제 기반 인터 예측 방법 및 장치
WO2017194773A1 (en) * 2016-05-13 2017-11-16 Telefonaktiebolaget Lm Ericsson (Publ) Motion vector difference coding and decoding
US20180098089A1 (en) * 2016-10-04 2018-04-05 Qualcomm Incorporated Adaptive motion vector precision for video coding
US20180098063A1 (en) * 2016-10-05 2018-04-05 Qualcomm Incorporated Motion vector prediction for affine motion models in video coding
WO2018095313A1 (en) * 2016-11-22 2018-05-31 Mediatek Inc. Method and apparatus for motion vector sign prediction in video coding

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11477458B2 (en) 2018-06-19 2022-10-18 Beijing Bytedance Network Technology Co., Ltd. Mode dependent motion vector difference precision set
US12022087B2 (en) 2018-06-19 2024-06-25 Beijing Bytedance Network Technology Co., Ltd Mode dependent motion vector difference precision set
JP2022500909A (ja) * 2018-09-19 2022-01-04 北京字節跳動網絡技術有限公司Beijing Bytedance Network Technology Co., Ltd. 適応動きベクトル解像度によるアフィンモードへの構文の使用
JP7212150B2 (ja) 2018-09-19 2023-01-24 北京字節跳動網絡技術有限公司 適応動きベクトル解像度によるアフィンモードへの構文の使用
US11653020B2 (en) 2018-09-19 2023-05-16 Beijing Bytedance Network Technology Co., Ltd Fast algorithms for adaptive motion vector resolution in affine mode
JP2022521157A (ja) * 2019-02-28 2022-04-06 テンセント・アメリカ・エルエルシー 映像復号のための方法、装置、及びコンピュータプログラム
JP7125563B2 (ja) 2019-02-28 2022-08-24 テンセント・アメリカ・エルエルシー 映像復号のための方法、装置、及びコンピュータプログラム
US20220124366A1 (en) * 2019-06-27 2022-04-21 Samsung Electronics Co., Ltd. Method and apparatus for decoding video, and method and apparatus for encoding video
US11882307B2 (en) * 2019-06-27 2024-01-23 Samsung Electronics Co., Ltd. Method and apparatus for decoding video, and method and apparatus for encoding video
US11997286B2 (en) 2020-04-10 2024-05-28 Samsung Electronics Co., Ltd. Device and method for encoding motion vector, and device and method for decoding motion vector

Also Published As

Publication number Publication date
CN118233652A (zh) 2024-06-21
JP2021526340A (ja) 2021-09-30
CN112237001B (zh) 2024-04-12
EP3806461A1 (en) 2021-04-14
KR102493418B1 (ko) 2023-01-31
CN112237001A (zh) 2021-01-15
US20210112268A1 (en) 2021-04-15
KR20210006390A (ko) 2021-01-18
US11706440B2 (en) 2023-07-18
US11166040B2 (en) 2021-11-02
US20210392365A1 (en) 2021-12-16
EP3806461A4 (en) 2022-03-16
CN118233651A (zh) 2024-06-21
JP2022185121A (ja) 2022-12-13
CN118250474A (zh) 2024-06-25
CN118233653A (zh) 2024-06-21
US20230308676A1 (en) 2023-09-28
KR20230018548A (ko) 2023-02-07
JP7159354B2 (ja) 2022-10-24

Similar Documents

Publication Publication Date Title
WO2019235896A1 (ko) 적응적 모션 벡터 레졸루션을 이용하는 비디오 신호 처리 방법 및 장치
WO2020076143A1 (ko) 다중 가정 예측을 사용하는 비디오 신호 처리 방법 및 장치
WO2019182385A1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
WO2018030599A1 (ko) 인트라 예측 모드 기반 영상 처리 방법 및 이를 위한 장치
WO2018066867A1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
WO2018030773A1 (ko) 영상 부호화/복호화 방법 및 장치
WO2017018664A1 (ko) 인트라 예측 모드 기반 영상 처리 방법 및 이를 위한 장치
WO2017146526A1 (ko) 비디오 신호 처리 방법 및 장치
WO2018097692A2 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
WO2019083334A1 (ko) 비대칭 서브 블록 기반 영상 부호화/복호화 방법 및 장치
WO2017039117A1 (ko) 영상의 부호화/복호화 방법 및 이를 위한 장치
WO2018047995A1 (ko) 인트라 예측 모드 기반 영상 처리 방법 및 이를 위한 장치
WO2020085800A1 (ko) 서브블록 기반의 모션 보상을 이용한 비디오 신호 처리 방법 및 장치
WO2019240493A1 (ko) 문맥 적응적 이진 산술 부호화 방법 및 장치
WO2020171681A1 (ko) 인트라 예측 기반 비디오 신호 처리 방법 및 장치
WO2020111843A1 (ko) 화면 내 예측 필터링을 이용한 비디오 신호 처리 방법 및 장치
WO2020251330A1 (ko) 단순화된 mpm 리스트 생성 방법을 활용하는 영상 부호화/복호화 방법, 장치 및 비트스트림을 전송하는 방법
WO2017069505A1 (ko) 영상의 부호화/복호화 방법 및 이를 위한 장치
WO2019221465A1 (ko) 영상 복호화 방법/장치, 영상 부호화 방법/장치 및 비트스트림을 저장한 기록 매체
WO2020222588A1 (ko) 적응적 모션 벡터 해상도를 이용한 비디오 신호 처리 방법 및 장치
WO2019194425A1 (ko) 영상 부호화 또는 복호화에 인공 신경망을 적용하는 장치 및 방법
WO2018101700A1 (ko) 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
WO2020017910A1 (ko) 지역 조명 보상을 통한 효과적인 비디오 부호화/복호화 방법 및 장치
WO2016190627A1 (ko) 비디오 신호 처리 방법 및 장치
WO2021172914A1 (ko) 레지듀얼 코딩에 대한 영상 디코딩 방법 및 그 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19814257

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207033872

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020568219

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019814257

Country of ref document: EP

Effective date: 20210111