WO2019235779A1 - Heat-exchange pipe, heat-exchanger unit using same, and condensing boiler using same - Google Patents

Heat-exchange pipe, heat-exchanger unit using same, and condensing boiler using same Download PDF

Info

Publication number
WO2019235779A1
WO2019235779A1 PCT/KR2019/006542 KR2019006542W WO2019235779A1 WO 2019235779 A1 WO2019235779 A1 WO 2019235779A1 KR 2019006542 W KR2019006542 W KR 2019006542W WO 2019235779 A1 WO2019235779 A1 WO 2019235779A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensible heat
reference direction
heat
sensible
latent heat
Prior art date
Application number
PCT/KR2019/006542
Other languages
French (fr)
Korean (ko)
Inventor
박준규
박준길
Original Assignee
주식회사 경동나비엔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190062723A external-priority patent/KR102536797B1/en
Application filed by 주식회사 경동나비엔 filed Critical 주식회사 경동나비엔
Priority to US16/973,016 priority Critical patent/US20210247102A1/en
Priority to MX2020013259A priority patent/MX2020013259A/en
Priority to EP19814828.0A priority patent/EP3816554B1/en
Priority to CN201980038009.2A priority patent/CN112236637B/en
Publication of WO2019235779A1 publication Critical patent/WO2019235779A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1615Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits being inside a casing and extending at an angle to the longitudinal axis of the casing; the conduits crossing the conduit for the other heat exchange medium
    • F28D7/1623Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits being inside a casing and extending at an angle to the longitudinal axis of the casing; the conduits crossing the conduit for the other heat exchange medium with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H8/00Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/14Arrangements for connecting different sections, e.g. in water heaters 
    • F24H9/148Arrangements of boiler components on a frame or within a casing to build the fluid heater, e.g. boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1809Arrangement or mounting of grates or heating means for water heaters
    • F24H9/1832Arrangement or mounting of combustion heating means, e.g. grates or burners
    • F24H9/1836Arrangement or mounting of combustion heating means, e.g. grates or burners using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05358Assemblies of conduits connected side by side or with individual headers, e.g. section type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • F28D21/0005Recuperative heat exchangers the heat being recuperated from exhaust gases for domestic or space-heating systems
    • F28D21/0007Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/30Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0024Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for combustion apparatus, e.g. for boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/08Assemblies of conduits having different features
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to a heat exchange pipe through which water can flow, a heat exchanger unit using the same, and a condensing boiler.
  • a heat exchange pipe for transferring heat to the water and a heat exchanger unit using the same may be used.
  • Water to be heated flows into the heat exchange pipe, and a heat medium such as a combustion gas flows from the outside, or radiant heat or conductive heat is transferred, and thus heat is transferred to the water.
  • the heat exchanger unit includes such a heat exchange pipe and is configured to arrange the heat medium around the heat exchange pipe.
  • the present invention has been made to solve the above problems, to provide a heat exchange pipe, a heat exchanger unit, a condensing boiler of a shape in which the heat exchange efficiency is increased.
  • the heat exchanger unit according to the embodiment of the present invention is disposed in a sensible heat exchange area for heating water by receiving sensible heat generated by a combustion reaction, sensible heat in which the water flows by receiving the water and flowing through the inside.
  • a sensible heat exchanger having a sensible heat exchanger pipe forming a flow path;
  • a latent heat exchanger for heating the water by receiving latent heat generated when a phase change of the combustion gas is received, based on a first reference direction, which is a flow direction of the combustion gas generated during the combustion reaction.
  • a latent heat exchanger disposed in an area, the latent heat exchanger having a latent heat exchanger pipe for supplying water and flowing through the interior, wherein the latent heat exchanger pipe extends along a second reference direction orthogonal to the first reference direction, A plurality of latent heat linear parts arranged spaced apart from each other along a third reference direction orthogonal to the first reference direction and the second reference direction, the water flowing and forming a latent heat flow path communicating with the sensible heat flow path;
  • the inner space of the latent heat linear part is flat so that the width along the third reference direction is smaller than the length along the first reference direction. It is.
  • the heat exchange pipe includes an inner space extending along a second reference direction orthogonal to a first reference direction, which is orthogonal to the first reference direction, which is a flow direction of the combustion gas generated during the combustion reaction,
  • the inner space is formed to be flat so that a width along a third reference direction orthogonal to the first reference direction and the second reference direction is smaller than a length along the first reference direction, and according to the third reference direction.
  • the value obtained by dividing the width of the internal space by the length of the internal space in the first reference direction is 0.05 or more and 0.3 or less.
  • the burner assembly causing a combustion reaction;
  • a combustion chamber located downstream from the burner assembly based on a flow direction of the combustion gas, and having a flame formed by the combustion reaction therein;
  • a heat exchanger unit configured to heat the water by receiving the sensible heat generated by the combustion reaction and the combustion gas, wherein the heat exchanger unit is a sensible heat exchanger zone for heating the water by receiving the sensible heat generated by the combustion reaction.
  • a sensible heat exchanger disposed on the sensible heat exchanger and having a sensible heat exchange pipe configured to receive the water and flow through the interior; And a latent heat exchanger for heating the water by receiving latent heat generated when a phase change of the combustion gas is received, based on a first reference direction, which is a flow direction of the combustion gas generated during the combustion reaction.
  • a latent heat exchanger disposed in an area, the latent heat exchanger having a latent heat exchanger pipe for supplying water and flowing through the interior, wherein the latent heat exchanger pipe extends along a second reference direction orthogonal to the first reference direction, A plurality of latent heat linear parts arranged spaced apart from each other along a third reference direction orthogonal to the first reference direction and the second reference direction to form a latent heat flow path through which the water flows and communicates with the sensible heat exchange pipe;
  • the inner space of the latent heat linear part is flat so that a width in the third reference direction is smaller than a length in the first reference direction. It is formed.
  • heat exchange may be efficiently performed by maximizing the area where the heat exchange pipe contacts the combustion gas.
  • FIG. 1 is a longitudinal sectional view of a portion of an exemplary heat exchanger unit.
  • FIG. 2 is a longitudinal sectional view of a heat exchanger unit and a condensing boiler using the same according to the first embodiment of the present invention.
  • FIG 3 is a side view of a heat exchanger unit and a condensing boiler using the same according to the first embodiment of the present invention.
  • FIG. 4 is a plan view of the combustion chamber of the heat exchanger unit according to the first embodiment of the present invention.
  • FIG. 5 is a plan view of the sensible heat exchanger of the heat exchanger unit according to the first embodiment of the present invention.
  • FIG. 6 is a view illustrating a region in which the sensible heat exchange pipe and the sensible fin are arranged in the longitudinal cross-sectional view of the heat exchanger unit according to the first embodiment of the present invention.
  • FIG. 7 is a view illustrating a region in which the sensible heat exchange pipe and the sensible fin are arranged in the longitudinal cross-sectional view of the heat exchanger unit according to the first embodiment of the present invention.
  • FIG. 8 is a view of the second sensible heat general side plate of the heat exchanger unit according to the first embodiment of the present invention, viewed from the outside along a predetermined direction together with the flow path caps included in the second flow path cap plate.
  • FIG. 9 is a view of the first sensible heat general side plate of the heat exchanger unit according to the first embodiment of the present invention viewed from the inside along a predetermined direction together with the flow path caps included in the first flow cap plate.
  • FIG. 10 is a view of the heat exchanger unit from the outside of the second connecting flow path plate according to another modification of the first embodiment of the present invention.
  • FIG. 11 is a view showing a first connecting flow path cap plate of a heat exchanger unit according to another modification of the first embodiment of the present invention.
  • FIG. 12 is a view of a part of the second main general side plate of the heat exchanger unit according to another modification of the first embodiment of the present invention, viewed from the outside along a predetermined direction with flow caps included in the second connection flow cap plate; to be.
  • FIG. 13 is a view of the first main general side plate of the heat exchanger unit according to another modification of the first embodiment of the present invention, viewed from the inside along a predetermined direction with flow caps included in the first connection flow cap plate.
  • FIG. 14 is a perspective view illustrating a sensible heat passage and a latent heat passage of a heat exchanger unit according to another modification of the first exemplary embodiment of the present invention.
  • FIG. 15 is a longitudinal sectional view of a heat exchanger unit according to a second embodiment of the present invention.
  • FIG. 16 is a front view showing the flow path cap plate of the heat exchanger unit according to the modification of the second embodiment of the present invention as each pipe.
  • 17 is a longitudinal sectional view of a heat exchanger unit and a condensing boiler using the same according to the third embodiment of the present invention.
  • FIG. 18 is a side view of a heat exchanger unit and a condensing boiler using the same according to the third embodiment of the present invention.
  • FIG. 19 is a plan view of a heat exchanger unit according to a third embodiment of the present invention.
  • FIG. 20 is a longitudinal sectional view of a heat exchanger unit according to a third embodiment of the present invention.
  • FIG. 21 is a perspective view illustrating a plurality of downstream fins and condensate located between the plurality of downstream fins according to the third exemplary embodiment of the present invention.
  • FIG. 22 is a longitudinal sectional view of a heat exchanger unit according to a first modification of the third embodiment of the present invention.
  • FIG. 23 is a longitudinal sectional view of a heat exchanger unit according to a second modification of the third embodiment of the present invention.
  • FIG. 24 is a longitudinal sectional view of a heat exchanger unit according to a third modification of the third embodiment of the present invention.
  • 25 is a longitudinal sectional view of a heat exchanger unit according to a fourth modification of the third embodiment of the present invention.
  • FIG. 26 is a view illustrating a second general side plate of a heat exchanger unit according to a third embodiment of the present invention together with flow path caps included in a second flow path plate.
  • FIG. 27 is a view illustrating the first general side plate of the heat exchanger unit according to the third embodiment of the present invention together with the flow path caps included in the first flow cap plate.
  • FIG. 28 is a perspective view illustrating an entire flow path included in a heat exchanger unit according to a third embodiment of the present invention.
  • 29 is a perspective view illustrating a situation in which connecting flow path cap plates are separated in a heat exchanger unit according to another modification of the first exemplary embodiment of the present invention.
  • FIG. 30 is a perspective view of a water heater according to a fourth embodiment of the present invention.
  • FIG. 31 is a perspective view of a heat exchanger unit according to a fourth embodiment of the present invention.
  • FIG. 32 is a longitudinal sectional view of a heat exchanger unit according to a fourth embodiment of the present invention.
  • FIG 33 is a longitudinal sectional view of a latent heat exchange pipe according to a fourth embodiment of the present invention.
  • first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being “connected”, “coupled” or “connected” to another component, that component may be directly connected or connected to that other component, but between components It will be understood that may be “connected”, “coupled” or “connected”.
  • a burner, a heat exchanger, and a combustion chamber constituting a condensing boiler, a combustion chamber surrounded by a dry type heat insulating material, a fin-tube type sensible heat exchanger, and a plate It is conceivable to construct a condensing boiler by arranging plate latent heat exchangers. Such a condensing boiler is referred to as a bottom-up boiler. In the case of the bottom-up boiler, condensate generated by the condensation of the combustion gas in the latent heat exchanger may fall and be located in the sensible heat exchanger and the combustion chamber. Therefore, there is a problem that the sensible heat exchanger and the dry type heat insulating material surrounding the combustion chamber are easily corroded by the high acidity condensate. In addition, since different types of heat exchangers are connected to each other, there is a problem in that manufacturing costs increase due to additional connection parts.
  • the condensing boiler is configured by arranging a combustion chamber, a fin tube type sensible heat exchanger, and a plate type latent heat exchanger, which are surrounded by a heat insulated pipe downward from the uppermost burner. I can think of a way. This is called a top down boiler.
  • the latent heat exchanger is located at the lowermost side, the condensate is immediately discharged through the condensate receiver, and thus does not reach the sensible heat exchanger or the combustion chamber, thereby eliminating the problem of corrosion.
  • many parts including insulation pipes used for cooling the combustion chamber are used, and as a result, manufacturing costs increase due to an increase in assembly labor.
  • different types of heat exchangers are connected to each other, there is a problem in that manufacturing costs increase due to additional connection parts.
  • FIG. 1 is a longitudinal sectional view of a portion of an exemplary heat exchanger unit.
  • a top-down boiler may be used, but the combustion chamber 102 and the sensible heat exchanger 103 may be enclosed by a heat insulating material 101 to be insulated in a dry type. That is, the case where the dry type heat insulating material used for the combustion chamber 102 is arrange
  • the heat insulating material 101 extends further downstream than the position where the combustion chamber 102 extends downward. If it is, there is a problem that the condensed water may come in contact with the dry type heat insulating material 101 may cause damage.
  • FIG. 2 is a longitudinal sectional view of a heat exchanger unit and a condensing boiler 1 using the same according to the first embodiment of the present invention.
  • 3 is a side view of the heat exchanger unit and the condensing boiler 1 using the same according to the first embodiment of the present invention.
  • the heat exchanger unit includes a sensible heat exchanger (30), a latent heat exchanger (40), and a sensible heat insulating pipe (34).
  • the components constituting the heat exchanger unit can be fixed in the position as shown.
  • the condensing boiler 1 including the heat exchanger unit according to the first embodiment of the present invention includes a combustion chamber 20 and a burner assembly 10 including a burner 11.
  • the burner assembly 10 and the heat exchanger unit are sequentially arranged along the first reference direction D1, which is the flow direction of the combustion gas, and the combustion chamber 20 and the sensible heat exchanger 30 are arranged in the same direction in the heat exchanger unit.
  • the components are arranged in the order of the sensible heat insulating pipe 34 arranged together with the latent heat exchanger 40 and the sensible heat exchanger 30, the components of the condensing boiler 1 in the above-described arrangement order.
  • the heat exchanger unit and the condensing boiler 1 using the same according to the first embodiment of the present invention will be described on the basis of the top down condensing boiler 1 in which the combustion gas flows vertically downward. Therefore, the first reference direction D1, which is the flow direction of the combustion gas indicated by the arrow, may be equal to vertically downward at the position where the condensing boiler 1 is installed.
  • the top-down condensing boiler 1 As the top-down condensing boiler 1 is selected, condensed water generated by condensation of the combustion gas may be generated only at the lowermost side of the condensing boiler 1 and discharged to the outside through the lower end. Therefore, corrosion of the components constituting the condensing boiler 1 can be prevented.
  • the configuration of the present invention may be used in a bottom-up condensing boiler, which can naturally form the path of the heating water downward by utilizing the property that the heated combustion gas moves upward by convection.
  • the condensate receiver 55 is disposed downstream of the condensate receiver 55 along the first reference direction D1, which is the flow direction of the combustion gas, so that the latent heat exchanger 40 If condensate from the car falls vertically downward due to its own weight, it can be collected.
  • the condensate receiver 55 may have an inner side surface inclined toward the condensate outlet 53 so that the collected condensate can be discharged through the condensate outlet 53 extending vertically downward.
  • the exhaust duct 52 may be formed in communication with the condensate receiver 55 so that residual combustion gas may be discharged simultaneously with the discharge of the condensate.
  • the exhaust duct 52 extends vertically upward to discharge residual combustion gas to the outside.
  • the burner assembly 10 includes a burner 11 that radiates heat, and is a component that generates combustion gas by injecting fuel and air to cause a combustion reaction.
  • a premix burner may be used as the burner assembly 10 used in the condensing boiler 1 according to the first embodiment of the present invention.
  • a premix type burner is a device that generates combustion gas by injecting air and fuel, mixing them in a predetermined ratio, and burning the mixed air and fuel using heat dissipating.
  • the burner assembly 10 according to the first embodiment of the present invention is a mix chamber 12 which is a space for preparing a mixed fuel for combustion reaction by injecting fuel and air and mixing at a predetermined ratio;
  • the mix chamber 12 may include a burner 11 that applies heat to the mixed fuel mixed.
  • a burner assembly 10 having such a structure is provided to heat the mixed air and fuel at a ratio suitable for the combustion reaction to cause the combustion reaction to obtain an optimum fuel efficiency and thermal efficiency.
  • the condensing boiler 1 of the present invention may further include a blower 54.
  • the blower 54 may be configured to include a pump so as to be connected to the mix chamber 12 to pressurize the air toward the burner assembly 10 connected to the vertical down of the mix chamber 12.
  • FIG 4 is a plan view of the combustion chamber 20 according to the first embodiment of the present invention.
  • the combustion chamber 20 is demonstrated with reference to FIG. 4 as FIG. 2 and FIG.
  • the combustion chamber 20 is a component that includes an internal space 22 provided so that the flame generated by the combustion reaction by the burner assembly 10 can be located. Therefore, the combustion chamber 20 is formed by enclosing the internal space 22 by the side wall.
  • the burner assembly 10 and the combustion chamber 20 are coupled so that the burner 11 of the burner assembly 10 is located upstream of the inner space 22 with respect to the first reference direction D1, which is the flow direction of the combustion gas. do.
  • Burner assembly 10 generates combustion reaction by applying heat to air and fuel. As a result of the combustion reaction, flames and combustion gases with thermal energy are produced.
  • the flame is positioned in the internal space 22 of the combustion chamber 20 and extends from the burner assembly 10 along the flow direction D of the combustion gas.
  • Combustion gas flows through the internal space 22.
  • the internal space 22 of the combustion chamber 20 may be in communication with the first reference direction D1, which is a flow direction of the combustion gas.
  • the first reference direction D1 which is the flow direction of the combustion gas
  • the inner space 22 of the combustion chamber 20 communicates in the vertical direction.
  • the combustion chamber heat insulating part 24 may be formed in at least a portion of an inner side surface of the side wall 21 of the combustion chamber constituting the combustion chamber 20.
  • the side wall 21 of the combustion chamber is composed of two normal side plates 211 parallel to each other and two heat insulating side plates 212 orthogonal to and parallel to the general side plate 211, and may be formed in a rectangular parallelepiped shape.
  • the combustion chamber heat insulating part 24 may be disposed inside the heat insulating side plate 212.
  • Combustion chamber insulation 24 is composed of a heat insulating material to block the heat flow, it is possible to reduce the amount of heat generated by the combustion reaction is transferred to the outer region of the combustion chamber 20 through the inner surface of the combustion chamber 20. .
  • the combustion chamber heat insulation part 24 can reduce the amount of heat transferred from the internal space 22 of the combustion chamber 20 to the exterior of the combustion chamber 20.
  • a heat insulating material a porous polystyrene panel or a needle mat made of inorganic silica may be used to reduce heat flow, but the type of heat insulating material is not limited thereto.
  • combustion chamber heat insulation part 24 is also disposed in the general side plate 211 of the combustion chamber 20, and may surround the entire internal space 22 of the combustion chamber 20 with a heat insulating material to have an additional heat insulation effect.
  • the combustion chamber heat insulating part 24 does not surround the sensible heat exchanger 30 to be described later, based on the first reference direction D1, which is the flow direction of the combustion gas, so as to surround only the inner space 22 of the combustion chamber 20.
  • the length can be determined. That is, the combustion chamber heat insulation part 24 may be provided not to be located inside the sensible heat exchanger case 31 which will be described later. Therefore, when the heat insulating material 101 is arranged as shown in FIG. 1, the heat insulating material 101 may be damaged by excessive heat and condensate.
  • the combustion chamber heat insulating part 24 is disposed as shown in FIG. 2. Excessive heat generated in the sensible heat exchanger 30 may not be transferred to the combustion chamber heat insulating part 24.
  • FIG. 5 is a plan view of the sensible heat exchanger 30 of the heat exchanger unit according to the first embodiment of the present invention.
  • FIG. 6 is a view illustrating a region in which the sensible heat exchange heat pipe 32 and the sensible heat fin 33 are disposed in the longitudinal cross-sectional view of the heat exchanger unit according to the first embodiment of the present invention.
  • FIG. 2 With reference to FIG. 2, FIG. 3, FIG. 5, and FIG. 6, the basic structure of the sensible heat exchanger 30 is demonstrated.
  • the sensible heat exchanger 30 is disposed downstream of the combustion chamber 20 based on the first reference direction D1, which is the flow direction of the combustion gas.
  • the sensible heat exchanger (30) receives the sensible heat generated by the burner assembly 10 located above the sensible heat exchanger (30) by the combustion reaction by the convection of radiant heat and combustion gas, the interior of the sensible heat exchanger (30) It is a component that heats the heating water flowing in.
  • the sensible heat exchanger 30 specifically includes a sensible heat exchanger pipe 32 through which heating water flows and combustion gas flows around the sensible heat exchanger case, wherein both ends of the sensible heat exchanger pipe 32 are fitted ( 31).
  • the sensible heat exchanger pipe 32 is positioned inside the sensible heat exchanger case 31, and the combustion gas flows around the sensible heat exchanger pipe 32, so that the combustion gas and the heating water are indirectly heat exchanged.
  • the sensible heat exchange pipe 32 extends along the second reference direction D2 in a space formed inside the sensible heat exchanger case 31.
  • the second reference direction D2 may be a direction orthogonal to the first reference direction D1, which is preferably a flow direction of the combustion gas.
  • the sensible heat exchange pipe 32 is a plurality of straight portions 321, 322, 323, 324 which are spaced apart from each other along an orthogonal direction perpendicular to the first reference direction D1, which is the one direction and the flow direction of the combustion gas. It may be configured to include.
  • a plurality of straight portions 321, 322, 323, 324 are listed, and each of the straight portions 321, 322, 323 inserted into insertion holes formed in the sensible heat side plate 311 of the sensible heat exchanger case 31 to be described later.
  • the heating water flows in the direction of the arrow shown in FIG. 5, and the sensible heat exchange pipe 32 includes 1 flows along the outer straight portion 321 to the right in the drawing, flows to the left in the drawing along the intermediate straight portion 323 located below the drawing of the first outer straight portion 321, and reaches the discharge step.
  • the heating flows along the middle straight portion 324 located above the second outer straight portion 322 to the right in the drawing, and moves along the second outer straight portion 322 to the left in the drawing to be discharged.
  • Water passing through the sensible heat exchange pipe 32 may be heated by receiving the sensible heat of the combustion gas and the burner assembly 10.
  • a turbulator (not shown) having a shape that obstructs the flow of the heating water and turbulences the flow of the heating water.
  • the sensible heat exchanger case 31 includes two general side plate portions spaced apart in the second reference direction D2 and parallel to each other, and two heat insulation side plates spaced apart from each other along the orthogonal direction perpendicular to the second reference direction D2. Consisting of parts, it may be formed in a cuboid shape.
  • the general side plate portion and the heat insulation side plate portion may be separate general side plates and heat insulation side plates, or may be partial regions of the side plates of the integral heat exchanger case, respectively.
  • a description will be made mainly on the case where the general side plate portion and the heat insulation side plate portion are constituted by the general side plate and the heat insulation side plate which are separate from each other.
  • the sensible heat general side plate 311 and the sensible heat insulating side plate 312 together form an inner space of the sensible heat exchanger case 31.
  • the sensible heat insulation side plate 312 is not used as a side plate to reduce the amount of heat transmitted to the outside to achieve heat insulation, but used to mean that the sensible heat insulation pipe 34 is adjacent to the side plate.
  • the sensible heat side plate 311 includes a first sensible heat side plate 3111 and a second sensible heat side plate 3112 spaced along the second reference direction D2, and each of the sensible heat side plate 311 constitutes a sensible heat exchange pipe 32. Both ends of the straight portions 321, 322, 323, and 324 are fitted to each other, and as a result, the straight portions 321, 322, 323, and 324 may be accommodated in the sensible heat exchanger case 31. Combustion gas flows in the space formed inside the sensible heat exchanger case 31, and moves from the combustion chamber 20 to the latent heat exchanger case 41 which will be described later.
  • the sensible heat insulating pipe 34 may be disposed adjacent to the sensible heat exchanger 30.
  • the sensible heat insulating pipe 34 is a pipe-like component arranged to insulate the sensible heat exchanger 30 by the heating water flows through the interior.
  • insulation means preventing heat from being transferred, encompassing both heat trapped at a certain position and absorbing the amount of heat discharged to the outside at a certain position so that the amount of heat finally discharged to the outside is reduced than before. The meaning of such insulation can be equally applied to other embodiments and modifications thereof.
  • the sensible heat insulating pipe 34 may be disposed adjacent to the outer surface of the sensible heat insulating side plate 312.
  • the sensible heat insulating pipe 34 may be disposed adjacent to one and the other of the two sensible heat insulating side plates 312, respectively.
  • the sensible heat insulating pipe 34 may be disposed to contact the outer surface of the sensible heat insulating side plate 312 and the sensible heat insulating pipe 34, or the sensible heat insulating pipe 34 at a position spaced apart from the outer surface of the sensible heat insulating side plate 312. ) May be arranged.
  • the first sensible heat insulating pipe 341 and the second sensible heat insulating pipe 342 are spaced apart from each other to form an outer surface of the sensible heat insulating side plate 312, respectively.
  • the sensible heat insulating pipe 34 is displayed as if the sensible heat insulating side plate 312 is positioned inside the sensible heat insulating side plate 312.
  • Position and at the same time covering the sensible heat insulating pipe 34, for the convenience of explanation is to indicate the position of the sensible heat insulating pipe 34. Therefore, in the region indicated by the sensible heat insulating pipe 34 in FIG. 5, the sensible heat insulating pipe 34 covered by the sensible heat insulating side plate 312 is located, and the sensible heat insulating pipe 34 is not exposed on the plan view.
  • the sensible heat insulating pipe 34 is located outside the sensible heat exchanger case 31 through which the combustion gas passes, the sensible heat insulating pipe 34 may not intersect or meet the combustion gas.
  • the sensible heat insulating pipe 34 may not be used for heat exchange between the combustion gas and the heating water, but may perform only a heat insulating function that blocks heat from being discharged from the sensible heat exchanger 30 to the outside using the heating water.
  • the sensible heat insulating pipe 34 may be spaced apart from the combustion chamber 20 along the first reference direction D1 which is a flow direction of the combustion gas from the combustion chamber 20. Therefore, the sensible heat insulation pipe 34 may be used only for the heat insulation of the sensible heat exchanger 30, not used for the heat insulation of the combustion chamber 20.
  • the sensible heat insulating pipe 34 forms a sensible heat flow path through which the heating water flows together with the sensible heat exchange pipe 32.
  • the inner space of the sensible heat insulation pipe 34 is formed in an elliptical shape on the cross section of the sensible heat insulation pipe 34 in a plane orthogonal to the direction in which the sensible heat insulation pipe 34 extends as shown in FIGS. 2 and 6. Can be.
  • the inner space of the sensible heat insulating pipe 34 may be formed in an elliptical shape having a long axis parallel to the first reference direction D1, which is a flow direction of the combustion gas.
  • the sensible heat insulating pipe 34 is positioned adjacent to the sensible heat insulating side plate 312 of the sensible heat exchanger 30, it may be disposed upstream with respect to the first reference direction (D1) that is the flow direction of the combustion gas. That is, the sensible heat insulating pipe 34 may be disposed at a position adjacent to the combustion chamber 20 rather than the latent heat exchanger 40 to be described later. Since the flame generated by the burner assembly 10 in the combustion chamber 20 may reach the downstream side of the combustion chamber 20 based on the first reference direction D1, which is the flow direction of the combustion gas, the sensible heat exchanger 30 Upstream of the side may be in contact with the combustion chamber 20 and have the highest temperature.
  • D1 the first reference direction
  • the sensible heat insulating pipe 34 may be adjacent to the upstream side of the sensible heat exchanger 30, the temperature difference between the inner space and the outside of the sensible heat exchanger 30 may be greatest and the large amount of heat may be dissipated.
  • the upstream side of the sensible heat exchanger 30 can be insulated.
  • the sensible heat insulating pipe 34 may be located at the center with respect to the first reference direction D1 which is the flow direction of the combustion gas.
  • the sensible heat exchanger (30) further includes a sensible heat fin (33) capable of increasing the thermal conductivity of the sensible heat exchanger pipe (32), thereby constituting the sensible heat exchanger (30) in the form of a fin tube.
  • the sensible heat fin 33 is formed in a plate shape orthogonal to the direction in which the sensible heat exchange pipe 32 extends, and is penetrated by the sensible heat exchange pipe 32.
  • the sensible heat fin 33 may be configured in plural and spaced apart by a predetermined interval along the second reference direction D2 in which the sensible heat exchange pipe 32 extends.
  • the sensible heat exchange pipe 32 and the sensible heat fin 33 are formed of a metal with high thermal conductivity, thereby increasing the surface area of the sensible heat exchange pipe 32 through which the sensible heat fin 33 can receive sensible heat, thereby heating more sensible heat. Can be passed by number.
  • the internal space of the sensible heat exchange pipe 32 in the cross section in which the sensible heat exchange pipe 32 is cut in a plane orthogonal to the second reference direction D2 in which the sensible heat exchange pipe 32 extends is a flow direction of the combustion gas. It may be formed in the form of a long hole extending along the first reference direction (D1).
  • the sensible heat exchange pipe 32 according to the first embodiment of the present invention the sensible heat exchange pipe 32 in the cross section based on the first reference direction (D1) that is the flow direction of the combustion gas.
  • the length of the inner space of the divided by the width along the direction perpendicular to the first reference direction (D1) of the flow direction of the combustion gas is formed to be two or more, it may have a flat long hole shape.
  • the sensible heat of the heating water is the same length as compared to the case where other shapes of pipes such as round or elliptical are introduced into the sensible heat exchange pipe 32. Even though it flows along the heat exchange pipe 32, it has a larger heat exchange area in relation to the combustion gas, and thus receives more heat and can be sufficiently heated.
  • the sensible heat fin 33 may be formed with a through hole through which the sensible heat exchange pipe 32 may pass, and the area of the through hole may be equal to or slightly smaller than that of the sensible heat exchange pipe 32, and thus, the sensible heat exchange pipe ( 32) can be fitted tightly.
  • the sensible heat fin 33 may be integrally coupled with the sensible heat exchange pipe 32 and the brazing welding.
  • sensible heat insulation pipe 34 it is not coupled with the sensible heat fin (33).
  • the sensible heat insulating pipe 34 is not fastened with the sensible heat fin 33, the sensible heat insulating pipe 34 and the sensible heat fin 33 may be disposed on the opposite side with the sensible heat insulating side plate 312 therebetween.
  • Each of the sensible heat fin 33 and the sensible heat insulating pipe 34 may be in contact with the sensible heat insulating side plate 312, but the sensible heat fin 33 and the sensible heat insulating pipe 34 do not directly contact.
  • the sensible heat insulation pipe 34 is not arranged for heat exchange between the combustion gas and the heating water as described above, but is arranged for heat insulation of the sensible heat exchanger 30, so that the sensible heat insulation pipe 33 and the sensible heat insulation pipe ( 34) are not directly connected to each other. Therefore, the sensible heat fin 33 and the sensible heat insulation pipe 34 is arranged not to cross each other.
  • the sensible heat fin 33 may further include a louver hole 331 penetrating along the second reference direction D2 in which the sensible heat exchange pipe 32 extends.
  • the louver hole 331 includes a burring which is formed through punching and protrudes along the circumference thereof, is blocked by the burring when the combustion gas flows, flows around the sensible heat exchange pipe 32, and between the combustion gas and the heating water.
  • the heat exchanger is a component that makes the heat exchanger better.
  • the louver hole 331 may be configured in plurality. As shown in FIG. 6, the louver hole 331 extends in an oblique direction with respect to the first reference direction D1, which is the flow direction of the combustion gas, and is formed in the outermost portion of the sensible fin 33. Between the louver holes 3311 and the sensible heat exchange pipes 32 adjacent to each other, a plurality of second louver holes 3312 extending in a direction orthogonal to the first reference direction D1, which is the flow direction of the combustion gas, is provided. It may include. Each louver hole 331 may be spaced apart from each other at a predetermined interval along the first reference direction D1, which is a flow direction of the combustion gas.
  • the sensible fin 33 may further include a valley 334 and a protrusion 333.
  • the sensible heat fin 33 is basically formed so as to surround the sensible heat exchange pipe 32, and is determined from an edge of an upstream end of the sensible heat exchange pipe 32 based on the first reference direction D1 which is the flow direction of the combustion gas. The area of the width can be surrounded by the remaining area of the sensible heat exchange pipe (32). Accordingly, a fine valley 334 may be formed in the sensible fin 33 along the first reference direction D1, which is a flow direction of the combustion gas, between the upstream ends of the adjacent sensible heat exchange pipe 32. Since the region of the sensible heat fin 33 adjacent to the upstream end of the sensible heat exchange pipe 32 is relatively protruded, it becomes the protrusion 333. By opening the unnecessary area by forming the valleys 334, the combustion gas is allowed to flow more freely between the sensible heat fin 33 and the sensible heat exchange pipe 32.
  • the sensible heat fin 33 may further include a recess 332.
  • the concave portion 332 is formed to be dug toward the downstream end of the sensible heat exchange pipe 32 from the downstream edge of the sensible heat fin 33 with respect to the first reference direction D1 which is the flow direction of the combustion gas.
  • the purpose of forming the recesses 332 is also similar to the purpose of forming the valleys 334.
  • FIG. 7 is a view illustrating a region in which the sensible heat exchange heat pipe 62 and the sensible heat fin 63 are arranged in the longitudinal cross-sectional view of the heat exchanger unit according to the first embodiment of the present invention.
  • the sensible heat insulating pipe 64, the sensible heat exchanger 60 on the basis of the flow direction of the combustion gas which is one of the direction in which the cross section of the sensible heat exchange pipe 62 is shown. It may be disposed adjacent to the upstream side of, and when the sensible heat insulation pipe 64 is cut in a plane orthogonal to a predetermined direction, which is an extended direction, the cross section may be formed in a circular shape.
  • the sensible heat insulation pipe 64 may be disposed adjacent to the inner surface of the heat insulation side plate 65, unlike in FIG. Unlike the first embodiment of FIG. 6, in one variation of the first embodiment of FIG. 7, the sensible heat exchange pipe 62 may be six, but the number thereof is not limited thereto.
  • the first louver hole 6311 of the sensible fin 63 may be formed extending in a direction perpendicular to the flow direction of the combustion gas, like the second louver hole 6312. .
  • the shape of the louver hole 631 can be variously modified in addition to this.
  • FIG. 8 is a view of the second sensible heat side plate 3112 according to the first embodiment of the present invention from the outside along the second reference direction D2 together with the flow path caps included in the second flow cap plate 362.
  • FIG. 9 illustrates a first sensible heat common side plate 3111 of the heat exchanger unit according to the first embodiment of the present invention along the second reference direction D2 along with the flow path caps included in the first flow cap plate 361. It is the figure seen from the inside.
  • the first main general side plate to which the first connecting flow path plate 71 is fitted along the line G-G 'of FIG. 29 for explaining another modification of the first embodiment of the present invention The first sensible heat general side plate 3111 and the straight portion 321, 322, 323, and 324 of the first heat sensitive general side plate 3111 and the sensible heat insulating pipe 341 of the first embodiment of the present invention, which correspond to the view of 5111. 342, the flow path caps 3611 and 3612 of the first flow cap plate 361 are shown in dotted lines.
  • the heat exchanger unit communicates with an end portion of the sensible heat insulating pipe 34 and the sensible heat exchange pipe 32 adjacent to the sensible heat insulating pipe 34 or a straight line adjacent to each other among the plurality of straight parts 321, 322, 323, and 324.
  • a plurality of flow path cap plates 361 and 362 may include a plurality of flow path caps communicating the portions 321, 322, 323, and 324.
  • the flow path plates 361 and 362 may include flow path caps to communicate straight portions 321, 322, 323, and 324 spaced apart from each other to form a flow path in which the heating water flows in the sensible heat exchanger 30. .
  • both ends of the straight portion 321, 322, 323, 324 and the sensible heat insulating pipe 34 included in the sensible heat exchange pipe 32 are inserted into the sensible heat side plate 311 of the sensible heat exchanger case 31. Gina, each end is open without being closed.
  • Each of the straight portions 321, 322, 323, and 324 and the sensible heat insulation pipes 34 included in the sensible heat exchange pipe 32 extend from one of the sensible heat side plates 311 to the other, so that both ends thereof are It is provided to be exposed to the outside of the sensible heat general side plate (311).
  • the flow path cap plates 361 and 362 are coupled to the sensible heat side plate 311 while covering the sensible heat side plates 311 from the outside. Accordingly, the flow path caps of the flow path plates 361 and 362 form a communication space surrounding the ends of the straight portions 321, 322, 323, and 324 together with the ends of the sensible heat insulation pipe 34 together with the sensible heat side plates 311. do.
  • the number of straight portions 321, 322, 323, and 324 or sensible heat insulation pipes 34 through which the respective flow caps communicate at the same time is not limited to those shown in the drawings. Therefore, the number of flow path caps included in one of the flow path plates 361 and 362 is also not limited to the illustrated contents, and may be modified.
  • the flow path cap may form a series flow path in which the inlet of one pipe and the outlet of the other pipe communicate with each other, or may form a parallel flow path in which the inlet and the outlet of the connected pipe are common.
  • the inlet means an opening at one end of the pipe into which the heating water flows into the pipe
  • the outlet means an opening at the other end of the pipe from which the heating water is discharged from the pipe.
  • the pipe includes straight portions 321, 322, 323, and 324 and first and second sensible heat insulating flow paths 341 and 342.
  • One end of the end portion of the sensible heat exchange pipe 32 is located and the straightest part located at the outermost side with respect to the orthogonal direction is referred to as the first outer straight part 321.
  • the sensible heat insulating pipe adjacent to the first outer straight portion 321 is referred to as a first sensible heat insulating pipe 341.
  • the sensible heat insulating pipe located on the opposite side in the orthogonal direction to the first sensible heat insulating pipe 341 is the second sensible heat insulating pipe 342, and the straight portion adjacent to the second sensible heat insulating pipe 342 is the second outer straight part 322.
  • the straight portions located between the first outer straight portion 321 and the second outer straight portion 322 are referred to as intermediate straight portions 323 and 324.
  • the first sensible heat insulating pipe 341, the first outer straight line part 321, the middle straight line parts 323 and 324, the second outer straight line part 322, and the second sensible heat insulating pipe 342 are sequentially communicated with each other. It is possible to form one sensible heat flow path connected to each other, or to form a parallel flow path in which at least a portion of the inlet and the outlet are common. Among these, one middle straight portion 323 and another middle straight portion 324 may also be connected in series.
  • Pipes can only be connected in series to form sensible heat paths.
  • the first outer straight portion 321, the adjacent intermediate straight portion 323, 2 may form a sensible heat passage through which the heating water is transferred to the intermediate straight portion 324 adjacent to the outer straight portion 322, the second outer straight portion 322, and the second sensible heat insulating pipe 342.
  • the sensible heat passage configured only in series will be described in detail later in the description of the sensible heat passage included in the heat exchanger unit according to another modification of the first embodiment of the present invention described with reference to FIGS. 10 to 14.
  • the sensible heat flow path may include a part of the parallel flow path, in the description of the sensible heat flow path according to an embodiment of the present invention described with reference to FIGS. 8 and 9, some of the straight portions 321, 322, 323, and 324 are used. The case where is connected in parallel will be described.
  • the first sensible heat insulating pipe 341 and the first outer straight portion 321 may form a parallel flow path
  • the second sensible heat insulating pipe 342 and the second outer straight portion 322 may form a parallel flow path
  • the intermediate straight portion 323, 324 may form a parallel flow path
  • the first outer straight portion 321 and the intermediate straight portion 323 may form a parallel flow passage
  • the second outer straight portion 322 may have a parallel flow path.
  • the intermediate straight portion 324 may form a parallel flow path.
  • a plurality of parallel flow paths of the parallel flow paths may be combined with the series flow paths to form the entire sensible heat flow path.
  • the second sensible heat insulating pipe 342 may be sequentially communicated to form one sensible heat flow path.
  • the parallel flow paths are formed in both of the above-mentioned portions, the parallel flow paths may be in communication with the intermediate straight portions 323 and 324 disposed therebetween to form one sensible heat flow path.
  • the parallel flow path first receives the heating water will be described in the first embodiment of the present invention.
  • the first outer straight portion 321 and the first sensible heat insulating pipe 341 may be connected in parallel to receive and discharge the heating water together.
  • the heating water supply hole 371 may be formed in the inlet flow path cap 3621 among the flow path caps included in the second flow cap plate 362 covering the second sensible heat general side plate 3112.
  • the heating water supply opening 371 is an opening for receiving the heating water from the heating water pipe and transferring the heating water to the inlet flow path cap 3621. Can be.
  • the inlet flow path cap 3621 communicates with one end of the first outer straight portion 321 and one end of the first sensible heat insulating pipe 341 adjacent to the one end of the first outer straight portion 321. While the heating water is supplied to the inlet flow path cap 3621 through the heating water supply port 371, one end of the first outer straight portion 321 communicated with the inlet flow path cap 3621 and the first sensible heat insulating pipe 341. The heating water flows into one end.
  • the heating water passes through the first outer straight portion 321 and the first sensible heat insulating pipe 341 and is located on the opposite side of the second flow cap plate 362 with respect to the sensible heat exchange pipe 32.
  • the first flow path cap 3611 of the plate 361 is reached.
  • the first flow path cap 3611 communicates with the other end of the first sensible heat insulating pipe 341, the other end of the first outer straight part 321, and the intermediate straight part 323 adjacent to the first outer straight part 321. Therefore, the first outer straight portion 321 and the first sensible heat insulating pipe 341 is in communication with the adjacent intermediate straight portion 323 in the first flow path cap 3611, the first outer straight portion 321
  • the first sensible heat insulating pipe 341 and the heating water is passed through.
  • the intermediate straight portion 323 adjacent to the first outer straight portion 321 and the intermediate straight portion 324 adjacent to the second outer straight portion 322 to be described later are located at the middle of the second flow cap plate 362.
  • the heating water may be transferred from one middle straight portion 323 to another middle straight portion 324.
  • two intermediate straight portions 323 and 324 form part of the heating water flow path in series.
  • the straight part disposed adjacent to the second sensible heat insulating pipe 342, which is the sensible heat insulating pipe 34 through which the heating water is discharged, is the second outer straight part 322.
  • the second outer straight portion 322 and the second sensible heat insulating pipe 342 may be communicated in parallel to receive and discharge the heating water together.
  • One end of the second outer straight portion 322 and one end of the second sensible heat insulating pipe 342 adjacent to the one end of the second outer straight portion 322 cover the first sensible heat common side plate 3111.
  • the plate 361 communicates in series with another straight line portion 324 adjacent to the second outer straight line portion 322. Therefore, the heating water transmitted to the second flow path cap 3612 through another adjacent straight portion 324 flows into one end of the second outer straight portion 322 and one end of the second sensible heat insulating pipe 342.
  • the heating water passes through the second outer straight line part 322 and the second sensible heat insulating pipe 342 and is discharged to the other end of the second outer straight line part 322 and the other end of the second sensible heat insulating pipe 342. . Since the other end of the second outer straight portion 322 and the other end of the second sensible heat insulating pipe 342 are in communication with the outlet flow path cap 3622, which is one of the flow path caps formed on the second flow path cap plate 362, the outlet flow path The heating water is located in the cap 3622.
  • the outlet flow path cap 3622 includes the heating water discharge port 372, and the heating water discharged to the outlet flow path cap 3622 is discharged through the heating water discharge port 372.
  • the heating water pipe receives the heated heating water through the heating water outlet 372 to transfer the heating water to the main flow path.
  • the latent heat exchanger 40 will now be described with reference to FIGS. 2 and 3.
  • the latent heat exchanger 40 may be disposed downstream of the sensible heat exchanger 30 based on the first reference direction D1, which is a flow direction of the combustion gas.
  • the latent heat exchanger 40 receives the latent heat generated during the phase change of the combustion gas and heats the heating water. Therefore, the combustion gas passing through the sensible heat exchanger 30 is transferred to the latent heat exchanger 40, and the heating water flows in the latent heat exchanger 40 to indirectly exchange heat between the heating water and the combustion gas.
  • the latent heat exchanger (40) flows the heating water through the interior, and the latent heat exchanger pipe (42) capable of transferring the latent heat caused by the phase change of the combustion gas to the heating water through the combustion gas flows from the surrounding area (42). ), And may include a latent heat exchanger case 41 into which both ends of the latent heat exchanger pipe 42 are fitted. Since the latent heat exchanger pipe 42 is formed similarly to the sensible heat exchanger pipe 32, and the latent heat exchanger case may also be formed similarly to the sensible heat exchanger case 31, an exception will be described later. Substitute the description for the group 30. However, in the vicinity of the latent heat exchange pipe 42, condensed water may occur due to the phase change of the combustion gas, and the phenomenon of falling into the condensate receiver 55 by gravity may occur.
  • the latent heat exchanger 40 may also be a fin tube type like the sensible heat exchanger 30. Therefore, the latent heat fin 43 is formed in a plate shape orthogonal to the second reference direction D2 in which the latent heat exchange pipe 42 extends, and the latent heat fin 43 is penetrated by the latent heat exchange pipe 42.
  • the latent heat fin 43 may increase the surface area of the latent heat conduction pipe 42 capable of receiving latent heat so that more latent heat may be transferred to the heating water.
  • the latent heat fin 43 may be configured in plural, and may be disposed to be spaced apart by a predetermined interval along the second reference direction D2 in which the latent heat exchange pipe 42 is extended.
  • the interval at which the latent heat fins 43 are spaced apart may be a distance at which the condensed water formed between adjacent latent heat fins 43 is easily discharged.
  • the spacing which is easy to discharge condensate means between the latent heat fins 43 in which the weight of the condensate water formed between the latent heat fins 43 is larger than the vertical force of the tension acting between the latent heat fins 43 and the condensate. It means the interval.
  • the condensed water to be discharged from the latent heat exchanger 40 Since the height of the condensate formed between the latent heat fins 43 and the minimum spacing of the latent heat fins 43 which are easy to discharge the condensate are inversely proportional to each other, the condensed water to be discharged from the latent heat exchanger 40. By choosing an appropriate height of, it is possible to determine the interval at which condensate is easy to drain.
  • the number of latent heat pins 43 may be smaller than the number of latent heat pins 33. Therefore, the spacing between adjacent latent heat fins 43 may be greater than or equal to the spacing between adjacent sensible heat fins 33. A detailed description of the number and spacing of the sensible heat fin 33 and the latent heat fin 43 is replaced with the content to be described later in the third embodiment.
  • the cross-sectional area of the inner space of the latent heat exchanger pipe 42 cut in the plane perpendicular to the direction in which the latent heat exchange pipe 42 extends is the sensible heat exchanger pipe 32 cut in the plane perpendicular to the direction in which the latent heat exchange pipe 32 extends. It may be formed smaller than the cross-sectional area of the inner space of the).
  • the direction in which the latent heat exchange pipe 42 extends may also be the second reference direction D2. Similar to the description of the latent heat fin 43, the size of the latent heat exchange pipe 42 is smaller than the size of the sensible heat exchange pipe 32, so that the latent heat exchange pipe 42 is in the same volume. It can be made to have a surface area larger than the surface area of 32). As the surface area of the latent heat exchanger pipe 42 is widened, a greater amount of heat exchange may occur between the heating water and the condensate flowing along the latent heat exchanger pipe 42.
  • the cross-sectional shape of the latent heat exchange pipe 42 cut in a plane perpendicular to the second reference direction D2 may have a long hole shape like the sensible heat exchange pipe 32.
  • the latent heat exchanger 40 is shown without means for thermal insulation.
  • the latent heat exchanger 40 may also have a latent heat insulating pipe (not shown) disposed in the same form as the sensible heat insulating pipe 34.
  • the latent heat insulating pipe is disposed adjacent to the latent heat exchanger case, and the heating water may flow along the inside to insulate the latent heat exchanger 40.
  • the sensible heat exchanger case 31 and the latent heat exchanger case 41 are described separately from each other, but may be integrally formed as shown in the drawings.
  • a main case 51 including all of the sensible heat exchanger case 31 and the latent heat exchanger case 41 and formed integrally can be considered. Therefore, the sensible heat insulation side plate 312 of the sensible heat exchanger 30 and the latent heat insulation side plate 412 of the latent heat exchanger 40 may integrally form the main heat insulation side plate 512, and The sensible heat general side plate 311 and the latent heat general side plate 411 of the latent heat exchanger 40 may integrally form the main latent heat general side plate 411.
  • the first main general side plate 5111 included in the main general side plate 511 includes the first sensible heat insulating side plate 3111 and the first latent heat insulating side plate 4111 located on the same side along the second reference direction D2.
  • a second main general side plate 5112 included in the main general side plate 511 includes a second sensible heat insulating side plate 3112 and a second latent heat insulating plate located on another same side along the second reference direction D2.
  • Side plate 4112 may be included.
  • heat exchangers 30 and 40 of the heat exchanger unit according to another modification of the first embodiment of the present invention are connected by connecting flow path cap plates 71 and 72.
  • the following describes the situation of forming sensible heat paths and latent heat paths connected to each other.
  • FIG. 10 is a view of the heat exchanger unit from the outside of the second connecting flow path plate 72 according to another modification of the first embodiment of the present invention.
  • FIG. 11 is a view showing a first connection flow path plate 71 of a heat exchanger unit according to another modification of the first embodiment of the present invention.
  • FIG. 12 illustrates a portion of the second main general side plate 5112 of the heat exchanger unit according to another modification of the first embodiment of the present invention along with the flow path caps included in the second connection flow path plate 72.
  • FIG. 13 illustrates an inner side of the first main general side plate 5111 of the heat exchanger unit according to another modification of the first exemplary embodiment of the present invention along with the flow path caps included in the first connection flow path plate 71.
  • FIG. 14 is a perspective view illustrating a sensible heat passage and a latent heat passage of a heat exchanger unit according to another modification of the first exemplary embodiment of the present invention.
  • 29 is a perspective view illustrating a situation in which connecting flow path cap plates are separated in a heat exchanger unit according to another modification of the first exemplary embodiment of the present invention.
  • FIG. 12 shows the second main common side plate 5112 and the sensible heat exchange pipe 32 according to another modification of the first embodiment of the present invention, viewed along the HH 'line from the second connecting channel cap plate 72 of FIG. 29.
  • the straight portion 321, 322, 323, 324, and the sensible heat insulation pipes 341, 342 the flow path caps 722, 723, 724, 725 of the second connection flow cap plate 72 are dotted.
  • FIG. 13 shows the straight portions 321, 322, of the first main general side plate 5111 and the sensible heat exchange pipe 32 according to another modification of the first embodiment of the present invention as viewed along the line G-G ′ of FIG. 29. 323, 324, the sensible heat insulating pipes 341, 342, the flow path caps (712, 713, 714) of the first flow cap plate 71 is shown in dotted lines.
  • the latent heat exchange pipe 42 is a latent heat flow path, which is a path through which the heating water flows, which communicates with the sensible heat flow path, and the sensible heat exchange pipe 32 and the sensible heat insulating pipe 34 are formed.
  • a sensible heat flow path which is a path through which the heating water flows, is formed.
  • the latent heat flow path is represented in the form of an arrow passing through the latent heat exchange pipe 42
  • the sensible heat flow path is represented in the form of an arrow passing through the sensible heat exchange pipe 32 and the sensible heat insulation pipes 341 and 342. .
  • FIG. 14 In order to facilitate the understanding of the area where each flow path passes, FIG.
  • the sensible heat flow path and the latent heat flow path communicate with each other to form an integral heating water flow path.
  • the sensible heat flow path may include a series flow path in at least some sections, and the latent heat flow path may include parallel flow paths in at least some sections.
  • the sensible heat flow path is configured to include only the series flow path, the latent heat flow path is configured to include a parallel flow path.
  • connection flow path plate connecting the sensible heat exchanger 30 and the latent heat exchanger 40, respectively ( 71, 72 may be disposed.
  • the connecting flow cap plates 71 and 72 which is a kind of flow cap plate, have a latent heat exchange pipe 42 exposed to the outside of the two main general side plates 5111 and 5112 of the main case 51 of FIG.
  • it is a component having flow path caps providing a communication space surrounding the opening between the main general side plate 511.
  • connection flow path cap plates 71 and 72 located on one side of the second reference direction D2 is exposed to the outside of the reference side plate, which is one of the two main general side plates 5111 and 5112, and is a latent heat exchange pipe.
  • the outlet of the latent heat passage between the reference side plate for communicating between the outlet of the latent heat passage formed by (42) and the inlet of the sensible heat passage which is exposed to the outside of the reference side plate and introduces the heating water into the sensible heat insulating pipe 34.
  • a connecting flow path cap for providing a communication space surrounding the entrance of the sensible heat flow path.
  • the reference side plate is the second main general side plate 5112, and either one of the connection flow path plates 71 and 72 is provided with a connection flow path cap 722; The flow cap plate 72.
  • the position where the reference side plate is disposed is not limited thereto.
  • connection flow path cap 722 extends along the first reference direction D1, which is a flow direction of the combustion gas, for connecting the stacked sensible heat exchanger 30 and the latent heat exchanger 40.
  • the connection flow path cap 722 since the connection flow path cap 722 connects the plurality of straight portions included in the latent heat exchange pipe 42 and the sensible heat insulating pipe 34, the connection flow path cap 722 extends along the first reference direction D1 which is the flow direction of the combustion gas. It may extend into the latent heat exchanger (40). Therefore, the connection flow path cap 722 may be formed to have an inclined portion without being completely parallel with the first reference direction D1, which is a flow direction of the combustion gas.
  • the second connection flow path cap plate 72 has an inlet flow path cap 721 in which a heating water supply port 7141 is formed, and an outlet flow path cap 725 in which a heating water discharge port 7141 serving as an outlet of the sensible heat flow path is formed. Is formed.
  • the outlet of the sensible heat flow path is implemented by the outlet of the second sensible heat insulating pipe 342.
  • the heating water flows into the latent heat exchanger 40 through the heating water supply port 7141, and the heating water flows into the sensible heat exchanger 30 through the connection flow channel cap 722.
  • the heating water is heated and discharged from the sensible heat exchanger 30 through the heating water outlet 7171.
  • the inlet flow path cap 721 and the heating water supply port 7141 are arranged to be connected to the sensible heat exchanger 30, and the outlet flow path cap 725 and the heating water discharge port 7721 are connected to the latent heat exchanger 40. It may be disposed so as to form a heating water flow path formed in the opposite direction so that the heating water passing through the sensible heat exchanger 30 is directed to the latent heat exchanger (40).
  • a plurality of straight portions included in the latent heat exchange pipe 42 communicate with each other in parallel to the inlet flow path cap 721 such that the heating water introduced through the heating water supply port 7141 may move along the parallel flow path.
  • the outlet of the second sensible heat insulating pipe 342 is communicated to the outlet flow path cap 725 to receive and discharge the heating water heated through the sensible heat path from the second sensible heat insulating pipe 342.
  • the heating water supply port 7141 which is the inlet of the latent heat passage
  • the heating water outlet 7725 which is the outlet of the sensible heat passage
  • both the heating water supply port 7141 and the heating water discharge port 7171 may be provided in the channel cap plate covering one of the side plates constituting the main case 51 of FIG. 1.
  • This one side plate in another variant of the first embodiment of the present invention, may be a second main general side plate (5111) to form a communication space with the flow path caps of the second connection flow path cap plate 72 and The flow cap plate covering the flow path is a second connection flow cap plate 72. Therefore, the heating water flows into the heat exchanger unit and the heating water is discharged from the heat exchanger unit through a side of the side surface of the heat exchanger unit in which the second connection channel cap plate 72 is disposed.
  • the reference plane is not limited thereto and may be arranged differently.
  • the heating water supply port 7141 and the heating water discharge port 7171 are disposed on the same side of the heat exchanger unit, the heating water flows in through the heating water supply port 7141 and the heating water flows through the heating water discharge port 7721.
  • the direction in which the water is discharged may be opposite to each other. Since the heating water is introduced and discharged through the same side, it is possible to save the space required for arranging the heating water pipes connected to the heating water supply port 7141 and the heating water discharge port 7171.
  • the heating water supply port 7141 and the heating water discharge port 7171 may be disposed on opposite sides of each other.
  • the heating water flow path has a total even number of sections in which the heating water is directed from one side of the second reference direction D2 to the other side or from the other side to one side.
  • the total heating water flow paths change the direction in total seven times, but the number of times is not limited thereto.
  • the latent heat flow path and the sensible heat flow path connecting the plane located on the opposite side of the reference plane and the reference plane along the second reference direction D2 so that the heating water flowing from the reference plane to the plane located on the opposite side of the reference plane is returned to the reference plane.
  • the interval may be even.
  • the second connection flow path cap plate 72 includes the inlet flow path cap 721, the outlet flow path cap 725, and the connection flow path cap 722, and adjacent straight portions 321 included in the sensible heat exchange heat pipe 32. And a second sensible heat passage cap 723 and a fourth sensible heat passage cap 724 communicating 322, 323, and 324.
  • the second sensible heat passage cap 723 may connect the first outer straight portion 321 and the middle straight portion 323 in series
  • the third sensible heat passage cap 724 may have the second outer straight portion 322.
  • the intermediate straight portion 324 may be connected in series.
  • the first connection channel cap plate 71 is coupled to the first main general side plate 5111 on the opposite side of the second connection channel cap plate 72 based on the sensible heat exchanger 30 and the latent heat exchanger 40. . Therefore, the connection flow path cap 722 is not formed, and the latent heat flow path cap 722 communicating the linear portions adjacent to each other included in the latent heat exchange pipe 42 and the linear portions adjacent to each other included in the sensible heat exchange pipe 32 are formed.
  • the first sensible heat passage cap 712, the third sensible heat passage cap 713, and the fifth sensible heat passage cap 714 communicated with each other.
  • the latent heat passage cap 711 is formed as one, but the number is not limited thereto and may be formed in plural.
  • the latent heat passage cap 711 may be in full communication with the ends of the plurality of straight portions included in the latent heat exchange pipe 42. Therefore, a plurality of straight portions included in the latent heat exchange pipe 42 may form a parallel flow path.
  • the first sensible heat passage cap 712 communicates with the first sensible heat insulating pipe 341 and the first outer straight portion 321, and the third sensible heat passage cap 713 communicates with the middle straight portions 323 and 324.
  • the fifth sensible heat flow path cap 714 may communicate the second outer straight portion 322 and the second sensible heat insulating pipe 342.
  • the heating water flow path formed by the first connection flow path cap plate 71 and the second connection flow path cap plate 72 according to another modification of the first embodiment of the present invention described above will be described along the flow of heating water.
  • the heating water is introduced into the latent heat exchanger 40 through the heating water supply port 7141 formed in the inlet flow path cap 721 of the second connection channel cap plate 72. Since the inlet flow path cap 721 connects the plurality of straight lines included in the latent heat exchange pipe 42 in parallel, the heating water is connected to the second through the plurality of latent heat exchange pipes 42 connected to the inlet flow path cap 721.
  • the latent heat flow path cap 711 formed in the flow path cap plate 72 is transferred along the parallel flow path.
  • the latent heat path cap 722 connects all of the latent heat exchange pipes 42 arranged in parallel, the plurality of latent heat exchange pipes 42 connected in parallel with the connection channel cap 713 without being connected to the inlet flow path cap 712.
  • the heating water is delivered to the connection flow path cap 713 through). That is, in the area
  • connection flow path cap 722 is connected to the first sensible heat insulating pipe 341.
  • the heating water flows through the first sensible heat insulating pipe 341 to block the heat loss of the sensible heat exchanger 30 while transferring the heating water to the first sensible heat flow path cap 712 of the first connection flow path cap plate 71.
  • the heating water is delivered to the first outer straight portion 321 connected to the first sensible heat flow path cap 712, and the heating water is transferred to the second sensible heat flow path cap 723. Since the intermediate straight portion 323 is in communication with the second sensible heat passage cap 723, the heating water flows along the intermediate straight portion 323 and is transmitted to the third sensible heat passage cap 713. Since the middle straight portion 324 is in communication with the third sensible heat passage cap 713, the heating water flows along the middle straight portion 324 and is transferred to the fourth sensible heat passage cap 724. Since the second outer straight portion 322 is in communication with the fourth sensible heat passage cap 724, the heating water flows along the second outer straight portion 322 and is transferred to the fifth sensible heat passage cap 714. Since the second sensible heat insulation pipe 342 communicates with the fifth sensible heat flow path cap 714, the heating water flows along the second sensible heat insulation pipe 342 and is delivered to the outlet flow path cap 725.
  • the heating water reciprocates between the first connection channel cap plate 71 and the second connection channel cap plate 72 while being heated in series along the sensible heat channel and is heated by sensible heat, and the second sensible heat insulating pipe 342 Delivered to.
  • the second sensible heat insulating pipe 342 blocks the heat loss of the sensible heat exchanger 30 while transferring the heating water to the outlet flow path cap 725, and the heating water is discharged through the heating water outlet 7171 to be used for heating. do.
  • the condensing boiler 1 including the heat exchanger according to the first embodiment of the present invention includes a main flow path.
  • the main flow passage is a pipe that directly or indirectly communicates with a heating flow passage for providing heating, and supplies heating water to the heating flow passage.
  • the main flow path is directly or indirectly connected to the sensible heat exchanger 30 or the latent heat exchanger 40 to provide heating water to the heat exchanger so that the heating water is heated, or to provide heated heating water from the heat exchanger to the heating flow path. Do it. Therefore, the heating water pipe connected to the sensible heat exchanger 30 and the latent heat exchanger 40 described above to supply or receive the heating water may be included in the main flow path.
  • FIG. 15 is a longitudinal sectional view of a heat exchanger unit according to a second embodiment of the present invention.
  • the heat exchanger unit according to the second embodiment of the present invention may have a sensible heat exchanger 81 and a latent heat exchanger 82 having two rows.
  • the width of the first latent heat exchanger 821 located in the upstream side of the combustion gas in the orthogonal direction may be greater than the width of the second latent heat exchanger 822.
  • the heat exchanger unit according to the second embodiment of the present invention the linear portion 8211 of the number of the latent heat exchange pipe including a greater number of modifications than the first embodiment of the present invention and the first embodiment of the present invention It may have a number, and the number of the straight portion 811 included in the sensible heat exchange pipe.
  • the number of the linear portions of the first latent heat exchanger 821 may be greater than the number of the linear portions of the second latent heat exchanger 821.
  • Fig. 16 is a front view showing the flow path cap plate 90 of the heat exchanger unit according to the modification of the second embodiment of the present invention with each pipe. Tubing is indicated by dashed lines.
  • the channel cap plate 90 of the heat exchanger unit according to the modification of the second exemplary embodiment of the present invention is not directly formed in the channel cap, but is formed directly in the channel cap plate 90.
  • the heating water outlet 91 is provided.
  • the heating water outlet 91 may not be located downstream of the sensible heat exchange pipe 95 along the first reference direction D1, which is the flow direction of the combustion gas, and may be disposed adjacent to the same line along the orthogonal direction. .
  • the channel cap plate 90 according to the modification of the second embodiment of the present invention may include a modified connection channel cap 92.
  • the inclined portion formed at an angle without being parallel to the first reference direction D1 that is the orthogonal direction and the flow direction of the combustion gas ( The length of 922 is formed to be smaller than the length of the portion 923 extending along the first reference direction D1, which is the flow direction of the combustion gas, and the portion 921 extending along the orthogonal direction.
  • the width of the inclined portion 922 relative to the portion 921 extending along the orthogonal direction is reduced as compared with the connecting flow channel cap 722 of FIG. 10 according to another modification of the first embodiment of the present invention.
  • the flow path cap plate 90 does not linearly symmetric with respect to a straight line parallel to the first reference direction D1, which is the flow direction of the combustion gas. May have an asymmetric structure.
  • the channel cap plate 90 may have a tapered shape that becomes narrower in width along the first reference direction D1, which is a flow direction of the combustion gas.
  • the inclined portion 93 on the left side and the inclined portion on the right side thereof are narrowed.
  • 94 may be configured to have a tapered outer surface from different points to another different point relative to the first reference direction D1 which is the flow direction of the combustion gas. The unnecessary area is cut out to reduce material waste.
  • the shape of the sensible heat exchanger 81 and the latent heat exchanger 82 according to the second embodiment, and the shape of the flow path plate 90 according to the modification of the second embodiment is different from the embodiment of the present invention and its modifications. This may also apply to examples.
  • 17 is a longitudinal sectional view of a heat exchanger unit and a condensing boiler 2 using the same according to the third embodiment of the present invention.
  • 18 is a side view of the heat exchanger unit and the condensing boiler 2 using the same according to the third embodiment of the present invention.
  • the condensing boiler 2 includes a combustion chamber 20 and a heat exchanger unit.
  • the condensing boiler 2 including the heat exchanger unit according to the third embodiment of the present invention includes a burner assembly 10 including a burner 11.
  • the burner assembly 10 and the heat exchanger unit are sequentially arranged along the reference direction D1, which is the flow direction of the combustion gas, and the components are arranged in the order of the combustion chamber 20 and the heat exchanger unit in the same direction in the heat exchanger unit.
  • D1 is the flow direction of the combustion gas
  • the components of the condensing boiler 2 will be described in the above-described arrangement order.
  • the burner assembly 10 the combustion chamber 20, the condensate receiver 55, the condensate outlet 53, and the exhaust duct 52 included in the heat exchanger unit and the condensing boiler 2 using the same according to the third embodiment of the present invention.
  • 19 is a plan view of a heat exchanger unit according to a third embodiment of the present invention.
  • 20 is a longitudinal sectional view of a heat exchanger unit according to a third embodiment of the present invention.
  • the heat exchanger unit according to the third embodiment of the present invention includes a sensible heat exchanger 300 and a latent heat exchanger 400.
  • the heat exchanger unit of the present invention may include a housing 510 surrounding the sensible heat exchange area and the latent heat exchange area in which each of the heat exchange parts 300 and 400 are disposed to define heat exchange areas therein.
  • the sensible heat exchanger 300 and the latent heat exchanger 400 may be disposed in the sensible heat exchanger region and the latent heat exchanger region, respectively.
  • the sensible heat exchange zone and the latent heat exchange zone are connected so that the combustion gas delivered from the combustion chamber 20 may flow in the sensible heat exchange zone and the latent heat exchange zone along the reference direction D1, which is the flow direction thereof.
  • the sensible heat exchange region is located downstream from the combustion chamber 20 based on the reference direction D1, and is a region for heating heating water by receiving sensible heat generated upstream.
  • the size of the sensible heat exchange region is a space extending from the most upstream side to the most downstream side of the sensible heat exchange unit 300 along the reference direction D1 among the spaces surrounded by the housing 510. Therefore, the sensible heat exchange area is in communication with the internal space 22 of the combustion chamber 20, the combustion gas can flow, it is possible to receive the radiant heat from the burner (11).
  • the sensible heat must be transmitted to the heating water, and thus, the sensible heat exchange part 300 including the sensible heat exchange pipe 320 and the sensible heat fin 330 is disposed in the sensible heat exchange area.
  • the sensible heat exchange pipe 320 is a pipe-like component in which heating water flows through and combustion gas flows in the surroundings.
  • the sensible heat exchange pipe 320 extends in the sensible heat exchange region 32 along the second reference direction D2.
  • the second reference direction D2 may be a direction perpendicular to the reference direction D1.
  • the sensible heat exchange pipe 320 may extend along the second reference direction D2 and be coupled to the housing 510.
  • the sensible heat exchange pipe 320 may include a plurality of sensible heat straight portion.
  • the sensible straight lines may be arranged to be spaced apart from each other along an orthogonal direction that is another direction perpendicular to the second reference direction D2.
  • the plurality of sensible heat linear parts of the sensible heat exchange pipe 320 is coupled to the flow path cap plates 363 and 364 of the housing 510 to be described later, thereby forming one sensible heat flow path through which the heating water flows.
  • the sensible heat fin 330 is a component that is formed in a plate shape across the direction in which the sensible heat exchange pipe 320 extends and penetrated by the sensible heat exchange pipe 320. Since the sensible heat fin 330 is penetrated by the sensible heat exchange pipe 320, the sensible heat exchange part 300 may constitute a heat exchange part in the form of a fin tube.
  • the sensible heat exchanger 300 includes the sensible heat fin 330, it is possible to increase the thermal conductivity of the sensible heat exchange pipe 320.
  • the sensible heat fin 330 may be configured in plural and spaced apart by a predetermined interval along the second reference direction D2 in which the sensible heat exchange pipe 320 extends.
  • the sensible heat fin 330 may increase the surface area of the sensible heat exchange pipe 320 that can receive the sensible heat to transmit more sensible heat to the heating water. Therefore, in order to effectively heat transfer, the sensible heat exchange pipe 320 and the sensible heat fin 330 may be formed of a metal having high thermal conductivity.
  • a cross section in which the sensible heat exchange pipe 320 is cut in a plane orthogonal to the second reference direction D2 in which the sensible heat exchange pipe 320 extends may be formed in the form of a long hole extending along the reference direction D1.
  • the sensible heat exchange pipe 320 according to the third embodiment of the present invention has a length of the internal space in the cross section with respect to the reference direction D1 in a direction perpendicular to the reference direction D1. It has a flat shape formed such that the value divided by the width is equal to or greater than 2.
  • a through hole through which the sensible heat exchange pipe 320 may pass may be formed, and the area of the through hole may be equal to or slightly smaller than that of the sensible heat exchange pipe 320, and thus, the sensible heat exchange pipe ( 320 may be tightly fitted.
  • the sensible heat fin 330 may be integrally coupled with the sensible heat exchange pipe 320 and the brazing (brazing) welding. A method of brazing welding the sensible heat fin 330 and the sensible heat exchange pipe 320 will be described in detail with reference to FIGS. 15 and 16.
  • louver holes 3303 and 3304 penetrated along the extending direction of the sensible heat exchange pipe 320 may be further formed.
  • the louver holes 3303 and 3304 include burrings formed through punching and protruding along the circumference thereof, are blocked by the burring when the combustion gas flows, flow around the sensible heat exchange pipe 320, and the combustion gas and heating. It is a component that allows better heat exchange between water.
  • the louver holes 3303 and 3304 may be configured in plural numbers. As shown in the drawing, the louver holes 3303 and 3304 are formed of the first louver hole 3303 extending in an oblique direction with respect to the reference direction D1 and the sensible heat linear parts adjacent to each other in the sensible heat exchange pipe 320.
  • louver hole 3304 extending in an orthogonal direction perpendicular to the reference direction D1 may be included.
  • Each of the louver holes 3303 and 3304 may be spaced apart from each other at a predetermined interval along the reference direction D1.
  • the sensible fin 330 may further include a valley 3302 and a protrusion 3301.
  • the sensible heat fin 330 is basically formed so as to surround the sensible heat exchange pipe 320, sensible heat from the edge of the upstream end of the sensible heat exchange pipe 320, based on the reference direction (D1) It may be surrounded by the remaining area of the heat exchange pipe 320. Accordingly, a fine valley 3302 may be formed in the sensible fin 330 along the reference direction D1 between the upstream ends of the adjacent sensible heat exchange pipe 320. Since the region of the sensible heat fin 330 adjacent to the upstream end of the sensible heat exchange pipe 320 is relatively protruded, it becomes a protrusion 3301. By opening the unnecessary area by forming the valleys 3302, the combustion gas flows more freely between the sensible heat fin 330 and the sensible heat exchange pipe 320.
  • the latent heat exchange region is located downstream from the sensible heat exchange region based on the reference direction D1 and is a region for heating the heating water by receiving latent heat generated when the combustion gas phase changes.
  • the latent heat exchange region is sized as a space extending from the most upstream side to the most downstream side of the latent heat exchange part 400 along the reference direction D1 among the spaces surrounded by the housing 510.
  • the latent heat exchange pipe 420 and the latent heat heat exchange pipe 420 and the latent heat heat exchange pipe 420 in which the combustion gas flows around are formed in a plate shape and extend in the latent heat exchange pipe.
  • the latent heat exchange part 400 including the latent heat fin 430 penetrated by the 420 is disposed.
  • the configuration of the latent heat exchanger pipe 420 and the latent heat fin 430 is similar to that of the sensible heat exchanger pipe 320 and the sensible heat fin 330. Therefore, the description of the basic structure of the latent heat exchange pipe 420 and the latent heat fin 430 is replaced with the above description of the structure of the sensible heat exchange pipe 320 and the sensible heat fin 330. Therefore, the latent heat exchanger 400 may also be configured as a fin tube type.
  • the latent heat exchange pipe 420 is located on the downstream side of the plurality of upstream straight portions 421 and the upstream straight portions 421 on the basis of the reference direction D1, and the upstream straight line of one of the plurality of upstream straight portions 421. It may include a plurality of downstream straight portion 422 in which any one of the portion 421 is in communication. That is, the latent heat exchange pipe 420 may be arranged in two rows. The latent heat exchange pipe 420 may be arranged to have a greater number of rows than two rows. Thus, by having the latent heat exchange pipe 420 of several rows of straight lines, it is possible to increase the thermal efficiency that can easily fall by using the fin tube method.
  • each latent heat exchange pipe 420 four upstream straight portions 421 and three downstream straight portions 422 are arranged. This is because the reference cross-sectional area of the latent heat exchange region may decrease along the reference direction D1 as described below. However, the number of the plurality of latent heat linear parts 421 and 422 extending in the second reference direction D2 constituting each latent heat exchange pipe 420 is not limited thereto.
  • the latent heat fin 430 may also be separated and disposed in accordance with each latent heat exchange pipe 420. That is, the upstream straight portion 421 is coupled to an upstream fin 431, which may be included in the latent heat fin 430, and the downstream straight portion 422 is a downstream fin 432, which may include the latent heat fin 430. Can be combined.
  • the latent heat exchanger pipe 420 is arranged in two rows, it is possible to prevent a situation in which the combustion gas does not sufficiently transfer heat to the heating water due to the lack of the heat transfer area in the latent heat exchange area, and thus the large area for the entire combustion gas Sufficient heat exchange over can reduce the fraction of flue gas emissions and emissions.
  • the cross sectional area of the inner space of the latent heat linear parts 421 and 422 of the latent heat exchange pipe 420 may be smaller than the cross sectional area of the inner space of the sensible heat linear part of the sensible heat exchange pipe 320.
  • the product of the cross sectional area of the inner space of the sensible heat linear portion and the total extension of the sensible heat exchange pipe 320 may maintain a numerical value corresponding to the product of the cross sectional area of the inner space of the latent heat linear parts 421 and 422 and the total length of the latent heat exchange pipe 420.
  • the cross-sectional area of the latent heat linear portions 421 and 422 may be smaller than the cross-sectional area of the inner space of the sensible heat linear portions, but the total number of the sensible heat linear portions may be less than the total number of the latent heat linear portions 421 and 422. .
  • the number of closed curves formed by the circumference of the sensible heat straight line part is the latent heat linear part 421.
  • the latent heat exchange pipe 420 may be formed such that the circumference of the 422 is smaller than the number of closed curves.
  • the efficient heating water circulation may not be made due to the rapid pressure drop of the heating water generated in the section where the flow path is sharply bent. Therefore, the sectional area and the total number of the sensible heat exchanger pipe 320 and the latent heat exchanger pipe 420 are thus adjusted.
  • the cross-sectional area and the total number of the heat exchange pipe may be applied to other embodiments and modifications thereof.
  • the latent heat fin 430 may also be configured in plural, like the sensible heat fin 330, and the latent heat exchange heat pipe 420. It is spaced apart at predetermined intervals along this extended direction.
  • At least one layer may be formed in which the latent heat fins 430 disposed at the same position with respect to the reference direction D1 are disposed.
  • the total number of latent heat fins 430 disposed on the layer closest to the sensible fin 330 among these layers may be less than the total number of sensible fins 330.
  • a total of two layers may be disposed, including one layer formed by the upstream fin 431 and one layer formed by the downstream fin 432.
  • an upstream fin 431 is disposed at the layer closest to the sensible fin 330.
  • the total number of upstream fins 431 may be less than the total number of sensible fins 330.
  • the distance between two adjacent latent heat fins 430 may be longer than the distance between two adjacent heat sink fins 330.
  • the gap between the latent heat fins 430 is greater than that between the sensible heat fins 330.
  • the distance between two adjacent downstream fins 432 may be longer than the distance between two adjacent upstream fins 431.
  • the predetermined interval which is a distance from which the adjacent latent heat fins 430 are spaced along the second reference direction D2, is such that the condensed water formed by condensation of combustion gas between the adjacent latent heat fins 430 is adjacent to each other. It can be as long as you don't connect. That is, the distance between adjacent latent heat fins 430 may be an interval for easily discharging condensed water.
  • FIG. 21 is a perspective view illustrating a plurality of downstream fins 432 and condensate W disposed therebetween according to a third embodiment of the present invention. Referring to FIG. 21, the distance between the latent latent fins 430 of the latent latent fins 430 will be described.
  • Condensate water droplets may be formed and attached to the surface of the downstream fin 432, the condensate water droplets formed on the surface of the adjacent downstream fin 432 are combined to block the space between the latent heat fin (430) Therefore, a problem may occur that prevents the combustion gas from smoothly moving along the reference direction D1. Therefore, by arranging the downstream fins 432 at a predetermined interval or more, the condensate droplets do not merge with each other, so that combustion gas may flow between adjacent downstream fins 432.
  • the interval that is easy to discharge the condensate (W) is the tension (T) that the weight of the condensate (W) formed between the downstream fin 432 acts between the downstream fin 432 and the condensate (W).
  • T tension
  • W weight of the condensate
  • the condensate W is closed between the downstream fins 432 adjacent to each other and separated by a distance d from each other and having a width of b in the second reference direction D2.
  • the weight of the volume of the condensate (W) formed by the height of h is multiplied by the volume d of the condensate (W), the product of the distance b, the width (b) and the height (h) times the specific gravity of the condensate (W). It is represented by a value. This weight acts vertically downward on the condensate.
  • the force acting vertically upward on such condensed water W is formed by the force of surface tension.
  • the distance d that satisfies the value is an interval that is easy to discharge the condensed water (W).
  • the tension T measured in one situation is 0.073 N / m.
  • the weight of condensate is 1000 kg / m 3
  • can be approximated to 0 degrees
  • g can be approximated to 9.8 m / s 2 .
  • the height h of the condensate is mainly distributed in a section of 5 mm or more and 8 mm or less
  • a predetermined interval d may be formed to be 1.9 mm or more and 3 mm or less in one situation when the values are substituted.
  • the description of the number and spacing of these pins can be applied to other embodiments and modifications thereof.
  • the housing 510 will be described again with reference to FIGS. 17 to 20.
  • the housing 510 is a component defined by surrounding the sensible heat exchange region and the latent heat exchange region, and may include a heat insulation side plate 5120 and a general side plate 5110.
  • the general side plate 5110 may include a first general side plate 5113 and a second general side plate 5114 spaced apart along the second reference direction D2, and may be covered by flow path plates 363 and 364, respectively.
  • the heat insulation side plate 5120 is a plate-like component extending along the reference direction D1 and the second reference direction D2.
  • the heat insulation side plate 5120 may be composed of two and spaced apart from each other in an orthogonal direction.
  • the heat insulation side plate 5120 forms two sides of the heat exchanger unit. According to the shape of the inner surface of the heat insulating side plate 5120, the side shapes of the sensible heat exchange region and the latent heat exchange region are determined.
  • the heat insulation side plate 5120 is not used as a side plate that reduces heat quantity transferred to the outside to achieve heat insulation, but is used as a side plate in which the sensible heat insulation pipe 340 is disposed adjacent to each other. Adjacent to the heat insulation side plate 5120, the sensible heat insulation pipe 340 may be further disposed.
  • the sensible heat insulating pipe 340 is disposed adjacent to the housing 510 surrounding the sensible heat exchange region, and the heating water flows through the inside, thereby reducing the amount of heat from the sensible heat exchange region to escape to the outside of the housing 510.
  • the sensible heat insulating pipe 340 is composed of two, as shown, may be arranged to extend in the second reference direction (D2) the same as the extending direction of the sensible heat exchange pipe (320).
  • the sensible heat insulating pipe 340 as shown in the cross-sectional view cut the sensible heat insulating pipe 340 in a plane orthogonal to the direction in which the sensible heat insulating pipe 340 extends, may be formed in an oval shape. Specifically, the sensible heat insulation pipe 340 may be formed in an elliptical shape having a long axis parallel to the reference direction D1. The sensible heat insulating pipe 340 of the third embodiment may be equally applicable to the sensible heat insulating pipe 340 of the first embodiment.
  • the general side plate 5110 and the channel cap plates 363 and 364 are plate-like components extending along the reference direction D1 and the orthogonal direction.
  • the general side plate 5110 may be composed of two, and the sensible heat exchange pipe 320 or the latent heat exchange pipe 420 may be spaced apart from each other in the second reference direction D2.
  • the two general side plates 5110 When the two general side plates 5110 are disposed, they may be disposed at both ends of each of the sensible heat linear portions and the latent heat linear portions 421 and 422, respectively. Both ends of the sensible heat linear portion and the latent heat linear portions 421 and 422 may be coupled to penetrate through the two general side plates 5113 and 5114.
  • the channel cap plates 363 and 364 are similarly configured in two, and may be coupled to cover the general side plate 5110 from the outside.
  • the general side plate 5110 and the channel cap plates 363 and 364 may form the remaining two side surfaces of the heat exchanger unit not covered by the heat insulating side plate 512. According to the shape of the inner side surface of the general side plate 5110, other side shapes of the sensible heat exchange region and the latent heat exchange region are determined.
  • the channel cap plates 312 and 313 include a second channel cap plate 364 and a first channel cap plate 363 in which a plurality of channel caps are formed, respectively, and each of the second general side plate 5114 and the first general member
  • the side plate 5113 may be covered and disposed adjacent to both ends of the sensible heat linear portion or the latent heat linear portions 421 and 422.
  • the second flow cap plate 364 may include a heating water supply port 3710 and a heating water discharge port 3720.
  • the heating water supply port 3710 is an opening for supplying heating water to one end of the latent heat passage formed by the latent heat exchange pipe 420 from the outside, and may be an inlet of the latent heat passage, and the heating water outlet 3720. Is an opening for discharging the heating water from one end of the sensible heat flow path formed by the sensible heat exchange pipe 320 to the outside, it may be an outlet of the sensible heat flow path.
  • the heating water may be introduced from the outside through the heating water supply port 3710 positioned relatively downstream with respect to the reference direction D1, and the heating water may be transferred to the latent heat exchange heat pipe 420.
  • the heating water heated in the sensible heat exchange pipe 320 may be discharged to the outside through the heating water outlet 3720 positioned relatively upstream with respect to the reference direction D1.
  • the positions of the heating water supply port 3710 and the heating water discharge port 3720 are not limited thereto.
  • One of the channel cap plates 363 and 364 communicates an outlet of the latent heat passage exposed to the outside of any one of the side plates constituting the housing 510 and an inlet of the sensible heat passage exposed to the outside of the one of the side caps.
  • it may be provided with a flow path cap for providing a communication space surrounding the exit of the latent heat flow path and the sensible heat flow path between any one of the above.
  • such a flow path cap may be a second flow path cap 3642 provided in the second flow path cap plate 364. Therefore, any one of the side plates becomes the 2nd general side plate 5112 which provides the communication space with the 2nd flow path cap plate 364.
  • the side plate and the channel cap plate communicating the inlet of the sensible heat passage and the outlet of the latent heat passage are not limited thereto.
  • the description of the heating water pipe and the main flow path of the first embodiment may be applied to the heating water pipe and the main flow path that may be connected to the heating water supply port 3710 and the heating water discharge port 3720 of the third embodiment of the present invention.
  • each heat exchange area defined in the plane perpendicular to the reference direction D1 be the reference cross-sectional area.
  • the housing 510 may be provided such that the reference cross-sectional area of the downstream side is smaller than the reference cross-sectional area of the most upstream side with respect to the reference direction D1.
  • the housing so that the reference cross-sectional area of the heat exchange zone is gradually reduced along the reference direction D1 so that the speed at which the combustion gas flows in the latent heat exchange zone is increased rather than the speed at which the combustion gas flows in the sensible heat exchange zone. 510 may be provided.
  • the housing 510 may be formed to include at least one section in which a reference cross-sectional area decreases along the reference direction D1. Therefore, the heat exchange region may have a tapered shape as the whole goes along the reference direction D1.
  • the housing 5120 is formed such that the reference cross-sectional area of the heat exchange zone is small, when the combustion gas flows in the latent heat exchange zone, the flow rate is greatly reduced at a specific position, whereby dead zones in which heat transfer efficiency is very low are generated. Can be prevented by Bernoulli's principle.
  • the latent heat exchange pipe 420 is formed of two or more layers as in the third embodiment of the present invention, the condensate blocks the space between the latent heat fins 430 or the reference direction D1 of the latent heat exchange region.
  • the housing 510 is formed such that the width of the heat exchange area in the orthogonal direction includes at least one section that decreases along the reference direction D1, and the width of the heat exchange area in the second reference direction D2 is increased. It may be formed to be kept constant along the reference direction (D1). That is, while the width in the second reference direction D2 is maintained while following the reference direction D1, only the width in the orthogonal direction is reduced, thereby reducing the reference cross-sectional area.
  • the general side plate 5110 may be formed in a general plate shape, and the heat insulation side plate 5120 may be bent as shown.
  • the section corresponding to the latent heat exchange region is a section from the second point A2 where the inlet end of the upstream fin 431 is located to the point where the outlet end of the downstream fin 432 is located. to be.
  • a section in which the reference cross-sectional area decreases along the reference direction D1 is formed between the second point A2 and the third point A3 and between the fourth point A4 and the sixth point A6.
  • a section in which the reference cross-sectional area is maintained is formed between the third point A3 and the fourth point A4 and between the sixth point A6 and the outlet end of the downstream fin 432.
  • the section between the first point A1 and the second point A2, which is part of the heat exchange region is also a section in which the reference cross-sectional area decreases along the reference direction D1.
  • the heat exchange area is formed to include at least one section in which the width in the orthogonal direction decreases along the reference direction D1 and at least one section in which the width in the orthogonal direction is kept constant. You can check it.
  • the width in the orthogonal direction of the latent heat exchange region is the reference direction ( It can be seen that the decrease along the D1).
  • the width in the orthogonal direction is kept constant. Can be.
  • the width in the orthogonal direction is kept substantially constant to allow sufficient heat exchange, and the flow velocity in the section between the linear portions. It can be seen that the reference cross-sectional area decreases along the reference direction D1 so as to be faster.
  • the shape of the heat exchange region may be described by designating the upstream side of each fin 330, 431, 432 as the inlet end and the downstream side as the outlet end based on the reference direction D1.
  • the housing 510 may be provided such that the reference cross-sectional area gradually decreases from the outlet end side of the sensible heat fin 330 toward the inlet end side of the latent heat fin 430 along the reference direction D1. That is, in FIG. 20, the section from the first point A1 where the outlet end of the sensible heat fin 330 is located to the second point A2 where the inlet end of the latent heat fin 430 is located is the reference direction D1.
  • the housing 510 may be formed such that the reference cross-sectional area gradually decreases along).
  • the housing 510 may be provided so that the reference cross-sectional area of the inlet end side of the downstream pin 432 is smaller than the reference cross-sectional area of the inlet end side of the upstream pin 431. That is, the reference cross-sectional area at the fifth point A5 at which the inlet end of the downstream pin 432 is located is smaller than the reference cross-sectional area at the second point A2 at the inlet end of the upstream pin 431.
  • the interval between the second point A2 and the fifth point A5 includes at least one section in which the reference cross-sectional area decreases along the reference direction D1.
  • the housing 510 may be formed such that a reference cross-sectional area of a portion of the sensible heat exchange region also decreases along the reference direction D1.
  • each fin may have a section in which the width in the orthogonal direction decreases along the reference direction D1.
  • the area of the sensible heat fin 330 or the latent heat fin 430 in the heat exchange area, which is in contact with the inner surface of the housing 510, has a reference cross-sectional area based on the width of the fin defined in the direction perpendicular to the reference direction D1. In response to gradually decreasing, the width may be gradually decreased along the reference direction D1.
  • the width of the upstream fin 431 located in the region adjacent to the outlet end of the sensible fin 330 and the section from the fourth point A4 to the outlet end of the upstream fin 431 is the housing 510. It can be seen that decreases toward the reference direction (D1) according to the shape of the inner surface of the.
  • FIG. 22 is a longitudinal sectional view of a heat exchanger unit according to a first modification of the third embodiment of the present invention.
  • the shape of the heat exchanger unit according to the first modification of the third embodiment having the sensible heat exchange pipe 320 in one row and the latent heat heat exchange pipe 420 in two rows can be confirmed as in the third embodiment of the present invention. .
  • the housing 510b according to the first modification of the third embodiment may also be provided such that the reference cross-sectional area of the downstream side is smaller than the reference cross-sectional area of the most upstream side with respect to the reference direction D1.
  • the housing 510b may include at least one section in which the reference cross-sectional area is gradually reduced along the reference direction D1 so that the speed at which the combustion gas flows in the latent heat exchange region increases rather than the speed at which the combustion gas flows in the sensible heat exchange region. Can be prepared. The effect that the heat exchanger unit can obtain as the section in which the reference cross-sectional area is reduced is replaced with the content described with respect to FIG. 20.
  • the housing 510b may be provided such that the reference cross-sectional area is gradually reduced from the outlet end side of the sensible heat fin 330b toward the inlet end side of the latent heat fin 430b.
  • the reference cross-sectional area of the section from the first point B1 at which the outlet end of the sensible heat fin 330b is located to the second point B2 at which the inlet end of the latent heat fin 430b is located is the reference direction D1. Accordingly, the housing 510b may be formed to gradually decrease.
  • the heat exchange area is maintained with the section whose reference cross-sectional area decreases along the reference direction D1. It can have only a section.
  • the reference cross-sectional area at the outlet end of the downstream pin 432b may be smaller than the reference cross-sectional area at the second point B2.
  • the housing 510b may be provided such that the reference cross-sectional area is gradually reduced from the inlet end side of the latent heat pin 430b toward the outlet end side of the latent heat pin 430b.
  • the housing 510b may be provided so that the reference cross-sectional area of the inlet end side of the downstream pin 432b becomes smaller than the reference cross-sectional area of the inlet end side of the upstream pin 431b.
  • the reference cross-sectional area is along the reference direction D1.
  • the housing 510b may be provided to decrease gradually, thereby satisfying such a condition.
  • the latent heat exchange region includes a section from the second point B2 to the fifth point B5, which is a section in which the reference cross-sectional area decreases along the reference direction D1, and a section in which the reference cross-sectional area is kept constant. It may have a section from the fifth point (B5) to the outlet end of the downstream pin (432b).
  • the area of the latent heat fin 430b which is in contact with the inner surface of the housing 510b is gradually reduced along the reference direction D1 to correspond to the reference cross-sectional area gradually decreasing based on the width of the pin defined in the orthogonal direction.
  • the housing 510b is provided to decrease along the direction D1. Therefore, the width defined in the orthogonal direction of the upstream fin 431b may be formed in a tapered shape so as to decrease along the reference direction D1.
  • FIG. 23 is a longitudinal sectional view of a heat exchanger unit according to a second modification of the third embodiment of the present invention.
  • the shape of the heat exchanger unit according to the second modification of the third embodiment having one row of sensible heat exchange pipes 320c and two rows of latent heat exchange pipes 420c as in the third embodiment of the present invention can be confirmed.
  • the heat exchange pipe of the third embodiment and the second modified example differs in that in this modified example, a total of five straight portions and six upstream straight portions 421c are arranged in the sensible heat exchange pipe 320c. The number is not limited to this.
  • the housing 510c according to the second modification of the third embodiment may also be provided such that the reference cross-sectional area of the downstream side is smaller than the reference cross-sectional area of the most upstream side with respect to the reference direction D1.
  • the housing 510c may include at least one section in which the reference cross-sectional area gradually decreases along the reference direction D1 so that the speed at which the combustion gas flows in the latent heat exchange region increases rather than the speed at which the combustion gas flows in the sensible heat exchange region. Can be prepared. The effect that the heat exchanger unit can obtain as the section in which the reference cross-sectional area is reduced is replaced with the content described with respect to FIG. 20.
  • the housing 510c may be provided such that the reference cross-sectional area is gradually reduced from the outlet end side of the sensible heat fin 330c toward the inlet end side of the latent heat fin 430c.
  • the reference cross-sectional area of the section from the first point C1 at which the outlet end of the sensible heat fin 330c is located to the second point C2 at which the inlet end of the latent heat fin 430c is located is the reference direction D1. Accordingly, the housing 510c may be formed to gradually decrease.
  • the housing 510c In the section from the second point C2 where the inlet end of the latent heat fin 430c is located to the outlet end of the downstream fin 432c, the housing 510c has a reference cross-sectional area of which the reference cross-sectional area is the reference direction D1. Therefore, it may be provided to have only a decreasing section and a maintaining section. Thus, the reference cross-sectional area at the outlet end of the downstream pin 432c may be smaller than the reference cross-sectional area at the second point C2.
  • the housing 510c may be provided such that the reference cross-sectional area of the inlet end side of the downstream fin 432c becomes smaller than the reference cross-sectional area of the inlet end side of the upstream fin 431c. have.
  • the reference cross-sectional area is along the reference direction D1.
  • the housing 510c may be provided to decrease gradually, thereby satisfying such a condition.
  • the latent heat exchange region has a sixth from a fifth point C5 and a section extending from the second point B2 to the third point C3, which is a section in which the reference cross-sectional area decreases along the reference direction D1.
  • the inlet end of any one of the latent heat fins 430c may be formed flat, rather than having a plurality of valleys and protrusions like the other fins.
  • FIG. 24 is a longitudinal sectional view of a heat exchanger unit according to a third modification of the third embodiment of the present invention.
  • the heat exchanger unit according to the third modified example of the third embodiment of the present invention includes one row of sensible heat exchange pipe 320e and one row of latent heat exchange pipe 420e.
  • the housing 510e according to the third modification of the third embodiment may also be provided such that the reference cross-sectional area of the downstream side is smaller than the reference cross-sectional area of the most upstream side with respect to the reference direction D1.
  • the housing 510e may include at least one section in which the reference cross-sectional area gradually decreases along the reference direction D1 such that the velocity of the combustion gas flows in the latent heat exchange region increases more than the velocity of the combustion gas flow in the sensible heat exchange region. Can be prepared. The effect that the heat exchanger unit can obtain as the section in which the reference cross-sectional area is reduced is replaced with the content described with respect to FIG. 20.
  • the housing 510e may be provided such that the reference cross-sectional area is gradually reduced from the outlet end side of the sensible heat fin 330e toward the inlet end side of the latent heat fin 430e.
  • the section from the first point E1 at which the exit end of the sensible heat fin 330e is located to the second point E2 located downstream from the first point E1 is formed to maintain the reference cross-sectional area.
  • the housing 510e may be formed such that the reference cross-sectional area of the section from the second point E2 to the third point E3 where the inlet end of the latent heat fin 430e is located is gradually reduced along the reference direction D1. have. Therefore, the reference cross-sectional area does not increase from the outlet end side of the sensible heat fin 330e toward the inlet end side of the latent heat fin 430e.
  • the housing 510e has a reference point in which the heat exchange area is a reference in a section from the third point E3 where the inlet end of the latent heat fin 430e is located to the fifth point E5 where the outlet end of the latent heat fin 430e is located.
  • the cross-sectional area may be provided to have only a section that decreases and a section that continues to decrease along the reference direction D1.
  • the reference cross-sectional area is the reference direction D1.
  • the reference cross-sectional area is kept constant in the section from the fourth point E4 to the fifth point E5, so that the reference point at the third point E3 at which the inlet end of the latent heat fin 430e is located is reduced.
  • the reference cross-sectional area at the fifth point E5 at which the exit end of the latent heat fin 430e is located may be smaller than the cross-sectional area.
  • the housing 510e has a first section in which the reference cross-sectional area gradually decreases from the outlet end side of the sensible heat fin 330e toward the inlet end side of the latent heat fin 430e, and in a region where the latent heat fin 430e abuts with the housing 510e.
  • a second section in which the reference cross-sectional area is maintained may be formed between the most upstream side and the exit end side of the latent heat fin 430e based on the reference direction D1.
  • the first section is a section from the second point E2 adjacent to the outlet end of the sensible heat fin 330e to a third point E3 where the inlet end of the latent heat fin 430e is located, and the second section is the fourth point E4. ) To a fifth point E5.
  • An area of the latent heat fin 430e that is in contact with the inner surface of the housing 510e is a portion corresponding to the second section based on the width of the pin defined in the orthogonal direction, which is a direction perpendicular to the reference direction D1.
  • the width of may be provided to be kept constant.
  • the latent heat exchange region includes a section from the second point E2 to the fourth point E4, which is a section in which the reference cross section decreases along the reference direction D1, and a section in which the reference cross section is kept constant. It may have a section from the first point E1 to the second point E2 and a section from the fourth point E4 to the fifth point E5.
  • 25 is a longitudinal sectional view of a heat exchanger unit according to a fourth modification of the third embodiment of the present invention.
  • the heat exchanger unit according to the fourth modified example of the third embodiment of the present invention includes one row of sensible heat exchange pipes 320f and one row of latent heat exchange pipes 420f.
  • the housing 510f according to the fourth modification of the third embodiment may also be provided such that the reference cross-sectional area of the downstream side is smaller than the reference cross-sectional area of the most upstream side with respect to the reference direction D1.
  • the housing 510f may include at least one section in which the reference cross-sectional area gradually decreases along the reference direction D1 such that the velocity of the combustion gas flows in the latent heat exchange region increases rather than the velocity of the combustion gas flow in the sensible heat exchange region. Can be prepared. The effect that the heat exchanger unit can obtain as the section in which the reference cross-sectional area is reduced is replaced with the content described with respect to FIG. 20.
  • the housing 510f may be provided such that the reference cross-sectional area is gradually reduced from the outlet end side of the sensible heat fin 330f to the inlet end side of the latent heat fin 430f.
  • the reference cross-sectional area of the section from the first point F1 at which the outlet end of the sensible heat fin 330f is located to the second point E2 at which the inlet end of the latent heat fin 430f is located is the reference direction D1. Accordingly, the housing 510f may be formed to gradually decrease. Therefore, the reference cross-sectional area does not increase from the outlet end side of the sensible heat fin 330f to the inlet end side of the latent heat fin 430f.
  • the housing 510f In the section from the second point F2 at which the inlet end of the latent heat fin 430f is located to the outlet end of the latent heat fin 430f, the housing 510f has a reference cross-sectional area whose reference cross-sectional area is the reference direction D1. As a result, it may be provided to have only a reduced section and a maintained section. In a section from the second point F2 at which the inlet end of the latent heat fin 430f is located to the third point F3 located downstream from the second point F2, the reference cross-sectional area is in the reference direction D1.
  • the reference cross-sectional area is constant in a section from the third point F3 to the exit end of the latent heat fin 430f, and thus, at the second point F2 where the inlet end of the latent heat fin 430f is located.
  • the reference cross-sectional area at the exit end of the latent heat fin 430f may be smaller than the reference cross-sectional area of.
  • the latent heat fin 430f may include a sharp portion 4201f at the most downstream end thereof.
  • the pointed portion 4201f has a narrow width in the orthogonal direction perpendicular to the reference direction D1 as the reference direction D1 increases, and may be provided in plural along the orthogonal direction.
  • the pointed portion may have the above-described shape so that the condensed water formed in the latent heat fin 430f may be collected by the phase change of the combustion gas.
  • FIG. 26 is a view illustrating the second general side plate 5114 of the heat exchanger unit according to the third embodiment of the present invention together with the flow path caps included in the second flow cap plate 364.
  • FIG. 27 is a view illustrating the first general side plate 5113 of the heat exchanger unit according to the third embodiment of the present invention together with the channel caps included in the first channel cap plate 363.
  • 28 is a perspective view illustrating an entire flow path included in a heat exchanger unit according to a third embodiment of the present invention.
  • a flow path formed by the sensible heat exchange pipe 320, the latent heat exchange pipe 420, and the flow cap plates 363 and 364 of the heat exchanger unit according to the third embodiment of the present invention will be described with reference to FIGS. 26 to 28.
  • FIG. 26 is a cross-sectional view of the heat exchanger unit along the HH 'line from the second connection channel cap plate 72 of FIG. 29.
  • the flow path cap of the second flow path cap plate 364 3641, 3642, 3643, 3644, and 3645 are shown as dotted lines.
  • FIG. 9 a third view of the present invention corresponding to a view of the first main general side plate 5111 into which the first connection channel cap plate 71 is fitted is taken along the line G-G 'of FIG. 29.
  • first sensible heat common side plate (5111) and sensible heat exchange pipe 320 the latent heat exchange pipe 420, sensible heat insulation pipes 3410, 3420, the flow path cap (3631) of the first flow cap plate 363 , 3632, 3633, 3634 are shown in dashed lines.
  • the sensible heat linear parts may form a sensible heat path through which the heating water flows, and the latent heat linear parts 421 and 422 may form a latent heat path through which the heating water flows and communicates with the sensible heat path.
  • the sensible heat flow path may include a series flow path in at least some sections, and the latent heat flow path may include parallel flow paths in at least some sections.
  • the channel cap plates 363 and 364 may include the first channel cap plate 363 and the second channel cap plate 364 as described above.
  • the first flow path cap 3641, the second flow path cap 3422, the third flow path cap 3643, the fourth flow path cap 3644, and the fifth flow path cap 3645 are formed in the second flow path cap plate 364.
  • a sixth flow path cap 3611, a seventh flow path cap 3632, an eighth flow path cap 3333, and a ninth flow path cap 3342 may be formed in the first flow path plate 363.
  • the flow path caps formed on each of the flow path cap plates 363 and 364 are formed in a convex shape toward the outside of the heat exchanger unit, and include straight portions or latent heat exchange pipes 420 included in the sensible heat exchange pipe 320.
  • the heating water is formed to flow therein.
  • the flow path caps of the flow path plates 363 and 364 cover the general side surface (5110 of FIG. 17)
  • the heating water flows in the space formed inside the general side surface and the flow path cap.
  • the heating water supply port 3710 is formed in the first flow path cap 3411 located at the most downstream side of the second flow path cap plate 364 with respect to the reference direction D1. Heating water is introduced into the heat exchanger unit through the heating water supply port 3710. The introduced heating water flows through the downstream straight portions 422, one end of which is connected to the first flow path cap 3641. Thus, the downstream straight portions 422 can form a parallel flow path.
  • the heating water reaches the sixth flow path cap 3631 through which the other end of the downstream straight portion 422 communicates through the downstream straight portion 422.
  • the other end of the downstream straight portion 422 and one end of the upstream straight portion 421 communicate with the sixth flow path cap 3611. Accordingly, the heating water flows into the upstream straight portions 421 from the sixth flow path cap 3611 and flows along the upstream straight portions 421.
  • the upstream straight portions 421 can form a parallel flow path.
  • the other end of the upstream straight portions 421 communicates with the second flow path cap 3642, and transfers the heating water flowing along the upstream straight portions 421 to the second flow path cap 3642.
  • the second flow path cap 3422 communicates with the first sensible heat insulating pipe 3410 and delivers the heating water to the first sensible heat insulating pipe 3410.
  • the heating water moved along the first sensible heat insulating pipe 3410 reaches the seventh flow path cap 3632 through which the first sensible heat insulating pipe 3410 is communicated.
  • a zigzag sensible heat flow path is formed along the sensible heat straight lines which are arranged in order from the seventh flow path cap 3632 and can be connected in series, and the heating water is formed from the seventh flow path cap 3632 from the seventh flow path cap 3632. (3643), from the third flow path cap (3643) to the eighth flow path cap (3633), from the eighth flow path cap (3633) to the fourth flow path cap (3644), and from the fourth flow path cap (3644) to the ninth flow path. Flow to the cap 3636.
  • the sensible heat flow path is connected to the straight portions included in the sensible heat insulating pipes 3410 and 3420 and the sensible heat exchange pipe 320. Can be implemented.
  • the ninth flow path cap 3342 is also in communication with the second sensible heat insulating pipe 3420, so that the heating water flows along the second sensible heat insulating pipe 3420 to reach the fifth flow path cap 3635.
  • the fifth flow path cap 3635 communicates with the heating water outlet 3720 and is discharged while the heating water transferred through the second sensible heat insulating pipe 3420 is heated through the heating water outlet 3720.
  • the other end of the downstream straight portion 422 and one end of the upstream straight portion 421 communicate with each other, and the heating water is delivered. It is shown by an arrow at 28. The heating water is heated and discharged along the entire flow path.
  • 30 is a perspective view of the water heater 3 according to the fourth embodiment of the present invention.
  • 31 is a perspective view of a heat exchanger unit according to a fourth embodiment of the present invention.
  • the water heater 3 includes a burner assembly 10, a combustion chamber 20 and a heat exchanger unit.
  • the water heater 3 will be described centering on the boiler of the type shown in FIG.
  • the water heater 3 may be the condensing boilers 1 and 2, similarly to the condensing boilers 1 and 2 described in the first to third embodiments.
  • the burner assembly 10 and the combustion chamber 20 of the water heater 3 according to the fourth embodiment of the present invention are the burner assembly 10 of the condensing boilers 1 and 2 described in the first to third embodiments.
  • combustion chamber 20 combustion chamber 20. Therefore, in the description thereof, the same parts as those described above are mainly omitted, and only differences are described below.
  • 32 is a longitudinal sectional view of a heat exchanger unit according to a fourth embodiment of the present invention.
  • 33 is a longitudinal sectional view of the latent heat exchange pipe 420g according to the fourth embodiment of the present invention.
  • 34 is a longitudinal sectional view of the sensible heat exchange pipe 320g according to the fourth embodiment of the present invention.
  • the heat exchanger unit is a component that heats the water using the product of the combustion reaction. Therefore, a heat exchanger unit is provided so that water receives heat as it flows.
  • the heat exchanger unit may include a sensible heat exchanger 300g and a latent heat exchanger 400g, and may further include a housing 510g.
  • the sensible heat exchanger 300g is a component that heats water by transferring sensible heat generated by the combustion reaction to water
  • the latent heat exchanger 400g is a latent heat generated when a phase change of the combustion gas generated by the combustion reaction occurs.
  • the housing 510g is a component that surrounds the heat exchange areas to be described later and defines heat exchange areas inside thereof. Therefore, the sensible heat exchanger 300g and the latent heat exchanger 400g to be described later may be accommodated in the housing 510g.
  • the housing 510g includes two general side plate portions spaced apart in the second reference direction D2 and parallel to each other, and a third reference direction D3 orthogonal to the first reference direction D1 and the second reference direction D2. It is composed of two insulating side plate parts spaced apart and parallel to each other, it may be formed in a rectangular parallelepiped shape.
  • the general side plate portion and the heat insulation side plate portion may be the general side plate 5110g and the heat insulation side plate 5120g which are separate from each other, or may be a partial region of the side plate of the integrated housing 510g, respectively.
  • the general side plate portion and the heat insulation side plate portion are constituted by the general side plate 5110g and the heat insulation side plate 5120g which are separate from each other.
  • the heat insulation side plate (5120g) does not mean that the side plate to reduce the amount of heat transferred to the outside to achieve heat insulation, the side plate that can be further disposed adjacent to the heat insulation pipe (340g) that insulates the heat exchanger unit by the flow of water It was used to mean.
  • the general side plate 5110g may be coupled while covering the flow path plate 363g.
  • the straight portions 3200g and 4200g of the heat exchange pipes 320g and 420g to be described later may pass through the general side plate 5110g and be coupled to the general side plate 5110g, and water may flow between the general side plate 5110g.
  • a channel cap plate 363g having a channel cap forming a flow space therein may be coupled to the general side plate 5110g. Therefore, the straight portions 3200g and 4200g, which may be segmented with each other, are connected by a flow path cap, thereby forming any sensible heat passage or latent heat passage to be described later, and the sensible heat passage and the latent heat passage may be connected to each other.
  • the flow cap forms a series flow path through which the inlet of one straight portion (3200g, 4200g) and the outlet of the other straight portion (3200g, 4200g) communicate, or the inlet and outlet of the connected straight portions (3200g, 4200g) are common.
  • Parallel channels can be formed.
  • the inlet means an opening at one end of the straight portions 3200g and 4200g into which the water flows into the straight portions 3200g and 4200g
  • the outlet means the straight portion 3200g from which the water is discharged from the straight portions 3200g and 4200g. , 4200 g) of the other end.
  • the housing 510g When the cross-sectional area of the heat exchange area defined in the plane perpendicular to the first reference direction D1 is referred to as the reference cross-sectional area, the housing 510g is most downstream from the reference cross-sectional area on the most upstream side with respect to the first reference direction D1.
  • the reference cross-sectional area of the side may be provided to be small. Therefore, the housing 510g may include at least one section in which the reference cross-sectional area gradually decreases as the first reference direction D1 decreases or the reference cross-sectional area decreases along the first reference direction D1.
  • the degree of increase or decrease in the flow rate of the combustion gas decreases, thereby preventing flow inhibition by condensate that may occur in the latent heat exchanger 400g.
  • the heat exchange efficiency of the latent heat exchange part 400g may be increased.
  • the condensate is discharged through the condensate receiver included in the water heater 3, and the remaining combustion gas may be post-processed through the duct and discharged.
  • the sensible heat exchange pipe 320g may pass through the sensible heat fin 330g, and the latent heat exchange pipe 420g may pass through the latent heat fin 430g.
  • the sensible heat fin 330g and the latent heat fin 430g are components that increase the area in contact with the combustion gas or the radiant heat so that the respective heat exchange pipes 320g and 420g can exchange heat more efficiently. It may be formed of a plate perpendicular to the reference direction (D2). Each fin may be further provided with a louver to change the direction and position of the combustion gas flow.
  • the sensible heat fin 330g may be formed in plural.
  • the sensible heat fin (330g) is adjacent to both ends of the sensible heat linear part 3200g included in the sensible heat exchange pipe 320g based on the second reference direction D2.
  • 330g are illustrated as being disposed, the sensible fin 330g may be disposed in a region other than the region adjacent to both ends of the sensible linear portion 3200g. This description may be equally applied to the latent heat fin 430g and the latent heat exchange pipe 420g.
  • the sensible heat exchange part 300g is disposed in the sensible heat exchange area for heating water by receiving sensible heat generated by the combustion reaction.
  • the sensible heat exchanger 300g has a sensible heat exchanger pipe 320g which forms a sensible heat flow path through which water flows by receiving water and flowing through the inside.
  • the sensible heat exchange pipe 320g may be provided to allow water to be heated while flowing water through the inside and exposed to sensible heat generated by the combustion reaction of the burner assembly 10 from the outside.
  • the latent heat exchanger 400g is disposed in a latent heat exchange region for receiving water, which is generated when a phase change of the combustion gas is received.
  • the latent heat exchange zone is located downstream from the sensible heat exchange zone based on the first reference direction D1, which is the flow direction of the combustion gas generated during the combustion reaction.
  • the latent heat exchanger 400g includes a latent heat exchanger pipe 420g that receives water and flows through it.
  • the latent heat exchange pipe 420g includes a plurality of latent heat passages extending along the second reference direction D2 and spaced apart from each other along the third reference direction D3 to form a latent heat passage through which water flows and communicates with the sensible heat passage.
  • the latent heat linear portions 4200g may be connected by the above-described flow path cap to form a latent heat flow path through which water flows.
  • the latent heat flow path may include parallel flow paths in at least some sections.
  • the sensible heat exchange pipe 320g is spaced apart from each other along the third reference direction D3, extends along the second reference direction D2, and includes a plurality of sensible heat linear parts for flowing water and forming a sensible heat path ( 3200g).
  • the sensible heat linear parts 3200g may be connected by the above-described flow path cap to form a sensible heat flow path through which water flows.
  • the sensible heat flow path may include a serial flow path in at least some sections.
  • a plurality of layers may be formed in which latent heat linear portions 4200g are disposed at the same position with respect to the first reference direction D1.
  • the latent heat exchange part 400g is illustrated as two layers are formed, the number of layers is not limited thereto.
  • the latent heat exchanger pipe 420g is formed of a plurality of layers, the total heat transfer area of the latent heat exchanger pipe 420g can be maximized, and heat exchange can be efficiently performed in the latent heat exchanger 400g.
  • the heat transfer area means the surface areas of the heat exchange pipes 320g and 420g in which heat exchange can occur.
  • each of the straight portions 3200g and 4200g is formed in a tubular shape, it is defined by the inner surfaces 3220g and 4220g and defines an inner space 3210g and 4210g through which water can flow, and an outer surface that can be in contact with the combustion gas. (3230g, 4230g).
  • the shapes of the inner surfaces 3220g and 4220g and the outer surfaces 3230g and 4230g of the straight portions 3200g and 4200g may be formed differently from each other, but each of the straight portions 3200g and 4200g according to the fourth embodiment of the present invention.
  • the inner surface (3220g, 4220g) and the outer surface (3200g, 4220g) and the outer surface (3200g, 4220g) in the cross section cut each straight portion (3200g, 4200g) in a plane perpendicular to the second reference direction (D2) It is assumed that the shapes of 3230g and 4230g are formed to correspond to each other.
  • a cross section obtained by cutting each straight portion 3200g and 4200g in a plane perpendicular to the second reference direction D2 will be referred to as a reference cross section.
  • the inner space 4210g of the latent heat linear portion 4200g is formed flat so that the width W1 along the third reference direction D3 is smaller than the length L1 along the first reference direction D1.
  • the latent heat linear portion 4200g is formed flatly, with respect to the internal spaces 3210g and 4210g of the straight portions 3200g and 4200g, the width along the third reference direction D3 is determined by the first reference direction D1.
  • the value divided by the length according to the term "terminal ratio" it means that the terminal ratio of the latent heat linear portion 4200g is formed smaller than one.
  • the inner space 3210g of the sensible straight portion 3200g may also be formed flat so that the width W2 of the third reference direction D3 is smaller than the length L2 of the first reference direction D1. have.
  • the termination ratio of the latent heat linear portion 4200g may be smaller than the termination ratio of the sensible heat linear portion 3200g. Therefore, the latent heat linear portion 4200g may be formed flatter than the sensible heat linear portion 3200g. Specifically, the terminal ratio of the latent heat linear portion 4200g may be 0.05 or more and 0.3 or less. The terminal ratio of the sensible heat linear part 3200g may be 0.15 or more and 0.5 or less.
  • the internal dimension of the latent heat linear portion 4200g is the sensible heat straight line. It may be smaller than the internal dimension of the portion (3200g).
  • the total heat transfer area of the heat exchange pipes 320g and 420g can be obtained. Due to such a ratio of the ratio and the internal dimension, less pressure drop occurs in the sensible heat exchange pipe 320g, boiling noise occurs, and the problem of lime depositing is reduced.
  • the latent heat exchanger pipe 420g has a latent heat linear portion 4200g having a smaller internal dimension than the sensible heat linear portion 3200g, so that the latent heat exchange region is free. Even if it is not formed in a size, a plurality of latent heat linear portions 4200g may be disposed. Accordingly, the latent heat exchange part 400g may secure the total length of the sufficient latent heat linear part 4200g, thereby securing the total heat transfer area sufficient for heat exchange.
  • the length of the circumference of the outer surfaces 3230g and 4230g of the straight portions 3200g and 4200g is referred to as the external dimension of the straight portions 3200g and 4200g, and is determined based on the first reference direction D1.
  • the peeling points 3250g and 4250g are points where the rate of change of the velocity of the combustion gas is 0 along the third reference direction D3 at the outer surfaces 3230g and 4230g of the straight portions 3200g and 4200g. That is, the combustion gas that flows along the outer surfaces 3230g and 4230g which are the surfaces of the straight portions 3200g and 4200g and generates shear stress on the outer surfaces 3230g and 4230g of the straight portions 3200g and 4200g causes the flow separation. At the same time, the peeling points 3250g and 4250g are separated from the outer surfaces 3230g and 4230g of the straight portions 3200g and 4200g.
  • the combustion gas that flows while being located adjacent to the outer surfaces 3230g and 4230g of the straight parts 3200g and 4200g becomes a vortex wake after the separation points 3250g and 4250g, and thus the straight parts 3200g and 4200g. It does not transmit heat effectively. This is because the combustion gas is separated from the outer surfaces 3230g and 4230g of the straight portions 3200g and 4200g. Therefore, the contact length means a length range in which heat can be effectively transmitted from the combustion gas among the lengths of the outer surfaces 3230g and 4230g of the straight portions 3200g and 4200g.
  • the value obtained by dividing the contact length of the latent heat linear portion 4200g by the external dimension of the latent heat linear portion 4200g may be greater than the value obtained by dividing the contact length of the latent heat linear portion 3200g by the external dimension of the sensible heat linear portion 3200g. .
  • the latent heat linear portion 4200g and the sensible heat linear portion 3200g have the same external dimension, the latent heat linear portion 4200g may have a larger contact length than the contact length of the sensible heat linear portion 3200g. Is formed. This shape has a latent heat linear portion 4200g, thereby maximizing the amount of heat that the latent heat linear portion 4200g can receive from the combustion gas.
  • the downstream parts 3213g and 4213g may be formed in a shape of at least a part of a fan shape having a predetermined radius of curvature.
  • the pair of inner side parts 3212g and 4212g, which are both sides of the inner spaces 3210g and 4210g of the straight portions 3200g and 4200g with respect to the third reference direction D3, has an inner upstream part 3111g and 4211g and an inner portion.
  • the pair of inner side parts 3212g of the sensible straight portion 3200g may have the same shape, but may be formed to have a line symmetry with each other based on a straight line parallel to the first reference direction D1.
  • the pair of inner side portions 4212g of the latent heat linear portion 4200g may also have the same shape, but may be formed in a line symmetrical with respect to the straight line parallel to the first reference direction D1.
  • the profile of the curved surfaces 3221g, 3223g, 4212g, 4223g among the inner surfaces of the straight portions 3200g, 4200g defining the internal upstream portions 3211g and 4211g and the internal downstream portions 3213g and 4213g is defined in the reference section. It may be formed in the shape of an arc having a radius of curvature. Although the shapes of the inner upstream parts 3211g and 4211g and the inner downstream parts 3213g and 4213g are shown to be the same as each other but are linearly symmetric in the fourth embodiment of the present invention, they may be different.
  • Profiles of the curved surfaces 3222g and 4222g of the inner surfaces of the straight portions 3200g and 4200g forming the inner side portions 3212g and 4212g have an internal upstream portion 3111g and 4211g and an internal downstream portion 3321g and 4213g at the reference section. It may be formed in the form of an arc having a radius of curvature different from the predetermined radius of curvature of.
  • the radius of curvature of the inner side parts 3212g and 4212g may be larger than the radius of curvature of the inner upstream parts 3211g and 4211g and the inner downstream parts 3213g and 4213g.
  • the radius of curvature of the inner side portions 3212g and 4212g is formed to be infinite, and the profile at the reference cross section of a part 3322g and 4222g of the inner side of the straight portions 3200g and 4200g constituting the inner side portions 3212g and 4212g. It may be formed in a straight line parallel to the first reference direction (D1).
  • the length up to (3215g, 4215g) is the effective heat path. That is, the inner surface (from the most upstream side 3214g and 4214g of the inner upstream parts 3211g and 4211g to a position corresponding to an inflection point among the downstream regions of the inner surfaces 3220g and 4220g of the straight parts 3200g and 4200g). 3220g, 4220g) may be the effective heat transfer length. These inflection points may coincide with the peel points 3250g and 4250g, but may be different.
  • the effective heat transfer length of the latent heat linear portion 4200g divided by the internal dimension of the latent heat straight line portion 4200g is greater than the effective heat transfer length of the sensible heat straight line portion 3200g divided by the internal dimension of the sensible heat straight line portion 3200g. Can be.
  • the latent heat linear portion 4200g and the sensible heat linear portion 3200g have the same internal dimension, the latent heat linear portion 4200g may have an effective heat transfer length larger than the effective heat transfer length of the sensible heat linear portion 3200g. 4200 g) is formed. This shape has a latent heat linear portion 4200g, thereby maximizing the amount of heat that the latent heat linear portion 4200g can receive from the combustion gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Details Of Fluid Heaters (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

A heat-exchanger unit according to the present invention comprises: a sensible-heat heat-exchange portion arranged in a sensible-heat heat-exchange area for receiving sensible heat generated by a combustion reaction and thereby heating water, the sensible-heat heat-exchange portion having a sensible-heat heat-exchange pipe for receiving the water and causing same to flow through the interior thereof, thereby forming a sensible-heat channel along which the water flows; and a latent-heat heat-exchange portion positioned downstream of the sensible-heat heat-exchange area with reference to a first reference direction along which combustion gas generated during the combustion reaction flows, the latent-heat heat-exchange portion being arranged in a latent-heat heat-exchange area for receiving latent heat generated during a phase change of the combustion gas and thereby heating the water, the latent-heat heat-exchange portion having a latent-heat heat-exchange pipe for receiving the water and causing same to flow through the interior thereof. The latent-heat heat-exchange pipe comprises multiple latent-heat straight portions extending in a second reference direction perpendicular to the first reference direction, the multiple latent-heat straight portions being arranged to be spaced apart from each other along a third reference direction perpendicular to the first reference direction and to the second reference direction so as to form a latent-heat channel along which the water flows, and which communicates with the sensible-heat channel. The latent-heat straight portions have inner spaces formed in flat shapes such that the width thereof along the third reference direction is smaller than the length thereof along the first reference direction.

Description

열교환배관, 이를 이용한 열교환기 유닛 및 이를 이용한 콘덴싱 보일러Heat exchanger pipe, heat exchanger unit and condensing boiler using the same
본 발명은 물이 유동할 수 있는 열교환배관과 이를 이용한 열교환기 유닛,콘덴싱 보일러에 관한 것이다.The present invention relates to a heat exchange pipe through which water can flow, a heat exchanger unit using the same, and a condensing boiler.
난방에 사용되는 난방수를 가열하거나, 가열된 물을 배출하기 위해, 물에 열을 전달하는 열교환배관과 이를 이용한 열교환기 유닛이 사용될 수 있다. 열교환배관의 내부로는 가열될 물이 흐르고, 그 외부에서 연소가스와 같은 열매체가 유동하거나 복사열 또는 전도열이 전달되어 물에 열이 전달되는 과정을 거쳐 물이 가열될 수 있다. 열교환기 유닛은 이러한 열교환배관을 포함하고, 열매체를 열교환배관 주변에 배치하도록 구성된다.In order to heat the heating water used for heating or to discharge the heated water, a heat exchange pipe for transferring heat to the water and a heat exchanger unit using the same may be used. Water to be heated flows into the heat exchange pipe, and a heat medium such as a combustion gas flows from the outside, or radiant heat or conductive heat is transferred, and thus heat is transferred to the water. The heat exchanger unit includes such a heat exchange pipe and is configured to arrange the heat medium around the heat exchange pipe.
이러한 열교환배관이 열매체에 의해 열을 전달받아 내부에서 유동하는 물을 가열하는 효율을 증대시키기 위해, 적절한 형상의 열교환배관과 열교환기 유닛의 디자인이 요구된다.In order to increase the efficiency of the heat exchange pipe heat is transferred by the heat medium to heat the water flowing therein, the design of the heat exchange pipe and heat exchanger unit of the appropriate shape is required.
본 발명은 이와 같은 문제들을 해결하기 위해 안출된 것으로서, 열교환효율이 증대되는 형상의 열교환배관과 열교환기 유닛, 콘덴싱 보일러를 제공하는 것이다.The present invention has been made to solve the above problems, to provide a heat exchange pipe, a heat exchanger unit, a condensing boiler of a shape in which the heat exchange efficiency is increased.
본 발명의 실시예에 따른 열교환기 유닛은, 연소반응에 의해 생성된 현열을 전달받아 물을 가열하기 위한 현열 열교환 영역에 배치되되, 상기 물을 공급받아 내부를 통해 유동시킴으로써 상기 물이 유동하는 현열유로를 형성하는 현열 열교환배관을 구비하는 현열 열교환부; 및 상기 연소반응 중에 생성된 연소가스의 유동방향인 제1 기준방향을 기준으로 상기 현열 열교환 영역보다 하류에 위치하고, 상기 연소가스의 상변화시 발생하는 잠열을 전달받아 상기 물을 가열하기 위한 잠열 열교환 영역에 배치되되, 상기 물을 공급받아 내부를 통해 유동시키는 잠열 열교환배관을 구비하는 잠열 열교환부를 포함하고, 상기 잠열 열교환배관은, 상기 제1 기준방향에 직교하는 제2 기준방향을 따라 연장되고, 상기 제1 기준방향과 상기 제2 기준방향에 직교하는 제3 기준방향을 따라 서로 이격되게 나열되되, 상기 물이 유동하고 상기 현열유로에 연통되는 잠열유로를 형성하는 복수 개의 잠열 직선부를 포함하고, 상기 잠열 직선부의 내부공간은, 상기 제3 기준방향에 따른 폭이 상기 제1 기준방향에 따른 길이보다 작도록 납작하게 형성된다.The heat exchanger unit according to the embodiment of the present invention is disposed in a sensible heat exchange area for heating water by receiving sensible heat generated by a combustion reaction, sensible heat in which the water flows by receiving the water and flowing through the inside. A sensible heat exchanger having a sensible heat exchanger pipe forming a flow path; And a latent heat exchanger for heating the water by receiving latent heat generated when a phase change of the combustion gas is received, based on a first reference direction, which is a flow direction of the combustion gas generated during the combustion reaction. A latent heat exchanger disposed in an area, the latent heat exchanger having a latent heat exchanger pipe for supplying water and flowing through the interior, wherein the latent heat exchanger pipe extends along a second reference direction orthogonal to the first reference direction, A plurality of latent heat linear parts arranged spaced apart from each other along a third reference direction orthogonal to the first reference direction and the second reference direction, the water flowing and forming a latent heat flow path communicating with the sensible heat flow path; The inner space of the latent heat linear part is flat so that the width along the third reference direction is smaller than the length along the first reference direction. It is.
본 발명의 실시예에 따른 열교환배관은, 연소반응 중에 생성된 연소가스의 유동방향인 제1 기준방향에 직교하는 제2 기준방향을 따라 연장되고, 물이 유동하도록 마련되는 내부공간을 구비하되, 상기 내부공간은, 상기 제1 기준방향 및 상기 제2 기준방향에 직교하는 제3 기준방향에 따른 폭이 상기 제1 기준방향에 따른 길이보다 작도록 납작하게 형성되고, 상기 제3 기준방향에 따른 내부공간의 폭을 상기 제1 기준방향에 따른 내부공간의 길이로 나눈 값은, 0.05 이상 0.3 이하이다.The heat exchange pipe according to the embodiment of the present invention includes an inner space extending along a second reference direction orthogonal to a first reference direction, which is orthogonal to the first reference direction, which is a flow direction of the combustion gas generated during the combustion reaction, The inner space is formed to be flat so that a width along a third reference direction orthogonal to the first reference direction and the second reference direction is smaller than a length along the first reference direction, and according to the third reference direction. The value obtained by dividing the width of the internal space by the length of the internal space in the first reference direction is 0.05 or more and 0.3 or less.
본 발명의 실시예에 따른 콘덴싱 보일러는, 연소반응을 일으키는 버너조립체; 상기 연소가스의 유동방향을 기준으로 상기 버너조립체보다 하류에 위치하고, 내부에 상기 연소반응에 의한 화염이 위치하는 연소실; 상기 연소반응에 의해 생성된 현열과 연소가스를 전달받아 물을 가열하는 열교환기 유닛을 포함하고, 상기 열교환기 유닛은, 상기 연소반응에 의해 생성된 현열을 전달받아 물을 가열하기 위한 현열 열교환 영역에 배치되되, 상기 물을 공급받아 내부를 통해 유동시키는 현열 열교환배관을 구비하는 현열 열교환부; 및 상기 연소반응 중에 생성된 연소가스의 유동방향인 제1 기준방향을 기준으로 상기 현열 열교환 영역보다 하류에 위치하고, 상기 연소가스의 상변화시 발생하는 잠열을 전달받아 상기 물을 가열하기 위한 잠열 열교환 영역에 배치되되, 상기 물을 공급받아 내부를 통해 유동시키는 잠열 열교환배관을 구비하는 잠열 열교환부를 포함하고, 상기 잠열 열교환배관은, 상기 제1 기준방향에 직교하는 제2 기준방향을 따라 연장되고, 상기 제1 기준방향과 상기 제2 기준방향에 직교하는 제3 기준방향을 따라 서로 이격되게 나열되되, 상기 물이 유동하고 상기 현열 열교환배관에 연통되는 잠열유로를 형성하는 복수 개의 잠열 직선부를 포함하고, 상기 잠열 직선부의 내부공간은, 상기 제3 기준방향에 따른 폭이 상기 제1 기준방향에 따른 길이보다 작도록 납작하게 형성된다.Condensing boiler according to an embodiment of the present invention, the burner assembly causing a combustion reaction; A combustion chamber located downstream from the burner assembly based on a flow direction of the combustion gas, and having a flame formed by the combustion reaction therein; And a heat exchanger unit configured to heat the water by receiving the sensible heat generated by the combustion reaction and the combustion gas, wherein the heat exchanger unit is a sensible heat exchanger zone for heating the water by receiving the sensible heat generated by the combustion reaction. A sensible heat exchanger disposed on the sensible heat exchanger and having a sensible heat exchange pipe configured to receive the water and flow through the interior; And a latent heat exchanger for heating the water by receiving latent heat generated when a phase change of the combustion gas is received, based on a first reference direction, which is a flow direction of the combustion gas generated during the combustion reaction. A latent heat exchanger disposed in an area, the latent heat exchanger having a latent heat exchanger pipe for supplying water and flowing through the interior, wherein the latent heat exchanger pipe extends along a second reference direction orthogonal to the first reference direction, A plurality of latent heat linear parts arranged spaced apart from each other along a third reference direction orthogonal to the first reference direction and the second reference direction to form a latent heat flow path through which the water flows and communicates with the sensible heat exchange pipe; The inner space of the latent heat linear part is flat so that a width in the third reference direction is smaller than a length in the first reference direction. It is formed.
이에 따라, 열교환배관이 연소가스와 접촉하는 면적을 극대화하여 열교환이 효율적으로 이루어질 수 있다.Accordingly, heat exchange may be efficiently performed by maximizing the area where the heat exchange pipe contacts the combustion gas.
도 1은 예시적인 열교환기 유닛의 일부분의 종단면도이다.1 is a longitudinal sectional view of a portion of an exemplary heat exchanger unit.
도 2는 본 발명의 제1 실시예에 따른 열교환기 유닛 및 이를 이용한 콘덴싱 보일러의 종단면도이다.2 is a longitudinal sectional view of a heat exchanger unit and a condensing boiler using the same according to the first embodiment of the present invention.
도 3은 본 발명의 제1 실시예에 따른 열교환기 유닛 및 이를 이용한 콘덴싱 보일러의 측면도이다.3 is a side view of a heat exchanger unit and a condensing boiler using the same according to the first embodiment of the present invention.
도 4는 본 발명의 제1 실시예에 따른 열교환기 유닛의 연소실의 평면도이다.4 is a plan view of the combustion chamber of the heat exchanger unit according to the first embodiment of the present invention.
도 5는 본 발명의 제1 실시예에 따른 열교환기 유닛의 현열 열교환기의 평면도이다.5 is a plan view of the sensible heat exchanger of the heat exchanger unit according to the first embodiment of the present invention.
도 6은 본 발명의 제1 실시예에 따른 열교환기 유닛의 종단면도 중 현열 열교환배관과 현열 핀이 배치된 영역을 도시한 도면이다.FIG. 6 is a view illustrating a region in which the sensible heat exchange pipe and the sensible fin are arranged in the longitudinal cross-sectional view of the heat exchanger unit according to the first embodiment of the present invention.
도 7은 본 발명의 제1 실시예의 일 변형예에 따른 열교환기 유닛의 종단면도 중 현열 열교환배관과 현열 핀이 배치된 영역을 도시한 도면이다.FIG. 7 is a view illustrating a region in which the sensible heat exchange pipe and the sensible fin are arranged in the longitudinal cross-sectional view of the heat exchanger unit according to the first embodiment of the present invention.
도 8은 본 발명의 제1 실시예에 따른 열교환기 유닛의 제2 현열 일반측판을 제2 유로캡 플레이트가 포함하는 유로캡들과 함께 소정 방향을 따라 외측으로부터 바라본 도면이다.FIG. 8 is a view of the second sensible heat general side plate of the heat exchanger unit according to the first embodiment of the present invention, viewed from the outside along a predetermined direction together with the flow path caps included in the second flow path cap plate.
도 9는 본 발명의 제1 실시예에 따른 열교환기 유닛의 제1 현열 일반측판을 제1 유로캡 플레이트가 포함하는 유로캡들과 함께 소정 방향을 따라 내측으로부터 바라본 도면이다.9 is a view of the first sensible heat general side plate of the heat exchanger unit according to the first embodiment of the present invention viewed from the inside along a predetermined direction together with the flow path caps included in the first flow cap plate.
도 10은 본 발명의 제1 실시예의 다른 변형예에 따른 제2 연결 유로캡 플레이트의 외측으로부터 열교환기 유닛을 바라본 도면이다.10 is a view of the heat exchanger unit from the outside of the second connecting flow path plate according to another modification of the first embodiment of the present invention.
도 11은 본 발명의 제1 실시예의 다른 변형예에 따른 열교환기 유닛의 제1 연결 유로캡 플레이트를 도시한 도면이다.FIG. 11 is a view showing a first connecting flow path cap plate of a heat exchanger unit according to another modification of the first embodiment of the present invention.
도 12는 본 발명의 제1 실시예의 다른 변형예에 따른 열교환기 유닛의 제2 메인 일반측판의 일부 영역을 제2 연결 유로캡 플레이트가 포함하는 유로캡들과 함께 소정 방향을 따라 외측으로부터 바라본 도면이다. 12 is a view of a part of the second main general side plate of the heat exchanger unit according to another modification of the first embodiment of the present invention, viewed from the outside along a predetermined direction with flow caps included in the second connection flow cap plate; to be.
도 13은 본 발명의 제1 실시예의 다른 변형예에 따른 열교환기 유닛의 제1 메인 일반측판을 제1 연결 유로캡 플레이트가 포함하는 유로캡들과 함께 소정 방향을 따라 내측으로부터 바라본 도면이다.FIG. 13 is a view of the first main general side plate of the heat exchanger unit according to another modification of the first embodiment of the present invention, viewed from the inside along a predetermined direction with flow caps included in the first connection flow cap plate.
도 14는 본 발명의 제1 실시예의 다른 변형예에 따른 열교환기 유닛의 현열유로와 잠열유로를 도시한 사시도이다.14 is a perspective view illustrating a sensible heat passage and a latent heat passage of a heat exchanger unit according to another modification of the first exemplary embodiment of the present invention.
도 15는 본 발명의 제2 실시예에 따른 열교환기 유닛의 종단면도이다.15 is a longitudinal sectional view of a heat exchanger unit according to a second embodiment of the present invention.
도 16은 본 발명의 제2 실시예의 변형예에 따른 열교환기 유닛의 유로캡 플레이트를 각 배관과 같이 나타낸 정면도이다.FIG. 16 is a front view showing the flow path cap plate of the heat exchanger unit according to the modification of the second embodiment of the present invention as each pipe.
도 17은 본 발명의 제3 실시예에 따른 열교환기 유닛 및 이를 이용한 콘덴싱 보일러의 종단면도이다.17 is a longitudinal sectional view of a heat exchanger unit and a condensing boiler using the same according to the third embodiment of the present invention.
도 18은 본 발명의 제3 실시예에 따른 열교환기 유닛 및 이를 이용한 콘덴싱 보일러의 측면도이다.18 is a side view of a heat exchanger unit and a condensing boiler using the same according to the third embodiment of the present invention.
도 19는 본 발명의 제3 실시예에 따른 열교환기 유닛의 평면도이다.19 is a plan view of a heat exchanger unit according to a third embodiment of the present invention.
도 20은 본 발명의 제3 실시예에 따른 열교환기 유닛의 종단면도이다.20 is a longitudinal sectional view of a heat exchanger unit according to a third embodiment of the present invention.
도 21은 본 발명의 제3 실시예에 따른 복수의 하류 핀과 그 사이에 위치한 응축수를 도시한 사시도이다.FIG. 21 is a perspective view illustrating a plurality of downstream fins and condensate located between the plurality of downstream fins according to the third exemplary embodiment of the present invention. FIG.
도 22는 본 발명의 제3 실시예의 제1 변형예에 따른 열교환기 유닛의 종단면도이다.22 is a longitudinal sectional view of a heat exchanger unit according to a first modification of the third embodiment of the present invention.
도 23은 본 발명의 제3 실시예의 제2 변형예에 따른 열교환기 유닛의 종단면도이다.23 is a longitudinal sectional view of a heat exchanger unit according to a second modification of the third embodiment of the present invention.
도 24는 본 발명의 제3 실시예의 제3 변형예에 따른 열교환기 유닛의 종단면도이다.24 is a longitudinal sectional view of a heat exchanger unit according to a third modification of the third embodiment of the present invention.
도 25는 본 발명의 제3 실시예의 제4 변형예에 따른 열교환기 유닛의 종단면도이다.25 is a longitudinal sectional view of a heat exchanger unit according to a fourth modification of the third embodiment of the present invention.
도 26은 본 발명의 제3 실시예에 따른 열교환기 유닛의 제2 일반측판을 제2 유로캡 플레이트가 포함하는 유로캡들과 함께 도시한 도면이다.FIG. 26 is a view illustrating a second general side plate of a heat exchanger unit according to a third embodiment of the present invention together with flow path caps included in a second flow path plate.
도 27은 본 발명의 제3 실시예에 따른 열교환기 유닛의 제1 일반측판을 제1 유로캡 플레이트가 포함하는 유로캡들과 함께 도시한 도면이다.FIG. 27 is a view illustrating the first general side plate of the heat exchanger unit according to the third embodiment of the present invention together with the flow path caps included in the first flow cap plate.
도 28은 본 발명의 제3 실시예에 따른 열교환기 유닛이 포함하는 전체 유로를 도시한 사시도이다.28 is a perspective view illustrating an entire flow path included in a heat exchanger unit according to a third embodiment of the present invention.
도 29는 본 발명의 제1 실시예의 다른 변형예에 따른 열교환기 유닛에서연결 유로캡 플레이트들이 분리되어 있는 상황을 도시한 사시도이다.29 is a perspective view illustrating a situation in which connecting flow path cap plates are separated in a heat exchanger unit according to another modification of the first exemplary embodiment of the present invention.
도 30은 본 발명의 제4 실시예에 따른 물 가열기의 사시도이다.30 is a perspective view of a water heater according to a fourth embodiment of the present invention.
도 31는 본 발명의 제4 실시예에 따른 열교환기 유닛의 사시도이다.31 is a perspective view of a heat exchanger unit according to a fourth embodiment of the present invention.
도 32은 본 발명의 제4 실시예에 따른 열교환기 유닛의 종단면도이다.32 is a longitudinal sectional view of a heat exchanger unit according to a fourth embodiment of the present invention.
도 33는 본 발명의 제4 실시예에 따른 잠열 열교환배관의 종단면도이다.33 is a longitudinal sectional view of a latent heat exchange pipe according to a fourth embodiment of the present invention.
도 34는 본 발명의 제4 실시예에 따른 현열 열교환배관의 종단면도이다.34 is a longitudinal sectional view of the sensible heat exchange pipe according to the fourth embodiment of the present invention.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail through exemplary drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the embodiments of the present invention, if it is determined that the detailed description of the related well-known configuration or function interferes with the understanding of the embodiments of the present invention, the detailed description thereof will be omitted.
또한, 본 발명의 실시예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In addition, in describing the components of the embodiment of the present invention, terms such as first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being "connected", "coupled" or "connected" to another component, that component may be directly connected or connected to that other component, but between components It will be understood that may be "connected", "coupled" or "connected".
콘덴싱 보일러를 구성하는 버너, 열교환기 및 연소실의 배치 방법으로, 가장 하측에 위치한 버너로부터 상방으로 갈수록, 드라이 타입의 단열재에 의해 둘러싸인 연소실, 핀튜브(fin-tube) 타입의 현열 열교환기 및 플레이트(plate) 타입의 잠열 열교환기를 배열하여 콘덴싱 보일러를 구성하는 방법을 생각할 수 있다. 이러한 콘덴싱 보일러를 상향식 보일러로 지칭하는데, 상향식 보일러의 경우 잠열 열교환기에서 연소가스의 응축으로 인해 발생한 응축수가 낙하하여 현열 열교환기 및 연소실에 위치할 수 있다. 따라서 현열 열교환기와, 연소실을 둘러싼 드라이 타입의 단열재가, 산도가 높은 응축수에 의해 손쉽게 부식되는 문제가 있다. 또한 서로 다른 종류의 열교환기를 서로 연결하므로, 연결부품이 추가로 발생해 제조원가가 상승한다는 문제가 있다.A burner, a heat exchanger, and a combustion chamber constituting a condensing boiler, a combustion chamber surrounded by a dry type heat insulating material, a fin-tube type sensible heat exchanger, and a plate, It is conceivable to construct a condensing boiler by arranging plate latent heat exchangers. Such a condensing boiler is referred to as a bottom-up boiler. In the case of the bottom-up boiler, condensate generated by the condensation of the combustion gas in the latent heat exchanger may fall and be located in the sensible heat exchanger and the combustion chamber. Therefore, there is a problem that the sensible heat exchanger and the dry type heat insulating material surrounding the combustion chamber are easily corroded by the high acidity condensate. In addition, since different types of heat exchangers are connected to each other, there is a problem in that manufacturing costs increase due to additional connection parts.
응축수로 인한 문제를 해결하기 위해, 가장 상측에 위치한 버너로부터 하방으로 갈수록, 단열배관에 의해 둘러싸여 단열이 이루어지는 연소실, 핀튜브 타입의 현열 열교환기 및 플레이트 타입의 잠열 열교환기를 배열하여 콘덴싱 보일러를 구성하는 방법을 생각할 수 있다. 이를 하향식 보일러로 지칭한다. 이러한 경우 잠열 열교환기가 가장 하측에 위치하므로, 응축수는 바로 응축수 받이 등을 통해 배출되어 현열 열교환기나 연소실에 도달하지 않아, 부식의 문제가 해소될 수 있다. 다만 연소실 냉각을 위해 사용된 단열배관을 포함한 많은 부품이 사용되고, 그로 인해 조립 공수가 비대해져 제조원가가 상승한다는 문제가 있다. 또한 서로 다른 종류의 열교환기를 서로 연결하므로, 연결부품이 추가로 발생해 제조원가가 상승한다는 문제가 있다.In order to solve the problem caused by condensate, the condensing boiler is configured by arranging a combustion chamber, a fin tube type sensible heat exchanger, and a plate type latent heat exchanger, which are surrounded by a heat insulated pipe downward from the uppermost burner. I can think of a way. This is called a top down boiler. In this case, since the latent heat exchanger is located at the lowermost side, the condensate is immediately discharged through the condensate receiver, and thus does not reach the sensible heat exchanger or the combustion chamber, thereby eliminating the problem of corrosion. However, many parts including insulation pipes used for cooling the combustion chamber are used, and as a result, manufacturing costs increase due to an increase in assembly labor. In addition, since different types of heat exchangers are connected to each other, there is a problem in that manufacturing costs increase due to additional connection parts.
도 1은 예시적인 열교환기 유닛의 일부분의 종단면도이다. 도 1과 같이, 하향식 보일러를 사용하되, 연소실(102)과 현열 열교환기(103)를 단열재(101)로 둘러싸서 드라이(Dry) 타입으로 단열하는 방식을 생각할 수 있다. 즉 연소실(102)에 사용된 드라이 타입의 단열재가 현열 열교환기(103) 영역에서 나오는 열의 단열을 위해 배치되는 경우를 생각할 수 있다. 그러나 이러한 경우, 현열 열교환기(103)와, 연소반응을 통해 발생한 화염과, 연소가스에서 발생하는 열이 과도하여 단열재(101)가 손상되고 내구도가 감소할 수 있다는 문제가 있다. 또한 현열 열교환기(103)와 인접한 위치에서는 연소실(102)에 비해 응축수가 발생할 가능성이 높으므로, 도면과 같이 연소실(102)이 하방으로 연장되어 다다르는 위치보다 더 하류측까지 단열재(101)가 연장될 경우, 드라이 타입의 단열재(101)에 응축수가 닿아 손상이 일어날 수 있다는 문제가 있다.1 is a longitudinal sectional view of a portion of an exemplary heat exchanger unit. As shown in FIG. 1, a top-down boiler may be used, but the combustion chamber 102 and the sensible heat exchanger 103 may be enclosed by a heat insulating material 101 to be insulated in a dry type. That is, the case where the dry type heat insulating material used for the combustion chamber 102 is arrange | positioned for the heat insulation of the heat from the sensible heat exchanger 103 area | region can be considered. In this case, however, the sensible heat exchanger 103, the flame generated through the combustion reaction, and the heat generated from the combustion gas are excessive, which may damage the insulation 101 and reduce durability. In addition, since the condensate is more likely to occur in the position adjacent to the sensible heat exchanger 103 than the combustion chamber 102, as shown in the drawing, the heat insulating material 101 extends further downstream than the position where the combustion chamber 102 extends downward. If it is, there is a problem that the condensed water may come in contact with the dry type heat insulating material 101 may cause damage.
제1 실시예First embodiment
도 2는 본 발명의 제1 실시예에 따른 열교환기 유닛 및 이를 이용한 콘덴싱 보일러(1)의 종단면도이다. 도 3은 본 발명의 제1 실시예에 따른 열교환기 유닛 및 이를 이용한 콘덴싱 보일러(1)의 측면도이다.2 is a longitudinal sectional view of a heat exchanger unit and a condensing boiler 1 using the same according to the first embodiment of the present invention. 3 is a side view of the heat exchanger unit and the condensing boiler 1 using the same according to the first embodiment of the present invention.
도면을 참조하면, 본 발명의 제1 실시예에 따른 열교환기 유닛은, 현열 열교환기(30)와, 잠열 열교환기(40)와, 현열 단열배관(34)을 포함한다. 열교환기 유닛을 구성하는 상기 구성요소들은, 도시된 것과 같은 위치에 고정될 수 있다. Referring to the drawings, the heat exchanger unit according to the first embodiment of the present invention includes a sensible heat exchanger (30), a latent heat exchanger (40), and a sensible heat insulating pipe (34). The components constituting the heat exchanger unit can be fixed in the position as shown.
또한 본 발명의 제1 실시예에 따른 열교환기 유닛을 포함하는 콘덴싱 보일러(1)는, 연소실(20)과, 버너(11)를 포함하는 버너조립체(10)를 포함한다. 연소가스의 유동방향인 제1 기준방향(D1)을 따라 버너조립체(10)와 열교환기 유닛이 순서대로 배치되고, 열교환기 유닛의 내에서는 동일한 방향을 따라 연소실(20), 현열 열교환기(30), 잠열 열교환기(40) 및 현열 열교환기(30)와 같이 배치된 현열 단열배관(34)의 순서로 구성요소가 배열되어 있으므로, 상술된 배열 순서대로 콘덴싱 보일러(1)의 구성요소에 대해서 설명한다.In addition, the condensing boiler 1 including the heat exchanger unit according to the first embodiment of the present invention includes a combustion chamber 20 and a burner assembly 10 including a burner 11. The burner assembly 10 and the heat exchanger unit are sequentially arranged along the first reference direction D1, which is the flow direction of the combustion gas, and the combustion chamber 20 and the sensible heat exchanger 30 are arranged in the same direction in the heat exchanger unit. ), Since the components are arranged in the order of the sensible heat insulating pipe 34 arranged together with the latent heat exchanger 40 and the sensible heat exchanger 30, the components of the condensing boiler 1 in the above-described arrangement order. Explain.
본 발명의 제1 실시예에 따른 열교환기 유닛 및 이를 이용한 콘덴싱 보일러(1)는, 연소가스가 연직하방으로 유동하는 하향식의 콘덴싱 보일러(1)를 기준으로 하여 설명된다. 따라서 화살표로 표시된 연소가스의 유동방향인 제1 기준방향(D1)은 콘덴싱 보일러(1)가 설치된 위치에서의 연직하방과 동일할 수 있다. 하향식의 콘덴싱 보일러(1)를 선택함에 따라, 연소가스가 응축하여 발생하는 응축수가 콘덴싱 보일러(1)의 가장 하측에서만 생성되어 바로 하단을 통해 외부로 배출될 수 있다. 따라서 콘덴싱 보일러(1)를 구성하는 구성요소들의 부식이 방지될 수 있다. 그러나 가열된 연소가스가 대류에 의해 상방으로 이동하는 성질을 이용하여 난방수의 경로를 자연스럽게 하방으로 형성할 수 있는, 상향식의 콘덴싱 보일러에 본 발명의 구성이 사용될 수도 있다. The heat exchanger unit and the condensing boiler 1 using the same according to the first embodiment of the present invention will be described on the basis of the top down condensing boiler 1 in which the combustion gas flows vertically downward. Therefore, the first reference direction D1, which is the flow direction of the combustion gas indicated by the arrow, may be equal to vertically downward at the position where the condensing boiler 1 is installed. As the top-down condensing boiler 1 is selected, condensed water generated by condensation of the combustion gas may be generated only at the lowermost side of the condensing boiler 1 and discharged to the outside through the lower end. Therefore, corrosion of the components constituting the condensing boiler 1 can be prevented. However, the configuration of the present invention may be used in a bottom-up condensing boiler, which can naturally form the path of the heating water downward by utilizing the property that the heated combustion gas moves upward by convection.
본 발명의 제1 실시예에 따른 콘덴싱 보일러(1)는, 연소가스의 유동방향인 제1 기준방향(D1)을 따라 가장 하류에, 응축수 받이(55)를 배치하여, 잠열 열교환기(40)로부터 발생하는 응축수가 자중에 의해 연직하방으로 낙하할 경우 이를 수집할 수 있다. 응축수 받이(55)는 수집한 응축수가 연직하방으로 연장된 응축수 배출구(53)를 통해 배출될 수 있도록, 응축수 배출구(53)를 향해 경사진 내측면을 가질 수 있다.In the condensing boiler 1 according to the first embodiment of the present invention, the condensate receiver 55 is disposed downstream of the condensate receiver 55 along the first reference direction D1, which is the flow direction of the combustion gas, so that the latent heat exchanger 40 If condensate from the car falls vertically downward due to its own weight, it can be collected. The condensate receiver 55 may have an inner side surface inclined toward the condensate outlet 53 so that the collected condensate can be discharged through the condensate outlet 53 extending vertically downward.
또한 응축수 배출과 동시에 잔여 연소가스가 배출될 수 있도록, 배기 덕트(52)가 응축수 받이(55)와 연통되어 형성될 수 있다. 배기 덕트(52)는 연직상방으로 연장되어 형성됨으로써, 잔여 연소가스를 외부로 배출한다.In addition, the exhaust duct 52 may be formed in communication with the condensate receiver 55 so that residual combustion gas may be discharged simultaneously with the discharge of the condensate. The exhaust duct 52 extends vertically upward to discharge residual combustion gas to the outside.
버너조립체(10)Burner Assembly (10)
버너조립체(10)는 열을 발산하는 버너(11)를 포함하여, 연료와 공기를 주입받아 연소반응을 일으킴으로써 연소가스를 생성하는 구성요소이다. The burner assembly 10 includes a burner 11 that radiates heat, and is a component that generates combustion gas by injecting fuel and air to cause a combustion reaction.
본 발명의 제1 실시예에 따른 콘덴싱 보일러(1)에 사용되는 버너조립체(10)로서, 프리믹스(premix) 버너가 사용될 수 있다. 프리믹스 타입의 버너는, 공기와 연료를 주입받아 소정의 비율로 혼합하여, 발산하는 열을 이용해 혼합된 공기와 연료를 연소시킴으로써 연소가스를 생성하는 장치이다. 이러한 작용을 위해, 본 발명의 제1 실시예에 따른 버너조립체(10)는 연료와 공기를 주입받아 소정의 비율로 혼합하여 연소반응을 위한 혼합연료를 마련하는 공간인 믹스 챔버(12)와, 상기 믹스 챔버(12)가 혼합한 혼합연료에 열을 가하는 버너(11)를 포함할 수 있다. 연소반응에 적합한 비율로 혼합된 공기와 연료를 가열해 연소반응을 일으켜 최적의 연료효율 및 열효율을 얻도록 이와 같은 구조의 버너조립체(10)가 제공된다. As the burner assembly 10 used in the condensing boiler 1 according to the first embodiment of the present invention, a premix burner may be used. A premix type burner is a device that generates combustion gas by injecting air and fuel, mixing them in a predetermined ratio, and burning the mixed air and fuel using heat dissipating. For this operation, the burner assembly 10 according to the first embodiment of the present invention is a mix chamber 12 which is a space for preparing a mixed fuel for combustion reaction by injecting fuel and air and mixing at a predetermined ratio; The mix chamber 12 may include a burner 11 that applies heat to the mixed fuel mixed. A burner assembly 10 having such a structure is provided to heat the mixed air and fuel at a ratio suitable for the combustion reaction to cause the combustion reaction to obtain an optimum fuel efficiency and thermal efficiency.
믹스 챔버(12)에 공기를 공급하고, 버너조립체(10)에서 발생한 연소가스를 연직하방으로 송기하기 위해, 본 발명의 콘덴싱 보일러(1)는 송풍기(54)를 더 구비할 수 있다. 송풍기(54)는 믹스 챔버(12)와 연결되어 믹스 챔버(12)의 연직 하방에 연결된 버너조립체(10)를 향해 공기를 압송할 수 있도록, 펌프를 포함하여 구성될 수 있다. In order to supply air to the mix chamber 12 and to send combustion gas generated in the burner assembly 10 vertically downward, the condensing boiler 1 of the present invention may further include a blower 54. The blower 54 may be configured to include a pump so as to be connected to the mix chamber 12 to pressurize the air toward the burner assembly 10 connected to the vertical down of the mix chamber 12.
연소실(20)Combustion chamber (20)
도 4는 본 발명의 제1 실시예에 따른 연소실(20)의 평면도이다.4 is a plan view of the combustion chamber 20 according to the first embodiment of the present invention.
도 4를 도 2 및 도 3과 같이 참조하여 연소실(20)에 대해서 설명한다. 연소실(20)은 버너조립체(10)에 의한 연소반응이 발생시키는 화염이 위치할 수 있도록 제공되는 내부공간(22)을 포함하는 구성요소이다. 따라서 연소실(20)은 내부공간(22)을 측벽으로 둘러싸서 형성된다. 연소가스의 유동방향인 제1 기준방향(D1)을 기준으로 내부공간(22)의 상류측에 버너조립체(10)의 버너(11)가 위치하도록 버너조립체(10)와 연소실(20)이 결합된다. The combustion chamber 20 is demonstrated with reference to FIG. 4 as FIG. 2 and FIG. The combustion chamber 20 is a component that includes an internal space 22 provided so that the flame generated by the combustion reaction by the burner assembly 10 can be located. Therefore, the combustion chamber 20 is formed by enclosing the internal space 22 by the side wall. The burner assembly 10 and the combustion chamber 20 are coupled so that the burner 11 of the burner assembly 10 is located upstream of the inner space 22 with respect to the first reference direction D1, which is the flow direction of the combustion gas. do.
버너조립체(10)는 공기와 연료에 열을 가하여 연소반응을 일으킨다. 연소반응의 산물로 열에너지를 동반하는 화염과 연소가스가 생성된다. 화염은 연소실(20)의 내부공간(22)에 위치하되 연소가스의 유동방향(D)을 따라 버너조립체(10)로부터 연장되어 형성된다. 연소가스는 내부공간(22)을 통해 유동한다. 연소가스의 유동방향인 제1 기준방향(D1)과 나란한 방향으로 연소실(20)의 내부공간(22)이 연통될 수 있다. 본 발명의 제1 실시예에서 연소가스의 유동방향인 제1 기준방향(D1)은 연직하방이므로, 연소실(20)의 내부공간(22)은 연직방향으로 연통되어 형성된다. Burner assembly 10 generates combustion reaction by applying heat to air and fuel. As a result of the combustion reaction, flames and combustion gases with thermal energy are produced. The flame is positioned in the internal space 22 of the combustion chamber 20 and extends from the burner assembly 10 along the flow direction D of the combustion gas. Combustion gas flows through the internal space 22. The internal space 22 of the combustion chamber 20 may be in communication with the first reference direction D1, which is a flow direction of the combustion gas. In the first embodiment of the present invention, since the first reference direction D1, which is the flow direction of the combustion gas, is vertically downward, the inner space 22 of the combustion chamber 20 communicates in the vertical direction.
연소실(20)을 구성하는 연소실의 측벽(21)의 내측면의 적어도 일부 영역에는 연소실 단열부(24)가 형성될 수 있다. 연소실의 측벽(21)은 서로 나란한 2개의 일반측판(211)과, 일반측판(211)에 직교하고 서로 나란한 2개의 단열측판(212)으로 구성되어, 직육면체 형태로 형성될 수 있다. 이 중 단열측판(212)의 내측에는 연소실 단열부(24)가 배치될 수 있다. 연소실 단열부(24)는 열유동을 차단하는 단열재로 구성되어, 연소반응에 의해 생성된 열이 연소실(20)의 내측면을 통해 연소실(20)의 외부 영역으로 전달되는 양을 감소시킬 수 있다. 연소실 단열부(24)에 의해, 연소실(20)의 내부공간(22)으로부터 연소실(20)의 외부로 전달되는 열량을 저감 할 수 있다. 단열재의 일 예로 열유동을 감소시키는 다공성의 폴리스티렌(polystyrene) 패널 또는 무기질인 실리카 재질의 니들 매트가 사용될 수 있으나, 단열재의 종류는 이에 제한되지 않는다.The combustion chamber heat insulating part 24 may be formed in at least a portion of an inner side surface of the side wall 21 of the combustion chamber constituting the combustion chamber 20. The side wall 21 of the combustion chamber is composed of two normal side plates 211 parallel to each other and two heat insulating side plates 212 orthogonal to and parallel to the general side plate 211, and may be formed in a rectangular parallelepiped shape. The combustion chamber heat insulating part 24 may be disposed inside the heat insulating side plate 212. Combustion chamber insulation 24 is composed of a heat insulating material to block the heat flow, it is possible to reduce the amount of heat generated by the combustion reaction is transferred to the outer region of the combustion chamber 20 through the inner surface of the combustion chamber 20. . The combustion chamber heat insulation part 24 can reduce the amount of heat transferred from the internal space 22 of the combustion chamber 20 to the exterior of the combustion chamber 20. As an example of a heat insulating material, a porous polystyrene panel or a needle mat made of inorganic silica may be used to reduce heat flow, but the type of heat insulating material is not limited thereto.
그러나 연소실(20)의 일반측판(211)에도 연소실 단열부(24)가 배치되어, 연소실(20)의 내부공간(22) 전체를 단열재로 둘러싸 추가적인 단열효과를 가질 수도 있다.However, the combustion chamber heat insulation part 24 is also disposed in the general side plate 211 of the combustion chamber 20, and may surround the entire internal space 22 of the combustion chamber 20 with a heat insulating material to have an additional heat insulation effect.
연소실(20)의 주변으로 유체가 흐르는 단열배관을 배치하여 단열을 도모하는 것을 생각할 수 있다. 그러나 단열배관을 다수 사용하는 경우, 생산에 많은 비용이 소모된다. 그러나 본 발명의 열교환기 유닛은 하향식으로 구성될 수 있어, 연소실(20)에서는 응축수의 응축이 일어나지 않아 부식의 위험성이 없다. 따라서 단열배관에 비해 상대적으로 저렴한 단열재를 연소실 단열부(24)를 구성하는 소재로 사용하는 드라이 타입의 연소실(20)을 구성할 수 있다.It is conceivable to arrange heat insulation pipes through which fluid flows around the combustion chamber 20 to achieve heat insulation. However, if a large number of insulation pipes are used, it is expensive to produce. However, since the heat exchanger unit of the present invention can be configured in a top-down manner, there is no risk of corrosion since condensate does not occur in the combustion chamber 20. Therefore, it is possible to configure a dry type combustion chamber 20 using a relatively insulated heat insulating material as a material constituting the combustion chamber heat insulating portion 24 as compared to the heat insulating pipe.
연소실 단열부(24)는 연소가스의 유동방향인 제1 기준방향(D1)을 기준으로, 후술할 현열 열교환기(30)를 둘러싸지 않고, 연소실(20)의 내부공간(22)만을 둘러싸도록 그 길이가 결정될 수 있다. 즉 연소실 단열부(24)는, 후술할 현열 열교환기 케이스(31)의 내측에 위치하지 않게 마련될 수 있다. 따라서 도 1과 같이 단열재(101)가 배치될 경우, 단열재(101)가 과도한 열과 응축수에 의해 손상될 수 있으나, 본 발명의 제1 실시예에서는 도 2와 같이 연소실 단열부(24)가 배치됨으로써, 현열 열교환기(30)에서 발생하는 과도한 열이 연소실 단열부(24)로 전달되지 않을 수 있다.The combustion chamber heat insulating part 24 does not surround the sensible heat exchanger 30 to be described later, based on the first reference direction D1, which is the flow direction of the combustion gas, so as to surround only the inner space 22 of the combustion chamber 20. The length can be determined. That is, the combustion chamber heat insulation part 24 may be provided not to be located inside the sensible heat exchanger case 31 which will be described later. Therefore, when the heat insulating material 101 is arranged as shown in FIG. 1, the heat insulating material 101 may be damaged by excessive heat and condensate. However, in the first embodiment of the present invention, the combustion chamber heat insulating part 24 is disposed as shown in FIG. 2. Excessive heat generated in the sensible heat exchanger 30 may not be transferred to the combustion chamber heat insulating part 24.
현열 열교환기(30)Sensible Heat Exchanger (30)
도 5는 본 발명의 제1 실시예에 따른 열교환기 유닛의 현열 열교환기(30)의 평면도이다. 도 6은 본 발명의 제1 실시예에 따른 열교환기 유닛의 종단면도 중 현열 열교환배관(32)과 현열 핀(33)이 배치된 영역을 도시한 도면이다. 5 is a plan view of the sensible heat exchanger 30 of the heat exchanger unit according to the first embodiment of the present invention. FIG. 6 is a view illustrating a region in which the sensible heat exchange heat pipe 32 and the sensible heat fin 33 are disposed in the longitudinal cross-sectional view of the heat exchanger unit according to the first embodiment of the present invention.
도 2, 도 3, 도 5 및 도 6을 참조하여 현열 열교환기(30)의 기본적인 구성에 대해서 설명한다.With reference to FIG. 2, FIG. 3, FIG. 5, and FIG. 6, the basic structure of the sensible heat exchanger 30 is demonstrated.
연소가스의 유동방향인 제1 기준방향(D1)을 기준으로, 연소실(20)보다 하류에 현열 열교환기(30)가 배치된다. 현열 열교환기(30)는 현열 열교환기(30)보다 상부에 위치한 버너조립체(10)가 연소반응을 일으켜 생성되는 현열을 복사열과 연소가스의 대류에 의해 전달받아, 현열 열교환기(30)의 내부에서 흐르는 난방수를 가열하는 구성요소이다. The sensible heat exchanger 30 is disposed downstream of the combustion chamber 20 based on the first reference direction D1, which is the flow direction of the combustion gas. The sensible heat exchanger (30) receives the sensible heat generated by the burner assembly 10 located above the sensible heat exchanger (30) by the combustion reaction by the convection of radiant heat and combustion gas, the interior of the sensible heat exchanger (30) It is a component that heats the heating water flowing in.
현열 열교환기(30)는 구체적으로, 내부를 통해 난방수가 흐르며, 연소가스가 주변에서 흐르는 현열 열교환배관(32)을 포함하고, 현열 열교환배관(32)의 양 단부가 끼워지는 현열 열교환기 케이스(31)를 포함한다. 현열 열교환기 케이스(31) 내부에 현열 열교환배관(32)이 위치하고, 연소가스가 현열 열교환배관(32) 주변에서 유동하여, 연소가스와 난방수가 간접적으로 열교환하도록 구성된다.The sensible heat exchanger 30 specifically includes a sensible heat exchanger pipe 32 through which heating water flows and combustion gas flows around the sensible heat exchanger case, wherein both ends of the sensible heat exchanger pipe 32 are fitted ( 31). The sensible heat exchanger pipe 32 is positioned inside the sensible heat exchanger case 31, and the combustion gas flows around the sensible heat exchanger pipe 32, so that the combustion gas and the heating water are indirectly heat exchanged.
현열 열교환배관(32)은, 상기 현열 열교환기 케이스(31)의 내부에 형성된 공간에서, 제2 기준방향(D2)을 따라 연장된다. 상기 제2 기준방향(D2)은, 바람직하게는 연소가스의 유동방향인 제1 기준방향(D1)에 직교하는 방향일 수 있다. 현열 열교환배관(32)은, 상기 일 방향과 연소가스의 유동방향인 제1 기준방향(D1)에 직교하는 직교 방향을 따라 각각 서로 이격되어 나열된 복수의 직선부(321, 322, 323, 324)를 포함하여 구성될 수 있다. The sensible heat exchange pipe 32 extends along the second reference direction D2 in a space formed inside the sensible heat exchanger case 31. The second reference direction D2 may be a direction orthogonal to the first reference direction D1, which is preferably a flow direction of the combustion gas. The sensible heat exchange pipe 32 is a plurality of straight portions 321, 322, 323, 324 which are spaced apart from each other along an orthogonal direction perpendicular to the first reference direction D1, which is the one direction and the flow direction of the combustion gas. It may be configured to include.
복수의 직선부(321, 322, 323, 324)가 나열되고, 후술할 현열 열교환기 케이스(31)의 현열 일반측판(311)에 형성된 삽입 구멍들에 삽입된 각 직선부(321, 322, 323, 324)들의 단부를 연통해주는 후술할 유로캡 플레이트(361, 362)가 존재하여, 직선부(321, 322, 323, 324)의 집합이 하나의 현열 열교환배관(32)을 형성하는 것이다. 따라서 구불구불한 난방수의 연속된 유로를 현열 열교환배관(32)의 배치를 통해 형성할 수 있다. A plurality of straight portions 321, 322, 323, 324 are listed, and each of the straight portions 321, 322, 323 inserted into insertion holes formed in the sensible heat side plate 311 of the sensible heat exchanger case 31 to be described later. , There are flow path caps 361 and 362, which will be described later, which communicate with the ends of 324, so that the set of straight portions 321, 322, 323, and 324 form one sensible heat exchange pipe 32. Therefore, the continuous flow path of the meandering heating water may be formed through the arrangement of the sensible heat exchange pipe 32.
예를 들어 도 5의 직선부(321, 322, 323, 324)들이 직렬적으로 연결된 경우를 생각해보면, 도 5에 도시된 화살표 방향으로 난방수가 유입되어, 현열 열교환배관(32)이 포함하는 제1 외측 직선부(321)를 따라 도면상 우측으로 흐르고, 제1 외측 직선부(321)의 도면상 하측에 위치하는 중간 직선부(323)를 따라 도면상 좌측으로 흐르며, 토출단계에 이르러서는 도면상 제2 외측 직선부(322)의 상방에 위치하는 중간 직선부(324)를 따라 도면상 우측으로 흐르고, 제2 외측 직선부(322)를 따라 도면상 좌측으로 이동해서 배출되는 방식으로, 난방수가 현열 열교환배관(32) 내부를 지나가면서 연소가스 및 버너조립체(10)의 현열을 전달받아 가열될 수 있다.For example, when the straight portions 321, 322, 323, and 324 of FIG. 5 are connected in series, the heating water flows in the direction of the arrow shown in FIG. 5, and the sensible heat exchange pipe 32 includes 1 flows along the outer straight portion 321 to the right in the drawing, flows to the left in the drawing along the intermediate straight portion 323 located below the drawing of the first outer straight portion 321, and reaches the discharge step. The heating flows along the middle straight portion 324 located above the second outer straight portion 322 to the right in the drawing, and moves along the second outer straight portion 322 to the left in the drawing to be discharged. Water passing through the sensible heat exchange pipe 32 may be heated by receiving the sensible heat of the combustion gas and the burner assembly 10.
현열 열교환배관(32)의 내부에는, 난방수의 흐름을 방해하여 난방수의 흐름을 난류화하는 형상을 가지는 터뷸레이터(turbulator, 미도시)가 배치될 수 있다.Inside the sensible heat exchange pipe 32, a turbulator (not shown) having a shape that obstructs the flow of the heating water and turbulences the flow of the heating water.
현열 열교환기 케이스(31)는, 제2 기준방향(D2)으로 이격되어 서로 나란한 2개의 일반측판 부분과, 제2 기준방향(D2)에 직교하는 직교 방향을 따라 이격되어 서로 나란한 2개의 단열측판 부분으로 구성되어, 직육면체 형태로 형성될 수 있다. 일반측판 부분과 단열측판 부분은, 서로 별물인 일반측판과 단열측판일 수도 있고, 각각 일체형의 열교환기 케이스의 측판의 일부 영역일 수 있다. 본 발명의 명세서에서는 일반측판 부분과 단열측판 부분이, 서로 별물인 일반측판과 단열측판으로 구성되는 경우를 중심으로 설명한다.The sensible heat exchanger case 31 includes two general side plate portions spaced apart in the second reference direction D2 and parallel to each other, and two heat insulation side plates spaced apart from each other along the orthogonal direction perpendicular to the second reference direction D2. Consisting of parts, it may be formed in a cuboid shape. The general side plate portion and the heat insulation side plate portion may be separate general side plates and heat insulation side plates, or may be partial regions of the side plates of the integral heat exchanger case, respectively. In the specification of the present invention, a description will be made mainly on the case where the general side plate portion and the heat insulation side plate portion are constituted by the general side plate and the heat insulation side plate which are separate from each other.
현열 일반측판(311)과 현열 단열측판(312)이 함께 현열 열교환기 케이스(31)의 내부공간을 형성한다. 여기서 현열 단열측판(312)이란, 외부로 전달되는 열량을 감소시켜 단열을 달성하는 측판이라는 의미가 아니라, 현열 단열배관(34)이 인접하게 배치되는 측판이라는 의미로 사용되었다.The sensible heat general side plate 311 and the sensible heat insulating side plate 312 together form an inner space of the sensible heat exchanger case 31. Here, the sensible heat insulation side plate 312 is not used as a side plate to reduce the amount of heat transmitted to the outside to achieve heat insulation, but used to mean that the sensible heat insulation pipe 34 is adjacent to the side plate.
현열 일반측판(311)은 제2 기준방향(D2)을 따라 이격된 제1 현열 일반측판(3111)과 제2 현열 일반측판(3112)을 포함하고, 각각에는 현열 열교환배관(32)을 구성하는 직선부(321, 322, 323, 324)들의 양단이 각각 끼워져서, 결과적으로 현열 열교환기 케이스(31) 내부에 직선부(321, 322, 323, 324)들이 수용되는 형태가 될 수 있다. 현열 열교환기 케이스(31)의 내부에 형성된 공간에서 연소가스가 유동하여, 연소실(20)로부터 후술할 잠열 열교환기 케이스(41)로 이동한다.The sensible heat side plate 311 includes a first sensible heat side plate 3111 and a second sensible heat side plate 3112 spaced along the second reference direction D2, and each of the sensible heat side plate 311 constitutes a sensible heat exchange pipe 32. Both ends of the straight portions 321, 322, 323, and 324 are fitted to each other, and as a result, the straight portions 321, 322, 323, and 324 may be accommodated in the sensible heat exchanger case 31. Combustion gas flows in the space formed inside the sensible heat exchanger case 31, and moves from the combustion chamber 20 to the latent heat exchanger case 41 which will be described later.
현열 열교환기(30)에 인접하여 현열 단열배관(34)이 배치될 수 있다. 현열 단열배관(34)은, 내부를 통해 난방수가 유동함으로써 현열 열교환기(30)를 단열하기 위해 배치되는 파이프형의 구성요소이다. 여기서 단열이란, 열이 전달되는 것을 막는 것으로, 어떠한 위치에 열을 가두는 것과, 외부로 최종적으로 배출되는 열량이 전보다 감소하도록, 어떠한 위치에서 외부로 배출되는 열량을 흡수하는 것을 모두 아우르는 의미이다. 이러한 단열의 의미는 본 발명의 다른 실시예 및 그 변형예에서도 동일하게 적용될 수 있다.The sensible heat insulating pipe 34 may be disposed adjacent to the sensible heat exchanger 30. The sensible heat insulating pipe 34 is a pipe-like component arranged to insulate the sensible heat exchanger 30 by the heating water flows through the interior. Here, the term "insulation" means preventing heat from being transferred, encompassing both heat trapped at a certain position and absorbing the amount of heat discharged to the outside at a certain position so that the amount of heat finally discharged to the outside is reduced than before. The meaning of such insulation can be equally applied to other embodiments and modifications thereof.
구체적으로, 현열 단열측판(312)의 외측면과 인접하게 현열 단열배관(34)이 배치될 수 있다. 2개의 현열 단열측판(312) 중 어느 하나 및 다른 하나에 각각 인접하게 현열 단열배관(34)이 배치될 수 있다. 현열 단열측판(312)의 외측면과 현열 단열배관(34)이 접촉하도록 현열 단열배관(34)이 배치될 수도 있고, 현열 단열측판(312)의 외측면으로부터 이격된 위치에 현열 단열배관(34)이 배치될 수도 있다. Specifically, the sensible heat insulating pipe 34 may be disposed adjacent to the outer surface of the sensible heat insulating side plate 312. The sensible heat insulating pipe 34 may be disposed adjacent to one and the other of the two sensible heat insulating side plates 312, respectively. The sensible heat insulating pipe 34 may be disposed to contact the outer surface of the sensible heat insulating side plate 312 and the sensible heat insulating pipe 34, or the sensible heat insulating pipe 34 at a position spaced apart from the outer surface of the sensible heat insulating side plate 312. ) May be arranged.
도면을 참조하면, 본 발명의 제1 실시예에 따른 열교환기 유닛에서는 제1 현열 단열배관(341)과 제2 현열 단열배관(342)이 서로 이격되어 각각 현열 단열측판(312)의 외측면을 따라 배치된다. 도 5에서는 마치 현열 단열측판(312)의 내측에 현열 단열배관(34)이 위치하는 것처럼 표시되었으나, 이는 현열 단열측판(312)이 현열 단열배관(34)보다 현열 열교환기(30)의 내측에 위치함과 동시에 현열 단열배관(34)을 가리고 있어, 설명의 편의를 위해 현열 단열배관(34)의 위치를 표시한 것이다. 따라서 도 5에서 현열 단열배관(34)으로 표시된 영역에는, 실제론 현열 단열측판(312)에 의해 덮여 있는 현열 단열배관(34)이 위치하여, 평면도상에서 현열 단열배관(34)이 드러나지 않는다.Referring to the drawings, in the heat exchanger unit according to the first embodiment of the present invention, the first sensible heat insulating pipe 341 and the second sensible heat insulating pipe 342 are spaced apart from each other to form an outer surface of the sensible heat insulating side plate 312, respectively. Are arranged accordingly. In FIG. 5, the sensible heat insulating pipe 34 is displayed as if the sensible heat insulating side plate 312 is positioned inside the sensible heat insulating side plate 312. Position and at the same time covering the sensible heat insulating pipe 34, for the convenience of explanation is to indicate the position of the sensible heat insulating pipe 34. Therefore, in the region indicated by the sensible heat insulating pipe 34 in FIG. 5, the sensible heat insulating pipe 34 covered by the sensible heat insulating side plate 312 is located, and the sensible heat insulating pipe 34 is not exposed on the plan view.
따라서 현열 단열배관(34)은 연소가스가 통과하는 현열 열교환기 케이스(31)의 외측에 위치하므로, 현열 단열배관(34)은 연소가스와 교차하거나 만나지 않을 수 있다. 현열 단열배관(34)은 연소가스와 난방수의 열교환을 위해서 사용되는 것이 아니라, 난방수를 이용해 현열 열교환기(30)로부터 외부로 열이 배출되는 것을 차단하는 단열 기능만을 수행할 수 있다.Therefore, the sensible heat insulating pipe 34 is located outside the sensible heat exchanger case 31 through which the combustion gas passes, the sensible heat insulating pipe 34 may not intersect or meet the combustion gas. The sensible heat insulating pipe 34 may not be used for heat exchange between the combustion gas and the heating water, but may perform only a heat insulating function that blocks heat from being discharged from the sensible heat exchanger 30 to the outside using the heating water.
현열 단열배관(34)은 연소실(20)과 접촉하지 않고, 연소실(20)로부터 연소가스의 유동방향인 제1 기준방향(D1)을 따라 이격되어 배치될 수 있다. 따라서 현열 단열배관(34)은 연소실(20)의 단열을 위해 사용되는 것이 아니라, 현열 열교환기(30)의 단열을 위해서만 사용될 수 있다. The sensible heat insulating pipe 34 may be spaced apart from the combustion chamber 20 along the first reference direction D1 which is a flow direction of the combustion gas from the combustion chamber 20. Therefore, the sensible heat insulation pipe 34 may be used only for the heat insulation of the sensible heat exchanger 30, not used for the heat insulation of the combustion chamber 20.
현열 단열배관(34)은, 현열 열교환배관(32)과 함께 난방수가 유동하는 현열유로를 형성한다.The sensible heat insulating pipe 34 forms a sensible heat flow path through which the heating water flows together with the sensible heat exchange pipe 32.
상기 현열 단열배관(34)의 내부공간의 형상은, 도 2 및 도 6과 같이 현열 단열배관(34)이 연장된 방향에 직교하는 평면으로 현열 단열배관(34)을 자른 단면상에서, 타원형으로 형성될 수 있다. 구체적으로는 현열 단열배관(34)의 내부공간이, 연소가스의 유동방향인 제1 기준방향(D1)과 나란한 장축을 가지는 타원형으로 형성될 수 있다. The inner space of the sensible heat insulation pipe 34 is formed in an elliptical shape on the cross section of the sensible heat insulation pipe 34 in a plane orthogonal to the direction in which the sensible heat insulation pipe 34 extends as shown in FIGS. 2 and 6. Can be. Specifically, the inner space of the sensible heat insulating pipe 34 may be formed in an elliptical shape having a long axis parallel to the first reference direction D1, which is a flow direction of the combustion gas.
현열 단열배관(34)은 현열 열교환기(30)의 현열 단열측판(312)과 인접하게 위치하되, 연소가스의 유동방향인 제1 기준방향(D1)을 기준으로 상류측에 배치될 수 있다. 즉 후술할 잠열 열교환기(40) 보다는 연소실(20)에 인접한 위치에 현열 단열배관(34)이 배치될 수 있다. 연소실(20)에서 버너조립체(10)에 의해 발생하는 화염이 연소가스의 유동방향인 제1 기준방향(D1)을 기준으로 연소실(20)의 하류측까지 닿을 수 있으므로, 현열 열교환기(30)의 상류측이, 연소실(20)과 맞닿으며 가장 높은 온도를 가질 수 있다. 따라서 현열 단열배관(34)을 현열 열교환기(30)의 상류측과 인접하도록 배치함으로써, 현열 열교환기(30)의 내부공간과 외부의 온도차가 가장 크게 발생하여 많은 양의 열이 발산될 수 있는 현열 열교환기(30)의 상류측을 단열할 수 있다. 그러나 현열 단열배관(34)이 연소가스의 유동방향인 제1 기준방향(D1)을 기준으로 중앙에 위치할 수도 있다. The sensible heat insulating pipe 34 is positioned adjacent to the sensible heat insulating side plate 312 of the sensible heat exchanger 30, it may be disposed upstream with respect to the first reference direction (D1) that is the flow direction of the combustion gas. That is, the sensible heat insulating pipe 34 may be disposed at a position adjacent to the combustion chamber 20 rather than the latent heat exchanger 40 to be described later. Since the flame generated by the burner assembly 10 in the combustion chamber 20 may reach the downstream side of the combustion chamber 20 based on the first reference direction D1, which is the flow direction of the combustion gas, the sensible heat exchanger 30 Upstream of the side may be in contact with the combustion chamber 20 and have the highest temperature. Therefore, by arranging the sensible heat insulating pipe 34 to be adjacent to the upstream side of the sensible heat exchanger 30, the temperature difference between the inner space and the outside of the sensible heat exchanger 30 may be greatest and the large amount of heat may be dissipated. The upstream side of the sensible heat exchanger 30 can be insulated. However, the sensible heat insulating pipe 34 may be located at the center with respect to the first reference direction D1 which is the flow direction of the combustion gas.
현열 열교환기(30)는, 현열 열교환배관(32)의 열전도도를 높일 수 있는 현열 핀(33)을 더 포함하여, 핀튜브 형태의 현열 열교환기(30)를 구성할 수 있다. 현열 핀(33)은, 현열 열교환배관(32)이 연장된 방향에 직교하는 판형으로 형성되고, 현열 열교환배관(32)에 의해 관통된다. 현열 핀(33)은 복수로 구성되어, 현열 열교환배관(32)이 연장된 제2 기준방향(D2)을 따라 소정의 간격만큼 이격되어 배치될 수 있다. 현열 열교환배관(32)과 현열 핀(33)은 열전도도가 높은 금속으로 형성되어, 현열 핀(33)이 현열을 전달받을 수 있는 현열 열교환배관(32)의 표면적을 증가시켜 보다 많은 현열을 난방수로 전달하도록 할 수 있다.The sensible heat exchanger (30) further includes a sensible heat fin (33) capable of increasing the thermal conductivity of the sensible heat exchanger pipe (32), thereby constituting the sensible heat exchanger (30) in the form of a fin tube. The sensible heat fin 33 is formed in a plate shape orthogonal to the direction in which the sensible heat exchange pipe 32 extends, and is penetrated by the sensible heat exchange pipe 32. The sensible heat fin 33 may be configured in plural and spaced apart by a predetermined interval along the second reference direction D2 in which the sensible heat exchange pipe 32 extends. The sensible heat exchange pipe 32 and the sensible heat fin 33 are formed of a metal with high thermal conductivity, thereby increasing the surface area of the sensible heat exchange pipe 32 through which the sensible heat fin 33 can receive sensible heat, thereby heating more sensible heat. Can be passed by number.
현열 열교환배관(32)이 연장된 제2 기준방향(D2)에 직교하는 평면으로 현열 열교환배관(32)을 자른 단면에서 현열 열교환배관(32)의 내부공간의 형태는, 연소가스의 유동방향인 제1 기준방향(D1)을 따라 연장된 장공의 형태로 형성될 수 있다. 도 6에서 확인할 수 있듯이 본 발명의 제1 실시예에 따른 현열 열교환배관(32)은, 연소가스의 유동방향인 제1 기준방향(D1)을 기준으로 한 상기 단면에서의 현열 열교환배관(32)의 내부공간의 길이를, 연소가스의 유동방향인 제1 기준방향(D1)에 수직한 방향에 따른 폭으로 나눈 값이 2 이상이 되도록 형성되어, 납작한 장공의 형태를 가질 수 있다. The internal space of the sensible heat exchange pipe 32 in the cross section in which the sensible heat exchange pipe 32 is cut in a plane orthogonal to the second reference direction D2 in which the sensible heat exchange pipe 32 extends is a flow direction of the combustion gas. It may be formed in the form of a long hole extending along the first reference direction (D1). As can be seen in Figure 6, the sensible heat exchange pipe 32 according to the first embodiment of the present invention, the sensible heat exchange pipe 32 in the cross section based on the first reference direction (D1) that is the flow direction of the combustion gas. The length of the inner space of the divided by the width along the direction perpendicular to the first reference direction (D1) of the flow direction of the combustion gas is formed to be two or more, it may have a flat long hole shape.
이러한 형상의 플랫(flat) 타입 배관을 현열 열교환배관(32)에 도입함으로써, 원형이나 타원형과 같은 다른 형상의 배관이 현열 열교환배관(32)에 도입될 경우와 비교하여, 난방수가 같은 길이의 현열 열교환배관(32)을 따라 흘러도 연소가스와의 관계에서 더 넓은 열교환면적을 가지게 되어 더 많은 열량을 전달받아, 충분히 가열될 수 있다.By introducing such a flat type pipe into the sensible heat exchange pipe 32, the sensible heat of the heating water is the same length as compared to the case where other shapes of pipes such as round or elliptical are introduced into the sensible heat exchange pipe 32. Even though it flows along the heat exchange pipe 32, it has a larger heat exchange area in relation to the combustion gas, and thus receives more heat and can be sufficiently heated.
현열 핀(33)에는 현열 열교환배관(32)이 통과할 수 있는 관통홀이 형성될 수 있고, 이러한 관통홀의 면적은 현열 열교환배관(32)의 면적과 같거나 다소 작게 형성되어, 현열 열교환배관(32)이 단단하게 끼워질 수 있다. 또한 현열 핀(33)은 현열 열교환배관(32)과 브레이징 용접을 통해 일체로 결합될 수 있다.The sensible heat fin 33 may be formed with a through hole through which the sensible heat exchange pipe 32 may pass, and the area of the through hole may be equal to or slightly smaller than that of the sensible heat exchange pipe 32, and thus, the sensible heat exchange pipe ( 32) can be fitted tightly. In addition, the sensible heat fin 33 may be integrally coupled with the sensible heat exchange pipe 32 and the brazing welding.
다만 현열 단열배관(34)의 경우, 현열 핀(33)과 결합되지 않는다. 현열 단열배관(34)은 현열 핀(33)과 체결되지 않고, 현열 단열측판(312)을 사이에 두고 현열 단열배관(34)과 현열 핀(33)이 서로 반대측에 배치될 수 있다. 현열 핀(33)과 현열 단열배관(34) 각각이 현열 단열측판(312)에 접촉할 수는 있으나, 현열 핀(33)과 현열 단열배관(34)이 직접 접촉하지는 않는다. 현열 단열배관(34)은 상술한 것과 같이 연소가스와 난방수의 열교환을 위해서 배치되는 것이 아니라, 현열 열교환기(30)의 단열을 위해서 배치되는 것이기 때문에, 현열 핀(33)과 현열 단열배관(34)이 서로 직접 연결되지 않는 것이다. 따라서 현열 핀(33)과 현열 단열배관(34)은 서로 교차하지 않게 배치된다. However, in the case of sensible heat insulation pipe 34, it is not coupled with the sensible heat fin (33). The sensible heat insulating pipe 34 is not fastened with the sensible heat fin 33, the sensible heat insulating pipe 34 and the sensible heat fin 33 may be disposed on the opposite side with the sensible heat insulating side plate 312 therebetween. Each of the sensible heat fin 33 and the sensible heat insulating pipe 34 may be in contact with the sensible heat insulating side plate 312, but the sensible heat fin 33 and the sensible heat insulating pipe 34 do not directly contact. The sensible heat insulation pipe 34 is not arranged for heat exchange between the combustion gas and the heating water as described above, but is arranged for heat insulation of the sensible heat exchanger 30, so that the sensible heat insulation pipe 33 and the sensible heat insulation pipe ( 34) are not directly connected to each other. Therefore, the sensible heat fin 33 and the sensible heat insulation pipe 34 is arranged not to cross each other.
현열 핀(33)에는, 현열 열교환배관(32)이 연장된 제2 기준방향(D2)을 따라 관통된 루버(louver)홀(331)이 더 형성될 수 있다. 루버홀(331)은 펀칭을 통해 형성되어 그 둘레를 따라 돌출된 버링을 포함하여, 연소가스가 유동할 때 버링에 의해 가로막혀 현열 열교환배관(32)의 주위로 흘러, 연소가스와 난방수 사이의 열교환이 보다 잘 이루어지도록 하는 구성요소이다. The sensible heat fin 33 may further include a louver hole 331 penetrating along the second reference direction D2 in which the sensible heat exchange pipe 32 extends. The louver hole 331 includes a burring which is formed through punching and protrudes along the circumference thereof, is blocked by the burring when the combustion gas flows, flows around the sensible heat exchange pipe 32, and between the combustion gas and the heating water. The heat exchanger is a component that makes the heat exchanger better.
루버홀(331)은 복수개로 구성될 수 있다. 루버홀(331)은 도 6에 도시된 바와 같이 연소가스의 유동방향인 제1 기준방향(D1)에 대해 비스듬한 방향으로 연장되어 형성되며 현열 핀(33)의 가장 외곽에 형성되는 복수의 제1 루버홀(3311)과, 서로 인접한 현열 열교환배관(32)들의 사이에, 연소가스의 유동방향인 제1 기준방향(D1)에 대해 직교하는 방향으로 연장되는 복수의 제2 루버홀(3312)을 포함할 수 있다. 각각의 루버홀(331)은 연소가스의 유동방향인 제1 기준방향(D1)을 따라 소정의 간격을 두고 이격되어 배치될 수 있다.The louver hole 331 may be configured in plurality. As shown in FIG. 6, the louver hole 331 extends in an oblique direction with respect to the first reference direction D1, which is the flow direction of the combustion gas, and is formed in the outermost portion of the sensible fin 33. Between the louver holes 3311 and the sensible heat exchange pipes 32 adjacent to each other, a plurality of second louver holes 3312 extending in a direction orthogonal to the first reference direction D1, which is the flow direction of the combustion gas, is provided. It may include. Each louver hole 331 may be spaced apart from each other at a predetermined interval along the first reference direction D1, which is a flow direction of the combustion gas.
현열 핀(33)은 골(334)과 돌출부(333)를 더 포함할 수 있다. 현열 핀(33)은 기본적으로 현열 열교환배관(32)을 둘러싸도록 형성되되, 연소가스의 유동방향인 제1 기준방향(D1)을 기준으로 현열 열교환배관(32)의 상류측 단부의 테두리로부터 소정의 폭만큼의 영역을, 현열 열교환배관(32)의 나머지 영역과 구별되게 에워쌀 수 있다. 따라서 인접한 현열 열교환배관(32)의 상류측 단부들 사이에 연소가스의 유동방향인 제1 기준방향(D1)을 따라 파인 골(334)이 현열 핀(33)에 형성될 수 있다. 현열 열교환배관(32)의 상류측 단부와 인접한 현열 핀(33)의 영역은 상대적으로 돌출되어 있으므로, 돌출부(333)가 된다. 불필요한 영역을 골(334)을 형성하여 개방함으로써, 연소가스가 현열 핀(33)과 현열 열교환배관(32) 사이에서 보다 자유롭게 유동하도록 한다. The sensible fin 33 may further include a valley 334 and a protrusion 333. The sensible heat fin 33 is basically formed so as to surround the sensible heat exchange pipe 32, and is determined from an edge of an upstream end of the sensible heat exchange pipe 32 based on the first reference direction D1 which is the flow direction of the combustion gas. The area of the width can be surrounded by the remaining area of the sensible heat exchange pipe (32). Accordingly, a fine valley 334 may be formed in the sensible fin 33 along the first reference direction D1, which is a flow direction of the combustion gas, between the upstream ends of the adjacent sensible heat exchange pipe 32. Since the region of the sensible heat fin 33 adjacent to the upstream end of the sensible heat exchange pipe 32 is relatively protruded, it becomes the protrusion 333. By opening the unnecessary area by forming the valleys 334, the combustion gas is allowed to flow more freely between the sensible heat fin 33 and the sensible heat exchange pipe 32.
현열 핀(33)은 오목부(332)를 더 포함할 수 있다. 오목부(332)는 연소가스의 유동방향인 제1 기준방향(D1)을 기준으로 현열 핀(33)의 하류측 모서리로부터 현열 열교환배관(32)의 하류측 단부를 향해서 파여 형성된다. 오목부(332)의 형성 목적 역시 골(334)의 형성 목적과 유사하다. The sensible heat fin 33 may further include a recess 332. The concave portion 332 is formed to be dug toward the downstream end of the sensible heat exchange pipe 32 from the downstream edge of the sensible heat fin 33 with respect to the first reference direction D1 which is the flow direction of the combustion gas. The purpose of forming the recesses 332 is also similar to the purpose of forming the valleys 334.
제1 실시예의 일 변형예에 따르면, 현열 열교환배관(62), 현열 단열배관(64)과 현열 핀(63)의 형태는 변형될 수 있다. 도 7은 본 발명의 제1 실시예의 일 변형예에 따른 열교환기 유닛의 종단면도 중 현열 열교환배관(62)과 현열 핀(63)이 배치된 영역을 도시한 도면이다.According to one modification of the first embodiment, the shape of the sensible heat exchange pipe 62, the sensible heat insulation pipe 64 and the sensible heat fin 63 may be modified. FIG. 7 is a view illustrating a region in which the sensible heat exchange heat pipe 62 and the sensible heat fin 63 are arranged in the longitudinal cross-sectional view of the heat exchanger unit according to the first embodiment of the present invention.
제1 실시예의 일 변형예에 따르면, 현열 단열배관(64)은, 도시된 현열 열교환배관(62)의 단면이 연장된 방향 중 일 방향인 연소가스의 유동방향을 기준으로 현열 열교환기(60)의 상류측에 인접하게 배치될 수 있으며, 현열 단열배관(64)이 연장된 방향인 소정 방향에 직교하는 평면으로 잘랐을 때 그 단면이 원형으로 형성될 수 있다. 또한 현열 단열배관(64)이 도 6에서와 달리 단열측판(65)의 내측면에 인접하게 배치될 수 있다. 도 6의 제1 실시예와 달리 도 7의 제1 실시예의 일 변형예에서, 현열 열교환배관(62)은 6개로 구성될 수 있으나 그 개수는 이에 제한되지 않는다. According to one modified example of the first embodiment, the sensible heat insulating pipe 64, the sensible heat exchanger 60 on the basis of the flow direction of the combustion gas which is one of the direction in which the cross section of the sensible heat exchange pipe 62 is shown. It may be disposed adjacent to the upstream side of, and when the sensible heat insulation pipe 64 is cut in a plane orthogonal to a predetermined direction, which is an extended direction, the cross section may be formed in a circular shape. In addition, the sensible heat insulation pipe 64 may be disposed adjacent to the inner surface of the heat insulation side plate 65, unlike in FIG. Unlike the first embodiment of FIG. 6, in one variation of the first embodiment of FIG. 7, the sensible heat exchange pipe 62 may be six, but the number thereof is not limited thereto.
제1 실시예의 일 변형예에 따르면, 현열 핀(63)의 제1 루버홀(6311)은 제2 루버홀(6312)과 같이, 연소가스의 유동방향과 직교하는 방향으로 연장되어 형성될 수 있다. 루버홀(631)의 형태는 이 외에도 다양한 변형이 가능하다.According to a modification of the first embodiment, the first louver hole 6311 of the sensible fin 63 may be formed extending in a direction perpendicular to the flow direction of the combustion gas, like the second louver hole 6312. . The shape of the louver hole 631 can be variously modified in addition to this.
다시 도 2, 도 3, 도 5, 도 6, 도 8 및 도 9를 참조하여 제1 실시예에 따른 현열 열교환기(30)의 유로캡 플레이트(361, 362)에 대해서 설명한다. 도 8은 본 발명의 제1 실시예에 따른 제2 현열 일반측판(3112)을 제2 유로캡 플레이트(362)가 포함하는 유로캡들과 함께 제2 기준방향(D2)을 따라 외측으로부터 바라본 도면이다. 도 9는 본 발명의 제1 실시예에 따른 열교환기 유닛의 제1 현열 일반측판(3111)을 제1 유로캡 플레이트(361)가 포함하는 유로캡들과 함께 제2 기준방향(D2)을 따라 내측으로부터 바라본 도면이다.The flow path caps 361 and 362 of the sensible heat exchanger 30 according to the first embodiment will be described with reference to FIGS. 2, 3, 5, 6, 8, and 9 again. FIG. 8 is a view of the second sensible heat side plate 3112 according to the first embodiment of the present invention from the outside along the second reference direction D2 together with the flow path caps included in the second flow cap plate 362. to be. 9 illustrates a first sensible heat common side plate 3111 of the heat exchanger unit according to the first embodiment of the present invention along the second reference direction D2 along with the flow path caps included in the first flow cap plate 361. It is the figure seen from the inside.
도 8은, 본 발명의 제1 실시예의 다른 변형예를 설명하기 위한 도 29를 이용하여 설명하면, 도 29의 제2 연결 유로캡 플레이트(72)로부터 제2 메인 일반측판(5112)과 그에 결합된 배관들(32, 42, 341, 342)을 H-H' 선을 따라 바라본 모습에 대응되는 본 발명의 제1 실시예의 제2 현열 일반측판(3112)과 현열 열교환배관(32)의 직선부(321, 322, 323, 324), 현열 단열배관(341, 342)의 모습에, 제2 유로캡 플레이트(362)의 유로캡(3621, 3622, 3623)들을 점선으로 도시한 것이다. 동일한 방법으로 도 9를 설명하면, 본 발명의 제1 실시예의 다른 변형예를 설명하기 위한 도 29의 G-G'선을 따라 제1 연결 유로캡 플레이트(71)가 끼워지는 제1 메인 일반측판(5111)을 바라본 모습에 대응되는 본 발명의 제1 실시예의 제1 현열 일반측판(3111)과 현열 열교환배관(32)의 직선부(321, 322, 323, 324), 현열 단열배관(341, 342)의 모습에, 제1 유로캡 플레이트(361)의 유로캡(3611, 3612)들을 점선으로 도시한 것이다.8 is described with reference to FIG. 29 for explaining another modified example of the first embodiment of the present invention, the second main general side plate 5112 and the second main side plate from the second connecting flow path plate 72 of FIG. The straight portion 321 of the second sensible heat common side plate 3112 and the sensible heat exchange pipe 32 of the first embodiment of the present invention corresponding to the view of the pipes 32, 42, 341, and 342 along the HH ′ line. , 322, 323, and 324, and the sensible heat insulating pipes 341 and 342 show the flow path caps 3621, 3622, and 3623 of the second flow cap plate 362 in dotted lines. Referring to FIG. 9 in the same manner, the first main general side plate to which the first connecting flow path plate 71 is fitted along the line G-G 'of FIG. 29 for explaining another modification of the first embodiment of the present invention. The first sensible heat general side plate 3111 and the straight portion 321, 322, 323, and 324 of the first heat sensitive general side plate 3111 and the sensible heat insulating pipe 341 of the first embodiment of the present invention, which correspond to the view of 5111. 342, the flow path caps 3611 and 3612 of the first flow cap plate 361 are shown in dotted lines.
열교환기 유닛은, 현열 단열배관(34)과 현열 단열배관(34)에 인접한 상기 현열 열교환배관(32)의 단부를 연통하거나, 복수의 직선부(321, 322, 323, 324) 중 서로 인접한 직선부(321, 322, 323, 324)들을 연통하는 복수의 유로캡들을 포함하는 복수의 유로캡 플레이트(361, 362)를 구비할 수 있다. 유로캡 플레이트(361, 362)는 유로캡들을 포함하여, 서로 이격되어 있는 직선부(321, 322, 323, 324)들을 연통시켜 난방수가 현열 열교환기(30) 내에서 흐르는 유로를 형성할 수 있다. The heat exchanger unit communicates with an end portion of the sensible heat insulating pipe 34 and the sensible heat exchange pipe 32 adjacent to the sensible heat insulating pipe 34 or a straight line adjacent to each other among the plurality of straight parts 321, 322, 323, and 324. A plurality of flow path cap plates 361 and 362 may include a plurality of flow path caps communicating the portions 321, 322, 323, and 324. The flow path plates 361 and 362 may include flow path caps to communicate straight portions 321, 322, 323, and 324 spaced apart from each other to form a flow path in which the heating water flows in the sensible heat exchanger 30. .
구체적으로, 현열 열교환기 케이스(31)의 현열 일반측판(311)에는 현열 열교환배관(32)이 포함하는 직선부(321, 322, 323, 324) 및 현열 단열배관(34)들의 양 단부가 끼워지나, 각각의 단부가 폐쇄되지 않고 개방된 상태이다. 현열 열교환배관(32)이 포함하는 각 직선부(321, 322, 323, 324)와 현열 단열배관(34)들은 현열 일반측판(311) 중 어느 하나에서 다른 하나까지 연장되어, 각각의 양측 단부가 현열 일반측판(311)의 외측으로 노출되게 마련된다. 유로캡 플레이트(361, 362)가 현열 일반측판(311)을 외측으로부터 덮으면서 현열 일반측판(311)에 결합된다. 따라서 유로캡 플레이트(361, 362)의 유로캡이, 현열 일반측판(311)과 함께 직선부(321, 322, 323, 324)의 단부 및 현열 단열배관(34)의 단부를 에워싸는 연통공간을 형성한다.Specifically, both ends of the straight portion 321, 322, 323, 324 and the sensible heat insulating pipe 34 included in the sensible heat exchange pipe 32 are inserted into the sensible heat side plate 311 of the sensible heat exchanger case 31. Gina, each end is open without being closed. Each of the straight portions 321, 322, 323, and 324 and the sensible heat insulation pipes 34 included in the sensible heat exchange pipe 32 extend from one of the sensible heat side plates 311 to the other, so that both ends thereof are It is provided to be exposed to the outside of the sensible heat general side plate (311). The flow path cap plates 361 and 362 are coupled to the sensible heat side plate 311 while covering the sensible heat side plates 311 from the outside. Accordingly, the flow path caps of the flow path plates 361 and 362 form a communication space surrounding the ends of the straight portions 321, 322, 323, and 324 together with the ends of the sensible heat insulation pipe 34 together with the sensible heat side plates 311. do.
유로캡 플레이트(361, 362)가 포함하는 유로캡은, 현열 일반측판(311)과 그 내측면 사이에 유체가 유동 가능한 빈 연통공간을 형성한다. 내부에 이러한 연통공간을 가지는 유로캡은, 현열 일반측판(311)에 삽입되는 복수의 직선부(321, 322, 323, 324) 중 서로 인접한 2개의 직선부들을 연통하거나, 현열 단열배관(34)과 현열 단열배관(34)에 인접한 직선부를 연통할 수 있다. 유로캡 플레이트(361, 362)는 현열 일반측판(311)에 브레이징 용접되어 결합되거나, 끼움결합될 수 있으나, 그 결합 방법은 이에 제한되지 않는다.The flow path caps included in the flow path cap plates 361 and 362 form an empty communication space through which fluid can flow between the sensible heat side plate 311 and its inner surface. The flow path cap having such a communication space therein communicates two straight portions adjacent to each other among the plurality of straight portions 321, 322, 323, and 324 inserted into the sensible heat side plate 311, or the sensible heat insulating pipe 34. And a straight portion adjacent to the sensible heat insulating pipe 34 can communicate. The channel cap plates 361 and 362 may be brazed or coupled to the sensible heat side plate 311, or may be fitted, but the coupling method is not limited thereto.
각각의 유로캡들이 동시에 연통하는 직선부(321, 322, 323, 324) 또는 현열 단열배관(34)의 개수는 도면에 도시된 내용에 제한되지는 않는다. 따라서 하나의 유로캡 플레이트(361, 362)가 포함하는 유로캡의 개수 역시 도시된 내용에 제한되지 않으며, 변형이 가능하다.The number of straight portions 321, 322, 323, and 324 or sensible heat insulation pipes 34 through which the respective flow caps communicate at the same time is not limited to those shown in the drawings. Therefore, the number of flow path caps included in one of the flow path plates 361 and 362 is also not limited to the illustrated contents, and may be modified.
유로캡은 하나의 배관의 입구와 다른 하나의 배관의 출구가 연통되는 직렬유로를 형성하거나, 연결된 배관의 입구와 출구가 공통되는 병렬유로를 형성할 수 있다. 여기서 입구란 난방수가 배관으로 유입되는, 배관의 일단의 개구를 의미하며, 출구란 난방수가 배관으로부터 배출되는, 배관의 타단의 개구를 의미한다. 배관은 직선부(321, 322, 323, 324)와 제1, 2 현열 단열유로(341, 342)를 포함한다. 배관을 이용해 직렬유로를 형성하는 경우, 난방수가 천천히 흘러 과열되어 발생할 수 있는 비등소음을 감소시킬 수 있도록, 난방수를 빠르게 유동시킬 수 있다. 이러한 직렬유로에 병렬유로가 적어도 일부 포함된 경우, 난방수를 압송하는 펌프의 부하를 감소시킬 수 있다.The flow path cap may form a series flow path in which the inlet of one pipe and the outlet of the other pipe communicate with each other, or may form a parallel flow path in which the inlet and the outlet of the connected pipe are common. Here, the inlet means an opening at one end of the pipe into which the heating water flows into the pipe, and the outlet means an opening at the other end of the pipe from which the heating water is discharged from the pipe. The pipe includes straight portions 321, 322, 323, and 324 and first and second sensible heat insulating flow paths 341 and 342. When a series flow path is formed using piping, the heating water can be flowed quickly so that the heating water flows slowly to reduce the boiling noise that can be generated due to overheating. When at least part of the parallel flow path is included in the series flow path, the load of the pump for feeding the heating water may be reduced.
현열 열교환배관(32)의 단부 중 일단이 위치하고 직교 방향을 기준으로 가장 외측에 위치한 직선부는 제1 외측 직선부(321)로 지칭한다. 제1 외측 직선부(321)와 인접한 현열 단열배관은 제1 현열 단열배관(341)으로 지칭한다. One end of the end portion of the sensible heat exchange pipe 32 is located and the straightest part located at the outermost side with respect to the orthogonal direction is referred to as the first outer straight part 321. The sensible heat insulating pipe adjacent to the first outer straight portion 321 is referred to as a first sensible heat insulating pipe 341.
또한 제1 현열 단열배관(341)과 직교 방향에서 반대측에 위치하는 현열 단열배관을 제2 현열 단열배관(342)으로, 제2 현열 단열배관(342)과 인접한 직선부를 제2 외측 직선부(322)로, 제1 외측 직선부(321)와 제2 외측 직선부(322) 사이에 위치한 직선부를 중간 직선부(323, 324)로 지칭한다.In addition, the sensible heat insulating pipe located on the opposite side in the orthogonal direction to the first sensible heat insulating pipe 341 is the second sensible heat insulating pipe 342, and the straight portion adjacent to the second sensible heat insulating pipe 342 is the second outer straight part 322. ), The straight portions located between the first outer straight portion 321 and the second outer straight portion 322 are referred to as intermediate straight portions 323 and 324.
제1 현열 단열배관(341), 제1 외측 직선부(321), 중간 직선부(323, 324), 제2 외측 직선부(322) 및 제2 현열 단열배관(342)은 차례로 연통되어 직렬적으로 연결되는 1개의 현열유로를 형성하거나, 이 중 적어도 일부의 입구와 출구가 공통되는 병렬유로를 형성할 수 있다. 이 중 일 중간 직선부(323)와 다른 중간 직선부(324) 역시 직렬로 연결될 수 있다.The first sensible heat insulating pipe 341, the first outer straight line part 321, the middle straight line parts 323 and 324, the second outer straight line part 322, and the second sensible heat insulating pipe 342 are sequentially communicated with each other. It is possible to form one sensible heat flow path connected to each other, or to form a parallel flow path in which at least a portion of the inlet and the outlet are common. Among these, one middle straight portion 323 and another middle straight portion 324 may also be connected in series.
배관들을 직렬적으로만 연결하여 현열유로를 구성할 수 있다. 예를 들어, 배관들 중 서로 인접한 배관들의 입구와 출구를 직렬적으로 연결하여, 제1 현열 단열배관(341)으로부터 순서대로 제1 외측 직선부(321), 인접한 중간 직선부(323), 제2 외측 직선부(322)에 인접한 중간 직선부(324), 제2 외측 직선부(322) 및 제2 현열 단열배관(342)으로 난방수가 전달되는 현열유로를 형성할 수 있다. 직렬로만 구성된 현열유로에 대해서는, 도 10 내지 도 14를 참조하여 설명된 본 발명의 제1 실시예의 다른 변형예에 따른 열교환기 유닛이 포함하는 현열유로에 대한 설명에서 자세히 후술한다. Pipes can only be connected in series to form sensible heat paths. For example, by connecting the inlet and the outlet of the pipes adjacent to each other in series in series, in order from the first sensible heat insulation pipe 341, the first outer straight portion 321, the adjacent intermediate straight portion 323, 2 may form a sensible heat passage through which the heating water is transferred to the intermediate straight portion 324 adjacent to the outer straight portion 322, the second outer straight portion 322, and the second sensible heat insulating pipe 342. The sensible heat passage configured only in series will be described in detail later in the description of the sensible heat passage included in the heat exchanger unit according to another modification of the first embodiment of the present invention described with reference to FIGS. 10 to 14.
현열유로는 병렬유로를 일부 포함할 수 있으므로, 도 8 및 도 9를 참조하여 설명되는 본 발명의 일 실시예에 따른 현열유로에 대한 설명에서는, 직선부(321, 322, 323, 324) 중 일부가 병렬로 연결되는 경우에 대해서 설명한다.Since the sensible heat flow path may include a part of the parallel flow path, in the description of the sensible heat flow path according to an embodiment of the present invention described with reference to FIGS. 8 and 9, some of the straight portions 321, 322, 323, and 324 are used. The case where is connected in parallel will be described.
예를 들어, 다음과 같은 병렬유로의 구성이 가능하다. 제1 현열 단열배관(341)과 제1 외측 직선부(321)가 병렬유로를 형성할 수 있고, 제2 현열 단열배관(342)과 제2 외측 직선부(322)가 병렬유로를 형성할 수 있고, 중간 직선부(323, 324)가 병렬유로를 형성할 수 있고, 제1 외측 직선부(321)와 중간 직선부(323)가 병렬유로를 형성할 수 있고, 제2 외측 직선부(322)와 중간 직선부(324)가 병렬유로를 형성할 수 있다. For example, the following parallel channel configuration is possible. The first sensible heat insulating pipe 341 and the first outer straight portion 321 may form a parallel flow path, and the second sensible heat insulating pipe 342 and the second outer straight portion 322 may form a parallel flow path. The intermediate straight portion 323, 324 may form a parallel flow path, and the first outer straight portion 321 and the intermediate straight portion 323 may form a parallel flow passage, and the second outer straight portion 322 may have a parallel flow path. ) And the intermediate straight portion 324 may form a parallel flow path.
또한 상기 병렬유로 중 복수의 병렬유로를 직렬유로와 조합하여 전체 현열유로를 구성할 수 있다. 예를 들어, 제1 현열 단열배관(341)과 제1 외측 직선부(321)가 병렬유로를 형성할 때, 이에 따른 병렬유로, 중간 직선부(323, 324), 제2 외측 직선부(322) 및 제2 현열 단열배관(342)이 차례로 연통되어 하나의 현열유로를 형성할 수 있다. 반대로 제2 현열 단열배관(342)과 제2 외측 직선부(322)가 병렬유로를 형성할 때, 제1 현열 단열배관(341), 제1 외측 직선부(321), 중간 직선부(323, 324) 및 이에 따른 병렬유로가 차례로 연통되어 하나의 현열유로를 형성할 수 있다. 또한 상술한 두 부분에서 모두 병렬유로가 형성되는 경우, 각 병렬유로들이 사이에 위치한 중간 직선부(323, 324)와 연통되어 하나의 현열유로를 형성할 수 있다. In addition, a plurality of parallel flow paths of the parallel flow paths may be combined with the series flow paths to form the entire sensible heat flow path. For example, when the first sensible heat insulating pipe 341 and the first outer straight portion 321 form a parallel flow path, the parallel flow path, the intermediate straight portions 323 and 324 and the second outer straight portion 322 accordingly. ) And the second sensible heat insulating pipe 342 may be sequentially communicated to form one sensible heat flow path. On the contrary, when the second sensible heat insulating pipe 342 and the second outer straight part 322 form a parallel flow path, the first sensible heat insulating pipe 341, the first outer straight part 321, and the middle straight part 323 are formed. 324 and the parallel flow path may be sequentially communicated to form one sensible heat flow path. In addition, when the parallel flow paths are formed in both of the above-mentioned portions, the parallel flow paths may be in communication with the intermediate straight portions 323 and 324 disposed therebetween to form one sensible heat flow path.
현열 열교환기(30)로 난방수가 유입될 때, 병렬유로가 가장 먼저 난방수를 유입받는 경우를 본 발명의 제1 실시예에서 설명한다. 제1 외측 직선부(321)와 제1 현열 단열배관(341)은, 병렬로 연통되어 난방수를 같이 유입받고 배출할 수 있다. 난방수 공급구(371)가, 제2 현열 일반측판(3112)를 덮는 제2 유로캡 플레이트(362)가 포함하는 유로캡 중 입구 유로캡(3621)에 형성될 수 있다. 난방수 공급구(371)는 난방수를 난방수관으로부터 전달받아 입구 유로캡(3621)에 전달하는 개구인데, 잠열 열교환기(40)에서 배출된 난방수를 전달받음으로써 현열유로와 잠열유로를 연결할 수 있다.When the heating water flows into the sensible heat exchanger 30, the parallel flow path first receives the heating water will be described in the first embodiment of the present invention. The first outer straight portion 321 and the first sensible heat insulating pipe 341 may be connected in parallel to receive and discharge the heating water together. The heating water supply hole 371 may be formed in the inlet flow path cap 3621 among the flow path caps included in the second flow cap plate 362 covering the second sensible heat general side plate 3112. The heating water supply opening 371 is an opening for receiving the heating water from the heating water pipe and transferring the heating water to the inlet flow path cap 3621. Can be.
입구 유로캡(3621)은, 제1 외측 직선부(321)의 일단과, 상기 제1 외측 직선부(321)의 일단과 인접한 제1 현열 단열배관(341)의 일단을 연통한다. 난방수 공급구(371)를 통해 난방수가 입구 유로캡(3621)으로 공급되면서, 입구 유로캡(3621)에 연통된 제1 외측 직선부(321)의 일단과 제1 현열 단열배관(341)의 일단으로 상기 난방수가 유입되어 유동한다. The inlet flow path cap 3621 communicates with one end of the first outer straight portion 321 and one end of the first sensible heat insulating pipe 341 adjacent to the one end of the first outer straight portion 321. While the heating water is supplied to the inlet flow path cap 3621 through the heating water supply port 371, one end of the first outer straight portion 321 communicated with the inlet flow path cap 3621 and the first sensible heat insulating pipe 341. The heating water flows into one end.
난방수는, 제1 외측 직선부(321)와 제1 현열 단열배관(341)을 통과해서, 현열 열교환배관(32)을 기준으로 제2 유로캡 플레이트(362)의 반대측에 위치한 제1 유로캡 플레이트(361)의 제1 유로캡(3611)에 도달한다. 제1 유로캡(3611)은 제1 현열 단열배관(341)의 타단, 제1 외측 직선부(321)의 타단 및 제1 외측 직선부(321)에 인접한 중간 직선부(323)를 연통한다. 따라서 제1 외측 직선부(321)와 제1 현열 단열배관(341)은, 제1 유로캡(3611)에서 상기 인접한 중간 직선부(323)와 직렬로 연통되어, 제1 외측 직선부(321)와 제1 현열 단열배관(341)을 통과한 난방수를 전달받는다. The heating water passes through the first outer straight portion 321 and the first sensible heat insulating pipe 341 and is located on the opposite side of the second flow cap plate 362 with respect to the sensible heat exchange pipe 32. The first flow path cap 3611 of the plate 361 is reached. The first flow path cap 3611 communicates with the other end of the first sensible heat insulating pipe 341, the other end of the first outer straight part 321, and the intermediate straight part 323 adjacent to the first outer straight part 321. Therefore, the first outer straight portion 321 and the first sensible heat insulating pipe 341 is in communication with the adjacent intermediate straight portion 323 in the first flow path cap 3611, the first outer straight portion 321 The first sensible heat insulating pipe 341 and the heating water is passed through.
상기 제1 외측 직선부(321)에 인접한 중간 직선부(323)와, 후술할 제2 외측 직선부(322)와 인접한 중간 직선부(324)는, 제2 유로캡 플레이트(362)에 위치한 중간 유로캡(3623)에서 연통되어, 일 중간 직선부(323)로부터 다른 중간 직선부(324)로 난방수를 전달할 수 있다. 중간 유로캡(3623)에서 두 중간 직선부(323, 324)가 난방수 유로의 일부를 직렬로 형성하는 것이다.The intermediate straight portion 323 adjacent to the first outer straight portion 321 and the intermediate straight portion 324 adjacent to the second outer straight portion 322 to be described later are located at the middle of the second flow cap plate 362. In communication with the flow path cap 3623, the heating water may be transferred from one middle straight portion 323 to another middle straight portion 324. In the intermediate flow path cap 3623, two intermediate straight portions 323 and 324 form part of the heating water flow path in series.
현열 열교환기(30)로부터 난방수가 배출될 때, 병렬의 유로를 통해 배출되는 경우를 설명한다. 난방수가 배출되는 현열 단열배관(34)인 제2 현열 단열배관(342)과 인접하게 배치되는 직선부는 제2 외측 직선부(322)이다. When the heating water is discharged from the sensible heat exchanger 30, the discharge through the parallel flow path will be described. The straight part disposed adjacent to the second sensible heat insulating pipe 342, which is the sensible heat insulating pipe 34 through which the heating water is discharged, is the second outer straight part 322.
제2 외측 직선부(322)와 제2 현열 단열배관(342)은, 병렬로 연통되어 난방수를 같이 유입받고 배출할 수 있다. 제2 외측 직선부(322)의 일단과, 제2 외측 직선부(322)의 일단에 인접한 제2 현열 단열배관(342)의 일단은, 제1 현열 일반측판(3111)을 덮는 제1 유로캡 플레이트(361)가 포함하는 유로캡 중 제2 유로캡(3612)에서, 제2 외측 직선부(322)에 인접한 다른 직선부(324)와 직렬로 연통된다. 따라서 인접한 다른 직선부(324)를 통해서 제2 유로캡(3612)으로 전달된 난방수가, 제2 외측 직선부(322)의 일단 및 제2 현열 단열배관(342)의 일단으로 유입된다. The second outer straight portion 322 and the second sensible heat insulating pipe 342 may be communicated in parallel to receive and discharge the heating water together. One end of the second outer straight portion 322 and one end of the second sensible heat insulating pipe 342 adjacent to the one end of the second outer straight portion 322 cover the first sensible heat common side plate 3111. At the second flow path cap 3612 of the flow path caps included in the plate 361, the plate 361 communicates in series with another straight line portion 324 adjacent to the second outer straight line portion 322. Therefore, the heating water transmitted to the second flow path cap 3612 through another adjacent straight portion 324 flows into one end of the second outer straight portion 322 and one end of the second sensible heat insulating pipe 342.
상기 난방수는, 제2 외측 직선부(322)와 제2 현열 단열배관(342)을 통과해서, 제2 외측 직선부(322)의 타단과 제2 현열 단열배관(342)의 타단으로 배출된다. 제2 외측 직선부(322)의 타단과 제2 현열 단열배관(342)의 타단은 제2 유로캡 플레이트(362)에 형성된 유로캡 중 하나인 출구 유로캡(3622)에 연통되어 있으므로, 출구 유로캡(3622)에 난방수가 위치하게 된다. 출구 유로캡(3622)은 난방수 배출구(372)를 구비하고 있어, 출구 유로캡(3622)으로 토출된 난방수는 난방수 배출구(372)를 통해 배출된다. 난방수관이 가열된 난방수를 난방수 배출구(372)를 통해 전달받아 난방수를 메인 유로로 전달할 수 있다.The heating water passes through the second outer straight line part 322 and the second sensible heat insulating pipe 342 and is discharged to the other end of the second outer straight line part 322 and the other end of the second sensible heat insulating pipe 342. . Since the other end of the second outer straight portion 322 and the other end of the second sensible heat insulating pipe 342 are in communication with the outlet flow path cap 3622, which is one of the flow path caps formed on the second flow path cap plate 362, the outlet flow path The heating water is located in the cap 3622. The outlet flow path cap 3622 includes the heating water discharge port 372, and the heating water discharged to the outlet flow path cap 3622 is discharged through the heating water discharge port 372. The heating water pipe receives the heated heating water through the heating water outlet 372 to transfer the heating water to the main flow path.
이와 같은 제1 실시예의 현열유로의 구성에 대한 설명이, 본 발명의 다른 실시예 및 그 변형예에도 적용될 수 있다. The description of the configuration of the sensible heat passage of the first embodiment can be applied to other embodiments of the present invention and modifications thereof.
잠열 열교환기(40)Latent Heat Exchanger (40)
다시 도 2 및 도 3을 참조하여 잠열 열교환기(40)에 대해 설명한다. 잠열 열교환기(40)가 연소가스의 유동방향인 제1 기준방향(D1)을 기준으로 현열 열교환기(30)보다 하류측에 배치될 수 있다. 잠열 열교환기(40)는, 연소가스의 상변화시 발생하는 잠열을 전달받아 난방수를 가열한다. 따라서 현열 열교환기(30)를 통과한 연소가스가 잠열 열교환기(40)에 전달되고, 난방수가 잠열 열교환기(40) 내부에서 흘러 난방수와 연소가스 간에 간접적으로 열교환이 일어난다. The latent heat exchanger 40 will now be described with reference to FIGS. 2 and 3. The latent heat exchanger 40 may be disposed downstream of the sensible heat exchanger 30 based on the first reference direction D1, which is a flow direction of the combustion gas. The latent heat exchanger 40 receives the latent heat generated during the phase change of the combustion gas and heats the heating water. Therefore, the combustion gas passing through the sensible heat exchanger 30 is transferred to the latent heat exchanger 40, and the heating water flows in the latent heat exchanger 40 to indirectly exchange heat between the heating water and the combustion gas.
잠열 열교환기(40)는 현열 열교환기(30)와 유사하게, 내부를 통해 난방수가 흐르며, 연소가스가 주변에서 흘러 연소가스의 상변화에 의한 잠열을 난방수로 전달할 수 있는 잠열 열교환배관(42)을 포함할 수 있고, 잠열 열교환배관(42)의 양 단부가 끼워지는 잠열 열교환기 케이스(41)를 포함할 수 있다. 잠열 열교환배관(42)은 현열 열교환배관(32)과 유사하게 형성되고, 잠열 열교환기 케이스 역시 현열 열교환기 케이스(31)와 유사하게 형성될 수 있으므로, 예외적인 특징은 후술하되 전체적인 설명은 현열 열교환기(30)에 대한 설명에 갈음한다. 다만 잠열 열교환배관(42)의 주변에서는 연소가스의 상변화가 일어나 응축수가 발생하고, 중력에 의해 응축수 받이(55)로 낙하하는 현상이 일어날 수 있다. Similar to the sensible heat exchanger 30, the latent heat exchanger (40) flows the heating water through the interior, and the latent heat exchanger pipe (42) capable of transferring the latent heat caused by the phase change of the combustion gas to the heating water through the combustion gas flows from the surrounding area (42). ), And may include a latent heat exchanger case 41 into which both ends of the latent heat exchanger pipe 42 are fitted. Since the latent heat exchanger pipe 42 is formed similarly to the sensible heat exchanger pipe 32, and the latent heat exchanger case may also be formed similarly to the sensible heat exchanger case 31, an exception will be described later. Substitute the description for the group 30. However, in the vicinity of the latent heat exchange pipe 42, condensed water may occur due to the phase change of the combustion gas, and the phenomenon of falling into the condensate receiver 55 by gravity may occur.
잠열 열교환기(40) 역시 현열 열교환기(30)와 같이 핀튜브 방식일 수 있다. 따라서 잠열 열교환배관(42)이 연장된 제2 기준방향(D2)에 직교하는 판형으로 잠열 핀(43)이 형성되고, 잠열 열교환배관(42)에 의해 잠열 핀(43)이 관통된다. 잠열 핀(43)은, 잠열을 전달받을 수 있는 잠열 열전도배관(42)의 표면적을 증가시켜 보다 많은 잠열을 난방수로 전달하도록 할 수 있다.The latent heat exchanger 40 may also be a fin tube type like the sensible heat exchanger 30. Therefore, the latent heat fin 43 is formed in a plate shape orthogonal to the second reference direction D2 in which the latent heat exchange pipe 42 extends, and the latent heat fin 43 is penetrated by the latent heat exchange pipe 42. The latent heat fin 43 may increase the surface area of the latent heat conduction pipe 42 capable of receiving latent heat so that more latent heat may be transferred to the heating water.
잠열 핀(43)은 복수로 구성되어, 잠열 열교환배관(42)이 연장된 제2 기준방향(D2)을 따라 소정의 간격만큼 이격되어 배치될 수 있다. 잠열 핀(43)이 이격된 간격은, 인접한 잠열 핀(43) 사이에서 형성되는 응축수가 배출되기에 용이한 간격일 수 있다. 응축수가 배출되기에 용이한 간격이란, 잠열 핀(43) 사이에서 형성된 응축수의 무게가, 잠열 핀(43)과 응축수 사이에 작용하는 장력의 연직방향 합력보다 큰 상태에서의 잠열 핀(43) 간의 간격을 의미한다. 잠열 핀(43) 사이에서 형성되는 응축수의 높이와, 상기 응축수가 배출되기에 용이한 잠열 핀(43)의 최소 간격은 서로 반비례하는 관계에 있으므로, 잠열 열교환기(40)로부터 배출시키고자 하는 응축수의 적절한 높이를 선택함으로써, 응축수가 배출되기에 용이한 간격을 결정할 수 있다.The latent heat fin 43 may be configured in plural, and may be disposed to be spaced apart by a predetermined interval along the second reference direction D2 in which the latent heat exchange pipe 42 is extended. The interval at which the latent heat fins 43 are spaced apart may be a distance at which the condensed water formed between adjacent latent heat fins 43 is easily discharged. The spacing which is easy to discharge condensate means between the latent heat fins 43 in which the weight of the condensate water formed between the latent heat fins 43 is larger than the vertical force of the tension acting between the latent heat fins 43 and the condensate. It means the interval. Since the height of the condensate formed between the latent heat fins 43 and the minimum spacing of the latent heat fins 43 which are easy to discharge the condensate are inversely proportional to each other, the condensed water to be discharged from the latent heat exchanger 40. By choosing an appropriate height of, it is possible to determine the interval at which condensate is easy to drain.
잠열 핀(43)의 개수는 현열 핀(33)의 개수보다 적을 수 있다. 따라서 인접한 잠열 핀(43)이 서로 이격된 간격은, 인접한 현열 핀(33)이 서로 이격된 간격에 비해 크거나 같을 수 있다. 현열 핀(33)과 잠열 핀(43)의 개수 및 간격에 대한 구체적인 설명은, 제3 실시예에서 후술될 내용에 갈음한다. 잠열 열교환배관(42)이 연장된 방향에 수직한 평면으로 자른 잠열 열교환배관(42)의 내부공간의 단면적은, 현열 열교환배관(32)이 연장된 방향에 수직한 평면으로 자른 현열 열교환배관(32)의 내부공간의 단면적보다 작게 형성될 수 있다. 잠열 열교환배관(42)이 연장된 방향 역시 제2 기준방향(D2)일 수 있다. 상술한 잠열 핀(43)에 대한 설명과 유사하게, 잠열 열교환배관(42)의 크기를 현열 열교환배관(32)의 크기보다 작게 하여, 동일한 부피 내에서 잠열 열교환배관(42)이 현열 열교환배관(32)의 표면적보다 넓은 표면적을 가지도록 할 수 있다. 잠열 열교환배관(42)의 표면적을 넓힘에 따라, 잠열 열교환배관(42)을 따라 흐르는 난방수와 응축수간에 더 많은 양의 열교환이 일어날 수 있다.The number of latent heat pins 43 may be smaller than the number of latent heat pins 33. Therefore, the spacing between adjacent latent heat fins 43 may be greater than or equal to the spacing between adjacent sensible heat fins 33. A detailed description of the number and spacing of the sensible heat fin 33 and the latent heat fin 43 is replaced with the content to be described later in the third embodiment. The cross-sectional area of the inner space of the latent heat exchanger pipe 42 cut in the plane perpendicular to the direction in which the latent heat exchange pipe 42 extends is the sensible heat exchanger pipe 32 cut in the plane perpendicular to the direction in which the latent heat exchange pipe 32 extends. It may be formed smaller than the cross-sectional area of the inner space of the). The direction in which the latent heat exchange pipe 42 extends may also be the second reference direction D2. Similar to the description of the latent heat fin 43, the size of the latent heat exchange pipe 42 is smaller than the size of the sensible heat exchange pipe 32, so that the latent heat exchange pipe 42 is in the same volume. It can be made to have a surface area larger than the surface area of 32). As the surface area of the latent heat exchanger pipe 42 is widened, a greater amount of heat exchange may occur between the heating water and the condensate flowing along the latent heat exchanger pipe 42.
제2 기준방향(D2)에 수직한 평면으로 자른 잠열 열교환배관(42)의 단면 형상은, 현열 열교환배관(32)과 같이 장공 형태일 수 있다. The cross-sectional shape of the latent heat exchange pipe 42 cut in a plane perpendicular to the second reference direction D2 may have a long hole shape like the sensible heat exchange pipe 32.
본 발명의 제1 실시예에서, 잠열 열교환기(40)는 단열을 위한 수단이 존재하지 않는 것으로 도시되었다. 그러나 다양한 변형예에서 잠열 열교환기(40) 역시 현열 단열배관(34)과 동일한 형식으로 배치되는 잠열 단열배관(미도시)을 가질 수 있다. 잠열 단열배관은 잠열 열교환기 케이스와 인접하게 배치되고, 난방수가 내부를 따라 유동해 잠열 열교환기(40)를 단열할 수 있다.In the first embodiment of the invention, the latent heat exchanger 40 is shown without means for thermal insulation. However, in various modifications, the latent heat exchanger 40 may also have a latent heat insulating pipe (not shown) disposed in the same form as the sensible heat insulating pipe 34. The latent heat insulating pipe is disposed adjacent to the latent heat exchanger case, and the heating water may flow along the inside to insulate the latent heat exchanger 40.
현열 열교환기 케이스(31)와 잠열 열교환기 케이스(41)는 서로 별개로 설명되었으나, 도면에서 표시된 것과 같이 일체로 형성될 수 있다. 이러한 경우 현열 열교환기 케이스(31)와 잠열 열교환기 케이스(41)를 모두 포함하고 일체형으로 형성되는 메인 케이스(51)를 생각할 수 있다. 따라서 현열 열교환기(30)의 현열 단열측판(312)과 잠열 열교환기(40)의 잠열 단열측판(412)이 일체로 메인 단열측판(512)를 형성할 수 있고, 현열 열교환기(30)의 현열 일반측판(311)과 잠열 열교환기(40)의 잠열 일반측판(411)이 일체로 메인 잠열 일반측판(411)을 형성할 수 있다. 마찬가지로, 메인 일반측판(511)이 포함하는 제1 메인 일반측판(5111)은 제2 기준방향(D2)을 따라 같은 측에 위치한 제1 현열 단열측판(3111)과 제1 잠열 단열측판(4111)을 포함하고, 메인 일반측판(511)이 포함하는 제2 메인 일반측판(5112)은 제2 기준방향(D2)을 따라 또 다른 같은 측에 위치한 제2 현열 단열측판(3112)과 제2 잠열 단열측판(4112)을 포함할 수 있다.The sensible heat exchanger case 31 and the latent heat exchanger case 41 are described separately from each other, but may be integrally formed as shown in the drawings. In this case, a main case 51 including all of the sensible heat exchanger case 31 and the latent heat exchanger case 41 and formed integrally can be considered. Therefore, the sensible heat insulation side plate 312 of the sensible heat exchanger 30 and the latent heat insulation side plate 412 of the latent heat exchanger 40 may integrally form the main heat insulation side plate 512, and The sensible heat general side plate 311 and the latent heat general side plate 411 of the latent heat exchanger 40 may integrally form the main latent heat general side plate 411. Similarly, the first main general side plate 5111 included in the main general side plate 511 includes the first sensible heat insulating side plate 3111 and the first latent heat insulating side plate 4111 located on the same side along the second reference direction D2. And a second main general side plate 5112 included in the main general side plate 511 includes a second sensible heat insulating side plate 3112 and a second latent heat insulating plate located on another same side along the second reference direction D2. Side plate 4112 may be included.
이하 도 10 내지 도 14 및 도 29를 참조하여, 본 발명의 제1 실시예의 다른 변형예에 따른 열교환기 유닛의 열교환기(30, 40)들이 연결 유로캡 플레이트(71, 72)에 의해서 연결되어, 서로 연결된 현열유로와 잠열유로를 형성하는 상황에 대해서 설명한다.10 to 14 and 29, heat exchangers 30 and 40 of the heat exchanger unit according to another modification of the first embodiment of the present invention are connected by connecting flow path cap plates 71 and 72. The following describes the situation of forming sensible heat paths and latent heat paths connected to each other.
도 10은 본 발명의 제1 실시예의 다른 변형예에 따른 제2 연결 유로캡 플레이트(72)의 외측으로부터 열교환기 유닛을 바라본 도면이다. 도 11은 본 발명의 제1 실시예의 다른 변형예에 따른 열교환기 유닛의 제1 연결 유로캡 플레이트(71)를 도시한 도면이다. 도 12는 본 발명의 제1 실시예의 다른 변형예에 따른 열교환기 유닛의 제2 메인 일반측판(5112)의 일부 영역을 제2 연결 유로캡 플레이트(72)가 포함하는 유로캡들과 함께 소정 방향을 따라 외측으로부터 바라본 도면이다. 도 13은 본 발명의 제1 실시예의 다른 변형예에 따른 열교환기 유닛의 제1 메인 일반측판(5111)을 제1 연결 유로캡 플레이트(71)가 포함하는 유로캡들과 함께 소정 방향을 따라 내측으로부터 바라본 도면이다. 도 14는 본 발명의 제1 실시예의 다른 변형예에 따른 열교환기 유닛의 현열유로와 잠열유로를 도시한 사시도이다. 도 29는 본 발명의 제1 실시예의 다른 변형예에 따른 열교환기 유닛에서연결 유로캡 플레이트들이 분리되어 있는 상황을 도시한 사시도이다.10 is a view of the heat exchanger unit from the outside of the second connecting flow path plate 72 according to another modification of the first embodiment of the present invention. FIG. 11 is a view showing a first connection flow path plate 71 of a heat exchanger unit according to another modification of the first embodiment of the present invention. FIG. 12 illustrates a portion of the second main general side plate 5112 of the heat exchanger unit according to another modification of the first embodiment of the present invention along with the flow path caps included in the second connection flow path plate 72. A view from the outside along the side. FIG. 13 illustrates an inner side of the first main general side plate 5111 of the heat exchanger unit according to another modification of the first exemplary embodiment of the present invention along with the flow path caps included in the first connection flow path plate 71. This is the view seen from. 14 is a perspective view illustrating a sensible heat passage and a latent heat passage of a heat exchanger unit according to another modification of the first exemplary embodiment of the present invention. 29 is a perspective view illustrating a situation in which connecting flow path cap plates are separated in a heat exchanger unit according to another modification of the first exemplary embodiment of the present invention.
도 12는, 도 29의 제2 연결 유로캡 플레이트(72)로부터 H-H' 선을 따라 바라본, 본 발명의 제1 실시예의 다른 변형예에 따른 제2 메인 일반측판(5112)과 현열 열교환배관(32)의 직선부(321, 322, 323, 324), 현열 단열배관(341, 342)의 모습에, 제2 연결 유로캡 플레이트(72)의 유로캡(722, 723, 724, 725)들을 점선으로 도시한 것이다. 도 13은, 도 29의 G-G'선을 따라 바라본 본 발명의 제1 실시예의 다른 변형예에 따른 제1 메인 일반측판(5111)과 현열 열교환배관(32)의 직선부(321, 322, 323, 324), 현열 단열배관(341, 342)의 모습에, 제1 유로캡 플레이트(71)의 유로캡(712, 713, 714)들을 점선으로 도시한 것이다.FIG. 12 shows the second main common side plate 5112 and the sensible heat exchange pipe 32 according to another modification of the first embodiment of the present invention, viewed along the HH 'line from the second connecting channel cap plate 72 of FIG. 29. In the straight portion 321, 322, 323, 324, and the sensible heat insulation pipes 341, 342, the flow path caps 722, 723, 724, 725 of the second connection flow cap plate 72 are dotted. It is shown. FIG. 13 shows the straight portions 321, 322, of the first main general side plate 5111 and the sensible heat exchange pipe 32 according to another modification of the first embodiment of the present invention as viewed along the line G-G ′ of FIG. 29. 323, 324, the sensible heat insulating pipes 341, 342, the flow path caps (712, 713, 714) of the first flow cap plate 71 is shown in dotted lines.
본 발명의 제1 실시예의 다른 변형예에서는, 잠열 열교환배관(42)에 의해 현열유로에 연통되는, 난방수가 흐르는 경로인 잠열유로가 형성되고, 현열 열교환배관(32)과 현열 단열배관(34)에 의해, 난방수가 흐르는 경로인 현열유로가 형성된다. 도 14에서, 잠열유로는 잠열 열교환배관(42)을 통해 지나가는 화살표의 형태로 표현되었고, 현열유로는 현열 열교환배관(32)과 현열 단열배관(341, 342)을 통해 지나가는 화살표의 형태로 표현되었다. 각 유로가 지나가는 영역에 대한 이해의 편의를 돕기 위해, 도 14에서는 열교환기 유닛의 각 일반측판과 단열측판 및 핀을 제거한 상태에서, 각 연결 유로캡 플레이트(71, 72)의 유로캡을 도시하지 않았다. 현열유로와 잠열유로가 연통되어, 일체의 난방수 유로를 형성한다. 이러한 현열유로는 적어도 일부 구간에서 직렬유로를 포함하고, 잠열유로는 적어도 일부 구간에서 병렬유로를 포함할 수 있다. 도 10 내지 도 14 및 도 29에 도시된 본 발명의 제1 실시예의 다른 변형예에서는, 현열유로는 직렬유로만을 포함하도록 구성되되, 잠열유로는 병렬유로를 포함하도록 구성되었다. In another modification of the first embodiment of the present invention, the latent heat exchange pipe 42 is a latent heat flow path, which is a path through which the heating water flows, which communicates with the sensible heat flow path, and the sensible heat exchange pipe 32 and the sensible heat insulating pipe 34 are formed. As a result, a sensible heat flow path, which is a path through which the heating water flows, is formed. In FIG. 14, the latent heat flow path is represented in the form of an arrow passing through the latent heat exchange pipe 42, and the sensible heat flow path is represented in the form of an arrow passing through the sensible heat exchange pipe 32 and the sensible heat insulation pipes 341 and 342. . In order to facilitate the understanding of the area where each flow path passes, FIG. 14 does not show the flow path caps of the connection flow path cap plates 71 and 72 with each of the general side plates, the heat insulation side plates, and the fins of the heat exchanger unit removed. Did. The sensible heat flow path and the latent heat flow path communicate with each other to form an integral heating water flow path. The sensible heat flow path may include a series flow path in at least some sections, and the latent heat flow path may include parallel flow paths in at least some sections. In another modification of the first embodiment of the present invention shown in Figs. 10 to 14 and 29, the sensible heat flow path is configured to include only the series flow path, the latent heat flow path is configured to include a parallel flow path.
이러한 난방수 유로를 별도의 관체에 의한 연결 없이 형성하기 위해, 본 발명의 제1 실시예의 다른 변형예에서는, 현열 열교환기(30)와 잠열 열교환기(40)를 각각 연결하는 연결 유로캡 플레이트(71, 72)가 배치될 수 있다.In order to form such a heating water flow path without a connection by a separate tube, in another modification of the first embodiment of the present invention, a connection flow path plate connecting the sensible heat exchanger 30 and the latent heat exchanger 40, respectively ( 71, 72 may be disposed.
유로캡 플레이트의 일종인 연결 유로캡 플레이트(71, 72)는, 메인 케이스(도 2의 51)의 2개의 메인 일반측판(5111, 5112)의 외측으로 노출되는 잠열 열교환배관(42), 현열 열교환배관(32) 및 현열 단열배관(34)의 개구를 연통하기 위해, 메인 일반측판(511)과의 사이에 상기 개구를 에워싸는 연통공간을 마련하는 유로캡들을 구비하는 구성요소이다.The connecting flow cap plates 71 and 72, which is a kind of flow cap plate, have a latent heat exchange pipe 42 exposed to the outside of the two main general side plates 5111 and 5112 of the main case 51 of FIG. In order to communicate the openings of the pipe 32 and the sensible heat insulating pipe 34, it is a component having flow path caps providing a communication space surrounding the opening between the main general side plate 511.
이러한 연결 유로캡 플레이트(71, 72) 중 제2 기준방향(D2) 일측에 위치하는 어느 하나는, 2개의 메인 일반측판(5111, 5112) 중 어느 하나인 기준측판의 외측으로 노출되고 잠열 열교환배관(42)에 의해 형성된 잠열유로의 출구와, 기준측판의 외측으로 노출되고 현열 단열배관(34)으로 난방수를 유입시키는 현열유로의 입구를 연통하기 위해, 기준측판과의 사이에 잠열유로의 출구와 현열유로의 입구를 에워싸는 연통공간을 마련하는 연결 유로캡을 구비한다. Any one of the connection flow path cap plates 71 and 72 located on one side of the second reference direction D2 is exposed to the outside of the reference side plate, which is one of the two main general side plates 5111 and 5112, and is a latent heat exchange pipe. The outlet of the latent heat passage between the reference side plate for communicating between the outlet of the latent heat passage formed by (42) and the inlet of the sensible heat passage which is exposed to the outside of the reference side plate and introduces the heating water into the sensible heat insulating pipe 34. And a connecting flow path cap for providing a communication space surrounding the entrance of the sensible heat flow path.
본 발명의 제1 실시예의 다른 변형예에서, 기준측판은 제2 메인 일반측판(5112)이고, 어느 하나의 연결 유로캡 플레이트(71, 72)는 연결 유로캡(722)이 구비되는 제2 연결 유로캡 플레이트(72)이다. 그러나 기준측판이 배치되는 위치가 이에 제한되지는 않는다.In another variation of the first embodiment of the present invention, the reference side plate is the second main general side plate 5112, and either one of the connection flow path plates 71 and 72 is provided with a connection flow path cap 722; The flow cap plate 72. However, the position where the reference side plate is disposed is not limited thereto.
연결 유로캡(722)은 적층된 현열 열교환기(30)와 잠열 열교환기(40)를 연결하기 위해, 연소가스의 유동방향인 제1 기준방향(D1)을 따라 연장되어 형성된다. 또한 연결 유로캡(722)은 잠열 열교환배관(42)이 포함하는 복수의 직선부와 현열 단열배관(34)을 연결하므로, 연소가스의 유동방향인 제1 기준방향(D1)을 따라 연장됨과 동시에 잠열 열교환기(40)의 내측으로 연장될 수 있다. 따라서 연소가스의 유동방향인 제1 기준방향(D1)과 완전히 나란하지 않고, 경사진 형태의 부분을 가지는 연결 유로캡(722)이 형성될 수 있다.The connection flow path cap 722 extends along the first reference direction D1, which is a flow direction of the combustion gas, for connecting the stacked sensible heat exchanger 30 and the latent heat exchanger 40. In addition, since the connection flow path cap 722 connects the plurality of straight portions included in the latent heat exchange pipe 42 and the sensible heat insulating pipe 34, the connection flow path cap 722 extends along the first reference direction D1 which is the flow direction of the combustion gas. It may extend into the latent heat exchanger (40). Therefore, the connection flow path cap 722 may be formed to have an inclined portion without being completely parallel with the first reference direction D1, which is a flow direction of the combustion gas.
제2 연결 유로캡 플레이트(72)에는, 난방수 공급구(7211)가 형성되는 입구 유로캡(721)과, 현열유로의 출구인 난방수 배출구(7251)가 형성되는 출구 유로캡(725)이 형성된다. 현열유로의 출구는 제2 현열 단열배관(342)의 출구에 의해 구현된다. 본 발명의 제1 실시예의 다른 변형예에서는 난방수 공급구(7211)를 통해 잠열 열교환기(40)로 난방수가 유입되어, 연결 유로캡(722)을 통해 현열 열교환기(30)로 난방수가 유동하며, 현열 열교환기(30)로부터 난방수 배출구(7251)를 통해 난방수가 데워져 배출되는 상황을 가정하였다. 그러나 입구 유로캡(721) 및 난방수 공급구(7211)가 현열 열교환기(30)와 연결되도록 배치되고, 출구 유로캡(725) 및 난방수 배출구(7251)가 잠열 열교환기(40)와 연결되도록 배치되어, 현열 열교환기(30)를 통과한 난방수가 잠열 열교환기(40)로 향하도록 반대방향으로 형성된 난방수 유로를 형성할 수도 있다.The second connection flow path cap plate 72 has an inlet flow path cap 721 in which a heating water supply port 7141 is formed, and an outlet flow path cap 725 in which a heating water discharge port 7141 serving as an outlet of the sensible heat flow path is formed. Is formed. The outlet of the sensible heat flow path is implemented by the outlet of the second sensible heat insulating pipe 342. In another modified example of the first embodiment of the present invention, the heating water flows into the latent heat exchanger 40 through the heating water supply port 7141, and the heating water flows into the sensible heat exchanger 30 through the connection flow channel cap 722. In addition, it is assumed that the heating water is heated and discharged from the sensible heat exchanger 30 through the heating water outlet 7171. However, the inlet flow path cap 721 and the heating water supply port 7141 are arranged to be connected to the sensible heat exchanger 30, and the outlet flow path cap 725 and the heating water discharge port 7721 are connected to the latent heat exchanger 40. It may be disposed so as to form a heating water flow path formed in the opposite direction so that the heating water passing through the sensible heat exchanger 30 is directed to the latent heat exchanger (40).
입구 유로캡(721)에는 잠열 열교환배관(42)이 포함하는 복수의 직선부가 병렬로 연통되어, 난방수 공급구(7211)를 통해 유입된 난방수가 병렬유로를 따라 이동할 수 있다. 출구 유로캡(725)에는 제2 현열 단열배관(342)의 출구가 연통되어, 현열유로를 거쳐 가열된 난방수를 제2 현열 단열배관(342)으로부터 전달받아 배출할 수 있다.A plurality of straight portions included in the latent heat exchange pipe 42 communicate with each other in parallel to the inlet flow path cap 721 such that the heating water introduced through the heating water supply port 7141 may move along the parallel flow path. The outlet of the second sensible heat insulating pipe 342 is communicated to the outlet flow path cap 725 to receive and discharge the heating water heated through the sensible heat path from the second sensible heat insulating pipe 342.
잠열 열교환기(40)와 현열 열교환기(30)를 모두 수용하는 가상의 직육면체를 가정할 때, 잠열유로의 입구인 난방수 공급구(7211)와 현열유로의 출구인 난방수 배출구(7251)가, 직육면체의 여섯 면 중 어느 하나인 기준면 측에 함께 마련될 수 있다. 달리 표현하여, 메인 케이스(도 1의 51)를 구성하는 측판 중 하나를 덮는 유로캡 플레이트에 난방수 공급구(7211)와 난방수 배출구(7251)가 모두 마련될 수 있다. 이러한 어느 하나의 측판은, 본 발명의 제1 실시예의 다른 변형예에서, 제2 연결 유로캡 플레이트(72)의 유로캡들과 함께 연통공간을 형성하는 제2 메인 일반측판(5111)일 수 있고, 이를 덮는 유로캡 플레이트는 제2 연결 유로캡 플레이트(72)이다. 따라서 열교환기 유닛의 측면 중 제2 연결 유로캡 플레이트(72)가 배치되는 측면을 통해 난방수가 열교환기 유닛으로 유입되고, 난방수가 열교환기 유닛으로부터 배출되는 것이다. 그러나 기준면은 이에 한정되지 않고 달리 배치될 수도 있다.Assuming a hypothetical cuboid that accommodates both the latent heat exchanger 40 and the sensible heat exchanger 30, the heating water supply port 7141, which is the inlet of the latent heat passage, and the heating water outlet 7725, which is the outlet of the sensible heat passage, It may be provided together on the reference plane side, which is one of the six sides of the rectangular parallelepiped. In other words, both the heating water supply port 7141 and the heating water discharge port 7171 may be provided in the channel cap plate covering one of the side plates constituting the main case 51 of FIG. 1. This one side plate, in another variant of the first embodiment of the present invention, may be a second main general side plate (5111) to form a communication space with the flow path caps of the second connection flow path cap plate 72 and The flow cap plate covering the flow path is a second connection flow cap plate 72. Therefore, the heating water flows into the heat exchanger unit and the heating water is discharged from the heat exchanger unit through a side of the side surface of the heat exchanger unit in which the second connection channel cap plate 72 is disposed. However, the reference plane is not limited thereto and may be arranged differently.
열교환기 유닛의 동일한 측면에 난방수 공급구(7211)와 난방수 배출구(7251)가 배치되므로, 난방수 공급구(7211)를 통해 난방수가 유입되는 방향과, 난방수 배출구(7251)를 통해 난방수가 배출되는 방향은 서로 반대될 수 있다. 난방수가 동일한 측면을 통해 유입되고 배출됨으로써, 난방수 공급구(7211)와 난방수 배출구(7251)에 연결되는 난방수관을 배치하기 위해 필요한 공간을 절약할 수 있다. 그러나 난방수 공급구(7211)와 난방수 배출구(7251)는 서로 반대되는 측면에 배치될 수도 있다.Since the heating water supply port 7141 and the heating water discharge port 7171 are disposed on the same side of the heat exchanger unit, the heating water flows in through the heating water supply port 7141 and the heating water flows through the heating water discharge port 7721. The direction in which the water is discharged may be opposite to each other. Since the heating water is introduced and discharged through the same side, it is possible to save the space required for arranging the heating water pipes connected to the heating water supply port 7141 and the heating water discharge port 7171. However, the heating water supply port 7141 and the heating water discharge port 7171 may be disposed on opposite sides of each other.
난방수 공급구(7211)와 난방수 배출구(7251)가 동일한 측면에 위치하도록 하기 위해서, 난방수 유로는 제2 기준방향(D2)의 일측으로부터 타측 또는 타측으로부터 일측으로 난방수가 향하는 구간을 총 짝수 개 포함할 수 있다. 즉 제2 기준방향(D2)을 기준으로 열교환기 유닛의 어느 일측면으로부터 다른 일측면으로 난방수가 향하는 횟수는, 전체 난방수 유로에서 짝수 회일 수 있다. 달리 표현하여, 제2 기준방향(D2)의 일측으로부터 타측 또는 타측으로부터 일측으로 진행 방향이 바뀌는 것 만을 방향전환 횟수로 계산할 때, 난방수 유로는 총 홀수 회 방향을 전환할 수 있다. 본 발명의 제1 실시예의 다른 변형예에서는, 전체 난방수 유로가 총 7회 방향을 전환하나, 그 횟수가 이에 제한되는 것은 아니다. 달리 표현하여, 잠열유로와 현열유로에서, 기준면으로부터 기준면의 반대측에 위치한 면으로 유동한 난방수가 다시 기준면으로 돌아오도록, 제2 기준방향(D2)을 따라 기준면과 기준면의 반대측에 위치한 면을 연결하는 구간은, 짝수 개일 수 있다.In order for the heating water supply port 7141 and the heating water discharge port 7721 to be located at the same side surface, the heating water flow path has a total even number of sections in which the heating water is directed from one side of the second reference direction D2 to the other side or from the other side to one side. Can contain dogs. That is, the number of times that the heating water is directed from one side of the heat exchanger unit to the other side of the heat exchanger unit based on the second reference direction D2 may be an even number of times in the entire heating water flow path. In other words, when only the change in the traveling direction from one side of the second reference direction D2 to the other side or the other side to one side is calculated as the number of turns, the heating water flow path may switch the total odd times direction. In another modification of the first embodiment of the present invention, the total heating water flow paths change the direction in total seven times, but the number of times is not limited thereto. In other words, in the latent heat flow path and the sensible heat flow path, connecting the plane located on the opposite side of the reference plane and the reference plane along the second reference direction D2 so that the heating water flowing from the reference plane to the plane located on the opposite side of the reference plane is returned to the reference plane. The interval may be even.
이와 같은 제1 실시예의 난방수 공급구(7211)와 난방수 배출구(7251)의 위치에 대한 설명은, 본 발명의 다른 실시예 및 그 변형예에도 적용될 수 있다.The description of the positions of the heating water supply port 7141 and the heating water discharge port 7171 of the first embodiment can be applied to other embodiments of the present invention and modifications thereof.
제2 연결 유로캡 플레이트(72)는, 상술한 입구 유로캡(721), 출구 유로캡(725), 연결 유로캡(722) 외에, 현열 열교환배관(32)이 포함하는 서로 인접한 직선부(321, 322, 323, 324)들을 연통시키는 제2 현열 유로캡(723), 제4 현열 유로캡(724)을 포함한다. 이 중 제2 현열 유로캡(723)은 제1 외측 직선부(321)와 중간 직선부(323)를 직렬로 연결할 수 있고, 제3 현열 유로캡(724)은 제2 외측 직선부(322)와 중간 직선부(324)를 직렬로 연결할 수 있다.The second connection flow path cap plate 72 includes the inlet flow path cap 721, the outlet flow path cap 725, and the connection flow path cap 722, and adjacent straight portions 321 included in the sensible heat exchange heat pipe 32. And a second sensible heat passage cap 723 and a fourth sensible heat passage cap 724 communicating 322, 323, and 324. Among these, the second sensible heat passage cap 723 may connect the first outer straight portion 321 and the middle straight portion 323 in series, and the third sensible heat passage cap 724 may have the second outer straight portion 322. And the intermediate straight portion 324 may be connected in series.
제1 연결 유로캡 플레이트(71)는, 현열 열교환기(30)와 잠열 열교환기(40)를 기준으로 제2 연결 유로캡 플레이트(72)의 반대측에서 제1 메인 일반측판(5111)에 결합된다. 따라서 연결 유로캡(722)이 형성되지 않고, 잠열 열교환배관(42)이 포함하는 서로 인접한 직선부들을 연통시키는 잠열 유로캡(722)과, 현열 열교환배관(32)이 포함하는 서로 인접한 직선부들을 연통시키는 제1 현열 유로캡(712), 제3 현열 유로캡(713), 제5 현열 유로캡(714)을 포함한다. 도 11에서 잠열 유로캡(711)은 하나로 형성되나, 그 개수는 이에 제한되지 않고 복수 개로 형성될 수도 있다.The first connection channel cap plate 71 is coupled to the first main general side plate 5111 on the opposite side of the second connection channel cap plate 72 based on the sensible heat exchanger 30 and the latent heat exchanger 40. . Therefore, the connection flow path cap 722 is not formed, and the latent heat flow path cap 722 communicating the linear portions adjacent to each other included in the latent heat exchange pipe 42 and the linear portions adjacent to each other included in the sensible heat exchange pipe 32 are formed. The first sensible heat passage cap 712, the third sensible heat passage cap 713, and the fifth sensible heat passage cap 714 communicated with each other. In FIG. 11, the latent heat passage cap 711 is formed as one, but the number is not limited thereto and may be formed in plural.
잠열 유로캡(711)은 잠열 열교환배관(42)이 포함하는 복수의 직선부들의 단부와 전부 연통될 수 있다. 따라서 잠열 열교환배관(42)이 포함하는 복수의 직선부들이 병렬유로를 형성할 수 있다. 제1 현열 유로캡(712)은 제1 현열 단열배관(341)과 제1 외측 직선부(321)를 연통하고, 제3 현열 유로캡(713)은 중간 직선부(323, 324)들을 연통하고, 제5 현열 유로캡(714)은 제2 외측 직선부(322)와 제2 현열 단열배관(342)을 연통할 수 있다.The latent heat passage cap 711 may be in full communication with the ends of the plurality of straight portions included in the latent heat exchange pipe 42. Therefore, a plurality of straight portions included in the latent heat exchange pipe 42 may form a parallel flow path. The first sensible heat passage cap 712 communicates with the first sensible heat insulating pipe 341 and the first outer straight portion 321, and the third sensible heat passage cap 713 communicates with the middle straight portions 323 and 324. The fifth sensible heat flow path cap 714 may communicate the second outer straight portion 322 and the second sensible heat insulating pipe 342.
이와 같은 제1 실시예의 병렬유로를 포함하는 잠열유로의 구성에 대한 설명이, 본 발명의 다른 실시예 및 그 변형예에도 적용될 수 있다. The description of the configuration of the latent heat channel including the parallel channel of the first embodiment can be applied to other embodiments of the present invention and modifications thereof.
상술한 본 발명의 제1 실시예의 다른 변형예에 따른 제1 연결 유로캡 플레이트(71) 및 제2 연결 유로캡 플레이트(72)가 형성하는 난방수 유로를, 난방수의 흐름을 따라 설명한다. 난방수는 제2 연결 유로캡 플레이트(72)의 입구 유로캡(721)에 형성된 난방수 공급구(7211)를 통해 잠열 열교환기(40)로 유입된다. 입구 유로캡(721)은 잠열 열교환배관(42)이 포함하는 복수의 직선부를 병렬로 연결하고 있으므로, 입구 유로캡(721)에 연결된 복수의 잠열 열교환배관(42)을 통해 난방수는 제2 연결 유로캡 플레이트(72)에 형성된 잠열 유로캡(711)으로 병렬유로를 따라 전달된다.The heating water flow path formed by the first connection flow path cap plate 71 and the second connection flow path cap plate 72 according to another modification of the first embodiment of the present invention described above will be described along the flow of heating water. The heating water is introduced into the latent heat exchanger 40 through the heating water supply port 7141 formed in the inlet flow path cap 721 of the second connection channel cap plate 72. Since the inlet flow path cap 721 connects the plurality of straight lines included in the latent heat exchange pipe 42 in parallel, the heating water is connected to the second through the plurality of latent heat exchange pipes 42 connected to the inlet flow path cap 721. The latent heat flow path cap 711 formed in the flow path cap plate 72 is transferred along the parallel flow path.
잠열 유로캡(722)은 배치된 잠열 열교환배관(42)들을 모두 병렬로 연결하고 있으므로, 입구 유로캡(712)과 연결되지 않고 연결 유로캡(713)과 병렬로 연결된 복수의 잠열 열교환배관(42)들을 통해 연결 유로캡(713)으로 난방수를 전달한다. 즉 난방수 유로 중 잠열 열교환기(40)에 해당하는 영역에서는, 병렬로 난방수가 유동한다.Since the latent heat path cap 722 connects all of the latent heat exchange pipes 42 arranged in parallel, the plurality of latent heat exchange pipes 42 connected in parallel with the connection channel cap 713 without being connected to the inlet flow path cap 712. The heating water is delivered to the connection flow path cap 713 through). That is, in the area | region corresponding to the latent heat exchanger 40 among a heating water flow path, heating water flows in parallel.
연결 유로캡(722)은 제1 현열 단열배관(341)과 연결된다. 제1 현열 단열배관(341)을 통해 난방수가 흘러 제1 연결 유로캡 플레이트(71)의 제1 현열 유로캡(712)으로 난방수를 전달하면서 현열 열교환기(30)의 열손실을 차단한다.The connection flow path cap 722 is connected to the first sensible heat insulating pipe 341. The heating water flows through the first sensible heat insulating pipe 341 to block the heat loss of the sensible heat exchanger 30 while transferring the heating water to the first sensible heat flow path cap 712 of the first connection flow path cap plate 71.
제1 현열 유로캡(712)에 연결된 제1 외측 직선부(321)으로 난방수가 전달되어, 난방수는 제2 현열 유로캡(723)에 전달된다. 제2 현열 유로캡(723)에는 중간 직선부(323)가 연통되어 있으므로, 난방수가 중간 직선부(323)를 따라 흘러 제3 현열 유로캡(713)에 전달된다. 제3 현열 유로캡(713)에는 중간 직선부(324)가 연통되어 있으므로, 난방수가 중간 직선부(324)를 따라 흘러 제4 현열 유로캡(724)에 전달된다. 제4 현열 유로캡(724)에는 제2 외측 직선부(322)가 연통되어 있으므로, 난방수가 제2 외측 직선부 직선부(322)를 따라 흘러 제5 현열 유로캡(714)에 전달된다. 제5 현열 유로캡(714)에는 제2 현열 단열배관(342)이 연통되어 있으므로, 난방수가 제2 현열 단열배관(342)을 따라 흘러 출구 유로캡(725)에 전달된다.The heating water is delivered to the first outer straight portion 321 connected to the first sensible heat flow path cap 712, and the heating water is transferred to the second sensible heat flow path cap 723. Since the intermediate straight portion 323 is in communication with the second sensible heat passage cap 723, the heating water flows along the intermediate straight portion 323 and is transmitted to the third sensible heat passage cap 713. Since the middle straight portion 324 is in communication with the third sensible heat passage cap 713, the heating water flows along the middle straight portion 324 and is transferred to the fourth sensible heat passage cap 724. Since the second outer straight portion 322 is in communication with the fourth sensible heat passage cap 724, the heating water flows along the second outer straight portion 322 and is transferred to the fifth sensible heat passage cap 714. Since the second sensible heat insulation pipe 342 communicates with the fifth sensible heat flow path cap 714, the heating water flows along the second sensible heat insulation pipe 342 and is delivered to the outlet flow path cap 725.
즉, 난방수는 현열유로를 따라 직렬로 흐르면서 제1 연결 유로캡 플레이트(71) 및 제2 연결 유로캡 플레이트(72)의 사이를 왕복하며 현열에 의해 가열되고, 제2 현열 단열배관(342)까지 전달된다.That is, the heating water reciprocates between the first connection channel cap plate 71 and the second connection channel cap plate 72 while being heated in series along the sensible heat channel and is heated by sensible heat, and the second sensible heat insulating pipe 342 Delivered to.
제2 현열 단열배관(342)은 난방수를 출구 유로캡(725)으로 전달하면서 현열 열교환기(30)의 열손실을 차단하고, 난방수 배출구(7251)를 통해 난방수가 배출되어 난방에 사용되도록 한다.The second sensible heat insulating pipe 342 blocks the heat loss of the sensible heat exchanger 30 while transferring the heating water to the outlet flow path cap 725, and the heating water is discharged through the heating water outlet 7171 to be used for heating. do.
메인 유로Maine euro
본 발명의 제1 실시예에 따른 열교환기를 포함하는 콘덴싱 보일러(1)는, 메인 유로를 포함한다. 메인 유로는, 난방을 제공하기 위한 난방 유로에 직접적 또는 간접적으로 연통되어 난방수를 난방 유로에 공급하는 배관이다. 메인 유로는 현열 열교환기(30) 또는 잠열 열교환기(40)에 직접적 또는 간접적으로 연통되어, 난방수가 데워지도록 열교환기에 난방수를 제공하거나, 가열된 난방수를 열교환기로부터 난방 유로에 제공하는 역할을 한다. 따라서 상술하였던 현열 열교환기(30) 및 잠열 열교환기(40)와 연결되어 난방수를 공급하거나 전달받은 난방수관이 메인 유로에 포함될 수 있다.The condensing boiler 1 including the heat exchanger according to the first embodiment of the present invention includes a main flow path. The main flow passage is a pipe that directly or indirectly communicates with a heating flow passage for providing heating, and supplies heating water to the heating flow passage. The main flow path is directly or indirectly connected to the sensible heat exchanger 30 or the latent heat exchanger 40 to provide heating water to the heat exchanger so that the heating water is heated, or to provide heated heating water from the heat exchanger to the heating flow path. Do it. Therefore, the heating water pipe connected to the sensible heat exchanger 30 and the latent heat exchanger 40 described above to supply or receive the heating water may be included in the main flow path.
제2 실시예Second embodiment
도 15는 본 발명의 제2 실시예에 따른 열교환기 유닛의 종단면도이다.15 is a longitudinal sectional view of a heat exchanger unit according to a second embodiment of the present invention.
도 15를 참조하면, 본 발명의 제2 실시예에 따른 열교환기 유닛은, 현열 열교환기(81)와, 2열로 구성된 잠열 열교환기(82)를 가질 수 있다. 이 중 연소가스의 유동방향을 기준으로 상류측에 위치한 제1 잠열 열교환기(821)가 직교 방향을 따라서 가지는 폭이, 제2 잠열 열교환기(822)가 가지는 폭보다 클 수 있다.Referring to FIG. 15, the heat exchanger unit according to the second embodiment of the present invention may have a sensible heat exchanger 81 and a latent heat exchanger 82 having two rows. The width of the first latent heat exchanger 821 located in the upstream side of the combustion gas in the orthogonal direction may be greater than the width of the second latent heat exchanger 822.
또한 본 발명의 제2 실시예에 따른 열교환기 유닛은, 본 발명의 제1 실시예 및 본 발명의 제1 실시예의 일 변형예보다 더 많은 개수의 잠열 열교환배관이 포함하는 직선부(8211)의 개수와, 현열 열교환배관이 포함하는 직선부(811)의 개수를 가질 수 있다. 그 중에서도 제1 잠열 열교환기(821)가 가지는 직선부의 개수가 제2 잠열 열교환기(821)가 가지는 직선부의 개수보다 많을 수 있다.In addition, the heat exchanger unit according to the second embodiment of the present invention, the linear portion 8211 of the number of the latent heat exchange pipe including a greater number of modifications than the first embodiment of the present invention and the first embodiment of the present invention It may have a number, and the number of the straight portion 811 included in the sensible heat exchange pipe. In particular, the number of the linear portions of the first latent heat exchanger 821 may be greater than the number of the linear portions of the second latent heat exchanger 821.
도 16은 본 발명의 제2 실시예의 변형예에 따른 열교환기 유닛의 유로캡 플레이트(90)를 각 배관과 같이 나타낸 정면도이다. 배관은 점선으로 표시되었다.Fig. 16 is a front view showing the flow path cap plate 90 of the heat exchanger unit according to the modification of the second embodiment of the present invention with each pipe. Tubing is indicated by dashed lines.
도 16을 참조하면, 본 발명의 제2 실시예의 변형예에 따른 열교환기 유닛의 유로캡 플레이트(90)는, 유로캡에 개구되어 형성되지 않고, 유로캡 플레이트(90)에 바로 개구되어 형성되는 난방수 배출구(91)를 구비한다. 이러한 난방수 배출구(91)는 연소가스의 유동방향인 제1 기준방향(D1)을 따라 현열 열교환배관(95)보다 하류측에 위치하지 않고, 직교 방향을 따라 동일한 선상에 인접하게 배치될 수 있다.Referring to FIG. 16, the channel cap plate 90 of the heat exchanger unit according to the modification of the second exemplary embodiment of the present invention is not directly formed in the channel cap, but is formed directly in the channel cap plate 90. The heating water outlet 91 is provided. The heating water outlet 91 may not be located downstream of the sensible heat exchange pipe 95 along the first reference direction D1, which is the flow direction of the combustion gas, and may be disposed adjacent to the same line along the orthogonal direction. .
본 발명의 제2 실시예의 변형예에 따른 유로캡 플레이트(90)는, 변형된 연결 유로캡(92)을 포함할 수 있다. 본 발명의 제1 실시예의 다른 변형예에 따른 연결 유로캡(도 10의 722)에 비해, 직교 방향 및 연소가스의 유동방향인 제1 기준방향(D1)에 나란하지 않고 비스듬하게 형성된 경사부(922)의 길이가, 연소가스의 유동방향인 제1 기준방향(D1)을 따라 연장된 부분(923) 및 직교 방향을 따라 연장된 부분(921)의 길이보다 작게 형성된다. 또한 직교 방향을 따라 연장된 부분(921) 대비 경사부(922)의 폭이, 본 발명의 제1 실시예의 다른 변형예에 따른 연결 유로캡(도 10의 722)에 비해서 적게 줄어든다.The channel cap plate 90 according to the modification of the second embodiment of the present invention may include a modified connection channel cap 92. Compared to the connection flow path cap 722 of FIG. 10 according to another modification of the first exemplary embodiment of the present invention, the inclined portion formed at an angle without being parallel to the first reference direction D1 that is the orthogonal direction and the flow direction of the combustion gas ( The length of 922 is formed to be smaller than the length of the portion 923 extending along the first reference direction D1, which is the flow direction of the combustion gas, and the portion 921 extending along the orthogonal direction. In addition, the width of the inclined portion 922 relative to the portion 921 extending along the orthogonal direction is reduced as compared with the connecting flow channel cap 722 of FIG. 10 according to another modification of the first embodiment of the present invention.
이러한 난방수 배출구(912)의 위치와 연결 유로캡(92)의 형상에 의해, 유로캡 플레이트(90)는, 연소가스의 유동방향인 제1 기준방향(D1)과 나란한 직선을 기준으로 선대칭하지 않은 비대칭한 구조를 가질 수 있다. 유로캡 플레이트(90)가 연소가스의 유동방향인 제1 기준방향(D1)을 따라 갈수록 폭이 좁아지는 테이퍼진 형상을 가질 수 있는데, 도 16 상에서 좌측의 경사부(93)와 우측의 경사부(94)가 연소가스의 유동방향인 제1 기준방향(D1)을 기준으로 서로 상이한 개소로부터 또 다른 서로 상이한 개소까지 테이퍼진 외측면을 가지도록 구성될 수 있다. 불필요한 영역에 해당하는 부분은 잘라내어 소재 낭비를 줄이기 위함이다.Due to the position of the heating water outlet 912 and the shape of the connecting flow path cap 92, the flow path cap plate 90 does not linearly symmetric with respect to a straight line parallel to the first reference direction D1, which is the flow direction of the combustion gas. May have an asymmetric structure. The channel cap plate 90 may have a tapered shape that becomes narrower in width along the first reference direction D1, which is a flow direction of the combustion gas. On FIG. 16, the inclined portion 93 on the left side and the inclined portion on the right side thereof are narrowed. 94 may be configured to have a tapered outer surface from different points to another different point relative to the first reference direction D1 which is the flow direction of the combustion gas. The unnecessary area is cut out to reduce material waste.
제2 실시예에 따른 현열 열교환기(81) 및 잠열 열교환기(82)의 형상이나, 제2 실시예의 변형예에 따른 유로캡 플레이트(90)의 형상은, 본 발명의 다른 실시예 및 그 변형예에도 적용될 수 있다.The shape of the sensible heat exchanger 81 and the latent heat exchanger 82 according to the second embodiment, and the shape of the flow path plate 90 according to the modification of the second embodiment is different from the embodiment of the present invention and its modifications. This may also apply to examples.
제3 실시예Third embodiment
도 17은 본 발명의 제3 실시예에 따른 열교환기 유닛 및 이를 이용한 콘덴싱 보일러(2)의 종단면도이다. 도 18은 본 발명의 제3 실시예에 따른 열교환기 유닛 및 이를 이용한 콘덴싱 보일러(2)의 측면도이다.17 is a longitudinal sectional view of a heat exchanger unit and a condensing boiler 2 using the same according to the third embodiment of the present invention. 18 is a side view of the heat exchanger unit and the condensing boiler 2 using the same according to the third embodiment of the present invention.
도면을 참조하면, 본 발명의 제3 실시예에 따른 콘덴싱 보일러(2)는, 연소실(20)과, 열교환기 유닛을 포함한다. Referring to the drawings, the condensing boiler 2 according to the third embodiment of the present invention includes a combustion chamber 20 and a heat exchanger unit.
또한 본 발명의 제3 실시예에 따른 열교환기 유닛을 포함하는 콘덴싱 보일러(2)는, 버너(11)를 포함하는 버너조립체(10)를 포함한다. 연소가스의 유동방향인 기준방향(D1)을 따라 버너조립체(10)와 열교환기 유닛이 순서대로 배치되고, 열교환기 유닛 내에서는 동일한 방향을 따라 연소실(20) 및 열교환기 유닛의 순서로 구성요소가 배열되어 있으므로, 상술된 배열 순서대로 콘덴싱 보일러(2)의 구성요소에 대해서 설명한다.In addition, the condensing boiler 2 including the heat exchanger unit according to the third embodiment of the present invention includes a burner assembly 10 including a burner 11. The burner assembly 10 and the heat exchanger unit are sequentially arranged along the reference direction D1, which is the flow direction of the combustion gas, and the components are arranged in the order of the combustion chamber 20 and the heat exchanger unit in the same direction in the heat exchanger unit. Are arranged, the components of the condensing boiler 2 will be described in the above-described arrangement order.
본 발명의 제3 실시예에 따른 열교환기 유닛 및 이를 이용한 콘덴싱 보일러(2)가 포함하는 버너조립체(10), 연소실(20), 응축수 받이(55), 응축수 배출구(53) 및 배기 덕트(52)의 구성은, 제1 실시예의 대응되는 구성요소와 동일 또는 매우 유사하므로, 그 설명은 제1 실시예에 대해 전술된 내용으로 대신한다.The burner assembly 10, the combustion chamber 20, the condensate receiver 55, the condensate outlet 53, and the exhaust duct 52 included in the heat exchanger unit and the condensing boiler 2 using the same according to the third embodiment of the present invention. ) Is identical or very similar to the corresponding component of the first embodiment, and the description is replaced by the above description with respect to the first embodiment.
열교환기 유닛Heat exchanger unit
도 19는 본 발명의 제3 실시예에 따른 열교환기 유닛의 평면도이다. 도 20은 본 발명의 제3 실시예에 따른 열교환기 유닛의 종단면도이다. 19 is a plan view of a heat exchanger unit according to a third embodiment of the present invention. 20 is a longitudinal sectional view of a heat exchanger unit according to a third embodiment of the present invention.
도면을 참조하면, 본 발명의 제3 실시예에 따른 열교환기 유닛은, 현열 열교환부(300)와, 잠열 열교환부(400)를 포함한다. 또한 본 발명의 열교환기 유닛은, 이러한 각 열교환부(300, 400)가 배치되는 현열 열교환 영역과 잠열 열교환 영역을 둘러싸서 그 내측에서 열교환 영역들을 정의하는 하우징(510)을 포함할 수 있다. Referring to the drawings, the heat exchanger unit according to the third embodiment of the present invention includes a sensible heat exchanger 300 and a latent heat exchanger 400. In addition, the heat exchanger unit of the present invention may include a housing 510 surrounding the sensible heat exchange area and the latent heat exchange area in which each of the heat exchange parts 300 and 400 are disposed to define heat exchange areas therein.
현열 열교환 영역과 잠열 열교환 영역에는, 각각 현열 열교환부(300)와 잠열 열교환부(400)가 배치될 수 있다. 현열 열교환 영역과 잠열 열교환 영역이 연결되어, 연소실(20)로부터 전달된 연소가스가 그 유동방향인 기준방향(D1)을 따라서 현열 열교환 영역과 잠열 열교환 영역에서 유동할 수 있다.The sensible heat exchanger 300 and the latent heat exchanger 400 may be disposed in the sensible heat exchanger region and the latent heat exchanger region, respectively. The sensible heat exchange zone and the latent heat exchange zone are connected so that the combustion gas delivered from the combustion chamber 20 may flow in the sensible heat exchange zone and the latent heat exchange zone along the reference direction D1, which is the flow direction thereof.
열교환기 유닛 - 현열 열교환부(300)Heat Exchanger Unit-Sensible Heat Exchanger (300)
현열 열교환 영역은 기준방향(D1)을 기준으로 연소실(20)보다 하류에 위치하고, 상류에서 발생하는 현열을 전달받아 난방수를 가열하기 위한 영역이다. 현열 열교환 영역은, 하우징(510)에 둘러싸인 공간 중 기준방향(D1)을 따라 현열 열교환부(300)의 가장 상류측부터 가장 하류측까지 이르는 공간으로 그 크기가 결정된다. 따라서 현열 열교환 영역은 연소실(20)의 내부공간(22)과 연통되어, 연소가스가 유동할 수 있고, 버너(11)로부터 복사열을 전달받을 수 있다. 또한 현열 열교환 영역에서는 난방수에 현열을 전달할 수 있어야 하므로, 현열 열교환 영역에는, 현열 열교환배관(320)과 현열 핀(330)을 포함하는 현열 열교환부(300)가 배치된다.The sensible heat exchange region is located downstream from the combustion chamber 20 based on the reference direction D1, and is a region for heating heating water by receiving sensible heat generated upstream. The size of the sensible heat exchange region is a space extending from the most upstream side to the most downstream side of the sensible heat exchange unit 300 along the reference direction D1 among the spaces surrounded by the housing 510. Therefore, the sensible heat exchange area is in communication with the internal space 22 of the combustion chamber 20, the combustion gas can flow, it is possible to receive the radiant heat from the burner (11). In addition, in the sensible heat exchange area, the sensible heat must be transmitted to the heating water, and thus, the sensible heat exchange part 300 including the sensible heat exchange pipe 320 and the sensible heat fin 330 is disposed in the sensible heat exchange area.
현열 열교환배관(320)은 내부를 통해 난방수가 흐르며 연소가스가 주변에서 흐르는 파이프형의 구성요소이다. 현열 열교환배관(320)은, 현열 열교환 영역(32)에서, 제2 기준방향(D2)을 따라 연장된다. 상기 제2 기준방향(D2)은, 바람직하게는 기준방향(D1)에 직교하는 방향일 수 있다. 현열 열교환배관(320)이 제2 기준방향(D2)을 따라 연장되어, 하우징(510)에 결합될 수 있다.The sensible heat exchange pipe 320 is a pipe-like component in which heating water flows through and combustion gas flows in the surroundings. The sensible heat exchange pipe 320 extends in the sensible heat exchange region 32 along the second reference direction D2. The second reference direction D2 may be a direction perpendicular to the reference direction D1. The sensible heat exchange pipe 320 may extend along the second reference direction D2 and be coupled to the housing 510.
현열 열교환배관(320)은, 복수 개의 현열 직선부를 포함할 수 있다. 이러한 현열 직선부들은 제2 기준방향(D2)에 직교하는 타 방향인 직교 방향을 따라 각각 서로 이격되어 나열될 수 있다. 현열 열교환배관(320)의 복수의 현열 직선부가 후술할 하우징(510)의 유로캡 플레이트(363, 364)에 결합됨으로써, 난방수가 흐르는 하나의 현열유로를 형성할 수 있다.The sensible heat exchange pipe 320 may include a plurality of sensible heat straight portion. The sensible straight lines may be arranged to be spaced apart from each other along an orthogonal direction that is another direction perpendicular to the second reference direction D2. The plurality of sensible heat linear parts of the sensible heat exchange pipe 320 is coupled to the flow path cap plates 363 and 364 of the housing 510 to be described later, thereby forming one sensible heat flow path through which the heating water flows.
현열 핀(330)은 현열 열교환배관(320)이 연장된 방향을 가로지르는 판형으로 형성되고 현열 열교환배관(320)에 의해 관통되는 구성요소이다. 현열 핀(330)이 현열 열교환배관(320)에 의해 관통되는 형상을 가짐으로써, 현열 열교환부(300)는 핀튜브(fin-tube) 형태의 열교환부를 구성할 수 있다. The sensible heat fin 330 is a component that is formed in a plate shape across the direction in which the sensible heat exchange pipe 320 extends and penetrated by the sensible heat exchange pipe 320. Since the sensible heat fin 330 is penetrated by the sensible heat exchange pipe 320, the sensible heat exchange part 300 may constitute a heat exchange part in the form of a fin tube.
현열 핀(330)을 현열 열교환부(300)가 포함함으로써, 현열 열교환배관(320)의 열전도도를 높일 수 있다. 현열 핀(330)은 복수로 구성되어, 현열 열교환배관(320)이 연장된 제2 기준방향(D2)을 따라 소정의 간격만큼 이격되어 배치될 수 있다. 현열 핀(330)이 현열을 전달받을 수 있는 현열 열교환배관(320)의 표면적을 증가시켜 보다 많은 현열을 난방수로 전달하도록 할 수 있다. 따라서 효과적으로 열전달이 일어나도록 하기 위해, 현열 열교환배관(320)과 현열 핀(330)은 열전도도가 높은 금속으로 형성될 수 있다.Since the sensible heat exchanger 300 includes the sensible heat fin 330, it is possible to increase the thermal conductivity of the sensible heat exchange pipe 320. The sensible heat fin 330 may be configured in plural and spaced apart by a predetermined interval along the second reference direction D2 in which the sensible heat exchange pipe 320 extends. The sensible heat fin 330 may increase the surface area of the sensible heat exchange pipe 320 that can receive the sensible heat to transmit more sensible heat to the heating water. Therefore, in order to effectively heat transfer, the sensible heat exchange pipe 320 and the sensible heat fin 330 may be formed of a metal having high thermal conductivity.
현열 열교환배관(320)이 연장된 제2 기준방향(D2)에 직교하는 평면으로 현열 열교환배관(320)을 자른 단면은, 기준방향(D1)을 따라 연장된 장공의 형태로 형성될 수 있다. 도면에서 확인할 수 있듯이 본 발명의 제3 실시예에 따른 현열 열교환배관(320)은, 기준방향(D1)을 기준으로 한 상기 단면에서의 내부공간의 길이를, 기준방향(D1)에 수직한 방향에 따른 폭으로 나눈 값이 2 이상이 되도록 형성된 납작한 형태를 가진다. 이러한 형상의 플랫(flat) 타입 배관을 현열 열교환배관(320)에 도입함으로써, 원형이나 타원형과 같은 다른 형상의 배관이 현열 열교환배관(320)에 도입될 경우와 비교하여, 난방수가 같은 길이의 현열 열교환배관(320)을 따라 흘러도 연소가스와의 관계에서 더 넓은 열교환면적을 가지게 되어 더 많은 열량을 전달받아, 충분히 가열될 수 있다.A cross section in which the sensible heat exchange pipe 320 is cut in a plane orthogonal to the second reference direction D2 in which the sensible heat exchange pipe 320 extends may be formed in the form of a long hole extending along the reference direction D1. As can be seen from the drawings, the sensible heat exchange pipe 320 according to the third embodiment of the present invention has a length of the internal space in the cross section with respect to the reference direction D1 in a direction perpendicular to the reference direction D1. It has a flat shape formed such that the value divided by the width is equal to or greater than 2. By introducing a flat type pipe having such a shape into the sensible heat exchange pipe 320, sensible heat of the heating water has the same length as compared with the case where other shapes of pipes such as round or elliptical are introduced into the sensible heat exchange pipe 320. Even when flowing along the heat exchange pipe 320 has a larger heat exchange area in the relationship with the combustion gas to receive more heat, it can be sufficiently heated.
현열 핀(330)에는 현열 열교환배관(320)이 통과할 수 있는 관통홀이 형성될 수 있고, 이러한 관통홀의 면적은 현열 열교환배관(320)의 면적과 같거나 다소 작게 형성되어, 현열 열교환배관(320)이 단단하게 끼워질 수 있다. 또한 현열 핀(330)은 현열 열교환배관(320)과 브레이징(brazing) 용접을 통해 일체로 결합될 수 있다. 현열 핀(330)과 현열 열교환배관(320)을 브레이징 용접하는 방법에 대해서는, 도 15 및 도 16에 대한 설명에서 상술한다.In the sensible heat fin 330, a through hole through which the sensible heat exchange pipe 320 may pass may be formed, and the area of the through hole may be equal to or slightly smaller than that of the sensible heat exchange pipe 320, and thus, the sensible heat exchange pipe ( 320 may be tightly fitted. In addition, the sensible heat fin 330 may be integrally coupled with the sensible heat exchange pipe 320 and the brazing (brazing) welding. A method of brazing welding the sensible heat fin 330 and the sensible heat exchange pipe 320 will be described in detail with reference to FIGS. 15 and 16.
현열 핀(330)에는, 현열 열교환배관(320)이 연장된 방향을 따라 관통된 루버(louver)홀(3303, 3304)이 더 형성될 수 있다. 루버홀(3303, 3304)은 펀칭을 통해 형성되어 그 둘레를 따라 돌출된 버링을 포함하여, 연소가스가 유동할 때 버링에 의해 가로막혀 현열 열교환배관(320)의 주위로 흘러, 연소가스와 난방수 사이의 열교환이 보다 잘 이루어지도록 하는 구성요소이다. 루버홀(3303, 3304)은 복수개로 구성될 수 있다. 루버홀 (3303, 3304)은 도면에 도시된 바와 같이 기준방향(D1)에 대해 비스듬한 방향으로 연장되어 형성되는 제1 루버홀(3303)과, 현열 열교환배관(320)의 서로 인접한 현열 직선부들의 사이에, 기준방향(D1)에 대해 직교하는 직교 방향으로 연장되어 형성되는 제2 루버홀(3304)을 포함할 수 있다. 각각의 루버홀(3303, 3304)은 기준방향(D1)을 따라 소정의 간격을 두고 이격되어 배치될 수 있다.In the sensible heat fin 330, louver holes 3303 and 3304 penetrated along the extending direction of the sensible heat exchange pipe 320 may be further formed. The louver holes 3303 and 3304 include burrings formed through punching and protruding along the circumference thereof, are blocked by the burring when the combustion gas flows, flow around the sensible heat exchange pipe 320, and the combustion gas and heating. It is a component that allows better heat exchange between water. The louver holes 3303 and 3304 may be configured in plural numbers. As shown in the drawing, the louver holes 3303 and 3304 are formed of the first louver hole 3303 extending in an oblique direction with respect to the reference direction D1 and the sensible heat linear parts adjacent to each other in the sensible heat exchange pipe 320. In the meantime, a second louver hole 3304 extending in an orthogonal direction perpendicular to the reference direction D1 may be included. Each of the louver holes 3303 and 3304 may be spaced apart from each other at a predetermined interval along the reference direction D1.
현열 핀(330)은 골(3302)과 돌출부(3301)를 더 포함할 수 있다. 현열 핀(330)은 기본적으로 현열 열교환배관(320)을 둘러싸도록 형성되되, 기준방향(D1)을 기준으로 현열 열교환배관(320)의 상류측 단부의 테두리로부터 소정의 폭만큼의 영역을, 현열 열교환배관(320)의 나머지 영역과 구별되게 에워쌀 수 있다. 따라서 인접한 현열 열교환배관(320)의 상류측 단부들 사이에 기준방향(D1)을 따라 파인 골(3302)이 현열 핀(330)에 형성될 수 있다. 현열 열교환배관(320)의 상류측 단부와 인접한 현열 핀(330)의 영역은 상대적으로 돌출되어 있으므로, 돌출부(3301)가 된다. 불필요한 영역을 골(3302)을 형성하여 개방함으로써, 연소가스가 현열 핀(330)과 현열 열교환배관(320) 사이에서 보다 자유롭게 유동하도록 한다.The sensible fin 330 may further include a valley 3302 and a protrusion 3301. The sensible heat fin 330 is basically formed so as to surround the sensible heat exchange pipe 320, sensible heat from the edge of the upstream end of the sensible heat exchange pipe 320, based on the reference direction (D1) It may be surrounded by the remaining area of the heat exchange pipe 320. Accordingly, a fine valley 3302 may be formed in the sensible fin 330 along the reference direction D1 between the upstream ends of the adjacent sensible heat exchange pipe 320. Since the region of the sensible heat fin 330 adjacent to the upstream end of the sensible heat exchange pipe 320 is relatively protruded, it becomes a protrusion 3301. By opening the unnecessary area by forming the valleys 3302, the combustion gas flows more freely between the sensible heat fin 330 and the sensible heat exchange pipe 320.
열교환기 유닛 - 잠열 열교환부(400)Heat exchanger unit-latent heat exchanger (400)
잠열 열교환 영역은 기준방향(D1)을 기준으로 현열 열교환 영역보다 하류에 위치하고, 연소가스의 상변화시 발생하는 잠열을 전달받아 난방수를 가열하기 위한 영역이다. 잠열 열교환 영역은, 하우징(510)에 둘러싸인 공간 중 기준방향(D1)을 따라 잠열 열교환부(400)의 가장 상류측부터 가장 하류측까지 이르는 공간으로 그 크기가 결정된다. 잠열 열교환 영역에는, 내부를 통해 난방수가 흐르며 연소가스가 주변에서 흐르는 잠열 열교환배관(420) 및 잠열 열교환배관(420)이 연장된 제2 기준방향(D2)을 가로지르는 판형으로 형성되고 잠열 열교환배관(420)에 의해 관통되는 잠열 핀(430)을 포함하는 잠열 열교환부(400)가 배치된다.The latent heat exchange region is located downstream from the sensible heat exchange region based on the reference direction D1 and is a region for heating the heating water by receiving latent heat generated when the combustion gas phase changes. The latent heat exchange region is sized as a space extending from the most upstream side to the most downstream side of the latent heat exchange part 400 along the reference direction D1 among the spaces surrounded by the housing 510. In the latent heat exchange region, the latent heat exchange pipe 420 and the latent heat heat exchange pipe 420 and the latent heat heat exchange pipe 420 in which the combustion gas flows around are formed in a plate shape and extend in the latent heat exchange pipe. The latent heat exchange part 400 including the latent heat fin 430 penetrated by the 420 is disposed.
잠열 열교환배관(420)과 잠열 핀(430)의 구성은, 현열 열교환배관(320)과 현열 핀(330)과 유사하다. 따라서 잠열 열교환배관(420)과 잠열 핀(430)의 기본적인 구조에 대한 설명은, 현열 열교환배관(320)과 현열 핀(330)의 구조에 대한 위 설명에 갈음한다. 따라서 잠열 열교환부(400)도 핀튜브 유형으로 구성될 수 있다. The configuration of the latent heat exchanger pipe 420 and the latent heat fin 430 is similar to that of the sensible heat exchanger pipe 320 and the sensible heat fin 330. Therefore, the description of the basic structure of the latent heat exchange pipe 420 and the latent heat fin 430 is replaced with the above description of the structure of the sensible heat exchange pipe 320 and the sensible heat fin 330. Therefore, the latent heat exchanger 400 may also be configured as a fin tube type.
잠열 열교환배관(420)은, 복수의 상류 직선부(421) 및 상류 직선부(421)보다 기준방향(D1)을 기준으로 하류 측에 위치하고, 복수의 상류 직선부(421) 중 하나의 상류 직선부(421)와 어느 하나가 연통되는 복수의 하류 직선부(422)를 포함할 수 있다. 즉, 잠열 열교환배관(420)이 2열로 배치될 수 있다. 잠열 열교환배관(420)은 2열보다 많은 수의 열을 가지도록 배치될 수도 있다. 이와 같이 여러 열의 직선부를 잠열 열교환배관(420)이 가짐으로써, 핀튜브 방식을 이용함에 따라 자칫 떨어질 수 있는 열효율을 증대시킬 수 있다.The latent heat exchange pipe 420 is located on the downstream side of the plurality of upstream straight portions 421 and the upstream straight portions 421 on the basis of the reference direction D1, and the upstream straight line of one of the plurality of upstream straight portions 421. It may include a plurality of downstream straight portion 422 in which any one of the portion 421 is in communication. That is, the latent heat exchange pipe 420 may be arranged in two rows. The latent heat exchange pipe 420 may be arranged to have a greater number of rows than two rows. Thus, by having the latent heat exchange pipe 420 of several rows of straight lines, it is possible to increase the thermal efficiency that can easily fall by using the fin tube method.
도 20에서는 상류 직선부(421)가 4개, 하류 직선부(422)가 3개 배치되도록 하였다. 후술할 내용과 같이 잠열 열교환 영역의 기준 단면적이 기준방향(D1)을 따라 갈수록 줄어들 수 있기 때문이다. 그러나 각 잠열 열교환배관(420)을 구성하는, 제2 기준방향(D2)으로 연장된 복수의 잠열 직선부(421, 422)의 개수는 이에 제한되지 않는다. In FIG. 20, four upstream straight portions 421 and three downstream straight portions 422 are arranged. This is because the reference cross-sectional area of the latent heat exchange region may decrease along the reference direction D1 as described below. However, the number of the plurality of latent heat linear parts 421 and 422 extending in the second reference direction D2 constituting each latent heat exchange pipe 420 is not limited thereto.
잠열 열교환배관(420)이 2열로 배치되는 만큼, 잠열 핀(430) 역시 각 잠열 열교환배관(420)에 맞추어 분리되어 배치될 수 있다. 즉, 상류 직선부(421)에는 잠열 핀(430)이 포함할 수 있는 상류 핀(431)이 결합되고, 하류 직선부(422)에는 잠열 핀(430)이 포함할 수 있는 하류 핀(432)이 결합될 수 있다.As the latent heat exchange pipe 420 is arranged in two rows, the latent heat fin 430 may also be separated and disposed in accordance with each latent heat exchange pipe 420. That is, the upstream straight portion 421 is coupled to an upstream fin 431, which may be included in the latent heat fin 430, and the downstream straight portion 422 is a downstream fin 432, which may include the latent heat fin 430. Can be combined.
잠열 열교환배관(420)이 2열로 배치됨에 따라, 잠열 열교환 영역에서 전열면적의 부족으로 인해 연소가스가 충분히 난방수에 열을 전달하지 못하는 상황을 방지할 수 있고, 전체 연소가스에 대해 넓은 면적에 걸쳐서 충분히 열교환이 일어남에 따라 연소가스가 상변화하지 못하고 배출되는 분율을 줄일 수 있다.As the latent heat exchanger pipe 420 is arranged in two rows, it is possible to prevent a situation in which the combustion gas does not sufficiently transfer heat to the heating water due to the lack of the heat transfer area in the latent heat exchange area, and thus the large area for the entire combustion gas Sufficient heat exchange over can reduce the fraction of flue gas emissions and emissions.
잠열 열교환배관(420)의 잠열 직선부(421, 422)의 내부공간의 단면적은, 현열 열교환배관(320)의 현열 직선부의 내부공간의 단면적보다 작게 형성될 수 있다. 현열 직선부의 내부공간의 단면적과 현열 열교환배관(320)의 총연장의 곱이, 잠열 직선부(421, 422)의 내부공간의 단면적과 잠열 열교환배관(420)의 총연장의 곱에 대응되는 수치를 유지할 수 있도록, 잠열 직선부(421, 422) 의 단면적이 현열 직선부의 내부공간의 단면적보다 작게 형성되는 대신, 현열 직선부들의 총 개수가 잠열 직선부(421, 422)의 총 개수보다 적게 형성될 수 있다. The cross sectional area of the inner space of the latent heat linear parts 421 and 422 of the latent heat exchange pipe 420 may be smaller than the cross sectional area of the inner space of the sensible heat linear part of the sensible heat exchange pipe 320. The product of the cross sectional area of the inner space of the sensible heat linear portion and the total extension of the sensible heat exchange pipe 320 may maintain a numerical value corresponding to the product of the cross sectional area of the inner space of the latent heat linear parts 421 and 422 and the total length of the latent heat exchange pipe 420. Instead, the cross-sectional area of the latent heat linear portions 421 and 422 may be smaller than the cross-sectional area of the inner space of the sensible heat linear portions, but the total number of the sensible heat linear portions may be less than the total number of the latent heat linear portions 421 and 422. .
달리 표현하여, 현열 열교환배관(320)이 연장된 방향에 수직한 평면으로 현열 열교환배관(320)을 자른 단면에서, 상기 현열 직선부의 둘레가 형성하는 폐곡선의 개수는, 상기 잠열 직선부(421, 422)의 둘레가 형성하는 폐곡선의 개수보다 적도록, 잠열 열교환배관(420)이 형성될 수 있다. 잠열 직선부(421, 422) 보다 더 넓은 단면적을 가지는 배관이 동일하거나 더 많은 개수만큼 현열 열교환부(300) 에 배치되면, 인접한 현열 열교환배관(320)으로 유로캡 플레이트(363, 364)를 거쳐 난방수가 이동할 때, 유로가 급격하게 꺾이는 구간에서 발생하는 난방수의 급격한 압력강하로 인해 효율적인 난방수의 순환이 이루어지지 않을 수 있다. 따라서 이와 같이 현열 열교환배관(320)과 잠열 열교환배관(420)의 단면적과 총 개수를 조절하는 것이다. 이러한 열교환배관의 단면적과 총 개수에 대한 내용은, 다른 실시예 및 그 변형예에도 적용될 수 있다.잠열 핀(430) 역시 현열 핀(330)과 같이, 복수로 구성되어, 잠열 열교환배관(420)이 연장된 방향을 따라서 소정의 간격을 두고 이격되어 배치된다. In other words, in the section in which the sensible heat exchange pipe 320 is cut in a plane perpendicular to the direction in which the sensible heat exchange pipe 320 extends, the number of closed curves formed by the circumference of the sensible heat straight line part is the latent heat linear part 421. The latent heat exchange pipe 420 may be formed such that the circumference of the 422 is smaller than the number of closed curves. When pipes having a wider cross-sectional area than the latent heat linear parts 421 and 422 are arranged in the sensible heat exchange part 300 in the same or larger number, the flow path plates 363 and 364 are adjacent to the sensible heat exchange pipe 320. When the heating water moves, the efficient heating water circulation may not be made due to the rapid pressure drop of the heating water generated in the section where the flow path is sharply bent. Therefore, the sectional area and the total number of the sensible heat exchanger pipe 320 and the latent heat exchanger pipe 420 are thus adjusted. The cross-sectional area and the total number of the heat exchange pipe may be applied to other embodiments and modifications thereof. The latent heat fin 430 may also be configured in plural, like the sensible heat fin 330, and the latent heat exchange heat pipe 420. It is spaced apart at predetermined intervals along this extended direction.
기준방향(D1)을 기준으로 동일한 위치에 있는 잠열 핀(430)들이 배치되는 적어도 하나의 층이 형성될 수 있다. 이러한 층 중 현열 핀(330)과 가장 인접한 층에 배치되는 잠열 핀(430)의 총 개수는, 현열 핀(330)의 총 개수보다 적을 수 있다. At least one layer may be formed in which the latent heat fins 430 disposed at the same position with respect to the reference direction D1 are disposed. The total number of latent heat fins 430 disposed on the layer closest to the sensible fin 330 among these layers may be less than the total number of sensible fins 330.
도면을 참조하여 설명하면, 상류 핀(431)에 의해 형성되는 하나의 층과, 하류 핀(432)에 의해 형성되는 하나의 층을 포함하여 총 2개의 층이 배치될 수 있다. 이러한 층 중에서 현열 핀(330)과 가장 인접한 층에는 상류 핀(431)이 배치된다. 상류 핀(431)의 총 개수가 현열 핀(330)의 총 개수보다 적을 수 있다. Referring to the drawings, a total of two layers may be disposed, including one layer formed by the upstream fin 431 and one layer formed by the downstream fin 432. Among these layers, an upstream fin 431 is disposed at the layer closest to the sensible fin 330. The total number of upstream fins 431 may be less than the total number of sensible fins 330.
인접한 2개의 잠열 핀(430)들이 서로 이격된 거리는, 인접한 2개의 현열 핀(330)들이 서로 이격된 거리보다 길 수 있다. 응축수가 잠열 핀(430) 사이에서 쉽게 맺혀 연소가스의 이동을 방해하는 것을 방지하기 위해서, 현열 핀(330) 간의 간격보다 큰 잠열 핀(430) 간의 간격을 가지는 것이다. 잠열 핀(430) 내에서도, 인접한 2개의 하류 핀(432)들이 서로 이격된 거리가, 인접한 2개의 상류 핀(431)들이 서로 이격된 거리보다 길 수 있다.The distance between two adjacent latent heat fins 430 may be longer than the distance between two adjacent heat sink fins 330. In order to prevent the condensed water from forming easily between the latent heat fins 430 and preventing the movement of the combustion gas, the gap between the latent heat fins 430 is greater than that between the sensible heat fins 330. Even within the latent heat fin 430, the distance between two adjacent downstream fins 432 may be longer than the distance between two adjacent upstream fins 431.
인접한 잠열 핀(430)이 제2 기준방향(D2)을 따라 이격된 거리인 소정의 간격은, 인접한 잠열 핀(430) 사이에서 연소가스가 응축되어 형성되는 응축수가 인접한 잠열 핀(430)을 서로 연결하지 않을 만큼의 거리일 수 있다. 즉, 인접한 잠열 핀(430) 간의 거리는, 응축수가 배출되기에 용이한 간격일 수 있다.The predetermined interval, which is a distance from which the adjacent latent heat fins 430 are spaced along the second reference direction D2, is such that the condensed water formed by condensation of combustion gas between the adjacent latent heat fins 430 is adjacent to each other. It can be as long as you don't connect. That is, the distance between adjacent latent heat fins 430 may be an interval for easily discharging condensed water.
도 21은 본 발명의 제3 실시예에 따른 복수의 하류 핀(432)과 그 사이에 위치한 응축수(W)를 도시한 사시도이다. 도 21을 참조하여 잠열 핀(430) 중 하류 핀(432)을 예시로, 인접한 잠열 핀(430) 간의 거리에 대해 설명한다.FIG. 21 is a perspective view illustrating a plurality of downstream fins 432 and condensate W disposed therebetween according to a third embodiment of the present invention. Referring to FIG. 21, the distance between the latent latent fins 430 of the latent latent fins 430 will be described.
하류 핀(432)의 표면에 응축수 물방울이 형성되어 부착되어 있을 수 있는데, 인접한 하류 핀(432)의 표면에 형성된 응축수 물방울들이 합쳐져 잠열 핀(430) 사이의 공간을 막는 큰 응축수(W) 물방울이 되어, 연소가스가 원활하게 기준방향(D1)을 따라 이동하지 못하도록 하는 문제가 발생할 수 있다. 따라서 하류 핀(432)을 소정의 간격 이상으로 이격시켜 배치함으로써, 응축수 물방울들이 서로 합쳐지지 않아 인접한 하류 핀(432) 사이로 연소가스가 유동할 수 있게 된다.Condensate water droplets may be formed and attached to the surface of the downstream fin 432, the condensate water droplets formed on the surface of the adjacent downstream fin 432 are combined to block the space between the latent heat fin (430) Therefore, a problem may occur that prevents the combustion gas from smoothly moving along the reference direction D1. Therefore, by arranging the downstream fins 432 at a predetermined interval or more, the condensate droplets do not merge with each other, so that combustion gas may flow between adjacent downstream fins 432.
구체적으로, 응축수(W)가 배출되기에 용이한 간격이란, 하류 핀(432) 사이에서 형성된 응축수(W)의 무게가, 하류 핀(432)과 응축수(W) 사이에 작용하는 장력(T)의 연직방향 합력보다 큰 상태에서의 인접한 하류 핀(432) 간의 간격을 의미한다.Specifically, the interval that is easy to discharge the condensate (W) is the tension (T) that the weight of the condensate (W) formed between the downstream fin 432 acts between the downstream fin 432 and the condensate (W). Means the spacing between adjacent downstream pins 432 in a state greater than the vertical force.
도면을 살펴보면, 응축수(W)가 서로 d만큼의 거리를 두고 떨어진, 서로 인접하고 제2 기준방향(D2)으로 b만큼의 폭을 가진 하류 핀(432) 사이를 막고 있다. 이 때 h만큼의 높이로 형성되는 응축수(W)의 체적력인 무게는, 응축수(W)의 체적인, 거리 d와 폭 b와 높이 h의 곱에, 응축수(W)의 비중인 Υ을 곱한 값으로 나타난다. 이러한 무게는 응축수에 연직하방으로 작용한다.Referring to the drawings, the condensate W is closed between the downstream fins 432 adjacent to each other and separated by a distance d from each other and having a width of b in the second reference direction D2. At this time, the weight of the volume of the condensate (W) formed by the height of h is multiplied by the volume d of the condensate (W), the product of the distance b, the width (b) and the height (h) times the specific gravity of the condensate (W). It is represented by a value. This weight acts vertically downward on the condensate.
한편, 이러한 응축수(W)에 연직상방으로 작용하는 힘은, 표면장력의 합력으로 형성된다. 응축수(W)의 수면을 연장한 선이 각 하류 핀(432)과 이루는 각도를 θ라 하고, 응축수(W)가 하류 핀(432)에 의해 당겨지는 표면장력을 T라고 할 때, 아래 수학식을 만족하는 거리 d가, 응축수(W)가 배출되기에 용이한 간격이다.On the other hand, the force acting vertically upward on such condensed water W is formed by the force of surface tension. When the line extending the surface of the condensate (W) forms an angle θ with each downstream fin 432, and the surface tension at which the condensate (W) is pulled by the downstream fin 432 is T, The distance d that satisfies the value is an interval that is easy to discharge the condensed water (W).
Figure PCTKR2019006542-appb-M000001
Figure PCTKR2019006542-appb-M000001
여기서 g는 중력가속도이다. 다른 조건이 동일하다고 하고 상기 수학식 1을 등식으로 바꿔서 사용하면, 응축수(W)의 높이(h)와, 응축수(W)가 배출되기에 용이한 하류 핀(432)의 간격(d)은 서로 반비례하는 관계에 있으므로, 잠열 열교환기(40)로부터 배출시키고자 하는 응축수의 적절한 높이를 선택함으로써, 응축수가 배출되기에 용이한 간격을 결정할 수 있다.Where g is gravity acceleration. If the other conditions are the same and the equation 1 is replaced with the equation, the height h of the condensed water W and the interval d of the downstream fin 432 that is easy to discharge the condensed water W are mutually different. Since there is an inverse relationship, by selecting an appropriate height of the condensate to be discharged from the latent heat exchanger 40, it is possible to determine the interval at which the condensate is easily discharged.
일 상황에서 측정된 장력 T는 0.073N/m이다. 상온을 가정하면 응축수의비중은 1000kg/m3 이고, θ는 0도로 근사할 수 있으며, g는 9.8m/s2으로 근사할 수 있다. 응축수의 높이인 h가 주로 5mm 이상 8mm 이하의 구간에 분포하므로, 소정의 간격인 d는, 상기 값들을 대입하여 구하면, 일 상황에서 1.9mm 이상 3mm 이하로 형성될 수 있다. 이러한 핀의 개수와 간격에 대한 설명은, 본 발명의 다른 실시예 및 그 변형예에도 적용될 수 있다. The tension T measured in one situation is 0.073 N / m. Assuming room temperature, the weight of condensate is 1000 kg / m 3 , θ can be approximated to 0 degrees, and g can be approximated to 9.8 m / s 2 . Since the height h of the condensate is mainly distributed in a section of 5 mm or more and 8 mm or less, a predetermined interval d may be formed to be 1.9 mm or more and 3 mm or less in one situation when the values are substituted. The description of the number and spacing of these pins can be applied to other embodiments and modifications thereof.
열교환기 유닛 - 하우징(510)과 유로캡 플레이트(363, 364)Heat Exchanger Unit-Housing (510) and Eurocap Plates (363, 364)
다시 도 17 내지 도 20을 참조하여 하우징(510)에 대해 설명한다. 하우징(510)은 현열 열교환 영역과 잠열 열교환 영역을 둘러싸서 정의하는 구성요소로, 단열측판(5120)과 일반측판(5110)을 포함할 수 있다. 일반측판(5110)은 제2 기준방향(D2)을 따라 이격된 제1 일반측판(5113)과 제2 일반측판(5114)을 포함하고, 유로캡 플레이트(363, 364)에 의해 각각 덮일 수 있다.단열측판(5120)은 기준방향(D1) 및 제2 기준방향(D2)을 따라서 연장되는 판형의 구성요소이다. 단열측판(5120)은 2개로 구성되어, 직교 방향으로 이격되어 배치될 수 있다. 따라서 단열측판(5120)가 열교환기 유닛의 두 측면을 형성한다. 단열측판(5120)의 내측면의 형상에 따라, 현열 열교환 영역과 잠열 열교환 영역의 측면 형상이 결정되는 것이다.The housing 510 will be described again with reference to FIGS. 17 to 20. The housing 510 is a component defined by surrounding the sensible heat exchange region and the latent heat exchange region, and may include a heat insulation side plate 5120 and a general side plate 5110. The general side plate 5110 may include a first general side plate 5113 and a second general side plate 5114 spaced apart along the second reference direction D2, and may be covered by flow path plates 363 and 364, respectively. The heat insulation side plate 5120 is a plate-like component extending along the reference direction D1 and the second reference direction D2. The heat insulation side plate 5120 may be composed of two and spaced apart from each other in an orthogonal direction. Thus, the heat insulation side plate 5120 forms two sides of the heat exchanger unit. According to the shape of the inner surface of the heat insulating side plate 5120, the side shapes of the sensible heat exchange region and the latent heat exchange region are determined.
여기서 단열측판(5120)이란, 외부로 전달되는 열량을 감소시켜 단열을 달성하는 측판이라는 의미가 아니라, 현열 단열배관(340)이 인접하게 배치되는 측판이라는 의미로 사용되었다. 단열측판(5120)과 인접하게, 현열 단열배관(340)이 더 배치될 수 있다. 현열 단열배관(340)은, 현열 열교환 영역을 둘러싼 하우징(510)과 인접하게 배치되고, 내부를 통해 난방수가 유동함으로써, 현열 열교환 영역의 열이 하우징(510)의 외부로 빠져나가는 양을 감소시키는 파이프형의 구성요소이다. 현열 단열배관(340)은 도시된 것과 같이 2개로 구성되어, 현열 열교환배관(320)이 연장된 방향과 동일한 제2 기준방향(D2)으로 연장되어 배치될 수 있다.Here, the heat insulation side plate 5120 is not used as a side plate that reduces heat quantity transferred to the outside to achieve heat insulation, but is used as a side plate in which the sensible heat insulation pipe 340 is disposed adjacent to each other. Adjacent to the heat insulation side plate 5120, the sensible heat insulation pipe 340 may be further disposed. The sensible heat insulating pipe 340 is disposed adjacent to the housing 510 surrounding the sensible heat exchange region, and the heating water flows through the inside, thereby reducing the amount of heat from the sensible heat exchange region to escape to the outside of the housing 510. Pipe type component. The sensible heat insulating pipe 340 is composed of two, as shown, may be arranged to extend in the second reference direction (D2) the same as the extending direction of the sensible heat exchange pipe (320).
현열 단열배관(340)은, 도면과 같이 현열 단열배관(340)이 연장된 방향에 직교하는 평면으로 현열 단열배관(340)을 자른 단면상에서, 타원형으로 형성될 수 있다. 구체적으로는 현열 단열배관(340)이, 기준방향(D1)과 나란한 장축을 가지는 타원형으로 형성될 수 있다. 제3 실시예의 현열 단열배관(340)에는, 제1 실시예의 현열 단열배관(도 2의 34)에 대한 설명이 동일하게 적용될 수 있다.The sensible heat insulating pipe 340, as shown in the cross-sectional view cut the sensible heat insulating pipe 340 in a plane orthogonal to the direction in which the sensible heat insulating pipe 340 extends, may be formed in an oval shape. Specifically, the sensible heat insulation pipe 340 may be formed in an elliptical shape having a long axis parallel to the reference direction D1. The sensible heat insulating pipe 340 of the third embodiment may be equally applicable to the sensible heat insulating pipe 340 of the first embodiment.
일반측판(5110)과 유로캡 플레이트(363, 364)는 기준방향(D1) 및 직교 방향을 따라 연장되는 판형의 구성요소이다. 일반측판(5110)은 2개로 구성되어, 현열 열교환배관(320)이나 잠열 열교환배관(420)이 연장된 제2 기준방향(D2)으로 이격되어 각각 배치될 수 있다. 2개의 일반측판(5110)이 배치될 때, 각 현열 직선부와 각 잠열 직선부(421, 422)의 양단에 각각 배치될 수 있다. 이러한 현열 직선부와 잠열 직선부(421, 422)의 양단이 2개의 일반측판(5113, 5114)을 관통하여 결합될 수 있다. 유로캡 플레이트(363, 364)도 마찬가지로 2개로 구성되어, 일반측판(5110)을 외측으로부터 덮으며 결합될 수 있다. 따라서, 일반측판(5110)과 유로캡 플레이트(363, 364)가, 단열측판(512)이 덮지 않은 열교환기 유닛의 나머지 2개의 측면을 형성할 수 있다. 일반측판(5110)의 내측면의 형상에 따라, 현열 열교환 영역과 잠열 열교환 영역의 다른 측면 형상이 결정되는 것이다.The general side plate 5110 and the channel cap plates 363 and 364 are plate-like components extending along the reference direction D1 and the orthogonal direction. The general side plate 5110 may be composed of two, and the sensible heat exchange pipe 320 or the latent heat exchange pipe 420 may be spaced apart from each other in the second reference direction D2. When the two general side plates 5110 are disposed, they may be disposed at both ends of each of the sensible heat linear portions and the latent heat linear portions 421 and 422, respectively. Both ends of the sensible heat linear portion and the latent heat linear portions 421 and 422 may be coupled to penetrate through the two general side plates 5113 and 5114. The channel cap plates 363 and 364 are similarly configured in two, and may be coupled to cover the general side plate 5110 from the outside. Accordingly, the general side plate 5110 and the channel cap plates 363 and 364 may form the remaining two side surfaces of the heat exchanger unit not covered by the heat insulating side plate 512. According to the shape of the inner side surface of the general side plate 5110, other side shapes of the sensible heat exchange region and the latent heat exchange region are determined.
유로캡 플레이트(312, 313)는 복수의 유로캡이 형성되는 제2 유로캡 플레이트(364)와 제1 유로캡 플레이트(363)를 포함하여, 각각이 제2 일반측판(5114)과 제1 일반측판(5113)을 덮어, 현열 직선부 또는 잠열 직선부(421, 422) 의 양단에 인접하게 배치될 수 있다. 그 중 제2 유로캡 플레이트(364)에는 난방수 공급구(3710)와 난방수 배출구(3720)가 배치될 수 있다. 난방수 공급구(3710)는 외부로부터 잠열 열교환배관(420)이 형성하는 일체의 잠열유로의 일단으로 난방수를 공급할 수 있는 개구로, 잠열유로의 입구가 될 수 있으며, 난방수 배출구(3720)는 현열 열교환배관(320)이 형성하는 일체의 현열유로의 일단으로부터 외부로 난방수를 배출할 수 있는 개구로, 현열유로의 출구가 될 수 있다. The channel cap plates 312 and 313 include a second channel cap plate 364 and a first channel cap plate 363 in which a plurality of channel caps are formed, respectively, and each of the second general side plate 5114 and the first general member The side plate 5113 may be covered and disposed adjacent to both ends of the sensible heat linear portion or the latent heat linear portions 421 and 422. The second flow cap plate 364 may include a heating water supply port 3710 and a heating water discharge port 3720. The heating water supply port 3710 is an opening for supplying heating water to one end of the latent heat passage formed by the latent heat exchange pipe 420 from the outside, and may be an inlet of the latent heat passage, and the heating water outlet 3720. Is an opening for discharging the heating water from one end of the sensible heat flow path formed by the sensible heat exchange pipe 320 to the outside, it may be an outlet of the sensible heat flow path.
기준방향(D1)을 기준으로 상대적으로 하류측에 위치하는 난방수 공급구(3710)를 통해서 난방수가 외부로부터 유입되어, 잠열 열교환배관(420)에 난방수가 전달될 수 있다. 기준방향(D1)을 기준으로 상대적으로 상류측에 위치하는 난방수 배출구(3720)를 통해, 현열 열교환배관(320)에서 가열된 난방수가 외부로 배출될 수 있다. 다만 난방수 공급구(3710)와 난방수 배출구(3720)의 위치는 이에 제한되지 않는다.The heating water may be introduced from the outside through the heating water supply port 3710 positioned relatively downstream with respect to the reference direction D1, and the heating water may be transferred to the latent heat exchange heat pipe 420. The heating water heated in the sensible heat exchange pipe 320 may be discharged to the outside through the heating water outlet 3720 positioned relatively upstream with respect to the reference direction D1. However, the positions of the heating water supply port 3710 and the heating water discharge port 3720 are not limited thereto.
유로캡 플레이트(363, 364) 중 어느 하나는, 하우징(510)을 구성하는 측판들 중 어느 하나의 외측으로 노출되는 잠열유로의 출구와, 상기 어느 하나의 외측으로 노출되는 현열유로의 입구를 연통하기 위해, 상기 어느 하나와의 사이에 잠열유로의 출구와 현열유로의 입구를 에워싸는 연통공간을 마련하는 유로캡을 구비할 수 있다. 본 발명의 제3 실시예에서는, 이러한 유로캡은 제2 유로캡 플레이트(364)에 구비되는 제2 유로캡(3642)이 될 수 있다. 따라서 측판 중 어느 하나는, 제2 유로캡 플레이트(364)와 함께 연통공간을 마련하는 제2 일반측판(5112)이 된다. 그러나 현열유로의 입구와 잠열유로의 출구를 연통하는 측판과 유로캡 플레이트가 이에 제한되지는 않는다.One of the channel cap plates 363 and 364 communicates an outlet of the latent heat passage exposed to the outside of any one of the side plates constituting the housing 510 and an inlet of the sensible heat passage exposed to the outside of the one of the side caps. To this end, it may be provided with a flow path cap for providing a communication space surrounding the exit of the latent heat flow path and the sensible heat flow path between any one of the above. In the third embodiment of the present invention, such a flow path cap may be a second flow path cap 3642 provided in the second flow path cap plate 364. Therefore, any one of the side plates becomes the 2nd general side plate 5112 which provides the communication space with the 2nd flow path cap plate 364. However, the side plate and the channel cap plate communicating the inlet of the sensible heat passage and the outlet of the latent heat passage are not limited thereto.
본 발명의 제3 실시예의 난방수 공급구(3710)와 난방수 배출구(3720)에 연결될 수 있는 난방수관과 메인 유로에 대해서, 제1 실시예의 난방수관과 메인 유로에 대한 설명이 적용될 수 있다.The description of the heating water pipe and the main flow path of the first embodiment may be applied to the heating water pipe and the main flow path that may be connected to the heating water supply port 3710 and the heating water discharge port 3720 of the third embodiment of the present invention.
하우징(510)이 형성하는 열교환 영역의 형상Shape of the heat exchange area formed by the housing 510
기준방향(D1)에 수직한 평면에서 정의되는 각 열교환 영역의 단면적을 기준 단면적이라고 하자. 하우징(510)은, 기준방향(D1)을 기준으로 가장 상류측의 기준 단면적보다 가장 하류 측의 기준 단면적이 작아지게 마련될 수 있다. 현열 열교환 영역에서 연소가스가 유동하는 속도보다, 잠열 열교환 영역에서 연소가스가 유동하는 속도가 증가하도록, 열교환 영역의 기준 단면적이 기준방향(D1)을 따라 점차 줄어드는 적어도 하나의 구간이 형성되도록, 하우징(510)이 마련될 수 있다.Let the cross-sectional area of each heat exchange area defined in the plane perpendicular to the reference direction D1 be the reference cross-sectional area. The housing 510 may be provided such that the reference cross-sectional area of the downstream side is smaller than the reference cross-sectional area of the most upstream side with respect to the reference direction D1. The housing so that the reference cross-sectional area of the heat exchange zone is gradually reduced along the reference direction D1 so that the speed at which the combustion gas flows in the latent heat exchange zone is increased rather than the speed at which the combustion gas flows in the sensible heat exchange zone. 510 may be provided.
기준 단면적이 상기 기준방향(D1)을 따라 갈수록 줄어드는 구간을 적어도 하나 포함하도록 하우징(510)이 형성될 수 있다. 따라서 열교환 영역은 전체적으로 기준방향(D1)을 따라 갈수록 테이퍼(taper)진 형상을 가질 수 있다. 이렇게 열교환 영역의 기준 단면적이 작아지도록 하우징(5120)이 형성됨에 따라, 연소가스가 잠열 열교환 영역에서 유동할 때 특정한 위치에서 유속이 매우 감소함으로써 열전달 효율이 매우 떨어지는 데드존(dead zone)이 발생하는 것을 베르누이의 원리에 의해 방지할 수 있다. 특히, 본 발명의 제3 실시예와 같이 잠열 열교환배관(420)이 2개 이상의 층으로 형성되는 경우, 응축수가 잠열 핀(430) 사이의 공간을 가로막거나, 잠열 열교환 영역의 기준방향(D1)을 따른 길이가 길어져, 열효율이 저해될 수 있는데, 이와 같은 테이퍼진 형상을 하우징에 의해 열교환 영역이 가짐으로써 극복이 가능하다. 구체적으로, 직교 방향에서의 열교환 영역의 폭이, 기준방향(D1)을 따라 가면서 줄어드는 구간을 적어도 하나 포함하도록 하우징(510)이 형성되고, 제2 기준방향(D2)에서의 열교환 영역의 폭이, 기준방향(D1)을 따라 갈수록 일정하게 유지되도록 형성될 수 있다. 즉, 기준방향(D1)을 따라가면서 제2 기준방향(D2)에서의 폭은 유지되는 상태로, 직교 방향의 폭만 줄어들어서, 기준 단면적을 감소시키는 것이다. 이와 같은 형상을 형성하기 위해, 일반측판(5110)은 일반적인 판형으로 형성되되, 단열측판(5120)이 도시된 것과 같이 구부러져 형성될 수 있다.The housing 510 may be formed to include at least one section in which a reference cross-sectional area decreases along the reference direction D1. Therefore, the heat exchange region may have a tapered shape as the whole goes along the reference direction D1. As the housing 5120 is formed such that the reference cross-sectional area of the heat exchange zone is small, when the combustion gas flows in the latent heat exchange zone, the flow rate is greatly reduced at a specific position, whereby dead zones in which heat transfer efficiency is very low are generated. Can be prevented by Bernoulli's principle. In particular, when the latent heat exchange pipe 420 is formed of two or more layers as in the third embodiment of the present invention, the condensate blocks the space between the latent heat fins 430 or the reference direction D1 of the latent heat exchange region. The length along the length, the thermal efficiency can be inhibited, this tapered shape can be overcome by having a heat exchange area by the housing. Specifically, the housing 510 is formed such that the width of the heat exchange area in the orthogonal direction includes at least one section that decreases along the reference direction D1, and the width of the heat exchange area in the second reference direction D2 is increased. It may be formed to be kept constant along the reference direction (D1). That is, while the width in the second reference direction D2 is maintained while following the reference direction D1, only the width in the orthogonal direction is reduced, thereby reducing the reference cross-sectional area. In order to form such a shape, the general side plate 5110 may be formed in a general plate shape, and the heat insulation side plate 5120 may be bent as shown.
구체적으로, 도 20을 참조하면, 잠열 열교환 영역에 해당하는 구간은 상류 핀(431)의 입구단이 위치하는 제2 지점(A2)으로부터 하류 핀(432)의 출구단이 위치하는 지점까지의 구간이다. 잠열 열교환 영역에서 기준방향(D1)을 따라 기준 단면적이 줄어드는 구간이, 제2 지점(A2)과 제3 지점(A3) 사이 및 제4 지점(A4)과 제6 지점(A6) 사이에 형성된다. 반대로, 기준 단면적이 유지되는 구간이, 제3 지점(A3)과 제4 지점(A4) 사이 및 제6 지점(A6)과 하류 핀(432)의 출구단 사이에 형성된다. 또한 잠열 열교환 영역에는 해당하지 않으나, 열교환 영역의 일부인 제1 지점(A1)과 제2 지점(A2)의 사이 구간 역시 기준방향(D1)을 따라 갈수록 기준 단면적이 줄어드는 구간이다.Specifically, referring to FIG. 20, the section corresponding to the latent heat exchange region is a section from the second point A2 where the inlet end of the upstream fin 431 is located to the point where the outlet end of the downstream fin 432 is located. to be. In the latent heat exchange region, a section in which the reference cross-sectional area decreases along the reference direction D1 is formed between the second point A2 and the third point A3 and between the fourth point A4 and the sixth point A6. . In contrast, a section in which the reference cross-sectional area is maintained is formed between the third point A3 and the fourth point A4 and between the sixth point A6 and the outlet end of the downstream fin 432. In addition, although not applicable to the latent heat exchange region, the section between the first point A1 and the second point A2, which is part of the heat exchange region, is also a section in which the reference cross-sectional area decreases along the reference direction D1.
도 20에서는, 열교환 영역이, 기준방향(D1)을 따라 갈수록 직교 방향에서의 폭이 줄어드는 적어도 하나의 구간과, 직교 방향에서의 폭이 일정하게 유지되는 적어도 하나의 구간을 포함하도록 형성되어 있음을 확인할 수 있다.In FIG. 20, the heat exchange area is formed to include at least one section in which the width in the orthogonal direction decreases along the reference direction D1 and at least one section in which the width in the orthogonal direction is kept constant. You can check it.
구체적으로, 제2 지점(A2)으로부터 제3 지점(A3)에 이르는 구간 및 제4 지점(A4)에서 제6 지점(A6)에 이르는 구간에서는 잠열 열교환 영역의 직교 방향에서의 폭이 기준방향(D1)을 따라 갈수록 줄어드는 것을 확인할 수 있다. 반면 제3 지점(A3)에서 제4 지점(A4)에 이르는 구간과, 제6 지점(A6)에서 하우징(510)의 가장 하류측에 이르는 구간에서는 직교 방향에서의 폭이 일정하게 유지되는 것을 확인할 수 있다.Specifically, in the section from the second point A2 to the third point A3 and the section from the fourth point A4 to the sixth point A6, the width in the orthogonal direction of the latent heat exchange region is the reference direction ( It can be seen that the decrease along the D1). On the other hand, in the section extending from the third point A3 to the fourth point A4 and the section from the sixth point A6 to the most downstream side of the housing 510, the width in the orthogonal direction is kept constant. Can be.
잠열 열교환배관(420)의 각 직선부(421, 422)가 위치하는 구간에서는, 직교 방향에서의 폭이 대략적으로 일정하게 유지되어 열교환이 충분히 이루어질 수 있도록 하고, 각 직선부 사이에 위치한 구간에서는 유속이 빨라지도록, 기준방향(D1)을 따라 갈수록 기준 단면적이 감소함을 알 수 있다.In the section where the linear portions 421 and 422 of the latent heat exchange pipe 420 are located, the width in the orthogonal direction is kept substantially constant to allow sufficient heat exchange, and the flow velocity in the section between the linear portions. It can be seen that the reference cross-sectional area decreases along the reference direction D1 so as to be faster.
기준방향(D1)을 기준으로 각 핀(330, 431, 432)의 가장 상류 측을 입구단, 가장 하류 측을 출구단이라 지정하여 이러한 열교환 영역의 형상을 설명할 수 있다. 하우징(510)은, 현열 핀(330)의 출구단 측에서 잠열 핀(430)의 입구단 측으로 기준방향(D1)을 따라 갈수록 기준 단면적이 점차 줄어들게 마련될 수 있다. 즉 도 20에서는, 현열 핀(330)의 출구단이 위치하는 제1 지점(A1)에서, 잠열 핀(430)의 입구단이 위치하는 제2 지점(A2)까지 이르는 구간이, 기준방향(D1)을 따라 갈수록 기준 단면적이 점차 줄어들도록 하우징(510)이 형성될 수 있다.The shape of the heat exchange region may be described by designating the upstream side of each fin 330, 431, 432 as the inlet end and the downstream side as the outlet end based on the reference direction D1. The housing 510 may be provided such that the reference cross-sectional area gradually decreases from the outlet end side of the sensible heat fin 330 toward the inlet end side of the latent heat fin 430 along the reference direction D1. That is, in FIG. 20, the section from the first point A1 where the outlet end of the sensible heat fin 330 is located to the second point A2 where the inlet end of the latent heat fin 430 is located is the reference direction D1. The housing 510 may be formed such that the reference cross-sectional area gradually decreases along).
상류 핀(431)의 입구단측의 기준 단면적보다, 하류 핀(432)의 입구단 측의 기준 단면적이 작아지도록, 하우징(510)이 마련될 수 있다. 즉 상류 핀(431)의 입구단이 위치하는 제2 지점(A2)에서의 기준 단면적보다, 하류 핀(432)의 입구단이 위치하는 제5 지점(A5)에서의 기준 단면적이 더 작게 형성되도록, 제2 지점(A2)과 제5 지점(A5) 사이의 구간이, 기준방향(D1)을 따라 갈수록 기준 단면적이 줄어드는 구간을 적어도 하나 포함한다.The housing 510 may be provided so that the reference cross-sectional area of the inlet end side of the downstream pin 432 is smaller than the reference cross-sectional area of the inlet end side of the upstream pin 431. That is, the reference cross-sectional area at the fifth point A5 at which the inlet end of the downstream pin 432 is located is smaller than the reference cross-sectional area at the second point A2 at the inlet end of the upstream pin 431. The interval between the second point A2 and the fifth point A5 includes at least one section in which the reference cross-sectional area decreases along the reference direction D1.
도 20을 참조하면, 현열 열교환 영역의 일부 구간의 기준 단면적 역시 기준방향(D1)을 따라 갈수록 줄어들도록 하우징(510)이 형성될 수 있다.Referring to FIG. 20, the housing 510 may be formed such that a reference cross-sectional area of a portion of the sensible heat exchange region also decreases along the reference direction D1.
열교환 영역의 폭이 상술한 바와 같이 변화하므로, 기준방향(D1)을 따라 갈수록, 직교 방향에서의 폭이 줄어드는 구간을 각 핀이 가질 수 있다.Since the width of the heat exchange region changes as described above, each fin may have a section in which the width in the orthogonal direction decreases along the reference direction D1.
열교환 영역 내에 위치한 현열 핀(330)이나 잠열 핀(430) 중 하우징(510)의 내측면과 맞닿는 영역은, 기준방향(D1)에 수직한 방향에서 정의되는 핀의 폭을 기준으로, 기준 단면적이 점차 줄어드는 것에 대응되게, 기준방향(D1)을 따라 폭이 점차 줄어들게 마련될 수 있다. 도 20을 참조하면, 현열 핀(330)의 출구단과 인접한 영역 및 제4 지점(A4)에서 상류 핀(431)의 출구단에 이르는 구간에 위치한 상류 핀(431)의 폭이, 하우징(510)의 내측면의 형상에 따라 기준방향(D1)으로 갈수록 줄어드는 것을 확인할 수 있다.The area of the sensible heat fin 330 or the latent heat fin 430 in the heat exchange area, which is in contact with the inner surface of the housing 510, has a reference cross-sectional area based on the width of the fin defined in the direction perpendicular to the reference direction D1. In response to gradually decreasing, the width may be gradually decreased along the reference direction D1. Referring to FIG. 20, the width of the upstream fin 431 located in the region adjacent to the outlet end of the sensible fin 330 and the section from the fourth point A4 to the outlet end of the upstream fin 431 is the housing 510. It can be seen that decreases toward the reference direction (D1) according to the shape of the inner surface of the.
도 22는 본 발명의 제3 실시예의 제1 변형예에 따른 열교환기 유닛의 종단면도이다.22 is a longitudinal sectional view of a heat exchanger unit according to a first modification of the third embodiment of the present invention.
도 22에서는 본 발명의 제3 실시예와 같이 1열의 현열 열교환배관(320)과 2열의 잠열 열교환배관(420)을 가지는 제3 실시예의 제1 변형예에 따른 열교환기 유닛의 형상을 확인할 수 있다. In FIG. 22, the shape of the heat exchanger unit according to the first modification of the third embodiment having the sensible heat exchange pipe 320 in one row and the latent heat heat exchange pipe 420 in two rows can be confirmed as in the third embodiment of the present invention. .
제3 실시예의 제1 변형예에 따른 하우징(510b) 역시, 기준방향(D1)을 기준으로 가장 상류 측의 기준 단면적보다 가장 하류 측의 기준 단면적이 작아지게 마련될 수 있다.The housing 510b according to the first modification of the third embodiment may also be provided such that the reference cross-sectional area of the downstream side is smaller than the reference cross-sectional area of the most upstream side with respect to the reference direction D1.
하우징(510b)은, 현열 열교환 영역에서 연소가스가 유동하는 속도보다 잠열 열교환 영역에서 연소가스가 유동하는 속도가 증가하도록, 기준방향(D1)을 따라 기준 단면적이 점차 줄어드는 적어도 하나의 구간이 형성되게 마련될 수 있다. 기준 단면적이 줄어드는 구간이 배치됨에 따라 열교환기 유닛이 얻을 수 있는 효과는, 도 20에 대해 설명된 내용에 갈음한다.The housing 510b may include at least one section in which the reference cross-sectional area is gradually reduced along the reference direction D1 so that the speed at which the combustion gas flows in the latent heat exchange region increases rather than the speed at which the combustion gas flows in the sensible heat exchange region. Can be prepared. The effect that the heat exchanger unit can obtain as the section in which the reference cross-sectional area is reduced is replaced with the content described with respect to FIG. 20.
하우징(510b)은, 현열 핀(330b)의 출구단 측에서 잠열 핀(430b)의 입구단 측으로 갈수록 기준 단면적이 점차 줄어들게 마련될 수 있다. 현열 핀(330b)의 출구단이 위치하는 제1 지점(B1)으로부터, 잠열 핀(430b)의 입구단이 위치하는 제2 지점(B2)까지 이르는 구간의 기준 단면적이, 기준방향(D1)을 따라 갈수록 점차 줄어들도록 하우징(510b)이 형성될 수 있다.The housing 510b may be provided such that the reference cross-sectional area is gradually reduced from the outlet end side of the sensible heat fin 330b toward the inlet end side of the latent heat fin 430b. The reference cross-sectional area of the section from the first point B1 at which the outlet end of the sensible heat fin 330b is located to the second point B2 at which the inlet end of the latent heat fin 430b is located is the reference direction D1. Accordingly, the housing 510b may be formed to gradually decrease.
잠열 핀(430b)의 입구단이 위치하는 제2 지점(B2)으로부터 하류 핀(432b)의 출구단까지 이르는 구간에서, 열교환 영역이 그 기준 단면적이 기준방향(D1)을 따라 갈수록 줄어드는 구간과 유지되는 구간만을 가질 수 있다. 따라서 제2 지점(B2)에서의 기준 단면적보다, 하류 핀(432b)의 출구단에서의 기준 단면적이 더 작을 수 있다.In the section from the second point B2 where the inlet end of the latent heat fin 430b is located to the outlet end of the downstream fin 432b, the heat exchange area is maintained with the section whose reference cross-sectional area decreases along the reference direction D1. It can have only a section. Thus, the reference cross-sectional area at the outlet end of the downstream pin 432b may be smaller than the reference cross-sectional area at the second point B2.
하우징(510b)은, 잠열 핀(430b)의 입구단 측에서 잠열 핀(430b)의 출구단 측으로 갈수록 기준 단면적이 점차 줄어들게 마련될 수 있다. 잠열 핀(430b)의 일종인 상류 핀(431b)의 입구단이 위치한 제2 지점(B2)으로부터 상류 핀(431b)의 출구단이 위치한 제3 지점(B3)에 이르는 구간의 기준 단면적이, 기준방향(D1)을 따라 갈수록 줄어들도록 형성될 수 있다.The housing 510b may be provided such that the reference cross-sectional area is gradually reduced from the inlet end side of the latent heat pin 430b toward the outlet end side of the latent heat pin 430b. The reference cross-sectional area of the section from the second point B2 where the inlet end of the upstream fin 431b, which is a kind of latent heat fin 430b, to the third point B3 where the outlet end of the upstream fin 431b is located, It may be formed to decrease along the direction (D1).
하우징(510b)은, 상류 핀(431b)의 입구단 측의 기준 단면적보다 하류 핀(432b)의 입구단 측의 기준 단면적이 작아지게 마련될 수 있다. 상류 핀(431b)의 입구단이 위치하는 제2 지점(B2)으로부터 하류 핀(432b)의 입구단이 위치하는 제4 지점(B4)에 이르는 구간에서, 기준 단면적이 기준방향(D1)을 따라 갈수록 줄어들도록 하우징(510b)이 마련되어, 이러한 조건을 만족할 수 있다.The housing 510b may be provided so that the reference cross-sectional area of the inlet end side of the downstream pin 432b becomes smaller than the reference cross-sectional area of the inlet end side of the upstream pin 431b. In the section from the second point B2 where the inlet end of the upstream pin 431b is located to the fourth point B4 where the inlet end of the downstream pin 432b is located, the reference cross-sectional area is along the reference direction D1. The housing 510b may be provided to decrease gradually, thereby satisfying such a condition.
도면을 참조하면, 잠열 열교환 영역은, 기준 단면적이 기준방향(D1)을 따라 갈수록 줄어드는 구간인 제2 지점(B2)부터 제5 지점(B5)에 이르는 구간과, 기준 단면적이 일정하게 유지되는 구간인 제5 지점(B5)부터 하류 핀(432b)의 출구단에 이르는 구간을 가질 수 있다.Referring to the drawings, the latent heat exchange region includes a section from the second point B2 to the fifth point B5, which is a section in which the reference cross-sectional area decreases along the reference direction D1, and a section in which the reference cross-sectional area is kept constant. It may have a section from the fifth point (B5) to the outlet end of the downstream pin (432b).
잠열 핀(430b) 중 하우징(510b)의 내측면과 맞닿는 영역은, 직교 방향에서 정의되는 핀의 폭을 기준으로, 기준 단면적이 점차 줄어드는 것에 대응되게, 기준방향(D1)을 따라 폭이 점차 줄어들게 마련될 수 있다. 도면을 참조하면, 잠열 열교환 영역이 포함하는, 상류 핀(431b)의 입구단이 위치하는 제2 지점(B2)부터 출구단이 위치하는 제3 지점(B3)까지의 구간의 기준 단면적이, 기준방향(D1)을 따라 갈수록 줄어들도록 하우징(510b)이 마련된다. 따라서 상류 핀(431b)의 직교 방향에서 정의되는 폭이 기준방향(D1)을 따라 갈수록 줄어들도록 테이퍼진 형상으로 형성될 수 있다.The area of the latent heat fin 430b which is in contact with the inner surface of the housing 510b is gradually reduced along the reference direction D1 to correspond to the reference cross-sectional area gradually decreasing based on the width of the pin defined in the orthogonal direction. Can be prepared. Referring to the drawings, the reference cross-sectional area of the section from the second point B2 where the inlet end of the upstream fin 431b, which is included in the latent heat exchange region, is located to the third point B3 where the outlet end is located, The housing 510b is provided to decrease along the direction D1. Therefore, the width defined in the orthogonal direction of the upstream fin 431b may be formed in a tapered shape so as to decrease along the reference direction D1.
도 23은 본 발명의 제3 실시예의 제2 변형예에 따른 열교환기 유닛의 종단면도이다.23 is a longitudinal sectional view of a heat exchanger unit according to a second modification of the third embodiment of the present invention.
도 23에서는 본 발명의 제3 실시예와 같이 1열의 현열 열교환배관(320c)과 2열의 잠열 열교환배관(420c)을 가지는 제3 실시예의 제2 변형예에 따른 열교환기 유닛의 형상을 확인할 수 있다. 제3 실시예와 본 제2 변형예의 열교환배관은, 본 변형예에서 현열 열교환배관(320c)의 직선부가 총 5개, 상류 직선부(421c)가 총 6개 배치되었다는 점에서 차이가 있으나, 그 개수가 이에 제한되지는 않는다.In FIG. 23, the shape of the heat exchanger unit according to the second modification of the third embodiment having one row of sensible heat exchange pipes 320c and two rows of latent heat exchange pipes 420c as in the third embodiment of the present invention can be confirmed. . The heat exchange pipe of the third embodiment and the second modified example differs in that in this modified example, a total of five straight portions and six upstream straight portions 421c are arranged in the sensible heat exchange pipe 320c. The number is not limited to this.
제3 실시예의 제2 변형예에 따른 하우징(510c) 역시, 기준방향(D1)을 기준으로 가장 상류 측의 기준 단면적보다 가장 하류 측의 기준 단면적이 작아지게 마련될 수 있다.The housing 510c according to the second modification of the third embodiment may also be provided such that the reference cross-sectional area of the downstream side is smaller than the reference cross-sectional area of the most upstream side with respect to the reference direction D1.
하우징(510c)은, 현열 열교환 영역에서 연소가스가 유동하는 속도보다 잠열 열교환 영역에서 연소가스가 유동하는 속도가 증가하도록, 기준방향(D1)을 따라 기준 단면적이 점차 줄어드는 적어도 하나의 구간이 형성되게 마련될 수 있다. 기준 단면적이 줄어드는 구간이 배치됨에 따라 열교환기 유닛이 얻을 수 있는 효과는, 도 20에 대해 설명된 내용에 갈음한다.The housing 510c may include at least one section in which the reference cross-sectional area gradually decreases along the reference direction D1 so that the speed at which the combustion gas flows in the latent heat exchange region increases rather than the speed at which the combustion gas flows in the sensible heat exchange region. Can be prepared. The effect that the heat exchanger unit can obtain as the section in which the reference cross-sectional area is reduced is replaced with the content described with respect to FIG. 20.
하우징(510c)은, 현열 핀(330c)의 출구단 측에서 잠열 핀(430c)의 입구단 측으로 갈수록 기준 단면적이 점차 줄어들게 마련될 수 있다. 현열 핀(330c)의 출구단이 위치하는 제1 지점(C1)으로부터, 잠열 핀(430c)의 입구단이 위치하는 제2 지점(C2)까지 이르는 구간의 기준 단면적이, 기준방향(D1)을 따라 갈수록 점차 줄어들도록 하우징(510c)이 형성될 수 있다.The housing 510c may be provided such that the reference cross-sectional area is gradually reduced from the outlet end side of the sensible heat fin 330c toward the inlet end side of the latent heat fin 430c. The reference cross-sectional area of the section from the first point C1 at which the outlet end of the sensible heat fin 330c is located to the second point C2 at which the inlet end of the latent heat fin 430c is located is the reference direction D1. Accordingly, the housing 510c may be formed to gradually decrease.
하우징(510c)은, 잠열 핀(430c)의 입구단이 위치하는 제2 지점(C2)으로부터 하류 핀(432c)의 출구단까지 이르는 구간에서, 열교환 영역이 그 기준 단면적이 기준방향(D1)을 따라 갈수록 줄어드는 구간과 유지되는 구간만을 가지도록 마련 될 수 있다. 따라서 제2 지점(C2)에서의 기준 단면적보다, 하류 핀(432c)의 출구단에서의 기준 단면적이 더 작을 수 있다.In the section from the second point C2 where the inlet end of the latent heat fin 430c is located to the outlet end of the downstream fin 432c, the housing 510c has a reference cross-sectional area of which the reference cross-sectional area is the reference direction D1. Therefore, it may be provided to have only a decreasing section and a maintaining section. Thus, the reference cross-sectional area at the outlet end of the downstream pin 432c may be smaller than the reference cross-sectional area at the second point C2.
이러한 잠열 열교환 영역의 형상을 보다 구체적으로 한정하여, 하우징(510c)은, 상류 핀(431c)의 입구단 측의 기준 단면적보다 하류 핀(432c)의 입구단 측의 기준 단면적이 작아지게 마련될 수 있다. 상류 핀(431c)의 입구단이 위치하는 제2 지점(C2)으로부터 하류 핀(432c)의 입구단이 위치하는 제5 지점(C5)에 이르는 구간에서, 기준 단면적이 기준방향(D1)을 따라 갈수록 줄어들도록 하우징(510c)이 마련되어, 이러한 조건을 만족할 수 있다.By defining the shape of the latent heat exchange region more specifically, the housing 510c may be provided such that the reference cross-sectional area of the inlet end side of the downstream fin 432c becomes smaller than the reference cross-sectional area of the inlet end side of the upstream fin 431c. have. In the section from the second point C2 where the inlet end of the upstream pin 431c is located to the fifth point C5 where the inlet end of the downstream pin 432c is located, the reference cross-sectional area is along the reference direction D1. The housing 510c may be provided to decrease gradually, thereby satisfying such a condition.
도면을 참조하면, 잠열 열교환 영역은, 기준 단면적이 기준방향(D1)을 따라 갈수록 줄어드는 구간인 제2 지점(B2)으로부터 제3 지점(C3)에 이르는 구간 및 제5 지점(C5)으로부터 제6 지점(C6)에 이르는 구간과, 기준 단면적이 일정하게 유지되는 구간인 제3 지점(C3)으로부터 제4 지점(C4)에 이르는 구간 및 제6 지점(C6)으로부터 하류 핀(432c)의 출구단에 이르는 구간을 가질 수 있다.Referring to the drawings, the latent heat exchange region has a sixth from a fifth point C5 and a section extending from the second point B2 to the third point C3, which is a section in which the reference cross-sectional area decreases along the reference direction D1. Outlet end of the downstream pin 432c from the third point C3 to the fourth point C4 and the section to the point C6, the section from which the reference cross-sectional area is kept constant, and the fourth point C4. It may have a section leading to.
본 발명의 제3 실시예의 제2 변형예에 따르면, 잠열 핀(430c) 중 어느 하나의 입구단은 다른 핀과 같이 골과 돌출부를 복수 개 가지는 것이 아니라, 평평하게 형성될 수도 있다.According to the second modification of the third embodiment of the present invention, the inlet end of any one of the latent heat fins 430c may be formed flat, rather than having a plurality of valleys and protrusions like the other fins.
도 24는 본 발명의 제3 실시예의 제3 변형예에 따른 열교환기 유닛의 종단면도이다.24 is a longitudinal sectional view of a heat exchanger unit according to a third modification of the third embodiment of the present invention.
도 24를 참조하면, 본 발명의 제3 실시예의 제3 변형예에 따른 열교환기 유닛은, 1열의 현열 열교환배관(320e)과 1열의 잠열 열교환배관(420e)을 포함한다. 현열 열교환배관(320e)이 포함하는 직선부는 4개로, 잠열 열교환배관(420e)이 포함하는 직선부는 6개로 구성되나, 그 개수가 이에 제한되지는 않는다.Referring to FIG. 24, the heat exchanger unit according to the third modified example of the third embodiment of the present invention includes one row of sensible heat exchange pipe 320e and one row of latent heat exchange pipe 420e. Four linear portions included in the sensible heat exchange pipe 320e, and six linear portions included in the latent heat exchange pipe 420e, but the number is not limited thereto.
제3 실시예의 제3 변형예에 따른 하우징(510e) 역시, 기준방향(D1)을 기준으로 가장 상류 측의 기준 단면적보다 가장 하류 측의 기준 단면적이 작아지게 마련될 수 있다.The housing 510e according to the third modification of the third embodiment may also be provided such that the reference cross-sectional area of the downstream side is smaller than the reference cross-sectional area of the most upstream side with respect to the reference direction D1.
하우징(510e)은, 현열 열교환 영역에서 연소가스가 유동하는 속도보다 잠열 열교환 영역에서 연소가스가 유동하는 속도가 증가하도록, 기준방향(D1)을 따라 기준 단면적이 점차 줄어드는 적어도 하나의 구간이 형성되게 마련될 수 있다. 기준 단면적이 줄어드는 구간이 배치됨에 따라 열교환기 유닛이 얻을 수 있는 효과는, 도 20에 대해 설명된 내용에 갈음한다.The housing 510e may include at least one section in which the reference cross-sectional area gradually decreases along the reference direction D1 such that the velocity of the combustion gas flows in the latent heat exchange region increases more than the velocity of the combustion gas flow in the sensible heat exchange region. Can be prepared. The effect that the heat exchanger unit can obtain as the section in which the reference cross-sectional area is reduced is replaced with the content described with respect to FIG. 20.
하우징(510e)은, 현열 핀(330e)의 출구단 측에서 잠열 핀(430e)의 입구단 측으로 갈수록 기준 단면적이 점차 줄어들게 마련될 수 있다. 현열 핀(330e)의 출구단이 위치하는 제1 지점(E1)으로부터, 제1 지점(E1)보다 하류측에 위치하는 제2 지점(E2)까지의 구간은 기준 단면적이 유지되도록 형성되고, 제2 지점(E2)으로부터 잠열 핀(430e)의 입구단이 위치하는 제3 지점(E3)까지 이르는 구간의 기준 단면적이, 기준방향(D1)을 따라 갈수록 점차 줄어들도록 하우징(510e)이 형성될 수 있다. 따라서 현열 핀(330e)의 출구단 측에서 잠열 핀(430e)의 입구단 측으로 갈수록 기준 단면적이 증가하지 않는다.The housing 510e may be provided such that the reference cross-sectional area is gradually reduced from the outlet end side of the sensible heat fin 330e toward the inlet end side of the latent heat fin 430e. The section from the first point E1 at which the exit end of the sensible heat fin 330e is located to the second point E2 located downstream from the first point E1 is formed to maintain the reference cross-sectional area. The housing 510e may be formed such that the reference cross-sectional area of the section from the second point E2 to the third point E3 where the inlet end of the latent heat fin 430e is located is gradually reduced along the reference direction D1. have. Therefore, the reference cross-sectional area does not increase from the outlet end side of the sensible heat fin 330e toward the inlet end side of the latent heat fin 430e.
하우징(510e)은, 잠열 핀(430e)의 입구단이 위치하는 제3 지점(E3)으로부터 잠열 핀(430e)의 출구단이 위치한 제5 지점(E5)까지 이르는 구간에서, 열교환 영역이 그 기준 단면적이 기준방향(D1)을 따라 갈수록 줄어드는 구간과 유지되는 구간만을 가지도록 마련될 수 있다. 잠열 핀(430c)의 입구단이 위치하는 제3 지점(E3)으로부터 제3 지점(E3)보다 하류측에 위치하는 제4 지점(E4)에 이르는 구간에서, 기준 단면적이 기준방향(D1)을 따라 갈수록 줄어들 수 있고, 제4 지점(E4)으로부터 제5 지점(E5)에 이르는 구간에서는 기준 단면적이 일정하게 유지됨으로써, 잠열 핀(430e)의 입구단이 위치한 제3 지점(E3)에서의 기준 단면적보다, 잠열 핀(430e)의 출구단이 위치한 제5 지점(E5)에서의 기준 단면적이 더 작을 수 있다.The housing 510e has a reference point in which the heat exchange area is a reference in a section from the third point E3 where the inlet end of the latent heat fin 430e is located to the fifth point E5 where the outlet end of the latent heat fin 430e is located. The cross-sectional area may be provided to have only a section that decreases and a section that continues to decrease along the reference direction D1. In the section from the third point E3 where the inlet end of the latent heat fin 430c is located to the fourth point E4 located downstream from the third point E3, the reference cross-sectional area is the reference direction D1. The reference cross-sectional area is kept constant in the section from the fourth point E4 to the fifth point E5, so that the reference point at the third point E3 at which the inlet end of the latent heat fin 430e is located is reduced. The reference cross-sectional area at the fifth point E5 at which the exit end of the latent heat fin 430e is located may be smaller than the cross-sectional area.
하우징(510e)은, 현열 핀(330e)의 출구단 측에서 잠열 핀(430e)의 입구단 측으로 갈수록 기준 단면적이 점차 줄어드는 제1 구간과, 잠열 핀(430e)이 하우징(510e)과 맞닿는 영역에서 기준방향(D1)을 기준으로 가장 상류 측과 잠열 핀(430e)의 출구단 측의 사이에서 기준 단면적이 유지되는 제2 구간이 형성되게 마련될 수 있다. 제1 구간은 현열 핀(330e)의 출구단과 인접한 제2 지점(E2)으로부터 잠열 핀(430e)의 입구단이 위치한 제3 지점(E3)에 이르는 구간이고, 제2 구간은 제4 지점(E4)으로부터 제5 지점(E5)에 이르는 구간이다. 잠열 핀(430e)의 영역 중 하우징(510e)의 내측면과 맞닿는 영역은, 기준방향(D1)에 수직한 방향인 직교 방향에서 정의되는 핀의 폭을 기준으로, 제2 구간에 대응되는 부분에서의 폭이 일정하게 유지되게 마련될 수 있다.The housing 510e has a first section in which the reference cross-sectional area gradually decreases from the outlet end side of the sensible heat fin 330e toward the inlet end side of the latent heat fin 430e, and in a region where the latent heat fin 430e abuts with the housing 510e. A second section in which the reference cross-sectional area is maintained may be formed between the most upstream side and the exit end side of the latent heat fin 430e based on the reference direction D1. The first section is a section from the second point E2 adjacent to the outlet end of the sensible heat fin 330e to a third point E3 where the inlet end of the latent heat fin 430e is located, and the second section is the fourth point E4. ) To a fifth point E5. An area of the latent heat fin 430e that is in contact with the inner surface of the housing 510e is a portion corresponding to the second section based on the width of the pin defined in the orthogonal direction, which is a direction perpendicular to the reference direction D1. The width of may be provided to be kept constant.
도면을 참조하면, 잠열 열교환 영역은, 기준 단면적이 기준방향(D1)을 따라 갈수록 줄어드는 구간인 제2 지점(E2)으로부터 제4 지점(E4)에 이르는 구간 과, 기준 단면적이 일정하게 유지되는 구간인 제1 지점(E1)으로부터 제2 지점(E2)에 이르는 구간 및 제4 지점(E4)으로부터 제5 지점(E5) 에 이르는 구간을 가질 수 있다.Referring to the drawings, the latent heat exchange region includes a section from the second point E2 to the fourth point E4, which is a section in which the reference cross section decreases along the reference direction D1, and a section in which the reference cross section is kept constant. It may have a section from the first point E1 to the second point E2 and a section from the fourth point E4 to the fifth point E5.
도 25는 본 발명의 제3 실시예의 제4 변형예에 따른 열교환기 유닛의 종단면도이다.25 is a longitudinal sectional view of a heat exchanger unit according to a fourth modification of the third embodiment of the present invention.
도 25를 참조하면, 본 발명의 제3 실시예의 제4 변형예에 따른 열교환기 유닛은, 1열의 현열 열교환배관(320f)과 1열의 잠열 열교환배관(420f)을 포함한다. 현열 열교환배관(320f)이 포함하는 직선부는 6개로, 잠열 열교환배관(420f)이 포함하는 직선부는 6개로 구성되나, 그 개수가 이에 제한되지는 않는다.Referring to FIG. 25, the heat exchanger unit according to the fourth modified example of the third embodiment of the present invention includes one row of sensible heat exchange pipes 320f and one row of latent heat exchange pipes 420f. Six linear parts included in the sensible heat exchange pipe (320f), six linear parts included in the latent heat exchange pipe (420f), but the number is not limited thereto.
제3 실시예의 제4 변형예에 따른 하우징(510f) 역시, 기준방향(D1)을 기준으로 가장 상류 측의 기준 단면적보다 가장 하류 측의 기준 단면적이 작아지게 마련될 수 있다.The housing 510f according to the fourth modification of the third embodiment may also be provided such that the reference cross-sectional area of the downstream side is smaller than the reference cross-sectional area of the most upstream side with respect to the reference direction D1.
하우징(510f)은, 현열 열교환 영역에서 연소가스가 유동하는 속도보다 잠열 열교환 영역에서 연소가스가 유동하는 속도가 증가하도록, 기준방향(D1)을 따라 기준 단면적이 점차 줄어드는 적어도 하나의 구간이 형성되게 마련될 수 있다. 기준 단면적이 줄어드는 구간이 배치됨에 따라 열교환기 유닛이 얻을 수 있는 효과는, 도 20에 대해 설명된 내용에 갈음한다.The housing 510f may include at least one section in which the reference cross-sectional area gradually decreases along the reference direction D1 such that the velocity of the combustion gas flows in the latent heat exchange region increases rather than the velocity of the combustion gas flow in the sensible heat exchange region. Can be prepared. The effect that the heat exchanger unit can obtain as the section in which the reference cross-sectional area is reduced is replaced with the content described with respect to FIG. 20.
하우징(510f)은, 현열 핀(330f)의 출구단 측에서 잠열 핀(430f)의 입구단 측으로 갈수록 기준 단면적이 점차 줄어들게 마련될 수 있다. 현열 핀(330f)의 출구단이 위치하는 제1 지점(F1)으로부터, 잠열 핀(430f)의 입구단이 위치하는 제2 지점(E2)까지 이르는 구간의 기준 단면적이, 기준방향(D1)을 따라 갈수록 점차 줄어들도록 하우징(510f)이 형성될 수 있다. 따라서 현열 핀(330f)의 출구단 측에서 잠열 핀(430f)의 입구단 측으로 갈수록 기준 단면적이 증가하지 않는다.The housing 510f may be provided such that the reference cross-sectional area is gradually reduced from the outlet end side of the sensible heat fin 330f to the inlet end side of the latent heat fin 430f. The reference cross-sectional area of the section from the first point F1 at which the outlet end of the sensible heat fin 330f is located to the second point E2 at which the inlet end of the latent heat fin 430f is located is the reference direction D1. Accordingly, the housing 510f may be formed to gradually decrease. Therefore, the reference cross-sectional area does not increase from the outlet end side of the sensible heat fin 330f to the inlet end side of the latent heat fin 430f.
하우징(510f)은, 잠열 핀(430f)의 입구단이 위치하는 제2 지점(F2)으로부터 잠열 핀(430f)의 출구단까지 이르는 구간에서, 열교환 영역이 그 기준 단면적이 기준방향(D1)을 따라 갈수록 줄어드는 구간과 유지되는 구간만을 가지도록 마련될 수 있다. 잠열 핀(430f)의 입구단이 위치하는 제2 지점(F2)으로부터 제2 지점(F2)보다 하류측에 위치하는 제3 지점(F3)에 이르는 구간에서, 기준 단면적이 기준방향(D1)을 따라 갈수록 줄어들 수 있고, 제3 지점(F3)으로부터 잠열 핀(430f)의 출구단에 이르는 구간에서는 기준 단면적이 일정하게 유지됨으로써, 잠열 핀(430f)의 입구단이 위치한 제2 지점(F2)에서의 기준 단면적보다, 잠열 핀(430f)의 출구단에서의 기준 단면적이 더 작을 수 있다.In the section from the second point F2 at which the inlet end of the latent heat fin 430f is located to the outlet end of the latent heat fin 430f, the housing 510f has a reference cross-sectional area whose reference cross-sectional area is the reference direction D1. As a result, it may be provided to have only a reduced section and a maintained section. In a section from the second point F2 at which the inlet end of the latent heat fin 430f is located to the third point F3 located downstream from the second point F2, the reference cross-sectional area is in the reference direction D1. The reference cross-sectional area is constant in a section from the third point F3 to the exit end of the latent heat fin 430f, and thus, at the second point F2 where the inlet end of the latent heat fin 430f is located. The reference cross-sectional area at the exit end of the latent heat fin 430f may be smaller than the reference cross-sectional area of.
도면을 참조하면, 본 발명의 제3 실시예의 제4 변형예에 따른 잠열 핀(430f)은, 그 가장 하류측 단부에, 뽀족부(4201f)를 구비할 수 있다. 뾰족부(4201f)는 기준방향(D1)을 따라 갈수록 기준방향(D1)에 수직한 직교 방향에서의 폭이 좁아져, 뾰족하게 형성되는 부분으로, 직교 방향을 따라 복수 개 구비될 수 있다. 뾰족부는, 연소가스의 상변화에 의해 잠열 핀(430f)에서 형성된 응축수가 모일 수 있도록, 상술한 형상을 가질 수 있다.Referring to the drawings, the latent heat fin 430f according to the fourth modified example of the third embodiment of the present invention may include a sharp portion 4201f at the most downstream end thereof. The pointed portion 4201f has a narrow width in the orthogonal direction perpendicular to the reference direction D1 as the reference direction D1 increases, and may be provided in plural along the orthogonal direction. The pointed portion may have the above-described shape so that the condensed water formed in the latent heat fin 430f may be collected by the phase change of the combustion gas.
이와 같은 제3 실시예의 각 변형예에 따른 하우징의 구성에 대한 설명이, 본 발명의 다른 실시예 및 그 변형예에도 적용될 수 있다.The description of the configuration of the housing according to each modification of the third embodiment can be applied to other embodiments of the invention and modifications thereof.
도 26은 본 발명의 제3 실시예에 따른 열교환기 유닛의 제2 일반측판(5114)을 제2 유로캡 플레이트(364)가 포함하는 유로캡들과 함께 도시한 도면이다. 도 27은 본 발명의 제3 실시예에 따른 열교환기 유닛의 제1 일반측판(5113)을 제1 유로캡 플레이트(363)가 포함하는 유로캡들과 함께 도시한 도면이다. 도 28은 본 발명의 제3 실시예에 따른 열교환기 유닛이 포함하는 전체 유로를 도시한 사시도이다.FIG. 26 is a view illustrating the second general side plate 5114 of the heat exchanger unit according to the third embodiment of the present invention together with the flow path caps included in the second flow cap plate 364. FIG. 27 is a view illustrating the first general side plate 5113 of the heat exchanger unit according to the third embodiment of the present invention together with the channel caps included in the first channel cap plate 363. 28 is a perspective view illustrating an entire flow path included in a heat exchanger unit according to a third embodiment of the present invention.
도 26 내지 도 28을 이용하여 본 발명의 제3 실시예에 따른 열교환기 유닛의 현열 열교환배관(320), 잠열 열교환배관(420) 및 유로캡 플레이트(363, 364)에 의해서 형성되는 유로에 대해서 설명한다. 각 유로가 지나가는 영역에 대한 이해의 편의를 돕기 위해, 도 28에서는 열교환기 유닛의 일반측판(5110)과 단열측판(5120) 및 핀을 제거한 상태에서, 각 유로캡 플레이트(363, 364)의 유로캡을 도시하지 않았다.A flow path formed by the sensible heat exchange pipe 320, the latent heat exchange pipe 420, and the flow cap plates 363 and 364 of the heat exchanger unit according to the third embodiment of the present invention will be described with reference to FIGS. 26 to 28. Explain. In order to facilitate the understanding of the area through which each flow path passes, in FIG. 28, the flow paths of the flow path cap plates 363 and 364 in a state in which the general side plate 5110, the heat insulation side plate 5120 and the fin of the heat exchanger unit are removed. The cap is not shown.
도 26은, 도 29의 제1 실시예의 다른 변형예를 이용하여 설명하면, 도 29의 제2 연결 유로캡 플레이트(72)로부터 H-H' 선을 따라 열교환기 유닛을 바라본 모습에 대응되는 본 발명의 제3 실시예의 제2 일반측판(5114)과 현열 열교환배관(320), 잠열 열교환배관(420), 현열 단열배관(3410, 3420)의 모습에, 제2 유로캡 플레이트(364)의 유로캡(3641, 3642, 3643, 3644, 3645)들을 점선으로 도시한 것이다. 동일한 방법으로 도 9를 설명하면, 도 29의 G-G'선을 따라 제1 연결 유로캡 플레이트(71)가 끼워지는 제1 메인 일반측판(5111)을 바라본 모습에 대응되는 본 발명의 제3 실시예의 제1 현열 일반측판(5111)과 현열 열교환배관(320), 잠열 열교환배관(420), 현열 단열배관(3410, 3420)의 모습에, 제1 유로캡 플레이트(363)의 유로캡(3631, 3632, 3633, 3634)들을 점선으로 도시한 것이다.FIG. 26 is a cross-sectional view of the heat exchanger unit along the HH 'line from the second connection channel cap plate 72 of FIG. 29. According to the second general side plate 5114 and the sensible heat exchange pipe 320, the latent heat exchange pipe 420, and the sensible heat insulation pipes 3410 and 3420 of the third embodiment, the flow path cap of the second flow path cap plate 364 3641, 3642, 3643, 3644, and 3645 are shown as dotted lines. Referring to FIG. 9 in the same manner, a third view of the present invention corresponding to a view of the first main general side plate 5111 into which the first connection channel cap plate 71 is fitted is taken along the line G-G 'of FIG. 29. In the embodiment of the first sensible heat common side plate (5111) and sensible heat exchange pipe 320, the latent heat exchange pipe 420, sensible heat insulation pipes 3410, 3420, the flow path cap (3631) of the first flow cap plate 363 , 3632, 3633, 3634 are shown in dashed lines.
현열 직선부들은, 난방수가 유동하는 현열유로를 형성하고, 잠열 직선부(421, 422)들은 난방수가 유동하고 상기 현열유로에 연통되는 잠열유로를 형성할 수 있다. 이러한 현열유로는 적어도 일부 구간에서 직렬유로를 포함할 수 있고, 잠열유로는 적어도 일부 구간에서 병렬유로를 포함할 수 있다.The sensible heat linear parts may form a sensible heat path through which the heating water flows, and the latent heat linear parts 421 and 422 may form a latent heat path through which the heating water flows and communicates with the sensible heat path. The sensible heat flow path may include a series flow path in at least some sections, and the latent heat flow path may include parallel flow paths in at least some sections.
유로캡 플레이트(363, 364)는 상술한 바와 같이 제1 유로캡 플레이트(363)와 제2 유로캡 플레이트(364)를 포함할 수 있다. 제2 유로캡 플레이트(364)에는 제1 유로캡(3641), 제2 유로캡(3642), 제3 유로캡(3643), 제4 유로캡(3644) 및 제5 유로캡(3645)이 형성되고, 제1 유로캡 플레이트(363)에는 제6 유로캡(3631), 제 7 유로캡(3632), 제 8 유로캡(3633) 및 제 9 유로캡(3634)이 형성될 수 있다. 각 유로캡 플레이트(363, 364)에 형성되는 유로캡은, 열교환기 유닛의 외측을 향해 볼록한 형태로 형성되고, 현열 열교환배관(320)이 포함하는 직선부들 또는 잠열 열교환배관(420)이 포함하는 직선부들(421, 422)의 단부와 연통되어, 난방수가 내부에서 유동할 수 있도록 형성된다. 유로캡 플레이트(363, 364)의 유로캡이 일반측면(도 17의 5110)을 덮을 때 일반측면과 유로캡의 내부에 형성되는 공간에서, 난방수가 유동하는 것이다.The channel cap plates 363 and 364 may include the first channel cap plate 363 and the second channel cap plate 364 as described above. The first flow path cap 3641, the second flow path cap 3422, the third flow path cap 3643, the fourth flow path cap 3644, and the fifth flow path cap 3645 are formed in the second flow path cap plate 364. In addition, a sixth flow path cap 3611, a seventh flow path cap 3632, an eighth flow path cap 3333, and a ninth flow path cap 3342 may be formed in the first flow path plate 363. The flow path caps formed on each of the flow path cap plates 363 and 364 are formed in a convex shape toward the outside of the heat exchanger unit, and include straight portions or latent heat exchange pipes 420 included in the sensible heat exchange pipe 320. In communication with the ends of the straight portions 421 and 422, the heating water is formed to flow therein. When the flow path caps of the flow path plates 363 and 364 cover the general side surface (5110 of FIG. 17), the heating water flows in the space formed inside the general side surface and the flow path cap.
기준방향(D1)을 기준으로 제2 유로캡 플레이트(364)의 가장 하류측에 위치하는 제1 유로캡(3641)에는 난방수 공급구(3710)가 형성된다. 난방수 공급구(3710)를 통해서 난방수가 열교환기 유닛 내부로 유입된다. 유입된 난방수는 제1 유로캡(3641)에 일단이 연통된 하류 직선부(422)들을 통해서 유동한다. 따라서, 하류 직선부(422)들이 병렬 유로를 형성할 수 있다.The heating water supply port 3710 is formed in the first flow path cap 3411 located at the most downstream side of the second flow path cap plate 364 with respect to the reference direction D1. Heating water is introduced into the heat exchanger unit through the heating water supply port 3710. The introduced heating water flows through the downstream straight portions 422, one end of which is connected to the first flow path cap 3641. Thus, the downstream straight portions 422 can form a parallel flow path.
하류 직선부(422)을 통해서, 하류 직선부(422)의 타단이 연통된 제6 유로캡(3631)에 난방수가 도달한다. 제6 유로캡(3631)에는, 하류 직선부(422)의 타단과 상류 직선부(421)들의 일단이 연통된다. 따라서 난방수는 제6 유로캡(3631)에서 상류 직선부(421)들로 유입되어, 상류 직선부(421)들을 따라 유동한다. 따라서, 상류 직선부(421)들이 병렬 유로를 형성할 수 있다.The heating water reaches the sixth flow path cap 3631 through which the other end of the downstream straight portion 422 communicates through the downstream straight portion 422. The other end of the downstream straight portion 422 and one end of the upstream straight portion 421 communicate with the sixth flow path cap 3611. Accordingly, the heating water flows into the upstream straight portions 421 from the sixth flow path cap 3611 and flows along the upstream straight portions 421. Thus, the upstream straight portions 421 can form a parallel flow path.
상류 직선부(421)들의 타단은 제2 유로캡(3642)에 연통되어, 상류 직선부(421)들을 따라 유동한 난방수를 제2 유로캡(3642)으로 전달한다. 제2 유로캡(3642)은 제1 현열 단열배관(3410)과 연통되어, 제1 현열 단열배관(3410)으로 난방수를 전달한다.The other end of the upstream straight portions 421 communicates with the second flow path cap 3642, and transfers the heating water flowing along the upstream straight portions 421 to the second flow path cap 3642. The second flow path cap 3422 communicates with the first sensible heat insulating pipe 3410 and delivers the heating water to the first sensible heat insulating pipe 3410.
제1 현열 단열배관(3410)을 따라 이동한 난방수는, 제1 현열 단열배관(3410)이 연통된 제7 유로캡(3632)에 도달한다. 제7 유로캡(3632)으로부터 순서대로 배치되고 직렬로 연결될 수 있는 현열 직선부들을 따라서 지그재그 형태의 현열유로가 형성되는데, 난방수는 현열유로를 따라 제7 유로캡(3632)으로부터 제3 유로캡(3643)으로, 제3 유로캡(3643)으로부터 제8 유로캡(3633)으로, 제8 유로캡(3633)으로부터 제4 유로캡(3644)으로, 제4 유로캡(3644)으로부터 제9 유로캡(3634)으로 유동한다. 이러한 현열유로는, 본 발명의 제3 실시예와 같이 현열 단열배관(3410, 3420)들이 배치되는 경우, 현열 단열배관(3410, 3420)과 현열 열교환배관(320)이 포함하는 직선부들의 연결에 의해 구현될 수 있다.The heating water moved along the first sensible heat insulating pipe 3410 reaches the seventh flow path cap 3632 through which the first sensible heat insulating pipe 3410 is communicated. A zigzag sensible heat flow path is formed along the sensible heat straight lines which are arranged in order from the seventh flow path cap 3632 and can be connected in series, and the heating water is formed from the seventh flow path cap 3632 from the seventh flow path cap 3632. (3643), from the third flow path cap (3643) to the eighth flow path cap (3633), from the eighth flow path cap (3633) to the fourth flow path cap (3644), and from the fourth flow path cap (3644) to the ninth flow path. Flow to the cap 3636. When the sensible heat insulating pipes 3410 and 3420 are arranged as in the third embodiment of the present invention, the sensible heat flow path is connected to the straight portions included in the sensible heat insulating pipes 3410 and 3420 and the sensible heat exchange pipe 320. Can be implemented.
제 9 유로캡(3634)은 제2 현열 단열배관(3420)과도 연통되어, 제2 현열 단열배관(3420)을 따라서 난방수가 유동해 제5 유로캡(3645)에 도달한다. 제5 유로캡(3645)은 난방수 배출구(3720)와 연통되어, 제2 현열 단열배관(3420)을 통해 전달된 난방수가 난방수 배출구(3720)를 통해 가열된 상태로 배출된다. 하류 직선부(422)의 타단과 상류 직선부(421)의 일단이 연통되어 난방수가 전달되고, 상류 직선부(421)의 타단과 현열유로의 타단이 연통되어 난방수가 전달되는 이러한 전체 유로가 도 28에 화살표로 도시되어 있다. 전체 유로를 따라가면서, 난방수가 가열되어 배출된다.The ninth flow path cap 3342 is also in communication with the second sensible heat insulating pipe 3420, so that the heating water flows along the second sensible heat insulating pipe 3420 to reach the fifth flow path cap 3635. The fifth flow path cap 3635 communicates with the heating water outlet 3720 and is discharged while the heating water transferred through the second sensible heat insulating pipe 3420 is heated through the heating water outlet 3720. The other end of the downstream straight portion 422 and one end of the upstream straight portion 421 communicate with each other, and the heating water is delivered. It is shown by an arrow at 28. The heating water is heated and discharged along the entire flow path.
제4 실시예Fourth embodiment
도 30은 본 발명의 제4 실시예에 따른 물 가열기(3)의 사시도이다. 도 31는 본 발명의 제4 실시예에 따른 열교환기 유닛의 사시도이다.30 is a perspective view of the water heater 3 according to the fourth embodiment of the present invention. 31 is a perspective view of a heat exchanger unit according to a fourth embodiment of the present invention.
도면을 참조하면, 본 발명의 제4 실시예에 따른 물 가열기(3)는, 버너조립체(10), 연소실(20) 및 열교환기 유닛을 포함한다. 본 발명의 제4 실시예들에서는, 도 30에 도시된 형태의 보일러를 중심으로 물 가열기(3)를 설명한다. 물 가열기(3)는 제1 내지 제3 실시예에서 설명된 콘덴싱 보일러(1, 2)와 동일하게, 콘덴싱 보일러(1, 2)일 수 있다. 본 발명의 제4 실시예에 따른 물 가열기(3)의 버너조립체(10) 및 연소실(20)은, 제1 내지 제3 실시예에서 설명된 콘덴싱 보일러(1, 2)의 버너조립체(10) 및 연소실(20)과 동일 또는 유사할 수 있다. 따라서 이에 대한 설명 중 상술한 내용과 동일한 부분은 주로 생략하고, 차이점이 있는 부분에 대해서만 후술한다.Referring to the drawings, the water heater 3 according to the fourth embodiment of the present invention includes a burner assembly 10, a combustion chamber 20 and a heat exchanger unit. In the fourth embodiments of the present invention, the water heater 3 will be described centering on the boiler of the type shown in FIG. The water heater 3 may be the condensing boilers 1 and 2, similarly to the condensing boilers 1 and 2 described in the first to third embodiments. The burner assembly 10 and the combustion chamber 20 of the water heater 3 according to the fourth embodiment of the present invention are the burner assembly 10 of the condensing boilers 1 and 2 described in the first to third embodiments. And combustion chamber 20. Therefore, in the description thereof, the same parts as those described above are mainly omitted, and only differences are described below.
열교환기 유닛Heat exchanger unit
도 32은 본 발명의 제4 실시예에 따른 열교환기 유닛의 종단면도이다. 도 33는 본 발명의 제4 실시예에 따른 잠열 열교환배관(420g)의 종단면도이다. 도 34는 본 발명의 제4 실시예에 따른 현열 열교환배관(320g)의 종단면도이다.32 is a longitudinal sectional view of a heat exchanger unit according to a fourth embodiment of the present invention. 33 is a longitudinal sectional view of the latent heat exchange pipe 420g according to the fourth embodiment of the present invention. 34 is a longitudinal sectional view of the sensible heat exchange pipe 320g according to the fourth embodiment of the present invention.
열교환기 유닛은 연소반응의 산물을 이용해 물을 가열시키는 구성요소이다. 따라서 물이 흐름과 동시에 열을 전달받도록 열교환기 유닛이 마련된다.The heat exchanger unit is a component that heats the water using the product of the combustion reaction. Therefore, a heat exchanger unit is provided so that water receives heat as it flows.
열교환기 유닛은 현열 열교환부(300g)와 잠열 열교환부(400g)를 포함하고, 하우징(510g)을 더 포함할 수 있다. 현열 열교환부(300g)는 연소반응에 의해 생성된 현열을 물에 전달하여 물을 가열하는 구성요소이고, 잠열 열교환부(400g)는 연소반응에 의해 생성된 연소가스의 상변화시 발생하는 잠열을 물에 전달하여 물을 가열하는 구성요소이다.The heat exchanger unit may include a sensible heat exchanger 300g and a latent heat exchanger 400g, and may further include a housing 510g. The sensible heat exchanger 300g is a component that heats water by transferring sensible heat generated by the combustion reaction to water, and the latent heat exchanger 400g is a latent heat generated when a phase change of the combustion gas generated by the combustion reaction occurs. A component that heats water by passing it to water.
하우징(510g)은 후술할 열교환 영역들을 둘러싸서, 자신의 내측에서 열교환 영역들을 정의하는 구성요소이다. 따라서 후술할 현열 열교환부(300g) 및 잠열 열교환부(400g)가 하우징(510g)의 내부에 수용될 수 있다.The housing 510g is a component that surrounds the heat exchange areas to be described later and defines heat exchange areas inside thereof. Therefore, the sensible heat exchanger 300g and the latent heat exchanger 400g to be described later may be accommodated in the housing 510g.
하우징(510g)은 제2 기준방향(D2)으로 이격되어 서로 나란한 2개의 일반측판 부분과, 제1 기준방향(D1)과 제2 기준방향(D2)에 직교하는 제3 기준방향(D3)을 따라 이격되어 서로 나란한 2개의 단열측판 부분으로 구성되어, 직육면체 형태로 형성될 수 있다. 일반측판 부분과 단열측판 부분은, 서로 별물인 일반측판(5110g)과 단열측판(5120g)일 수도 있고, 각각 일체형의 하우징(510g)의 측판의 일부 영역일 수 있다. 본 발명의 명세서에서는 일반측판 부분과 단열측판 부분이, 서로 별물인 일반측판(5110g)과 단열측판(5120g)으로 구성되는 경우를 중심으로 설명한다. 또한 단열측판(5120g)이란, 외부로 전달되는 열량을 감소시켜 단열을 달성하는 측판이라는 의미가 아니라, 물이 흐름으로써 열교환기 유닛을 단열시키는 단열배관(340g)이 인접하게 더 배치될 수 있는 측판이라는 의미로 사용되었다.The housing 510g includes two general side plate portions spaced apart in the second reference direction D2 and parallel to each other, and a third reference direction D3 orthogonal to the first reference direction D1 and the second reference direction D2. It is composed of two insulating side plate parts spaced apart and parallel to each other, it may be formed in a rectangular parallelepiped shape. The general side plate portion and the heat insulation side plate portion may be the general side plate 5110g and the heat insulation side plate 5120g which are separate from each other, or may be a partial region of the side plate of the integrated housing 510g, respectively. In the description of the present invention, a description will be made mainly on the case where the general side plate portion and the heat insulation side plate portion are constituted by the general side plate 5110g and the heat insulation side plate 5120g which are separate from each other. In addition, the heat insulation side plate (5120g) does not mean that the side plate to reduce the amount of heat transferred to the outside to achieve heat insulation, the side plate that can be further disposed adjacent to the heat insulation pipe (340g) that insulates the heat exchanger unit by the flow of water It was used to mean.
일반측판(5110g)에는 유로캡 플레이트(363g)가 덮이면서 결합될 수 있다. 후술할 열교환배관(320g, 420g)들의 직선부(3200g, 4200g)들이 일반측판(5110g)을 관통하며 일반측판(5110g)에 결합될 수 있는데, 일반측판(5110g)과의 사이에서 물이 유동할 수 있는 유동공간을 형성하는 유로캡을 구비하는 유로캡 플레이트(363g)가 일반측판(5110g)에 결합될 수 있다. 따라서 서로 분절되어 배치될 수 있는 직선부(3200g, 4200g)들이 유로캡에 의해 연결되어, 후술할 일체의 현열유로 또는 잠열유로를 형성하고, 현열유로와 잠열유로가 서로 연결될 수 있다.The general side plate 5110g may be coupled while covering the flow path plate 363g. The straight portions 3200g and 4200g of the heat exchange pipes 320g and 420g to be described later may pass through the general side plate 5110g and be coupled to the general side plate 5110g, and water may flow between the general side plate 5110g. A channel cap plate 363g having a channel cap forming a flow space therein may be coupled to the general side plate 5110g. Therefore, the straight portions 3200g and 4200g, which may be segmented with each other, are connected by a flow path cap, thereby forming any sensible heat passage or latent heat passage to be described later, and the sensible heat passage and the latent heat passage may be connected to each other.
유로캡은 하나의 직선부(3200g, 4200g)의 입구와 다른 하나의 직선부(3200g, 4200g)의 출구가 연통되는 직렬유로를 형성하거나, 연결된 직선부(3200g, 4200g)의 입구와 출구가 공통되는 병렬유로를 형성할 수 있다. 여기서 입구란 물이 직선부(3200g, 4200g)로 유입되는, 직선부(3200g, 4200g)의 일단의 개구를 의미하며, 출구란 물이 직선부(3200g, 4200g)로부터 배출되는, 직선부(3200g, 4200g)의 타단의 개구를 의미한다.The flow cap forms a series flow path through which the inlet of one straight portion (3200g, 4200g) and the outlet of the other straight portion (3200g, 4200g) communicate, or the inlet and outlet of the connected straight portions (3200g, 4200g) are common. Parallel channels can be formed. Here, the inlet means an opening at one end of the straight portions 3200g and 4200g into which the water flows into the straight portions 3200g and 4200g, and the outlet means the straight portion 3200g from which the water is discharged from the straight portions 3200g and 4200g. , 4200 g) of the other end.
제1 기준방향(D1)에 수직한 평면에서 정의되는 열교환 영역의 단면적을 기준 단면적이라 할 때, 하우징(510g)은, 제1 기준방향(D1)을 기준으로 가장 상류측의 기준 단면적보다 가장 하류측의 기준 단면적이 작아지게 마련될 수 있다. 따라서 하우징(510g)은 제1 기준방향(D1)을 따라 갈수록 기준 단면적이 점차 줄어들도록 형성되거나, 기준 단면적이 제1 기준방향(D1)을 따라 가면서 줄어드는 적어도 하나의 구간을 포함할 수 있다. When the cross-sectional area of the heat exchange area defined in the plane perpendicular to the first reference direction D1 is referred to as the reference cross-sectional area, the housing 510g is most downstream from the reference cross-sectional area on the most upstream side with respect to the first reference direction D1. The reference cross-sectional area of the side may be provided to be small. Therefore, the housing 510g may include at least one section in which the reference cross-sectional area gradually decreases as the first reference direction D1 decreases or the reference cross-sectional area decreases along the first reference direction D1.
기준 단면적이 제1 기준방향(D1)을 따라 가면서 줄어듦에 따라, 연소가스의 유동속도가 증가하거나 감소하는 정도가 줄어들어, 잠열 열교환부(400g)에서 발생할 수 있는 응축수에 의한 유동 저해가 방지될 수 있고, 응축수가 원활하게 배출됨에 따라 잠열 열교환부(400g)의 열교환 효율이 증대될 수 있다. 응축수는 물 가열기(3)가 포함하는 응축수 받이를 통해 배출되고, 남은 연소가스는 덕트를 통해 후처리되어 배출될 수 있다.As the reference cross-sectional area decreases as the first reference direction D1 decreases, the degree of increase or decrease in the flow rate of the combustion gas decreases, thereby preventing flow inhibition by condensate that may occur in the latent heat exchanger 400g. As the condensed water is smoothly discharged, the heat exchange efficiency of the latent heat exchange part 400g may be increased. The condensate is discharged through the condensate receiver included in the water heater 3, and the remaining combustion gas may be post-processed through the duct and discharged.
현열 열교환배관(320g)은 현열 핀(330g)을, 잠열 열교환배관(420g)은 잠열 핀(430g)을 관통할 수 있다. 현열 핀(330g)과 잠열 핀(430g)은, 각각의 열교환배관(320g, 420g)들이 보다 효율적으로 열교환할 수 있도록 연소가스 또는 복사열과 접촉하는 면적을 증가시키는 역할을 하는 구성요소로, 제2 기준방향(D2)에 수직한 판체로 형성될 수 있다. 각 핀에는 연소가스가 유동하는 방향과 위치를 변경할 수 있는 루버가 더 형성될 수 있다. The sensible heat exchange pipe 320g may pass through the sensible heat fin 330g, and the latent heat exchange pipe 420g may pass through the latent heat fin 430g. The sensible heat fin 330g and the latent heat fin 430g are components that increase the area in contact with the combustion gas or the radiant heat so that the respective heat exchange pipes 320g and 420g can exchange heat more efficiently. It may be formed of a plate perpendicular to the reference direction (D2). Each fin may be further provided with a louver to change the direction and position of the combustion gas flow.
이러한 현열 핀(330g)이 복수로 구성될 수 있는데, 도 31에서는 제2 기준방향(D2)을 기준으로 현열 열교환배관(320g)이 포함하는 현열 직선부(3200g)의 양단과 인접하게 현열 핀(330g)들이 배치되는 것으로 도시하였으나, 현열 직선부(3200g)의 양단과 인접한 영역 이외의 영역에도 현열 핀(330g)이 배치될 수 있다. 이러한 설명은 잠열 핀(430g) 및 잠열 열교환배관(420g)에 대해서도 동일하게 적용될 수 있다.The sensible heat fin 330g may be formed in plural. In FIG. 31, the sensible heat fin (330g) is adjacent to both ends of the sensible heat linear part 3200g included in the sensible heat exchange pipe 320g based on the second reference direction D2. Although 330g are illustrated as being disposed, the sensible fin 330g may be disposed in a region other than the region adjacent to both ends of the sensible linear portion 3200g. This description may be equally applied to the latent heat fin 430g and the latent heat exchange pipe 420g.
현열 열교환부(300g)는 연소반응에 의해 생성된 현열을 전달받아 물을 가열하기 위한 현열 열교환 영역에 배치된다. 현열 열교환부(300g)는 물을 공급받아 내부를 통해 유동시킴으로써 물이 유동하는 현열유로를 형성하는 현열 열교환배관(320g)을 구비한다. 현열 열교환배관(320g)은 내부를 통해서는 물을 유동시킴과 동시에 외부에서는 버너조립체(10)의 연소반응에 의해 발생한 현열에 노출되어, 물이 가열될 수 있도록 마련될 수 있다.The sensible heat exchange part 300g is disposed in the sensible heat exchange area for heating water by receiving sensible heat generated by the combustion reaction. The sensible heat exchanger 300g has a sensible heat exchanger pipe 320g which forms a sensible heat flow path through which water flows by receiving water and flowing through the inside. The sensible heat exchange pipe 320g may be provided to allow water to be heated while flowing water through the inside and exposed to sensible heat generated by the combustion reaction of the burner assembly 10 from the outside.
잠열 열교환부(400g)는 상기 연소가스의 상변화시 발생하는 잠열을 전달받아 물을 가열하기 위한 잠열 열교환 영역에 배치된다. 잠열 열교환 영역은 연소반응 중에 생성된 연소가스의 유동방향인 제1 기준방향(D1)을 기준으로 현열 열교환 영역보다 하류에 위치한다. 잠열 열교환부(400g)는 물을 공급받아 내부를 통해 유동시키는 잠열 열교환배관(420g)을 구비한다.The latent heat exchanger 400g is disposed in a latent heat exchange region for receiving water, which is generated when a phase change of the combustion gas is received. The latent heat exchange zone is located downstream from the sensible heat exchange zone based on the first reference direction D1, which is the flow direction of the combustion gas generated during the combustion reaction. The latent heat exchanger 400g includes a latent heat exchanger pipe 420g that receives water and flows through it.
잠열 열교환배관(420g)은, 제2 기준방향(D2)을 따라 연장되고, 제3 기준방향(D3)을 따라 서로 이격되게 나열되되, 물이 유동하고 현열유로에 연통되는 잠열유로를 형성하는 복수 개의 잠열 직선부(4200g)를 포함한다. 잠열 직선부(4200g)들은 상술한 유로캡에 의해 연결되어, 물이 유동하는 잠열유로를 형성할 수 있다. 이러한 잠열유로는 적어도 일부 구간에서 병렬유로를 포함할 수 있다.The latent heat exchange pipe 420g includes a plurality of latent heat passages extending along the second reference direction D2 and spaced apart from each other along the third reference direction D3 to form a latent heat passage through which water flows and communicates with the sensible heat passage. Four latent heat linear portions 4200g. The latent heat linear parts 4200g may be connected by the above-described flow path cap to form a latent heat flow path through which water flows. The latent heat flow path may include parallel flow paths in at least some sections.
현열 열교환배관(320g)은, 제3 기준방향(D3)을 따라 서로 이격되게 나열되고, 제2 기준방향(D2)을 따라 연장되되, 물이 유동하고 현열유로를 형성하는 복수 개의 현열 직선부(3200g)를 포함할 수 있다. 현열 직선부(3200g)들은 상술한 유로캡에 의해 연결되어, 물이 유동하는 현열유로를 형성할 수 있다. 이러한 현열유로는 적어도 일부 구간에서 직렬유로를 포함할 수 있다.The sensible heat exchange pipe 320g is spaced apart from each other along the third reference direction D3, extends along the second reference direction D2, and includes a plurality of sensible heat linear parts for flowing water and forming a sensible heat path ( 3200g). The sensible heat linear parts 3200g may be connected by the above-described flow path cap to form a sensible heat flow path through which water flows. The sensible heat flow path may include a serial flow path in at least some sections.
잠열 열교환 영역에서, 제1 기준방향(D1)을 기준으로 각각 동일한 위치에 있는 잠열 직선부(4200g)들이 배치되는 복수의 층이 형성될 수 있다. 도면에서는 2개의 층이 형성되는 것으로 잠열 열교환부(400g)를 도시하였으나, 그 층의 개수가 이에 제한되지는 않는다. 잠열 열교환배관(420g)을 복수의 층으로 형성함에 따라, 잠열 열교환배관(420g)의 총 전열면적을 극대화할 수 있어서, 잠열 열교환부(400g)에서 효율적으로 열교환이 일어날 수 있다. 여기서 전열면적이란, 열교환이 일어날 수 있는 각 열교환배관(320g, 420g)의 표면적을 의미한다.In the latent heat exchange region, a plurality of layers may be formed in which latent heat linear portions 4200g are disposed at the same position with respect to the first reference direction D1. In the drawing, although the latent heat exchange part 400g is illustrated as two layers are formed, the number of layers is not limited thereto. As the latent heat exchanger pipe 420g is formed of a plurality of layers, the total heat transfer area of the latent heat exchanger pipe 420g can be maximized, and heat exchange can be efficiently performed in the latent heat exchanger 400g. Here, the heat transfer area means the surface areas of the heat exchange pipes 320g and 420g in which heat exchange can occur.
각 직선부(3200g, 4200g)는 관체형으로 형성되므로, 내측면(3220g, 4220g)에 의해 정의되며 물이 유동할 수 있는 내부공간(3210g, 4210g)과, 연소가스와 접촉할 수 있는 외측면(3230g, 4230g)을 구비한다. 직선부(3200g, 4200g)의 내측면(3220g, 4220g)과 외측면(3230g, 4230g)의 형상은 서로 상이하게 형성될 수도 있으나, 본 발명의 제4 실시예에 따른 각 직선부(3200g, 4200g)를 설명함에 있어서는, 제2 기준방향(D2)에 수직한 평면으로 각 직선부(3200g, 4200g)를 자른 단면에서, 그 두께가 대체로 균일하게 형성되도록 내측면(3220g, 4220g)과 외측면(3230g, 4230g)의 형상이 서로 대응되게 형성되는 것으로 상정한다. 이하 제2 기준방향(D2)에 수직한 평면으로 각 직선부(3200g, 4200g)를 자른 단면을 기준 단면이라 하자.Since each of the straight portions 3200g and 4200g is formed in a tubular shape, it is defined by the inner surfaces 3220g and 4220g and defines an inner space 3210g and 4210g through which water can flow, and an outer surface that can be in contact with the combustion gas. (3230g, 4230g). The shapes of the inner surfaces 3220g and 4220g and the outer surfaces 3230g and 4230g of the straight portions 3200g and 4200g may be formed differently from each other, but each of the straight portions 3200g and 4200g according to the fourth embodiment of the present invention. ), The inner surface (3220g, 4220g) and the outer surface (3200g, 4220g) and the outer surface (3200g, 4220g) in the cross section cut each straight portion (3200g, 4200g) in a plane perpendicular to the second reference direction (D2) It is assumed that the shapes of 3230g and 4230g are formed to correspond to each other. Hereinafter, a cross section obtained by cutting each straight portion 3200g and 4200g in a plane perpendicular to the second reference direction D2 will be referred to as a reference cross section.
잠열 직선부(4200g)의 내부공간(4210g)은, 제3 기준방향(D3)에 따른 폭(W1)이 제1 기준방향(D1)에 따른 길이(L1)보다 작도록 납작하게 형성된다. 잠열 직선부(4200g)가 납작하게 형성된다는 말은, 직선부(3200g, 4200g)의 내부공간(3210g, 4210g)에 대해, 제3 기준방향(D3)에 따른 폭을 제1 기준방향(D1)에 따른 길이로 나눈 값을 종단비라고 할 때, 잠열 직선부(4200g)의 종단비가 1보다 작게 형성된다는 의미이다. 한편, 현열 직선부(3200g)의 내부공간(3210g) 역시 제3 기준방향(D3)에 따른 폭(W2)이 제1 기준방향(D1)에 따른 길이(L2)보다 작도록 납작하게 형성될 수 있다.The inner space 4210g of the latent heat linear portion 4200g is formed flat so that the width W1 along the third reference direction D3 is smaller than the length L1 along the first reference direction D1. The latent heat linear portion 4200g is formed flatly, with respect to the internal spaces 3210g and 4210g of the straight portions 3200g and 4200g, the width along the third reference direction D3 is determined by the first reference direction D1. When the value divided by the length according to the term "terminal ratio", it means that the terminal ratio of the latent heat linear portion 4200g is formed smaller than one. Meanwhile, the inner space 3210g of the sensible straight portion 3200g may also be formed flat so that the width W2 of the third reference direction D3 is smaller than the length L2 of the first reference direction D1. have.
잠열 직선부(4200g)의 종단비는, 현열 직선부(3200g)의 종단비보다 작게 형성될 수 있다. 따라서 현열 직선부(3200g)보다 잠열 직선부(4200g)가 더 납작하게 형성될 수 있다. 구체적으로, 잠열 직선부(4200g)의 종단비는, 0.05 이상 0.3 이하일 수 있다. 현열 직선부(3200g)의 종단비는, 0.15 이상 0.5 이하일 수 있다.The termination ratio of the latent heat linear portion 4200g may be smaller than the termination ratio of the sensible heat linear portion 3200g. Therefore, the latent heat linear portion 4200g may be formed flatter than the sensible heat linear portion 3200g. Specifically, the terminal ratio of the latent heat linear portion 4200g may be 0.05 or more and 0.3 or less. The terminal ratio of the sensible heat linear part 3200g may be 0.15 or more and 0.5 or less.
기준단면에서 직선부(3200g, 4200g)의 내부공간(3210g, 4210g)의 둘레의 길이를 직선부(3200g, 4200g)의 내부치수라고 할 때, 잠열 직선부(4200g)의 내부치수는, 현열 직선부(3200g)의 내부치수보다 작을 수 있다. 내부치수에 대응되는 직선부(3200g, 4200g)의 총 길이를 곱하면, 해당 열교환배관(320g, 420g)이 가지는 총 전열면적을 얻을 수 있다. 이러한 종단비와 내부치수 관계에 의해, 현열 열교환배관(320g)에서는 보다 적은 압력강하가 일어나고, 비등소음이 발생하는 문제와, 석회(lime)가 석출되는 문제가 감소한다. 반면 현열 열교환 영역에 비해 더 작은 크기를 잠열 열교환 영역이 가진다 하더라도, 잠열 열교환배관(420g)은 현열 직선부(3200g)보다 더 작은 내부치수의 잠열 직선부(4200g)를 가져, 잠열 열교환 영역이 여유있는 크기로 형성되지 않아도, 다수의 잠열 직선부(4200g)가 배치될 수 있다. 이에 따라 잠열 열교환부(400g)는 충분한 잠열 직선부(4200g)의 총 길이를 확보하여, 열교환하기에 충분한 총 전열면적을 확보할 수 있다. When the length of the circumference of the inner spaces 3210g and 4210g of the straight portions 3200g and 4200g in the reference section is the internal dimension of the straight portions 3200g and 4200g, the internal dimension of the latent heat linear portion 4200g is the sensible heat straight line. It may be smaller than the internal dimension of the portion (3200g). By multiplying the total lengths of the straight parts 3200g and 4200g corresponding to the internal dimensions, the total heat transfer area of the heat exchange pipes 320g and 420g can be obtained. Due to such a ratio of the ratio and the internal dimension, less pressure drop occurs in the sensible heat exchange pipe 320g, boiling noise occurs, and the problem of lime depositing is reduced. On the other hand, even if the latent heat exchanger region has a smaller size than the sensible heat exchanger region, the latent heat exchanger pipe 420g has a latent heat linear portion 4200g having a smaller internal dimension than the sensible heat linear portion 3200g, so that the latent heat exchange region is free. Even if it is not formed in a size, a plurality of latent heat linear portions 4200g may be disposed. Accordingly, the latent heat exchange part 400g may secure the total length of the sufficient latent heat linear part 4200g, thereby securing the total heat transfer area sufficient for heat exchange.
기준단면에서, 직선부(3200g, 4200g)의 외측면(3230g, 4230g)의 둘레의 길이를 직선부(3200g, 4200g)의 외부치수라고 하고, 제1 기준방향(D1)을 기준으로 직선부(3200g, 4200g)의 가장 상류측(214, 314)으로부터 직선부(3200g, 4200g)에 대한 상기 연소가스의 박리점(separation point, 3250g, 4250g)까지의 상기 직선부(3200g, 4200g)의 외측면(3230g, 4230g)의 둘레의 길이를 접촉길이라고 하자. In the reference section, the length of the circumference of the outer surfaces 3230g and 4230g of the straight portions 3200g and 4200g is referred to as the external dimension of the straight portions 3200g and 4200g, and is determined based on the first reference direction D1. 3200g, 4200g) outer side of the straight portion 3200g, 4200g from the most upstream side 214, 314 to the separation point 3250g, 4250g of the combustion gas to the straight portions 3200g, 4200g. Let the length of the perimeter of (3230g, 4230g) be a contact length.
여기서 박리점(3250g, 4250g)이란, 직선부(3200g, 4200g)의 외측면(3230g, 4230g)에서 제3 기준방향(D3)을 따라 연소가스의 속도의 변화율이 0인 지점이다. 즉, 직선부(3200g, 4200g)의 표면인 외측면(3230g, 4230g)을 따라 흐르면서 직선부(3200g, 4200g)의 외측면(3230g, 4230g)에 전단응력을 발생시키던 연소가스가 유동 박리를 일으키면서 직선부(3200g, 4200g)의 외측면(3230g, 4230g)으로부터 떨어져 나가는 지점이 박리점(3250g, 4250g)이다.The peeling points 3250g and 4250g are points where the rate of change of the velocity of the combustion gas is 0 along the third reference direction D3 at the outer surfaces 3230g and 4230g of the straight portions 3200g and 4200g. That is, the combustion gas that flows along the outer surfaces 3230g and 4230g which are the surfaces of the straight portions 3200g and 4200g and generates shear stress on the outer surfaces 3230g and 4230g of the straight portions 3200g and 4200g causes the flow separation. At the same time, the peeling points 3250g and 4250g are separated from the outer surfaces 3230g and 4230g of the straight portions 3200g and 4200g.
직선부(3200g, 4200g)의 외측면(3230g, 4230g)과 인접하게 위치하여 유동하던 연소가스는 박리점(3250g, 4250g) 이후 소용돌이 형태의 후류(wake)가 되어, 직선부(3200g, 4200g)에 유효하게 열을 전달하지 못한다. 직선부(3200g, 4200g)의 외측면(3230g, 4230g)으로부터 연소가스가 떨어져 나간 상태이기 때문이다. 따라서 접촉길이는, 직선부(3200g, 4200g)의 외측면(3230g, 4230g)의 둘레의 길이 중 연소가스로부터 유효하게 열을 전달받을 수 있는 길이범위를 의미한다.The combustion gas that flows while being located adjacent to the outer surfaces 3230g and 4230g of the straight parts 3200g and 4200g becomes a vortex wake after the separation points 3250g and 4250g, and thus the straight parts 3200g and 4200g. It does not transmit heat effectively. This is because the combustion gas is separated from the outer surfaces 3230g and 4230g of the straight portions 3200g and 4200g. Therefore, the contact length means a length range in which heat can be effectively transmitted from the combustion gas among the lengths of the outer surfaces 3230g and 4230g of the straight portions 3200g and 4200g.
잠열 직선부(4200g)의 접촉길이를 잠열 직선부(4200g)의 외부치수로 나눈 값은, 현열 직선부(3200g)의 접촉길이를 현열 직선부(3200g)의 외부치수로 나눈 값보다 클 수 있다. 잠열 직선부(4200g)와 현열 직선부(3200g)가 동일한 외부치수를 가지고 있다고 할 때, 현열 직선부(3200g)의 접촉길이보다 더 큰 접촉길이를 가질 수 있는 형태로, 잠열 직선부(4200g)가 형성되는 것이다. 이러한 형상을 잠열 직선부(4200g)가 가져, 잠열 직선부(4200g)가 연소가스로부터 전달받을 수 있는 열량을 극대화 할 수 있다.The value obtained by dividing the contact length of the latent heat linear portion 4200g by the external dimension of the latent heat linear portion 4200g may be greater than the value obtained by dividing the contact length of the latent heat linear portion 3200g by the external dimension of the sensible heat linear portion 3200g. . When the latent heat linear portion 4200g and the sensible heat linear portion 3200g have the same external dimension, the latent heat linear portion 4200g may have a larger contact length than the contact length of the sensible heat linear portion 3200g. Is formed. This shape has a latent heat linear portion 4200g, thereby maximizing the amount of heat that the latent heat linear portion 4200g can receive from the combustion gas.
기준단면에서, 제1 기준방향(D1)을 기준으로 직선부(3200g, 4200g)의 내부공간(3210g, 4210g)의 상류측과 하류측에 각각 인접한 영역인 내부 상류부(3211g, 4211g)와 내부 하류부(3213g, 4213g)는, 소정의 곡률반경을 가지는 부채꼴의 적어도 일부의 형상으로 형성될 수 있다. 제3 기준방향(D3)을 기준으로 직선부(3200g, 4200g)의 내부공간(3210g, 4210g)의 양측인 한 쌍의 내부 측부(3212g, 4212g)는, 내부 상류부(3211g, 4211g) 및 내부 하류부(3213g, 4213g)의 소정의 곡률반경과 다른 곡률반경을 가지는 부채꼴의 적어도 일부의 형상으로 형성될 수 있다. 현열 직선부(3200g)의 한 쌍의 내부 측부(3212g)는 서로 동일한 형상을 가지되, 제1 기준방향(D1)과 나란한 직선을 기준으로 서로 선대칭되는 형상으로 형성될 수 있다. 잠열 직선부(4200g)의 한 쌍의 내부 측부(4212g) 역시 서로 동일한 형상을 가지되, 제1 기준방향(D1)과 나란한 직선을 기준으로 서로 선대칭되는 형상으로 형성될 수 있다.In the reference section, the inner upstream portions 3211g and 4211g and the inner portions which are adjacent to the upstream and downstream sides of the internal spaces 3210g and 4210g of the straight portions 3200g and 4200g based on the first reference direction D1, respectively. The downstream parts 3213g and 4213g may be formed in a shape of at least a part of a fan shape having a predetermined radius of curvature. The pair of inner side parts 3212g and 4212g, which are both sides of the inner spaces 3210g and 4210g of the straight portions 3200g and 4200g with respect to the third reference direction D3, has an inner upstream part 3111g and 4211g and an inner portion. It may be formed in the shape of at least a portion of a fan shape having a radius of curvature different from a predetermined radius of curvature of the downstream portions 3213g and 4213g. The pair of inner side parts 3212g of the sensible straight portion 3200g may have the same shape, but may be formed to have a line symmetry with each other based on a straight line parallel to the first reference direction D1. The pair of inner side portions 4212g of the latent heat linear portion 4200g may also have the same shape, but may be formed in a line symmetrical with respect to the straight line parallel to the first reference direction D1.
즉 내부 상류부(3211g, 4211g) 및 내부 하류부(3213g, 4213g)를 정의하는 직선부(3200g, 4200g)의 내측면 중 곡면(3221g, 3223g, 4212g, 4223g)의 프로파일이, 기준단면에서 소정의 곡률반경을 가지는 호의 형상으로 형성될 수 있다. 내부 상류부(3211g, 4211g)와 내부 하류부(3213g, 4213g)의 형상은 본 발명의 제4 실시예에서 서로 같지만 선대칭되게 형성되는 것으로 도시되었으나, 서로 다를 수도 있다. 내부 측부(3212g, 4212g)를 형성하는 직선부(3200g, 4200g)의 내측면 중 곡면(3222g, 4222g)의 프로파일이, 기준단면에서 내부 상류부(3211g, 4211g) 및 내부 하류부(3213g, 4213g)의 소정의 곡률반경과 다른 곡률반경을 가지는 호의 형태로 형성될 수 있다.That is, the profile of the curved surfaces 3221g, 3223g, 4212g, 4223g among the inner surfaces of the straight portions 3200g, 4200g defining the internal upstream portions 3211g and 4211g and the internal downstream portions 3213g and 4213g is defined in the reference section. It may be formed in the shape of an arc having a radius of curvature. Although the shapes of the inner upstream parts 3211g and 4211g and the inner downstream parts 3213g and 4213g are shown to be the same as each other but are linearly symmetric in the fourth embodiment of the present invention, they may be different. Profiles of the curved surfaces 3222g and 4222g of the inner surfaces of the straight portions 3200g and 4200g forming the inner side portions 3212g and 4212g have an internal upstream portion 3111g and 4211g and an internal downstream portion 3321g and 4213g at the reference section. It may be formed in the form of an arc having a radius of curvature different from the predetermined radius of curvature of.
내부 측부(3212g, 4212g)가 가지는 곡률반경이, 내부 상류부(3211g, 4211g) 및 내부 하류부(3213g, 4213g)가 가지는 곡률반경보다 클 수 있다. 내부 측부(3212g, 4212g)가 가지는 곡률반경은 무한대로 형성되어, 내부 측부(3212g, 4212g)를 구성하는 직선부(3200g, 4200g)의 내측면의 일부(3222g, 4222g)의 기준단면에서의 프로파일이 제1 기준방향(D1)과 나란한 직선으로 형성될 수 있다.The radius of curvature of the inner side parts 3212g and 4212g may be larger than the radius of curvature of the inner upstream parts 3211g and 4211g and the inner downstream parts 3213g and 4213g. The radius of curvature of the inner side portions 3212g and 4212g is formed to be infinite, and the profile at the reference cross section of a part 3322g and 4222g of the inner side of the straight portions 3200g and 4200g constituting the inner side portions 3212g and 4212g. It may be formed in a straight line parallel to the first reference direction (D1).
기준단면에서, 제1 기준방향(D1)을 기준으로 내부 상류부(3211g, 4211g)의 가장 상류측(2114, 3114)으로부터 내부 하류부(3213g, 4213g)와 내부 측부(3212g, 4212g)가 만나는 개소(3215g, 4215g)까지의 길이를 유효전열길이라고 하자. 즉 내부 상류부(3211g, 4211g)의 가장 상류측(3214g, 4214g)으로부터, 직선부(3200g, 4200g)의 내측면(3220g, 4220g)의 하류측 영역 중 변곡점에 해당하는 위치까지의 내측면(3220g, 4220g)의 둘레가 유효전열길이가 될 수 있다. 이러한 변곡점은 박리점(3250g, 4250g)과 일치할 수도 있으나, 상이할 수도 있다.In the reference section, the location where the inner downstream parts 3213g and 4213g and the inner side parts 3212g and 4212g meet from the most upstream sides 2114 and 3114 of the inner upstream parts 3211g and 4211g with respect to the first reference direction D1. Assume that the length up to (3215g, 4215g) is the effective heat path. That is, the inner surface (from the most upstream side 3214g and 4214g of the inner upstream parts 3211g and 4211g to a position corresponding to an inflection point among the downstream regions of the inner surfaces 3220g and 4220g of the straight parts 3200g and 4200g). 3220g, 4220g) may be the effective heat transfer length. These inflection points may coincide with the peel points 3250g and 4250g, but may be different.
잠열 직선부(4200g)의 유효전열길이를 잠열 직선부(4200g)의 내부치수로 나눈 값은, 현열 직선부(3200g)의 유효전열길이를 현열 직선부(3200g)의 내부치수로 나눈 값보다 클 수 있다. 잠열 직선부(4200g)와 현열 직선부(3200g)가 동일한 내부치수를 가지고 있다고 할 때, 현열 직선부(3200g)의 유효전열길이보다 더 큰 유효전열길이를 가질 수 있는 형태로, 잠열 직선부(4200g)가 형성되는 것이다. 이러한 형상을 잠열 직선부(4200g)가 가져, 잠열 직선부(4200g)가 연소가스로부터 전달받을 수 있는 열량을 극대화 할 수 있다.The effective heat transfer length of the latent heat linear portion 4200g divided by the internal dimension of the latent heat straight line portion 4200g is greater than the effective heat transfer length of the sensible heat straight line portion 3200g divided by the internal dimension of the sensible heat straight line portion 3200g. Can be. When the latent heat linear portion 4200g and the sensible heat linear portion 3200g have the same internal dimension, the latent heat linear portion 4200g may have an effective heat transfer length larger than the effective heat transfer length of the sensible heat linear portion 3200g. 4200 g) is formed. This shape has a latent heat linear portion 4200g, thereby maximizing the amount of heat that the latent heat linear portion 4200g can receive from the combustion gas.
본 발명의 제4 실시예에서 설명된 직선부(3200g, 4200g)들의 형상은, 본 발명의 다른 실시예 및 그 변형예들에서도 동일하게 사용될 수 있다.The shapes of the straight portions 3200g and 4200g described in the fourth embodiment of the present invention can be equally used in other embodiments and modifications thereof.
이상에서, 본 발명의 실시예를 구성하는 모든 구성 요소들이 하나로 결합하거나 결합하여 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다. 또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재할 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.In the above description, it is described that all the components constituting the embodiments of the present invention are combined or operated in one, but the present invention is not necessarily limited to these embodiments. In other words, within the scope of the present invention, all of the components may be selectively operated in combination with one or more. In addition, the terms "comprise", "comprise" or "having" described above mean that the corresponding component may be inherent unless specifically stated otherwise, and thus excludes other components. It should be construed that it may further include other components instead. All terms, including technical and scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art unless otherwise defined. Terms commonly used, such as terms defined in a dictionary, should be interpreted to coincide with the contextual meaning of the related art, and shall not be interpreted in an ideal or excessively formal sense unless explicitly defined in the present invention.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (13)

  1. 연소반응에 의해 생성된 현열을 전달받아 물을 가열하기 위한 현열 열교환 영역에 배치되되, 상기 물을 공급받아 내부를 통해 유동시킴으로써 상기 물이 유동하는 현열유로를 형성하는 현열 열교환배관을 구비하는 현열 열교환부; 및A sensible heat exchanger is disposed in a sensible heat exchange area for heating water by receiving sensible heat generated by a combustion reaction, wherein the sensible heat exchanger pipe has a sensible heat exchange pipe for forming the sensible heat flow path through which the water flows by receiving the water. part; And
    상기 연소반응 중에 생성된 연소가스의 유동방향인 제1 기준방향을 기준으로 상기 현열 열교환 영역보다 하류에 위치하고, 상기 연소가스의 상변화시 발생하는 잠열을 전달받아 상기 물을 가열하기 위한 잠열 열교환 영역에 배치되되, 상기 물을 공급받아 내부를 통해 유동시키는 잠열 열교환배관을 구비하는 잠열 열교환부를 포함하고,A latent heat exchange zone for heating the water by receiving latent heat generated when a phase change of the combustion gas is received, based on a first reference direction, which is a flow direction of the combustion gas generated during the combustion reaction. Is disposed in, and includes a latent heat exchanger having a latent heat exchange pipe for supplying the water flows through the inside,
    상기 잠열 열교환배관은, 상기 제1 기준방향에 직교하는 제2 기준방향을 따라 연장되고, 상기 제1 기준방향과 상기 제2 기준방향에 직교하는 제3 기준방향을 따라 서로 이격되게 나열되되, 상기 물이 유동하고 상기 현열유로에 연통되는 잠열유로를 형성하는 복수 개의 잠열 직선부를 포함하고,The latent heat exchange pipe may extend along a second reference direction orthogonal to the first reference direction and be spaced apart from each other along a third reference direction orthogonal to the first reference direction and the second reference direction. It includes a plurality of latent heat linear portion flowing water and forming a latent heat flow path in communication with the sensible heat flow path,
    상기 잠열 직선부의 내부공간은, 상기 제3 기준방향에 따른 폭이 상기 제1 기준방향에 따른 길이보다 작도록 납작하게 형성되는, 열교환기 유닛.The inner space of the latent heat linear part is formed to be flat so that the width along the third reference direction is smaller than the length along the first reference direction.
  2. 제1항에 있어서, The method of claim 1,
    상기 현열 열교환배관은, 상기 제3 기준방향을 따라 서로 이격되게 나열되고, 상기 제2 기준방향을 따라 연장되되, 상기 물이 유동하고 상기 현열유로를 형성하는 복수 개의 현열 직선부를 포함하는, 열교환기 유닛.The sensible heat exchange pipe is arranged to be spaced apart from each other along the third reference direction, and extend along the second reference direction, the heat exchanger includes a plurality of sensible heat straight portion that flows and forms the sensible heat flow path, unit.
  3. 제2항에 있어서, The method of claim 2,
    상기 직선부의 내부공간에 대해, 상기 제3 기준방향에 따른 폭을 상기 제1 기준방향에 따른 길이로 나눈 값을 종단비라고 할 때,When the value obtained by dividing the width along the third reference direction by the length along the first reference direction with respect to the internal space of the straight portion,
    상기 잠열 직선부의 종단비는, 상기 현열 직선부의 종단비보다 작은, 열교환기 유닛.And the terminal ratio of the latent heat linear portion is smaller than the terminal ratio of the sensible heat linear portion.
  4. 제2항에 있어서,The method of claim 2,
    상기 제2 기준방향에 수직한 평면으로 상기 직선부를 자른 단면에서, 상기 직선부의 내부공간의 둘레의 길이를 상기 직선부의 내부치수라고 할 때,When the length of the circumference of the inner space of the linear part is called the internal dimension of the linear part in the cross section which cut the straight part in a plane perpendicular to the second reference direction,
    상기 잠열 직선부의 내부치수는, 상기 현열 직선부의 내부치수보다 작은, 열교환기 유닛.The internal dimension of the latent heat linear portion is smaller than the internal dimension of the sensible heat linear portion.
  5. 제2항에 있어서, The method of claim 2,
    상기 제2 기준방향에 수직한 평면으로 상기 직선부를 자른 단면에서, 상기 직선부의 둘레의 길이를 상기 직선부의 외부치수라고 하고,In the cross section which cut the straight part into a plane perpendicular to the second reference direction, the length of the circumference of the straight part is called the external dimension of the straight part,
    상기 제2 기준방향에 수직한 평면으로 상기 직선부를 자른 단면에서, 상기 제1 기준방향을 기준으로 상기 직선부의 가장 상류측으로부터 상기 직선부에 대한 상기 연소가스의 박리점(separation point)까지의 상기 직선부의 둘레의 길이를 접촉길이라고 할 때,In the cross section which cut | disconnected the said linear part by the plane perpendicular | vertical to the said 2nd reference direction, the said from the most upstream side of the said linear part to the separation point of the combustion gas with respect to the said linear part with respect to the said 1st reference direction. When the length of the circumference of the straight portion is called a contact length,
    상기 잠열 직선부의 접촉길이를 상기 잠열 직선부의 외부치수로 나눈 값은, 상기 현열 직선부의 접촉길이를 상기 현열 직선부의 외부치수로 나눈 값보다 크고,The value of dividing the contact length of the latent heat linear portion by the external dimension of the latent heat linear portion is larger than the value of the contact length of the sensible heat linear portion divided by the external dimension of the sensible heat linear portion,
    상기 박리점은, 상기 직선부의 표면에서 상기 제3 기준방향을 따라 상기 연소가스의 속도의 변화율이 0인 지점인, 열교환기 유닛.The said peeling point is a heat exchanger unit which is a point where the rate of change of the velocity of the said combustion gas along the said 3rd reference direction is zero in the surface of the said linear part.
  6. 제2항에 있어서, The method of claim 2,
    상기 제2 기준방향에 수직한 평면으로 상기 직선부를 자른 단면에서, 상기 직선부의 내부공간의 둘레의 길이를 상기 직선부의 내부치수라고 할 때,When the length of the circumference of the inner space of the linear part is called the internal dimension of the linear part in the cross section which cut the straight part in a plane perpendicular to the second reference direction,
    상기 제2 기준방향에 수직한 평면으로 상기 직선부를 자른 단면에서, 상기 제1 기준방향을 기준으로 상기 직선부의 내부공간의 가장 상류측과 가장 하류측에 각각 인접한 영역인 내부 상류부와 내부 하류부는 소정의 곡률반경을 가지는 부채꼴의 적어도 일부의 형상으로 형성되며, 상기 제3 기준방향을 기준으로 상기 직선부의 내부공간의 양측인 한 쌍의 내부 측부는 상기 소정의 곡률반경과 다른 곡률반경을 가지는 부채꼴의 적어도 일부의 형상으로 형성되고,In the cross section of the straight portion cut in a plane perpendicular to the second reference direction, the inner upstream portion and the inner downstream portion, which are regions adjacent to the most upstream side and the most downstream side of the inner space of the linear portion with respect to the first reference direction, respectively; A pair of inner side portions formed in at least a part of a fan shape having a predetermined radius of curvature and both sides of the inner space of the straight portion with respect to the third reference direction have a sector shape having a radius of curvature different from the predetermined radius of curvature. Formed into the shape of at least a portion of
    상기 단면에서, 상기 제1 기준방향을 기준으로 상기 내부 상류부의 가장 상류측으로부터 상기 내부 하류부와 상기 내부 측부가 만나는 개소까지의 길이를 유효전열길이라고 할 때,In the cross section, when the length from the most upstream side of the inner upstream portion to the location where the inner downstream portion and the inner side portion meet on the basis of the first reference direction is called an effective heat transfer path,
    상기 잠열 직선부의 유효전열길이를 상기 잠열 직선부의 내부치수로 나눈 값은, 상기 현열 직선부의 유효전열길이를 상기 현열 직선부의 내부치수로 나눈 값보다 큰, 열교환기 유닛.And a value obtained by dividing the effective heat transfer length of the latent heat linear portion by the internal dimension of the latent heat linear portion is greater than a value obtained by dividing the effective heat transfer length of the sensible heat linear portion by the internal dimension of the sensible heat linear portion.
  7. 제6항에 있어서, The method of claim 6,
    상기 잠열 직선부의 내부 측부의 곡률반경은, 무한대인, 열교환기 유닛.The radius of curvature of the inner side of the latent heat linear portion is infinite, heat exchanger unit.
  8. 제1항에 있어서, The method of claim 1,
    상기 잠열 직선부의 내부공간에 대해, 상기 제3 기준방향에 따른 폭을 상기 제1 기준방향에 따른 길이로 나눈 값을 종단비라고 할 때,When a value obtained by dividing the width along the third reference direction by the length along the first reference direction with respect to the inner space of the latent heat linear part is a ratio,
    상기 잠열 직선부의 종단비는, 0.05 이상 0.3 이하인, 열교환기 유닛.The terminal ratio of the said latent heat linear part is 0.05 or more and 0.3 or less.
  9. 제1항에 있어서, The method of claim 1,
    상기 열교환 영역들을 둘러싸서, 자신의 내측에서 상기 열교환 영역들을 정의하는 하우징을 더 포함하고,A housing surrounding the heat exchange areas to define the heat exchange areas therein;
    상기 제1 기준방향에 수직한 평면에서 정의되는 상기 열교환 영역의 단면적을 기준 단면적이라 할 때, When the cross-sectional area of the heat exchange area defined in the plane perpendicular to the first reference direction is referred to as the reference cross-sectional area,
    상기 하우징은, 상기 제1 기준방향을 기준으로 가장 상류측의 기준 단면적보다 가장 하류측의 기준 단면적이 작아지게 마련되는, 열교환기 유닛.And the housing is provided such that the reference cross-sectional area of the downstream side becomes smaller than the reference cross-sectional area of the most upstream side with respect to the first reference direction.
  10. 제9항에 있어서, The method of claim 9,
    상기 복수의 잠열 직선부들은, 상기 제1 기준방향을 기준으로 각각 동일한 위치에 있는 잠열 직선부들이 배치되는 복수의 층을 형성하는, 열교환기 유닛.And the plurality of latent heat linear parts form a plurality of layers in which latent heat linear parts are disposed at the same position with respect to the first reference direction.
  11. 제1항에 있어서, The method of claim 1,
    상기 잠열유로는, 적어도 일부 구간에서 병렬유로를 포함하는, 열교환기 유닛.The latent heat passage includes a parallel passage in at least some sections.
  12. 연소반응 중에 생성된 연소가스의 유동방향인 제1 기준방향에 직교하는 제2 기준방향을 따라 연장되고, 물이 유동하도록 마련되는 내부공간을 구비하되,It has an internal space extending along the second reference direction orthogonal to the first reference direction, which is the flow direction of the combustion gas generated during the combustion reaction, and provided to flow water,
    상기 내부공간은, 상기 제1 기준방향 및 상기 제2 기준방향에 직교하는 제3 기준방향에 따른 폭이 상기 제1 기준방향에 따른 길이보다 작도록 납작하게 형성되고,The inner space is formed to be flat so that a width along a third reference direction orthogonal to the first reference direction and the second reference direction is smaller than a length along the first reference direction,
    상기 제3 기준방향에 따른 내부공간의 폭을 상기 제1 기준방향에 따른 내부공간의 길이로 나눈 값은, 0.05 이상 0.3 이하인, 열교환배관.The value obtained by dividing the width of the inner space along the third reference direction by the length of the inner space along the first reference direction is 0.05 or more and 0.3 or less.
  13. 연소반응을 일으키는 버너조립체;Burner assembly causing combustion reaction;
    상기 연소반응 중에 생성된 연소가스의 유동방향인 제1 기준방향을 기준으로 상기 버너조립체보다 하류에 위치하고, 내부에 상기 연소반응에 의한 화염이 위치하는 연소실; 및A combustion chamber located downstream from the burner assembly with respect to the first reference direction, which is a flow direction of the combustion gas generated during the combustion reaction, and having a flame inside the combustion reaction located therein; And
    상기 연소반응에 의해 생성된 현열과 연소가스를 전달받아 물을 가열하는 열교환기 유닛을 포함하고,And a heat exchanger unit configured to heat water by receiving sensible heat and combustion gas generated by the combustion reaction.
    상기 열교환기 유닛은,The heat exchanger unit,
    상기 연소반응에 의해 생성된 현열을 전달받아 물을 가열하기 위한 현열 열교환 영역에 배치되되, 상기 물을 공급받아 내부를 통해 유동시키는 현열 열교환배관을 구비하는 현열 열교환부; 및A sensible heat exchanger disposed in a sensible heat exchange area for heating water by receiving sensible heat generated by the combustion reaction, the sensible heat exchanger having a sensible heat exchange pipe that receives the water and flows through it; And
    상기 제1 기준방향을 기준으로 상기 현열 열교환 영역보다 하류에 위치하고, 상기 연소가스의 상변화시 발생하는 잠열을 전달받아 상기 물을 가열하기 위한 잠열 열교환 영역에 배치되되, 상기 물을 공급받아 내부를 통해 유동시키는 잠열 열교환배관을 구비하는 잠열 열교환부를 포함하고,Located downstream of the sensible heat exchange region relative to the first reference direction, the latent heat generated when the phase change of the combustion gas is received is disposed in a latent heat exchange region for heating the water. It includes a latent heat exchanger having a latent heat exchange pipe for flowing through,
    상기 잠열 열교환배관은, 상기 제1 기준방향에 직교하는 제2 기준방향을 따라 연장되고, 상기 제1 기준방향과 상기 제2 기준방향에 직교하는 제3 기준방향을 따라 서로 이격되게 나열되되, 상기 물이 유동하고 상기 현열 열교환배관에 연통되는 잠열유로를 형성하는 복수 개의 잠열 직선부를 포함하고,The latent heat exchange pipe may extend along a second reference direction orthogonal to the first reference direction and be spaced apart from each other along a third reference direction orthogonal to the first reference direction and the second reference direction. It includes a plurality of latent heat linear portion that flows water and forms a latent heat flow path in communication with the sensible heat exchange pipe,
    상기 잠열 직선부의 내부공간은, 상기 제3 기준방향에 따른 폭이 상기 제1 기준방향에 따른 길이보다 작도록 납작하게 형성되는, 콘덴싱 보일러.The inner space of the latent heat linear part is formed to be flat so that the width along the third reference direction is smaller than the length along the first reference direction.
PCT/KR2019/006542 2018-06-05 2019-05-30 Heat-exchange pipe, heat-exchanger unit using same, and condensing boiler using same WO2019235779A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/973,016 US20210247102A1 (en) 2018-06-05 2019-05-30 Heat-exchange pipe, heat-exchanger unit using same, and condensing boiler using same
MX2020013259A MX2020013259A (en) 2018-06-05 2019-05-30 Heat-exchange pipe, heat-exchanger unit using same, and condensing boiler using same.
EP19814828.0A EP3816554B1 (en) 2018-06-05 2019-05-30 Heat-exchanger unit using a heat-exchange pipe, and condensing boiler using same
CN201980038009.2A CN112236637B (en) 2018-06-05 2019-05-30 Heat exchange tube, heat exchanger unit using the same, and condensing boiler using the same

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR20180064669 2018-06-05
KR10-2018-0064666 2018-06-05
KR10-2018-0064668 2018-06-05
KR20180064666 2018-06-05
KR10-2018-0064669 2018-06-05
KR20180064668 2018-06-05
KR20180172605 2018-12-28
KR10-2018-0172605 2018-12-28
KR1020190062723A KR102536797B1 (en) 2018-06-05 2019-05-28 Heat exchanger unit including heat exchange pipe and condensing boiler using the same
KR10-2019-0062723 2019-05-28

Publications (1)

Publication Number Publication Date
WO2019235779A1 true WO2019235779A1 (en) 2019-12-12

Family

ID=68770511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/006542 WO2019235779A1 (en) 2018-06-05 2019-05-30 Heat-exchange pipe, heat-exchanger unit using same, and condensing boiler using same

Country Status (3)

Country Link
KR (2) KR102641390B1 (en)
MX (1) MX2020013259A (en)
WO (1) WO2019235779A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100896407B1 (en) * 2007-11-08 2009-05-08 주식회사 경동나비엔 Heat exchanger and manufacturing method of heat exchanging pipe composing thereof
KR20110077308A (en) * 2009-12-30 2011-07-07 린나이코리아 주식회사 2nd heat exchanger of condensing boiler
KR20140083626A (en) * 2012-12-26 2014-07-04 주식회사 경동나비엔 Condensing boiler having multiple heat exchanger for latent heat absorb
KR20170031338A (en) * 2015-09-11 2017-03-21 미우라매뉴팩처링코리아 주식회사 The hot water boiler of a vacuum type
KR20180007933A (en) * 2016-07-15 2018-01-24 주식회사 경동나비엔 Structure for preventing damage of heat exchanger components by combustion heat

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106058U (en) * 1983-12-26 1985-07-19 株式会社ノーリツ Heat exchanger
KR100219911B1 (en) * 1995-02-07 1999-09-01 나이토 스스무 Gas combustion apparatus
KR100392593B1 (en) * 2000-06-28 2003-07-23 주식회사 경동보일러 Condensing heat exchanger of Gas Boiler
JP2003021390A (en) * 2001-07-03 2003-01-24 Harman Kikaku:Kk Heat source for water heater
PL221028B1 (en) * 2011-06-24 2016-02-29 Aic Spółka Akcyjna Pipeline package of the heat exchanger
ITBO20120573A1 (en) * 2012-10-22 2014-04-23 Valmex S P A PERFECTED HEAT EXCHANGER FOR CONDENSING BOILERS
US20150204579A1 (en) * 2014-01-21 2015-07-23 Carrier Corporation Heat exchanger for use in a condensing gas-fired hvac appliance
KR101831805B1 (en) * 2015-12-08 2018-02-23 주식회사 경동나비엔 Condensing type combustion device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100896407B1 (en) * 2007-11-08 2009-05-08 주식회사 경동나비엔 Heat exchanger and manufacturing method of heat exchanging pipe composing thereof
KR20110077308A (en) * 2009-12-30 2011-07-07 린나이코리아 주식회사 2nd heat exchanger of condensing boiler
KR20140083626A (en) * 2012-12-26 2014-07-04 주식회사 경동나비엔 Condensing boiler having multiple heat exchanger for latent heat absorb
KR20170031338A (en) * 2015-09-11 2017-03-21 미우라매뉴팩처링코리아 주식회사 The hot water boiler of a vacuum type
KR20180007933A (en) * 2016-07-15 2018-01-24 주식회사 경동나비엔 Structure for preventing damage of heat exchanger components by combustion heat

Also Published As

Publication number Publication date
KR20220132512A (en) 2022-09-30
KR20230074454A (en) 2023-05-30
KR102641199B1 (en) 2024-02-28
KR102641390B1 (en) 2024-02-27
MX2020013259A (en) 2021-02-22

Similar Documents

Publication Publication Date Title
WO2019235780A1 (en) Heat exchanger unit and condensing boiler using same
WO2017175976A1 (en) Heater assembly
WO2019203391A1 (en) Electrode boiler system
WO2017014505A1 (en) Air conditioner
WO2021071063A1 (en) Hair dryer
WO2021107696A1 (en) Air conditioner
EP3209957A2 (en) Defrosting device and refrigerator having the same
WO2018030607A1 (en) Heating module and heater assembly including the same
EP3183508A1 (en) Air conditioner
WO2014088233A1 (en) Heating apparatus for instantaneous water heating
WO2019132323A1 (en) Smoke tube boiler
WO2018048226A1 (en) Tube assembly for tubular heat exchanger, and tubular heat exchanger comprising same
WO2019117630A1 (en) Gas heat pump system
WO2019235779A1 (en) Heat-exchange pipe, heat-exchanger unit using same, and condensing boiler using same
WO2023282639A1 (en) Storehouse
WO2018021857A1 (en) Evaporator and refrigerator comprising same
WO2017115966A1 (en) Integrated system of heat exchange device and thermoelectric power generation device, and operating method therefor
WO2018216858A1 (en) Defrosting apparatus and refrigerator comprising same
WO2017069386A1 (en) Defrosting device and refrigerator having same
WO2016064200A2 (en) Defrosting device and refrigerator having the same
WO2018124824A1 (en) Smoke tube boiler
WO2022030807A1 (en) Refrigerator
WO2019143194A1 (en) Distributor of air conditioner
WO2022030810A1 (en) Refrigerator
WO2021194111A1 (en) Thermoelectric device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19814828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019814828

Country of ref document: EP

Effective date: 20210111