WO2019235591A1 - Disease-state biomarker for kidney disease - Google Patents

Disease-state biomarker for kidney disease Download PDF

Info

Publication number
WO2019235591A1
WO2019235591A1 PCT/JP2019/022611 JP2019022611W WO2019235591A1 WO 2019235591 A1 WO2019235591 A1 WO 2019235591A1 JP 2019022611 W JP2019022611 W JP 2019022611W WO 2019235591 A1 WO2019235591 A1 WO 2019235591A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
index value
amino acid
kidney disease
lysine
Prior art date
Application number
PCT/JP2019/022611
Other languages
French (fr)
Japanese (ja)
Inventor
隆志 和田
賢吾 古市
宣彦 坂井
恭宜 岩田
信治 北島
祐介 中出
健司 浜瀬
真史 三田
舞子 中根
百合香 三次
Original Assignee
国立大学法人金沢大学
株式会社 資生堂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人金沢大学, 株式会社 資生堂 filed Critical 国立大学法人金沢大学
Publication of WO2019235591A1 publication Critical patent/WO2019235591A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Definitions

  • the present invention relates to an analysis method including a step of calculating a disease state index value of kidney disease based on D-form and / or L-form of amino acids in saliva, a test method for kidney disease, and a sample that outputs disease state information about kidney disease It relates to an analysis system.
  • the kidney is an organ whose main role is to maintain the homeostasis of body fluids by filtering waste products and excess water in the blood and discharging them as urine.
  • the kidneys are impaired due to immune system abnormalities, drugs, high blood pressure, diabetes, bleeding, rapid blood pressure drop, infections, dehydration associated with burns, etc., resulting in decreased kidney function.
  • renal function is reduced to about 60% or less due to renal disorder, it is called renal failure. Due to the difference in progression rate of renal function decrease, acute renal disorder (Acute Kidney Injury: AKI) and chronic kidney disease (Chronic Kidney Disease: CKD) ).
  • DKD diabetic kidney disease
  • Acute kidney injury refers to kidney injury that takes several hours to several weeks as the period until onset.
  • Acute kidney injury is a condition in which renal function has rapidly declined due to causes such as ischemia, drugs, endotoxin shock, etc., such as increased blood concentrations of urea nitrogen and creatinine, internal metabolic products, abnormalities in electrolyte metabolism, acidosis, etc. Symptoms are observed, and acute kidney injury is generally diagnosed by a rapid rise in blood creatinine. Since acute kidney injury is expected to be recovered by treatment, development of a diagnostic marker capable of distinguishing earlier acute kidney injury is desired.
  • Non-patent Document 1 proteins such as neutrophil gelatinase-related lipocalin (NGAL), interleukin-18 (IL-18), nephropathy molecule (KIM-1), liver fatty acid binding proteins (FABPs), cystatin C, homovanillic acid sulfate, trimethylamine Metabolic low molecular weight compounds such as -N-oxide have been reported as markers of acute kidney injury, but development of diagnostic markers capable of detecting pathological conditions faster and more accurately than these markers is expected.
  • NGAL neutrophil gelatinase-related lipocalin
  • IL-18 interleukin-18
  • KIM-1 nephropathy molecule
  • FABPs liver fatty acid binding proteins
  • cystatin C cystatin C
  • cystatin C homovanillic acid sulfate
  • Metabolic low molecular weight compounds such as -N-oxide have been reported as markers of acute kidney injury, but development of diagnostic markers capable of detecting pathological conditions faster and more accurately than these markers is expected.
  • Chronic kidney disease is a condition in which there is a decrease in renal function expressed by glomerular filtration rate due to various renal disorders, or the findings suggestive of renal disorders are chronic (more than 3 months).
  • Chronic kidney disease is a disease that affects 13.3 million people, equivalent to about 13% of the adult population in Japan, and has a high risk of end-stage renal disease (ESKD), which threatens the health of the people.
  • EKD end-stage renal disease
  • D-serine D-threonine, D-alanine, D-asparagine, D-allo-threonine, D-glutamine, D-proline and D-phenylalanine.
  • an amino acid can be used as a disease state index value of kidney disease (Patent Document 1).
  • blood, plasma, serum, ascites, amniotic fluid Listed are body fluids such as lymph, saliva, semen, and urine, and excreta such as feces, sweat, and nasal discharge, and body tissues such as body hair, nails, skin tissue, and visceral tissue, but only serum and urine are actually tested.
  • body fluids such as lymph, saliva, semen, and urine
  • excreta such as feces, sweat, and nasal discharge
  • body tissues such as body hair, nails, skin tissue, and visceral tissue, but only serum and urine are actually tested.
  • body tissues such as body hair, nails, skin tissue, and visceral tissue, but only serum and urine are actually tested.
  • kidney disease markers such as creatinine and BUN values may not have sufficient sensitivity and / or specificity in clinical practice
  • an analysis / analysis technique for identifying a kidney disease disorder marker based on a different principle
  • Development of a technique for accurately determining, examining or diagnosing a disease is desired.
  • the present inventors have found that saliva is used as a sample, and the value based on the D-form and / or L-form of amino acids in saliva correlates with the estimated glomerular filtration rate (eGFR) and the value of blood creatinine. Invented.
  • eGFR estimated glomerular filtration rate
  • the present invention is a method for analyzing saliva of a subject, Measuring the D-form and / or L-form of amino acids in the saliva of the subject, and calculating as a disease state index value of kidney disease based on the D-form and / or L-form of the at least one amino acid, It relates to the analysis method.
  • a method for examining kidney disease using saliva as a sample Measuring D-form and / or L-form of at least one amino acid in saliva; Calculating as a disease state index value of kidney disease based on the D-form and / or L-form of the at least one amino acid,
  • the test method further includes a step of associating a disease state index value of kidney disease with a disease state of kidney disease.
  • Such a test method can correlate the pathological index value with the pathological condition of kidney disease by comparing the pathological index value with a reference value of a predetermined pathological index value.
  • the present invention relates to a sample analysis system capable of performing the analysis method or the inspection method of the present invention.
  • a sample analysis system includes a storage unit, an input unit, an analysis measurement unit, a data processing unit, and a disease state information output unit, and can analyze a saliva sample and output disease state information. .
  • the present invention relates to a program that can be installed in the sample analysis system of the present invention and a storage medium that stores the program.
  • the value calculated based on the ratio of D-form and L-form of amino acids in saliva correlated with the estimated glomerular filtration rate and blood creatinine value.
  • the value calculated based on one or more selected from the group consisting of the amount of D-form of amino acids in the saliva sample, the amount of L-form, and the total amount thereof is calculated between the healthy subject group and the kidney disease patient group. There was a significant difference between them. This makes it possible to diagnose kidney disease.
  • FIG. 1A is a scatter plot in which the ratio of lysine (Lys) D and L isomers (D / L ratio) and blood creatinine values (blood Cr) contained in the saliva of chronic kidney disease patients are plotted. It is.
  • FIG. 1B is a scatter diagram in which a D / L ratio of histidine (His) contained in saliva of a chronic kidney disease patient and a blood creatinine value (blood Cr) are plotted.
  • FIG. 2A is a scatter diagram in which the D / L ratio of lysine (Lys) contained in the saliva of a chronic kidney disease patient and the estimated glomerular filtration rate (eGFR) are plotted.
  • FIG. 2B is a scatter plot in which the D / L ratio of histidine (His) contained in the saliva of a chronic kidney disease patient and the estimated glomerular filtration rate (eGFR) are plotted.
  • FIG. 3 shows the estimated glomerular filtration rate (eGFR) in patients with chronic kidney disease, the amount of D-form of each amino acid in saliva, the amount of L-form, the total amount thereof, and the ratio of D-form to L-form (D It is the table
  • the correlation coefficient is 0.6 or more, it can be said that the correlation is high, when it is 0.4 to 0.6, there is a correlation, and when it is 0.2 to 0.4, there is a low correlation. It can be said.
  • FIG. 4 is a graph showing the amount of D-form amino acids contained in the saliva of healthy subjects and chronic kidney disease patients (CKD patients) for each amino acid.
  • FIG. 5 is a graph showing the amount of L-form amino acids contained in the saliva of healthy subjects and chronic kidney disease patients (CKD patients) for each amino acid.
  • FIG. 6 is a graph showing the total amount of D-form and L-form amino acids contained in the saliva of healthy subjects and chronic kidney disease patients (CKD patients) for each amino acid.
  • FIG. 7 is a configuration diagram of the sample analysis system of the present invention.
  • FIG. 8A is a flowchart illustrating an example of an operation for determining a disease state index value.
  • FIG. 8B is a flowchart illustrating an example of an operation for determining pathological condition information and / or pathological condition index values.
  • the saliva analysis method includes the following: Measuring the D-form and / or L-form of at least one amino acid in the saliva of the subject, and calculating the disease state index value of kidney disease based on the D-form and / or L-form of the at least one amino acid; including.
  • the analysis method can provide data for a doctor to make a diagnosis, and can also be referred to as a preliminary diagnosis method or a diagnosis assisting method.
  • This analysis method may further include a step of associating a disease state index value of kidney disease with a disease state of kidney disease.
  • Such an analysis method may be performed by an analysis company or an analysis engineer to provide a result associated with the pathology of kidney disease.
  • the sample to be analyzed in the present invention is saliva.
  • Saliva is a fluid secreted into the oral cavity from the salivary glands and can be collected by any method.
  • the collected sample may be stored at room temperature, refrigerated or frozen, or may be subjected to pretreatment such as derivatization for analysis.
  • the amino acids used for calculating the disease state index value of kidney disease are preferably protein-constituting amino acids and optical isomers thereof.
  • protein constituent amino acids include glycine, alanine, cysteine, aspartic acid, glutamic acid, phenylalanine, histidine, isoleucine, lysine, leucine, methionine, asparagine, proline, glutamine, arginine, serine, threonine, valine, tryptophan, and tyrosine.
  • amino acids other than glycine have asymmetric carbon and optical isomers exist, and isoleucine and threonine have two asymmetric carbons, alloisomers exist.
  • isoleucine and allo-isoleucine have a relationship of D-allo-isoleucine in which the ⁇ -position of L-isoleucine is inverted, L-allo-isoleucine in which the ⁇ -position is inverted, and D-isoleucine in which the ⁇ -position and ⁇ -position are inverted.
  • the amount of D-form and / or L-form can be measured, and the disease state index value of kidney disease can be calculated based on the D-form and / or L-form of amino acid.
  • the amino acid may be 1, or a combination of a plurality of amino acids, for example, 2 to 19 amino acids.
  • the disease state index value of kidney disease is a numerical value that can indicate the disease state of kidney disease, and can also be referred to as a biomarker.
  • a pathological index reference value determined based on a pathological index value measured in advance in a group of healthy subjects and a group of patients with kidney disease
  • the pathological index value of the subject can be associated with the pathological condition of kidney disease.
  • Such a disease state index reference value can be determined as a threshold value.
  • a person skilled in the art can appropriately set a threshold value serving as a disease condition index reference value from the condition index values of the healthy subject group and the kidney disease patient group.
  • the threshold value for example, an average value, a median value, and an X percentile value of a group of healthy subjects or a group of patients with kidney disease can be used, but are not limited thereto.
  • any numerical value can be selected for X, and 3, 5, 10, 15, 20, 30, 40, 60, 70, 80, 85, 90, 95, and 97 can be appropriately used.
  • the threshold may be one, or the pathology and cause of kidney disease (eg, drug nephropathy, diabetic nephropathy, IgA nephropathy, membranous nephropathy, nephrosclerosis, etc.), condition (early, middle term) , Late stage), as well as depending on the amino acids used or combinations thereof, and the pathological condition can be classified according to the severity.
  • kidney disease eg, drug nephropathy, diabetic nephropathy, IgA nephropathy, membranous nephropathy, nephrosclerosis, etc.
  • condition early, middle term
  • Late stage a condition
  • the pathological condition can be classified according to the severity.
  • the disease state index value of kidney disease is calculated based on amino acid D-form and / or L-form. More specifically, it is calculated based on the amount of D isomer, the amount of L isomer, and their total amount, or the ratio of D isomer to L isomer.
  • the ratio of D-form and L-form of amino acid in the present invention is the ratio of D-form to the sum of D-form and L-form of amino acid, the ratio of L-form to the sum of D-form and L-form, and the ratio of L-form to D-form It may be a ratio or a ratio of D body to L body.
  • the pathological index value may be corrected by addition, subtraction, integration, and / or division. In that case, any age, weight, sex, BMI, GFR, etc. Variables may be used.
  • the amount of D form of amino acid is used as an index, from the correlation with estimated glomerular filtration rate (eGFR) (
  • eGFR estimated glomerular filtration rate
  • the pathological index value is calculated using the amount of D-form of an amino acid selected from the group consisting of glutamic acid, alanine, lysine and proline. Even more preferred.
  • glutamic acid, threonine, proline, lysine, histidine, serine, glutamine, aspartic acid are correlated with the estimated glomerular filtration rate (eGFR) (
  • the pathologic index value is calculated using the amount of L-form of an amino acid selected from the group consisting of glutamic acid, threonine, proline and lysine More preferably.
  • the pathological condition index value is calculated using the total amount of D-form and L-form of amino acids selected from the group consisting of histidine, serine, glutamine, aspartic acid, glycine, alanine, valine, leucine, and tyrosine.
  • the total amount of D-form and L-form of amino acids selected from the group consisting of glutamic acid, threonine, proline, lysine and alanine is used. More preferably, the disease state index value is calculated.
  • amino acids are histidine, lysine, aspartic acid, glutamic acid, alanine, and It is preferable to calculate the disease state index value using at least one amino acid selected from the group consisting of proline.
  • the amino acid is at least one amino acid selected from the group consisting of histidine, lysine, aspartic acid, alanine, and proline. More preferably, the index value is calculated.
  • At least one amino acid selected from the group consisting of histidine, lysine, proline and alanine is more preferable to use at least one amino acid selected from the group consisting of histidine, lysine, proline and alanine.
  • a combination of proline and alanine can also be used.
  • D-amino acid and L-amino acid in a sample in the present invention may be carried out using any method known to those skilled in the art.
  • enzymatic methods Y. Nagata et al., Clinical Science, 73 (1987), 105. Analytical Biochemistry, 150 (1985), 238., A. D'Aniello et al., Comparative Biochemistry and Physiology Part B, 66 (1980), 319. Journal of Neurochemistry, 29 (1977), 1053., A. Berneman et al., Journal of Microbial & Biochemical Technology, 2 (2010), 139., W. G. Gutheil et al., Analy. Biochemistry, 287 (2000), 196., G.
  • HPLC liquid Chromatography
  • the optical isomer separation analysis system in this specification may combine a plurality of separation analyses. More specifically, passing a sample containing components having optical isomers along with a first liquid as a mobile phase through a first column filler as a stationary phase to separate the components of the sample; Individually holding each of the components of the sample in a multi-loop unit, each of the components of the sample individually held in the multi-loop unit as a stationary phase together with a second liquid as a mobile phase Supplying the second column packing material having an optically active center through a flow path to split the optical isomers contained in each of the sample components, and the optical isomerism contained in each of the sample components
  • the D- / L-amino acid concentration in the sample can be measured by using an optical isomer analysis method characterized by including a step of detecting a body ( Patent No.
  • D-amino acids can be measured by immunological techniques using monoclonal antibodies that identify optical isomers of amino acids, such as monoclonal antibodies that specifically bind to D-leucine, D-aspartic acid, etc. (Japanese Patent Application No. 2008-27650). Further, when the total amount of D-form and L-form is used as an index, it is not necessary to separate and analyze D-form and L-form, and amino acids can be analyzed without distinguishing D-form and L-form. In that case, it can be separated and quantified by enzymatic method, antibody method, GC, CE, and HPLC.
  • kidney disease refers to all the states in which the kidney is damaged.
  • causes of decreased renal function include multiple factors such as immune system abnormalities, drugs, high blood pressure, diabetes, bleeding, rapid blood pressure decrease, infection, dehydration associated with burns, and the like.
  • Acute kidney injury (AKI) has been proposed for stage classification such as RIFLE classification, AKIN classification, and KDIGO classification.
  • Acute kidney injury is classified into Risk (stage 1), Injury (stage 2), Failure (stage 3), Furthermore, it classified into Loss and End stage kidney disease according to the duration. All of these classifications are based on the amount of blood creatinine and the amount of urine.
  • stage 1 blood creatinine increases 1.5 to 2.0 times from the baseline or 0
  • the urine volume of less than 5 ml / kg / hour is 6 hours or more.
  • Stage 2 blood creatinine increases 2.0 to 3.0 times from the baseline, or 0.5 ml / kg.
  • the urine volume of less than 12 hours / hour is 12 hours or more
  • Stage 3 blood creatinine increases 3.0 times or more from the baseline, or urine volume of less than 0.3 ml / kg / hour
  • the criterion is 24 hours or more.
  • these classifications make it possible to classify acute kidney injury more accurately by using another index, for example, a change amount of GFR in combination.
  • CKD chronic kidney disease
  • stage 1 normal renal function, eGFR ⁇ 90
  • stage 5 renal failure, eGFR ⁇ 15
  • the estimated glomerular filtration rate (eGFR) which is an index here, is calculated from the value of blood creatinine, age, and sex, and can represent the degree of progression of kidney disease.
  • eGFR estimated glomerular filtration rate
  • kidney disease is detected based on a principle different from that of conventional kidney disease markers. Further, by using in combination with blood creatinine, GFR, etc., it becomes possible to distinguish and diagnose kidney disease in more detail.
  • the present invention relates to a method for examining kidney disease using saliva as a sample.
  • This inspection method includes the following steps: Measuring D-form and / or L-form of at least one amino acid in saliva; Calculating as a disease state index value of kidney disease based on D-form and / or L-form of the at least one amino acid,
  • the method further includes the step of associating a disease state index value of kidney disease with a disease state of kidney disease.
  • the pathological condition index value and the pathological condition of kidney disease can be associated by comparing the pathological condition index value with a predetermined reference value of the pathological condition index value.
  • the test method of the present invention may be performed by an analysis company or an analysis engineer to provide a result associated with the pathology of kidney disease.
  • the sample used in the test method, the associated renal disease pathology, and each step performed may be the same as defined in the analytical method.
  • FIG. 8 is a configuration diagram of the sample analysis system of the present invention.
  • the sample analysis system 10 of the present invention shown in FIG. 8 is configured so that the analysis method and the inspection method of the present invention can be performed.
  • Such a sample analysis system 10 includes a storage unit 11, an input unit 12, an analysis measurement unit 13, a data processing unit 14, and an output unit 15, and analyzes a saliva sample and outputs pathological condition information. be able to.
  • the storage unit 11 stores a reference value of a disease state index value for determining kidney disease input from the input unit 12,
  • the analytical measurement unit 13 separates and measures an optical isomer of at least one amino acid among the amino acids in the saliva sample of the subject,
  • the data processing unit 14 calculates a disease state index value of kidney disease based on the D-form and / or L-form of the at least one amino acid,
  • the data processing unit 14 determines the pathological information of kidney disease by comparing with the reference value stored in the storage unit 11,
  • the output unit 15 can output pathological information about the kidney disease of the subject.
  • the storage unit 11 includes a memory device such as a RAM, a ROM, and a flash memory, a fixed disk device such as a hard disk drive, or a portable storage device such as a flexible disk and an optical disk.
  • the storage unit stores data measured by the analysis measurement unit, data and instructions input from the input unit, calculation processing results performed by the data processing unit, etc., as well as computer programs and databases used for various processes of the information processing apparatus.
  • the computer program may be installed via a computer-readable recording medium such as a CD-ROM or DVD-ROM, or via the Internet.
  • the computer program is installed in the storage unit using a known setup program or the like.
  • the input unit 12 is an interface or the like, and includes operation units such as a keyboard and a mouse. As a result, the input unit can input data measured by the analysis measurement unit 13, instructions for calculation processing performed by the data processing unit 14, and the like. For example, when the analysis measurement unit 13 is outside, the input unit 12 may include an interface unit that can input measured data or the like via a network or a storage medium, separately from the operation unit.
  • Analytical measurement unit 13 performs a process of measuring the amount of D-form and / or L-form of amino acid in the saliva sample. Therefore, it is preferable that the analytical measurement unit 13 has a configuration that enables separation and measurement of D-form and L-form of amino acids, but when measuring only the total amount, the D-form and L-form are not separated. It is also possible to measure together. Amino acids may be analyzed one by one, but some or all types of amino acids may be analyzed together.
  • the analytical measurement unit 13 is not intended to be limited to the following, but may be a high performance liquid chromatography system including a sample introduction unit, an optical resolution column, and a detection unit, for example.
  • the analysis measurement unit 13 may be configured separately from the sample analysis system, and the measured data or the like may be input via the input unit 12 using a network or a storage medium.
  • the data processing unit 14 calculates the D-form amount, the L-form quantity, the total amount of the D-form and the L-form, or the ratio of the D-form and the L-form from the measured D-form and L-form measurements of each amino acid. Based on this, a pathological condition index value of kidney disease is calculated and compared with a reference value stored in the storage unit 11 to determine kidney disease.
  • the data processing unit 14 performs various arithmetic processes on the data measured by the analysis measurement unit 13 and stored in the storage unit 11 in accordance with a program stored in the storage unit. Arithmetic processing is performed by a CPU included in the data processing unit.
  • the CPU includes a functional module that controls the analysis measurement unit 13, the input unit 12, the storage unit 11, and the output unit 15, and can perform various controls. Each of these units may be configured by an independent integrated circuit, a microprocessor, firmware, and the like.
  • the output unit 15 is configured to output a pathological condition index value and / or pathological condition information, which is a result of performing arithmetic processing in the data processing unit.
  • the output unit 15 may be a display device such as a liquid crystal display that directly displays the result of the arithmetic processing, an output unit such as a printer, or an interface unit for outputting to an external storage device or via a network. There may be.
  • FIG. 8A is a flowchart showing an example of a procedure for determining a disease state index value by the program of the present invention
  • FIG. 8B shows an example of an operation for determining a disease state index value and / or disease state information by the program of the present invention. It is a flowchart which shows.
  • the program of the present invention is a program that causes an information processing apparatus including an input unit, an output unit, a data processing unit, and a storage unit to determine a pathological condition index value and / or pathological condition information.
  • the program of the present invention is as follows: Storing the measured value of D-form and / or L-form of at least one amino acid input from the input unit in the storage unit; Based on the value stored in the storage unit, the data processing unit calculates a disease state index value, A command for causing the information processing apparatus to store the calculated pathologic index value in the storage unit and cause the output unit to output the stored pathologic index value;
  • the program of the present invention may be stored in a storage medium or provided via an electric communication line such as the Internet or a LAN.
  • the analysis measurement unit measures the measurement value from the saliva sample and stores it in the storage unit.
  • a command for causing the information processing apparatus to execute the storage may be included.
  • a command for causing the information processing apparatus to store the determined disease state information in the storage unit and cause the output unit to output the stored disease state information may be included.
  • the subject is not limited to humans, and may include laboratory animals such as mice, rats, rabbits, dogs, monkeys, and the like.
  • the analysis method and test method of the present invention can be performed for a definitive diagnosis on a subject who has subjective symptoms of kidney disease or a subject suspected of having kidney disease. It can also be implemented as a health checkup for subjects who have no subjective symptoms.
  • the analysis method of the present invention can be used to collect preliminary data for a method for diagnosing chronic kidney disease and / or acute kidney injury.
  • a doctor can diagnose chronic kidney disease and / or acute kidney injury using such preliminary data, but such an analysis method may be performed by a medical assistant or the like who is not a doctor. Etc. can also be performed. Therefore, it can be said that the analysis method of the present invention is a preliminary method or an auxiliary method of diagnosis.
  • the analysis method of the present invention is performed on a saliva sample collected in a health examination.
  • the analysis method of the present invention makes it possible to classify the severity of kidney disease.
  • a therapeutic intervention is performed on subjects classified into the categories corresponding to G2 to G5.
  • treatment intervention can be selected as appropriate.
  • lifestyle improvement, dietary guidance, blood pressure management, anemia management, electrolyte management, uremic toxin management, blood glucose level management, immune management, lipid management, etc. are guided independently or in combination.
  • lifestyle improvement smoking cessation and reduction of BMI value to less than 25 are recommended.
  • blood pressure management As dietary guidance, salt reduction and protein restriction are performed. Among these, in particular, blood pressure management, anemia management, electrolyte management, uremic toxin management, blood glucose level management, immune management, and lipid management can be treated by medication. As blood pressure management, the blood pressure is controlled to be 130/80 mmHg or less, and a hypertension therapeutic drug may be administered depending on the case.
  • Antihypertensive drugs include diuretics (thiazide diuretics such as trichlormethiazide, benchyl hydrochlorothiazide, hydrochlorothiazide, thiazide-like diuretics such as methiclan, indamide, tribamide, meflucid, loop diuretics such as furosemide, potassium retention Diuretics and aldosterone antagonists such as triamterene, spironolactone, eplerenone, etc., calcium antagonists (dihydropyridines such as nifedipine, amlodipine, efonidipine, cilnidipine, nicardipine, nisoldipine, nitrendipine, nilvadipine, varnidipine, felidipine, manidipine, manidipine, manidipine, manidipine, Alanidipine, benzothiazepine, diltiazem
  • anemia treatment agent erythropoietin preparation, iron agent, HIF-1 inhibitor and the like are used.
  • Calcium receptor agonists such as cinacalcet and ethercalcetide
  • phosphorus adsorbents are used as electrolyte regulators.
  • Activated carbon or the like is used as the uremic toxin adsorbent.
  • the blood glucose level is managed to be less than 6.9% of Hba1c, and a hypoglycemic drug is sometimes administered.
  • SGLT2 inhibitors ipragliflozin, dapagliflozin, luceogliflozin, tofogliflozin, canagliflozin, empagliflozin, etc.
  • DPP4 inhibitors sitagliptin phosphate, vildagliptin, saxagliptin, alogliptin, linagliptin, trenagliptin, trelagliptin , Anagliptin, omalipliptin, etc.
  • sulfonylurea drugs tolbutamide, acetohexamide, chlorpropamide, glyclopyramide, glibenclamide, gliclazide, glimepiride, etc.
  • thiazolidine drugs pioglitazone, etc.
  • biguanide drugs metalformin, buformin, etc.
  • ⁇ Glucosidase inhibitors Acarbose,
  • immunosuppressants steroids, tacrolimus, anti-CD20 antibody, cyclohexamide, mycophenolate mofetil (MMF), etc.
  • LDL-C is controlled to be less than 120 mg / dL, and sometimes treatments for dyslipidemia such as statins (rosuvastatin, pitavastatin, atorvastatin, cerivastatin, fluvastatin, simvastatin, pravastatin, lovastatin, mevastatin, etc.), Fibrate drugs (clofibrate, bezafibrate, fenofibrate, clinofibrate, etc.), nicotinic acid derivatives (tocolol nicotinate, nicomol, niceritrol, etc.), cholesterol transporter inhibitors (eg ezetimibe etc.), PCSK9 inhibitors (eg ebolokumab etc.) EPA A preparation or the like is used.
  • statins rosuvastatin, pitavastat
  • kidney transplantation Any drug may be used as a single agent or a combination.
  • renal replacement therapy such as peritoneal dialysis, hemodialysis, continuous hemofiltration dialysis, blood apheresis (plasma exchange, plasma adsorption, etc.) and kidney transplantation may be performed.
  • saliva sample 5 ml of saliva was collected 2 hours after brushing from a subject who had brushed his teeth after breakfast. Saliva was collected from the entire oral cavity. The collected saliva was stored at 4 ° C. or ⁇ 80 ° C. under anaerobic conditions until the experiment. A blood sample was collected from the same subject.
  • the analyzed saliva sample was subjected to an amino acid optical isomer analysis system using a D, L-amino acid simultaneous high sensitivity analysis system (Patent No. 4291628) developed by Zaitsu et al. Details of the analysis conditions for each amino acid are described in Miyoshi Y. et al. , Et al. Chromatogr. B, 879: 3184 (2011) and Sasabe, J. et al. Et al., Proc. Natl. Acad. Sci. U. S. A. 109: 627 (2012).
  • the mobile phase was methyl cyanide-trifluoroacetic acid-water (volume ratio 5: 0.05: 95).
  • the flow rate was 35 ⁇ L per minute.
  • Fluorescence detection was performed with an excitation wavelength of 470 nm and a detection wavelength of 530 nm.
  • After reverse phase separation it was subjected to an optical isomer separation system.
  • a Sumichiral OA-2500S column 250 mm ⁇ 1.5 mm, self-packing, material is manufactured by Sumika Chemical Analysis Co., Ltd.) using (S) -naphthylglycine as a chiral selector was used.
  • the two-dimensional HPLC system described in this example can quantitatively measure in the range of 1 fmol to 100 pmol, for example, by distinguishing optical isomers of serine in a biological sample. This was sufficient sensitivity to discriminate changes in the concentrations of histidine and lysine D-form and L-form in healthy subjects and kidney disease patients. From the measured values of the D-form amino acid and the L-form amino acid, the D-form amino acid concentration, the L-form amino acid concentration, the total concentration of the D-form and the L-form, and the D / L ratio were calculated.
  • FIGS. 4 to 6 show the concentrations of D-form, L-form, and total D-form and L-form of amino acids in healthy subjects and chronic kidney disease patients, respectively. Note that glycine does not have an asymmetric carbon and therefore does not have an optical isomer. However, for convenience, glycine is represented as an L-amino acid category.
  • Serum creatinine was measured by an enzyme method for the obtained blood sample.
  • the estimated glomerular filtration rate (eGFR) was determined based on the measured serum creatinine value and age.
  • the formula for determining eGFR is as follows: ⁇ In the formula, the unit of age is year, the unit of SCr is mg / dL, and the unit of estimated glomerular filtration rate (eGFR) is mL / min / 1.73 m 2 body surface ⁇ . For female patients, a correction factor of 0.739 was applied to the calculated value of the mathematical formula.
  • 2A and 2B are graphs showing correlations between the estimated glomerular filtration rate and the D / L-lysine ratio and D / L-histidine ratio.
  • An unpaired t-test (Student's t-test) was performed for comparison between the two groups, and statistical significance was measured.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The present invention provides a saliva analysis method that includes: a step in which at least one D-form and/or L-form amino acid in saliva is measured; and a step on in which the disease state index for kidney disease is calculated on the basis of the at least one D-form and/or L-form amino acid. The present invention also provides a saliva analysis system that includes a storage unit, an input unit, an analysis and measurement unit, a data processing unit, and an output unit. The storage unit stores reference values for disease state index values for kidney disease that have been input from the input unit. The analysis and measurement unit separates and analyses at least one D-form and/or L-form amino acid in the saliva. The data processing unit calculates a disease state index value for kidney disease, on the basis of the at least one D-form and/or L-form amino acid. The data processing unit determines kidney disease by comparing against the reference values for disease state index values stored in the storage unit. The output unit outputs disease state information for kidney disease in a subject.

Description

腎臓病の病態バイオマーカーPathological biomarkers for kidney disease
 本発明は、唾液中のアミノ酸のD体及び/又はL体に基づき腎臓病の病態指標値を算出する工程を含む分析方法、腎臓病の検査方法、並びに腎臓病についての病態情報を出力する試料分析システムに関する。 The present invention relates to an analysis method including a step of calculating a disease state index value of kidney disease based on D-form and / or L-form of amino acids in saliva, a test method for kidney disease, and a sample that outputs disease state information about kidney disease It relates to an analysis system.
 腎臓は、血液中の老廃物や余分な水分を濾過し、尿として排出することで、体液の恒常性を維持することを主な役割とする臓器である。腎臓は、免疫系の異常や薬剤、高血圧、糖尿病、出血や急激な血圧低下、感染症、熱傷に伴う脱水等の要因により障害を受け、腎機能が低下する。腎障害により腎機能が約60%以下に低下した場合に腎不全と呼び、腎機能低下の進行速度の違いにより、急性腎障害(Acute Kidney Injury:AKI)と慢性腎臓病(Chronic Kidney Disease:CKD)に大別される。特に糖尿病を原因とするものは糖尿病性腎臓病(Diabetic Kidney Disease:DKD)という。 The kidney is an organ whose main role is to maintain the homeostasis of body fluids by filtering waste products and excess water in the blood and discharging them as urine. The kidneys are impaired due to immune system abnormalities, drugs, high blood pressure, diabetes, bleeding, rapid blood pressure drop, infections, dehydration associated with burns, etc., resulting in decreased kidney function. When renal function is reduced to about 60% or less due to renal disorder, it is called renal failure. Due to the difference in progression rate of renal function decrease, acute renal disorder (Acute Kidney Injury: AKI) and chronic kidney disease (Chronic Kidney Disease: CKD) ). In particular, the cause of diabetes is called diabetic kidney disease (DKD).
 急性腎障害(AKI)は、発症までの期間として数時間から数週間である腎障害をいう。急性腎障害は、虚血、薬剤、エンドトキシンショック等の原因によって腎機能が急激に低下した状態であり、体内代謝産物である尿素窒素やクレアチニンの血中濃度上昇、電解質代謝の異常及びアシドーシス等の症状が認められ、一般に血中クレアチニンの値の急上昇により急性腎障害と診断される。急性腎障害は、治療により回復が期待されるため、より早期の急性腎障害を判別できる診断マーカーの開発が望まれている。しかしながら、一般に用いられている血中クレアチニンの値は、年齢、性別、筋肉量及び服用する薬剤等の条件により変動するので、特異的な診断マーカーとはいえない(非特許文献1)。また好中球ゼラチナーゼ関連リポカリン(NGAL)、インターロイキン-18(IL-18)、腎障害分子(KIM-1)、肝脂肪酸結合タンパク質(FABPs)、シスタチンC等のタンパク質と、ホモバニリン酸硫酸、トリメチルアミン-N-オキシド等の代謝低分子化合物等が、急性腎障害のマーカーとして報告されているが、これらのマーカーよりも、より早くより正確に病態を検出できる診断マーカーの開発が期待されている。 Acute kidney injury (AKI) refers to kidney injury that takes several hours to several weeks as the period until onset. Acute kidney injury is a condition in which renal function has rapidly declined due to causes such as ischemia, drugs, endotoxin shock, etc., such as increased blood concentrations of urea nitrogen and creatinine, internal metabolic products, abnormalities in electrolyte metabolism, acidosis, etc. Symptoms are observed, and acute kidney injury is generally diagnosed by a rapid rise in blood creatinine. Since acute kidney injury is expected to be recovered by treatment, development of a diagnostic marker capable of distinguishing earlier acute kidney injury is desired. However, since the value of blood creatinine generally used varies depending on conditions such as age, sex, muscle mass, and drugs to be taken, it cannot be said to be a specific diagnostic marker (Non-patent Document 1). Also, proteins such as neutrophil gelatinase-related lipocalin (NGAL), interleukin-18 (IL-18), nephropathy molecule (KIM-1), liver fatty acid binding proteins (FABPs), cystatin C, homovanillic acid sulfate, trimethylamine Metabolic low molecular weight compounds such as -N-oxide have been reported as markers of acute kidney injury, but development of diagnostic markers capable of detecting pathological conditions faster and more accurately than these markers is expected.
 慢性腎臓病(CKD)は、各種腎障害により、糸球体濾過量で表される腎機能の低下があるか、もしくは腎臓の障害を示唆する所見が慢性的(3カ月以上)に持続する状態をいう。慢性腎臓病は、日本国の成人人口の約13%に相当する1,330万人が罹患する疾患で、末期腎不全(ESKD)に至るリスクが高く、国民の健康を脅かしている。慢性腎臓病に有効な治療法はなく、慢性腎臓病が進行して腎機能低下が進むと尿毒症の危険があり、人工透析や腎移植が必要となることから、医療経済上も大きな負担となっている(非特許文献2)。慢性腎臓病は、自覚症状がないまま病状が進行するため、慢性腎臓病の早期発見及び進行抑制のためには、腎障害の早期診断マーカーによる診断が必要である。しかし、現在臨床現場で汎用されているクレアチニンや尿素窒素(BUN)の値は腎障害の発生と進行を正確に反映する診断マーカーとして満足できるものではない。 Chronic kidney disease (CKD) is a condition in which there is a decrease in renal function expressed by glomerular filtration rate due to various renal disorders, or the findings suggestive of renal disorders are chronic (more than 3 months). Say. Chronic kidney disease is a disease that affects 13.3 million people, equivalent to about 13% of the adult population in Japan, and has a high risk of end-stage renal disease (ESKD), which threatens the health of the people. There is no effective treatment for chronic kidney disease. If chronic kidney disease progresses and kidney function declines, there is a risk of uremia, which requires artificial dialysis and kidney transplantation, which is a heavy burden on the medical economy. (Non-Patent Document 2). Since chronic kidney disease progresses without subjective symptoms, diagnosis with an early diagnostic marker for renal disorder is necessary for early detection and suppression of progression of chronic kidney disease. However, the values of creatinine and urea nitrogen (BUN), which are currently widely used in clinical practice, are not satisfactory as diagnostic markers that accurately reflect the occurrence and progression of kidney damage.
 近年、哺乳類の生体には存在しないと考えられていたD-アミノ酸が、様々な組織において見出されており、何らかの生理機能を担うことが予測されている。そして、血中のD-アミノ酸のうち、D-セリン、D-アラニン、D-プロリン、D-グルタミン酸、D-アスパラギン酸の量が、腎臓病のバイオマーカーとなり得ることが示されている(非特許文献3、非特許文献4、非特許文献5、非特許文献6)。さらに、D-セリン、D-スレオニン、D-アラニン、D-アスパラギン、D-アロ-スレオニン、D-グルタミン、D-プロリン及びD-フェニルアラニンからなるグループから選択される1種類又は2種類以上のD-アミノ酸が、腎臓病の病態指標値とすることができることが開示されており(特許文献1)、この文献では、試料に用いられる生物学的材料として、血液、血漿、血清、腹水、羊水、リンパ液、唾液、精液、尿等の体液と、糞便、汗、鼻汁等の排泄物、体毛、爪、皮膚組織、内臓組織等の体組織を挙げているが、実際には血清と尿のみが試験されており、唾液中のD体のアミノ酸を診断マーカーとして用いたことについては、何ら示されていない。 In recent years, D-amino acids that were thought not to exist in mammalian organisms have been found in various tissues and are expected to have some physiological function. It has been shown that among D-amino acids in blood, the amount of D-serine, D-alanine, D-proline, D-glutamic acid, and D-aspartic acid can be a biomarker for kidney disease (non-) Patent Document 3, Non-Patent Document 4, Non-Patent Document 5, Non-Patent Document 6). Further, one or more kinds of D selected from the group consisting of D-serine, D-threonine, D-alanine, D-asparagine, D-allo-threonine, D-glutamine, D-proline and D-phenylalanine. -It is disclosed that an amino acid can be used as a disease state index value of kidney disease (Patent Document 1). In this document, blood, plasma, serum, ascites, amniotic fluid, Listed are body fluids such as lymph, saliva, semen, and urine, and excreta such as feces, sweat, and nasal discharge, and body tissues such as body hair, nails, skin tissue, and visceral tissue, but only serum and urine are actually tested. However, there is no indication that the D-form amino acid in saliva was used as a diagnostic marker.
国際公開第2013/140785号International Publication No. 2013/140785
 クレアチニンやBUNの値等の既存の腎臓病マーカーは、臨床において感度及び/又は特異度が十分でない場合があるため、異なる原理の腎臓病障害マーカーを同定する分析・解析技術、並びにそれにより、腎臓病を正確に判定、検査又は診断する技術の開発が望まれている。 Since existing kidney disease markers such as creatinine and BUN values may not have sufficient sensitivity and / or specificity in clinical practice, an analysis / analysis technique for identifying a kidney disease disorder marker based on a different principle, Development of a technique for accurately determining, examining or diagnosing a disease is desired.
 本発明者らは、唾液を試料として用い、唾液中のアミノ酸のD体及び/又はL体に基づく値が、推算糸球体濾過量(eGFR)や血中クレアチニンの値と相関することを見出し本発明に至った。 The present inventors have found that saliva is used as a sample, and the value based on the D-form and / or L-form of amino acids in saliva correlates with the estimated glomerular filtration rate (eGFR) and the value of blood creatinine. Invented.
 したがって、本発明は被検体の唾液の分析方法であって、
 該被検体の唾液中のアミノ酸のD体及び/又はL体を測定する工程、及び
 前記少なくとも1のアミノ酸のD体及び/又はL体に基づき腎臓病の病態指標値として算出する工程
 を含む、分析方法に関する。
Therefore, the present invention is a method for analyzing saliva of a subject,
Measuring the D-form and / or L-form of amino acids in the saliva of the subject, and calculating as a disease state index value of kidney disease based on the D-form and / or L-form of the at least one amino acid, It relates to the analysis method.
 本発明の別の態様では、唾液を試料とする腎臓病の検査方法であって、
 唾液中の少なくとも1のアミノ酸のD体及び/又はL体を測定する工程、
 前記少なくとも1種類のアミノ酸のD体及び/又はL体に基づき腎臓病の病態指標値として算出する工程、
 腎臓病の病態指標値と、腎臓病の病態とを関連づける工程
 をさらに含む、前記検査方法に関する。かかる検査方法は、病態指標値を、予め決められた病態指標値の基準値と比較することで、病態指標値と腎臓病の病態とを関連づけることができる。
In another aspect of the present invention, a method for examining kidney disease using saliva as a sample,
Measuring D-form and / or L-form of at least one amino acid in saliva;
Calculating as a disease state index value of kidney disease based on the D-form and / or L-form of the at least one amino acid,
The test method further includes a step of associating a disease state index value of kidney disease with a disease state of kidney disease. Such a test method can correlate the pathological index value with the pathological condition of kidney disease by comparing the pathological index value with a reference value of a predetermined pathological index value.
 さらに別の態様では、本発明の分析方法又は検査方法を実施することができる試料分析システムに関する。このような試料分析システムは、記憶部と、入力部と、分析測定部と、データ処理部と、病態情報出力部とを含んでおり、唾液試料を分析し、病態情報を出力することができる。 In still another aspect, the present invention relates to a sample analysis system capable of performing the analysis method or the inspection method of the present invention. Such a sample analysis system includes a storage unit, an input unit, an analysis measurement unit, a data processing unit, and a disease state information output unit, and can analyze a saliva sample and output disease state information. .
 さらに別の態様では、本発明の試料分析システムにインストールされうるプログラム及び当該プログラムを格納する記憶媒体にも関する。 In still another aspect, the present invention relates to a program that can be installed in the sample analysis system of the present invention and a storage medium that stores the program.
 唾液中のアミノ酸のD体とL体の比に基づき算出された値は、推算糸球体濾過量や、血中クレアチニンの値と相関した。また、唾液試料中のアミノ酸のD体の量、L体の量、及びそれらの合計量からなる群から選ばれる1以上に基づき算出された値は、健常者群と、腎臓病患者群との間で有意な差を示した。これにより、腎臓病の診断が可能となる。 The value calculated based on the ratio of D-form and L-form of amino acids in saliva correlated with the estimated glomerular filtration rate and blood creatinine value. In addition, the value calculated based on one or more selected from the group consisting of the amount of D-form of amino acids in the saliva sample, the amount of L-form, and the total amount thereof is calculated between the healthy subject group and the kidney disease patient group. There was a significant difference between them. This makes it possible to diagnose kidney disease.
図1Aは、慢性腎臓病患者の唾液中に含まれるリジン(Lys)のD体とL体の比(D/L比)と、血中クレアチニンの値(血中Cr)とをプロットした散布図である。図1Bは、慢性腎臓病患者の唾液中に含まれるヒスチジン(His)のD/L比と、血中クレアチニンの値(血中Cr)とをプロットした散布図である。FIG. 1A is a scatter plot in which the ratio of lysine (Lys) D and L isomers (D / L ratio) and blood creatinine values (blood Cr) contained in the saliva of chronic kidney disease patients are plotted. It is. FIG. 1B is a scatter diagram in which a D / L ratio of histidine (His) contained in saliva of a chronic kidney disease patient and a blood creatinine value (blood Cr) are plotted. 図2Aは、慢性腎臓病患者の唾液中に含まれるリジン(Lys)のD/L比と、推算糸球体濾過量(eGFR)とをプロットした散布図である。図2Bは、慢性腎臓病患者の唾液中に含まれるヒスチジン(His)のD/L比と、推算糸球体濾過量(eGFR)とをプロットした散布図である。FIG. 2A is a scatter diagram in which the D / L ratio of lysine (Lys) contained in the saliva of a chronic kidney disease patient and the estimated glomerular filtration rate (eGFR) are plotted. FIG. 2B is a scatter plot in which the D / L ratio of histidine (His) contained in the saliva of a chronic kidney disease patient and the estimated glomerular filtration rate (eGFR) are plotted. 図3は、慢性腎臓病患者における推算糸球体濾過量(eGFR)と、唾液中の各アミノ酸のD体の量、L体の量、それらの合計量、及びD体とL体の比(D/L比)との相関を解析した表である。相関係数が、0.6以上の場合高い相関ということができ、0.4~0.6の場合に相関があるということができ、0.2~0.4の場合に低い相関があるということができる。FIG. 3 shows the estimated glomerular filtration rate (eGFR) in patients with chronic kidney disease, the amount of D-form of each amino acid in saliva, the amount of L-form, the total amount thereof, and the ratio of D-form to L-form (D It is the table | surface which analyzed the correlation with / L ratio. When the correlation coefficient is 0.6 or more, it can be said that the correlation is high, when it is 0.4 to 0.6, there is a correlation, and when it is 0.2 to 0.4, there is a low correlation. It can be said. 図4は、健常者及び慢性腎臓病患者(CKD患者)の唾液中に含まれるD体のアミノ酸の量を、各アミノ酸について示したグラフである。FIG. 4 is a graph showing the amount of D-form amino acids contained in the saliva of healthy subjects and chronic kidney disease patients (CKD patients) for each amino acid. 図5は、健常者及び慢性腎臓病患者(CKD患者)の唾液中に含まれるL体のアミノ酸の量を、各アミノ酸について示したグラフである。FIG. 5 is a graph showing the amount of L-form amino acids contained in the saliva of healthy subjects and chronic kidney disease patients (CKD patients) for each amino acid. 図6は、健常者及び慢性腎臓病患者(CKD患者)の唾液中に含まれるD体及びL体のアミノ酸の合計量を、各アミノ酸について示したグラフである。FIG. 6 is a graph showing the total amount of D-form and L-form amino acids contained in the saliva of healthy subjects and chronic kidney disease patients (CKD patients) for each amino acid. 図7は、本発明の試料分析システムの構成図である。FIG. 7 is a configuration diagram of the sample analysis system of the present invention. 図8Aは、病態指標値を決定するための動作の例を示すフローチャートである。図8Bは、病態情報及び又は病態指標値を決定するための動作の例を示すフローチャートである。FIG. 8A is a flowchart illustrating an example of an operation for determining a disease state index value. FIG. 8B is a flowchart illustrating an example of an operation for determining pathological condition information and / or pathological condition index values.
 本発明に係る唾液の分析方法は、以下の:
 被検体の唾液中の少なくとも1のアミノ酸のD体及び/又はL体を測定する工程、及び
 前記少なくとも1のアミノ酸のD体及び/又はL体に基づく腎臓病の病態指標値として算出する工程、
 を含む。当該分析方法は、医師が診断を行うためのデータの提供を行うことができ、診断の予備的方法又は診断補助方法ということもできる。この分析方法は、腎臓病の病態指標値と、腎臓病の病態とを関連づける工程をさらに含んでいてもよい。このような分析方法は、分析会社や分析技術者により行われて、腎臓病の病態と関連づけられた結果が提供されてもよい。
The saliva analysis method according to the present invention includes the following:
Measuring the D-form and / or L-form of at least one amino acid in the saliva of the subject, and calculating the disease state index value of kidney disease based on the D-form and / or L-form of the at least one amino acid;
including. The analysis method can provide data for a doctor to make a diagnosis, and can also be referred to as a preliminary diagnosis method or a diagnosis assisting method. This analysis method may further include a step of associating a disease state index value of kidney disease with a disease state of kidney disease. Such an analysis method may be performed by an analysis company or an analysis engineer to provide a result associated with the pathology of kidney disease.
 本発明において分析される試料は、唾液である。唾液は、唾液腺より口腔内に分泌される液体であり、任意の方法で採取することができる。採取された試料は、常温下、冷蔵下又は冷凍下で保管されてもよいし、分析用の誘導体化等の前処理を実施してもよい。 The sample to be analyzed in the present invention is saliva. Saliva is a fluid secreted into the oral cavity from the salivary glands and can be collected by any method. The collected sample may be stored at room temperature, refrigerated or frozen, or may be subjected to pretreatment such as derivatization for analysis.
 本発明において、腎臓病の病態指標値を算出するために用いられるアミノ酸は、好ましくはタンパク質構成アミノ酸及びその光学異性体である。タンパク質構成アミノ酸として、グリシン、アラニン、システイン、アスパラギン酸、グルタミン酸、フェニルアラニン、ヒスチジン、イソロイシン、リジン、ロイシン、メチオニン、アスパラギン、プロリン、グルタミン、アルギニン、セリン、スレオニン、バリン、トリプトファン、チロシンが挙げられる。ここで、グリシン以外のアミノ酸は不斉炭素を有し、光学異性体が存在し、イソロイシンとスレオニンは不斉炭素を二つ有するため、アロ体が存在する。例えばイソロイシンとアロ-イソロイシンはL-イソロイシンのα位が反転したD-アロ-イソロイシン、β位が反転したL-アロ-イソロイシン、α位とβ位が反転したD-イソロイシンという関係にある。これらのアミノ酸のうちの少なくとも1のアミノ酸について、D体及び/又はL体の量を測定し、アミノ酸のD体及び/又はL体に基づき腎臓病の病態指標値を算出することができる。アミノ酸は1であってもよいし、複数、例えば2~19のアミノ酸の組合せであってもよい。 In the present invention, the amino acids used for calculating the disease state index value of kidney disease are preferably protein-constituting amino acids and optical isomers thereof. Examples of protein constituent amino acids include glycine, alanine, cysteine, aspartic acid, glutamic acid, phenylalanine, histidine, isoleucine, lysine, leucine, methionine, asparagine, proline, glutamine, arginine, serine, threonine, valine, tryptophan, and tyrosine. Here, since amino acids other than glycine have asymmetric carbon and optical isomers exist, and isoleucine and threonine have two asymmetric carbons, alloisomers exist. For example, isoleucine and allo-isoleucine have a relationship of D-allo-isoleucine in which the α-position of L-isoleucine is inverted, L-allo-isoleucine in which the β-position is inverted, and D-isoleucine in which the α-position and β-position are inverted. For at least one of these amino acids, the amount of D-form and / or L-form can be measured, and the disease state index value of kidney disease can be calculated based on the D-form and / or L-form of amino acid. The amino acid may be 1, or a combination of a plurality of amino acids, for example, 2 to 19 amino acids.
 腎臓病の病態指標値とは、腎臓病の病態を指し示すことができる数値であり、バイオマーカーということもできる。予め健常者群及び腎臓病の患者群において測定された病態指標値に基づいて決定された病態指標基準値と比較をすることで、被験者の病態指標値を腎臓病の病態と関連づけることができる。このような病態指標基準値は、閾値として決定することができる。当業者であれば、健常者群や腎臓病患者群の病態指標値から、病態指標基準値となる閾値を適宜設定することができる。閾値としては、例えば健常者群又は腎臓病患者群の平均値、中央値、Xパーセンタイル値を使用することができるがこれらに限定されるものではない。ここでXは任意の数値を選択することができ、3、5、10、15、20、30、40、60、70、80、85、90、95、97を適宜使用することができる。閾値は1つであってもよいし、腎臓病の病態や原因(例えば、薬剤性腎症、糖尿病性腎症、IgA腎症、膜性腎症、腎硬化症等)、状態(早期、中期、後期)、並びに使用するアミノ酸若しくはその組合せに応じて複数設定することもでき、重篤度に応じて病態を分類することもできる。予め設定された基準値と、被験者の病態指標値とを比較することにより、被験者の腎臓病の病態を判定、決定又は診断することが可能になる。さらに別の態様では、健常者群と各ステージの解析を行うことで、基準値(カットオフ値)を決定することもできる。 The disease state index value of kidney disease is a numerical value that can indicate the disease state of kidney disease, and can also be referred to as a biomarker. By comparing with a pathological index reference value determined based on a pathological index value measured in advance in a group of healthy subjects and a group of patients with kidney disease, the pathological index value of the subject can be associated with the pathological condition of kidney disease. Such a disease state index reference value can be determined as a threshold value. A person skilled in the art can appropriately set a threshold value serving as a disease condition index reference value from the condition index values of the healthy subject group and the kidney disease patient group. As the threshold value, for example, an average value, a median value, and an X percentile value of a group of healthy subjects or a group of patients with kidney disease can be used, but are not limited thereto. Here, any numerical value can be selected for X, and 3, 5, 10, 15, 20, 30, 40, 60, 70, 80, 85, 90, 95, and 97 can be appropriately used. The threshold may be one, or the pathology and cause of kidney disease (eg, drug nephropathy, diabetic nephropathy, IgA nephropathy, membranous nephropathy, nephrosclerosis, etc.), condition (early, middle term) , Late stage), as well as depending on the amino acids used or combinations thereof, and the pathological condition can be classified according to the severity. By comparing the reference value set in advance with the pathological condition index value of the subject, it becomes possible to determine, determine, or diagnose the pathological condition of the subject's kidney disease. In yet another aspect, the reference value (cut-off value) can be determined by analyzing the healthy person group and each stage.
 本発明において腎臓病の病態指標値は、アミノ酸のD体及び/又はL体に基づいて算出される。より具体的に、D体の量、L体の量、及びそれらの合計量、又はD体とL体の比に基づいて算出される。本発明でいうアミノ酸のD体とL体の比とは、アミノ酸のD体及びL体の和に対するD体の比、D体及びL体の和に対するL体の比、D体に対するL体の比、又はL体に対するD体の比であってもよい。病態指標値の算出には、腎臓病マーカーとして用いられる限りにおいて、加算、減算、積算、及び/又は除算によって補正してもよく、その場合、年齢、体重、性別、BMI、GFR等、任意の変数を用いてもよい。 In the present invention, the disease state index value of kidney disease is calculated based on amino acid D-form and / or L-form. More specifically, it is calculated based on the amount of D isomer, the amount of L isomer, and their total amount, or the ratio of D isomer to L isomer. The ratio of D-form and L-form of amino acid in the present invention is the ratio of D-form to the sum of D-form and L-form of amino acid, the ratio of L-form to the sum of D-form and L-form, and the ratio of L-form to D-form It may be a ratio or a ratio of D body to L body. As long as it is used as a kidney disease marker, the pathological index value may be corrected by addition, subtraction, integration, and / or division. In that case, any age, weight, sex, BMI, GFR, etc. Variables may be used.
 アミノ酸のD体の量を指標とする場合、推算糸球体濾過量(eGFR)との相関から(|r|>0.2)、グルタミン酸、アラニン、リジン、ヒスチジン、アスパラギン酸、プロリン、及びセリンからなる群から選ばれるアミノ酸のD体の量を使用して、病態指標値を算出することが好ましい。eGFRとの相関がより高い(|r|>0.4)という観点から、グルタミン酸、アラニン、リジン、ヒスチジン、アスパラギン酸、及びプロリンからなる群から選ばれるアミノ酸のD体の量を使用して、病態指標値を算出することがより好ましい。eGFRとの相関がより高い(|r|>0.6)という観点から、グルタミン酸、アラニン、リジン及びプロリンからなる群から選ばれるアミノ酸のD体の量を使用して、病態指標値を算出することがさらにより好ましい。 When the amount of D form of amino acid is used as an index, from the correlation with estimated glomerular filtration rate (eGFR) (| r |> 0.2), from glutamic acid, alanine, lysine, histidine, aspartic acid, proline, and serine It is preferable to calculate the disease state index value using the D-form amount of an amino acid selected from the group consisting of: From the viewpoint that the correlation with eGFR is higher (| r |> 0.4), using the amount of D form of an amino acid selected from the group consisting of glutamic acid, alanine, lysine, histidine, aspartic acid, and proline, More preferably, the disease state index value is calculated. From the viewpoint that the correlation with eGFR is higher (| r |> 0.6), the pathological index value is calculated using the amount of D-form of an amino acid selected from the group consisting of glutamic acid, alanine, lysine and proline. Even more preferred.
 アミノ酸のL体の量を指標とする場合、推算糸球体濾過量(eGFR)との相関から(|r|>0.2)、グルタミン酸、スレオニン、プロリン、リジン、ヒスチジン、セリン、グルタミン、アスパラギン酸、グリシン、アラニン、バリン、ロイシン、及びチロシンからなる群から選ばれるアミノ酸のL体の量を使用して、病態指標値を算出することが好ましい。eGFRとの相関がより高い(|r|>0.4)という観点から、グルタミン酸、スレオニン、プロリン、及びリジンからなる群から選ばれるアミノ酸のL体の量を使用して、病態指標値を算出することがより好ましい。 When the amount of amino acid L-form is used as an index, glutamic acid, threonine, proline, lysine, histidine, serine, glutamine, aspartic acid are correlated with the estimated glomerular filtration rate (eGFR) (| r |> 0.2). It is preferable to calculate a disease state index value using the amount of L-form of an amino acid selected from the group consisting of glycine, alanine, valine, leucine, and tyrosine. From the viewpoint of higher correlation with eGFR (| r |> 0.4), the pathologic index value is calculated using the amount of L-form of an amino acid selected from the group consisting of glutamic acid, threonine, proline and lysine More preferably.
 アミノ酸のD体の量及びL体の量の合計量を指標とする場合、推算糸球体濾過量(eGFR)との相関から(|r|>0.2)、グルタミン酸、スレオニン、プロリン、リジン、ヒスチジン、セリン、グルタミン、アスパラギン酸、グリシン、アラニン、バリン、ロイシン、及びチロシンからなる群から選ばれるアミノ酸のD体及びL体の合計量を使用して、病態指標値を算出することが好ましい。eGFRとの相関がより高い(|r|>0.4)という観点から、グルタミン酸、スレオニン、プロリン、リジン、及びアラニンからなる群から選ばれるアミノ酸のD体及びL体の合計量を使用して、病態指標値を算出することがより好ましい。 When the total amount of amino acids D-form and L-form is used as an index, from the correlation with the estimated glomerular filtration rate (eGFR) (| r |> 0.2), glutamic acid, threonine, proline, lysine, It is preferable to calculate the pathological condition index value using the total amount of D-form and L-form of amino acids selected from the group consisting of histidine, serine, glutamine, aspartic acid, glycine, alanine, valine, leucine, and tyrosine. From the viewpoint of higher correlation with eGFR (| r |> 0.4), the total amount of D-form and L-form of amino acids selected from the group consisting of glutamic acid, threonine, proline, lysine and alanine is used. More preferably, the disease state index value is calculated.
 D体とL体の比を指標とする場合、推算糸球体濾過量(eGFR)との相関から(|r|>0.2)、アミノ酸は、ヒスチジン、リジン、アスパラギン酸、グルタミン酸、アラニン、及びプロリンからなる群から選ばれる少なくとも1のアミノ酸を使用して、病態指標値を算出することが好ましい。eGFRとの相関がより高い(|r|>0.4)という観点から、アミノ酸は、ヒスチジン、リジン、アスパラギン酸、アラニン、及びプロリンからなる群から選ばれる少なくとも1のアミノ酸を使用して、病態指標値を算出することがより好ましい。eGFRとの相関がより高い(|r|>0.6)という観点から、ヒスチジン、リジン、プロリン、及びアラニンからなる群から選ばれる少なくとも1のアミノ酸を用いることがより好ましい。ヒスチジン、リジン、プロリン、及びアラニンからなる群から選ばれる2以上の組合せ、すなわち、ヒスチジンとリジン、ヒスチジンとプロリン、ヒスチジンとアラニン、リジンとプロリン、リジンとアラニン、プロリンとアラニン、又はヒスチジンとリジンとプロリンとアラニンの組合せを用いることもできる。 When the ratio of D-form to L-form is used as an index, from the correlation with estimated glomerular filtration rate (eGFR) (| r |> 0.2), amino acids are histidine, lysine, aspartic acid, glutamic acid, alanine, and It is preferable to calculate the disease state index value using at least one amino acid selected from the group consisting of proline. From the viewpoint that the correlation with eGFR is higher (| r |> 0.4), the amino acid is at least one amino acid selected from the group consisting of histidine, lysine, aspartic acid, alanine, and proline. More preferably, the index value is calculated. From the viewpoint of higher correlation with eGFR (| r |> 0.6), it is more preferable to use at least one amino acid selected from the group consisting of histidine, lysine, proline and alanine. A combination of two or more selected from the group consisting of histidine, lysine, proline and alanine, that is, histidine and lysine, histidine and proline, histidine and alanine, lysine and proline, lysine and alanine, proline and alanine, or histidine and lysine A combination of proline and alanine can also be used.
 一方、健常者と慢性腎臓病患者との間で有意差を有する観点では、D-アスパラギン酸、D-グルタミン酸、D-アラニン、D-プロリンの量、及びL-ヒスチジン、L-セリン、L-グルタミン、L-アスパラギン酸、グリシン、L-グルタミン酸、L-スレオニン、L-アラニン、L-プロリン、L-バリン、L-イソロイシン、L-ロイシン、L-チロシンの量、及び(D+L)-ヒスチジン、(D+L)-セリン、(D+L)-グルタミン、(D+L)-アスパラギン酸、(D+L)-グルタミン酸、(D+L)-スレオニン、(D+L)-アラニン、(D+L)-プロリン、(D+L)-バリン、(D+L)-イソロイシン、(D+L)-ロイシン、(D+L)-チロシンの量、及びスレオニン、イソロイシンについてはアロ体が存在することからD-スレオニン+L-アロ-スレオニン、D-アロ-スレオニン+L-スレオニン、D-イソロイシン+L-アロ-イソロイシン、D-アロ-イソロイシン+L-イソロイシンの量を病態指標値として算出することが好ましい。 On the other hand, from the viewpoint of having a significant difference between healthy subjects and patients with chronic kidney disease, the amounts of D-aspartic acid, D-glutamic acid, D-alanine, D-proline, and L-histidine, L-serine, L- Glutamine, L-aspartic acid, glycine, L-glutamic acid, L-threonine, L-alanine, L-proline, L-valine, L-isoleucine, L-leucine, amount of L-tyrosine, and (D + L) -histidine, (D + L) -serine, (D + L) -glutamine, (D + L) -aspartic acid, (D + L) -glutamic acid, (D + L) -threonine, (D + L) -alanine, (D + L) -proline, (D + L) -valine, ( D + L) -isoleucine, (D + L) -leucine, (D + L) -tyrosine, and threonine and isoleucine allo Therefore, the amount of D-threonine + L-allo-threonine, D-allo-threonine + L-threonine, D-isoleucine + L-allo-isoleucine, D-allo-isoleucine + L-isoleucine can be calculated as a disease state index value. preferable.
 本発明における試料中のD-アミノ酸及びL-アミノ酸の測定は、当業者に周知ないかなる方法を用いて実施しても構わない。例えば、酵素法(Y. Nagata et al., Clinical Science, 73 (1987), 105. Analytical Biochemistry, 150 (1985), 238., A. D'Aniello et al., Comparative Biochemistry and Physiology Part B, 66 (1980), 319. Journal of Neurochemistry, 29 (1977), 1053., A. Berneman et al., Journal of Microbial & Biochemical Technology, 2 (2010), 139., W. G. Gutheil et al., Analytical Biochemistry, 287 (2000), 196., G. Molla et al., Methods in Molecular Biology, 794 (2012), 273., T. Ito et al., Analytical Biochemistry, 371 (2007), 167. 等)、抗体法(T. Ohgusu et al., Analytical Biochemistry, 357 (2006), 15.,等 )、ガスクロマトグラフィー(GC)(H. Hasegawa et al., Journal of Mass Spectrometry, 46 (2011), 502., M. C. Waldhier et al., Analytical and Bioanalytical Chemistry, 394 (2009), 695., A. Hashimoto, T. Nishikawa et al., FEBS Letters, 296 (1992), 33., H. Bruckner and A. Schieber, Biomedical Chromatography, 15 (2001), 166. , M. Junge et al., Chirality, 19 (2007), 228., M. C. Waldhier et al., Journal of Chromatography A, 1218 (2011), 4537. 等)、キャピラリー電気泳動法(CE)(H. Miao et al., Analytical Chemistry, 77 (2005), 7190., D. L. Kirschner et al., Analytical Chemistry, 79 (2007), 736., F. Kitagawa, K. Otsuka, Journal of Chromatography B, 879 (2011), 3078., G. Thorsen and J. Bergquist, Journal of Chromatography B, 745 (2000), 389. 等)、高速液体クロマトグラフィー(HPLC)(N. Nimura and T. Kinoshita, Journal of Chromatography, 352 (1986), 169., A. Hashimoto et al., Journal of Chromatography, 582 (1992), 41., H. Bruckner et al., Journal of Chromatography A, 666 (1994), 259., N. Nimura et al., Analytical Biochemistry, 315 (2003), 262., C. Muller et al., Journal of Chromatography A, 1324 (2014), 109., S. Einarsson et al., Analytical Chemistry, 59 (1987), 1191., E. Okuma and H. Abe, Journal of Chromatography B, 660 (1994), 243., Y. Gogami et al., Journal of Chromatography B, 879 (2011), 3259., Y. Nagata et al., Journal of Chromatography, 575 (1992), 147., S. A. Fuchs et al., Clinical Chemistry, 54 (2008), 1443., D. Gordes et al., Amino Acids, 40 (2011), 553., D. Jin et al., Analytical Biochemistry, 269 (1999), 124., J. Z. Min et al., Journal of Chromatography B, 879 (2011), 3220., T. Sakamoto et al., Analytical and Bioanalytical Chemistry, 408 (2016), 517., W. F. Visser et al., Journal of Chromatography A, 1218 (2011), 7130., Y. Xing et al., Analytical and Bioanalytical Chemistry, 408 (2016), 141., K. Imai et al., Biomedical Chromatography, 9 (1995), 106., T. Fukushima et al., Biomedical Chromatography, 9 (1995), 10., R. J. Reischl et al., Journal of Chromatography A, 1218 (2011), 8379., R. J. Reischl and W. Lindner, Journal of Chromatography A, 1269 (2012), 262., S. Karakawa et al., Journal of Pharmaceutical and Biomedical Analysis, 115 (2015), 123., 等)がある。 The measurement of D-amino acid and L-amino acid in a sample in the present invention may be carried out using any method known to those skilled in the art. For example, enzymatic methods (Y. Nagata et al., Clinical Science, 73 (1987), 105. Analytical Biochemistry, 150 (1985), 238., A. D'Aniello et al., Comparative Biochemistry and Physiology Part B, 66 (1980), 319. Journal of Neurochemistry, 29 (1977), 1053., A. Berneman et al., Journal of Microbial & Biochemical Technology, 2 (2010), 139., W. G. Gutheil et al., Analy. Biochemistry, 287 (2000), 196., G. Molla et al., Methods in Molecular Biology, 794 (2012), 273., T. Ito et al., Analytical Biochemistry, 371 (2007), 167., etc.) Antibody method (T. Ohgusu et al., Analytical Biochemistry, 357 (2006), 15., etc.), Gas chromatography (GC) (H. Hasegawa et al., Journal of Mass Spectrometry, 46 (2011), 502. , M. C. Waldhier et al., Analytical and Bioanalytical Chemistry, 394 (2009), 695., A. Hashimoto, T. Nishikawa et al., FEBS Letters, 296 (1992), 33., H. Bruckn er and A. Schieber, Biomedical Chromatography, 15 (2001), 166., M. Junge et al., Chirality, 19 (2007), 228., M. C. Waldhier et al., Journal of Chromatography A, 12 2011), 4537. etc.), capillary electrophoresis (CE) (H.) Miao et al., Analytical Chemistry, 77 (2005), 7190., D. L. Kirschner et al., Analytical Chemistry, 79 (2007) , 736., F. Kitagawa, K. Otsuka, Journal of Chromatography B, 879 (2011), 3078., G. Thorsen and J. Bergquist, Journal of Chromatography B, 745 (2000), 389. etc.), liquid Chromatography (HPLC) (N. Nimura and T. Kinoshita, Journal of Chromatography, 352 (1986), 169., A. Hashimoto et al., Journal of Chromatography, 582 (1992), 41., H. Bruckner et al ., Journal of Chromatography A, 666 (1994), 259., N. Nimura et al., Analytical Biochemistry, 315 (2003), 262., C. Muller et al., Journal of Chromatograph y A, 1324 (2014), 109., S. Einarsson et al., Analytical Chemistry, 59 (1987), 1191. E. Okuma and H. Abe, Journal of Chromatography B, 660 (1994), 243., Y. Gogami et al., Journal of Chromatography B, 879 (2011), 3259., Y. Nagata et al., Journal of Chromatography, 575 (1992), 147., S. A. Fuchs et al., Clinical Chemistry , 54 (2008), 1443., D. Gordes et al., Amino Acids, 40 (2011), 553., D. Jin et al., Analytical Biochemistry, 269 (1999), 124., J. Z. Min et al., Journal of Chromatography B, 879 (2011), 3220., T. Sakamoto et al., Analytical and Bioanalytical Chemistry, 408 (2016), 517., W. F. Visser et al., Journal ofChromatic , 1218 (2011), 7130., Y. Xing et al., Analytical and Bioanalytical Chemistry, 408 (2016), 141., K. Imai et al., Biomedical Chromatography, 9 (1995), 106., T. Fukushima et al., Biomedical Chromatography, 9 (1995), 10., R. J . Reischl et al., Journal of Chromatography A, 1218 (2011), 8379., R. J. Reischl and W. Lindner, Journal of Chromatography A, 1269 (2012), 262., S. Karakawa et.al. of Pharmaceutical and Biomedical Analysis, 115 (2015), 123, etc.).
 本明細書における光学異性体の分離分析系は、複数の分離分析を組み合わせる場合がある。より具体的に、光学異性体を有する成分を含む試料を、移動相としての第一の液体と共に、固定相としての第一のカラム充填剤に通じて、前記試料の前記成分を分離するステップ、前記試料の前記成分の各々をマルチループユニットにおいて個別に保持するステップ、前記マルチループユニットにおいて個別に保持された前記試料の前記成分の各々を、移動相としての第二の液体と共に、固定相としての光学活性中心を有する第二のカラム充填剤に流路を通じて供給し、前記試料の成分の各々に含まれる前記光学異性体を分割するステップ、及び前記試料の成分の各々に含まれる前記光学異性体を検出するステップを含むことを特徴とする光学異性体の分析方法を用いることにより、試料中のD-/L-アミノ酸濃度を測定することができる(特許第4291628号)。代替的には、アミノ酸の光学異性体を識別するモノクローナル抗体、例えばD-ロイシン、D-アスパラギン酸等に特異的に結合するモノクローナル抗体を用いる免疫学的手法によってD-アミノ酸を測定することができる(特願2008-27650明細書)。また、D体及びL体の合計量を指標とする場合、D体及びL体を分離して分析する必要はなく、D体及びL体を区別せずにアミノ酸を分析することもできる。その場合も酵素法、抗体法、GC、CE、HPLCで分離及び定量することができる。 The optical isomer separation analysis system in this specification may combine a plurality of separation analyses. More specifically, passing a sample containing components having optical isomers along with a first liquid as a mobile phase through a first column filler as a stationary phase to separate the components of the sample; Individually holding each of the components of the sample in a multi-loop unit, each of the components of the sample individually held in the multi-loop unit as a stationary phase together with a second liquid as a mobile phase Supplying the second column packing material having an optically active center through a flow path to split the optical isomers contained in each of the sample components, and the optical isomerism contained in each of the sample components The D- / L-amino acid concentration in the sample can be measured by using an optical isomer analysis method characterized by including a step of detecting a body ( Patent No. 4,291,628). Alternatively, D-amino acids can be measured by immunological techniques using monoclonal antibodies that identify optical isomers of amino acids, such as monoclonal antibodies that specifically bind to D-leucine, D-aspartic acid, etc. (Japanese Patent Application No. 2008-27650). Further, when the total amount of D-form and L-form is used as an index, it is not necessary to separate and analyze D-form and L-form, and amino acids can be analyzed without distinguishing D-form and L-form. In that case, it can be separated and quantified by enzymatic method, antibody method, GC, CE, and HPLC.
 本発明において、腎臓病とは、腎臓に障害が生じた状態の全てを指す。腎機能が低下する原因としては、免疫系の異常や薬剤、高血圧、糖尿病や、出血や急激な血圧低下、感染症、熱傷に伴う脱水等複数の因子が挙げられる。急性腎障害(AKI)は、RIFLE分類、AKIN分類、KDIGO分類といった病期の分類が提唱されており、急性腎障害を、Risk(ステージ1)、Injury(ステージ2)、Failure(ステージ3)、さらには持続期間に応じてLossとEnd stage kidney diseaseに分類した。これらの分類は、どれも血中クレアチニンの量と尿量とを指標としており、例えばRisk(ステージ1)では、血中クレアチニンがベースラインから1.5~2.0倍に上昇すること又は0.5ml/kg/時未満の尿量が6時間以上であること、Injury(ステージ2)では、血中クレアチニンがベースラインから2.0~3.0倍に上昇すること又は0.5ml/kg/時未満の尿量が12時間以上であること、Failure(ステージ3)では、血中クレアチニンがベースラインから3.0倍以上に上昇すること又は0.3ml/kg/時未満の尿量が24時間以上であることを判断基準としている。一方で、これらの分類は、他の指標、例えばGFRの変化量を併用することでより正確に急性腎障害の分類を可能にする。慢性腎臓病(CKD)は、日本腎臓学会のガイドライン(2013改訂)で病期ステージ1(腎機能は正常、eGFR≧90)~ステージ5(腎不全、eGFR<15)の診断基準が示されている。ここで指標となっている推算糸球体濾過量(eGFR)は血中クレアチニンの値と年齢、性別より算出されるもので、腎臓病の進行度を表すことができる。本発明の分析・検査方法では、これまでの腎臓病マーカーとは異なる原理で腎臓病を検出しているため、従来とは異なるリスク評価ができる可能性がある。また、血中クレアチニンやGFR等と組み合わせて使用することで、より詳細に腎臓病を区別して診断することが可能になる。 In the present invention, kidney disease refers to all the states in which the kidney is damaged. Causes of decreased renal function include multiple factors such as immune system abnormalities, drugs, high blood pressure, diabetes, bleeding, rapid blood pressure decrease, infection, dehydration associated with burns, and the like. Acute kidney injury (AKI) has been proposed for stage classification such as RIFLE classification, AKIN classification, and KDIGO classification. Acute kidney injury is classified into Risk (stage 1), Injury (stage 2), Failure (stage 3), Furthermore, it classified into Loss and End stage kidney disease according to the duration. All of these classifications are based on the amount of blood creatinine and the amount of urine. For example, in Risk (stage 1), blood creatinine increases 1.5 to 2.0 times from the baseline or 0 The urine volume of less than 5 ml / kg / hour is 6 hours or more. In Injury (Stage 2), blood creatinine increases 2.0 to 3.0 times from the baseline, or 0.5 ml / kg. The urine volume of less than 12 hours / hour is 12 hours or more, and in Failure (stage 3), blood creatinine increases 3.0 times or more from the baseline, or urine volume of less than 0.3 ml / kg / hour The criterion is 24 hours or more. On the other hand, these classifications make it possible to classify acute kidney injury more accurately by using another index, for example, a change amount of GFR in combination. As for chronic kidney disease (CKD), the diagnostic criteria for stage 1 (normal renal function, eGFR ≧ 90) to stage 5 (renal failure, eGFR <15) are shown in the Japanese Society of Nephrology guidelines (2013 revision) Yes. The estimated glomerular filtration rate (eGFR), which is an index here, is calculated from the value of blood creatinine, age, and sex, and can represent the degree of progression of kidney disease. In the analysis / inspection method of the present invention, kidney disease is detected based on a principle different from that of conventional kidney disease markers. Further, by using in combination with blood creatinine, GFR, etc., it becomes possible to distinguish and diagnose kidney disease in more detail.
 本発明の別の態様では、本発明は、唾液を試料とする腎臓病の検査方法に関する。この検査方法は、以下の工程を含む:
 唾液中の少なくとも1のアミノ酸のD体及び/又はL体を測定する工程、
 前記少なくとも1種類のアミノ酸のD体及び/又はL体に基づく腎臓病の病態指標値として算出する工程、
 腎臓病の病態指標値と、腎臓病の病態とを関連づける工程
をさらに含む。関連付ける工程は、病態指標値を、予め決められた病態指標値の基準値と比較することで、病態指標値と腎臓病の病態とを関連づけることができる。本発明の検査方法は、分析会社や分析技術者により行われて、腎臓病の病態と関連づけられた結果が提供されてもよい。検査方法において用いられる試料、関連づけられる腎臓病の病態、行われる各工程は、分析方法において定義されたものと同じであってよい。
In another aspect of the present invention, the present invention relates to a method for examining kidney disease using saliva as a sample. This inspection method includes the following steps:
Measuring D-form and / or L-form of at least one amino acid in saliva;
Calculating as a disease state index value of kidney disease based on D-form and / or L-form of the at least one amino acid,
The method further includes the step of associating a disease state index value of kidney disease with a disease state of kidney disease. In the associating step, the pathological condition index value and the pathological condition of kidney disease can be associated by comparing the pathological condition index value with a predetermined reference value of the pathological condition index value. The test method of the present invention may be performed by an analysis company or an analysis engineer to provide a result associated with the pathology of kidney disease. The sample used in the test method, the associated renal disease pathology, and each step performed may be the same as defined in the analytical method.
 図8は、本発明の試料分析システムの構成図である。図8に示す本発明の試料分析システム10は、本発明の分析方法及び検査方法を実施することができるように構成される。このような試料分析システム10は、記憶部11と、入力部12、分析測定部13と、データ処理部14と、出力部15とを含んでおり、唾液試料を分析し、病態情報を出力することができる。より具体的に、本発明の試料分析システム10において、
 記憶部11は、入力部12から入力された腎臓病を判別するための病態指標値の基準値を記憶し、
 分析測定部13は、前記被検体の唾液試料中のアミノ酸のうちの少なくとも1のアミノ酸の光学異性体を分離し測定し、
 データ処理部14は、前記少なくとも1のアミノ酸のD体及び/又はL体に基づき腎臓病の病態指標値を算出し、
 データ処理部14は、記憶部11に記憶された基準値と比較することにより、腎臓病の病態情報を判別し、
 出力部15が被検体の腎臓病についての病態情報を出力することができる。
FIG. 8 is a configuration diagram of the sample analysis system of the present invention. The sample analysis system 10 of the present invention shown in FIG. 8 is configured so that the analysis method and the inspection method of the present invention can be performed. Such a sample analysis system 10 includes a storage unit 11, an input unit 12, an analysis measurement unit 13, a data processing unit 14, and an output unit 15, and analyzes a saliva sample and outputs pathological condition information. be able to. More specifically, in the sample analysis system 10 of the present invention,
The storage unit 11 stores a reference value of a disease state index value for determining kidney disease input from the input unit 12,
The analytical measurement unit 13 separates and measures an optical isomer of at least one amino acid among the amino acids in the saliva sample of the subject,
The data processing unit 14 calculates a disease state index value of kidney disease based on the D-form and / or L-form of the at least one amino acid,
The data processing unit 14 determines the pathological information of kidney disease by comparing with the reference value stored in the storage unit 11,
The output unit 15 can output pathological information about the kidney disease of the subject.
 記憶部11は、RAM、ROM、フラッシュメモリ等のメモリ装置、ハードディスクドライブ等の固定ディスク装置、又はフレキシブルディスク、光ディスク等の可搬用の記憶装置等を有する。記憶部は、分析測定部で測定したデータ、入力部から入力されたデータ及び指示、データ処理部で行った演算処理結果等の他、情報処理装置の各種処理に用いられるコンピュータプログラム、データベース等を記憶する。コンピュータプログラムは、例えばCD-ROM、DVD-ROM等のコンピュータ読み取り可能な記録媒体や、インターネットを介してインストールされてもよい。コンピュータプログラムは、公知のセットアッププログラム等を用いて記憶部にインストールされる。 The storage unit 11 includes a memory device such as a RAM, a ROM, and a flash memory, a fixed disk device such as a hard disk drive, or a portable storage device such as a flexible disk and an optical disk. The storage unit stores data measured by the analysis measurement unit, data and instructions input from the input unit, calculation processing results performed by the data processing unit, etc., as well as computer programs and databases used for various processes of the information processing apparatus. Remember. The computer program may be installed via a computer-readable recording medium such as a CD-ROM or DVD-ROM, or via the Internet. The computer program is installed in the storage unit using a known setup program or the like.
 入力部12は、インターフェイス等であり、キーボード、マウス等の操作部も含む。これにより、入力部は、分析測定部13で測定したデータ、データ処理部14で行う演算処理の指示等を入力することができる。また、入力部12は、例えば分析測定部13が外部にある場合は、操作部とは別に、測定したデータ等をネットワークや記憶媒体を介して入力することができるインターフェイス部を含んでもよい。 The input unit 12 is an interface or the like, and includes operation units such as a keyboard and a mouse. As a result, the input unit can input data measured by the analysis measurement unit 13, instructions for calculation processing performed by the data processing unit 14, and the like. For example, when the analysis measurement unit 13 is outside, the input unit 12 may include an interface unit that can input measured data or the like via a network or a storage medium, separately from the operation unit.
 分析測定部13は、唾液試料におけるアミノ酸のD体及び/又はL体の量の測定工程を行う。したがって、分析測定部13は、アミノ酸のD体及びL体の分離及び測定を可能にする構成を有することが好ましいが、合計量のみを測定する場合には、D体とL体を分離せずにまとめて測定することもできる。アミノ酸は、1ずつ分析されてもよいが、一部又は全ての種類のアミノ酸についてまとめて分析することもできる。分析測定部13は、以下のものに限定されることを意図するものではないが、例えば試料導入部、光学分割カラム、検出部を備えた高速液体クロマトグラフィーシステムであってもよい。分析測定部13は、試料分析システムとは別に構成されていてもよく、測定したデータ等をネットワークや記憶媒体を用いて入力部12を介して入力してもよい。 Analytical measurement unit 13 performs a process of measuring the amount of D-form and / or L-form of amino acid in the saliva sample. Therefore, it is preferable that the analytical measurement unit 13 has a configuration that enables separation and measurement of D-form and L-form of amino acids, but when measuring only the total amount, the D-form and L-form are not separated. It is also possible to measure together. Amino acids may be analyzed one by one, but some or all types of amino acids may be analyzed together. The analytical measurement unit 13 is not intended to be limited to the following, but may be a high performance liquid chromatography system including a sample introduction unit, an optical resolution column, and a detection unit, for example. The analysis measurement unit 13 may be configured separately from the sample analysis system, and the measured data or the like may be input via the input unit 12 using a network or a storage medium.
 データ処理部14は、測定された各アミノ酸のD体及びL体の測定値から、D体の量、L体の量、D体及びL体の合計量、又はD体とL体の比に基づく腎臓病の病態指標値を算出し、そして記憶部11に記憶された基準値と比較することにより、腎臓病を判別するように構成される。データ処理部14は、記憶部に記憶しているプログラムに従って、分析測定部13で測定され記憶部11に記憶されたデータに対して、各種の演算処理を実行する。演算処理は、データ処理部に含まれるCPUによりおこなわれる。このCPUは、分析測定部13、入力部12、記憶部11、及び出力部15を制御する機能モジュールを含み、各種の制御を行うことができる。これらの各部は、それぞれ独立した集積回路、マイクロプロセッサ、ファームウェア等で構成されてもよい。 The data processing unit 14 calculates the D-form amount, the L-form quantity, the total amount of the D-form and the L-form, or the ratio of the D-form and the L-form from the measured D-form and L-form measurements of each amino acid. Based on this, a pathological condition index value of kidney disease is calculated and compared with a reference value stored in the storage unit 11 to determine kidney disease. The data processing unit 14 performs various arithmetic processes on the data measured by the analysis measurement unit 13 and stored in the storage unit 11 in accordance with a program stored in the storage unit. Arithmetic processing is performed by a CPU included in the data processing unit. The CPU includes a functional module that controls the analysis measurement unit 13, the input unit 12, the storage unit 11, and the output unit 15, and can perform various controls. Each of these units may be configured by an independent integrated circuit, a microprocessor, firmware, and the like.
 出力部15は、データ処理部で演算処理を行った結果である病態指標値及び/又は病態情報を出力するように構成さる。出力部15は、演算処理の結果を直接表示する液晶ディスプレイ等の表示装置、プリンタ等の出力手段であってもよいし、外部記憶装置への出力又はネットワークを介して出力するためのインターフェイス部であってもよい。 The output unit 15 is configured to output a pathological condition index value and / or pathological condition information, which is a result of performing arithmetic processing in the data processing unit. The output unit 15 may be a display device such as a liquid crystal display that directly displays the result of the arithmetic processing, an output unit such as a printer, or an interface unit for outputting to an external storage device or via a network. There may be.
 図8Aは、本発明のプログラムによる病態指標値を決定するための手続きの例を示すフローチャートであり、図8Bは、本発明のプログラムによる病態指標値及び又は病態情報を決定するための動作の例を示すフローチャートである。
 具体的に、本発明のプログラムは、入力部、出力部、データ処理部、記憶部とを含む情報処理装置に病態指標値及び/又は病態情報を決定させるプログラムである。本発明のプログラムは、以下の:
 入力部から入力された少なくとも1のアミノ酸のD体及び/又はL体の測定値を記憶部に記憶させ、
 記憶部に記憶された値に基づきデータ処理部に病態指標値を算出させ、
 算出された病態指標値を記憶部に記憶させ、そして
 記憶された病態指標値を出力部に出力させる
ことを前記情報処理装置に実行させるための指令を含む。本発明のプログラムは、記憶媒体に格納されてもよいし、インターネット又はLAN等の電気通信回線を介して提供されてもよい。
FIG. 8A is a flowchart showing an example of a procedure for determining a disease state index value by the program of the present invention, and FIG. 8B shows an example of an operation for determining a disease state index value and / or disease state information by the program of the present invention. It is a flowchart which shows.
Specifically, the program of the present invention is a program that causes an information processing apparatus including an input unit, an output unit, a data processing unit, and a storage unit to determine a pathological condition index value and / or pathological condition information. The program of the present invention is as follows:
Storing the measured value of D-form and / or L-form of at least one amino acid input from the input unit in the storage unit;
Based on the value stored in the storage unit, the data processing unit calculates a disease state index value,
A command for causing the information processing apparatus to store the calculated pathologic index value in the storage unit and cause the output unit to output the stored pathologic index value; The program of the present invention may be stored in a storage medium or provided via an electric communication line such as the Internet or a LAN.
 情報処理装置が、分析測定部を備える場合、入力部から少なくとも1のアミノ酸のD体及びL体の測定値を入力させる代わりに、分析測定部が、唾液試料から測定値を測定し記憶部に記憶させることを情報処理装置に実行させるための指令を含んでもよい。 When the information processing apparatus includes an analysis measurement unit, instead of inputting measurement values of at least one amino acid D-form and L-form from the input unit, the analysis measurement unit measures the measurement value from the saliva sample and stores it in the storage unit. A command for causing the information processing apparatus to execute the storage may be included.
 病態情報の決定には、さらに、
 記憶された病態指標値と、予め記憶部に記憶された基準値とをデータ処理部に比較させることで、腎臓病の病態を判別させ、
 判別された病態情報を記憶部に記憶させ、そして
 記憶された病態情報を出力部に出力させる
ことを情報処理装置に実行させるための指令を含んでもよい。
In determining the pathological information,
By causing the data processing unit to compare the stored disease state index value and the reference value stored in the storage unit in advance, the disease state of the kidney disease is determined,
A command for causing the information processing apparatus to store the determined disease state information in the storage unit and cause the output unit to output the stored disease state information may be included.
 本発明において、被検体は、ヒトに限定されず、実験動物、例えばマウス、ラット、ウサギ、イヌ、サル等を包含しうる。最も好適な態様では、本発明の分析方法及び検査方法は、腎臓病について自覚症状を有する被験者や、腎臓病が疑われる被験者に対して、確定診断のために実施することができるし、腎臓病について自覚症状を有しない被験者に対しても、健康診断として実施することができる。 In the present invention, the subject is not limited to humans, and may include laboratory animals such as mice, rats, rabbits, dogs, monkeys, and the like. In the most preferred embodiment, the analysis method and test method of the present invention can be performed for a definitive diagnosis on a subject who has subjective symptoms of kidney disease or a subject suspected of having kidney disease. It can also be implemented as a health checkup for subjects who have no subjective symptoms.
 本発明の分析方法は、慢性腎臓病及び/又は急性腎障害の診断方法のための予備的なデータを収集するために使用することができる。このような予備的データを用いて医師が慢性腎臓病及び/又は急性腎障害を診断することができるが、かかる分析方法は、医師ではない医療補助者等により行われてもよいし、分析機関等が行うこともできる。したがって、本発明の分析方法は、診断の予備的方法又は補助方法と言うこともできる。より好ましい態様では、本発明の分析方法は、健康診断において採取された唾液試料に対して行われる。 The analysis method of the present invention can be used to collect preliminary data for a method for diagnosing chronic kidney disease and / or acute kidney injury. A doctor can diagnose chronic kidney disease and / or acute kidney injury using such preliminary data, but such an analysis method may be performed by a medical assistant or the like who is not a doctor. Etc. can also be performed. Therefore, it can be said that the analysis method of the present invention is a preliminary method or an auxiliary method of diagnosis. In a more preferred embodiment, the analysis method of the present invention is performed on a saliva sample collected in a health examination.
 本発明の分析法による検査の結果を参照することによって、腎臓病の重症度の分類が可能になる。一例として、慢性腎臓病患者の分類であるG1、G2、G3a、G3b、G4、及びG5の6つの重症度に則して分類することができる。G2~G5に対応する分類に分類された対象に対して、治療介入がされる。各分類に応じて治療介入は適宜選択することができる。治療介入は、生活習慣改善、食事指導、血圧管理、貧血管理、電解質管理、尿毒素管理、血糖値管理、免疫管理、及び脂質管理等が、独立に又は組み合わせて指導される。生活習慣改善としては、禁煙及びBMI値の25未満への減量等が推奨される。食事指導としては、減塩及びタンパク質制限が行われる。この中でも特に、血圧管理、貧血管理、電解質管理、尿毒素管理、血糖値管理、免疫管理、脂質管理については、投薬による治療が行われうる。血圧管理としては、130/80mmHg以下となるように、管理され、場合により高血圧治療薬が投与されうる。高血圧治療薬としては、利尿薬(サイアザイド系利尿薬、例えばトリクロルメチアジド、ベンチルヒドロクロロチアジド、ヒドロクロロチアジド、サイアザイド系類似利尿薬、例えばメチクラン、インダバミド、トリバミド、メフルシド、ループ利尿薬、例えばフロセミド、カリウム保持性利尿薬・アルドステロン拮抗薬、例えばトリアムテレン、スピロノラクトン、エプレレノン等)、カルシウム拮抗薬(ジヒドロピリジン系、例えばニフェジピン、アムロジピン、エホニジピン、シルニジピン、ニカルジピン、ニソルジピン、ニトレンジピン、ニルバジピン、バルニジピン、フェロジピン、ベニジピン、マニジピン、アゼルニジピン、アラニジピン、ベンゾチアゼピン系、ジルチアゼム等)、アンジオテンシン変換酵素阻害薬(カプトプリル、エナラプリル、アセラプリル、デラプリル、シラザプリル、リシノプリル、ベナゼプリル、イミダプリル、テモカプリル、キナプリル、トランドラプリル、ベリンドプリルエルブミン等)、アンジオテンシン受容体拮抗薬(アンジオテンシンII受容体拮抗薬、例えばロサルタン、カンデサルタン、バルサルタン、テルミサルタン、オルメサルタン、イルベサルタン、アジルサルタン等)、交感神経遮断薬(β遮断薬、例えばアテノロール、ビソプロロール、ベタキソロール、メトプロロール、アセプトロール、セリプロロール、プロプラノロール、ナドロール、カルテオロール、ピンドロール、ニプラジロール、アモスラロール、アロチノロール、カルベジロール、ラベタロール、ベバントロール、ウラピジル、テラゾシン、ブラゾシン、ドキサゾシン、ブナゾシン等)等が用いられうる。貧血治療薬としてはエリスロポエチン製剤、鉄剤、HIF-1阻害剤等が用いられる。電解質調整薬としてカルシウム受容体作動薬(シナカルセト、エテルカルセチド等)、リン吸着剤が用いられる。尿毒素吸着剤として活性炭等が用いられる。血糖値は、Hba1c6.9%未満になるように管理され、場合により血糖降下薬が投与される。血糖降下薬として、SGLT2阻害薬(イプラグリフロジン、ダパグリフロジン、ルセオグリフロジン、トホグリフロジン、カナグリフロジン、エンパグリフロジン等)、DPP4阻害薬(シタグリプチンリン酸、ビルダグリプチン、サキサグリプチン、アログリプチン、リナグリプチン、テネリグリプチン、トレラグリプチン、アナグリプチン、オマリグリプチン等)、スルホニル尿素薬(トルブタミド、アセトヘキサミド、クロルプロパミド、グリクロピラミド、グリベンクラミド、グリクラジド、グリメピリド等)、チアゾリジン薬(ピオグリタゾン等)、ビグアナイド薬(メトホルミン、ブホルミン等)、α―グルコシダーゼ阻害薬(アカルボース、ボグリボース、ミグリトール等)、グリニド薬(ナテグリニド、ミチグリニド、レパグリニド等)インスリン製剤、NRF2活性化剤(バルドキソロンメチル等)等が用いられる。免疫管理としては、免疫抑制剤(ステロイド類、タクロリムス、抗CD20抗体、シクロヘキサミド、ミコフェノール酸モフェチル(MMF)等)が用いられる。脂質管理では、LDL-C120mg/dL未満となるよう管理され、場合により脂質異常症治療薬、例えばスタチン系薬剤(ロスバスタチン、ピタバスタチン、アトルバスタチン、セリバスタチン、フルバスタチン、シンバスタチン、プラバスタチン、ロバスタチン、メバスタチン等)、フィブラート系薬剤(クロフィブラート、ベザフィブラート、フェノフィブラート、クリノフィブラート等)、ニコチン酸誘導体(ニコチン酸トコレロール、ニコモール、ニセリトロール等)、コレステロールトランスポーター阻害剤(エゼチミブ等)、PCSK9阻害剤(エボロクマブ等)EPA製剤等が用いられる。いずれの薬剤も剤形は単剤でも合剤でもよい。腎機能の低下の度合いによっては、腹膜透析、血液透析、持続的血液濾過透析、血液アフェレーシス(血漿交換、血漿吸着等)や腎移植のような腎代替療法が施されてもよい。 Referring to the result of the test by the analysis method of the present invention makes it possible to classify the severity of kidney disease. As an example, it can classify | categorize according to six severity of G1, G2, G3a, G3b, G4, and G5 which is a classification | category of a chronic kidney disease patient. A therapeutic intervention is performed on subjects classified into the categories corresponding to G2 to G5. Depending on each category, treatment intervention can be selected as appropriate. As for the therapeutic intervention, lifestyle improvement, dietary guidance, blood pressure management, anemia management, electrolyte management, uremic toxin management, blood glucose level management, immune management, lipid management, etc. are guided independently or in combination. As lifestyle improvement, smoking cessation and reduction of BMI value to less than 25 are recommended. As dietary guidance, salt reduction and protein restriction are performed. Among these, in particular, blood pressure management, anemia management, electrolyte management, uremic toxin management, blood glucose level management, immune management, and lipid management can be treated by medication. As blood pressure management, the blood pressure is controlled to be 130/80 mmHg or less, and a hypertension therapeutic drug may be administered depending on the case. Antihypertensive drugs include diuretics (thiazide diuretics such as trichlormethiazide, benchyl hydrochlorothiazide, hydrochlorothiazide, thiazide-like diuretics such as methiclan, indamide, tribamide, meflucid, loop diuretics such as furosemide, potassium retention Diuretics and aldosterone antagonists such as triamterene, spironolactone, eplerenone, etc., calcium antagonists (dihydropyridines such as nifedipine, amlodipine, efonidipine, cilnidipine, nicardipine, nisoldipine, nitrendipine, nilvadipine, varnidipine, felidipine, manidipine, manidipine, manidipine, manidipine, Alanidipine, benzothiazepine, diltiazem, etc.), angiotensin converting enzyme inhibitor (captop) , Enalapril, acelapril, delapril, cilazapril, lisinopril, benazepril, imidapril, temocapril, quinapril, trandolapril, verindopril erbumine, etc.), angiotensin receptor antagonist (angiotensin II receptor antagonist such as losartan, candesartan, Valsartan, telmisartan, olmesartan, irbesartan, azilsartan, etc.), sympathetic blockers (β-blockers such as atenolol, bisoprolol, betaxolol, metoprolol, acetrol, ceriprolol, propranolol, nadolol, carteolol, pindolol, aiprazolol , Arotinolol, carvedilol, labetalol, bevantolol, urapidil, terazosin, brazosi , Doxazosin, bunazosin, etc.) can be used. As an anemia treatment agent, erythropoietin preparation, iron agent, HIF-1 inhibitor and the like are used. Calcium receptor agonists (such as cinacalcet and ethercalcetide) and phosphorus adsorbents are used as electrolyte regulators. Activated carbon or the like is used as the uremic toxin adsorbent. The blood glucose level is managed to be less than 6.9% of Hba1c, and a hypoglycemic drug is sometimes administered. SGLT2 inhibitors (ipragliflozin, dapagliflozin, luceogliflozin, tofogliflozin, canagliflozin, empagliflozin, etc.), DPP4 inhibitors (sitagliptin phosphate, vildagliptin, saxagliptin, alogliptin, linagliptin, trenagliptin, trelagliptin , Anagliptin, omalipliptin, etc.), sulfonylurea drugs (tolbutamide, acetohexamide, chlorpropamide, glyclopyramide, glibenclamide, gliclazide, glimepiride, etc.), thiazolidine drugs (pioglitazone, etc.), biguanide drugs (metformin, buformin, etc.), α ―Glucosidase inhibitors (Acarbose, voglibose, miglitol, etc.), Glinide drugs (nateglinide, mitiglinide, Glinides, etc.) insulin preparations, NRF2 activator (Bardo Kiso Lung methyl, etc.) and the like. For immunological management, immunosuppressants (steroids, tacrolimus, anti-CD20 antibody, cyclohexamide, mycophenolate mofetil (MMF), etc.) are used. In lipid management, LDL-C is controlled to be less than 120 mg / dL, and sometimes treatments for dyslipidemia such as statins (rosuvastatin, pitavastatin, atorvastatin, cerivastatin, fluvastatin, simvastatin, pravastatin, lovastatin, mevastatin, etc.), Fibrate drugs (clofibrate, bezafibrate, fenofibrate, clinofibrate, etc.), nicotinic acid derivatives (tocolol nicotinate, nicomol, niceritrol, etc.), cholesterol transporter inhibitors (eg ezetimibe etc.), PCSK9 inhibitors (eg ebolokumab etc.) EPA A preparation or the like is used. Any drug may be used as a single agent or a combination. Depending on the degree of decrease in renal function, renal replacement therapy such as peritoneal dialysis, hemodialysis, continuous hemofiltration dialysis, blood apheresis (plasma exchange, plasma adsorption, etc.) and kidney transplantation may be performed.
 本明細書において言及される全ての文献はその全体が引用により本明細書に取り込まれる。 All documents mentioned in this specification are incorporated herein by reference in their entirety.
 以下に説明する本発明の実施例は例示のみを目的とし、本発明の技術的範囲を限定するものではない。本発明の技術的範囲は特許請求の範囲の記載によってのみ限定される。本発明の趣旨を逸脱しないことを条件として、本発明の変更、例えば、本発明の構成要件の追加、削除及び置換を行うことができる。 The embodiments of the present invention described below are for illustrative purposes only and are not intended to limit the technical scope of the present invention. The technical scope of the present invention is limited only by the appended claims. Modifications of the present invention, for example, addition, deletion, and replacement of the configuration requirements of the present invention can be made on the condition that the gist of the present invention is not deviated.
材料及び方法
研究倫理
 全ての実験は「ヘルシンキ宣言(2013年10月 WMAフォルタレザ総会で修正)」及び「人を対象とする医学系研究に関する倫理指針(2014年12月22日公布)」のガイドラインに従って実施された。
Materials and methods
Research Ethics All experiments were conducted in accordance with the guidelines of the “Declaration of Helsinki (revised at the WMA Fortaleza General Assembly in October 2013)” and “Ethics Guidelines for Medical Research on Humans (Promulgated on December 22, 2014)” .
材料
 アミノ酸のエナンチオマー及びHPLC級のアセトニトリルはナカライテスク(京都)から購入された。HPLC級のメタノール、トリフルオロ酢酸、ホウ酸等は和光純薬(大阪)から購入された。水はMill-QグラジエントA10システムを用いて精製された。
Material amino acid enantiomers and HPLC grade acetonitrile were purchased from Nacalai Tesque (Kyoto). HPLC grade methanol, trifluoroacetic acid, boric acid and the like were purchased from Wako Pure Chemical (Osaka). The water was purified using a Mill-Q gradient A10 system.
試料
 唾液試料は、朝食摂取後、歯磨きを行った被験者から、歯磨きの2時間後に5mlの唾液を採取した。唾液は、口腔全体からでた全唾液を採取した。採取された唾液は、嫌気条件下で4℃又は-80℃で実験まで保存した。また同じ被験者から血液試料を採取した。
As a sample saliva sample, 5 ml of saliva was collected 2 hours after brushing from a subject who had brushed his teeth after breakfast. Saliva was collected from the entire oral cavity. The collected saliva was stored at 4 ° C. or −80 ° C. under anaerobic conditions until the experiment. A blood sample was collected from the same subject.
分析
 唾液試料は、財津らが開発したD、L-アミノ酸一斉高感度分析システム(特許第4291628号)によるアミノ酸光学異性体分析系に供した。各アミノ酸の分析条件の詳細は、MiyoshiY.、ら、J.Chromatogr.B, 879:3184(2011)及びSasabe,J.ら、Proc.Natl.Acad.Sci.U.S.A.、109:627(2012)に説明される。簡潔には、唾液試料に対し、NBD-F(4-フルオロ-7-ニトロ-2,1,3-ベンゾオキサジアゾール、東京化成工業株式会社)の無水シアン化メチル溶液5μlを添加し、60℃で2分間加熱した。反応後75μlの2%(v/v)トリフルオロ酢酸水溶液を添加した。この混合液の2μLをHPLCシステム(NANOSPACE SI-2、株式会社資生堂)に供した。簡潔には、逆相分離用分析カラムは、40℃に保温された自社製のモノリシックODSカラム(内径0.53mm×500mm)が用いられた。移動相はシアン化メチル-トリフルオロ酢酸-水(容積比5:0.05:95)が用いられた。流速は毎分35μLであった。蛍光検出は、励起波長470nm、検出波長530nmで実行された。逆相分離の後、光学異性体分離系に供された。光学異性体分離には、キラルセレクターとして(S)-ナフチルグリシンを用いるスミキラルOA-2500Sカラム(250mm×1.5mm、自家充填、材料は株式会社住化分析センター製)が使用された。本実施例で説明された2次元HPLCシステムは、例えば生体試料中のセリンの光学異性体を区別して1fmolから100pmolの範囲で定量的に測定できる。これは、健常者と腎臓病患者とにおけるヒスチジンやリジンのD体及びL体の濃度変化を識別するのに十分な感度であった。得られたD体のアミノ酸及びL体のアミノ酸の測定値から、D体の-アミノ酸濃度、L体のアミノ酸濃度、D体及びL体の合計濃度、及びD/L比を算出した。健常者と慢性腎臓病患者におけるアミノ酸のD体の濃度、L体の濃度、及びD体及びL体の合計の濃度を、それぞれ図4~6に示す。なお、グリシンは不斉炭素を有さないために光学異性体が存在しないが、ここでは便宜的にグリシンをL-アミノ酸の区分として表記している。
The analyzed saliva sample was subjected to an amino acid optical isomer analysis system using a D, L-amino acid simultaneous high sensitivity analysis system (Patent No. 4291628) developed by Zaitsu et al. Details of the analysis conditions for each amino acid are described in Miyoshi Y. et al. , Et al. Chromatogr. B, 879: 3184 (2011) and Sasabe, J. et al. Et al., Proc. Natl. Acad. Sci. U. S. A. 109: 627 (2012). Briefly, 5 μl of an anhydrous methyl cyanide solution of NBD-F (4-fluoro-7-nitro-2,1,3-benzoxadiazole, Tokyo Chemical Industry Co., Ltd.) is added to the saliva sample, Heated at 0 ° C. for 2 minutes. After the reaction, 75 μl of 2% (v / v) aqueous trifluoroacetic acid solution was added. 2 μL of this mixed solution was subjected to an HPLC system (NANOSPACE SI-2, Shiseido Co., Ltd.). Briefly, an in-house manufactured monolithic ODS column (inner diameter 0.53 mm × 500 mm) kept at 40 ° C. was used as the analytical column for reverse phase separation. The mobile phase was methyl cyanide-trifluoroacetic acid-water (volume ratio 5: 0.05: 95). The flow rate was 35 μL per minute. Fluorescence detection was performed with an excitation wavelength of 470 nm and a detection wavelength of 530 nm. After reverse phase separation, it was subjected to an optical isomer separation system. For the optical isomer separation, a Sumichiral OA-2500S column (250 mm × 1.5 mm, self-packing, material is manufactured by Sumika Chemical Analysis Co., Ltd.) using (S) -naphthylglycine as a chiral selector was used. The two-dimensional HPLC system described in this example can quantitatively measure in the range of 1 fmol to 100 pmol, for example, by distinguishing optical isomers of serine in a biological sample. This was sufficient sensitivity to discriminate changes in the concentrations of histidine and lysine D-form and L-form in healthy subjects and kidney disease patients. From the measured values of the D-form amino acid and the L-form amino acid, the D-form amino acid concentration, the L-form amino acid concentration, the total concentration of the D-form and the L-form, and the D / L ratio were calculated. FIGS. 4 to 6 show the concentrations of D-form, L-form, and total D-form and L-form of amino acids in healthy subjects and chronic kidney disease patients, respectively. Note that glycine does not have an asymmetric carbon and therefore does not have an optical isomer. However, for convenience, glycine is represented as an L-amino acid category.
 取得された血液試料について、血清クレアチニンを酵素法により計測した。計測された血清クレアチニンの値と年齢に基づいて推算糸球体濾過量(eGFR)を決定した。eGFRの決定式は以下の通りである:
Figure JPOXMLDOC01-appb-M000001
 {式中、年齢の単位は年であり、SCrの単位はmg/dLであり、そして推算糸球体濾過量(eGFR)の単位は、mL/min/1.73m体表面である}。
 女性患者には、数式の計算値に補正係数0.739をかけた。
 被験者のeGFR値と、22種類の各アミノ酸についてD体のアミノ酸の量、L体のアミノ酸の量、それらの合計量、及びD体とL体の比との関係をピアソンの積率相関係数(Pearson’s product-moment correlation coefficient)を用い、相関を解析した。その結果を図3に示す。
Serum creatinine was measured by an enzyme method for the obtained blood sample. The estimated glomerular filtration rate (eGFR) was determined based on the measured serum creatinine value and age. The formula for determining eGFR is as follows:
Figure JPOXMLDOC01-appb-M000001
{In the formula, the unit of age is year, the unit of SCr is mg / dL, and the unit of estimated glomerular filtration rate (eGFR) is mL / min / 1.73 m 2 body surface}.
For female patients, a correction factor of 0.739 was applied to the calculated value of the mathematical formula.
The relationship between the subject's eGFR value, the amount of D-form amino acids, the amount of L-form amino acids, the total amount thereof, and the ratio of D-form to L-form for each of the 22 types of amino acids, and Pearson's product-moment correlation coefficient (Pearson's product-moment correlation coefficient) was used to analyze the correlation. The result is shown in FIG.
 得られた血清クレアチニンの値と、D/L-リジン比及びD/L-ヒスチジン比との関係を解析したところ、高い相関がみられた(r=0.762、p=0.046及びr=0.762、p=0.046)。得られた推算糸球体濾過量と、D/L-リジン比及びD/L-ヒスチジン比との関係を解析したところ、高い負の相関がみられた(r=-0.926、p=0.003及びr=-0.749、p=0.053)。血清クレアチニンの値と、D/L-リジン比及びD/L-ヒスチジン比との相関を示すグラフを図1A及びBに示す。推算糸球体濾過量と、D/L-リジン比及びD/L-ヒスチジン比との相関を示すグラフを図2A及びBに示す。2群間の比較には対応のないt検定(Student’s t-test)をおこない、統計的有意差を測定した。 When the relationship between the obtained serum creatinine value and the D / L-lysine ratio and D / L-histidine ratio was analyzed, a high correlation was found (r = 0.762, p = 0.046 and r = 0.762, p = 0.046). Analysis of the relationship between the estimated glomerular filtration rate obtained and the D / L-lysine ratio and D / L-histidine ratio revealed a high negative correlation (r = −0.926, p = 0). .003 and r = −0.749, p = 0.053). Graphs showing correlations between serum creatinine values and D / L-lysine ratio and D / L-histidine ratio are shown in FIGS. 2A and 2B are graphs showing correlations between the estimated glomerular filtration rate and the D / L-lysine ratio and D / L-histidine ratio. An unpaired t-test (Student's t-test) was performed for comparison between the two groups, and statistical significance was measured.

Claims (18)

  1.  唾液の分析方法であって、
     唾液中の少なくとも1のアミノ酸のD体及び/又はL体を測定する工程、及び
     前記少なくとも1のアミノ酸のD体及び/又はL体に基づき腎臓病の病態指標値として算出する工程
     を含む、分析方法。
    A method for analyzing saliva,
    Analyzing the D-form and / or L-form of at least one amino acid in saliva, and calculating as a disease state index value of kidney disease based on the D-form and / or L-form of the at least one amino acid Method.
  2.  前記腎臓病の病態指標値が、前記少なくとも1のアミノ酸のD体及びL体の和に対するD体の比、D体及びL体の和に対するL体の比、D体に対するL体の比、又はL体に対するD体の比である、請求項1に記載の分析方法。 The renal disease state index value is a ratio of D-form to the sum of D-form and L-form of the at least one amino acid, ratio of L-form to sum of D-form and L-form, ratio of L-form to D-form, or The analysis method according to claim 1, which is a ratio of D-form to L-form.
  3.  前記アミノ酸が、リジン、プロリン、ヒスチジン、アラニン、アスパラギン酸、及びグルタミン酸からなる群から選ばれる、請求項2に記載の分析方法。 The analysis method according to claim 2, wherein the amino acid is selected from the group consisting of lysine, proline, histidine, alanine, aspartic acid, and glutamic acid.
  4.  前記アミノ酸が、リジン、プロリン、ヒスチジン、及びアラニンからなる群から選ばれる、請求項3に記載の分析方法。 The analysis method according to claim 3, wherein the amino acid is selected from the group consisting of lysine, proline, histidine, and alanine.
  5.  前記腎臓病の病態指標値が、前記少なくとも1のアミノ酸のD体の量、L体の量、及びそれらの合計量からなる群から選ばれる、請求項1に記載の分析方法。 The analysis method according to claim 1, wherein the disease state index value of the kidney disease is selected from the group consisting of the amount of D form of the at least one amino acid, the amount of L form, and the total amount thereof.
  6.  前記アミノ酸が、ヒスチジン、セリン、グルタミン、アスパラギン酸、グリシン、グルタミン酸、スレオニン、アラニン、プロリン、バリン、イソロイシン、ロイシン、チロシン、リジンからなる群から選ばれる、請求項5に記載の分析方法。 The analysis method according to claim 5, wherein the amino acid is selected from the group consisting of histidine, serine, glutamine, aspartic acid, glycine, glutamic acid, threonine, alanine, proline, valine, isoleucine, leucine, tyrosine, and lysine.
  7.  前記病態指標値が、D-グルタミン酸量、D-アラニン量、D-リジン量、D-ヒスチジン量、D-アスパラギン酸量、D-プロリン量、L-グルタミン酸量、L-スレオニン量、L-プロリン量、L-リジン量、(D+L)-グルタミン酸量、(D+L)-スレオニン量、(D+L)-プロリン量、(D+L)-リジン量、及び(D+L)-アラニン量から成る群から選ばれる、請求項6に記載の分析方法。 The pathological index value is D-glutamic acid amount, D-alanine amount, D-lysine amount, D-histidine amount, D-aspartic acid amount, D-proline amount, L-glutamic acid amount, L-threonine amount, L-proline. Selected from the group consisting of: quantity, L-lysine quantity, (D + L) -glutamic acid quantity, (D + L) -threonine quantity, (D + L) -proline quantity, (D + L) -lysine quantity, and (D + L) -alanine quantity. Item 7. The analysis method according to Item 6.
  8.  前記病態指標値が、D-グルタミン酸量、D-アラニン量、D-リジン量、及びD-プロリン量からなる群から選ばれる、請求項7に記載の分析方法。 The analysis method according to claim 7, wherein the disease state index value is selected from the group consisting of a D-glutamic acid amount, a D-alanine amount, a D-lysine amount, and a D-proline amount.
  9.  前記分析方法が、腎臓病の病態指標値と腎臓病の病態とを関連づける工程をさらに含む、請求項1~8のいずれか一項に記載の分析方法。 The analysis method according to any one of claims 1 to 8, wherein the analysis method further includes a step of associating a disease state index value of kidney disease with a disease state of kidney disease.
  10.  腎臓病の病態指標値と、腎臓病の病態とを関連づける工程が、健常者群の病態指標値及び腎臓病の患者群の病態指標値とから決定される病態指標基準値に基づき決定される、請求項9に記載の分析方法。 The step of associating the pathological index value of kidney disease with the pathological condition of kidney disease is determined based on the pathological index value determined from the pathological index value of the healthy group and the pathological index value of the patient group of kidney disease. The analysis method according to claim 9.
  11.  記憶部と、入力部と、分析測定部と、データ処理部と、出力部とを含む、唾液の分析システムであって、
     前記記憶部は、入力部から入力された腎臓病の病態指標値の基準値を記憶し、
     前記分析測定部は、前記唾液中の少なくとも1のアミノ酸のD体及び/又はL体を分離して測定し、
     前記データ処理部は、前記少なくとも1のアミノ酸のD体及び/又はL体に基づき腎臓病の病態指標値を算出し、
     前記データ処理部は、記憶部に記憶された病態指標値の基準値と比較することにより、腎臓病を判別し、
     前記出力部が被検体の腎臓病についての病態情報を出力する、前記分析システム。
    A saliva analysis system including a storage unit, an input unit, an analysis measurement unit, a data processing unit, and an output unit,
    The storage unit stores a reference value of a disease state index value of kidney disease input from the input unit,
    The analytical measurement unit separates and measures D-form and / or L-form of at least one amino acid in the saliva;
    The data processing unit calculates a disease state index value of kidney disease based on the D-form and / or L-form of the at least one amino acid,
    The data processing unit determines kidney disease by comparing with a reference value of a disease state index value stored in a storage unit,
    The analysis system, wherein the output unit outputs pathological information about kidney disease of a subject.
  12.  前記腎臓病の病態指標値が、前記少なくとも1のアミノ酸のD体及びL体の和に対するD体の比、D体及びL体の和に対するL体の比、D体に対するL体の比、又はL体に対するD体の比である、請求項11に記載の分析システム。 The renal disease state index value is a ratio of D-form to the sum of D-form and L-form of the at least one amino acid, ratio of L-form to sum of D-form and L-form, ratio of L-form to D-form, or The analysis system according to claim 11, wherein the analysis system is a ratio of D body to L body.
  13.  前記アミノ酸が、リジン、プロリン、ヒスチジン、アラニン、アスパラギン酸、及びグルタミン酸からなる群から選ばれる、請求項12に記載の分析システム。 The analysis system according to claim 12, wherein the amino acid is selected from the group consisting of lysine, proline, histidine, alanine, aspartic acid, and glutamic acid.
  14.  前記アミノ酸が、リジン、プロリン、ヒスチジン、及びアラニンからなる群から選ばれる、請求項13に記載の分析システム。 The analysis system according to claim 13, wherein the amino acid is selected from the group consisting of lysine, proline, histidine, and alanine.
  15.  前記腎臓病の病態指標値が前記少なくとも1のアミノ酸のD体の量、L体の量、及びそれらの合計量である、請求項11に記載の分析システム。 12. The analysis system according to claim 11, wherein the disease state index value of the kidney disease is the amount of D-form, the amount of L-form, and the total amount of the at least one amino acid.
  16.  前記アミノ酸が、ヒスチジン、セリン、グルタミン、アスパラギン酸、グリシン、グルタミン酸、スレオニン、アラニン、プロリン、バリン、イソロイシン、ロイシン、チロシン、リジンからなる群から選ばれる、請求項15に記載の分析システム。 The analysis system according to claim 15, wherein the amino acid is selected from the group consisting of histidine, serine, glutamine, aspartic acid, glycine, glutamic acid, threonine, alanine, proline, valine, isoleucine, leucine, tyrosine, and lysine.
  17.  前記病態指標値が、D-グルタミン酸量、D-アラニン量、D-リジン量、D-ヒスチジン量、D-アスパラギン酸量、D-プロリン量、L-グルタミン酸量、L-スレオニン量、L-プロリン量、L-リジン量、(D+L)-グルタミン酸量、(D+L)-スレオニン量、(D+L)-プロリン量、(D+L)-リジン量、及び(D+L)-アラニン量からなる群から選ばれる、請求項16に記載の分析システム。 The pathological index value is D-glutamic acid amount, D-alanine amount, D-lysine amount, D-histidine amount, D-aspartic acid amount, D-proline amount, L-glutamic acid amount, L-threonine amount, L-proline. Selected from the group consisting of: quantity, L-lysine quantity, (D + L) -glutamic acid quantity, (D + L) -threonine quantity, (D + L) -proline quantity, (D + L) -lysine quantity, and (D + L) -alanine quantity. Item 17. The analysis system according to Item 16.
  18.  前記病態指標値が、D-グルタミン酸量、D-アラニン量、D-リジン量、及びD-プロリン量からなる群から選ばれる、請求項17に記載の分析システム。 The analysis system according to claim 17, wherein the disease state index value is selected from the group consisting of an amount of D-glutamic acid, an amount of D-alanine, an amount of D-lysine, and an amount of D-proline.
PCT/JP2019/022611 2018-06-07 2019-06-06 Disease-state biomarker for kidney disease WO2019235591A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-109730 2018-06-07
JP2018109730 2018-06-07

Publications (1)

Publication Number Publication Date
WO2019235591A1 true WO2019235591A1 (en) 2019-12-12

Family

ID=68770451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022611 WO2019235591A1 (en) 2018-06-07 2019-06-06 Disease-state biomarker for kidney disease

Country Status (3)

Country Link
JP (1) JP7471581B2 (en)
TW (1) TW202016546A (en)
WO (1) WO2019235591A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4083628A4 (en) * 2019-12-27 2024-02-21 Kagami Inc. Method and system for estimating renal function

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199928A1 (en) * 2015-06-10 2016-12-15 国立大学法人金沢大学 Disease-state biomarker for renal disease
JP2017207490A (en) * 2016-05-17 2017-11-24 国立大学法人大阪大学 Blood sample analysis method and system, for determining diabetes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199928A1 (en) * 2015-06-10 2016-12-15 国立大学法人金沢大学 Disease-state biomarker for renal disease
JP2017207490A (en) * 2016-05-17 2017-11-24 国立大学法人大阪大学 Blood sample analysis method and system, for determining diabetes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALMEIDA, P. A. ET AL.: "Salivary metabolic profile of children and adolescents after hemodialysis", METABOLOMICS, vol. 13, no. 141, 2017, pages 1 - 10, XP036422113, ISSN: 1573-3882, DOI: 10.1007/s11306-017-1283-y *
WADA TAKASHI, vol. 2, 28 September 2017 (2017-09-28), pages 17 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4083628A4 (en) * 2019-12-27 2024-02-21 Kagami Inc. Method and system for estimating renal function

Also Published As

Publication number Publication date
JP7471581B2 (en) 2024-04-22
JP2019215338A (en) 2019-12-19
TW202016546A (en) 2020-05-01

Similar Documents

Publication Publication Date Title
JP6762529B2 (en) Pathophysiology biomarkers of kidney disease
US11099191B2 (en) Kidney disease prognosis prediction method and system
WO2015087985A1 (en) Marker for early diagnosis of kidney failure
JP6993654B2 (en) Methods and systems for estimating renal function
US20220252610A1 (en) Method for assisting evaluation of condition of kidneys, system for evaluating condition of kidneys, and program for evaluating condition of kidneys
WO2019235591A1 (en) Disease-state biomarker for kidney disease
WO2020080482A1 (en) Method for assaying validity of renal function test result based on cystatin c content in blood
WO2020080491A1 (en) Method for assaying validity of renal function test result based on creatinine content in blood
US20220170945A1 (en) Method for assisting evaluation of renal pathological conditions, system for evaluating renal pathological conditions and program for evaluating renal pathological conditions
WO2020080494A1 (en) Marker for determining kidney damage in critical stage
WO2020080484A1 (en) Method for determining glomerular filtration ability
WO2020080488A1 (en) Marker for determining critical stage kidney disease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19815949

Country of ref document: EP

Kind code of ref document: A1