WO2019235585A1 - 薬剤の吐出制御システム、その制御方法、および、制御プログラム - Google Patents

薬剤の吐出制御システム、その制御方法、および、制御プログラム Download PDF

Info

Publication number
WO2019235585A1
WO2019235585A1 PCT/JP2019/022601 JP2019022601W WO2019235585A1 WO 2019235585 A1 WO2019235585 A1 WO 2019235585A1 JP 2019022601 W JP2019022601 W JP 2019022601W WO 2019235585 A1 WO2019235585 A1 WO 2019235585A1
Authority
WO
WIPO (PCT)
Prior art keywords
medicine
precipitation
evaporation
drug
drone
Prior art date
Application number
PCT/JP2019/022601
Other languages
English (en)
French (fr)
Inventor
千大 和氣
洋 柳下
Original Assignee
株式会社ナイルワークス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナイルワークス filed Critical 株式会社ナイルワークス
Priority to JP2020523183A priority Critical patent/JP6996792B2/ja
Publication of WO2019235585A1 publication Critical patent/WO2019235585A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/24Coaxial rotors

Definitions

  • the present invention relates to a medicine ejection control system, a control method thereof, and a control program.
  • the drone can know the absolute position of its own aircraft in centimeters while flying. Even in farmland with a narrow and complex terrain typical in Japan, it is possible to fly autonomously with a minimum of manual maneuvering, and to disperse medicines efficiently and accurately.
  • a medicine discharge control system for ensuring the effectiveness of medicine spraying.
  • a medicine discharge control system in an agricultural machine for spraying medicine, and is a system for controlling the medicine ejection, which is capable of precipitation.
  • a precipitation prediction unit that detects a sex and generates a precipitation signal; and a drug control unit that controls whether or not to discharge the drug to the outside and stops spraying the drug based on the precipitation signal.
  • the precipitation prediction unit determines whether or not there is a possibility of precipitation in a region where the agricultural machine sprays the medicine based on the atmospheric pressure, and an atmospheric pressure measurement unit that measures the atmospheric pressure around the agricultural machine A precipitation determination unit.
  • the precipitation determination unit detects a sudden change in the atmospheric pressure based on a change over time of the atmospheric pressure measured by the atmospheric pressure measurement unit, and whether or not there is a possibility of precipitation in an area where the agricultural machine sprays the medicine It may be configured to determine.
  • the apparatus further includes an other machine information receiving unit that receives a precipitation signal transmitted from another agricultural machine, and the medicine control unit stops spraying the medicine based on the precipitation signal received by the other machine information receiving unit.
  • You may be comprised so that it may make.
  • the apparatus may further include a body information transmission unit that transmits a precipitation signal generated by the precipitation prediction unit to the outside of the agricultural machine.
  • the apparatus may further include a predictor information receiving unit that receives atmospheric pressure measured by the predictor, and the precipitation prediction unit may be configured to detect the possibility of precipitation based on the atmospheric pressure.
  • a drug discharge control system mounted on a drone having a flight control unit, wherein the flight control unit does not take off the drone when detecting the possibility of precipitation while the drone is landing It may be configured.
  • the agricultural machine determines the easiness of evaporation of the drug in the area where the drug is sprayed, generates an evaporation signal when the evaporability is equal to or greater than a predetermined value, and transmits the evaporation signal to the drug control unit
  • An evaporation predicting unit that performs the medicine control, and the medicine control unit may be configured to stop spraying the medicine based on the evaporation signal.
  • the evaporation predicting unit determines whether at least one of the temperature and the humidity in the region is measured, and whether the evaporation in the region is more than a predetermined value based on at least one of the temperature and the humidity. And an evaporation determination unit.
  • a medicine ejection control system is a system for controlling medicine ejection, which is provided in an agricultural machine for dispensing medicine, and the medicine in an area where the medicine is dispersed.
  • An evaporation predicting unit that determines the easiness of evaporation and generates an evaporation signal when the evaporability is equal to or greater than a predetermined value, and controls whether or not to discharge the medicine to the outside, based on the evaporation signal
  • a drug control unit that stops spraying the drug.
  • the evaporation predicting unit determines whether at least one of the temperature and the humidity in the region is measured, and whether the evaporation in the region is more than a predetermined value based on at least one of the temperature and the humidity. And an evaporation determination unit.
  • the apparatus further includes an other device information receiving unit that receives an evaporation signal transmitted from another agricultural machine, and the medicine control unit stops spraying the medicine based on the evaporation signal received by the other machine information receiving unit. You may be comprised so that it may make.
  • the apparatus may further include an airframe information transmission unit that transmits an evaporation signal generated by the evaporation prediction unit to the outside of the agricultural machine.
  • An evaporation predicting unit that receives at least one of temperature and humidity measured by a predictor is further provided, and the evaporation predicting unit is configured to predict easiness of evaporation based on at least one of the temperature and humidity. It may be.
  • a drug discharge control system mounted on a drone having a flight control unit, wherein the flight control unit takes off the drone when the drone is in a landing state and evaporates more easily than a predetermined level. You may be comprised so that it may not exist.
  • It may be configured to notify that the possibility of precipitation or the ease of evaporation is high based on the precipitation signal or evaporation signal.
  • the medicine control unit may be configured to wait for a command input by a user and determine whether to spray the medicine based on the input command. .
  • a medicine discharge control method is a method for controlling the discharge of a medicine provided in an agricultural machine for spraying medicine, and detects the possibility of precipitation and outputs a precipitation signal. And the step of controlling whether or not to discharge the medicine to the outside and stopping the spraying of the medicine based on the precipitation signal.
  • a medicine ejection control method is a method for controlling ejection of a medicine, which is provided in an agricultural machine that disperses medicine, and the medicine in an area where the medicine is dispersed
  • a step of stopping the spraying of the medicine is a method for controlling ejection of a medicine, which is provided in an agricultural machine that disperses medicine, and the medicine in an area where the medicine is dispersed.
  • a medicine discharge control program is a program for controlling a medicine discharge provided in an agricultural machine for spraying a medicine, and detects a possibility of precipitation and a precipitation signal. And a command for controlling whether or not to discharge the medicine to the outside and stopping the spraying of the medicine based on the precipitation signal.
  • a medicine discharge control program is a program for controlling the medicine discharge provided in an agricultural machine for spraying medicine, and the medicine in an area where the medicine is sprayed
  • the computer program can be provided by downloading through a network such as the Internet, or can be provided by being recorded on various computer-readable recording media such as a CD-ROM.
  • a functional block diagram of another drone having the same function is also shown. It is a flowchart in which the drone determines the possibility of precipitation and the ease of evaporation. It is a flowchart in case the said drone receives the precipitation signal or the evaporation signal from the other apparatus information receiving part which another drone which has the same function has. It is a flowchart in case the said drone receives the measurement result of atmospheric
  • a drone means a power means (electric power, a prime mover, etc.), a control method (whether wireless or wired, autonomous flight type or manual control type, etc.) It shall refer to any aircraft with multiple rotor wings.
  • a drone is an example of an agricultural machine.
  • the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b (also called rotor) It is a means for flying the drone 100, and is equipped with eight aircraft (four sets of two-stage rotor blades) considering the balance of flight stability, aircraft size, and battery consumption.
  • the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are connected to the rotor blades 101-1a, 101-1b, 101-2a, 101- 2b, 101-3a, 101-3b, 101-4a, 101-4b
  • Rotating means typically an electric motor, but it may be a motor
  • the upper and lower rotors for example, 101-1a and 101-1b
  • their corresponding motors for example, 102-1a and 102-1b
  • the axes are collinear and rotate in opposite directions.
  • the radial member for supporting the propeller guard provided so that the rotor does not interfere with the foreign object is a horizontal structure instead of a horizontal structure. This is to prevent the member from buckling to the outside of the rotor blade and to interfere with the rotor at the time of collision.
  • medical agent generally refers to the liquid or powder disperse
  • the medicine tank 104 is a tank for storing medicine to be sprayed, and is provided at a position close to the center of gravity of the drone 100 and lower than the center of gravity from the viewpoint of weight balance.
  • the chemical hoses 105-1, 105-2, 105-3, 105-4 are means for connecting the chemical tank 104 and the chemical nozzles 103-1, 103-2, 103-3, 103-4, and are rigid. And may also serve as a support for the drug nozzle.
  • the pump 106 is a means for discharging the medicine from the nozzle.
  • FIG. 4 shows an overall conceptual diagram of a system using an embodiment of the drug spraying application of the drone 100 according to the present invention.
  • the controller 401 is a means for transmitting a command to the drone 100 by an operation of the user 402 and displaying information received from the drone 100 (for example, position, amount of medicine, remaining battery level, camera image, etc.). Yes, it may be realized by a portable information device such as a general tablet terminal that operates a computer program.
  • the drone 100 according to the present invention is desirably controlled so as to perform autonomous flight, but it is desirable that a manual operation can be performed at the time of basic operations such as takeoff and return, and in an emergency.
  • an emergency operating device (not shown) that has a dedicated emergency stop function may be used (the emergency operating device has a large emergency stop button etc. so that it can respond quickly in an emergency) It is desirable to be a dedicated device with It is desirable that the controller 401 and the drone 100 perform wireless communication using Wi-Fi or the like.
  • the field 403 is a rice field, a field, or the like that is a target of drug spraying by the drone 100.
  • the topography of the field 403 is complicated, and a topographic map cannot be obtained in advance, or the topographic map and the situation at the site may be different.
  • the farm 403 is adjacent to houses, hospitals, schools, other crop farms, roads, railways, and the like. Further, there may be an obstacle such as a building or an electric wire in the field 403.
  • the base station 404 is a device that provides a base unit function of Wi-Fi communication, etc., and preferably functions as an RTK-GPS base station so that the exact position of the drone 100 can be provided (Wi-Fi
  • the communication master unit and the RTK-GPS base station may be independent devices).
  • the farming cloud 405 is typically a computer group operated on a cloud service and related software, and is desirably wirelessly connected to the controller 401 via a mobile phone line or the like.
  • the farming cloud 405 may analyze the image of the field 403 taken by the drone 100, grasp the growth status of the crop, and perform processing for determining the flight route.
  • the drone 100 may be provided with the topographic information and the like of the stored farm 403.
  • the history of the flight of the drone 100 and the captured video may be accumulated and various analysis processes may be performed.
  • the drone 100 takes off from the landing point 406 outside the field 403 and returns to the landing point 406 after spraying the medicine on the field 403 or when it is necessary to refill or charge the medicine.
  • the flight route (intrusion route) from the landing point 406 to the target field 403 may be stored in advance in the farming cloud 405 or the like, or may be input by the user 402 before the takeoff starts.
  • the flight controller 501 is a component that controls the entire drone. Specifically, the flight controller 501 may be an embedded computer including a CPU, a memory, related software, and the like.
  • the flight controller 501 receives motors 102-1a and 102-1b via control means such as ESC (Electronic Speed Control) based on input information received from the pilot 401 and input information obtained from various sensors described below.
  • 102-2a, 102-2b, 102-3a, 102-3b, 104-a, and 104-b are controlled to control the flight of the drone 100.
  • the actual rotational speed of motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, and 104-b is fed back to the flight controller 501, and normal rotation is performed. It can be monitored whether Alternatively, a configuration in which an optical sensor or the like is provided on the rotor blade 101 and the rotation of the rotor blade 101 is fed back to the flight controller 501 may be employed.
  • the software used by the flight controller 501 is desirably rewritable through a storage medium or the like for function expansion / change, problem correction, or through communication means such as Wi-Fi communication or USB. In this case, it is desirable to protect by encryption, checksum, electronic signature, virus check software, etc. so that rewriting by illegal software is not performed. Further, a part of calculation processing used for control by the flight controller 501 may be executed by another computer that exists on the pilot 401, the farming cloud 405, or in another place. Since the flight controller 501 is highly important, some or all of the components may be duplicated.
  • the battery 502 is a means for supplying power to the flight controller 501 and other components of the drone, and is preferably rechargeable.
  • the battery 502 is preferably connected to the flight controller 501 via a power supply unit including a fuse or a circuit breaker.
  • the battery 502 is desirably a smart battery having a function of transmitting the internal state (amount of stored electricity, accumulated usage time, etc.) to the flight controller 501 in addition to the power supply function.
  • the flight controller 501 communicates with the pilot 401 via the Wi-Fi slave function 503 and further via the base station 404, receives necessary commands from the pilot 401, and sends necessary information to the pilot. It is desirable to be able to send to 401. In this case, it is desirable to encrypt the communication so that it is possible to prevent illegal acts such as interception, spoofing, and takeover of the device.
  • the base station 404 preferably has an RTK-GPS base station function in addition to a Wi-Fi communication function. By combining the signal from the RTK base station and the signal from the GPS positioning satellite, the GPS module 504 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Since the GPS module 504 is highly important, it is desirable to duplicate or multiplex, and each redundant GPS module 504 should use a different satellite in order to cope with the failure of a specific GPS satellite. It is desirable to control.
  • the 6-axis gyro sensor 505 is means for measuring accelerations in three directions perpendicular to each other of the drone body (and means for calculating speed by integrating accelerations).
  • the 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone body in the three directions, that is, the angular velocity.
  • the geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring geomagnetism.
  • the atmospheric pressure sensor 507 is a means for measuring atmospheric pressure, and can indirectly measure the altitude of the drone.
  • the laser sensor 508 is a means for measuring the distance between the drone body and the ground surface using the reflection of laser light, and it is preferable to use an IR (infrared) laser.
  • the sonar 509 is a means for measuring the distance between the drone body and the ground surface using reflection of sound waves such as ultrasonic waves.
  • These sensors may be selected according to drone cost targets and performance requirements.
  • a gyro sensor angular velocity sensor
  • a wind sensor for measuring wind force, and the like may be added.
  • these sensors are preferably duplexed or multiplexed.
  • the flight controller 501 may use only one of them, and when a failure occurs, it may be switched to an alternative sensor.
  • a plurality of sensors may be used at the same time, and when each measurement result does not match, it may be considered that a failure has occurred.
  • the flow rate sensor 510 is a means for measuring the flow rate of the medicine, and is provided at a plurality of locations on the path from the medicine tank 104 to the medicine nozzle 103.
  • the liquid shortage sensor 511 is a sensor that detects that the amount of the medicine has become a predetermined amount or less.
  • the multispectral camera 512 is a means for capturing the field 403 and acquiring data for image analysis.
  • the obstacle detection camera 513 is a camera for detecting a drone obstacle. Since the image characteristics and the lens orientation are different from those of the multispectral camera 512, the obstacle detection camera 513 is preferably a device different from the multispectral camera 512.
  • the switch 514 is a means for the user 402 of the drone 100 to perform various settings.
  • Obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard part has come into contact with an obstacle such as an electric wire, building, human body, standing tree, bird, or other drone.
  • the cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the internal maintenance cover are open.
  • the medicine inlet sensor 517 is a sensor that detects that the inlet of the medicine tank 104 is open. These sensors may be selected according to drone cost targets and performance requirements, and may be duplicated or multiplexed.
  • a sensor may be provided in the base station 404, the controller 401, or other place outside the drone 100, and the read information may be transmitted to the drone.
  • a wind sensor may be provided in the base station 404, and information regarding wind power and wind direction may be transmitted to the drone 100 via Wi-Fi communication.
  • the flight controller 501 transmits a control signal to the pump 106 to adjust the medicine discharge amount and stop the medicine discharge.
  • the current situation of the pump 106 (for example, the rotational speed) is fed back to the flight controller 501.
  • the LED 107 is a display means for informing the drone operator of the drone status.
  • Display means such as a liquid crystal display may be used instead of or in addition to the LED.
  • the buzzer 518 is an output means for notifying a drone state (particularly an error state) by an audio signal.
  • the Wi-Fi handset function 519 is an optional component for communicating with an external computer or the like for software transfer or the like, separately from the controller 401. In place of or in addition to the Wi-Fi handset function, other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection May be used.
  • the speaker 520 is an output means for notifying a drone state (particularly an error state) by a recorded human voice or synthesized voice. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 during the flight, and in such a case, the situation transmission by voice is effective.
  • the warning light 521 is a display unit such as a strobe light that notifies the drone state (particularly an error state).
  • Rain etc. refers to various precipitation phenomena falling from the atmosphere such as rain, snow, sleet, hail, hail.
  • the drone 100 includes a flight control unit 23, a precipitation prediction unit 24, an evaporation prediction unit 25, an other aircraft information reception unit 26, an aircraft information transmission unit 27, a prediction machine An information receiving unit 28 and a drug control unit 30 that controls the amount of drug discharged from the drone 100 are provided.
  • Another drone 100b having the same function as the drone 100 includes a flight control unit 23b, a precipitation prediction unit 24b, an evaporation prediction unit 25b, an other aircraft information reception unit 26b, an aircraft information transmission unit 27b, a prediction A machine information receiving unit 28b and a drug control unit 30b that controls the amount of drug discharged from the drone 100b are provided.
  • the drone 100 and the drone 100b can communicate with each other by an appropriate method. This configuration will be described later.
  • the flight control unit 23 controls the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b to control the rotors 101-1a, 101 -1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b, controlling the rotation speed and direction of rotation and flying the drone 100 in the compartment intended by the user 402 It is a functional part to make it. Further, the flight control unit 23 controls take-off and landing of the drone 100. Specifically, the flight control unit 23 is a CPU implemented by a microcomputer or the like, and is a flight controller 501.
  • the flight control unit 23 may operate to control the flight of the drone 100 in the normal operation of the drone 100, or may be configured separately from the flight control means in the normal operation. In the latter case, the flight control unit 23 operates only when taking retreat action during precipitation detection, precipitation prediction, or evaporation prediction.
  • Predetermined safety behavior is evacuation behavior during flight and flight regulation measures when ready before flight.
  • the evacuation action includes, for example, normal landing operation, aerial stop taking hovering as an example, and “emergency return” that moves immediately to a predetermined return point by the shortest route.
  • the predetermined return point is a point that is previously stored in the flight controller 501, for example, a point that has taken off.
  • the predetermined return point is a land point where the user 402 can approach the drone 100, for example, and the user 402 can check the drone 100 that has reached the return point or manually carry it to another location. can do.
  • the evacuation action may be a “normal return” that moves to a predetermined return point by an optimized route.
  • the optimized route is, for example, a route that is calculated with reference to a route in which medicine is dispersed before receiving a normal feedback command.
  • the drone 100 moves to a predetermined return point while spraying the drug via a route where the drug is not yet sprayed.
  • the retreating action includes “emergency stop” in which all the rotary blades are stopped and the drone 100 is dropped downward from the spot.
  • the flight regulation measure is a measure that regulates the flight in the pre-flight preparation stage, and rejects the flight instruction of the user or requests the user to check the state.
  • control may be performed so that flight is not possible unless an abnormality is confirmed or maintained.
  • the flight control unit 23 may be configured to perform different evacuation actions depending on the degree of possibility of precipitation detected by the precipitation prediction unit 24 or whether or not it is already raining. For example, when precipitation is predicted in advance and it is possible to return to the arrival / departure point 406 before the precipitation occurs, normal return is performed. In situations where it is difficult to return normally due to the occurrence of very strong precipitation, emergency return or normal landing operation is performed on the spot. Further, when it is determined that the rotor blade is hit by heavy rain or the like and it is difficult to perform a normal landing operation, “emergency stop” may be selected.
  • the drug control unit 30 is a control unit that controls the amount or timing of spraying the drug solution from the drug tank 104.
  • an opening / closing means for opening and closing the drug solution path is provided somewhere in the path from the drug tank 104 to each drug nozzle 103-1, 103-2, 103-3, 103-4. Then, various emergency operations are performed after the release of the chemical solution is blocked by the opening / closing means. Further, the medicine control unit 30 stops the pump 106 before executing the retreat action. This is because when there is a possibility of precipitation, even if the medicine is sprayed on the field, it will flow without being settled, and even if sprayed, the medicine will be wasted.
  • the precipitation prediction unit 24 is a functional unit that detects that there is a possibility of precipitation in the region where the medicine is sprayed, generates a precipitation signal, and transmits the precipitation signal to the flight control unit 23.
  • the precipitation prediction unit 24 includes a barometric pressure measurement unit 241 and a precipitation determination unit 242.
  • the atmospheric pressure measurement unit 241 is a functional unit that measures the atmospheric pressure around the drone 100.
  • the atmospheric pressure measurement unit 241 is configured by, for example, an atmospheric pressure sensor 507, but may include a plurality of functional units that measure atmospheric pressure.
  • the precipitation determination unit 242 is a functional unit that determines whether or not there is a possibility of precipitation in the region where the drone 100 sprays the medicine based on the atmospheric pressure measured by the atmospheric pressure measurement unit 241. Specifically, when the atmospheric pressure measured by the atmospheric pressure measurement unit 241 is equal to or less than a predetermined value, the precipitation determination unit 242 signals that there is a possibility of precipitation in the region where the medicine is dispersed (hereinafter referred to as “precipitation signal”). Is transmitted to the flight control unit 23.
  • the precipitation determination unit 242 may determine whether or not there is a possibility of precipitation in the region where the medicine is sprayed based on the change over time of the atmospheric pressure measured by the atmospheric pressure measurement unit 241. Specifically, when the measured atmospheric pressure changes more than a predetermined value within a predetermined time, that is, when there is a sudden change in atmospheric pressure, the precipitation determination unit 242 may detect the possibility of precipitation. A sudden change in atmospheric pressure may detect either a sudden rise or a sudden fall, or both.
  • the precipitation determination unit 242 determines which evacuation action the flight control unit 23 performs based on the measured atmospheric pressure or a change over time of the atmospheric pressure, and transmits the determined type of evacuation action to the flight control unit 23. Also good.
  • the precipitation determination unit 242 transmits a precipitation signal to the medicine control unit 30 when determining that the possibility of precipitation is high based on the information on the atmospheric pressure measured by the atmospheric pressure measurement unit 241.
  • the medicine control unit 30 stops spraying the medicine when the precipitation signal is transmitted.
  • the drug control unit 30 stops spraying the drug, and the flight control unit 23 performs hovering.
  • the precipitation prediction unit 24 repeatedly performs precipitation prediction during hovering, and when the possibility of precipitation further increases, the precipitation control unit 23 may perform normal return or emergency return by causing the flight control unit 23 to fly to the landing point.
  • the atmospheric pressure threshold value that the precipitation determination unit 242 determines that there is a high possibility of precipitation in the region where the medicine is sprayed may be a fixed threshold value that is stored in advance in the drone 100, or depending on the situation. It may be a changing threshold that is changed. In the case of the fluctuating threshold value, it may be automatically changed by an appropriate configuration connected to the drone 100 wirelessly or by wire, or may be manually changed by the user 402. Depending on the type of drug to be applied, the time required for settlement in the field and the degree of influence of precipitation may differ, so the threshold is changed depending on the type of drug stored in the drug tank 104. It may be.
  • a sensor for determining the type of the drug is arranged in the drug tank 104 or a path from the drug tank 104 to the discharge nozzle, and predetermined according to the type of the drug according to the determination result of the determination sensor.
  • the threshold value may be automatically changed.
  • the precipitation prediction unit 24 displays that the possibility of precipitation has been detected on the pilot 401 monitored by the user 402 by an appropriate communication means possessed by the drone 100.
  • the precipitation prediction unit 24 may be configured to display that the drone 100 has detected the possibility of precipitation by display means of the drone 100, for example, an LED. Also, an appropriate sound may be emitted from the speaker of the drone 100.
  • the user 402 acquires the information of the drone 100 with the eyewear-type wearable terminal, it may be displayed or projected on the eyewear screen. Further, when the user 402 acquires the information on the drone 100 with the earphone-type wearable terminal, notification may be made by sound.
  • the atmospheric pressure and the change over time of the atmospheric pressure are measured as means for predicting the possibility of precipitation, but other means may be used.
  • the weather forecast information published on the Web can be used to know the wide-range weather changes in a certain area, but it is difficult to know local and short-term precipitation phenomena such as the evening sun. . Therefore, according to the configuration in which the drone 100 itself predicts the possibility of precipitation, it is possible to predict the change in weather by measuring the atmospheric pressure at the point where the drone 100 is present, so the local area in the field where the drug is sprayed It is possible to predict precipitation more accurately, including accurate and short-term weather changes. Further, the drone 100 often includes a barometric pressure sensor 507 assuming another application such as altitude measurement. Therefore, according to the drone 100 that uses the atmospheric pressure sensor 507 to perform precipitation prediction, it can be used more accurately and efficiently without adding a hardware configuration by using the installed atmospheric pressure sensor 507 for precipitation prediction. It is possible to spray drugs well and safely.
  • the other device information receiving unit 26 is a functional unit that receives information transmitted by another drone 100b existing in the vicinity.
  • Airframe information transmission unit 27 is a functional unit that transmits information to outside of drone 100.
  • Another drone 100b is a drone that flies in the space near the drone 100.
  • Another drone 100b may be a drone managed by the same user 402 or a drone managed by another user.
  • another drone 100b assumes a drug spraying drone having the same configuration as the drone according to the present invention, but may be a drone that flies around for another purpose, For example, it may be a monitoring drone that does not have a medicine tank.
  • the aircraft information transmission unit 27 transmits the precipitation signal generated by the precipitation determination unit 242 to the outside of the drone 100.
  • the other aircraft information receiving unit 26 receives a precipitation signal from the aircraft information transmitting unit 27b of another drone 100b and transmits it to the flight control unit 23 and the drug control unit 30.
  • the flight control unit 23 starts the evacuation action based on the precipitation signal received by the other aircraft information receiving unit 26.
  • the medicine control unit 30 stops the medicine spraying based on the precipitation signal received by the other device information receiving unit 26.
  • the aircraft information transmitting unit 27 may transmit the atmospheric pressure measured by the aircraft to the other aircraft information receiving unit 26b instead of the precipitation signal.
  • the other device information receiving unit 26 transmits the atmospheric pressure from another drone 100b to the precipitation determining unit 242.
  • the precipitation determination unit 242 detects the possibility of precipitation based on the atmospheric pressure from another drone 100b or the change over time of the atmospheric pressure.
  • the other device information receiving unit 26 and the aircraft information transmitting unit 27 may transmit and receive atmospheric pressure information via a base station or a cloud by using, for example, Wi-fi, or the other device information receiving unit 26 and the aircraft information
  • the transmitter 27 may communicate directly.
  • various configurations such as Bluetooth (registered trademark) and Zigbee (registered trademark) can be applied.
  • the other aircraft information receiving unit 26 can receive the precipitation signal or the atmospheric pressure information measured by the other aircraft when the drone 100 is landing during normal flight and hovering. That is, when the possibility of precipitation is detected while the drone 100 is landing, the flight control unit 23 can prevent the drone 100 from taking off. Further, a part of the function of the controller 401 may be restricted so that a takeoff command cannot be transmitted.
  • the precipitation determination unit 242 determines whether the drone 100 is based on the possibility of precipitation at a point away from the drone 100. Predict the possibility of precipitation in the area where the drug is applied. Clouds that cause changes in weather often approach gradually from a distant point. Therefore, the possibility of precipitation can be predicted with higher accuracy by referring to the information on the possibility of precipitation at a distant point.
  • the predictor information receiver 28 is a receiver that can receive the atmospheric pressure measured by the fixed predictor 40.
  • the predictor 40 is disposed near the flight space of the drone 100.
  • the predictor 40 is installed in, for example, a Wi-fi base station or an RTK-GPS base station.
  • the predictor 40 transmits the atmospheric pressure information to the predictor information receiver 28.
  • the predictor information receiving unit 28 transmits the received atmospheric pressure to the precipitation determining unit 242.
  • the predictor 40 may include a determination unit that determines the possibility of precipitation based on the atmospheric pressure to be measured. When the predictor 40 determines that the possibility of precipitation is high, the predictor 40 transmits a precipitation signal to the predictor information receiver 28 of the drone 100.
  • the predictor information receiving unit 28 receives the precipitation signal transmitted from the predictor 40 and transmits it to the flight control unit 23 and the medicine control unit 30. Further, the predictor 40 may determine the possibility of precipitation with reference to weather information published on the web and the like, and may transmit a precipitation signal to the predictor information receiving unit 28 when the possibility of precipitation is high. .
  • the predictor information receiving unit 28 can receive the precipitation signal or the atmospheric pressure measured by the predictor 40 when the drone 100 is landing in addition to normal flight and hovering. When it is determined that the possibility of precipitation is high while the drone 100 is landing, the flight control unit 23 does not take off the drone 100. According to the configuration of the predictor information receiving unit 28, it is possible to receive the possibility of precipitation at a location away from the location where the drone 100 exists. That is, it is possible to detect a change in weather gradually approaching from a distant point and predict the possibility of precipitation at that point more accurately.
  • the evaporation predicting unit 25 is a functional unit that determines the ease of evaporation of the drug in the region where the drug is sprayed.
  • the drone 100 sprays a medicine which is an aqueous solution or a mixed solution with water in a mist form.
  • the medicine is sprayed in an environment that easily evaporates, the water in the medicine evaporates in the air.
  • the particle size of the drug is smaller than the particle size of the water particles, the drug that has lost moisture may fly in the air and cannot be fixed at a desired point in the field.
  • the drug itself is highly volatile, the drug itself may evaporate and may not be fixed at a desired point.
  • the evaporation predicting unit 25 it is possible to determine an environment that is likely to evaporate, and to disperse the medicine when the easiness of evaporation is equal to or greater than a predetermined value. That is, it is possible to effectively and effectively deliver the drug more accurately and efficiently.
  • the evaporation predicting unit 25 includes an evaporation measuring unit 251 and an evaporation determining unit 252.
  • the evaporation measuring unit 251 is a functional unit that measures at least one of temperature and humidity in the region where the medicine is sprayed. Note that the evaporation measuring unit 251 may measure an index related to easiness of evaporation other than temperature and humidity. For example, the evaporation measuring unit 251 may measure the wind speed.
  • the evaporation determination unit 252 determines the ease of evaporation of the drug in the region where the drug is sprayed based on at least one measurement result of temperature and humidity measured by the evaporation measurement unit 251. For example, the evaporation determination unit 252 has a threshold value for temperature and humidity, respectively, and determines that evaporability is greater than or equal to a predetermined value when the temperature is equal to or higher than the threshold value and the humidity is equal to or lower than the threshold value. Further, the evaporation determination unit 252 may determine easiness of evaporation by considering both values of temperature and humidity in combination, that is, by calculating a function including temperature and humidity.
  • the evaporation determination unit 252 generates an evaporation signal when the evaporability is equal to or greater than a predetermined value. Then, the evaporation determination unit 252 transmits an evaporation signal to the medicine control unit 30. When the evaporation signal is transmitted, the medicine control unit 30 stops the medicine spraying. The evaporation determination unit 252 transmits an evaporation signal to the flight control unit 23. When the evaporation signal is transmitted, the flight control unit 23 takes flight regulation measures or performs a retreat action when in flight.
  • the drug control unit 30 stops spraying the drug, and the flight control unit 23 performs hovering.
  • the evaporation predicting unit 25 repeatedly performs evaporation prediction during hovering, and when the easiness of evaporation further increases, the flight control unit 23 may perform normal return or emergency return that causes the drone 100 to fly to the landing point 406. .
  • the temperature and humidity threshold values for determining the easiness of evaporation by the evaporation determination unit 252 may be fixed threshold values stored in advance in the drone 100, or may be variable threshold values that are changed according to the situation. There may be. In the case of the fluctuating threshold value, it may be automatically changed by an appropriate configuration connected to the drone 100 wirelessly or by wire, or may be manually changed by the user 402. Since the easiness of evaporation may vary depending on the type of drug to be sprayed, the threshold may be changed depending on the type of drug stored in the drug tank 104.
  • a sensor for determining the type of the drug is arranged in the drug tank 104 or a path from the drug tank 104 to the discharge nozzle, and predetermined according to the type of the drug according to the determination result of the determination sensor.
  • the threshold value may be automatically changed.
  • the other machine information reception unit 26, the machine body information transmission unit 27, the prediction machine information reception unit 28, and the prediction machine 40 have been described as a configuration that predicts precipitation by measuring atmospheric pressure, at least one of temperature and humidity is The same operation is performed as a configuration for measuring and predicting easiness of evaporation.
  • the atmospheric pressure measurement unit 241 measures atmospheric pressure (step S1).
  • Precipitation determination unit 242 determines the possibility of precipitation in the field where the medicine is sprayed based on the atmospheric pressure measured by atmospheric pressure measurement unit 241 or the change over time of atmospheric pressure (step S2).
  • step S3 If the precipitation determination unit 242 determines that the possibility of precipitation is high, a flight control measure is taken to prohibit take-off of the drone 100 (step S3).
  • the evaporation measurement unit 251 measures at least one of temperature and humidity (step S4).
  • the evaporation determination unit 252 determines whether or not the region where the medicine is spread is likely to evaporate based on the measurement result of at least one of temperature and humidity (step S5). If the evaporability is equal to or greater than the predetermined value, a flight regulation measure is taken to prohibit take-off of the drone 100 (step S3). If the evaporation determining unit 252 determines that the evaporability is low, the drone 100 starts flying (step S6).
  • the evaporation prediction is performed when the possibility of precipitation is not high due to the precipitation prediction.
  • the precipitation prediction is performed. Good. The same applies to the following description.
  • the atmospheric pressure measurement unit 241 always measures the atmospheric pressure (step S7).
  • the precipitation determination unit 242 determines whether or not the possibility of precipitation is high based on the measured atmospheric pressure or the change over time of the atmospheric pressure (step S8). When the possibility of precipitation is not high, at least one of temperature and humidity is measured (step S9), and it is determined whether or not the evaporability is high (step S9). When it is determined that the evaporability is low, the process returns to step S7, and the atmospheric pressure measurement, precipitation determination, temperature and humidity measurement, and evaporation determination, that is, steps S7 to S10 are repeated during hovering or moving.
  • the drug control unit 30 stops spraying the drug (step S11).
  • Airframe information transmitter 27 then transmits the precipitation signal or evaporation signal to another drone 100b (step S12). Further, the drone 100 starts the evacuation action (step S13).
  • precipitation prediction and evaporation prediction may be appropriately performed in parallel between steps S11 to S13.
  • hovering is first performed according to the possibility of precipitation or the likelihood of evaporation, and if the possibility of evaporation or the likelihood of evaporation increases further, a normal return or emergency Different evacuation actions may be sequentially performed based on the prediction results performed as needed, such as returning to home.
  • the other machine information receiving unit 26 of the drone 100 receives a precipitation signal or evaporation signal from another drone 100b (step S21).
  • the other aircraft information receiving unit 26 may receive the precipitation signal and the evaporation signal in any of normal flight, hovering and landing as planned. It is determined whether the drone 100 is flying or landing (step S22).
  • the drug control unit 30 stops the drug spraying when the drug spraying is being performed (step S23). Further, the flight control unit 23 starts a retreat action (step S24).
  • the flight control unit prohibits the take-off of the drone 100 and takes flight regulation measures so as not to take off (step S25).
  • the drone 100 should be displayed on the controller 401 that the drone 100 should not take off due to predicted precipitation or expected evaporation. Further, a part of the operation of the controller 401 may be restricted so that a command accompanying takeoff cannot be input.
  • the predictor information receiving unit 28 of the drone 100 receives the atmospheric pressure measured by the predictor 40 (step S31).
  • the predictor information receiving unit 28 may receive the precipitation signal in any of normal flight, hovering, and landing as planned flight.
  • the precipitation determination unit 242 determines whether or not the possibility of precipitation is high based on the atmospheric pressure received by the predictor information reception unit 28 (step S32).
  • the predictor information receiving unit 28 receives at least one of temperature and humidity from the predictor information receiving unit 28 (step S33). Based on the information from the predictor information receiving unit 28, the evaporation determination unit 252 determines the easiness of drug evaporation in the field where the drug is dispersed (step S34). If it is determined that the evaporability is low, the process returns to step S31.
  • Step S35 When it is determined by the precipitation determination unit 242 that the possibility of precipitation is high, or when the evaporation determination unit 252 determines that the evaporation is high, it is determined whether the drone 100 is flying or landing ( Step S35). When the drone 100 is flying or hovering, the drug control unit 30 stops spraying the drug when spraying the drug (step S36). Further, the flight control unit 23 starts a retreat action (step S37).
  • the flight control unit 23 prohibits the take-off of the drone 100 and performs a flight regulation measure to prevent the drone 100 from flying (step S38). Further, it may be displayed on the controller 401 that the drone 100 should not take off because the possibility of precipitation is high. Furthermore, a part of the operation of the pilot 401 may be restricted so that a command accompanying takeoff cannot be input.
  • the medicine ejection control system according to the second embodiment includes a step of confirming with the user whether or not to perform a safety action, that is, a retreat action or a flight regulation measure when a precipitation signal or an evaporation signal is received.
  • a safety action that is, a retreat action or a flight regulation measure when a precipitation signal or an evaporation signal is received.
  • the configuration of the discharge control system of the second embodiment is the same as that of the first embodiment.
  • the atmospheric pressure measurement unit 241 measures atmospheric pressure (step S1).
  • Precipitation determination unit 242 determines the possibility of precipitation in the field where the medicine is sprayed based on the atmospheric pressure measured by atmospheric pressure measurement unit 241 or the change over time of atmospheric pressure (step S2).
  • the evaporation measurement unit 251 measures at least one of temperature and humidity (step S4).
  • the evaporation determination unit 252 determines whether or not the region where the medicine is spread is likely to evaporate based on the measurement result of at least one of temperature and humidity (step S5). If the evaporation determining unit 252 determines that the evaporability is low, the drone 100 starts flying (step S6).
  • the user 402 determines that the possibility of precipitation is high, or the evaporation determination unit 252 determines that the evaporation is likely to be high, the user 402 is notified of this (step S111). Then, it waits for a command input by the user 402 indicating whether or not to continue the operation related to the medicine spraying.
  • a command from the user 402 is input and there is a command not to fly, flight regulation measures are taken (step S3). If the input command is a command to start flying, the drone 100 starts flying (step S6).
  • the atmospheric pressure measurement unit 241 always measures the atmospheric pressure (step S7).
  • the precipitation determination unit 242 determines whether or not the possibility of precipitation is high based on the measured atmospheric pressure or the change over time of the atmospheric pressure (step S8). When the possibility of precipitation is not high, at least one of temperature and humidity is measured (step S9), and it is determined whether or not the evaporability is high (step S9). When it is determined that the evaporability is low, the process returns to step S7, and the atmospheric pressure measurement, precipitation determination, temperature and humidity measurement, and evaporation determination, that is, steps S7 to S10 are repeated during hovering or moving.
  • the drone 100 or the controller 401 notifies the user 402 of that fact (step S111). Then, it waits for a command input by the user 402 indicating whether or not to continue the operation related to the medicine spraying. If a command from the user 402 is input and the spraying stop command is to stop the spraying of the medicine, the spraying of the medicine is stopped (step S11). Airframe information transmitter 27 then transmits the precipitation signal or evaporation signal to another drone 100b (step S12). Further, the drone 100 starts the evacuation action (step S13). If there is an input from the user 402 to continue the drug spraying, the drone 100 continues the drug spraying and returns to step S7.
  • the other machine information receiving unit 26 of the drone 100 receives a precipitation signal or an evaporation signal from another drone 100b (step S21).
  • the other aircraft information receiving unit 26 may receive the precipitation signal and the evaporation signal in any of normal flight, hovering and landing as planned.
  • the user 402 is notified of this (step S211). Then, it waits for a command input by the user 402 indicating whether or not to continue the operation related to the medicine spraying. If a command from the user 402 is input and the spraying stop command is to stop the spraying of medicine, it is determined whether the drone 100 is flying or landing (step S22).
  • the drug control unit 30 stops the drug spraying when the drug spraying is being performed (step S23). Further, the flight control unit 23 starts a retreat action (step S24).
  • the flight control unit prohibits the take-off of the drone 100 and takes flight regulation measures so as not to take off (step S25).
  • the predictor information receiving unit 28 of the drone 100 receives the atmospheric pressure measured by the predictor 40 (step S31).
  • the predictor information receiving unit 28 may receive the precipitation signal in any of normal flight, hovering, and landing as planned flight.
  • the precipitation determination unit 242 determines whether or not the possibility of precipitation is high based on the atmospheric pressure received by the predictor information reception unit 28 (step S32).
  • the predictor information receiving unit 28 receives at least one of temperature and humidity from the predictor information receiving unit 28 (step S33). Based on the information from the predictor information receiving unit 28, the evaporation determination unit 252 determines the easiness of drug evaporation in the field where the drug is dispersed (step S34). If it is determined that the evaporability is low, the process returns to step S31.
  • the user 402 determines that the possibility of precipitation is high, or if the evaporation determination unit 252 determines that the evaporation is likely to be high, the user 402 is notified of this (step S311). Then, it waits for a command input by the user 402 indicating whether or not to continue the operation related to the medicine spraying.
  • a command from the user 402 is input and the command is a spraying stop command for stopping the spraying of medicine (step S312)
  • it is determined whether the drone 100 is flying or landing step S35.
  • the drug control unit 30 stops spraying the drug when spraying the drug (step S36). Further, the flight control unit 23 starts a retreat action (step S37).
  • the flight control unit 23 prohibits the take-off of the drone 100 and performs a flight regulation measure to prevent the drone 100 from flying (step S38).
  • a change to increase the threshold value for notifying the possibility of precipitation or the ease of evaporation is automatically performed. It may be broken. Further, once an input indicating that the medicine spraying is continued is made, the notification may be stopped for a predetermined time. According to the configuration as described above, when continuation of the medicine spraying is selected, it is possible to prevent repeated notification when the indicator of the possibility of precipitation or the ease of evaporation does not change. Further, an optimum threshold value may be automatically learned based on an input history from the user 402.
  • the drone 100 starts to fly, Alternatively, the user 402 can decide whether to spray the drug during flight or hovering. Taking into account the circumstances peculiar to the field where the medicine is sprayed, various information obtained by the user 402, or the circumstances of the user 402, the medicine can be sprayed flexibly.
  • the agricultural chemical spraying drone has been described as an example.
  • the technical idea of the present invention is not limited to this, and the present invention can be applied to all agricultural machines that perform chemical spraying.
  • it can be applied to a drone that performs autonomous flight.
  • it is applicable also to the agricultural machine which carries out autonomous movement and runs on the ground.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Insects & Arthropods (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Catching Or Destruction (AREA)

Abstract

【課題】薬剤の散布の実効性を担保するための薬剤の吐出制御システムを提供する。 【解決策】 薬剤を散布する農業用機械100に備えられ、前記薬剤の吐出を制御するためのシステム500であって、降水の可能性を検知して降水信号を生成する降水予測部24と、外部に前記薬剤を吐出するか否かを制御し、前記降水信号に基づいて薬剤の散布を中止する薬剤制御部30と、を備える。

Description

薬剤の吐出制御システム、その制御方法、および、制御プログラム
本願発明は、薬剤の吐出制御システム、その制御方法、および、制御プログラムに関する。
一般にドローンと呼ばれる小型ヘリコプター(マルチコプター)の応用が進んでいる。その重要な応用分野の一つとして農地(圃場)への農薬や液肥などの薬剤散布が挙げられる(たとえば、特許文献1)。欧米と比較して農地が狭い日本においては、有人の飛行機やヘリコプターではなくドローンの使用が適しているケースが多い。
準天頂衛星システムやRTK-GPS(Real Time Kinematic - Global Positioning System)などの技術によりドローンが飛行中に自機の絶対位置をセンチメートル単位で正確に知ることができるようになったことで、日本において典型的な狭く複雑な地形の農地でも、人手による操縦を最小限として自律的に飛行し、効率的かつ正確に薬剤散布を行なえるようになっている。
その一方で、農業用の薬剤散布向け自律飛行型ドローンについては安全性に対する考慮が十分とは言いがたいケースがあった。薬剤を搭載したドローンの重量は数10キログラムになるため、人の上に落下する等の事故が起きた場合に重大な結果を招きかねない。また、通常、ドローンの操作者は専門家ではないためフールプルーフの仕組みが必要であるが、これに対する考慮も不十分であった。今までに、人間による操縦を前提としたドローンの安全性技術は存在していたが(たとえば、特許文献2)、特に農業用の薬剤散布向けの自律飛行型ドローンに特有の安全性課題に対応するための技術は存在していなかった。
特許公開公報 特開2001-120151 特許公開公報 特開2017-163265
薬剤の散布の実効性を担保するための薬剤の吐出制御システムを提供する。
 上記目的を達成するため、本発明の一の観点に係る薬剤の吐出制御システムは、薬剤を散布する農業用機械に備えられ、前記薬剤の吐出を制御するためのシステムであって、降水の可能性を検知して降水信号を生成する降水予測部と、外部に前記薬剤を吐出するか否かを制御し、前記降水信号に基づいて薬剤の散布を中止する薬剤制御部と、を備える。
 前記降水予測部は、前記農業用機械の周辺の気圧を測定する気圧測定部と、前記気圧に基づいて前記農業用機械が薬剤を散布する領域に降水の可能性があるか否かを判定する降水判定部と、を備えていてもよい。
 前記降水判定部は、前記気圧測定部が測定する気圧の経時変化に基づいて、前記気圧の急変を検知して、前記農業用機械が薬剤を散布する領域に降水の可能性があるか否かを判定するように構成されていてもよい。
 別の農業用機械から送信される降水信号を受信する他機情報受信部をさらに備え、前記薬剤制御部は、前記他機情報受信部が受信する前記降水信号に基づいて前記薬剤の散布を中止させるように構成されていてもよい。
 前記降水予測部が生成する降水信号を、前記農業用機械の外部に送信する機体情報送信部をさらに備えていてもよい。
 予測機により測定される気圧を受信する予測機情報受信部をさらに備え、前記降水予測部は前記気圧に基づいて、降水の可能性を検知するように構成されていてもよい。
 飛行制御部を有するドローンに搭載される薬剤の吐出制御システムであって、前記ドローンが着陸している状態で降水の可能性を検知するとき、前記飛行制御部は前記ドローンの離陸を行わないように構成されていてもよい。
 前記農業用機械が薬剤を散布する領域における前記薬剤の蒸発しやすさを判定して、蒸発しやすさが所定以上であるときに蒸発信号を生成し、前記蒸発信号を前記薬剤制御部に伝達する蒸発予測部をさらに備え、前記薬剤制御部は、前記蒸発信号に基づいて前記薬剤の散布を停止するように構成されていてもよい。
 前記蒸発予測部は、前記領域における温度および湿度の少なくとも一方を測定する蒸発測定部と、前記温度および湿度の少なくとも一方に基づいて前記領域における蒸発しやすさが所定以上であるか否かを判定する蒸発判定部と、を備えていてもよい。
 本発明の別の観点に係る薬剤の吐出制御システムは、薬剤を散布する農業用機械に備えられ、前記薬剤の吐出を制御するためのシステムであって、前記薬剤が散布される領域における前記薬剤の蒸発しやすさを判定して、蒸発しやすさが所定以上であるときに蒸発信号を生成する蒸発予測部と、外部に前記薬剤を吐出するか否かを制御し、前記蒸発信号に基づいて薬剤の散布を中止する薬剤制御部と、を備える。
 前記蒸発予測部は、前記領域における温度および湿度の少なくとも一方を測定する蒸発測定部と、前記温度および湿度の少なくとも一方に基づいて前記領域における蒸発しやすさが所定以上であるか否かを判定する蒸発判定部と、を備えていてもよい。
 別の農業用機械から送信される蒸発信号を受信する他機情報受信部をさらに備え、前記薬剤制御部は、前記他機情報受信部が受信する前記蒸発信号に基づいて前記薬剤の散布を中止させるように構成されていてもよい。
 前記蒸発予測部が生成する蒸発信号を、前記農業用機械の外部に送信する機体情報送信部をさらに備えていてもよい。
 予測機により測定される温度および湿度の少なくとも一方を受信する蒸発予測部をさらに備え、前記蒸発予測部は前記温度および湿度の少なくとも一方に基づいて、蒸発のしやすさを予測するように構成されていてもよい。
 飛行制御部を有するドローンに搭載される薬剤の吐出制御システムであって、前記ドローンが着陸している状態で蒸発しやすさが所定以上であるとき、前記飛行制御部は前記ドローンの離陸を行わないように構成されていてもよい。
 降水信号又は蒸発信号に基づいて、降水可能性又は蒸発しやすさが高いことを通知するように構成されていてもよい。
 前記通知の後、前記薬剤制御部は、使用者により入力される指令を待機し、入力された前記指令に基づいて前記薬剤の散布を行うか否かを決定するように構成されていてもよい。
 本発明の別の観点に係る薬剤の吐出制御方法は、薬剤を散布する農業用機械に備えられ、前記薬剤の吐出を制御するための方法であって、降水の可能性を検知して降水信号を生成するステップと、外部に前記薬剤を吐出するか否かを制御し、前記降水信号に基づいて薬剤の散布を中止するステップと、を含む。
 本発明の別の観点に係る薬剤の吐出制御方法は、薬剤を散布する農業用機械に備えられ、前記薬剤の吐出を制御するための方法であって、前記薬剤が散布される領域における前記薬剤の蒸発しやすさを判定して、蒸発しやすさが所定以上であるときに蒸発信号を生成するステップと、外部に前記薬剤を吐出するか否かを制御し、前記蒸発信号に基づいて薬剤の散布を中止するステップと、を含む、薬剤の吐出制御方法。
 本発明の別の観点に係る薬剤の吐出制御プログラムは、薬剤を散布する農業用機械に備えられ、前記薬剤の吐出を制御するためのプログラムであって、降水の可能性を検知して降水信号を生成する命令と、外部に前記薬剤を吐出するか否かを制御し、前記降水信号に基づいて薬剤の散布を中止する命令と、をコンピュータに実行させる。
 本発明の別の観点に係る薬剤の吐出制御プログラムは、薬剤を散布する農業用機械に備えられ、前記薬剤の吐出を制御するためのプログラムであって、前記薬剤が散布される領域における前記薬剤の蒸発しやすさを判定して、蒸発しやすさが所定以上であるときに蒸発信号を生成する命令と、外部に前記薬剤を吐出するか否かを制御し、前記蒸発信号に基づいて薬剤の散布を中止する命令と、をコンピュータに実行させる。
 なお、コンピュータプログラムは、インターネット等のネットワークを介したダウンロードによって提供したり、CD-ROMなどのコンピュータ読取可能な各種の記録媒体に記録して提供したりすることができる。
薬剤の散布の実効性を担保することができる。
本願発明に係る薬剤の吐出制御システムを有するドローンの第1実施形態を示す平面図である。 上記ドローンの実施例の正面図である。 上記ドローンの実施例の右側面図である。 上記ドローンの背面図である。 上記ドローンの斜視図である。 本願発明に係るドローンの実施例を使用した薬剤散布システムの全体概念図の例である。 本願発明に係るドローンの実施例の制御機能を表した模式図である。 上記ドローンおよび周辺に配置された予測機が有する、降水可能性および蒸発しやすさを判定する構成に関する機能ブロック図である。また、同様の機能を有する別のドローンの機能ブロック図を併記した。 上記ドローンが、降水可能性および蒸発しやすさを判定するフローチャートである。 上記ドローンが、同様の機能を有する別のドローンが有する他機情報受信部から降水信号又は蒸発信号を受信した場合のフローチャートである。 上記ドローンが、上記ドローンが有する予測機情報受信部により気圧、温度、および湿度の測定結果を受信した場合のフローチャートである。 本願発明に係る薬剤の吐出制御システムの第2実施形態におけるドローンが、降水可能性および蒸発しやすさを判定するフローチャートである。 上記ドローンが、同様の機能を有する別のドローンが有する他機情報受信部から降水信号又は蒸発信号を受信した場合のフローチャートである。 上記ドローンが、上記ドローンが有する予測機情報受信部により気圧、温度、および湿度の測定結果を受信した場合のフローチャートである。
以下、図を参照しながら、本願発明を実施するための形態について説明する。図はすべて例示である。以下の詳細な説明では、説明のために、開示された実施形態の完全な理解を促すために、ある特定の詳細について述べられている。しかしながら、実施形態は、これらの特定の詳細に限られない。また、図面を単純化するために、周知の構造および装置については概略的に示されている。
●薬剤の吐出制御システム(1)●
本願明細書において、ドローンとは、動力手段(電力、原動機等)、操縦方式(無線であるか有線であるか、および、自律飛行型であるか手動操縦型であるか等)を問わず、複数の回転翼を有する飛行体全般を指すこととする。ドローンは、農業用機械の例である。
図1乃至図5に示すように、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4b(ローターとも呼ばれる)は、ドローン100を飛行させるための手段であり、飛行の安定性、機体サイズ、および、バッテリー消費量のバランスを考慮し、8機(2段構成の回転翼が4セット)備えられている。
モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bは、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bを回転させる手段(典型的には電動機だが発動機等であってもよい)であり、一つの回転翼に対して1機設けられていることが望ましい。1セット内の上下の回転翼(たとえば、101-1aと101-1b)、および、それらに対応するモーター(たとえば、102-1aと102-1b)は、ドローンの飛行の安定性等のために軸が同一直線上にあり、かつ、互いに反対方向に回転することが望ましい。なお、一部の回転翼101-3b、および、モーター102-3bが図示されていないが、その位置は自明であり、もし左側面図があったならば示される位置にある。図2、および、図3に示されるように、ローターが異物と干渉しないよう設けられたプロペラガードを支えるための放射状の部材は水平ではなくやぐら状の構造である。衝突時に当該部材が回転翼の外側に座屈することを促し、ローターと干渉することを防ぐためである。
薬剤ノズル103-1、103-2、103-3、103-4は、薬剤を下方に向けて散布するための手段であり4機備えられている。なお、本願明細書において、薬剤とは、農薬、除草剤、液肥、殺虫剤、種、および、水などの圃場に散布される液体または粉体を一般的に指すこととする。
薬剤タンク104は散布される薬剤を保管するためのタンクであり、重量バランスの観点からドローン100の重心に近い位置でかつ重心より低い位置に設けられている。薬剤ホース105-1、105-2、105-3、105-4は、薬剤タンク104と各薬剤ノズル103-1、103-2、103-3、103-4とを接続する手段であり、硬質の素材から成り、当該薬剤ノズルを支持する役割を兼ねていてもよい。ポンプ106は、薬剤をノズルから吐出するための手段である。
図4に本願発明に係るドローン100の薬剤散布用途の実施例を使用したシステムの全体概念図を示す。本図は模式図であって、縮尺は正確ではない。操縦器401は、使用者402の操作によりドローン100に指令を送信し、また、ドローン100から受信した情報(たとえば、位置、薬剤量、電池残量、カメラ映像等)を表示するための手段であり、コンピューター・プログラムを稼働する一般的なタブレット端末等の携帯情報機器によって実現されてよい。本願発明に係るドローン100は自律飛行を行なうよう制御されることが望ましいが、離陸や帰還などの基本操作時、および、緊急時にはマニュアル操作が行なえるようになっていることが望ましい。携帯情報機器に加えて、緊急停止専用の機能を有する非常用操作機(図示していない)を使用してもよい(非常用操作機は緊急時に迅速に対応が取れるよう大型の緊急停止ボタン等を備えた専用機器であることが望ましい)。操縦器401とドローン100はWi-Fi等による無線通信を行なうことが望ましい。
圃場403は、ドローン100による薬剤散布の対象となる田圃や畑等である。実際には、圃場403の地形は複雑であり、事前に地形図が入手できない場合、あるいは、地形図と現場の状況が食い違っている場合がある。通常、圃場403は家屋、病院、学校、他作物圃場、道路、鉄道等と隣接している。また、圃場403内に、建築物や電線等の障害物が存在する場合もある。
基地局404は、Wi-Fi通信の親機機能等を提供する装置であり、RTK-GPS基地局としても機能し、ドローン100の正確な位置を提供できるようにすることが望ましい(Wi-Fi通信の親機機能とRTK-GPS基地局が独立した装置であってもよい)。営農クラウド405は、典型的にはクラウドサービス上で運営されているコンピューター群と関連ソフトウェアであり、操縦器401と携帯電話回線等で無線接続されていることが望ましい。営農クラウド405は、ドローン100が撮影した圃場403の画像を分析し、作物の生育状況を把握して、飛行ルートを決定するための処理を行なってよい。また、保存していた圃場403の地形情報等をドローン100に提供してよい。加えて、ドローン100の飛行および撮影映像の履歴を蓄積し、様々な分析処理を行なってもよい。
通常、ドローン100は圃場403の外部にある発着地点406から離陸し、圃場403に薬剤を散布した後に、あるいは、薬剤補充や充電等が必要になった時に発着地点406に帰還する。発着地点406から目的の圃場403に至るまでの飛行経路(侵入経路)は、営農クラウド405等で事前に保存されていてもよいし、使用者402が離陸開始前に入力してもよい。
図6に本願発明に係る薬剤散布用ドローンの実施例の制御機能を表した模式図を示す。フライトコントローラー501は、ドローン全体の制御を司る構成要素であり、具体的にはCPU、メモリー、関連ソフトウェア等を含む組み込み型コンピューターであってよい。フライトコントローラー501は、操縦器401から受信した入力情報、および、後述の各種センサーから得た入力情報に基づき、ESC(Electronic Speed Control)等の制御手段を介して、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの回転数を制御することで、ドローン100の飛行を制御する。モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの実際の回転数はフライトコントローラー501にフィードバックされ、正常な回転が行なわれているかを監視できる構成になっている。あるいは、回転翼101に光学センサー等を設けて回転翼101の回転がフライトコントローラー501にフィードバックされる構成でもよい。
フライトコントローラー501が使用するソフトウェアは、機能拡張・変更、問題修正等のために記憶媒体等を通じて、または、Wi-Fi通信やUSB等の通信手段を通じて書き換え可能になっていることが望ましい。この場合において、不正なソフトウェアによる書き換えが行なわれないように、暗号化、チェックサム、電子署名、ウィルスチェックソフト等による保護を行なうことが望ましい。また、フライトコントローラー501が制御に使用する計算処理の一部が、操縦器401上、または、営農クラウド405上や他の場所に存在する別のコンピューターによって実行されてもよい。フライトコントローラー501は重要性が高いため、その構成要素の一部または全部が二重化されていてもよい。
バッテリー502は、フライトコントローラー501、および、ドローンのその他の構成要素に電力を供給する手段であり、充電式であることが望ましい。バッテリー502はヒューズ、または、サーキットブレーカー等を含む電源ユニットを介してフライトコントローラー501に接続されていることが望ましい。バッテリー502は電力供給機能に加えて、その内部状態(蓄電量、積算使用時間等)をフライトコントローラー501に伝達する機能を有するスマートバッテリーであることが望ましい。
フライトコントローラー501は、Wi-Fi子機機能503を介して、さらに、基地局404を介して操縦器401とやり取りを行ない、必要な指令を操縦器401から受信すると共に、必要な情報を操縦器401に送信できることが望ましい。この場合に、通信には暗号化を施し、傍受、成り済まし、機器の乗っ取り等の不正行為を防止できるようにしておくことが望ましい。基地局404は、Wi-Fiによる通信機能に加えて、RTK-GPS基地局の機能も備えていることが望ましい。RTK基地局の信号とGPS測位衛星からの信号を組み合わせることで、GPSモジュール504により、ドローン100の絶対位置を数センチメートル程度の精度で測定可能となる。GPSモジュール504は重要性が高いため、二重化・多重化しておくことが望ましく、また、特定のGPS衛星の障害に対応するため、冗長化されたそれぞれのGPSモジュール504は別の衛星を使用するよう制御することが望ましい。
6軸ジャイロセンサー505はドローン機体の互いに直交する3方向の加速度を測定する手段(さらに、加速度の積分により速度を計算する手段)である。また、6軸ジャイロセンサー505は、上述の3方向におけるドローン機体の姿勢角の変化、すなわち角速度を測定する手段である。地磁気センサー506は、地磁気の測定によりドローン機体の方向を測定する手段である。気圧センサー507は、気圧を測定する手段であり、間接的にドローンの高度も測定することもできる。レーザーセンサー508は、レーザー光の反射を利用してドローン機体と地表との距離を測定する手段であり、IR(赤外線)レーザーを使用することが望ましい。ソナー509は、超音波等の音波の反射を利用してドローン機体と地表との距離を測定する手段である。これらのセンサー類は、ドローンのコスト目標や性能要件に応じて取捨選択してよい。また、機体の傾きを測定するためのジャイロセンサー(角速度センサー)、風力を測定するための風力センサーなどが追加されていてもよい。また、これらのセンサー類は、二重化または多重化されていることが望ましい。同一目的複数のセンサーが存在する場合には、フライトコントローラー501はそのうちの一つのみを使用し、それが障害を起こした際には、代替のセンサーに切り替えて使用するようにしてもよい。あるいは、複数のセンサーを同時に使用し、それぞれの測定結果が一致しない場合には障害が発生したと見なすようにしてもよい。
流量センサー510は薬剤の流量を測定するための手段であり、薬剤タンク104から薬剤ノズル103に至る経路の複数の場所に設けられている。液切れセンサー511は薬剤の量が所定の量以下になったことを検知するセンサーである。マルチスペクトルカメラ512は圃場403を撮影し、画像分析のためのデータを取得する手段である。障害物検知カメラ513はドローン障害物を検知するためのカメラであり、画像特性とレンズの向きがマルチスペクトルカメラ512とは異なるため、マルチスペクトルカメラ512とは別の機器であることが望ましい。スイッチ514はドローン100の使用者402が様々な設定を行なうための手段である。障害物接触センサー515はドローン100、特に、そのローターやプロペラガード部分が電線、建築物、人体、立木、鳥、または、他のドローン等の障害物に接触したことを検知するためのセンサーである。カバーセンサー516は、ドローン100の操作パネルや内部保守用のカバーが開放状態であることを検知するセンサーである。薬剤注入口センサー517は薬剤タンク104の注入口が開放状態であることを検知するセンサーである。これらのセンサー類はドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。また、ドローン100外部の基地局404、操縦器401、または、その他の場所にセンサーを設けて、読み取った情報をドローンに送信してもよい。たとえば、基地局404に風力センサーを設け、風力・風向に関する情報をWi-Fi通信経由でドローン100に送信するようにしてもよい。
フライトコントローラー501はポンプ106に対して制御信号を送信し、薬剤吐出量の調整や薬剤吐出の停止を行なう。ポンプ106の現時点の状況(たとえば、回転数等)は、フライトコントローラー501にフィードバックされる構成となっている。
LED107は、ドローンの操作者に対して、ドローンの状態を知らせるための表示手段である。LEDに替えて、または、それに加えて液晶ディスプレイ等の表示手段を使用してもよい。ブザー518は、音声信号によりドローンの状態(特にエラー状態)を知らせるための出力手段である。Wi-Fi子機機能519は操縦器401とは別に、たとえば、ソフトウェアの転送などのために外部のコンピューター等と通信するためのオプショナルな構成要素である。Wi-Fi子機機能に替えて、または、それに加えて、赤外線通信、Bluetooth(登録商標)、ZigBee(登録商標)、NFC等の他の無線通信手段、または、USB接続などの有線通信手段を使用してもよい。スピーカー520は、録音した人声や合成音声等により、ドローンの状態(特にエラー状態)を知らせる出力手段である。天候状態によっては飛行中のドローン100の視覚的表示が見にくいことがあるため、そのような場合には音声による状況伝達が有効である。警告灯521はドローンの状態(特にエラー状態)を知らせるストロボライト等の表示手段である。これらの入出力手段は、ドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。
薬剤が散布される圃場は、雨等が降る可能性がある。圃場に薬剤を散布している間、又は散布後であっても圃場に薬剤が定着するまでの間に雨等が降ると、圃場に散布された薬剤が流されてしまい、薬剤を意図通り圃場に定着することができない。また、散布された薬剤が特定の地点に集中して流れ込むことにより、当該地点に過剰濃度の薬剤が滞留して圃場の薬害、又はその薬剤に触れる可能性のある人体に対する安全性を損なう危険がある。そこで、圃場に薬剤を散布するドローンにおいては、圃場に雨等が降ることを予測し、降水が予測される場合には、ドローンを退避させる機能を有することが望ましい。また、ドローンの離陸前に降水が予測される場合は、ドローンの飛行を禁止させる機能を有することが望ましい。
 雨等とは、雨、雪、みぞれ、ひょう、あられなど、大気から落下する種々の降水現象を指す。
 図7に示すように、本願発明に係るドローン100は、飛行制御部23と、降水予測部24と、蒸発予測部25と、他機情報受信部26と、機体情報送信部27と、予測機情報受信部28と、ドローン100から吐出する薬剤の量を制御する薬剤制御部30と、を備える。
 また、ドローン100と同様の機能を有する別のドローン100bは、飛行制御部23bと、降水予測部24bと、蒸発予測部25bと、他機情報受信部26bと、機体情報送信部27bと、予測機情報受信部28bと、ドローン100bから吐出する薬剤の量を制御する薬剤制御部30bと、を備える。ドローン100およびドローン100bは適宜の手法により通信することができる。この構成については後述する。
 飛行制御部23は、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bを制御することで回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bの回転数および回転方向を制御して、ドローン100を使用者402が意図する区画内で飛行させる機能部である。また、飛行制御部23は、ドローン100の離陸および着陸の制御を行う。具体的には、飛行制御部23はマイコン等で実装されるCPUであり、フライトコントローラー501である。
 なお、飛行制御部23は、ドローン100の正常動作においてドローン100の飛行を制御するために動作してもよいし、正常動作における飛行制御手段とは別に構成されていてもよい。後者の場合、飛行制御部23は、降水検知、降水予測、又は蒸発予測時に退避行動を取る場合にのみ動作する。
 所定の安全行動とは、飛行中であれば退避行動、飛行前の準備状態であれば飛行規制措置である。
 退避行動は例えば、通常の着陸動作、ホバリングを例とする空中停止や、最短のルートで直ちに所定の帰還地点まで移動する「緊急帰還」を含む。所定の帰還地点とは、あらかじめフライトコントローラー501に記憶させた地点であり、例えば離陸した地点である。所定の帰還地点とは、例えば使用者402がドローン100に近づくことが可能な陸上の地点であり、使用者402は帰還地点に到達したドローン100を点検したり、手動で別の場所に運んだりすることができる。
 また、退避行動は、最適化されたルートで所定の帰還地点まで移動する「通常帰還」であってもよい。最適化されたルートとは、例えば、通常帰還指令を受信する前に薬剤散布したルートを参照して算出されるルートである。例えば、ドローン100は、まだ薬剤を散布していないルートを経由して、薬剤を散布しながら所定の帰還地点まで移動する。
 さらに、退避行動は、すべての回転翼を停止させてドローン100をその場から下方に落下させる「緊急停止」も含む。
 飛行規制措置は、飛行前の準備段階において飛行を規制する措置であって、使用者の飛行命令を拒否したり、使用者に状態の確認を要求したりするものである。
飛行規制措置がとられた場合には、異常の確認や整備がなされない限り、飛行できないように制御されてもよい。
 飛行制御部23は、降水予測部24が検知する降水可能性の程度、又は既に降水しているか否かに応じて異なる退避行動を行うように構成されていてもよい。例えば、降水を事前に予測し、降水が起こる前に発着地点406に帰還が可能である場合は、通常帰還を行う。非常に強い降水の発生により通常帰還すら困難な状況の場合は、緊急帰還又はその場で通常の着陸動作を行う。さらに、回転翼が強い雨等に打たれ、通常の着陸動作を行うことも困難であると判断された場合は、「緊急停止」を選択してもよい。
 薬剤制御部30は、薬剤タンク104から薬液を散布する量又はタイミングを制御する制御部である。例えば、薬剤タンク104から各薬剤ノズル103-1、103-2、103-3、103-4までの経路のどこかに、薬液経路を開閉する開閉手段が設けられていて、薬剤制御部30は、開閉手段により薬液の放出を遮断した後に各種の緊急動作を実行する。また、薬剤制御部30は、退避行動を実行する前にポンプ106を停止する。降水の可能性がある場合、圃場に薬剤を散布しても定着せず流れてしまうため、散布しても薬剤が無駄になってしまうためである。
 降水予測部24は、薬剤を散布する領域に降水の可能性があることを検知して降水信号を生成し、降水信号を飛行制御部23に伝達する機能部である。降水予測部24は、気圧測定部241および降水判定部242を有する。
 気圧測定部241は、ドローン100の周辺の気圧を測定する機能部である。気圧測定部241は、例えば気圧センサー507により構成されるが、気圧を測定する機能部を複数有していてもよい。
 降水判定部242は、気圧測定部241が測定する気圧に基づいて、ドローン100が薬剤を散布する領域に降水の可能性があるか否かを判定する機能部である。具体的には、降水判定部242は、気圧測定部241が測定する気圧が所定以下の場合には、薬剤を散布する領域に降水の可能性がある旨の信号(以下、「降水信号」ともいう。)を生成し、飛行制御部23に伝達する。
 また、降水判定部242は、気圧測定部241が測定する気圧の経時変化に基づいて、薬剤が散布される領域に降水の可能性があるか否かを判定してもよい。具体的には、測定される気圧が所定時間内に所定以上変化する場合、すなわち気圧の急変がある場合、降水判定部242は降水の可能性を検知してもよい。気圧の急変は、急激な上昇又は急激な下降のいずれかを検知してもよいし、双方を検知してもよい。
 降水判定部242は、測定される気圧又は気圧の経時変化に基づいて、飛行制御部23がいずれの退避行動を行うかを決定し、決定した退避行動の種類を飛行制御部23に伝達してもよい。
 また、降水判定部242は、気圧測定部241が測定する気圧の情報に基づいて、降水の可能性が高いと判定する場合、薬剤制御部30に降水信号を伝達する。薬剤制御部30が薬剤を散布していた場合、薬剤制御部30は、降水信号が伝達されると薬剤の散布を停止する。
 例えば、気圧の急変を検知して降水が予測された場合、まず薬剤制御部30は薬剤の散布を停止し、飛行制御部23はホバリングを行う。降水予測部24は、ホバリング中において繰り返し降水予測を行い、さらに降水の可能性が高まる場合は、飛行制御部23によりドローン100を発着地点まで飛行させる、通常帰還又は緊急帰還を行ってもよい。
 降水判定部242が、薬剤が散布される領域に降水の可能性が高いと判定する気圧の閾値は、予めドローン100に記憶されている固定された閾値であってもよいし、状況に応じて変更される変動する閾値であってもよい。変動する閾値の場合は、ドローン100に無線又は有線接続される適宜の構成により自動で変動されてもよいし、使用者402により手動で変更可能であってもよい。散布する薬剤の種類によって、圃場への定着に要する時間や、降水の影響の度合いが異なる場合があるため、薬剤タンク104に貯留されている薬剤の種類により、閾値が変更されるように構成されていてもよい。この場合、薬剤タンク104又は薬剤タンク104から吐出ノズルに至る経路中に薬剤の種類を判別するセンサが配置され、当該判別センサの判別結果に応じて、あらかじめ薬剤の種類に対応して定められた閾値に自動で変更されてもよい。
 降水予測部24は、ドローン100が有する適宜の通信手段により、使用者402が監視する操縦器401に、降水の可能性を検知した旨を表示する。また、降水予測部24は、ドローン100が有する表示手段、例えばLEDにより、ドローン100が降水の可能性を検知した旨が表示されるように構成してもよい。また、ドローン100のスピーカから適宜の音を出してもよい。
 また、使用者402がドローン100の情報をアイウェア型ウェアラブル端末機により取得する場合には、アイウェアの画面上に表示または投影してもよい。また、使用者402がドローン100の情報をイヤホン型ウェアラブル端末機により取得する場合に、音により通知してもよい。
 なお、本実施形態においては、降水の可能性を予測する手段として気圧および気圧の経時変化を計測したが、別の手段であってもよい。また、降水が発生していることを検知する機能部を有していてもよい。例えば、ドローン100の機体表面の静電容量の変化をセンサーにより測定して、ドローン100が濡れていることを検知することにより、降水が発生していると判断してもよい。
 Web等で公開されている天気予報の情報では、ある地域の広域的な天候の変化を知ることはできるが、夕立のような、局地的で短時間の降水現象を知ることは困難である。そこで、ドローン100自体が降水の可能性を予測する構成によれば、ドローン100が存在する地点の気圧を測定して天候の変化を予測することができるため、薬剤を散布する圃場における、局地的で短時間の天候の変化を含めたより正確な降水予測が可能である。また、ドローン100は、例えば高度測定等、別の用途を想定して気圧センサー507を備える場合が多い。したがって、気圧センサー507を使用して降水予測を行うドローン100によれば、搭載されている気圧センサー507を降水予測にも使用することで、ハード的な構成を追加することなく、より正確かつ効率よく安全に薬剤散布を行うことができる。
 他機情報受信部26は、周辺に存在する別のドローン100bが送信する情報を受信する機能部である。機体情報送信部27は、ドローン100の外部に情報を送信する機能部である。別のドローン100bとは、ドローン100の近傍の空間を飛行するドローンである。別のドローン100bは、同一使用者402により管理されるドローンであってもよいし、別の使用者により管理されるドローンであってもよい。また、本実施の形態においては、別のドローン100bは本発明に係るドローンと同様の構成の薬剤散布用ドローンを想定しているが、別の目的で周辺を飛行するドローンであってもよく、例えば薬剤タンクを有しない監視用ドローンであってもよい。
 機体情報送信部27は、降水判定部242により生成される降水信号をドローン100の外部に送信する。他機情報受信部26は、別のドローン100bが有する機体情報送信部27bからの降水信号を受信し、飛行制御部23および薬剤制御部30に伝達する。飛行制御部23は、他機情報受信部26が受信する降水信号に基づいて、退避行動を開始する。ドローン100が着陸している状態の場合は、飛行制御部23はドローン100の離陸を禁止する。さらに、薬剤制御部30は、他機情報受信部26が受信する降水信号に基づいて薬剤の散布を停止する。
 なお、機体情報送信部27は、降水信号に代えて、自機が測定する気圧を他機情報受信部26bに送信してもよい。この場合、他機情報受信部26は、別のドローン100bからの気圧を降水判定部242に送信する。降水判定部242は、別のドローン100bからの気圧又は気圧の経時変化に基づいて、降水の可能性を検知する。
 他機情報受信部26および機体情報送信部27を有するドローン100によれば、周辺に存在するドローン同士で互いに情報の授受が可能である。他機情報受信部26および機体情報送信部27は、例えばWi-fiを利用することにより、基地局やクラウドを介して気圧情報を送受信してもよいし、他機情報受信部26および機体情報送信部27が直接通信してもよい。直接通信する方式としては、Bluetooth(登録商標)やZigbee(登録商標)など種々の構成が適用可能である。
 他機情報受信部26は、ドローン100が通常飛行中、ホバリング中に加えて、着陸している際にも降水信号又は他機に測定される気圧情報を受信することができる。すなわち、ドローン100が着陸している状態で、降水の可能性が検知される場合、飛行制御部23はドローン100を離陸させないようにすることができる。また、操縦器401の機能の一部を制限し、離陸の指令を送信できないようにしてもよい。
 別のドローン100bにより予測される降水可能性を受信する他機情報受信部26を備える構成によれば、降水判定部242は、ドローン100から離れた地点における降水可能性に基づいて当該ドローン100が薬剤を散布する領域の降水可能性を予測することができる。天候の変化を起こさせる雲は、離れた地点から徐々に近づいてくる場合が多い。したがって、離れた地点における降水可能性の情報を参照することで、より精度よく降水の可能性を予測することができる。
 予測機情報受信部28は、固定された予測機40により測定される気圧を受信可能な受信部である。予測機40は、ドローン100の飛行空間近傍に配置されている。予測機40は、例えばWi-fiの基地局やRTK-GPSの基地局に設置されている。予測機40は、予測機情報受信部28に気圧情報を送信する。予測機情報受信部28は、受信される気圧を降水判定部242に伝達する。
 なお、予測機40は、測定する気圧に基づいて降水の可能性を判定する判定部を有していてもよい。予測機40は、降水の可能性が高いと判定した場合、降水信号をドローン100の予測機情報受信部28に送信する。予測機情報受信部28は、予測機40から送信される降水信号を受信し、飛行制御部23および薬剤制御部30に伝達する。また、予測機40は、Web等で公開されている気象情報を参照して降水の可能性を判定し、降水可能性が高い場合は降水信号を予測機情報受信部28に送信してもよい。
 予測機情報受信部28は、ドローン100が通常飛行中、ホバリング中に加えて、着陸している際にも降水信号又は予測機40により測定される気圧を受信することができる。ドローン100が着陸している状態で、降水の可能性が高いと判定される場合、飛行制御部23はドローン100を離陸させない。予測機情報受信部28の構成によれば、ドローン100が存在している地点から離れた場所における降水の可能性を受信することができる。すなわち、離れた地点から徐々に近づいてくる天候の変化を察知し、当該地点における降水可能性をより正確に予測することができる。
 蒸発予測部25は、薬剤が散布される領域における薬剤の蒸発のしやすさを判定する機能部である。ドローン100は、水溶液、又は水との混合液である薬剤を霧状に散布する。薬剤は、蒸発しやすい環境に散布すると、空中で薬剤中の水分が蒸発してしまう。多くの場合、薬剤の粒子径は水粒子の粒子径より小さいため、水分を失った薬剤は空中を飛散し、圃場内の所望の地点に定着できないおそれがある。また、薬剤自体が揮発性の高いものである場合、薬剤そのものが蒸発してしまい、所望の地点に定着できないおそれがある。したがって、蒸発予測部25によれば、蒸発しやすい環境を判定し、蒸発のしやすさが所定以上の場合は、薬剤の散布を中止することができる。すなわち、より正確かつ効率よく安全に薬剤散布を実効あらしめることができる。
 蒸発予測部25は、蒸発測定部251と、蒸発判定部252と、を備える。
 蒸発測定部251は、薬剤が散布される領域における温度および湿度の少なくとも1個を測定する機能部である。なお、蒸発測定部251は、温度および湿度以外の、蒸発のしやすさに関連する指標を測定してもよい。例えば、蒸発測定部251は、風速を測定してもよい。
 蒸発判定部252は、蒸発測定部251により測定される温度および湿度の少なくとも1個の測定結果に基づいて薬剤が散布される領域における前記薬剤の蒸発しやすさを判定する。例えば、蒸発判定部252は、温度および湿度の閾値をそれぞれ有し、温度が閾値以上、かつ湿度が閾値以下の場合には、蒸発しやすさが所定以上であると判定する。また、蒸発判定部252は、温度および湿度双方の値を複合的に勘案して、すなわち温度および湿度を含む関数を計算することにより、蒸発のしやすさを判定してもよい。
 蒸発判定部252は、蒸発しやすさが所定以上であるときに蒸発信号を生成する。そして、蒸発判定部252は、薬剤制御部30に蒸発信号を伝達する。薬剤制御部30は、蒸発信号が伝達されると、薬剤の散布を停止する。また、蒸発判定部252は、飛行制御部23に蒸発信号を伝達する。飛行制御部23は、蒸発信号が伝達されると、飛行規制措置を取るか、飛行中の場合は退避行動を行う。
 例えば、蒸発しやすい環境であることが予測された場合、まず薬剤制御部30は薬剤の散布を停止し、飛行制御部23はホバリングを行う。蒸発予測部25は、ホバリング中において繰り返し蒸発予測を行い、さらに蒸発しやすさが高まる場合は、飛行制御部23によりドローン100を発着地点406まで飛行させる、通常帰還又は緊急帰還を行ってもよい。
 蒸発判定部252が蒸発のしやすさを判定する温度および湿度の閾値は、予めドローン100に記憶されている固定された閾値であってもよいし、状況に応じて変更される変動する閾値であってもよい。変動する閾値の場合は、ドローン100に無線又は有線接続される適宜の構成により自動で変動されてもよいし、使用者402により手動で変更可能であってもよい。散布する薬剤の種類によって、蒸発のしやすさが異なる場合があるため、薬剤タンク104に貯留されている薬剤の種類により、閾値が変更されるように構成されていてもよい。この場合、薬剤タンク104又は薬剤タンク104から吐出ノズルに至る経路中に薬剤の種類を判別するセンサが配置され、当該判別センサの判別結果に応じて、あらかじめ薬剤の種類に対応して定められた閾値に自動で変更されてもよい。
 なお、他機情報受信部26、機体情報送信部27、予測機情報受信部28、および予測機40は、気圧を測定して降水を予測する構成として説明したが、温度および湿度の少なくとも一方を測定して蒸発のしやすさを予測する構成としても同様に動作する。
 図9に示すように、まず、ドローン100が着陸している状態において、気圧測定部241は気圧を測定する(ステップS1)。
 降水判定部242は、気圧測定部241が測定する気圧又は気圧の経時変化に基づいて、薬剤が散布される圃場の降水可能性を判定する(ステップS2)。
 降水判定部242により、降水可能性が高いと判定される場合、ドローン100の離陸を禁止する飛行規制措置をとる(ステップS3)。
 降水判定部242が降水の可能性が高くないと判定する場合、蒸発測定部251は、温度および湿度の少なくとも一方を測定する(ステップS4)。蒸発判定部252は、温度および湿度の少なくとも一方の測定結果に基づいて、薬剤を散布する領域が蒸発しやすい状況であるか否かを判定する(ステップS5)。蒸発しやすさが所定以上である場合、ドローン100の離陸を禁止する飛行規制措置をとる(ステップS3)。蒸発判定部252により、蒸発しやすさが低いと判定される場合、ドローン100は飛行を開始する(ステップS6)。
 なお、本実施形態では、降水予測により降水の可能性が高くない場合に蒸発予測を行うものとしたが、先に蒸発予測を行い、蒸発しやすさが高くない場合に降水予測を行ってもよい。以下の説明においても同様である。
 飛行開始後のホバリング中又は移動中において、気圧測定部241は、常時気圧を測定する(ステップS7)。降水判定部242は、測定される気圧又は気圧の経時変化に基づいて、降水可能性が高いか否かを判定する(ステップS8)。降水可能性が高くない場合、温度および湿度の少なくとも一方を測定し(ステップS9)、蒸発しやすさが高いか否かを判定する(ステップS9)。蒸発しやすさが低いと判定される場合、ステップS7に戻り、ホバリング中又は移動中において気圧測定、降水判定、温度および湿度測定、ならびに蒸発判定、すなわちステップS7乃至S10を繰り返す。降水可能性又は蒸発しやすさが高い場合、薬剤制御部30は薬剤の散布を中止する(ステップS11)。そして、機体情報送信部27は降水信号又は蒸発信号を別のドローン100bに送信する(ステップS12)。また、ドローン100は退避行動を開始する(ステップS13)。
 なお、ステップS11乃至S13の間において、降水予測および蒸発予測を並行して適宜行ってもよい。特に、退避行動(ステップS13)を行うにあたり、降水の可能性又は蒸発しやすさに応じて、まずホバリングを行い、さらに降水の可能性又は蒸発しやすさが上昇した場合には通常帰還又は緊急帰還を行うなど、随時行われる予測結果に基づいて、順次異なる退避行動を行ってもよい。
 本構成によれば、圃場に薬剤が定着されず、流されてしまうような降水現象の発生を予測して薬剤散布を停止することにより、薬剤散布の実効性を担保することができる。
 図10に示すように、まず、ドローン100の他機情報受信部26が別のドローン100bからの降水信号又は蒸発信号を受信する(ステップS21)。なお、他機情報受信部26が降水信号および蒸発信号を受信するのは、計画通りの飛行である通常飛行、ホバリング中、および着陸している状態のいずれであってもよい。ドローン100が飛行中か着陸している状態かを判断する(ステップS22)。ドローン100が飛行中の場合、薬剤制御部30は薬剤の散布を行っている場合には薬剤の散布を停止する(ステップS23)。また、飛行制御部23は退避行動を開始する(ステップS24)。
 ドローン100が着陸している状態の場合は、飛行制御部はドローン100の離陸を禁止し、離陸を行わないようにする飛行規制措置を行う(ステップS25)。降水が予測されることにより、又は蒸発が予想されることにより、ドローン100が離陸すべきでない旨を操縦器401に表示する。また、操縦器401の操作の一部を制限し、離陸を伴う命令を入力し得ないようにしてもよい。
 図11に示すように、まず、ドローン100の予測機情報受信部28は、予測機40が測定した気圧を受信する(ステップS31)。なお、予測機情報受信部28が降水信号を受信するのは、計画通りの飛行である通常飛行、ホバリング中、および着陸している状態のいずれであってもよい。降水判定部242は、予測機情報受信部28が受信する気圧に基づいて降水可能性が高いか否かを判定する(ステップS32)。
 降水判定部242により降水可能性が低いと判定される場合、予測機情報受信部28は、予測機情報受信部28から温度および湿度の少なくとも一方を受信する(ステップS33)。蒸発判定部252は予測機情報受信部28からの情報に基づいて、薬剤が散布される圃場における薬剤の蒸発しやすさを判定する(ステップS34)。蒸発しやすさが低いと判定される場合、ステップS31に戻る。
 降水判定部242により降水可能性が高いと判定される場合、又は蒸発判定部252により蒸発しやすさが高いと判定される場合、ドローン100が飛行中か着陸している状態かを判断する(ステップS35)。ドローン100が飛行中又はホバリング中の場合、薬剤制御部30は、薬剤の散布を行っている場合には薬剤の散布を停止する(ステップS36)。また、飛行制御部23は、退避行動を開始する(ステップS37)。
 ドローン100が着陸している状態の場合、飛行制御部23はドローン100の離陸を禁止し、ドローン100の飛行は行わないようにする飛行規制措置を行う(ステップS38)。また、降水の可能性が高いためドローン100が離陸すべきでない旨を操縦器401に表示してもよい。さらに、操縦器401の操作の一部を制限し、離陸を伴う命令を入力し得ないようにしてもよい。
●薬剤の吐出制御システム(2)●
 本発明に係る薬剤の吐出制御システムの第2実施形態について、第1実施形態と異なる部分を中心に説明する。第2実施形態における薬剤の吐出制御システムは、降水信号又は蒸発信号を受信した際に、安全行動、すなわち退避行動又は飛行規制措置を行うか否かを使用者に確認するステップを有する。特に説明がない場合、第2実施形態の吐出制御システムの構成は、第1実施形態のものと同一である。
  図12に示すように、まず、ドローン100が着陸している状態において、気圧測定部241は気圧を測定する(ステップS1)。
 降水判定部242は、気圧測定部241が測定する気圧又は気圧の経時変化に基づいて、薬剤が散布される圃場の降水可能性を判定する(ステップS2)。
 降水判定部242が降水の可能性が高くないと判定する場合、蒸発測定部251は、温度および湿度の少なくとも一方を測定する(ステップS4)。蒸発判定部252は、温度および湿度の少なくとも一方の測定結果に基づいて、薬剤を散布する領域が蒸発しやすい状況であるか否かを判定する(ステップS5)。蒸発判定部252により、蒸発しやすさが低いと判定される場合、ドローン100は飛行を開始する(ステップS6)。
 降水判定部242により降水可能性が高いと判定される場合、又は蒸発判定部252により蒸発しやすさが高いと判定される場合、使用者402にその旨が通知される(ステップS111)。そして、使用者402により入力される、薬剤散布に関する動作を継続するか否かを示す指令を待機する。使用者402からの指令が入力され、飛行を行わない旨の指令があった場合、飛行規制措置を行う(ステップS3)。入力された指令が飛行を開始する旨の指令であった場合、ドローン100は飛行を開始する(ステップS6)。
 飛行開始後のホバリング中又は移動中において、気圧測定部241は、常時気圧を測定する(ステップS7)。降水判定部242は、測定される気圧又は気圧の経時変化に基づいて、降水可能性が高いか否かを判定する(ステップS8)。降水可能性が高くない場合、温度および湿度の少なくとも一方を測定し(ステップS9)、蒸発しやすさが高いか否かを判定する(ステップS9)。蒸発しやすさが低いと判定される場合、ステップS7に戻り、ホバリング中又は移動中において気圧測定、降水判定、温度および湿度測定、ならびに蒸発判定、すなわちステップS7乃至S10を繰り返す。
 降水可能性又は蒸発しやすさが高い場合、ドローン100又は操縦器401により使用者402にその旨が通知される(ステップS111)。そして、使用者402により入力される、薬剤散布に関する動作を継続するか否かを示す指令を待機する。使用者402からの指令が入力され、薬剤散布を中止する散布停止指令であった場合、薬剤散布を中止する(ステップS11)。そして、機体情報送信部27は降水信号又は蒸発信号を別のドローン100bに送信する(ステップS12)。また、ドローン100は退避行動を開始する(ステップS13)。使用者402から薬剤散布を継続する旨の入力があった場合、ドローン100は薬剤散布を継続し、ステップS7に戻る。
 図13に示すように、まず、ドローン100の他機情報受信部26が別のドローン100bからの降水信号又は蒸発信号を受信する(ステップS21)。なお、他機情報受信部26が降水信号および蒸発信号を受信するのは、計画通りの飛行である通常飛行、ホバリング中、および着陸している状態のいずれであってもよい。次いで、使用者402にその旨が通知される(ステップS211)。そして、使用者402により入力される、薬剤散布に関する動作を継続するか否かを示す指令を待機する。使用者402からの指令が入力され、薬剤散布を中止する散布停止指令であった場合、ドローン100が飛行中か着陸している状態かを判断する(ステップS22)。ドローン100が飛行中の場合、薬剤制御部30は薬剤の散布を行っている場合には薬剤の散布を停止する(ステップS23)。また、飛行制御部23は退避行動を開始する(ステップS24)。
 ドローン100が着陸している状態の場合は、飛行制御部はドローン100の離陸を禁止し、離陸を行わないようにする飛行規制措置を行う(ステップS25)。
 図14に示すように、まず、ドローン100の予測機情報受信部28は、予測機40が測定した気圧を受信する(ステップS31)。なお、予測機情報受信部28が降水信号を受信するのは、計画通りの飛行である通常飛行、ホバリング中、および着陸している状態のいずれであってもよい。降水判定部242は、予測機情報受信部28が受信する気圧に基づいて降水可能性が高いか否かを判定する(ステップS32)。
 降水判定部242により降水可能性が低いと判定される場合、予測機情報受信部28は、予測機情報受信部28から温度および湿度の少なくとも一方を受信する(ステップS33)。蒸発判定部252は予測機情報受信部28からの情報に基づいて、薬剤が散布される圃場における薬剤の蒸発しやすさを判定する(ステップS34)。蒸発しやすさが低いと判定される場合、ステップS31に戻る。
 降水判定部242により降水可能性が高いと判定される場合、又は蒸発判定部252により蒸発しやすさが高いと判定される場合、使用者402にその旨が通知される(ステップS311)。そして、使用者402により入力される、薬剤散布に関する動作を継続するか否かを示す指令を待機する。使用者402からの指令が入力され、薬剤散布を中止する散布停止指令であった場合(ステップS312)、ドローン100が飛行中か着陸している状態かを判断する(ステップS35)。ドローン100が飛行中又はホバリング中の場合、薬剤制御部30は、薬剤の散布を行っている場合には薬剤の散布を停止する(ステップS36)。また、飛行制御部23は、退避行動を開始する(ステップS37)。
 ドローン100が着陸している状態の場合、飛行制御部23はドローン100の離陸を禁止し、ドローン100の飛行は行わないようにする飛行規制措置を行う(ステップS38)。
 図12乃至図14で説明した第2実施形態において、薬剤散布に関する動作を継続する旨の入力が行われた場合、降水可能性又は蒸発しやすさの報知を行う閾値を上げる変更が自動で行われてもよい。また、一度薬剤散布を継続する旨の入力が行われた場合、報知を所定時間停止する構成を有していてもよい。上述のような構成によれば、薬剤散布の継続が選択された場合、降水可能性又は蒸発しやすさの指標が変化しない場合において繰り返し報知が行われるのを防ぐことができる。また、使用者402からの入力履歴に基づいて、最適な閾値を自動で学習するように構成されていてもよい。
 降水可能性又は蒸発しやすさが所定以上であることを使用者402に報知し、使用者402による確認入力に基づいて動作を決定する本構成によれば、ドローン100が飛行を開始するか、もしくは飛行中又はホバリング中において薬剤散布を行うかどうかを使用者402が決定することができる。薬剤散布を行う圃場特有の事情や、使用者402が入手した各種情報、又は使用者402の事情を加味して、柔軟に薬剤散布を行うことができる。
 なお、本説明においては、農業用薬剤散布ドローンを例に説明したが、本発明の技術的思想はこれに限られるものではなく、薬剤散布を行う農業用機械全般に適用可能である。特に、自律飛行を行うドローンに適用可能である。また、自律的に動作する、地面を自走する農業用機械にも適用可能である。
(本願発明による技術的に顕著な効果)
 本発明にかかる薬剤の吐出制御システムにおいては、降水又は蒸発が起こり得る圃場への薬剤散布に対して、より正確に効率よく薬剤を散布する吐出制御システムを提供することができる。また、圃場および人体に対して安全性の高い吐出制御システムを提供することができる。

 

Claims (21)

  1.  薬剤を散布する農業用機械に備えられ、前記薬剤の吐出を制御するためのシステムであって、
     降水の可能性を検知して降水信号を生成する降水予測部と、
     外部に前記薬剤を吐出するか否かを制御し、前記降水信号に基づいて薬剤の散布を中止する薬剤制御部と、
    を備える、薬剤の吐出制御システム。
  2.  前記降水予測部は、前記農業用機械の周辺の気圧を測定する気圧測定部と、前記気圧に基づいて前記農業用機械が薬剤を散布する領域に降水の可能性があるか否かを判定する降水判定部と、を備える、請求項1記載の薬剤の吐出制御システム。
  3.  前記降水判定部は、前記気圧測定部が測定する気圧の経時変化に基づいて、前記気圧の急変を検知して、前記農業用機械が薬剤を散布する領域に降水の可能性があるか否かを判定する、請求項2記載の薬剤の吐出制御システム。
  4.  別の農業用機械から送信される降水信号を受信する他機情報受信部をさらに備え、前記薬剤制御部は、前記他機情報受信部が受信する前記降水信号に基づいて前記薬剤の散布を中止させる、請求項1乃至3のいずれかに記載の薬剤の吐出制御システム。
  5.  前記降水予測部が生成する降水信号を、前記農業用機械の外部に送信する機体情報送信部をさらに備える、請求項4記載の薬剤の吐出制御システム。
  6.  予測機により測定される気圧を受信する予測機情報受信部をさらに備え、前記降水予測部は前記気圧に基づいて、降水の可能性を検知する、請求項1乃至5のいずれかに記載の薬剤の吐出制御システム。
  7.  飛行制御部を有するドローンに搭載される薬剤の吐出制御システムであって、前記ドローンが着陸している状態で降水の可能性を検知するとき、前記飛行制御部は前記ドローンの離陸を行わない、請求項1乃至6のいずれかに記載の薬剤の吐出制御システム。
  8.  前記農業用機械が薬剤を散布する領域における前記薬剤の蒸発しやすさを判定して、蒸発しやすさが所定以上であるときに蒸発信号を生成し、前記蒸発信号を前記薬剤制御部に伝達する蒸発予測部をさらに備え、前記薬剤制御部は、前記蒸発信号に基づいて前記薬剤の散布を停止する、請求項1乃至7のいずれかに記載の薬剤の吐出制御システム。
  9.  前記蒸発予測部は、前記領域における温度および湿度の少なくとも一方を測定する蒸発測定部と、前記温度および湿度の少なくとも一方に基づいて前記領域における蒸発しやすさが所定以上であるか否かを判定する蒸発判定部と、を備える、請求項8記載の薬剤の吐出制御システム。
  10.  薬剤を散布する農業用機械に備えられ、前記薬剤の吐出を制御するためのシステムであって、
     前記薬剤が散布される領域における前記薬剤の蒸発しやすさを判定して、蒸発しやすさが所定以上であるときに蒸発信号を生成する蒸発予測部と、
     外部に前記薬剤を吐出するか否かを制御し、前記蒸発信号に基づいて薬剤の散布を中止する薬剤制御部と、
    を備える、薬剤の吐出制御システム。
  11.  前記蒸発予測部は、前記領域における温度および湿度の少なくとも一方を測定する蒸発測定部と、前記温度および湿度の少なくとも一方に基づいて前記領域における蒸発しやすさが所定以上であるか否かを判定する蒸発判定部と、を備える、請求項10記載の薬剤の吐出制御システム。
  12.  別の農業用機械から送信される蒸発信号を受信する他機情報受信部をさらに備え、前記薬剤制御部は、前記他機情報受信部が受信する前記蒸発信号に基づいて前記薬剤の散布を中止させる、請求項10又は11のいずれかに記載の薬剤の吐出制御システム。
  13.  前記蒸発予測部が生成する蒸発信号を、前記農業用機械の外部に送信する機体情報送信部をさらに備える、請求項12記載の薬剤の吐出制御システム。
  14.  予測機により測定される温度および湿度の少なくとも一方を受信する蒸発予測部をさらに備え、前記蒸発予測部は前記温度および湿度の少なくとも一方に基づいて、蒸発のしやすさを予測する、請求項10乃至13のいずれかに記載の薬剤の吐出制御システム。
  15.  飛行制御部を有するドローンに搭載される薬剤の吐出制御システムであって、前記ドローンが着陸している状態で蒸発しやすさが所定以上であるとき、前記飛行制御部は前記ドローンの離陸を行わない、請求項10乃至14のいずれかに記載の薬剤の吐出制御システム。
  16.  降水信号又は蒸発信号に基づいて、降水可能性又は蒸発しやすさが高いことを通知する、請求項1乃至15のいずれかに記載の薬剤吐出制御システム。
  17.  前記通知の後、前記薬剤制御部は、使用者により入力される指令を待機し、入力された前記指令に基づいて前記薬剤の散布を行うか否かを決定する、請求項16記載の薬剤吐出制御システム。
  18.  薬剤を散布する農業用機械に備えられ、前記薬剤の吐出を制御するための方法であって、
     降水の可能性を検知して降水信号を生成するステップと、
     外部に前記薬剤を吐出するか否かを制御し、前記降水信号に基づいて薬剤の散布を中止するステップと、
    を含む、薬剤の吐出制御方法。
  19.  薬剤を散布する農業用機械に備えられ、前記薬剤の吐出を制御するための方法であって、
     前記薬剤が散布される領域における前記薬剤の蒸発しやすさを判定して、蒸発しやすさが所定以上であるときに蒸発信号を生成するステップと、
     外部に前記薬剤を吐出するか否かを制御し、前記蒸発信号に基づいて薬剤の散布を中止するステップと、
    を含む、薬剤の吐出制御方法。
  20.  薬剤を散布する農業用機械に備えられ、前記薬剤の吐出を制御するためのプログラムであって、
     降水の可能性を検知して降水信号を生成する命令と、
     外部に前記薬剤を吐出するか否かを制御し、前記降水信号に基づいて薬剤の散布を中止する命令と、
    をコンピュータに実行させる、薬剤の吐出制御方法。
  21.  薬剤を散布する農業用機械に備えられ、前記薬剤の吐出を制御するためのプログラムであって、
     前記薬剤が散布される領域における前記薬剤の蒸発しやすさを判定して、蒸発しやすさが所定以上であるときに蒸発信号を生成する命令と、
     外部に前記薬剤を吐出するか否かを制御し、前記蒸発信号に基づいて薬剤の散布を中止する命令と、
    をコンピュータに実行させる、薬剤の吐出制御方法。

     
PCT/JP2019/022601 2018-06-07 2019-06-06 薬剤の吐出制御システム、その制御方法、および、制御プログラム WO2019235585A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020523183A JP6996792B2 (ja) 2018-06-07 2019-06-06 薬剤の吐出制御システム、その制御方法、および、制御プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018109306 2018-06-07
JP2018-109306 2018-06-07

Publications (1)

Publication Number Publication Date
WO2019235585A1 true WO2019235585A1 (ja) 2019-12-12

Family

ID=68770829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022601 WO2019235585A1 (ja) 2018-06-07 2019-06-06 薬剤の吐出制御システム、その制御方法、および、制御プログラム

Country Status (2)

Country Link
JP (1) JP6996792B2 (ja)
WO (1) WO2019235585A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210273A (ja) * 2009-03-06 2010-09-24 Yanmar Co Ltd 農薬散布支援方法
WO2017002093A1 (en) * 2015-07-02 2017-01-05 Ecorobotix Sàrl Robot vehicle and method using a robot for an automatic treatment of vegetable organisms
JP2017158481A (ja) * 2016-03-09 2017-09-14 パナソニックIpマネジメント株式会社 虫侵入抑制システム
WO2017208354A1 (ja) * 2016-05-31 2017-12-07 株式会社オプティム ドローン飛行制御システム、方法及びプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210273A (ja) * 2009-03-06 2010-09-24 Yanmar Co Ltd 農薬散布支援方法
WO2017002093A1 (en) * 2015-07-02 2017-01-05 Ecorobotix Sàrl Robot vehicle and method using a robot for an automatic treatment of vegetable organisms
JP2017158481A (ja) * 2016-03-09 2017-09-14 パナソニックIpマネジメント株式会社 虫侵入抑制システム
WO2017208354A1 (ja) * 2016-05-31 2017-12-07 株式会社オプティム ドローン飛行制御システム、方法及びプログラム

Also Published As

Publication number Publication date
JPWO2019235585A1 (ja) 2020-12-17
JP6996792B2 (ja) 2022-01-17

Similar Documents

Publication Publication Date Title
JP6752481B2 (ja) ドローン、その制御方法、および、プログラム
JP6727525B2 (ja) ドローン、ドローンの制御方法、および、ドローン制御プログラム
JP6733948B2 (ja) ドローン、その制御方法、および、制御プログラム
JP6889502B2 (ja) ドローン、ドローンの制御方法、および、ドローン制御プログラム
US11797000B2 (en) Unmanned aerial vehicle, control system thereof and control program
WO2019208606A1 (ja) 薬剤の吐出制御システム、方法、及びコンピュータプログラム
US20210110724A1 (en) Agricultural drone having improved foolproof
CN111556842B (zh) 提高安全性的农业用无人机
WO2020137554A1 (ja) ドローン、ドローンの制御方法、および、ドローン制御プログラム
JP6994798B2 (ja) ドローンシステム、ドローン、管制装置、ドローンシステムの制御方法、および、ドローンシステム制御プログラム
JP6913979B2 (ja) ドローン
JP6733949B2 (ja) 薬剤散布用無人マルチコプター、ならびにその制御方法および制御プログラム
WO2020085229A1 (ja) 運転経路生成システム、運転経路生成方法、および運転経路生成プログラム、ならびにドローン
WO2019168052A1 (ja) ドローン、その制御方法、および、プログラム
JP6806403B2 (ja) ドローン、ドローンの制御方法、および、ドローン制御プログラム
WO2019235585A1 (ja) 薬剤の吐出制御システム、その制御方法、および、制御プログラム
WO2020090671A1 (ja) ドローン、ドローンの制御方法、および、ドローン制御プログラム
WO2020116494A1 (ja) ドローンシステム
WO2019189077A1 (ja) ドローン、その制御方法、および、プログラム
JP2021037816A (ja) ドローン、ドローンの制御方法、および、ドローンの制御プログラム
CN111566010B (zh) 无人机、无人机控制方法和计算机可读取记录介质
WO2021224970A1 (ja) 測位システム、移動体、速度推定システム、測位方法、および速度推定方法
JP2021082134A (ja) ドローンシステム、ドローン、管制装置、ドローンシステムの制御方法、および、ドローンシステム制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020523183

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19815579

Country of ref document: EP

Kind code of ref document: A1