WO2019235539A1 - Electromagnetic wave absorber and electromagnetic wave absorber composition - Google Patents
Electromagnetic wave absorber and electromagnetic wave absorber composition Download PDFInfo
- Publication number
- WO2019235539A1 WO2019235539A1 PCT/JP2019/022395 JP2019022395W WO2019235539A1 WO 2019235539 A1 WO2019235539 A1 WO 2019235539A1 JP 2019022395 W JP2019022395 W JP 2019022395W WO 2019235539 A1 WO2019235539 A1 WO 2019235539A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electromagnetic wave
- magnetic iron
- iron oxide
- magnetic
- wave absorber
- Prior art date
Links
- 239000006096 absorbing agent Substances 0.000 title claims abstract description 75
- 239000000203 mixture Substances 0.000 title claims abstract description 38
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims abstract description 299
- 235000013980 iron oxide Nutrition 0.000 claims abstract description 165
- 229920005989 resin Polymers 0.000 claims abstract description 34
- 239000011347 resin Substances 0.000 claims abstract description 34
- 239000011230 binding agent Substances 0.000 claims abstract description 33
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000010410 layer Substances 0.000 claims description 61
- 229910000859 α-Fe Inorganic materials 0.000 claims description 37
- 229910052712 strontium Inorganic materials 0.000 claims description 33
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 33
- 239000011247 coating layer Substances 0.000 claims description 2
- 238000010521 absorption reaction Methods 0.000 abstract description 80
- 239000000463 material Substances 0.000 description 22
- 239000003973 paint Substances 0.000 description 21
- 239000012790 adhesive layer Substances 0.000 description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 14
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 12
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- 239000011358 absorbing material Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 239000000843 powder Substances 0.000 description 11
- 239000000853 adhesive Substances 0.000 description 9
- 230000001070 adhesive effect Effects 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 238000006467 substitution reaction Methods 0.000 description 9
- 239000002270 dispersing agent Substances 0.000 description 8
- -1 ethylene propylene Diene Chemical class 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 229920001971 elastomer Polymers 0.000 description 6
- 229920003023 plastic Polymers 0.000 description 6
- 239000004033 plastic Substances 0.000 description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 description 6
- 239000005020 polyethylene terephthalate Substances 0.000 description 6
- 239000005060 rubber Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 239000000696 magnetic material Substances 0.000 description 5
- 239000004677 Nylon Substances 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 238000003490 calendering Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000012046 mixed solvent Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 229920001778 nylon Polymers 0.000 description 4
- 239000010948 rhodium Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- QLZHNIAADXEJJP-UHFFFAOYSA-N Phenylphosphonic acid Chemical compound OP(O)(=O)C1=CC=CC=C1 QLZHNIAADXEJJP-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 230000005415 magnetization Effects 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 239000000123 paper Substances 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- 229920000106 Liquid crystal polymer Polymers 0.000 description 2
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004697 Polyetherimide Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- 229920000491 Polyphenylsulfone Polymers 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- UCNNJGDEJXIUCC-UHFFFAOYSA-L hydroxy(oxo)iron;iron Chemical compound [Fe].O[Fe]=O.O[Fe]=O UCNNJGDEJXIUCC-UHFFFAOYSA-L 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 125000005395 methacrylic acid group Chemical group 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920001601 polyetherimide Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920005749 polyurethane resin Polymers 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 1
- 101000576320 Homo sapiens Max-binding protein MNT Proteins 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 229920006121 Polyxylylene adipamide Polymers 0.000 description 1
- 229910010389 TiMn Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003522 acrylic cement Substances 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000002902 bimodal effect Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- IBDMRHDXAQZJAP-UHFFFAOYSA-N dichlorophosphorylbenzene Chemical compound ClP(Cl)(=O)C1=CC=CC=C1 IBDMRHDXAQZJAP-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- PEZBJHXXIFFJBI-UHFFFAOYSA-N ethanol;phosphoric acid Chemical compound CCO.OP(O)(O)=O PEZBJHXXIFFJBI-UHFFFAOYSA-N 0.000 description 1
- GATNOFPXSDHULC-UHFFFAOYSA-N ethylphosphonic acid Chemical compound CCP(O)(O)=O GATNOFPXSDHULC-UHFFFAOYSA-N 0.000 description 1
- 229960004585 etidronic acid Drugs 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical compound CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 229920006119 nylon 10T Polymers 0.000 description 1
- NJGCRMAPOWGWMW-UHFFFAOYSA-N octylphosphonic acid Chemical compound CCCCCCCCP(O)(O)=O NJGCRMAPOWGWMW-UHFFFAOYSA-N 0.000 description 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 150000003009 phosphonic acids Chemical class 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001692 polycarbonate urethane Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- NSETWVJZUWGCKE-UHFFFAOYSA-N propylphosphonic acid Chemical compound CCCP(O)(O)=O NSETWVJZUWGCKE-UHFFFAOYSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 239000013464 silicone adhesive Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/02—Oxides; Hydroxides
- C01G49/06—Ferric oxide [Fe2O3]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/10—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
- H01F1/11—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
- H01F1/113—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent
- H01F1/117—Flexible bodies
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
Definitions
- the present disclosure relates to an electromagnetic wave absorber that absorbs electromagnetic waves, and in particular, a frequency band of several tens of gigahertz (GHz) to several hundred gigahertz (GHz), which is referred to as a millimeter wave band, and even a high frequency up to 3 terahertz (THz).
- the present invention relates to an electromagnetic wave absorber having a predetermined bandwidth at the frequency of electromagnetic waves to be absorbed and a composition for electromagnetic wave absorbers.
- centimeter waves having a frequency band of several gigahertz (GHz) are used.
- Patent Document 1 As an electromagnetic wave absorbing sheet that absorbs such a centimeter wave, a laminated sheet in which a rubbery electromagnetic wave absorbing sheet and a paper sheet material such as cardboard are laminated has been proposed (see Patent Document 1). Further, an electromagnetic wave absorbing sheet has been proposed in which electromagnetic wave absorption characteristics are stabilized regardless of the electromagnetic wave incident direction by alternately laminating thin sheets containing anisotropic graphite and a binder and adjusting the thickness thereof ( Patent Document 2).
- electromagnetic waves in a frequency band of 20 gigahertz or more can be absorbed by aligning the longitudinal direction of the flat soft magnetic particles with the surface direction of the sheet.
- An electromagnetic wave absorbing sheet has been proposed (see Patent Document 3).
- an electromagnetic wave absorber having a particle-filled structure having epsilon magnetic iron oxide ( ⁇ -Fe 2 O 3 ) crystals as a magnetic phase exhibits electromagnetic wave absorbing performance in the range of 25 to 100 gigahertz. (See Patent Document 4).
- an electromagnetic wave absorber that absorbs an electromagnetic wave having a specific frequency in a so-called millimeter wave band around 60 GHz has been proposed as an electromagnetic wave absorber that is one of electromagnetic wave utilization technologies and is indispensable for preventing leaked electromagnetic waves.
- an electromagnetic wave absorber that absorbs an electromagnetic wave having a predetermined wide bandwidth in a frequency band higher than the millimeter wave band has not been realized.
- the present disclosure solves the above-described conventional problems and realizes an electromagnetic wave absorber capable of satisfactorily absorbing an electromagnetic wave having a predetermined wide bandwidth and a composition for the electromagnetic wave absorber in a high frequency band of a millimeter wave band or higher.
- the purpose is to do.
- an electromagnetic wave absorber disclosed in the present application is an electromagnetic wave absorber formed by an electromagnetic wave absorption layer including magnetic iron oxide magnetically resonating at a high frequency of a millimeter wave band or higher, and a resin binder,
- a differential curve obtained by differentiating the hysteresis loop of the magnetic characteristics including two or more kinds of magnetic iron oxides having different values of the anisotropic magnetic field HA and having an applied magnetic field strength between 16 kOe and -16 kOe has one extreme value. It is characterized by having.
- the electromagnetic wave absorber composition disclosed in the present application is a composition for an electromagnetic wave absorber formed by magnetic iron oxide that magnetically resonates at a high frequency of a millimeter wave band or higher, and a resinous binder. includes a magnetic field H and the magnetic iron oxide values two or more different of a, the magnetic field strength applied is to have a differential curve is one extreme hysteresis loop obtained by differentiating the magnetic properties between -16kOe from 16kOe Features.
- Each of the electromagnetic wave absorber and the electromagnetic wave absorber composition disclosed in the present application is an electromagnetic wave absorbing material, and as an electromagnetic wave absorbing material, two or more kinds of anisotropic magnetic fields HA that magnetically resonate at a high frequency of the millimeter wave band or higher are different.
- a differential curve obtained by differentiating a hysteresis loop of magnetic characteristics having magnetic iron oxide and an applied magnetic field strength between 16 kOe and ⁇ 16 kOe has one extreme value. For this reason, electromagnetic waves in a high frequency band of several tens of gigahertz or more can be favorably absorbed over a predetermined wide bandwidth.
- the electromagnetic wave absorber disclosed in the present application is an electromagnetic wave absorber formed by an electromagnetic wave absorption layer including magnetic iron oxide that magnetically resonates at a high frequency of a millimeter wave band or higher and a resin binder, and an anisotropic magnetic field HA
- a differential curve obtained by differentiating the hysteresis loop of the magnetic characteristics in which the magnetic field strength applied is between 16 kOe and ⁇ 16 kOe has two extreme values.
- the electromagnetic wave absorber disclosed in the present application is an anisotropic magnetic field H in which the resonance frequency of magnetic iron oxide, which is a member that absorbs electromagnetic waves, that is, the frequency of electromagnetic waves absorbed by the magnetic iron oxide is determined.
- the resonance frequency of magnetic iron oxide which is a member that absorbs electromagnetic waves
- the frequency of electromagnetic waves absorbed by the magnetic iron oxide is determined.
- the differential curve obtained by differentiating the hysteresis loop of the magnetic characteristics between 16 kOe and ⁇ 16 kOe has one extreme value
- the frequency characteristic of the electromagnetic wave absorbed as a whole of the electromagnetic wave absorber has a shape having one peak. . For this reason, it is possible to obtain an electromagnetic wave absorber having high electromagnetic wave absorption characteristics and at the same time having a wider width in the frequency band of electromagnetic waves absorbed than when only one type of magnetic iron oxide is used.
- the differential curve obtained by differentiating the hysteresis loop has one extreme value means that the differential curve has an extreme value, that is, only one inflection point. It is not included when there are two or more values (inflection points).
- the electromagnetic wave absorber disclosed in the present application it is preferable that two or more kinds of the magnetic iron oxides included in the electromagnetic wave absorption layer have the same main element configuration and different substitute elements. In this way, an electromagnetic wave absorber having more uniform characteristics with excellent dispersibility can be obtained by using an electromagnetic wave absorbing material having similar characteristics such as particle size and shape although the frequency of electromagnetic waves to be absorbed is different. Even when two or more kinds of magnetic iron oxides are used, the differential curve obtained by differentiating the hysteresis loop of the magnetic characteristics can easily have one extreme value.
- the magnetic iron oxide is preferably strontium ferrite magnetic iron oxide or epsilon magnetic iron oxide.
- the electromagnetic wave absorbing layer is formed to be thin with respect to the size of the electromagnetic wave absorbing layer when viewed in plan, and is formed into a sheet shape as a whole.
- the electromagnetic wave absorber disclosed by this application can be utilized as an electromagnetic wave absorption sheet with easy handling.
- the electromagnetic wave absorber composition disclosed in the present application is a composition for an electromagnetic wave absorber formed by magnetic iron oxide that magnetically resonates at a high frequency of a millimeter wave band or higher, and a resinous binder.
- a differential curve obtained by differentiating the hysteresis loop of the magnetic characteristics including two or more kinds of the magnetic iron oxides having different values of the magnetic field HA and having an applied magnetic field strength between 16 kOe and ⁇ 16 kOe has one extreme value.
- composition for electromagnetic wave absorbers disclosed in the present application forms an electromagnetic wave absorber that has high electromagnetic wave absorption characteristics and at the same time the frequency band of the absorbed electromagnetic waves has a predetermined wide width. Can do.
- composition for an electromagnetic wave absorber it is preferable that two or more kinds of the magnetic iron oxides included in the electromagnetic wave absorption layer have the same main element configuration and different substitution elements. By doing so, a composition for an electromagnetic wave absorber with more uniform characteristics can be obtained, and a differential curve obtained by easily differentiating the hysteresis loop of the magnetic characteristics even when two or more kinds of magnetic iron oxides are used. Can have one extreme value.
- the magnetic iron oxide is preferably either strontium ferrite magnetic iron oxide or epsilon magnetic iron oxide.
- the building member and the electronic device formed using the electromagnetic wave absorber composition disclosed in the present application are both high in the above-described electromagnetic wave absorber composition and have a wide frequency band to be absorbed. It can be set as the building member and electronic device provided with the outstanding electromagnetic wave absorption characteristic.
- an electromagnetic wave absorption layer containing particulate magnetic iron oxide and a resin binder is formed with a thickness smaller than that when viewed in plan.
- An example of a so-called transmission-type electromagnetic wave absorbing sheet configured as a sheet as a whole will be described.
- FIG. 1 is a cross-sectional view showing a configuration of an electromagnetic wave absorbing sheet as an electromagnetic wave absorber described in the present embodiment.
- FIG. 1 shows a state in which an electromagnetic wave absorbing sheet 1 is molded by applying and drying an electromagnetic wave absorbing composition on a resin sheet 2 as a base material.
- FIG. 1 is a figure described in order to make it easy to understand the configuration of the electromagnetic wave absorbing sheet according to the present embodiment, and the size and thickness of the members shown in the figure are represented in actuality. It is not a thing.
- the electromagnetic wave absorbing sheet exemplified in this embodiment is formed as an electromagnetic wave absorbing layer 1 including two types of magnetic iron oxides 1a 1 and 1a 2 having different anisotropic magnetic field values HA and a resin binder 1b. Yes.
- the two magnetic iron oxides 1a 1 and 1a 2 included in the electromagnetic wave absorbing layer 1 have different anisotropic magnetic field HA values, and the magnetic iron oxide 1a 1 is magnetic.
- the coercive force of iron oxide 1a 2 is different. Since the frequency of electromagnetic waves absorbed by magnetic iron oxide by magnetic resonance varies depending on the coercive force value, in the electromagnetic wave absorbing sheet of this embodiment, each magnetic iron oxide 1a 1 , 1a 2 absorbs electromagnetic waves having different frequencies. .
- the electromagnetic wave absorption characteristic of the entire electromagnetic wave absorbing sheet has one extreme value as a differential curve obtained by differentiating a hysteresis loop which is a magnetic characteristic with respect to a magnetic field applied from the outside. This means that the absorption characteristic with respect to the frequency of the electromagnetic wave appears as one mountain shape having a peak at a predetermined frequency.
- electromagnetic wave absorbing sheet In the electromagnetic wave absorbing sheet according to the present embodiment, magnetic iron oxides having different values of the anisotropic magnetic field HA contained as the electromagnetic wave absorbing material thus absorb electromagnetic waves having different frequencies, so that only one type of magnetic iron oxide is used.
- the frequency band of electromagnetic waves to be absorbed is wider than that of an electromagnetic wave absorbing sheet containing.
- the differential curve obtained by differentiating the hysteresis loop indicating the magnetic characteristics of the entire electromagnetic wave absorbing sheet has one extreme value, and the frequency characteristics of the absorbed electromagnetic waves are expressed as one mountain shape.
- the electromagnetic wave absorbing sheet according to the present embodiment can achieve both high electromagnetic wave absorption characteristics and a wide absorption frequency band.
- the magnetic iron oxide contained in the electromagnetic wave absorption layer 1 is two types is illustrated, in the electromagnetic wave absorption sheet concerning this embodiment, it is contained in the electromagnetic wave absorption layer 1 so that it may mention later. There may be three or more kinds of magnetic iron oxides.
- the value of the anisotropic magnetic field HA of the magnetic iron oxide contained in the electromagnetic wave absorbing layer 1 is different, and the differential curve obtained by differentiating the hysteresis loop of the magnetic characteristics has one extreme value.
- the state of having will be described later with a specific example.
- epsilon magnetic iron oxide is used as the particulate magnetic iron oxide.
- Epsilon magnetic iron oxide ( ⁇ -Fe 2 O 3 ) is an intermediate between the alpha phase ( ⁇ -Fe 2 O 3 ) and the gamma phase ( ⁇ -Fe 2 O 3 ) in ferric oxide (Fe 2 O 3 ). It is a magnetic material that can be obtained in a single-phase state by a nanoparticle synthesis method combining a reverse micelle method and a sol-gel method.
- Epsilon magnetic iron oxide has a maximum coercive force as a metal oxide of about 20 kOe at room temperature while being a fine particle of several nm to several tens of nm, and further has a natural resonance due to a gyromagnetic effect based on precession. Since it occurs in the so-called millimeter wave band frequency band above gigahertz, it can be used as an electromagnetic wave absorbing material that absorbs electromagnetic waves in the millimeter wave band.
- epsilon magnetic iron oxide is a crystal in which part of the Fe site of the crystal is replaced with a trivalent metal element such as aluminum (Al), gallium (Ga), rhodium (Rh), indium (In), or the like.
- a trivalent metal element such as aluminum (Al), gallium (Ga), rhodium (Rh), indium (In), or the like.
- FIG. 2 shows the relationship between the coercive force Hc of epsilon magnetic iron oxide and the natural resonance frequency f when the metal element substituted for the Fe site is different. Note that the natural resonance frequency f matches the frequency of the electromagnetic wave to be absorbed.
- FIG. 2 shows that the natural resonance frequency of epsilon magnetic iron oxide in which a part of the Fe site is substituted differs depending on the type of the substituted metal element and the amount of substitution. Moreover, it turns out that the coercive force of the said epsilon magnetic iron oxide becomes large, so that the value of the natural resonance frequency becomes high.
- the frequency band from about 30 GHz to about 150 GHz by adjusting the substitution amount “x”.
- the type of element to be replaced with the Fe site of epsilon magnetic iron oxide is determined so as to obtain the natural resonance frequency of the frequency to be absorbed by the electromagnetic wave absorbing sheet, and the electromagnetic wave absorbed by adjusting the amount of substitution with Fe is adjusted. Can be set to a desired value. Furthermore, in the case of epsilon magnetic iron oxide in which the metal to be replaced is rhodium, that is, ⁇ -Rh x Fe 2-x O 3 , the frequency band of the electromagnetic wave to be absorbed is shifted in a higher direction from 180 gigahertz to more. It is possible.
- Epsilon magnetic iron oxide can be obtained including those in which some Fe sites are metal-substituted. Epsilon magnetic iron oxide can be obtained as particles having an approximately spherical shape or a short rod shape (rod shape) with an average particle size of about 30 nm.
- strontium ferrite magnetic iron oxide or M-type ferrite can be used in addition to the above-described epsilon magnetic iron oxide.
- Strontium ferrite magnetic iron oxide is a system in which Al is added to SrFe 12 O 19 in order to design an electromagnetic wave absorber corresponding to a 60 GHz band wireless LAN.
- the frequency indicating absorption shifts to the high frequency side. This is considered to correspond to an increase in the value of the anisotropic magnetic field HA .
- M type ferrite pays attention to the fact that the imaginary part ( ⁇ r ′′) of the complex permeability related to electromagnetic wave absorption becomes higher at the frequency at which resonance occurs when the magnetic material is magnetized at a high frequency.
- the anisotropic magnetic field H a having a material proportional value of the natural resonant frequency f higher the anisotropy field H a material becomes higher.
- Natural resonant frequency f of BaFe 12 O 19 is a M-type ferrite, the value of the H A is calculated as 48GHz from 1.35 mA / m, it is possible to absorb electromagnetic waves of high GHz band.
- the value of the anisotropic magnetic field HA is controlled to control the natural resonance frequency f in the range of 5 to 150 GHz. can do.
- epsilon magnetic iron oxide, M-type ferrite, and strontium ferrite magnetic iron oxide as magnetic iron oxide, the value of anisotropic magnetic field (H A ) of each magnetic iron oxide can be controlled. As a result, the frequency of electromagnetic waves absorbed by the electromagnetic wave absorbing sheet containing these magnetic iron oxides in the electromagnetic wave absorbing layer 1 can be changed.
- FIG. 3 is a diagram showing the relationship between the coercive force of epsilon magnetic iron oxide and the frequency of electromagnetic waves absorbed.
- FIG. 3 for epsilon magnetic iron oxides with different types of substitution elements and substitution amounts, the coercivity (Hc) value (Oe) measured for each and the peak value (GHz) of the frequency of the absorbed electromagnetic wave are shown. Plotting. As shown in FIG. 3, a clear linear relationship is recognized between the coercive force and the absorption frequency of various epsilon magnetic iron oxides as indicated by reference numeral 31 in FIG.
- FIG. 4 shows the relationship between the coercive force of strontium ferrite magnetic iron oxide and the frequency of electromagnetic waves absorbed.
- Electromagnetic wave absorption layer In the electromagnetic wave absorbing sheet according to the present embodiment, in the electromagnetic wave absorbing layer 1, magnetic iron oxide particles 1a 1 and 1a 2 are dispersed by a resin binder 1b, thereby providing flexibility as a sheet.
- resin materials such as epoxy resins, polyester resins, polyurethane resins, acrylic resins, phenol resins, melamine resins, rubber resins, and the like can be used. .
- a compound obtained by epoxidizing hydroxyl groups at both ends of bisphenol A can be used as the epoxy resin.
- the polyurethane resin a polyester urethane resin, a polyether urethane resin, a polycarbonate urethane resin, an epoxy urethane resin, or the like can be used.
- Acrylic resins include methacrylic resins, alkyl acrylates and / or methacrylic acid alkyl esters in which the alkyl group has 2 to 18 carbon atoms, functional group-containing monomers, and if necessary, these A functional group-containing methacrylic polymer or the like obtained by copolymerizing with another modifying monomer that can be copolymerized with the monomer can be used.
- SIS styrene-isobrene block copolymer
- SBS styrene-butadiene block copolymer
- EPDM ethylene propylene Diene / rubber
- acrylic rubber and silicone rubber can be used as a binder.
- thermoplastic resin for forming the electromagnetic wave absorber as a molded body
- 6T nylon 6TPA
- 10T nylon (10TPA) 6T nylon
- 12T Aromatic polyamides such as nylon (12TPA), MXD6 nylon (MXDPA) and their alloy materials
- PPS polyphenylene sulfide
- LCP liquid crystal polymer
- PEEK polyetheretherketone
- PEI polyetherimide
- PPSU polyphenyl Sulfone
- halogen-free resin that does not contain halogen as the resin used as the binder. Since these resin materials are common as binder materials for resin sheets, they can be easily obtained.
- the term “flexible” means that the electromagnetic wave absorbing layer can be bent to a certain extent, that is, it is flat without causing plastic deformation such as breakage when the sheet is rolled and returned to its original state. The state which returns to a sheet-like sheet is shown.
- the electromagnetic wave absorbing layer of the electromagnetic wave absorbing sheet according to the present embodiment uses epsilon magnetic iron oxide as an electromagnetic wave absorbing material.
- Epsilon magnetic iron oxide is a fine nanoparticle having a particle size of several nm to several tens of nm as described above. For this reason, it is important to disperse well in the binder when forming the electromagnetic wave absorbing layer.
- aryl sulfonic acid such as phenylphosphonic acid and phenylphosphonic dichloride
- alkylphosphonic acid such as methylphosphonic acid, ethylphosphonic acid, octylphosphonic acid and propylphosphonic acid, or hydroxyethane diphosphonic acid
- phosphate compounds such as polyfunctional phosphonic acids such as nitrotrismethylene phosphonic acid. Since these phosphoric acid compounds have flame retardancy and function as a fine magnetic iron oxide powder dispersant, the epsilon magnetic iron oxide particles in the binder can be well dispersed.
- examples of the dispersant include phenylphosphonic acid (PPA) manufactured by Wako Pure Chemical Industries, Ltd. or Nissan Chemical Industries, Ltd., and phosphoric acid ester “JP-502” manufactured by Johoku Chemical Industries, Ltd. (Product name) can be used.
- PPA phenylphosphonic acid
- JP-502 phosphoric acid ester manufactured by Johoku Chemical Industries, Ltd.
- the resin binder is 2 to 50 parts and the phosphoric acid compound content is 0.1 to 15 parts with respect to 100 parts of epsilon magnetic iron oxide powder. it can. If the resin binder is less than 2 parts, the magnetic iron oxide cannot be dispersed well. In addition, the sheet-like shape cannot be maintained as the magnetic layer. When the amount is more than 50 parts, the volume content of magnetic iron oxide is reduced in the electromagnetic wave absorbing layer, and the magnetic permeability is lowered, so that the effect of electromagnetic wave absorption is reduced.
- the content of the phosphoric acid compound is less than 0.1 part, the magnetic iron oxide cannot be well dispersed using the resin binder.
- the amount is more than 15 parts, the effect of satisfactorily dispersing magnetic iron oxide is saturated.
- the volume content of magnetic iron oxide is reduced and the magnetic permeability is lowered, so that the effect of electromagnetic wave absorption is reduced.
- the electromagnetic wave absorbing sheet of the present embodiment is formed, for example, by producing a magnetic paint containing at least magnetic iron oxide powder and a resinous binder, applying it at a predetermined thickness, drying it, and calendering it. can do.
- a magnetic coating component at least magnetic iron oxide powder, a phosphoric acid compound as a dispersant, and a binder resin are mixed at high speed with a high-speed stirrer to prepare a mixture, and then the resulting mixture is dispersed in a sand mill. By doing so, a magnetic paint can be obtained.
- An electromagnetic wave absorbing sheet is produced using the magnetic paint thus produced.
- the produced magnetic paint is applied on a resin sheet 2.
- a resin sheet 2 a sheet of polyethylene terephthalate (PET) having a thickness of 38 ⁇ m, the surface of which has been peeled off by silicon coating, can be used.
- PET polyethylene terephthalate
- a magnetic paint is applied onto the resin sheet 2 using an application method such as a table coater method or a bar coater method.
- the wet-state magnetic paint is dried and further calendered to form an electromagnetic wave absorbing sheet on the support.
- the thickness of the electromagnetic wave absorbing sheet can be controlled by the coating thickness, the calendering conditions, and the like.
- the electromagnetic wave absorbing sheet 1 after the calendar process is peeled from the resin sheet 2 to obtain the electromagnetic wave absorbing sheet 1 having a desired thickness.
- the calendar process may be performed as necessary. If the volume content of the magnetic iron oxide powder is within a predetermined range with the magnetic paint dried, the calendar process may not be performed. Absent.
- an electromagnetic wave absorbing layer of the electromagnetic wave absorbing sheet is formed by preparing a magnetic compound containing at least a magnetic iron oxide powder and a resin binder such as rubber, molding the resultant to a predetermined thickness, and crosslinking the resultant. Can do.
- a magnetic compound is prepared.
- the magnetic compound can be obtained by kneading magnetic iron oxide powder, a dispersant, and a resin binder.
- the kneaded product can be obtained by kneading with a pressure batch kneader.
- a crosslinking agent can be mix
- the obtained magnetic compound is cross-linked and molded into a sheet at a temperature of 150 ° C. using a hydraulic press machine as an example. Thereafter, an electromagnetic wave absorbing layer can be formed by performing a secondary cross-linking treatment in a thermostatic chamber.
- the molding can be performed by extrusion molding or injection molding in addition to the press molding described above. Specifically, magnetic iron oxide powder, a binder, and a dispersant as necessary are pre-blended with a pressure kneader, an extruder, a roll mill, etc., and these blended materials are fed from the resin supply port of the extruder. Supply into plastic cylinder.
- a normal extrusion machine including a plastic cylinder, a die provided at the tip of the plastic cylinder, a screw rotatably disposed in the plastic cylinder, and a drive mechanism for driving the screw.
- a molding machine can be used.
- the molten material plasticized by the band heater of the extrusion molding machine is fed forward by the rotation of the screw and extruded from the tip into a sheet shape, whereby an electromagnetic wave absorbing layer having a predetermined thickness can be obtained.
- magnetic iron oxide powder, dispersant, and binder are pre-blended as necessary, and these blended materials are fed into the plastic cylinder from the resin supply port of the injection molding machine, and melt kneaded with a screw in the plasticizing cylinder. Thereafter, the molded body can be formed by injecting the molten resin into a mold connected to the tip of the injection molding machine.
- the electromagnetic wave absorption sheet concerning this embodiment can form the electromagnetic wave absorption layer 1 on a base film.
- the formed electromagnetic wave absorption layer 1 is thin and a predetermined strength as the electromagnetic wave absorption sheet 1 cannot be obtained, it is preferable to laminate a base film which is a resin base material on the back side of the electromagnetic wave absorption layer 1.
- a base film it can comprise using paper members, such as various resin films, such as PET film, rubber
- the material and thickness of the base film do not affect the electromagnetic wave absorption characteristics in the electromagnetic wave absorbing sheet according to the present embodiment, so from a practical viewpoint such as the strength of the electromagnetic wave absorbing sheet and ease of handling, an appropriate material is used. And the base film which has suitable thickness can be selected.
- an adhesive layer (not shown) is formed on the back side of the electromagnetic wave absorbing layer 1 or on the surface opposite to the side on which the electromagnetic wave absorbing layer 1 of the base film is formed. be able to.
- the electromagnetic wave absorbing sheet composed of the electromagnetic wave absorbing layer 1 can be easily placed at a desired position on the inner surface of the housing housing the electric circuit, or on the inner surface or outer surface of the electric device, regardless of the presence or absence of the base film. Can be attached.
- the electromagnetic wave absorbing sheet 1 of the present embodiment is one in which the electromagnetic wave absorbing layer 1 has flexibility, it can be easily attached on a curved surface, and the handling ease of the electromagnetic wave absorbing sheet is improved. .
- the adhesive layer a known material used as an adhesive layer such as an adhesive tape, an acrylic adhesive, a rubber adhesive, a silicone adhesive, or the like can be used. Moreover, a tackifier and a crosslinking agent can also be used in order to adjust the adhesive force to the adherend and reduce adhesive residue.
- the adhesive strength with respect to the adherend is preferably 5 N / 10 mm to 12 N / 10 mm. When the adhesive strength is less than 5 N / 10 mm, the electromagnetic wave absorbing sheet may be easily peeled off from the adherend or may be displaced. Moreover, when adhesive force is larger than 12 N / 10mm, it will become difficult to peel an electromagnetic wave absorption sheet from a to-be-adhered body.
- the thickness of the adhesive layer is preferably 20 ⁇ m to 100 ⁇ m.
- the thickness of the adhesive layer is less than 20 ⁇ m, the adhesive force is reduced, and the electromagnetic wave absorbing sheet may be easily peeled off or displaced from the adherend.
- the thickness of the adhesive layer 4 is larger than 100 ⁇ m, it is difficult to peel the electromagnetic wave absorbing sheet from the adherend.
- the cohesive force of the adhesive layer is small, adhesive residue may be generated on the adherend when the electromagnetic wave absorbing sheet is peeled off.
- the adhesive layer may be an adhesive layer that cannot be peeled off or may be an adhesive layer that can be peeled off.
- the electromagnetic wave absorbing sheet when adhering the electromagnetic wave absorbing sheet to a predetermined surface, it is needless to say that the electromagnetic wave absorbing sheet has an adhesive layer on the surface on the side of the member on which the electromagnetic wave absorbing sheet is disposed.
- An electromagnetic wave absorbing sheet can be attached to a predetermined site using adhesiveness or using a double-sided tape or an adhesive.
- the adhesive layer is not an essential component in the electromagnetic wave absorbing sheet shown in the present embodiment.
- FIG. 5 is a diagram illustrating a hysteresis loop of magnetic characteristics and a differential curve obtained by differentiating the hysteresis loop in the first configuration example of the electromagnetic wave absorbing layer of the electromagnetic wave absorbing sheet according to the present embodiment.
- the hysteresis curves shown in the following figures are obtained by preparing a sample containing a predetermined magnetic iron oxide having a diameter of 8 mm ⁇ and a thickness of 2 mm.
- the vibration sample magnetometer VSM-P7 product of Toei Kogyo Co., Ltd.
- the applied magnetic field was measured in the range of 16 kOe to -16 kOe.
- the measurement time constant Tc is set to 0.03 sec.
- a magnetization curve 51 indicating the strength of magnetization remaining in magnetic iron oxide when a magnetic field whose strength changes from the outside is applied draws a so-called hysteresis curve.
- Magnetic iron oxide that causes magnetic resonance at a high frequency of several tens to several hundreds of gigahertz in the millimeter wave band and further up to 3 terahertz is a gyromagnetic resonance type magnetic material and has a high coercive force.
- the hysteresis curve of magnetic iron oxide has a slanting shape.
- the value of the applied magnetic field that reaches the saturation magnetic field in the magnetization curve in the hard axis direction is the value of the anisotropic magnetic field HA of magnetic iron oxide, and this value is the strength of the applied magnetic field in which spins are aligned in one direction. Is shown.
- ⁇ is a gyro magnetic constant, which is a value determined by the type of magnetic material.
- the electromagnetic wave absorption layer 1 of the present embodiment has different anisotropic properties.
- magnetic resonance is caused at different frequencies, and electromagnetic waves of the frequencies are converted into heat and attenuated.
- each magnetic iron oxide can absorb an electromagnetic wave having a predetermined frequency, and the electromagnetic wave absorbing layer has different coercive forces having different values of the anisotropic magnetic field HA.
- the electromagnetic wave absorbing layer 1 includes two or more magnetic iron oxides having different anisotropic magnetic field HA values, and the electromagnetic wave absorbing sheet is applied from the outside.
- a differential curve 52 obtained by differentiating the hysteresis curve 51 of the magnetic characteristics between 16 kOe and -16 kOe of the magnetic field intensity has one extreme value, that is, a mountain shape having one peak as shown in FIG. .
- epsilon magnetic iron oxide having an electromagnetic wave shielding frequency (natural resonance frequency) of 76 GHz and 79 GHz was mixed at a ratio of 1: 1, and a magnetic paint was prepared with the following composition.
- This magnetic paint component was dispersed with a zirconia bead having a diameter of 0.5 mm in a disc-type sand mill having an internal volume of 2 L. While stirring the dispersed paint thus obtained with a stirrer, the following materials were blended and dispersed under the conditions described as the method for producing the electromagnetic wave absorbing sheet to obtain a magnetic paint.
- the obtained magnetic coating material was applied onto a 38 ⁇ m-thick polyethylene terephthalate (PET) sheet peel-treated with a silicon coat using a bar coater, dried in a wet state at 80 ° C. for 1440 minutes, A 400 ⁇ m thick sheet was obtained.
- the sheet thus obtained was calendered at a temperature of 80 ° C. and a pressure of 150 kg / cm to obtain an electromagnetic wave absorbing sheet having a thickness of 300 ⁇ m.
- the differential curve 52 of the hysteresis curve 51 is expressed as a mountain shape that draws one peak, and the sample to be measured has two anisotropic magnetic fields HA . While the magnetic oxide having a value is included, the value of the anisotropic magnetic field HA , that is, the difference in coercive force that determines the frequency of the electromagnetic wave to be absorbed is as small as 400 Oe. It turns out that the electromagnetic wave absorption characteristic which has this is shown.
- the values of the anisotropic magnetic fields HA of the two epsilon magnetic iron oxides are 7544 Oe and 7944 Oe, and the electromagnetic wave shielding (absorption) frequency (76 GHz). , 79 GHz) was 3 GHz. According to the study by the inventors, if the difference in the shielding frequency of the magnetic iron oxide contained in the electromagnetic wave absorbing layer is 5 GHz or less, the differential curve of the hysteresis curve has one extreme value as the curve 52 shown in FIG. It was confirmed that the shape had a shape, that is, a single mountain shape.
- FIG. 6 shows the case of the second configuration example of the electromagnetic wave absorbing sheet containing strontium ferrite magnetic iron oxide having electromagnetic wave shielding frequencies of 75 GHz and 76 GHz.
- FIG. 7 shows the case of the 3rd structural example of the electromagnetic wave absorption sheet containing strontium ferrite magnetic iron oxide whose electromagnetic wave shielding frequency is 75 GHz and 77 GHz.
- FIG. 8 shows the case of the fourth configuration example of the electromagnetic wave absorbing sheet containing strontium ferrite magnetic iron oxide having electromagnetic wave shielding frequencies of 76 GHz and 77 GHz.
- FIG. 6 shows the case of the second configuration example of the electromagnetic wave absorbing sheet containing strontium ferrite magnetic iron oxide having electromagnetic wave shielding frequencies of 75 GHz and 76 GHz.
- FIG. 7 shows the case of the 3rd structural example of the electromagnetic wave absorption sheet containing strontium ferrite magnetic iron oxide whose electromagnetic wave shielding frequency is 75 GHz and 77 GHz.
- FIG. 8 shows the case of the fourth configuration example of
- FIG. 9 shows the case of the fifth configuration example of the electromagnetic wave absorbing sheet containing three types of strontium ferrite magnetic iron oxides having electromagnetic wave shielding frequencies of 75 GHz, 76 GHz, and 77 GHz.
- FIG. 10 shows the case of the sixth configuration example of the electromagnetic wave absorbing sheet containing five types of strontium ferrite magnetic iron oxides having an electromagnetic wave shielding frequency of 76 GHz, 81 GHz, 86 GHz, 91 GHz, and 96 GHz.
- Each electromagnetic wave absorbing sheet was prepared using the following materials using a silicone rubber binder KE-510-U (trade name: manufactured by Shin-Etsu Chemical Co., Ltd.) as a binder.
- This magnetic paint component was dispersed in a disk-type sand mill having an internal volume of 2 L using zirconia beads having a diameter of 0.5 mm as a dispersion medium. While stirring the dispersion paint thus obtained with a stirrer, the following materials were blended and dispersed under the conditions described as the method for producing the electromagnetic wave absorbing sheet to obtain a magnetic paint.
- the obtained magnetic coating material was applied onto a 38 ⁇ m-thick polyethylene terephthalate (PET) sheet peel-treated with a silicon coat using a bar coater, dried in a wet state at 80 ° C. for 1440 minutes, A 400 ⁇ m thick sheet was obtained.
- PET polyethylene terephthalate
- strontium ferrite magnetic iron oxide having different shielding frequencies was produced by changing the substitution amount when the strontium element of the strontium ferrite magnetic iron oxide was substituted with gallium.
- hysteresis loops (61, 71, 81) are compared with the case where epsilon magnetic iron oxide shown in FIG. 5 is used. , 91, 101), and the coercivity of strontium ferrite magnetic iron oxide is smaller than that of epsilon magnetic iron oxide.
- the differential curve (62, 72, 82, 92, 102) obtained by differentiating the hysteresis loop (61, 71, 81, 91, 101). Each shows a single mountain shape, and it can be seen that the differential curve has one extreme value.
- strontium ferrite magnetic iron oxide when strontium ferrite magnetic iron oxide is used as the electromagnetic wave absorbing material, it includes two or more magnetic iron oxides having different anisotropic magnetic field values HA , while the entire electromagnetic wave absorbing layer has a hysteresis loop. Since the differential curve has one extreme value, it can be seen that both high electromagnetic wave absorption characteristics and a wide absorption wavelength band can be achieved.
- the differential curve of the hysteresis curve in order for the differential curve of the hysteresis curve to have one extreme value and to have a single mountain shape, it is preferable that the difference between the shielding frequencies of the materials at the shielding frequencies is 5 GHz or less.
- the relationship between the frequency and transmission attenuation was measured for an electromagnetic wave absorbing sheet using strontium ferrite magnetic iron oxide having five different shielding frequencies with a shielding frequency difference of 5 GHz shown in FIG.
- FIG. 11 is a diagram showing the relationship between the frequency of electromagnetic waves and the amount of transmission attenuation in the electromagnetic wave absorbing sheet of the sixth configuration example.
- the ratio of the magnetic iron oxide contained in the electromagnetic wave absorbing layer is the same in all of the first to sixth structures of the electromagnetic wave absorbing sheet showing the hysteresis loop and its differential curve. That is, the case of 1: 1, 1: 1: 1, or 1: 1: 1: 1: 1: 1 is shown.
- the content of the magnetic iron oxide contained in the electromagnetic wave absorbing layer is not limited to the same, and may be contained in different proportions. The inventors have confirmed that the hysteresis loop differential curve is 1 when the content of the magnetic iron oxide contained is the same (1: 1, 1: 1: 1, 1: 1: 1: 1: 1).
- content of the magnetic iron oxide contained in an electromagnetic wave absorption layer it is content of the magnetic iron oxide which has a value of a different anisotropic magnetic field ( HA ) from a viewpoint of expanding the frequency band of the electromagnetic wave to absorb favorably.
- the amount is preferably as uniform as possible.
- the value of the anisotropic magnetic field (H A ) of the magnetic iron oxide contained in the electromagnetic wave absorbing layer is different, while the hysteresis loop derivative of the magnetic characteristics is differentiated. Since the curve has one extreme value, it can have higher absorption characteristics with respect to electromagnetic waves in a wider frequency band than when only one magnetic iron oxide is included.
- the electromagnetic wave absorber disclosed in the present application has a predetermined thickness by forming the electromagnetic wave absorption layer as a molded body in addition to a sheet shape having a small thickness with respect to the size when viewed in plan. It can be a block shape.
- composition for an electromagnetic wave absorber shown as the second embodiment means a magnetic paint used when producing an electromagnetic wave absorbing sheet which is the electromagnetic wave absorber described in the first embodiment.
- This magnetic paint contains a plurality of magnetic oxides having different coercive forces by having a predetermined anisotropic magnetic field (HA ) value in a resin binder.
- HA anisotropic magnetic field
- the differential curve of the hysteresis loop has one extreme value, as in the electromagnetic wave absorbing sheet described in the first embodiment.
- magnetic paint as a composition for electromagnetic wave absorber containing magnetic iron oxide particles and resin binder
- magnetic paint can be applied to a wide range of building materials such as members with complicated surface shapes, walls, ceilings, etc.
- a coating film can be formed to impart electromagnetic wave absorption characteristics.
- the frequency of the electromagnetic wave absorbed by the composition for electromagnetic wave absorbers depends on the value of the anisotropic magnetic field (H A ) of the magnetic oxide contained, and contains only one magnetic iron oxide. Compared to the case, electromagnetic waves in a wider frequency band can be favorably absorbed.
- composition for electromagnetic wave absorbers can function as a member that selectively transmits electromagnetic waves having frequencies other than the extreme value portion of the differential curve, in addition to functioning as a member that absorbs electromagnetic waves having a predetermined frequency.
- the electromagnetic wave absorber disclosed in the present application can be realized in a sheet shape, a block shape, and various shapes.
- the composition for electromagnetic wave absorbers disclosed in the present application is supplied to other members and components including the above-exemplified building members and electronic devices by coating, pouring, sticking, and other methods. Thus, good electromagnetic wave absorption characteristics can be imparted to the other members and components.
- the electromagnetic wave absorber and the electromagnetic wave absorber composition disclosed in the present application include two or more kinds of magnetic iron oxides having different anisotropic magnetic fields HA in the electromagnetic wave absorbing layer, and an external magnetic field.
- a differential curve obtained by differentiating the hysteresis loop of the magnetic characteristics obtained by application has one extreme value.
- the electromagnetic wave absorber and the electromagnetic wave absorber composition disclosed in the present application have a wider frequency band of absorbed electromagnetic waves than those having an electromagnetic wave absorbing layer containing one type of magnetic iron oxide. And high absorption characteristics can be realized.
- the strength of the external magnetic field for measuring the hysteresis loop is set to 16 kOe to ⁇ 16 kOe means that a good hysteresis loop can be obtained by applying an external magnetic field in this range at least. . For this reason, there is no problem even if the magnitude of the applied external magnetic field is greater than 16 kOe, the hysteresis loop is measured in the range of 16 kOe to ⁇ 16 kOe, and the derivative is obtained. Find a curve.
- the electromagnetic wave absorber and the electromagnetic wave absorber composition disclosed in the present application are useful as an electromagnetic wave absorbing member that satisfactorily absorbs an electromagnetic wave in a wider frequency band in a high frequency band of the millimeter wave band or higher.
- the electromagnetic wave absorbing layer 1a (1a 1, 1a 2) magnetic iron oxide particles 1b resinous binder
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Hard Magnetic Materials (AREA)
- Soft Magnetic Materials (AREA)
- Compounds Of Iron (AREA)
- Paints Or Removers (AREA)
Abstract
Provided are an electromagnetic wave absorber and an electromagnetic wave absorber composition capable of satisfactorily absorbing electromagnetic waves of a predetermined wide bandwidth in a high frequency band over the millimeter wave band. The electromagnetic wave absorber is formed of an electromagnetic wave absorption layer 1 including a magnetic iron oxide 1a that magnetically resonates at a high frequency over the millimeter wave band, and a resin binder 1b. The electromagnetic wave absorber comprises two or more kinds of magnetic iron oxides 1a1, 1a2 having different values of anisotropic magnetic field HA. A differential curve obtained by differentiating a hysteresis loop with a magnetic characteristic between the applied magnetic field intensities of 16kOe and -16kOe has one extreme value.
Description
本開示は、電磁波を吸収する電磁波吸収体に関し、特に、ミリ波帯と称される数十ギガヘルツ(GHz)から数百ギガヘルツ(GHz)の周波数帯域、さらには3テラヘルツ(THz)までの高い周波数帯域において、吸収する電磁波の周波数に所定の帯域幅を有する電磁波吸収体、および、電磁波吸収体用組成物に関する。
The present disclosure relates to an electromagnetic wave absorber that absorbs electromagnetic waves, and in particular, a frequency band of several tens of gigahertz (GHz) to several hundred gigahertz (GHz), which is referred to as a millimeter wave band, and even a high frequency up to 3 terahertz (THz). The present invention relates to an electromagnetic wave absorber having a predetermined bandwidth at the frequency of electromagnetic waves to be absorbed and a composition for electromagnetic wave absorbers.
携帯電話などの移動体通信や無線LAN、料金自動収受システム(ETC)などでは、数ギガヘルツ(GHz)の周波数帯域を持つセンチメートル波と呼ばれる電磁波が用いられている。
In mobile communications such as mobile phones, wireless LANs, automatic toll collection systems (ETC), etc., electromagnetic waves called centimeter waves having a frequency band of several gigahertz (GHz) are used.
このようなセンチメール波を吸収する電磁波吸収シートとして、ゴム状電磁波吸収シートと段ボールなどの紙状シート材とを積層した積層体シートが提案されている(特許文献1参照)。また、異方性黒鉛とバインダーとを含む薄型シートを交互に積層してその厚さを調整することで、電磁波入射方向に関係なく電磁波吸収特性を安定させた電磁波吸収シートが提案されている(特許文献2参照)。
As an electromagnetic wave absorbing sheet that absorbs such a centimeter wave, a laminated sheet in which a rubbery electromagnetic wave absorbing sheet and a paper sheet material such as cardboard are laminated has been proposed (see Patent Document 1). Further, an electromagnetic wave absorbing sheet has been proposed in which electromagnetic wave absorption characteristics are stabilized regardless of the electromagnetic wave incident direction by alternately laminating thin sheets containing anisotropic graphite and a binder and adjusting the thickness thereof ( Patent Document 2).
さらに、より高い周波数帯域の電磁波を吸収できるようにすることを目的として、偏平状の軟磁性粒子の長手方向をシートの面方向に揃えることで、20ギガヘルツ以上の周波数帯域の電磁波を吸収可能な電磁波吸収シートが提案されている(特許文献3参照)。
Furthermore, for the purpose of enabling absorption of electromagnetic waves in a higher frequency band, electromagnetic waves in a frequency band of 20 gigahertz or more can be absorbed by aligning the longitudinal direction of the flat soft magnetic particles with the surface direction of the sheet. An electromagnetic wave absorbing sheet has been proposed (see Patent Document 3).
また、イプシロン磁性酸化鉄(ε-Fe2O3)結晶を磁性相に持つ粒子の充填構造を有する電磁波吸収体が、25~100ギガヘルツの範囲で電磁波吸収性能を発揮することが知られている(特許文献4参照)。
Further, it is known that an electromagnetic wave absorber having a particle-filled structure having epsilon magnetic iron oxide (ε-Fe 2 O 3 ) crystals as a magnetic phase exhibits electromagnetic wave absorbing performance in the range of 25 to 100 gigahertz. (See Patent Document 4).
近年では、送信するデータのさらなる大容量化を可能とするために、60ギガヘルツの周波数を用いた無線通信が計画され、また、極めて狭い指向性を活用する車載レーダー機器として数十ギガヘルツ以上のいわゆるミリ波帯域(30~300ギガヘルツ)の周波数を有するミリ波レーザーの利用が進められている。さらに、ミリ波帯域を超えた高い周波数帯域の電磁波として、テラヘルツ(THz)オーダーの周波数を有する電磁波を利用する技術の研究も進んでいる。
In recent years, in order to further increase the capacity of data to be transmitted, wireless communication using a frequency of 60 gigahertz has been planned, and a so-called in-vehicle radar device utilizing extremely narrow directivity is a so-called tens of gigahertz or more. The use of a millimeter wave laser having a frequency in the millimeter wave band (30 to 300 gigahertz) is being promoted. In addition, research on technology using electromagnetic waves having a frequency on the order of terahertz (THz) as electromagnetic waves in a high frequency band exceeding the millimeter wave band is also progressing.
しかし、電磁波利用技術の一つであり漏洩電磁波を防止するためなどに不可欠な電磁波吸収体としては、60GHz前後のいわゆるミリ波帯域の特定の周波数の電磁波を吸収する電磁波吸収体は提案されているものの、ミリ波帯域からさらに高い周波数帯域において、吸収する電磁波が所定の広い帯域幅を有する電磁波吸収体は実現されていない。
However, an electromagnetic wave absorber that absorbs an electromagnetic wave having a specific frequency in a so-called millimeter wave band around 60 GHz has been proposed as an electromagnetic wave absorber that is one of electromagnetic wave utilization technologies and is indispensable for preventing leaked electromagnetic waves. However, an electromagnetic wave absorber that absorbs an electromagnetic wave having a predetermined wide bandwidth in a frequency band higher than the millimeter wave band has not been realized.
本開示は、上記従来の課題を解決し、ミリ波帯域以上の高い周波数帯域において、所定の広い帯域幅の電磁波を良好に吸収することができる電磁波吸収体と、電磁波吸収体用組成物を実現することを目的とする。
The present disclosure solves the above-described conventional problems and realizes an electromagnetic wave absorber capable of satisfactorily absorbing an electromagnetic wave having a predetermined wide bandwidth and a composition for the electromagnetic wave absorber in a high frequency band of a millimeter wave band or higher. The purpose is to do.
上記課題を解決するため本願で開示する電磁波吸収体は、ミリ波帯以上の高周波数で磁気共鳴する磁性酸化鉄と、樹脂製バインダーを含む電磁波吸収層により形成された電磁波吸収体であって、異方性磁界HAの値が異なる2種以上の前記磁性酸化鉄を含み、印加される磁界強度が16kOeから-16kOeの間の磁気特性のヒステリシスループを微分した微分曲線が1つの極値を有することを特徴とする。
In order to solve the above problems, an electromagnetic wave absorber disclosed in the present application is an electromagnetic wave absorber formed by an electromagnetic wave absorption layer including magnetic iron oxide magnetically resonating at a high frequency of a millimeter wave band or higher, and a resin binder, A differential curve obtained by differentiating the hysteresis loop of the magnetic characteristics including two or more kinds of magnetic iron oxides having different values of the anisotropic magnetic field HA and having an applied magnetic field strength between 16 kOe and -16 kOe has one extreme value. It is characterized by having.
また、本願で開示する電磁波吸収体用組成物は、ミリ波帯以上の高周波数で磁気共鳴する磁性酸化鉄と、樹脂製バインダーによって形成された電磁波吸収体用組成物であって、異方性磁界HAの値が異なる2種以上の前記磁性酸化鉄を含み、印加される磁界強度が16kOeから-16kOeの間の磁気特性のヒステリシスループを微分した微分曲線が1つの極値を有することを特徴とする。
Further, the electromagnetic wave absorber composition disclosed in the present application is a composition for an electromagnetic wave absorber formed by magnetic iron oxide that magnetically resonates at a high frequency of a millimeter wave band or higher, and a resinous binder. includes a magnetic field H and the magnetic iron oxide values two or more different of a, the magnetic field strength applied is to have a differential curve is one extreme hysteresis loop obtained by differentiating the magnetic properties between -16kOe from 16kOe Features.
本願で開示する電磁波吸収体、および、電磁波吸収体用組成物は、いずれも電磁波吸収物質として、ミリ波帯以上の高周波数で磁気共鳴する異方性磁界HAの値が異なる2種以上の磁性酸化鉄を有し、印加される磁界強度が16kOeから-16kOeの間の磁気特性のヒステリシスループを微分した微分曲線が1つの極値を有する。このため、数十ギガヘルツ以上の高い周波数帯域の電磁波を、所定の広い帯域幅に渡って良好に吸収することができる。
Each of the electromagnetic wave absorber and the electromagnetic wave absorber composition disclosed in the present application is an electromagnetic wave absorbing material, and as an electromagnetic wave absorbing material, two or more kinds of anisotropic magnetic fields HA that magnetically resonate at a high frequency of the millimeter wave band or higher are different. A differential curve obtained by differentiating a hysteresis loop of magnetic characteristics having magnetic iron oxide and an applied magnetic field strength between 16 kOe and −16 kOe has one extreme value. For this reason, electromagnetic waves in a high frequency band of several tens of gigahertz or more can be favorably absorbed over a predetermined wide bandwidth.
本願で開示する電磁波吸収体は、ミリ波帯以上の高周波数で磁気共鳴する磁性酸化鉄と、樹脂製バインダーを含む電磁波吸収層により形成された電磁波吸収体であって、異方性磁界HAの値が異なる2種以上の前記磁性酸化鉄を含み、印加される磁界強度が16kOeから-16kOeの間の磁気特性のヒステリシスループを微分した微分曲線が1つの極値を有する。
The electromagnetic wave absorber disclosed in the present application is an electromagnetic wave absorber formed by an electromagnetic wave absorption layer including magnetic iron oxide that magnetically resonates at a high frequency of a millimeter wave band or higher and a resin binder, and an anisotropic magnetic field HA A differential curve obtained by differentiating the hysteresis loop of the magnetic characteristics in which the magnetic field strength applied is between 16 kOe and −16 kOe has two extreme values.
このようにすることで、本願で開示する電磁波吸収体は、電磁波を吸収する部材である磁性酸化鉄の共鳴周波数、すなわち、当該磁性酸化鉄によって吸収される電磁波の周波数が定まる異方性磁界HAの値が異なる2種以上の磁性酸化鉄が含まれることで、それぞれの磁性酸化鉄で吸収される電磁波のピーク周波数が複数存在する。一方で、16kOeから-16kOeの間の磁気特性のヒステリシスループを微分した微分曲線が1つの極値を有するため、電磁波吸収体全体として吸収する電磁波の周波数特性は1つのピークを持った形状となる。このため、高い電磁波吸収特性を有すると同時に、磁性酸化鉄を1種のみ用いた場合に比べて吸収される電磁波の周波数帯域が広い幅を有した電磁波吸収体を得ることができる。
By doing so, the electromagnetic wave absorber disclosed in the present application is an anisotropic magnetic field H in which the resonance frequency of magnetic iron oxide, which is a member that absorbs electromagnetic waves, that is, the frequency of electromagnetic waves absorbed by the magnetic iron oxide is determined. By including two or more kinds of magnetic iron oxides having different values of A, a plurality of peak frequencies of electromagnetic waves absorbed by the respective magnetic iron oxides exist. On the other hand, since the differential curve obtained by differentiating the hysteresis loop of the magnetic characteristics between 16 kOe and −16 kOe has one extreme value, the frequency characteristic of the electromagnetic wave absorbed as a whole of the electromagnetic wave absorber has a shape having one peak. . For this reason, it is possible to obtain an electromagnetic wave absorber having high electromagnetic wave absorption characteristics and at the same time having a wider width in the frequency band of electromagnetic waves absorbed than when only one type of magnetic iron oxide is used.
なお、本願で開示する発明において、「ヒステリシスループを微分した微分曲線が1つの極値を有する」とは、微分曲線が極値、すなわち、変曲点を、1つのみ有するものを示し、極値(変曲点)が2つ以上ある場合は含まれない。
In the invention disclosed in the present application, “the differential curve obtained by differentiating the hysteresis loop has one extreme value” means that the differential curve has an extreme value, that is, only one inflection point. It is not included when there are two or more values (inflection points).
本願で開示する電磁波吸収体において、前記電磁波吸収層に含まれる2種以上の前記磁性酸化鉄が、主とする元素構成が同一であるとともに置換元素が互いに異なることが好ましい。このようにすることで、吸収する電磁波の周波数は異なるものの粒径や形状などが類似した特性を有する電磁波吸収材料を用いて、分散性などが優れたより均一化された特性を有する電磁波吸収体を得ることができ、2種以上の磁性酸化鉄を用いても、容易に磁気特性のヒステリシスループを微分した微分曲線が1つの極値を持つようにすることができる。
In the electromagnetic wave absorber disclosed in the present application, it is preferable that two or more kinds of the magnetic iron oxides included in the electromagnetic wave absorption layer have the same main element configuration and different substitute elements. In this way, an electromagnetic wave absorber having more uniform characteristics with excellent dispersibility can be obtained by using an electromagnetic wave absorbing material having similar characteristics such as particle size and shape although the frequency of electromagnetic waves to be absorbed is different. Even when two or more kinds of magnetic iron oxides are used, the differential curve obtained by differentiating the hysteresis loop of the magnetic characteristics can easily have one extreme value.
なお、前記磁性酸化鉄が、ストロンチウムフェライト磁性酸化鉄、イプシロン磁性酸化鉄のいずれかであることが好ましい。
The magnetic iron oxide is preferably strontium ferrite magnetic iron oxide or epsilon magnetic iron oxide.
さらに、前記電磁波吸収層が平面視したときの大きさに対して厚さが薄く形成され全体としてシート状と形成されることが好ましい。このようにすることで、本願で開示する電磁波吸収体を取り扱いが容易な電磁波吸収シートとして活用できる。
Furthermore, it is preferable that the electromagnetic wave absorbing layer is formed to be thin with respect to the size of the electromagnetic wave absorbing layer when viewed in plan, and is formed into a sheet shape as a whole. By doing in this way, the electromagnetic wave absorber disclosed by this application can be utilized as an electromagnetic wave absorption sheet with easy handling.
また、本願で開示する電磁波吸収体用組成物は、ミリ波帯以上の高周波数で磁気共鳴する磁性酸化鉄と、樹脂製バインダーによって形成された電磁波吸収体用組成物であって、異方性磁界HAの値が異なる2種以上の前記磁性酸化鉄を含み、印加される磁界強度が16kOeから-16kOeの間の磁気特性のヒステリシスループを微分した微分曲線が1つの極値を有する。
Further, the electromagnetic wave absorber composition disclosed in the present application is a composition for an electromagnetic wave absorber formed by magnetic iron oxide that magnetically resonates at a high frequency of a millimeter wave band or higher, and a resinous binder. A differential curve obtained by differentiating the hysteresis loop of the magnetic characteristics including two or more kinds of the magnetic iron oxides having different values of the magnetic field HA and having an applied magnetic field strength between 16 kOe and −16 kOe has one extreme value.
このようにすることで、本願で開示する電磁波吸収体用組成物は、高い電磁波吸収特性を有すると同時に、吸収される電磁波の周波数帯域が所定の広い幅を有した電磁波吸収体を形成することができる。
By doing in this way, the composition for electromagnetic wave absorbers disclosed in the present application forms an electromagnetic wave absorber that has high electromagnetic wave absorption characteristics and at the same time the frequency band of the absorbed electromagnetic waves has a predetermined wide width. Can do.
本願で開示する電磁波吸収体用組成物において、前記電磁波吸収層に含まれる2種以上の前記磁性酸化鉄が、主とする元素構成が同一であるとともに置換元素が互いに異なることが好ましい。このようにすることで、特性がより均一化された電磁波吸収体用組成物を得ることができ、2種以上の磁性酸化鉄を用いても、容易に磁気特性のヒステリシスループを微分した微分曲線が1つの極値を持つようにすることができる。
In the composition for an electromagnetic wave absorber disclosed in the present application, it is preferable that two or more kinds of the magnetic iron oxides included in the electromagnetic wave absorption layer have the same main element configuration and different substitution elements. By doing so, a composition for an electromagnetic wave absorber with more uniform characteristics can be obtained, and a differential curve obtained by easily differentiating the hysteresis loop of the magnetic characteristics even when two or more kinds of magnetic iron oxides are used. Can have one extreme value.
また、前記磁性酸化鉄が、ストロンチウムフェライト磁性酸化鉄、イプシロン磁性酸化鉄のいずれかであることが好ましい。
The magnetic iron oxide is preferably either strontium ferrite magnetic iron oxide or epsilon magnetic iron oxide.
さらに、本願で開示する電磁波吸収体用組成物を用いて形成された建築部材、電子機器は、いずれも上述の電磁波吸収体用組成物が有する、高く、かつ、吸収される周波数帯域が広いという優れた電磁波吸収特性を備えた、建築部材、電子機器とすることができる。
Furthermore, the building member and the electronic device formed using the electromagnetic wave absorber composition disclosed in the present application are both high in the above-described electromagnetic wave absorber composition and have a wide frequency band to be absorbed. It can be set as the building member and electronic device provided with the outstanding electromagnetic wave absorption characteristic.
以下、本願で開示する電磁波吸収体と電磁波吸収体用組成物について、図面を参照して説明する。
Hereinafter, the electromagnetic wave absorber and the electromagnetic wave absorber composition disclosed in the present application will be described with reference to the drawings.
(第1の実施形態)
本願で開示する電磁波吸収体の第1の実施形態として、粒子状の磁性酸化鉄と樹脂製のバインダーを含んだ電磁波吸収層がその平面視したときの大きさに対して厚さが小さく形成され、全体としてシート状に構成された、いわゆる透過型の電磁波吸収シートを例示して説明する。 (First embodiment)
As a first embodiment of the electromagnetic wave absorber disclosed in the present application, an electromagnetic wave absorption layer containing particulate magnetic iron oxide and a resin binder is formed with a thickness smaller than that when viewed in plan. An example of a so-called transmission-type electromagnetic wave absorbing sheet configured as a sheet as a whole will be described.
本願で開示する電磁波吸収体の第1の実施形態として、粒子状の磁性酸化鉄と樹脂製のバインダーを含んだ電磁波吸収層がその平面視したときの大きさに対して厚さが小さく形成され、全体としてシート状に構成された、いわゆる透過型の電磁波吸収シートを例示して説明する。 (First embodiment)
As a first embodiment of the electromagnetic wave absorber disclosed in the present application, an electromagnetic wave absorption layer containing particulate magnetic iron oxide and a resin binder is formed with a thickness smaller than that when viewed in plan. An example of a so-called transmission-type electromagnetic wave absorbing sheet configured as a sheet as a whole will be described.
[シート構成]
図1は、本実施形態で説明する電磁波吸収体としての電磁波吸収シートの構成を示す断面図である。 [Sheet configuration]
FIG. 1 is a cross-sectional view showing a configuration of an electromagnetic wave absorbing sheet as an electromagnetic wave absorber described in the present embodiment.
図1は、本実施形態で説明する電磁波吸収体としての電磁波吸収シートの構成を示す断面図である。 [Sheet configuration]
FIG. 1 is a cross-sectional view showing a configuration of an electromagnetic wave absorbing sheet as an electromagnetic wave absorber described in the present embodiment.
図1では、電磁波吸収性組成物を基材としての樹脂シート2上に塗布、乾燥を行って電磁波吸収シート1を成型した状態を示している。
FIG. 1 shows a state in which an electromagnetic wave absorbing sheet 1 is molded by applying and drying an electromagnetic wave absorbing composition on a resin sheet 2 as a base material.
なお、図1は、本実施形態にかかる電磁波吸収シートの構成を理解しやすくするために記載された図であり、図中に示された部材の大きさや厚みについて現実に即して表されたものではない。
In addition, FIG. 1 is a figure described in order to make it easy to understand the configuration of the electromagnetic wave absorbing sheet according to the present embodiment, and the size and thickness of the members shown in the figure are represented in actuality. It is not a thing.
本実施形態で例示する電磁波吸収シートは、異方性磁界HAの値が異なる2種類の磁性酸化鉄1a1、1a2と樹脂製のバインダー1bとを含んだ電磁波吸収層1として形成されている。
The electromagnetic wave absorbing sheet exemplified in this embodiment is formed as an electromagnetic wave absorbing layer 1 including two types of magnetic iron oxides 1a 1 and 1a 2 having different anisotropic magnetic field values HA and a resin binder 1b. Yes.
図1に示す本実施形態にかかる電磁波吸収シートでは、電磁波吸収層1に含まれる2つの磁性酸化鉄1a1、1a2は異方性磁界HAの値が異なり、磁性酸化鉄1a1と磁性酸化鉄1a2の保磁力が異なる。磁性酸化鉄が磁気共鳴することによって吸収する電磁波の周波数は保磁力の値によって異なるため、本実施形態の電磁波吸収シートでは、それぞれの磁性酸化鉄1a1、1a2が異なる周波数の電磁波を吸収する。一方、電磁波吸収シート全体としての電磁波吸収特性は、外部から印加される磁界に対する磁気特性であるヒステリシスループを微分した微分曲線が1つの極値を有する。このことは、電磁波の周波数に対する吸収特性が、所定の周波数にピークを有する1つの山型のものとして現れることを意味する。
In the electromagnetic wave absorbing sheet according to the present embodiment shown in FIG. 1, the two magnetic iron oxides 1a 1 and 1a 2 included in the electromagnetic wave absorbing layer 1 have different anisotropic magnetic field HA values, and the magnetic iron oxide 1a 1 is magnetic. The coercive force of iron oxide 1a 2 is different. Since the frequency of electromagnetic waves absorbed by magnetic iron oxide by magnetic resonance varies depending on the coercive force value, in the electromagnetic wave absorbing sheet of this embodiment, each magnetic iron oxide 1a 1 , 1a 2 absorbs electromagnetic waves having different frequencies. . On the other hand, the electromagnetic wave absorption characteristic of the entire electromagnetic wave absorbing sheet has one extreme value as a differential curve obtained by differentiating a hysteresis loop which is a magnetic characteristic with respect to a magnetic field applied from the outside. This means that the absorption characteristic with respect to the frequency of the electromagnetic wave appears as one mountain shape having a peak at a predetermined frequency.
本実施形態にかかる電磁波吸収シートでは、このように電磁波吸収材料として含まれる異方性磁界HAの値が異なる磁性酸化鉄がそれぞれ異なる周波数の電磁波を吸収するため、1種類の磁性酸化鉄のみが含まれている電磁波吸収シートに比べて吸収される電磁波の周波数帯域が広がる。一方で、電磁波吸収シート全体の磁気特性を示すヒステリシスループを微分した微分曲線が1つの極値を有し、吸収される電磁波の周波数特性が1つの山型として表されるため、この周波数特性が2つの山を有する場合、すなわち、それぞれの磁性酸化鉄が吸収する電磁波の周波数が離れていてヒステリシスループを微分した微分曲線が2つの極大値と1つの極小値とを有する場合と比較して、電磁波吸収特性のピークを高く維持することができる。このため、本実施形態にかかる電磁波吸収シートでは、高い電磁波吸収特性と幅広い吸収周波数帯域とを両立することができる。
In the electromagnetic wave absorbing sheet according to the present embodiment, magnetic iron oxides having different values of the anisotropic magnetic field HA contained as the electromagnetic wave absorbing material thus absorb electromagnetic waves having different frequencies, so that only one type of magnetic iron oxide is used. The frequency band of electromagnetic waves to be absorbed is wider than that of an electromagnetic wave absorbing sheet containing. On the other hand, the differential curve obtained by differentiating the hysteresis loop indicating the magnetic characteristics of the entire electromagnetic wave absorbing sheet has one extreme value, and the frequency characteristics of the absorbed electromagnetic waves are expressed as one mountain shape. In the case of having two peaks, that is, compared to the case where the frequency of the electromagnetic wave absorbed by each magnetic iron oxide is separated and the differential curve obtained by differentiating the hysteresis loop has two maximum values and one minimum value, The peak of electromagnetic wave absorption characteristics can be kept high. For this reason, the electromagnetic wave absorbing sheet according to the present embodiment can achieve both high electromagnetic wave absorption characteristics and a wide absorption frequency band.
なお、図1では、電磁波吸収層1に含まれる磁性酸化鉄が2種類の場合を図示しているが、後述するように、本実施形態にかかる電磁波吸収シートにおいて、電磁波吸収層1に含まれる磁性酸化鉄は、3種類以上であってもかまわない。
In addition, in FIG. 1, although the case where the magnetic iron oxide contained in the electromagnetic wave absorption layer 1 is two types is illustrated, in the electromagnetic wave absorption sheet concerning this embodiment, it is contained in the electromagnetic wave absorption layer 1 so that it may mention later. There may be three or more kinds of magnetic iron oxides.
また、本実施形態にかかる電磁波吸収シートにおいて、電磁波吸収層1に含まれる磁性酸化鉄の異方性磁界HAの値が異なるとともに、磁気特性のヒステリシスループを微分した微分曲線が1つの極値を有している状態については、具体例を示して後述する。
Further, in the electromagnetic wave absorbing sheet according to the present embodiment, the value of the anisotropic magnetic field HA of the magnetic iron oxide contained in the electromagnetic wave absorbing layer 1 is different, and the differential curve obtained by differentiating the hysteresis loop of the magnetic characteristics has one extreme value. The state of having will be described later with a specific example.
[磁性酸化鉄]
本実施形態にかかる電磁波吸収シートでは、粒子状の磁性酸化鉄として、イプシロン磁性酸化鉄を用いている。 [Magnetic iron oxide]
In the electromagnetic wave absorbing sheet according to the present embodiment, epsilon magnetic iron oxide is used as the particulate magnetic iron oxide.
本実施形態にかかる電磁波吸収シートでは、粒子状の磁性酸化鉄として、イプシロン磁性酸化鉄を用いている。 [Magnetic iron oxide]
In the electromagnetic wave absorbing sheet according to the present embodiment, epsilon magnetic iron oxide is used as the particulate magnetic iron oxide.
イプシロン磁性酸化鉄(ε-Fe2O3)は、酸化第二鉄(Fe2O3)において、アルファ相(α-Fe2O3)とガンマ相(γ-Fe2O3)との間に現れる相であり、逆ミセル法とゾルーゲル法とを組み合わせたナノ微粒子合成方法によって単相の状態で得られるようになった磁性材料である。
Epsilon magnetic iron oxide (ε-Fe 2 O 3 ) is an intermediate between the alpha phase (α-Fe 2 O 3 ) and the gamma phase (γ-Fe 2 O 3 ) in ferric oxide (Fe 2 O 3 ). It is a magnetic material that can be obtained in a single-phase state by a nanoparticle synthesis method combining a reverse micelle method and a sol-gel method.
イプシロン磁性酸化鉄は、数nmから数十nmの微細粒子でありながら常温で約20kOeという金属酸化物として最大の保磁力を備え、さらに、歳差運動に基づくジャイロ磁気効果による自然共鳴が数十ギガヘルツ以上のいわゆるミリ波帯の周波数帯域で生じるため、ミリ波帯域の電磁波を吸収する電磁波吸収材料として用いることができる。
Epsilon magnetic iron oxide has a maximum coercive force as a metal oxide of about 20 kOe at room temperature while being a fine particle of several nm to several tens of nm, and further has a natural resonance due to a gyromagnetic effect based on precession. Since it occurs in the so-called millimeter wave band frequency band above gigahertz, it can be used as an electromagnetic wave absorbing material that absorbs electromagnetic waves in the millimeter wave band.
さらに、イプシロン磁性酸化鉄は、結晶のFeサイトの一部をアルミニウム(Al)、ガリウム(Ga)、ロジウム(Rh)、インジウム(In)などの3価の金属元素と置換された結晶とすることで、磁気共鳴周波数、すなわち、電磁波吸収材料として用いられる場合に吸収する電磁波の周波数を異ならせることができる。
Further, epsilon magnetic iron oxide is a crystal in which part of the Fe site of the crystal is replaced with a trivalent metal element such as aluminum (Al), gallium (Ga), rhodium (Rh), indium (In), or the like. Thus, the magnetic resonance frequency, that is, the frequency of the electromagnetic wave absorbed when used as an electromagnetic wave absorbing material can be varied.
図2は、Feサイトと置換する金属元素を異ならせた場合の、イプシロン磁性酸化鉄の保磁力Hcと自然共鳴周波数fとの関係を示している。なお、自然共鳴周波数fは、吸収する電磁波の周波数と一致する。
FIG. 2 shows the relationship between the coercive force Hc of epsilon magnetic iron oxide and the natural resonance frequency f when the metal element substituted for the Fe site is different. Note that the natural resonance frequency f matches the frequency of the electromagnetic wave to be absorbed.
図2から、Feサイトの一部が置換されたイプシロン磁性酸化鉄は、置換された金属元素の種類と置換された量によって、自然共鳴周波数が異なることがわかる。また、自然共鳴周波数の値が高くなるほど、当該イプシロン磁性酸化鉄の保磁力が大きくなっていることがわかる。
FIG. 2 shows that the natural resonance frequency of epsilon magnetic iron oxide in which a part of the Fe site is substituted differs depending on the type of the substituted metal element and the amount of substitution. Moreover, it turns out that the coercive force of the said epsilon magnetic iron oxide becomes large, so that the value of the natural resonance frequency becomes high.
より具体的には、ガリウム置換のイプシロン磁性酸化鉄、すなわちε-GaxFe2-xO3の場合には、置換量「x」を調整することで30ギガヘルツから150ギガヘルツ程度までの周波数帯域で吸収のピークを有し、アルミニウム置換のイプシロン磁性酸化鉄、すなわちε-AlxFe2-xO3の場合には、置換量「x」を調整することで100ギガヘルツから190ギガヘルツ程度の周波数帯域で吸収のピークを有する。このため、電磁波吸収シートで吸収したい周波数の自然共鳴周波数となるように、イプシロン磁性酸化鉄のFeサイトと置換する元素の種類を決め、Feとの置換量を調整することで、吸収される電磁波の周波数を所望の値とすることができる。さらに、置換する金属をロジウムとしたイプシロン磁性酸化鉄、すなわちε-RhxFe2-xO3の場合には、180ギガヘルツからそれ以上と、吸収する電磁波の周波数帯域をより高い方向にシフトすることが可能である。
More specifically, in the case of gallium-substituted epsilon magnetic iron oxide, that is, ε-Ga x Fe 2-x O 3 , the frequency band from about 30 GHz to about 150 GHz by adjusting the substitution amount “x”. In the case of aluminum-substituted epsilon magnetic iron oxide, that is, ε-Al x Fe 2-x O 3 , a frequency of about 100 GHz to 190 GHz by adjusting the substitution amount “x”. It has an absorption peak in the band. For this reason, the type of element to be replaced with the Fe site of epsilon magnetic iron oxide is determined so as to obtain the natural resonance frequency of the frequency to be absorbed by the electromagnetic wave absorbing sheet, and the electromagnetic wave absorbed by adjusting the amount of substitution with Fe is adjusted. Can be set to a desired value. Furthermore, in the case of epsilon magnetic iron oxide in which the metal to be replaced is rhodium, that is, ε-Rh x Fe 2-x O 3 , the frequency band of the electromagnetic wave to be absorbed is shifted in a higher direction from 180 gigahertz to more. It is possible.
イプシロン磁性酸化鉄は、一部のFeサイトが金属置換されたものを含めて入手することが可能である。イプシロン磁性酸化鉄は、平均粒径が約30nm程度の略球形または短いロッド形状(棒状)をした粒子として入手することができる。
Epsilon magnetic iron oxide can be obtained including those in which some Fe sites are metal-substituted. Epsilon magnetic iron oxide can be obtained as particles having an approximately spherical shape or a short rod shape (rod shape) with an average particle size of about 30 nm.
なお、本実施形態にかかる電磁波吸収シートに用いられる磁性酸化鉄としては、上述したイプシロン磁性酸化鉄の他に、ストロンチウムフェライト磁性酸化鉄、または、M型フェライトを使用することができる。
In addition, as magnetic iron oxide used for the electromagnetic wave absorbing sheet according to the present embodiment, strontium ferrite magnetic iron oxide or M-type ferrite can be used in addition to the above-described epsilon magnetic iron oxide.
ストロンチウムフェライト磁性酸化鉄は、60GHz帯の無線LANに対応した電磁波吸収体を設計するために、SrFe12O19にAlを添加した系であり、電磁波吸収シートでは、Alを添加することによって、電磁波吸収を示す周波数が高周波側にシフトする。これは、異方性磁界HAの値の増加に対応していると考えられる。
Strontium ferrite magnetic iron oxide is a system in which Al is added to SrFe 12 O 19 in order to design an electromagnetic wave absorber corresponding to a 60 GHz band wireless LAN. The frequency indicating absorption shifts to the high frequency side. This is considered to correspond to an increase in the value of the anisotropic magnetic field HA .
M型フェライトは、電磁波吸収に関係する複素透磁率の虚部(μr’’)が、磁性体を高周波で磁化した際に共鳴を起こす周波数において高くなることに着目して、自然共鳴周波数fは材料の持つ異方性磁界HAと比例関係にあるため、異方性磁界HAの高い材料ほど自然共鳴周波数fの値は高くなる。M型フェライトであるBaFe12O19の自然共鳴周波数fは、そのHAの値が、1.35MA/mから48GHzと計算され、高いGHz帯域の電磁波を吸収することができる。また、Fe3+の一部を(TiMn)3+やAl3+などで置換することで、異方性磁界HAの値を制御することで自然共鳴周波数fを5~150GHzの範囲で制御することができる。
M type ferrite pays attention to the fact that the imaginary part (μr ″) of the complex permeability related to electromagnetic wave absorption becomes higher at the frequency at which resonance occurs when the magnetic material is magnetized at a high frequency. because of the anisotropic magnetic field H a having a material proportional value of the natural resonant frequency f higher the anisotropy field H a material becomes higher. Natural resonant frequency f of BaFe 12 O 19 is a M-type ferrite, the value of the H A is calculated as 48GHz from 1.35 mA / m, it is possible to absorb electromagnetic waves of high GHz band. In addition, by substituting part of Fe 3+ with (TiMn) 3+ or Al 3+ , the value of the anisotropic magnetic field HA is controlled to control the natural resonance frequency f in the range of 5 to 150 GHz. can do.
このように、磁性酸化鉄として、イプシロン磁性酸化鉄、M型フェライト、ストロンチウムフェライト磁性酸化鉄を用いることによって、それぞれの磁性酸化鉄の異方性磁界(HA)の値を制御することができ、結果として、これらの磁性酸化鉄を電磁波吸収層1に含む電磁波吸収シートで吸収される電磁波の周波数を変化させることができる。
Thus, by using epsilon magnetic iron oxide, M-type ferrite, and strontium ferrite magnetic iron oxide as magnetic iron oxide, the value of anisotropic magnetic field (H A ) of each magnetic iron oxide can be controlled. As a result, the frequency of electromagnetic waves absorbed by the electromagnetic wave absorbing sheet containing these magnetic iron oxides in the electromagnetic wave absorbing layer 1 can be changed.
ここで、本実施形態にかかる電磁波吸収シートにおいて電磁波吸収材料として用いられるイプシロン磁性酸化鉄とストロンチウムフェライト磁性酸化鉄とについて、それぞれが有する保磁力と吸収する電磁波の周波数との関係について測定した結果を説明する。
Here, for the epsilon magnetic iron oxide and the strontium ferrite magnetic iron oxide used as the electromagnetic wave absorbing material in the electromagnetic wave absorbing sheet according to the present embodiment, the results of measuring the relationship between the coercive force of each and the frequency of the electromagnetic wave to be absorbed are shown. explain.
図3は、イプシロン磁性酸化鉄についての保磁力と吸収される電磁波の周波数との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the coercive force of epsilon magnetic iron oxide and the frequency of electromagnetic waves absorbed.
図3では、置換元素の種類や置換量が異なるイプシロン磁性酸化鉄に対し、それぞれについて測定された保磁力(Hc)の値(Oe)と吸収される電磁波の周波数のピーク値(GHz)とをプロットしている。図3に示すように、各種イプシロン磁性酸化鉄の保磁力と吸収周波数との間には、図3中符号31で示すように明らかな線形関係が認められる。
In FIG. 3, for epsilon magnetic iron oxides with different types of substitution elements and substitution amounts, the coercivity (Hc) value (Oe) measured for each and the peak value (GHz) of the frequency of the absorbed electromagnetic wave are shown. Plotting. As shown in FIG. 3, a clear linear relationship is recognized between the coercive force and the absorption frequency of various epsilon magnetic iron oxides as indicated by reference numeral 31 in FIG.
また、図4は、ストロンチウムフェライト磁性酸化鉄についての保磁力と吸収される電磁波の周波数との関係を示している。
FIG. 4 shows the relationship between the coercive force of strontium ferrite magnetic iron oxide and the frequency of electromagnetic waves absorbed.
図4では、アルミ(Al)置換量が異なるストロンチウムフェライト磁性酸化鉄に対して、それぞれについて測定された保磁力(Hc)の値(Oe)と吸収される電磁波の周波数のピーク値(GHz)とをプロットしている。サンプル数が少ないものの、ストロンチウムフェライト磁性酸化鉄においても、各種ストロンチウムフェライト磁性酸化鉄の保磁力と吸収周波数との間には、図4中符号41で示すような線形関係が認められる。
In FIG. 4, for the strontium ferrite magnetic iron oxide having different aluminum (Al) substitution amounts, the coercive force (Hc) value (Oe) measured for each and the peak value (GHz) of the frequency of the absorbed electromagnetic wave Is plotted. Although the number of samples is small, even in strontium ferrite magnetic iron oxide, a linear relationship as indicated by reference numeral 41 in FIG. 4 is recognized between the coercive force and the absorption frequency of various strontium ferrite magnetic iron oxides.
これらのことから、磁性酸化鉄の保磁力と当該磁性酸化鉄が吸収する電磁波の周波数との間には強い相関性があり、電磁波吸収材料として用いられる磁性酸化鉄の保磁力を異ならせることで、吸収する電磁波の周波数を制御することができることがわかる。
From these facts, there is a strong correlation between the coercive force of magnetic iron oxide and the frequency of electromagnetic waves absorbed by the magnetic iron oxide. By changing the coercive force of magnetic iron oxide used as an electromagnetic wave absorbing material, It can be seen that the frequency of the electromagnetic wave to be absorbed can be controlled.
なお、図3と図4との比較において、例えば吸収される電磁波の周波数が75GHzであった場合に、イプシロン磁性酸化鉄の保磁力が約7500Oeに対して、ストロンチウムフェライト磁性酸化鉄の保磁力は約2500Oeと小さい。この保磁力の大きさの差は、それぞれの部材の電磁波吸収特性に関係し、イプシロン磁性酸化鉄はストロンチウムフェライト磁性酸化鉄に比べて、電磁波の吸収能力がより高いことを表している。
In comparison between FIG. 3 and FIG. 4, for example, when the frequency of the absorbed electromagnetic wave is 75 GHz, the coercive force of epsilon magnetic iron oxide is about 7500 Oe, whereas the coercive force of strontium ferrite magnetic iron oxide is As small as about 2500 Oe. This difference in coercivity is related to the electromagnetic wave absorption characteristics of each member, and epsilon magnetic iron oxide has a higher ability to absorb electromagnetic waves than strontium ferrite magnetic iron oxide.
[電磁波吸収層]
本実施形態にかかる電磁波吸収シートにおいて、電磁波吸収層1では、磁性酸化鉄の粒子1a1、1a2が樹脂製のバインダー1bによって分散されていることで、シートとしての可撓性を備える。 [Electromagnetic wave absorption layer]
In the electromagnetic wave absorbing sheet according to the present embodiment, in the electromagnetic wave absorbing layer 1, magnetic iron oxide particles 1a 1 and 1a 2 are dispersed by a resin binder 1b, thereby providing flexibility as a sheet.
本実施形態にかかる電磁波吸収シートにおいて、電磁波吸収層1では、磁性酸化鉄の粒子1a1、1a2が樹脂製のバインダー1bによって分散されていることで、シートとしての可撓性を備える。 [Electromagnetic wave absorption layer]
In the electromagnetic wave absorbing sheet according to the present embodiment, in the electromagnetic wave absorbing layer 1, magnetic
電磁波吸収層1に用いられる樹脂製のバインダーとしては、エポキシ系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、アクリル系樹脂、フェノール系樹脂、メラミン系樹脂、ゴム系樹脂などの樹脂材料を用いることができる。
As the resin-made binder used for the electromagnetic wave absorption layer 1, resin materials such as epoxy resins, polyester resins, polyurethane resins, acrylic resins, phenol resins, melamine resins, rubber resins, and the like can be used. .
より具体的には、エポキシ系樹脂として、ビスフェノールAの両末端の水酸基をエポキシ化した化合物を用いることができる。また、ポリウレタン系樹脂として、ポリエステル系ウレタン樹脂、ポリエーテル系ウレタン樹脂、ポリカーボネート系ウレタン樹脂、エポキシ系ウレタン樹脂などを用いることができる。アクリル系の樹脂としては、メタアクリル系樹脂で、アルキル基の炭素数が2~18の範囲にあるアクリル酸アルキルエステルおよび/またはメタクリル酸アルキルエステルと、官能基含有モノマーと、必要に応じてこれらと共重合可能な他の改質用モノマーとを共重合させることにより得られる官能基含有メタアクリルポリマーなどを用いることができる。
More specifically, a compound obtained by epoxidizing hydroxyl groups at both ends of bisphenol A can be used as the epoxy resin. As the polyurethane resin, a polyester urethane resin, a polyether urethane resin, a polycarbonate urethane resin, an epoxy urethane resin, or the like can be used. Acrylic resins include methacrylic resins, alkyl acrylates and / or methacrylic acid alkyl esters in which the alkyl group has 2 to 18 carbon atoms, functional group-containing monomers, and if necessary, these A functional group-containing methacrylic polymer or the like obtained by copolymerizing with another modifying monomer that can be copolymerized with the monomer can be used.
また、ゴム系樹脂として、スチレン系の熱可塑性エラストマーであるSIS(スチレン-イソブレンブロック共重合体)やSBS(スチレン-ブタジエンブロック共重合体)、石油系合成ゴムであるEPDM(エチレン・プロピレン・ジエン・ゴム)、その他アクリルゴムやシリコーンゴムなどのゴム系材料をバインダーとして利用することができる。
In addition, SIS (styrene-isobrene block copolymer) and SBS (styrene-butadiene block copolymer), which are styrene thermoplastic elastomers, and EPDM (ethylene propylene Diene / rubber) and other rubber materials such as acrylic rubber and silicone rubber can be used as a binder.
なお、電磁波吸収体を成型体として形成するために熱可塑性樹脂として耐熱性のある高融点の熱可塑性樹脂を用いる場合、6Tナイロン(6TPA)、9Tナイロン(9TPA)、10Tナイロン(10TPA)、12Tナイロン(12TPA)、MXD6ナイロン(MXDPA)等の芳香族ポリアミド及びこれらのアロイ材料、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド(PEI)、ポリフェニルスルホン(PPSU)等を用いることができる。
In addition, when using a heat-resistant high melting point thermoplastic resin as the thermoplastic resin for forming the electromagnetic wave absorber as a molded body, 6T nylon (6TPA), 9T nylon (9TPA), 10T nylon (10TPA), 12T Aromatic polyamides such as nylon (12TPA), MXD6 nylon (MXDPA) and their alloy materials, polyphenylene sulfide (PPS), liquid crystal polymer (LCP), polyetheretherketone (PEEK), polyetherimide (PEI), polyphenyl Sulfone (PPSU) or the like can be used.
また、環境に配慮する観点から、バインダーとして用いられる樹脂としては、ハロゲンを含まないハロゲンフリーのものを用いることが好ましい。これらの樹脂材料は、樹脂シートのバインダー材料として一般的なものであるため容易に入手することができる。
Also, from the viewpoint of environmental considerations, it is preferable to use a halogen-free resin that does not contain halogen as the resin used as the binder. Since these resin materials are common as binder materials for resin sheets, they can be easily obtained.
なお、本明細書において可撓性を有するとは、電磁波吸収層が、一定程度湾曲させることができる状態、すなわち、シートを丸めて元に戻したときに破断などの塑性変形が生じずに平面状のシートに復帰する状態を示している。
In this specification, the term “flexible” means that the electromagnetic wave absorbing layer can be bent to a certain extent, that is, it is flat without causing plastic deformation such as breakage when the sheet is rolled and returned to its original state. The state which returns to a sheet-like sheet is shown.
本実施形態にかかる電磁波吸収シートの電磁波吸収層は、電磁波吸収材料としてイプシロン磁性酸化鉄を用いるが、イプシロン磁性酸化鉄は上述のように粒径が数nmから数十nmの微細なナノ粒子であるため、電磁波吸収層の形成時にバインダー内に良好に分散させることが重要となる。このため、電磁波吸収層に、フェニルホスホン酸、フェニルホスホン酸ジクロリド等のアリールスルホン酸、メチルホスホン酸、エチルホスホン酸、オクチルホスホン酸、プロピルホスホン酸などのアルキルホスホン酸、あるいは、ヒドロキシエタンジホスホン酸、ニトロトリスメチレンホスホン酸などの多官能ホスホン酸などのリン酸化合物を含んでいる。これらのリン酸化合物は、難燃性を有するとともに、微細な磁性酸化鉄粉の分散剤として機能するため、バインダー内のイプシロン磁性酸化鉄粒子を、良好に分散させることができる。
The electromagnetic wave absorbing layer of the electromagnetic wave absorbing sheet according to the present embodiment uses epsilon magnetic iron oxide as an electromagnetic wave absorbing material. Epsilon magnetic iron oxide is a fine nanoparticle having a particle size of several nm to several tens of nm as described above. For this reason, it is important to disperse well in the binder when forming the electromagnetic wave absorbing layer. For this reason, in the electromagnetic wave absorbing layer, aryl sulfonic acid such as phenylphosphonic acid and phenylphosphonic dichloride, alkylphosphonic acid such as methylphosphonic acid, ethylphosphonic acid, octylphosphonic acid and propylphosphonic acid, or hydroxyethane diphosphonic acid, It contains phosphate compounds such as polyfunctional phosphonic acids such as nitrotrismethylene phosphonic acid. Since these phosphoric acid compounds have flame retardancy and function as a fine magnetic iron oxide powder dispersant, the epsilon magnetic iron oxide particles in the binder can be well dispersed.
より具体的に、分散剤としては、和光純薬工業株式会社製、または、日産化学工業株式会社製のフェニルホスホン酸(PPA)、城北化学工業株式会社製の酸化リン酸エステル「JP-502」(製品名)などを使用することができる。
More specifically, examples of the dispersant include phenylphosphonic acid (PPA) manufactured by Wako Pure Chemical Industries, Ltd. or Nissan Chemical Industries, Ltd., and phosphoric acid ester “JP-502” manufactured by Johoku Chemical Industries, Ltd. (Product name) can be used.
なお、電磁波吸収層の組成としては、一例として、イプシロン磁性酸化鉄粉100部に対して、樹脂製バインダーが2~50部、リン酸化合物の含有量が0.1~15部とすることができる。樹脂製バインダーが2部より少ないと、磁性酸化鉄を良好に分散させることができない。また磁性体層としてシート状の形状を維持できなくなる。50部より多いと、電磁波吸収層の中で磁性酸化鉄の体積含率が小さくなり、透磁率が低くなるため電磁波吸収の効果が小さくなる。
As an example of the composition of the electromagnetic wave absorbing layer, the resin binder is 2 to 50 parts and the phosphoric acid compound content is 0.1 to 15 parts with respect to 100 parts of epsilon magnetic iron oxide powder. it can. If the resin binder is less than 2 parts, the magnetic iron oxide cannot be dispersed well. In addition, the sheet-like shape cannot be maintained as the magnetic layer. When the amount is more than 50 parts, the volume content of magnetic iron oxide is reduced in the electromagnetic wave absorbing layer, and the magnetic permeability is lowered, so that the effect of electromagnetic wave absorption is reduced.
リン酸化合物の含有量が0.1部より少ないと、樹脂製バインダーを用いて磁性酸化鉄を良好に分散させることができない。15部より多いと、磁性酸化鉄を良好に分散させる効果が飽和する。電磁波吸収層の中で磁性酸化鉄の体積含率が小さくなり、透磁率が低くなるため電磁波吸収の効果が小さくなる。
When the content of the phosphoric acid compound is less than 0.1 part, the magnetic iron oxide cannot be well dispersed using the resin binder. When the amount is more than 15 parts, the effect of satisfactorily dispersing magnetic iron oxide is saturated. In the electromagnetic wave absorbing layer, the volume content of magnetic iron oxide is reduced and the magnetic permeability is lowered, so that the effect of electromagnetic wave absorption is reduced.
[電磁波吸収シートの製造方法]
ここで、本実施形態にかかる電磁波吸収シートの製造方法について説明する。 [Method of manufacturing electromagnetic wave absorbing sheet]
Here, the manufacturing method of the electromagnetic wave absorption sheet concerning this embodiment is demonstrated.
ここで、本実施形態にかかる電磁波吸収シートの製造方法について説明する。 [Method of manufacturing electromagnetic wave absorbing sheet]
Here, the manufacturing method of the electromagnetic wave absorption sheet concerning this embodiment is demonstrated.
本実施形態の電磁波吸収シートは、例えば、少なくとも磁性酸化鉄粉と樹脂製バインダーとを含んだ磁性塗料を作製してこれを所定の厚さで塗布し、乾燥させた後にカレンダ処理することによって形成することができる。
The electromagnetic wave absorbing sheet of the present embodiment is formed, for example, by producing a magnetic paint containing at least magnetic iron oxide powder and a resinous binder, applying it at a predetermined thickness, drying it, and calendering it. can do.
また、磁性塗料成分として、少なくとも磁性酸化鉄粉と、分散剤であるリン酸化合物と、バインダー樹脂とを高速攪拌機で高速混合して混合物を調製し、その後、得られた混合物をサンドミルで分散処理することでも磁性塗料を得ることができる。
In addition, as a magnetic coating component, at least magnetic iron oxide powder, a phosphoric acid compound as a dispersant, and a binder resin are mixed at high speed with a high-speed stirrer to prepare a mixture, and then the resulting mixture is dispersed in a sand mill. By doing so, a magnetic paint can be obtained.
このようにして作製された磁性塗料を用いて、電磁波吸収シートを作製する。
An electromagnetic wave absorbing sheet is produced using the magnetic paint thus produced.
電磁波吸収シートを作製する場合には、図1に示したように、樹脂製のシート2の上に上記作製した磁性塗料を塗布する。樹脂シート2としては、一例として、シリコンコートによって表面に剥離処理をされた、厚さ38μmのポリエチレンテレフタレート(PET)のシートを用いることができる。この樹脂シート2の上に、テーブルコータ法やバーコータ法などの塗布方法を用いて、磁性塗料を塗布する。
When producing an electromagnetic wave absorbing sheet, as shown in FIG. 1, the produced magnetic paint is applied on a resin sheet 2. As an example of the resin sheet 2, a sheet of polyethylene terephthalate (PET) having a thickness of 38 μm, the surface of which has been peeled off by silicon coating, can be used. A magnetic paint is applied onto the resin sheet 2 using an application method such as a table coater method or a bar coater method.
その後、wet状態の磁性塗料を乾燥し、さらにカレンダ処理を行って、支持体上に電磁波吸収シートを形成できる。電磁波吸収シートの厚さは、塗布厚やカレンダ処理の条件等によって制御することができる。カレンダ処理が行われた後の電磁波吸収シート1を樹脂シート2から剥離させて、所望の厚さの電磁波吸収シート1を得る。
Thereafter, the wet-state magnetic paint is dried and further calendered to form an electromagnetic wave absorbing sheet on the support. The thickness of the electromagnetic wave absorbing sheet can be controlled by the coating thickness, the calendering conditions, and the like. The electromagnetic wave absorbing sheet 1 after the calendar process is peeled from the resin sheet 2 to obtain the electromagnetic wave absorbing sheet 1 having a desired thickness.
なお、カレンダ処理は必要に応じて行えばよく、磁性塗料を乾燥させた状態で磁性酸化鉄粉の体積含率が所定の範囲内となっている場合には、カレンダ処理を行わなくても構わない。
The calendar process may be performed as necessary. If the volume content of the magnetic iron oxide powder is within a predetermined range with the magnetic paint dried, the calendar process may not be performed. Absent.
また、少なくとも磁性酸化鉄粉とゴムなどの樹脂製バインダーとを含んだ磁性コンパウンドを作製して、これを所定の厚さで成型し、架橋させることによって電磁波吸収シートの電磁波吸収層を形成することができる。
Also, an electromagnetic wave absorbing layer of the electromagnetic wave absorbing sheet is formed by preparing a magnetic compound containing at least a magnetic iron oxide powder and a resin binder such as rubber, molding the resultant to a predetermined thickness, and crosslinking the resultant. Can do.
具体的には先ず、磁性コンパウンドを作製する。磁性コンパウンドは、磁性酸化鉄粉と分散剤、樹脂製バインダーを混練することによって得ることができる。混練物は、一例として、加圧式の回分式ニーダで混練することにより得られる。なお、このとき、必要に応じて架橋剤を配合することができる。
Specifically, first, a magnetic compound is prepared. The magnetic compound can be obtained by kneading magnetic iron oxide powder, a dispersant, and a resin binder. As an example, the kneaded product can be obtained by kneading with a pressure batch kneader. In addition, a crosslinking agent can be mix | blended as needed at this time.
得られた磁性コンパウンドを、一例として油圧プレス機などを用いて150℃の温度でシート状に架橋・成型プレスする。その後、恒温槽内において2次架橋処理を施し電磁波吸収層を形成できる。
The obtained magnetic compound is cross-linked and molded into a sheet at a temperature of 150 ° C. using a hydraulic press machine as an example. Thereafter, an electromagnetic wave absorbing layer can be formed by performing a secondary cross-linking treatment in a thermostatic chamber.
なお、成型は上述したプレス成型の他に、押出成型、射出成型によって行うことができる。具体的には、磁性酸化鉄粉と、バインダーと、必要に応じて分散剤などを予め加圧式ニーダやエクストルーダー、ロールミルなどでブレンドし、ブレンドされたこれら材料を押出成型機の樹脂供給口から可塑性シリンダ内に供給する。なお、押出成型機としては、可塑性シリンダと、可塑性シリンダの先端に設けられたダイと、可塑性シリンダ内に回転自在に配設されたスクリューと、スクリューを駆動させる駆動機構とを備えた通常の押出成型機を用いることができる。押出成型機のバンドヒータによって可塑化された溶融材料が、スクリューの回転によって前方に送られて先端からシート状に押し出すことで所定の厚さの電磁波吸収層を得ることができる。
In addition, the molding can be performed by extrusion molding or injection molding in addition to the press molding described above. Specifically, magnetic iron oxide powder, a binder, and a dispersant as necessary are pre-blended with a pressure kneader, an extruder, a roll mill, etc., and these blended materials are fed from the resin supply port of the extruder. Supply into plastic cylinder. As an extrusion molding machine, a normal extrusion machine including a plastic cylinder, a die provided at the tip of the plastic cylinder, a screw rotatably disposed in the plastic cylinder, and a drive mechanism for driving the screw. A molding machine can be used. The molten material plasticized by the band heater of the extrusion molding machine is fed forward by the rotation of the screw and extruded from the tip into a sheet shape, whereby an electromagnetic wave absorbing layer having a predetermined thickness can be obtained.
また磁性酸化鉄粉と、分散剤、バインダーを必要に応じて予めブレンドし、ブレンドされたこれら材料を射出成型機の樹脂供給口から可塑性シリンダ内に供給し、可塑化シリンダ内においてスクリューで溶融混練の後、射出成型機の先端に接続した金型に溶融樹脂を射出することで、成型体を形成することができる。
Also, magnetic iron oxide powder, dispersant, and binder are pre-blended as necessary, and these blended materials are fed into the plastic cylinder from the resin supply port of the injection molding machine, and melt kneaded with a screw in the plasticizing cylinder. Thereafter, the molded body can be formed by injecting the molten resin into a mold connected to the tip of the injection molding machine.
[ベースフィルム、接着層]
図示は省略するが、本実施形態にかかる電磁波吸収シートは、電磁波吸収層1をベースフィルム上に形成することができる。 [Base film, adhesive layer]
Although illustration is abbreviate | omitted, the electromagnetic wave absorption sheet concerning this embodiment can form the electromagnetic wave absorption layer 1 on a base film.
図示は省略するが、本実施形態にかかる電磁波吸収シートは、電磁波吸収層1をベースフィルム上に形成することができる。 [Base film, adhesive layer]
Although illustration is abbreviate | omitted, the electromagnetic wave absorption sheet concerning this embodiment can form the electromagnetic wave absorption layer 1 on a base film.
形成した電磁波吸収層1の厚みが薄く電磁波吸収シート1としての所定の強度が得られない場合には、電磁波吸収層1背面側に樹脂製の基材であるベースフィルムを積層することが好ましい。
When the formed electromagnetic wave absorption layer 1 is thin and a predetermined strength as the electromagnetic wave absorption sheet 1 cannot be obtained, it is preferable to laminate a base film which is a resin base material on the back side of the electromagnetic wave absorption layer 1.
なお、ベースフィルムとしては、PETフィルムなどの各種の樹脂製フィルム、ゴム、和紙などの紙部材を用いて構成することができる。ベースフィルムの材料や厚みは、本実施形態にかかる電磁波吸収シートにおいて電磁波吸収特性には影響を与えないため、電磁波吸収シートの強度や取り扱いの容易性などの実用的な観点から、適切な材料で、かつ、適切な厚みを有するベースフィルムを選択することができる。
In addition, as a base film, it can comprise using paper members, such as various resin films, such as PET film, rubber | gum, and Japanese paper. The material and thickness of the base film do not affect the electromagnetic wave absorption characteristics in the electromagnetic wave absorbing sheet according to the present embodiment, so from a practical viewpoint such as the strength of the electromagnetic wave absorbing sheet and ease of handling, an appropriate material is used. And the base film which has suitable thickness can be selected.
さらに、本実施形態にかかる電磁波吸収シートでは、電磁波吸収層1の背面側、または、ベースフィルムの電磁波吸収層1が形成されている側とは反対側の表面に、図示しない接着層を形成することができる。
Furthermore, in the electromagnetic wave absorbing sheet according to the present embodiment, an adhesive layer (not shown) is formed on the back side of the electromagnetic wave absorbing layer 1 or on the surface opposite to the side on which the electromagnetic wave absorbing layer 1 of the base film is formed. be able to.
接着層を設けることで、ベースフィルムの有無にかかわらず、電磁波吸収層1からなる電磁波吸収シートを、電気回路を収納する筐体の内面や、電気機器の内面または外面の所望の位置に容易に貼着することができる。特に、本実施形態の電磁波吸収シートは電磁波吸収層1が可撓性を有するものであるため、湾曲した曲面上にも容易に貼着することができ、電磁波吸収シートの取り扱い容易性が向上する。
By providing the adhesive layer, the electromagnetic wave absorbing sheet composed of the electromagnetic wave absorbing layer 1 can be easily placed at a desired position on the inner surface of the housing housing the electric circuit, or on the inner surface or outer surface of the electric device, regardless of the presence or absence of the base film. Can be attached. In particular, since the electromagnetic wave absorbing sheet 1 of the present embodiment is one in which the electromagnetic wave absorbing layer 1 has flexibility, it can be easily attached on a curved surface, and the handling ease of the electromagnetic wave absorbing sheet is improved. .
接着層としては、粘着テープなどの粘着層として利用される公知の材料、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤等を用いることができる。また被着体に対する粘着力の調節、糊残りの低減のために、粘着付与剤や架橋剤を用いることもできる。被着体に対する粘着力は5N/10mm~12N/10mmが好ましい。粘着力が5N/10mmより小さいと、電磁波吸収シートが被着体から容易に剥がれてしまったり、ずれてしまったりすることがある。また、粘着力が12N/10mmより大きいと、電磁波吸収シートを被着体から剥離しにくくなる。
As the adhesive layer, a known material used as an adhesive layer such as an adhesive tape, an acrylic adhesive, a rubber adhesive, a silicone adhesive, or the like can be used. Moreover, a tackifier and a crosslinking agent can also be used in order to adjust the adhesive force to the adherend and reduce adhesive residue. The adhesive strength with respect to the adherend is preferably 5 N / 10 mm to 12 N / 10 mm. When the adhesive strength is less than 5 N / 10 mm, the electromagnetic wave absorbing sheet may be easily peeled off from the adherend or may be displaced. Moreover, when adhesive force is larger than 12 N / 10mm, it will become difficult to peel an electromagnetic wave absorption sheet from a to-be-adhered body.
また接着層の厚さは20μm~100μmが好ましい。接着層の厚さが20μmより薄いと、粘着力が小さくなり、電磁波吸収シートが被着体から容易に剥がれたり、ずれたりすることがある。接着層4の厚さが100μmより大きいと、電磁波吸収シートを被着体から剥離しにくくなる。また接着層の凝集力が小さい場合は、電磁波吸収シートを剥離した場合、被着体に糊残りが生じる場合がある。
The thickness of the adhesive layer is preferably 20 μm to 100 μm. When the thickness of the adhesive layer is less than 20 μm, the adhesive force is reduced, and the electromagnetic wave absorbing sheet may be easily peeled off or displaced from the adherend. When the thickness of the adhesive layer 4 is larger than 100 μm, it is difficult to peel the electromagnetic wave absorbing sheet from the adherend. In addition, when the cohesive force of the adhesive layer is small, adhesive residue may be generated on the adherend when the electromagnetic wave absorbing sheet is peeled off.
なお、本願明細書において接着層とは、剥離不可能に貼着する接着層であるとともに、剥離可能な貼着を行う接着層であってもよい。
In the specification of the present application, the adhesive layer may be an adhesive layer that cannot be peeled off or may be an adhesive layer that can be peeled off.
また、電磁波吸収シートを所定の面に貼着するにあたって、電磁波吸収シートが接着層を備えていることが必須の要件ではないことは言うまでもなく、電磁波吸収シートが配置される部材の側の表面に粘着性を備えることや、両面テープや接着剤を用いて所定の部位に電磁波吸収シートを貼着することができる。この点において、接着層は、本実施形態に示す電磁波吸収シートにおける必須の構成要件ではない。
In addition, when adhering the electromagnetic wave absorbing sheet to a predetermined surface, it is needless to say that the electromagnetic wave absorbing sheet has an adhesive layer on the surface on the side of the member on which the electromagnetic wave absorbing sheet is disposed. An electromagnetic wave absorbing sheet can be attached to a predetermined site using adhesiveness or using a double-sided tape or an adhesive. In this respect, the adhesive layer is not an essential component in the electromagnetic wave absorbing sheet shown in the present embodiment.
[ヒステリシスループとこれを微分した微分曲線]
図5は、本実施形態にかかる電磁波吸収シートの電磁波吸収層の第1の構成例における、磁気特性のヒステリシスループとこれを微分した微分曲線とを示す図である。 [Hysteresis loop and differential curve differentiated]
FIG. 5 is a diagram illustrating a hysteresis loop of magnetic characteristics and a differential curve obtained by differentiating the hysteresis loop in the first configuration example of the electromagnetic wave absorbing layer of the electromagnetic wave absorbing sheet according to the present embodiment.
図5は、本実施形態にかかる電磁波吸収シートの電磁波吸収層の第1の構成例における、磁気特性のヒステリシスループとこれを微分した微分曲線とを示す図である。 [Hysteresis loop and differential curve differentiated]
FIG. 5 is a diagram illustrating a hysteresis loop of magnetic characteristics and a differential curve obtained by differentiating the hysteresis loop in the first configuration example of the electromagnetic wave absorbing layer of the electromagnetic wave absorbing sheet according to the present embodiment.
なお、以下の各図で示すヒステリシスカーブは、所定の磁性酸化鉄を含む径が8mmφ、厚さが2mmの試料を作製し、東英工業株式会社製の振動試料型磁力計VSM-P7(製品名)を用いて、印加磁界を16kOeから-16kOeの範囲で測定した。なお、測定の時定数Tcは、0.03secとしている。
The hysteresis curves shown in the following figures are obtained by preparing a sample containing a predetermined magnetic iron oxide having a diameter of 8 mmφ and a thickness of 2 mm. The vibration sample magnetometer VSM-P7 (product of Toei Kogyo Co., Ltd.) The applied magnetic field was measured in the range of 16 kOe to -16 kOe. The measurement time constant Tc is set to 0.03 sec.
図5に示すように、外部から強さが変化する磁界を印加していった際の磁性酸化鉄に残留する磁化の強さを示す磁化曲線51は、いわゆるヒステリシスカーブを描く。ミリ波帯域である数十から数百ギガヘルツ、さらには、3テラヘルツまでの高い周波数で磁気共鳴を起こす磁性酸化鉄は、ジャイロ磁気共鳴型の磁性体であり保磁力が高いため、磁界強度が16kOeから-16kOeの間の磁気特性を測定した場合、磁性酸化鉄のヒステリシスカーブは斜めに傾斜した形となる。このとき、困難軸方向の磁化曲線で飽和磁界に達する印加磁界の値が磁性酸化鉄の異方性磁界HAの値であり、この値は、スピンが一つの方向に揃う印加磁界の強さを示している。
As shown in FIG. 5, a magnetization curve 51 indicating the strength of magnetization remaining in magnetic iron oxide when a magnetic field whose strength changes from the outside is applied draws a so-called hysteresis curve. Magnetic iron oxide that causes magnetic resonance at a high frequency of several tens to several hundreds of gigahertz in the millimeter wave band and further up to 3 terahertz is a gyromagnetic resonance type magnetic material and has a high coercive force. When the magnetic characteristics between 1 and -16 kOe are measured, the hysteresis curve of magnetic iron oxide has a slanting shape. At this time, the value of the applied magnetic field that reaches the saturation magnetic field in the magnetization curve in the hard axis direction is the value of the anisotropic magnetic field HA of magnetic iron oxide, and this value is the strength of the applied magnetic field in which spins are aligned in one direction. Is shown.
異方性磁界HAの値と、磁性体の自然磁気共鳴周波数frとの間には、下記式(1)のような関係が成り立つ。
The relationship represented by the following formula (1) is established between the value of the anisotropic magnetic field HA and the natural magnetic resonance frequency fr of the magnetic material.
fr=ν/2π*HA (1)
ここで、νはジャイロ磁気定数で、磁性体の種類によって定まる値である。 fr = ν / 2π * HA (1)
Here, ν is a gyro magnetic constant, which is a value determined by the type of magnetic material.
ここで、νはジャイロ磁気定数で、磁性体の種類によって定まる値である。 fr = ν / 2π * HA (1)
Here, ν is a gyro magnetic constant, which is a value determined by the type of magnetic material.
このように、ジャイロ磁気共鳴型の磁性体では、異方性磁界HAの値と自然磁気共鳴周波数frとの間に比例関係が成り立つため、本実施形態の電磁波吸収層1では、異なる異方性磁界HAの値を有する異なった保磁力を持つ複数の磁性酸化鉄を電磁波吸収シートに含むことで、異なる周波数で磁気共鳴を起こして、当該周波数の電磁波を熱に変換して減衰させる。結果として、本実施形態にかかる電磁波吸収シートでは、それぞれの磁性酸化鉄で所定の周波数の電磁波を吸収することができ、電磁波吸収層に異なる異方性磁界HAの値を有する異なった保磁力を持つ複数の磁性酸化鉄を含むことで複数の周波数の電磁波を吸収することができる。
As described above, in the gyro magnetic resonance type magnetic body, since the proportional relationship is established between the value of the anisotropic magnetic field HA and the natural magnetic resonance frequency fr, the electromagnetic wave absorption layer 1 of the present embodiment has different anisotropic properties. By including a plurality of magnetic iron oxides having different coercive forces having values of the sexual magnetic field HA in the electromagnetic wave absorbing sheet, magnetic resonance is caused at different frequencies, and electromagnetic waves of the frequencies are converted into heat and attenuated. As a result, in the electromagnetic wave absorbing sheet according to the present embodiment, each magnetic iron oxide can absorb an electromagnetic wave having a predetermined frequency, and the electromagnetic wave absorbing layer has different coercive forces having different values of the anisotropic magnetic field HA. By including a plurality of magnetic iron oxides having the above, electromagnetic waves of a plurality of frequencies can be absorbed.
また、本実施形態にかかる電磁波吸収シートでは、電磁波吸収層1に異方性磁界HAの値が異なる2以上の磁性酸化鉄が含まれているとともに、電磁波吸収シートについて、外部から印加される磁界強度が16kOeから-16kOeの間の磁気特性のヒステリシスカーブ51を微分した微分曲線52が1つの極値を有する、すなわち、図5に示すような一つの頂上を有する山形となるようにしている。
In the electromagnetic wave absorbing sheet according to the present embodiment, the electromagnetic wave absorbing layer 1 includes two or more magnetic iron oxides having different anisotropic magnetic field HA values, and the electromagnetic wave absorbing sheet is applied from the outside. A differential curve 52 obtained by differentiating the hysteresis curve 51 of the magnetic characteristics between 16 kOe and -16 kOe of the magnetic field intensity has one extreme value, that is, a mountain shape having one peak as shown in FIG. .
図5に示す例では、電磁波遮蔽周波数(自然共鳴周波数)が76GHzと79GHzのイプシロン磁性酸化鉄を1:1の比率で混合し、下記の組成で磁性塗料を作製した。
In the example shown in FIG. 5, epsilon magnetic iron oxide having an electromagnetic wave shielding frequency (natural resonance frequency) of 76 GHz and 79 GHz was mixed at a ratio of 1: 1, and a magnetic paint was prepared with the following composition.
磁性酸化鉄粉 イプシロン磁性酸化鉄 100部
(ピーク吸収波長76GHz:79GHz=1:1)
分散剤 DISPERBYK-142(商品名) 15部
溶媒 メチルエチルケトン/トルエン(=1/1混合溶剤)
95部
なお、イプシロン磁性酸化鉄の保磁力は、ピーク吸収波長が76GHzのものが7544Oe、ピーク吸収波長が79GHzのものが7944Oeであった。 Magnetic iron oxide powder Epsilonmagnetic iron oxide 100 parts (peak absorption wavelength 76 GHz: 79 GHz = 1: 1)
Dispersant DISPERBYK-142 (trade name) 15 parts Solvent Methyl ethyl ketone / toluene (= 1/1 mixed solvent)
95 parts The coercive force of epsilon magnetic iron oxide was 7544 Oe having a peak absorption wavelength of 76 GHz and 7944 Oe having a peak absorption wavelength of 79 GHz.
(ピーク吸収波長76GHz:79GHz=1:1)
分散剤 DISPERBYK-142(商品名) 15部
溶媒 メチルエチルケトン/トルエン(=1/1混合溶剤)
95部
なお、イプシロン磁性酸化鉄の保磁力は、ピーク吸収波長が76GHzのものが7544Oe、ピーク吸収波長が79GHzのものが7944Oeであった。 Magnetic iron oxide powder Epsilon
Dispersant DISPERBYK-142 (trade name) 15 parts Solvent Methyl ethyl ketone / toluene (= 1/1 mixed solvent)
95 parts The coercive force of epsilon magnetic iron oxide was 7544 Oe having a peak absorption wavelength of 76 GHz and 7944 Oe having a peak absorption wavelength of 79 GHz.
この磁性塗料成分を径0.5mmのジルコニアビーズを分散媒体とし、内容量が2Lのディスク型サンドミルで分散した。このようにして得た分散塗料を攪拌機で攪拌しながら、以下の材料を配合し、上記電磁波吸収シートの製造方法として説明した条件で分散して磁性塗料を得た。
This magnetic paint component was dispersed with a zirconia bead having a diameter of 0.5 mm in a disc-type sand mill having an internal volume of 2 L. While stirring the dispersed paint thus obtained with a stirrer, the following materials were blended and dispersed under the conditions described as the method for producing the electromagnetic wave absorbing sheet to obtain a magnetic paint.
磁性塗料成分 100部
ポリウレタンバインダー(バイロンUR8700(商品名))46部
溶媒(希釈) メチルエチルケトン/トルエン(=1/1混合溶剤)
120部。Magnetic paint component 100 parts Polyurethane binder (Byron UR8700 (trade name)) 46 parts Solvent (dilution) Methyl ethyl ketone / toluene (= 1/1 mixed solvent)
120 copies.
ポリウレタンバインダー(バイロンUR8700(商品名))46部
溶媒(希釈) メチルエチルケトン/トルエン(=1/1混合溶剤)
120部。
120 copies.
続いて、得られた磁性塗料を、シリコンコートにより剥離処理された厚さ38μmのポリエチレンテレフタレート(PET)のシート上に、バーコータを用いて塗布し、湿潤状態において80℃で1440分乾燥後、厚さ400μmのシートを得た。こうして得られたシートに温度80℃、圧力150kg/cmでカレンダ処理を行い、厚さ300μmの電磁波吸収シートを得た。
Subsequently, the obtained magnetic coating material was applied onto a 38 μm-thick polyethylene terephthalate (PET) sheet peel-treated with a silicon coat using a bar coater, dried in a wet state at 80 ° C. for 1440 minutes, A 400 μm thick sheet was obtained. The sheet thus obtained was calendered at a temperature of 80 ° C. and a pressure of 150 kg / cm to obtain an electromagnetic wave absorbing sheet having a thickness of 300 μm.
この電磁波吸収シートは、図5に示すように、ヒステリシスカーブ51の微分曲線52は1つのピークを描く山型の形状として表され、測定対象の試料が、異なる2つの異方性磁界HAの値を有する磁性酸化物を含む一方で、異方性磁界HAの値、すなわち、吸収する電磁波の周波数を決める保磁力の差が400Oeと小さいために、電磁波吸収層全体としては1つのピーク波長を有する電磁波吸収特性を示すことがわかる。
In this electromagnetic wave absorbing sheet, as shown in FIG. 5, the differential curve 52 of the hysteresis curve 51 is expressed as a mountain shape that draws one peak, and the sample to be measured has two anisotropic magnetic fields HA . While the magnetic oxide having a value is included, the value of the anisotropic magnetic field HA , that is, the difference in coercive force that determines the frequency of the electromagnetic wave to be absorbed is as small as 400 Oe. It turns out that the electromagnetic wave absorption characteristic which has this is shown.
なお、図5に示した電磁波吸収シートの第1の構成例の場合は、2つのイプシロン磁性酸化鉄の異方性磁界HAの値は7544Oeと7944Oeであり、電磁波遮蔽(吸収)周波数(76GHz、79GHz)の差が3GHzであった。発明者らの検討によれば、電磁波吸収層に含まれる磁性酸化鉄の遮蔽周波数の差が5GHz以下であれば、図5に示す曲線52のように、ヒステリシスカーブの微分曲線が1つの極値を有する形状、すなわち、一つの山型の形状となることが確認できた。一方、吸収波長の差が5GHz以上の場合には、ヒステリシスループを微分した微分曲線が2つの山を有する双峰形状となり、2つのピークの中央部分の電磁波吸収特性が低下してしまうことがわかった。
In the case of the first configuration example of the electromagnetic wave absorbing sheet shown in FIG. 5, the values of the anisotropic magnetic fields HA of the two epsilon magnetic iron oxides are 7544 Oe and 7944 Oe, and the electromagnetic wave shielding (absorption) frequency (76 GHz). , 79 GHz) was 3 GHz. According to the study by the inventors, if the difference in the shielding frequency of the magnetic iron oxide contained in the electromagnetic wave absorbing layer is 5 GHz or less, the differential curve of the hysteresis curve has one extreme value as the curve 52 shown in FIG. It was confirmed that the shape had a shape, that is, a single mountain shape. On the other hand, when the difference in absorption wavelength is 5 GHz or more, it turns out that the differential curve obtained by differentiating the hysteresis loop becomes a bimodal shape having two peaks, and the electromagnetic wave absorption characteristics at the center of the two peaks are deteriorated. It was.
次に、電磁波吸収材料としてストロンチウムフェライト磁性酸化鉄を用いた電磁波吸収シートの磁気特性について確認した。
Next, the magnetic properties of the electromagnetic wave absorbing sheet using strontium ferrite magnetic iron oxide as the electromagnetic wave absorbing material were confirmed.
図6~図10は、いずれも、ストロンチウムフェライト磁性酸化鉄を用いた電磁波吸収シートの外部から印加される磁界強度が16kOeから-16kOeの間の磁気特性のヒステリシスカーブと、これを微分した微分曲線を示している。
6 to 10 all show hysteresis curves of magnetic characteristics in which the magnetic field strength applied from the outside of the electromagnetic wave absorbing sheet using strontium ferrite magnetic iron oxide is between 16 kOe and −16 kOe, and differential curves obtained by differentiating the hysteresis curves. Is shown.
図6は、電磁波遮蔽周波数が75GHzと76GHzのストロンチウムフェライト磁性酸化鉄を含む電磁波吸収シートの第2の構成例の場合を示す。また、図7は、電磁波遮蔽周波数が75GHzと77GHzのストロンチウムフェライト磁性酸化鉄を含む電磁波吸収シートの第3の構成例の場合を示す。図8は、電磁波遮蔽周波数が76GHzと77GHzのストロンチウムフェライト磁性酸化鉄を含む電磁波吸収シートの第4の構成例の場合を示す。図9は、電磁波遮蔽周波数が75GHzと76GHzと77GHzの3種類のストロンチウムフェライト磁性酸化鉄を含む電磁波吸収シートの第5の構成例の場合を示す。さらに、図10は、電磁波遮蔽周波数が76GHz、81GHz、86GHz、91GHz、96GHzの5種類のストロンチウムフェライト磁性酸化鉄を含む電磁波吸収シートの第6の構成例の場合を示す。
FIG. 6 shows the case of the second configuration example of the electromagnetic wave absorbing sheet containing strontium ferrite magnetic iron oxide having electromagnetic wave shielding frequencies of 75 GHz and 76 GHz. Moreover, FIG. 7 shows the case of the 3rd structural example of the electromagnetic wave absorption sheet containing strontium ferrite magnetic iron oxide whose electromagnetic wave shielding frequency is 75 GHz and 77 GHz. FIG. 8 shows the case of the fourth configuration example of the electromagnetic wave absorbing sheet containing strontium ferrite magnetic iron oxide having electromagnetic wave shielding frequencies of 76 GHz and 77 GHz. FIG. 9 shows the case of the fifth configuration example of the electromagnetic wave absorbing sheet containing three types of strontium ferrite magnetic iron oxides having electromagnetic wave shielding frequencies of 75 GHz, 76 GHz, and 77 GHz. Furthermore, FIG. 10 shows the case of the sixth configuration example of the electromagnetic wave absorbing sheet containing five types of strontium ferrite magnetic iron oxides having an electromagnetic wave shielding frequency of 76 GHz, 81 GHz, 86 GHz, 91 GHz, and 96 GHz.
なお、それぞれの電磁波吸収シートは、バインダーとしてシリコーンゴム製バインダーKE-510-U(商品名:信越化学工業株式会社製)を用いて以下の材料を用いて作製した。
Each electromagnetic wave absorbing sheet was prepared using the following materials using a silicone rubber binder KE-510-U (trade name: manufactured by Shin-Etsu Chemical Co., Ltd.) as a binder.
磁性酸化鉄粉 ストロンチウムフェライト磁性酸化鉄 100部
異なる遮蔽周波数の材料を同じ比率(1:1、1:1:1、
1:1:1:1:1)で混合
分散剤 DISPERBYK-142(商品名) 15部
溶媒 メチルエチルケトン/トルエン(=1/1混合溶剤)
95部。 Magnetic Iron Oxide Powder Strontium FerriteMagnetic Iron Oxide 100 parts Materials with different shielding frequencies in the same ratio (1: 1, 1: 1: 1,
Mixing with 1: 1: 1: 1: 1) Dispersant DISPERBYK-142 (trade name) 15 parts Solvent Methyl ethyl ketone / toluene (= 1/1 mixed solvent)
95 parts.
異なる遮蔽周波数の材料を同じ比率(1:1、1:1:1、
1:1:1:1:1)で混合
分散剤 DISPERBYK-142(商品名) 15部
溶媒 メチルエチルケトン/トルエン(=1/1混合溶剤)
95部。 Magnetic Iron Oxide Powder Strontium Ferrite
Mixing with 1: 1: 1: 1: 1) Dispersant DISPERBYK-142 (trade name) 15 parts Solvent Methyl ethyl ketone / toluene (= 1/1 mixed solvent)
95 parts.
この磁性塗料成分を径0.5mmのジルコニアビーズを分散媒体とし、内容量が2Lのディスク型サンドミルで分散した。このようにして得た分散塗料を攪拌機で攪拌しながら、以下の材料を配合し、上記電磁波吸収シートの製造方法として説明した条件で分散して磁性塗料を得た
磁性塗料成分 100部
ポリウレタンバインダー(バイロンUR8700(商品名))46部
溶媒(希釈) メチルエチルケトン/トルエン(=1/1混合溶剤)
120部。 This magnetic paint component was dispersed in a disk-type sand mill having an internal volume of 2 L using zirconia beads having a diameter of 0.5 mm as a dispersion medium. While stirring the dispersion paint thus obtained with a stirrer, the following materials were blended and dispersed under the conditions described as the method for producing the electromagnetic wave absorbing sheet to obtain a magnetic paint.Magnetic paint component 100 parts Polyurethane binder ( Byron UR8700 (trade name)) 46 parts Solvent (dilution) Methyl ethyl ketone / toluene (= 1/1 mixed solvent)
120 copies.
磁性塗料成分 100部
ポリウレタンバインダー(バイロンUR8700(商品名))46部
溶媒(希釈) メチルエチルケトン/トルエン(=1/1混合溶剤)
120部。 This magnetic paint component was dispersed in a disk-type sand mill having an internal volume of 2 L using zirconia beads having a diameter of 0.5 mm as a dispersion medium. While stirring the dispersion paint thus obtained with a stirrer, the following materials were blended and dispersed under the conditions described as the method for producing the electromagnetic wave absorbing sheet to obtain a magnetic paint.
120 copies.
続いて、得られた磁性塗料を、シリコンコートにより剥離処理された厚さ38μmのポリエチレンテレフタレート(PET)のシート上に、バーコータを用いて塗布し、湿潤状態において80℃で1440分乾燥後、厚さ400μmのシートを得た。
Subsequently, the obtained magnetic coating material was applied onto a 38 μm-thick polyethylene terephthalate (PET) sheet peel-treated with a silicon coat using a bar coater, dried in a wet state at 80 ° C. for 1440 minutes, A 400 μm thick sheet was obtained.
なお、異なる遮蔽周波数を有するストロンチウムフェライト磁性酸化鉄は、ストロンチウムフェライト磁性酸化鉄のストロンチウム元素をガリウムに置換する際の置換量を変化させて作製した。
Note that the strontium ferrite magnetic iron oxide having different shielding frequencies was produced by changing the substitution amount when the strontium element of the strontium ferrite magnetic iron oxide was substituted with gallium.
図6~図10に示すように、電磁波吸収材料としてストロンチウムフェライト磁性酸化鉄を用いた場合は、図5に示すイプシロン磁性酸化鉄を用いた場合と比較して、ヒステリシスループ(61、71、81、91、101)の幅が小さく、ストロンチウムフェライト磁性酸化鉄の保磁力がイプシロン磁性酸化鉄の保磁力と比較して小さいことが現れている。一方で、電磁波吸収シートの第2の構成から第5の構成のいずれにおいても、ヒステリシスループ(61、71、81、91、101)を微分した微分曲線(62、72、82、92、102)は、いずれも一つの山型となる形状が現れていて、微分曲線の極値が1つであることがわかる。
As shown in FIGS. 6 to 10, when strontium ferrite magnetic iron oxide is used as the electromagnetic wave absorbing material, hysteresis loops (61, 71, 81) are compared with the case where epsilon magnetic iron oxide shown in FIG. 5 is used. , 91, 101), and the coercivity of strontium ferrite magnetic iron oxide is smaller than that of epsilon magnetic iron oxide. On the other hand, in any of the second configuration to the fifth configuration of the electromagnetic wave absorbing sheet, the differential curve (62, 72, 82, 92, 102) obtained by differentiating the hysteresis loop (61, 71, 81, 91, 101). Each shows a single mountain shape, and it can be seen that the differential curve has one extreme value.
このように、電磁波吸収材料としてストロンチウムフェライト磁性酸化鉄を用いた場合も、異方性磁界HAの値が異なる2つ以上の磁性酸化鉄を含む一方で、電磁波吸収層全体としては、ヒステリシスループの微分曲線が1つの極値を有するため、高い電磁波吸収特性と吸収波長帯域の幅広さとを両立できていることがわかる。
As described above, when strontium ferrite magnetic iron oxide is used as the electromagnetic wave absorbing material, it includes two or more magnetic iron oxides having different anisotropic magnetic field values HA , while the entire electromagnetic wave absorbing layer has a hysteresis loop. Since the differential curve has one extreme value, it can be seen that both high electromagnetic wave absorption characteristics and a wide absorption wavelength band can be achieved.
特に幅広い吸収帯域の電磁波吸収特性を向上させるためには、多くの異なる遮蔽周波数の材料を組み合わせることで実現することができる。この場合、ヒステリシスカーブの微分曲線が1つの極値を有し、一つの山型の形状とするために、各遮蔽周波数の材料の遮蔽周波数の差が5GHz以下とすることが好ましい。
Especially in order to improve electromagnetic wave absorption characteristics in a wide absorption band, it can be realized by combining many materials having different shielding frequencies. In this case, in order for the differential curve of the hysteresis curve to have one extreme value and to have a single mountain shape, it is preferable that the difference between the shielding frequencies of the materials at the shielding frequencies is 5 GHz or less.
一例として図10に示した、遮蔽周波数の差が5GHzの5種類の異なる遮蔽周波数を有するストロンチウムフェライト磁性酸化鉄を用いた電磁波吸収シートについて、周波数と透過減衰量の関係を測定した。
As an example, the relationship between the frequency and transmission attenuation was measured for an electromagnetic wave absorbing sheet using strontium ferrite magnetic iron oxide having five different shielding frequencies with a shielding frequency difference of 5 GHz shown in FIG.
図11は、第6の構成例の電磁波吸収シートにおける、電磁波の周波数と透過減衰量との関係を示す図である。
FIG. 11 is a diagram showing the relationship between the frequency of electromagnetic waves and the amount of transmission attenuation in the electromagnetic wave absorbing sheet of the sixth configuration example.
図11に符号111として示すように、遮蔽周波数の差が5GHzの5種類の異なる遮蔽周波数を有するストロンチウムフェライト磁性酸化鉄を用いた場合、非常に幅広い吸収帯域で、10dB以上の良好な透過減衰量を示すことが分かった。なお、データの図示等は省略するが、6種類以上の異なる遮蔽周波数を有するストロンチウムフェライト磁性酸化鉄を用いた電磁波吸収シートでも、各ストロンチウムフェライト磁性酸化鉄の遮蔽周波数の差が5GHz以内であれば、幅広い吸収帯域での良好な透過減衰量を示すことが確認された。
As shown by reference numeral 111 in FIG. 11, when strontium ferrite magnetic iron oxide having five different shielding frequencies with a difference in shielding frequency of 5 GHz is used, a good transmission attenuation of 10 dB or more in a very wide absorption band It was found that Although illustration of data is omitted, even in an electromagnetic wave absorbing sheet using strontium ferrite magnetic iron oxide having six or more different shielding frequencies, if the difference in shielding frequency of each strontium ferrite magnetic iron oxide is within 5 GHz, It was confirmed that the transmission attenuation was good in a wide absorption band.
上記説明した、図5~図10に、ヒステリシスループとその微分曲線とを示す電磁波吸収シートの第1の構成から第6の構成において、いずれも電磁波吸収層に含まれる磁性酸化鉄の比率が同じ、すなわち、1:1、または、1:1:1、さらには、1:1:1:1:1とした場合を示した。しかし、本願実施形態にかかる電磁波吸収シートにおいて、電磁波吸収層に含まれる磁性酸化鉄の含有量は同じである場合には限られず、異なる割合で含まれていてもよい。発明者らが確認したところ、含まれる磁性酸化鉄の割合が同じ含有量(1:1、1:1:1、1:1:1:1:1)の場合にヒステリシスループの微分曲線が1つの極値を有する場合には、異なる異方性磁界(HA)の値を有する磁性酸化鉄の含有量が異なる場合でも、ヒステリシスループの微分曲線は一つの極値を有することが確認できた。さらに、図11に示したとおり、異なる遮蔽周波数を有する5種類の磁性酸化鉄の割合が同じ含有量(1:1:1:1:1)の場合には、非常に幅広い吸収帯域で10dB以上の良好な透過減衰量を示すことが分かった。
5 to 10 described above, the ratio of the magnetic iron oxide contained in the electromagnetic wave absorbing layer is the same in all of the first to sixth structures of the electromagnetic wave absorbing sheet showing the hysteresis loop and its differential curve. That is, the case of 1: 1, 1: 1: 1, or 1: 1: 1: 1: 1 is shown. However, in the electromagnetic wave absorbing sheet according to the embodiment of the present application, the content of the magnetic iron oxide contained in the electromagnetic wave absorbing layer is not limited to the same, and may be contained in different proportions. The inventors have confirmed that the hysteresis loop differential curve is 1 when the content of the magnetic iron oxide contained is the same (1: 1, 1: 1: 1, 1: 1: 1: 1: 1). In the case of having two extreme values, it was confirmed that even when the content of magnetic iron oxide having different anisotropic magnetic field ( HA ) values was different, the hysteresis loop differential curve had one extreme value. . Furthermore, as shown in FIG. 11, when the ratio of five types of magnetic iron oxides having different shielding frequencies is the same content (1: 1: 1: 1: 1), 10 dB or more in a very wide absorption band It was found that the transmission attenuation was good.
なお、電磁波吸収層に含まれる磁性酸化鉄の含有量については、吸収する電磁波の周波数帯域を良好に広げるという観点からは、異なる異方性磁界(HA)の値を有する磁性酸化鉄の含有量はなるべく均等とすることが好ましい。
In addition, about content of the magnetic iron oxide contained in an electromagnetic wave absorption layer, it is content of the magnetic iron oxide which has a value of a different anisotropic magnetic field ( HA ) from a viewpoint of expanding the frequency band of the electromagnetic wave to absorb favorably. The amount is preferably as uniform as possible.
このように、本実施形態にかかる電磁波吸収体としての電磁波吸収シートでは、電磁波吸収層に含まれる磁性酸化鉄の異方性磁界(HA)の値が異なる一方で磁気特性のヒステリシスループの微分曲線が一つの極値を有するため、磁性酸化鉄を一つのみ含む場合と比較して、より広い周波数帯域の電磁波に対して高い吸収特性を有するものとすることができる。また、本願で開示する電磁波吸収体は、平面視したときの大きさに対して厚さが小さなシート状とするだけではなく、電磁波吸収層を成型体として形成して所定の厚さを有したブロック形状とすることができる。
Thus, in the electromagnetic wave absorbing sheet as the electromagnetic wave absorber according to the present embodiment, the value of the anisotropic magnetic field (H A ) of the magnetic iron oxide contained in the electromagnetic wave absorbing layer is different, while the hysteresis loop derivative of the magnetic characteristics is differentiated. Since the curve has one extreme value, it can have higher absorption characteristics with respect to electromagnetic waves in a wider frequency band than when only one magnetic iron oxide is included. In addition, the electromagnetic wave absorber disclosed in the present application has a predetermined thickness by forming the electromagnetic wave absorption layer as a molded body in addition to a sheet shape having a small thickness with respect to the size when viewed in plan. It can be a block shape.
なお、上記実施例では、一層の電磁波吸収層に異方性磁界(HA)の値が異なる2つ以上の磁性酸化鉄が含まれる例を示したが、異方性磁界(HA)の値が異なる磁性酸化鉄が2層以上の電磁波吸収層に分散して含まれていても、磁気特性のヒステリシスループの微分曲線が1つの極値を有することで、同様に、より広い周波数帯域の電磁波を良好に吸収することができる電磁波吸収体とすることができる。
In the above-described embodiment, an example in which two or more magnetic iron oxides having different anisotropic magnetic field (H A ) values are included in one electromagnetic wave absorbing layer is shown. However, the anisotropic magnetic field (H A ) Even if magnetic iron oxides with different values are dispersed and contained in two or more electromagnetic wave absorption layers, the differential curve of the hysteresis loop of magnetic characteristics has one extreme value, It can be set as the electromagnetic wave absorber which can absorb electromagnetic waves favorably.
(第2の実施形態)
次に、本願で開示する電磁波吸収体用組成物について説明する。 (Second Embodiment)
Next, the electromagnetic wave absorber composition disclosed in the present application will be described.
次に、本願で開示する電磁波吸収体用組成物について説明する。 (Second Embodiment)
Next, the electromagnetic wave absorber composition disclosed in the present application will be described.
第2の実施形態として示す電磁波吸収体用組成物は、第1の実施形態で説明した電磁波吸収体である電磁波吸収シートを作製する際に用いられた磁性塗料を意味する。
The composition for an electromagnetic wave absorber shown as the second embodiment means a magnetic paint used when producing an electromagnetic wave absorbing sheet which is the electromagnetic wave absorber described in the first embodiment.
この磁性塗料は、樹脂製バインダー内に所定の異方性磁界(HA)の値を有することによって異なる保磁力をもった複数の磁性酸化物が含まれているものであるため、磁性塗料それ自体として、また、バルク状に固めた固形の電磁波吸収体として、それぞれ上述の電磁波吸収シートと同様の電磁波吸収特性を有する。また、電磁波吸収体全体としての磁気特性も、第1の実施形態で上述した電磁波吸収シートと同様に、ヒステリシスループの微分曲線が1つの極値を有する。
This magnetic paint contains a plurality of magnetic oxides having different coercive forces by having a predetermined anisotropic magnetic field ( HA ) value in a resin binder. As a solid electromagnetic wave absorber solidified in a bulk shape, it has the same electromagnetic wave absorption characteristics as the above-mentioned electromagnetic wave absorbing sheet. In addition, as for the magnetic characteristics of the entire electromagnetic wave absorber, the differential curve of the hysteresis loop has one extreme value, as in the electromagnetic wave absorbing sheet described in the first embodiment.
磁性酸化鉄粒子と樹脂製バインダーを含む電磁波吸収体用組成物してとしての磁性塗料を用いて、複雑な表面形状の部材や、壁面、天井など、各種建築部材の広範囲の部分に磁性塗料の塗膜を形成して電磁波吸収特性を付与することができる。また、電磁波を発生するICチップや発信器などの電子機器に磁性塗料を塗布して、これらの電子機器に電磁気吸収特性を有する被覆層を直接モールドすることも可能である。この結果、電磁波を発生する複雑な形状の機器全体を遮蔽することができる。また部屋全体を複数の周波数の電磁波から遮蔽することができる。
Using magnetic paint as a composition for electromagnetic wave absorber containing magnetic iron oxide particles and resin binder, magnetic paint can be applied to a wide range of building materials such as members with complicated surface shapes, walls, ceilings, etc. A coating film can be formed to impart electromagnetic wave absorption characteristics. It is also possible to apply a magnetic paint to an electronic device such as an IC chip or a transmitter that generates electromagnetic waves, and directly mold a coating layer having electromagnetic absorption characteristics on these electronic devices. As a result, the entire device having a complicated shape that generates electromagnetic waves can be shielded. Further, the entire room can be shielded from electromagnetic waves having a plurality of frequencies.
複雑な表面形状の部材や、壁面、天井などの広範囲の部分に、本願で開示する電磁波吸収体用組成物を付与する方法としては、刷子などを用いて表面に塗布する方法、スプレーで吹き付ける方法などがある。
As a method of applying the electromagnetic wave absorber composition disclosed in the present application to a wide surface portion such as a member having a complicated surface shape, a wall surface, or a ceiling, a method of applying to the surface using a brush or the like, a method of spraying with a spray and so on.
この場合にも、電磁波吸収体用組成物で吸収される電磁波の周波数は、含まれる磁性酸化物の異方性磁界(HA)の値に応じたものとなり、磁性酸化鉄を一つのみ含む場合と比較して、より広い周波数帯域の電磁波を良好に吸収することができる。
In this case as well, the frequency of the electromagnetic wave absorbed by the composition for electromagnetic wave absorbers depends on the value of the anisotropic magnetic field (H A ) of the magnetic oxide contained, and contains only one magnetic iron oxide. Compared to the case, electromagnetic waves in a wider frequency band can be favorably absorbed.
なお、電磁波吸収体用組成物は、所定の周波数の電磁波を吸収する部材として機能するほかに、微分曲線の極値部分以外の周波数の電磁波を選択的に透過させるフィルタとして機能させることができる。
In addition, the composition for electromagnetic wave absorbers can function as a member that selectively transmits electromagnetic waves having frequencies other than the extreme value portion of the differential curve, in addition to functioning as a member that absorbs electromagnetic waves having a predetermined frequency.
このように、本願で開示する電磁波吸収体は、シート状、ブロック形状、様々な形状のものとして実現することができる。また、本願で開示する電磁波吸収体用組成物を、上記例示した建築部材、電子機器をはじめとする他の部材や構成物に対して、塗布、注入、貼着、その他の方法によって供給することで、当該他の部材や構成物に良好な電磁波吸収特性を付与することができる。
As described above, the electromagnetic wave absorber disclosed in the present application can be realized in a sheet shape, a block shape, and various shapes. Moreover, the composition for electromagnetic wave absorbers disclosed in the present application is supplied to other members and components including the above-exemplified building members and electronic devices by coating, pouring, sticking, and other methods. Thus, good electromagnetic wave absorption characteristics can be imparted to the other members and components.
以上説明したように、本願で開示する電磁波吸収体、および、電磁波吸収体用組成物は、電磁波吸収層に異方性磁界HAの異なる2種以上の磁性酸化鉄を含むとともに、外部磁界を印加して得られる磁性特性のヒステリシスループを微分した微分曲線が1つの極値を有する。このため、本願で開示する電磁波吸収体、および、電磁波吸収体用組成物は、1種類の磁性酸化鉄を含んだ電磁波吸収層を有するものと比較して、吸収される電磁波の、広い周波数帯域と高い吸収特性とを実現することができる。
As described above, the electromagnetic wave absorber and the electromagnetic wave absorber composition disclosed in the present application include two or more kinds of magnetic iron oxides having different anisotropic magnetic fields HA in the electromagnetic wave absorbing layer, and an external magnetic field. A differential curve obtained by differentiating the hysteresis loop of the magnetic characteristics obtained by application has one extreme value. For this reason, the electromagnetic wave absorber and the electromagnetic wave absorber composition disclosed in the present application have a wider frequency band of absorbed electromagnetic waves than those having an electromagnetic wave absorbing layer containing one type of magnetic iron oxide. And high absorption characteristics can be realized.
なお、ヒステリシスループを測定するための外部磁界の強さを、16kOeから-16kOeとしているのは、少なくともこの範囲の外部磁界を印加することにより、良好なヒステリシスループが得られることを意味している。このため、印加される外部磁界の大きさを、その絶対値が16kOeよりも大きくしても問題が無く、外部磁界の大きさが16kOeから-16kOeの範囲でのヒステリシスループを測定し、その微分曲線を求めれば良い。
Note that the strength of the external magnetic field for measuring the hysteresis loop is set to 16 kOe to −16 kOe means that a good hysteresis loop can be obtained by applying an external magnetic field in this range at least. . For this reason, there is no problem even if the magnitude of the applied external magnetic field is greater than 16 kOe, the hysteresis loop is measured in the range of 16 kOe to −16 kOe, and the derivative is obtained. Find a curve.
本願で開示する電磁波吸収体、電磁波吸収体用組成物は、ミリ波帯域以上の高い周波数帯域においてより広い周波数帯域の電磁波を良好に吸収する電磁波吸収部材として有用である。
The electromagnetic wave absorber and the electromagnetic wave absorber composition disclosed in the present application are useful as an electromagnetic wave absorbing member that satisfactorily absorbs an electromagnetic wave in a wider frequency band in a high frequency band of the millimeter wave band or higher.
1 電磁波吸収層
1a(1a1、1a2) 磁性酸化鉄粒子
1b 樹脂製バインダー 1 the electromagneticwave absorbing layer 1a (1a 1, 1a 2) magnetic iron oxide particles 1b resinous binder
1a(1a1、1a2) 磁性酸化鉄粒子
1b 樹脂製バインダー 1 the electromagnetic
Claims (9)
- ミリ波帯以上の高周波数で磁気共鳴する磁性酸化鉄と、樹脂製バインダーを含む電磁波吸収層により形成された電磁波吸収体であって、
異方性磁界HAの値が異なる2種以上の前記磁性酸化鉄を含み、
印加される磁界強度が16kOeから-16kOeの間の磁気特性のヒステリシスループを微分した微分曲線が1つの極値を有することを特徴とする電磁波吸収体。 An electromagnetic wave absorber formed by an electromagnetic wave absorbing layer containing a magnetic iron oxide magnetically resonating at a high frequency of the millimeter wave band or higher and a resin binder,
Including two or more magnetic iron oxides having different values of the anisotropic magnetic field HA ,
An electromagnetic wave absorber characterized in that a differential curve obtained by differentiating a hysteresis loop of a magnetic characteristic having an applied magnetic field strength between 16 kOe and -16 kOe has one extreme value. - 前記電磁波吸収層に含まれる2種以上の前記磁性酸化鉄が、主とする元素構成が同一であるとともに置換元素が互いに異なる、請求項1に記載の電磁波吸収体。 2. The electromagnetic wave absorber according to claim 1, wherein two or more kinds of the magnetic iron oxides contained in the electromagnetic wave absorbing layer have the same main element configuration and different substitute elements.
- 前記磁性酸化鉄が、ストロンチウムフェライト磁性酸化鉄、イプシロン磁性酸化鉄のいずれかである、請求項1または2に記載の電磁波吸収体。 The electromagnetic wave absorber according to claim 1 or 2, wherein the magnetic iron oxide is one of strontium ferrite magnetic iron oxide and epsilon magnetic iron oxide.
- 前記電磁波吸収層が平面視したときの大きさに対して厚さが薄く形成され全体としてシート状である、請求項1~3のいずれかに記載の電磁波吸収体。 The electromagnetic wave absorber according to any one of claims 1 to 3, wherein the electromagnetic wave absorbing layer is formed to be thin with respect to a size when viewed in plan, and has a sheet shape as a whole.
- ミリ波帯以上の高周波数で磁気共鳴する磁性酸化鉄と、樹脂製バインダーによって形成された電磁波吸収体用組成物であって、
異方性磁界HAの値が異なる2種以上の前記磁性酸化鉄を含み、
印加される磁界強度が16kOeから-16kOeの間の磁気特性のヒステリシスループを微分した微分曲線が1つの極値を有することを特徴とする電磁波吸収体用組成物。 A composition for an electromagnetic wave absorber formed by magnetic iron oxide magnetically resonating at a high frequency of the millimeter wave band or higher, and a resin binder,
Including two or more magnetic iron oxides having different values of the anisotropic magnetic field HA ,
A composition for an electromagnetic wave absorber, wherein a differential curve obtained by differentiating a hysteresis loop having a magnetic characteristic with an applied magnetic field strength between 16 kOe and -16 kOe has one extreme value. - 前記電磁波吸収層に含まれる2種以上の前記磁性酸化鉄が、主とする元素構成が同一であるとともに置換元素が互いに異なる、請求項5に記載の電磁波吸収体用組成物。 The composition for an electromagnetic wave absorber according to claim 5, wherein two or more kinds of the magnetic iron oxides contained in the electromagnetic wave absorbing layer have the same main element constitution and different substitute elements.
- 前記磁性酸化鉄が、ストロンチウムフェライト磁性酸化鉄、イプシロン磁性酸化鉄のいずれかである、請求項5または6に記載の電磁波吸収体用組成物。 The composition for an electromagnetic wave absorber according to claim 5 or 6, wherein the magnetic iron oxide is one of strontium ferrite magnetic iron oxide and epsilon magnetic iron oxide.
- 請求項5~7のいずれかに記載の電磁波吸収体用組成物を用いて形成されたことを特徴とする建築部材。 A building member formed using the electromagnetic wave absorber composition according to any one of claims 5 to 7.
- 請求項5~7のいずれかに記載の電磁波吸収体用組成物による被覆層に少なくとも一部が覆われたことを特徴とする電子機器。 An electronic device, wherein at least part of the coating layer is covered with the electromagnetic wave absorber composition according to any one of claims 5 to 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020523153A JPWO2019235539A1 (en) | 2018-06-08 | 2019-06-05 | Electromagnetic wave absorber and composition for electromagnetic wave absorber |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018110231 | 2018-06-08 | ||
JP2018-110231 | 2018-06-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019235539A1 true WO2019235539A1 (en) | 2019-12-12 |
Family
ID=68770515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/022395 WO2019235539A1 (en) | 2018-06-08 | 2019-06-05 | Electromagnetic wave absorber and electromagnetic wave absorber composition |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2019235539A1 (en) |
TW (1) | TWI787517B (en) |
WO (1) | WO2019235539A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021144776A (en) * | 2020-03-13 | 2021-09-24 | 富士フイルム株式会社 | Magnetic recording medium, magnetic tape cartridge, and magnetic recording/reproduction device |
JP2021163838A (en) * | 2020-03-31 | 2021-10-11 | マクセルホールディングス株式会社 | Molding material for radio wave absorbing member and radio wave absorber |
WO2022154039A1 (en) * | 2021-01-18 | 2022-07-21 | 富士フイルム株式会社 | Magnetic powder for radio wave absorbers and method for producing same, radio wave absorber, radio wave absorbing article, and radio wave absorbing composition |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0935927A (en) * | 1995-07-20 | 1997-02-07 | Tokin Corp | Composite magnetic body and electromagnetic interference suppressor using the same |
JPH09115708A (en) * | 1995-10-16 | 1997-05-02 | Nippon Telegr & Teleph Corp <Ntt> | Electromagnetic wave absorbing material and package |
JP2016111341A (en) * | 2014-12-03 | 2016-06-20 | 国立大学法人 東京大学 | Electromagnetic wave absorber and film forming paste |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4859791B2 (en) * | 2006-09-01 | 2012-01-25 | 国立大学法人 東京大学 | Magnetic crystals and radio wave absorbers for radio wave absorbing materials |
CN109479388A (en) * | 2016-07-22 | 2019-03-15 | 麦克赛尔控股株式会社 | Electromagnetic wave absorb |
WO2018084235A1 (en) * | 2016-11-04 | 2018-05-11 | マクセルホールディングス株式会社 | Electromagnetic wave absorption sheet |
-
2019
- 2019-06-05 TW TW108119484A patent/TWI787517B/en active
- 2019-06-05 WO PCT/JP2019/022395 patent/WO2019235539A1/en active Application Filing
- 2019-06-05 JP JP2020523153A patent/JPWO2019235539A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0935927A (en) * | 1995-07-20 | 1997-02-07 | Tokin Corp | Composite magnetic body and electromagnetic interference suppressor using the same |
JPH09115708A (en) * | 1995-10-16 | 1997-05-02 | Nippon Telegr & Teleph Corp <Ntt> | Electromagnetic wave absorbing material and package |
JP2016111341A (en) * | 2014-12-03 | 2016-06-20 | 国立大学法人 東京大学 | Electromagnetic wave absorber and film forming paste |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021144776A (en) * | 2020-03-13 | 2021-09-24 | 富士フイルム株式会社 | Magnetic recording medium, magnetic tape cartridge, and magnetic recording/reproduction device |
JP7232207B2 (en) | 2020-03-13 | 2023-03-02 | 富士フイルム株式会社 | Magnetic Recording Media, Magnetic Tape Cartridges and Magnetic Recording/Reproducing Devices |
JP2021163838A (en) * | 2020-03-31 | 2021-10-11 | マクセルホールディングス株式会社 | Molding material for radio wave absorbing member and radio wave absorber |
JP7566482B2 (en) | 2020-03-31 | 2024-10-15 | マクセル株式会社 | Molding material for radio wave absorbing components and radio wave absorber |
WO2022154039A1 (en) * | 2021-01-18 | 2022-07-21 | 富士フイルム株式会社 | Magnetic powder for radio wave absorbers and method for producing same, radio wave absorber, radio wave absorbing article, and radio wave absorbing composition |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019235539A1 (en) | 2021-07-08 |
TW202000461A (en) | 2020-01-01 |
TWI787517B (en) | 2022-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11515643B2 (en) | Electromagnetic-wave-absorbing sheet | |
JP7030694B2 (en) | Electromagnetic wave absorber | |
WO2017221992A1 (en) | Electric wave absorption sheet | |
US9886978B2 (en) | Process for production of magnetic thin film, magnetic thin film, and magnetic material | |
WO2019235539A1 (en) | Electromagnetic wave absorber and electromagnetic wave absorber composition | |
WO2018084235A1 (en) | Electromagnetic wave absorption sheet | |
JP2023067902A (en) | Composition for electromagnetic wave absorber, and electromagnetic wave absorber | |
JPWO2018235952A1 (en) | Electromagnetic wave absorbing composition, electromagnetic wave absorbing sheet | |
WO2019235364A1 (en) | Radio wave-absorbing laminate film, production method therefor, and element including same | |
JP2018056492A (en) | Radio wave absorption sheet | |
WO2019235393A1 (en) | Electromagnetic wave absorber | |
JP7566482B2 (en) | Molding material for radio wave absorbing components and radio wave absorber | |
TWI756419B (en) | Electromagnetic wave absorbing sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19816103 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020523153 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19816103 Country of ref document: EP Kind code of ref document: A1 |