WO2019235531A1 - Method for producing electrode active material particle aggregates and method for producing electrode - Google Patents

Method for producing electrode active material particle aggregates and method for producing electrode Download PDF

Info

Publication number
WO2019235531A1
WO2019235531A1 PCT/JP2019/022354 JP2019022354W WO2019235531A1 WO 2019235531 A1 WO2019235531 A1 WO 2019235531A1 JP 2019022354 W JP2019022354 W JP 2019022354W WO 2019235531 A1 WO2019235531 A1 WO 2019235531A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
material particle
particle aggregate
stirring
Prior art date
Application number
PCT/JP2019/022354
Other languages
French (fr)
Japanese (ja)
Inventor
浩太郎 那須
大澤 康彦
雄樹 草地
佐藤 一
赤間 弘
堀江 英明
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2019235531A1 publication Critical patent/WO2019235531A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F29/00Mixers with rotating receptacles
    • B01F29/60Mixers with rotating receptacles rotating about a horizontal or inclined axis, e.g. drum mixers
    • B01F29/64Mixers with rotating receptacles rotating about a horizontal or inclined axis, e.g. drum mixers with stirring devices moving in relation to the receptacle, e.g. rotating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing an electrode active material particle aggregate and a method for producing an electrode.
  • Patent Document 1 describes a method for producing granulated particles for electrochemical elements, which can be used for the production of lithium ion secondary batteries.
  • Patent Document 1 a particulate binder dispersion and an electrode active material are mixed to obtain a mixture, and the resulting mixture is stirred with a stirring blade. Obtaining particles is described.
  • This method is a method for producing granulated particles called pulverization granulation, and examples of the particulate binder dispersion used in this production method include those in which a particulate binder such as latex is dispersed in water. It has been.
  • granulated particles containing an electrode active material are supplied onto a sheet-like member such as a current collector, and are flattened using a squeegee or the like to form an electrode active material layer
  • a method of forming is known.
  • this invention is a manufacturing method of the electrode active material particle aggregate containing an electrode active material particle (a), a conductive support agent (b), and an adhesive (c), Comprising: Said electrode active material particle (a) and A first mixing step in which the conductive auxiliary agent (b) is dry-mixed to obtain a mixture, and the mixture obtained in the first mixing step is stirred to a total mass of the electrode active material particles (a). A second mixing step of adding 0.01 to 10% by mass of the pressure-sensitive adhesive (c) in the form of a solution to obtain a mixture, and a stirring step of stirring the mixture obtained in the second mixing step.
  • a method for producing an electrode active material particle aggregate comprising: an application step of coating the electrode active material particle aggregate obtained by the method for producing an electrode active material particle aggregate of the present invention on a substrate; It is related with the manufacturing method of the electrode characterized by these.
  • FIG. 1 is a perspective view schematically showing an example of a mixer that can be preferably used in the method for producing an electrode active material particle aggregate of the present invention.
  • a lithium ion battery includes a lithium ion secondary battery.
  • the method for producing an electrode active material particle aggregate according to the present invention is a method for producing an electrode active material particle aggregate containing electrode active material particles (a), a conductive additive (b) and an adhesive (c),
  • a first mixing step in which electrode active material particles (a) and the conductive auxiliary agent (b) are dry-mixed to obtain a mixture, and the mixture obtained in the first mixing step is stirred under the above electrode active material
  • a second mixing step in which 0.01 to 10% by mass of the pressure-sensitive adhesive (c) is added in the form of a solution to the total mass of the particles (a) to obtain a mixture, and the mixture obtained in the second mixing step And a stirring step of stirring.
  • an electrode active material particle aggregate having high fluidity and suitable for flattening can be obtained.
  • Such an electrode active material particle aggregate having high fluidity can be suitably used in a method for producing an electrode including a coating step of coating the electrode active material particle aggregate on a substrate.
  • an electrode active material particle aggregate produced in the method for producing an electrode active material particle aggregate of the present invention and materials constituting the electrode active material particle aggregate will be described.
  • the electrode active material particle aggregate is an aggregate formed by further aggregating electrode active material particles with an adhesive.
  • the aggregated particles expand / contract according to the expansion / contraction of the electrode active material particles accompanying charge / discharge. It is considered that the aggregated particles have a void that can absorb the increased volume of the electrode active material particles therein, thereby making it easier to suppress self-destruction of the electrode active material particles.
  • the electrode active material particles forming the aggregate of the present invention may be primary particles or secondary particles aggregated by the adhesion force of the primary particles.
  • the electrode active material particles (a) and the electrode active material particles (a) and the conductive auxiliary agent (b) are bonded with a pressure-sensitive adhesive. Aggregated particles are reversibly bound to adjacent aggregated particles. Therefore, even if the primary particles expand and contract, the volume change can be easily absorbed, so that not only the electrode active material particles can be prevented from self-destructing, but also the electrode active material particle aggregates can be prevented from collapsing. be able to. Furthermore, since the primary particles are self-destructed due to expansion / contraction, the self-destructed electrode active material particles are not separated and are not easily isolated electrically because they are adhered by an adhesive.
  • the electrode active material particle aggregate includes electrode active material particles (a), a conductive additive (b), and an adhesive (c).
  • the electrode active material particle aggregate is an aggregate of particles in which a plurality of electrode active material particles (a) and a conductive auxiliary agent (b) are combined to form a single body via an adhesive (c).
  • an adhesive c
  • the electrode active material particles (a), the conductive assistant (b), and the pressure-sensitive adhesive (c) will be described.
  • the electrode active material particles (a) may be positive electrode active material particles or negative electrode active material particles.
  • a composite oxide of lithium and a transition metal a composite oxide having one kind of transition metal (such as LiCoO 2 , LiNiO 2 , LiAlMnO 4 , LiMnO 2, and LiMn 2 O 4 ), a transition metal element is used.
  • Two kinds of complex oxides for example, LiFeMnO 4 , LiNi 1-x Co x O 2 , LiMn 1-y Co y O 2 , LiNi 1/3 Co 1/3 Al 1/3 O 2 and LiNi 0.8 Co 0.15 Al 0.05 O 2
  • lithium-containing transition metal phosphate e.g.
  • LiFePO 4, LiCo O 4, LiMnPO 4 and LiNiPO 4), transition metal oxides (e.g., MnO 2 and V 2 O 5), transition metal sulfides (e.g., MoS 2 and TiS 2) and the conductive polymer (such as polyaniline, polypyrrole, polythiophene, Polyacetylene, poly-p-phenylene, and polyvinylcarbazole), and the like may be used in combination.
  • the lithium-containing transition metal phosphate may be one in which a part of the transition metal site is substituted with another transition metal.
  • the volume average particle diameter of the positive electrode active material particles is preferably 0.01 to 100 ⁇ m, more preferably 0.1 to 35 ⁇ m, and further preferably 2 to 30 ⁇ m, from the viewpoint of the electric characteristics of the battery. preferable.
  • Examples of the negative electrode active material include carbon-based materials [graphite, non-graphitizable carbon (hard carbon), amorphous carbon, resin fired bodies (for example, those obtained by firing and carbonizing phenol resin, furan resin, etc.), cokes (for example, Pitch coke, needle coke, petroleum coke, etc.) and carbon fiber, etc.], silicon-based materials [silicon, silicon oxide (SiOx), silicon-carbon composites (the surface of carbon particles coated with silicon and / or silicon carbide, The surface of silicon particles or silicon oxide particles coated with carbon and / or silicon carbide and silicon carbide) and silicon alloys (silicon-aluminum alloy, silicon-lithium alloy, silicon-nickel alloy, silicon-iron alloy, silicon- Titanium alloys, silicon-manganese alloys, silicon-copper alloys, silicon-tin alloys, etc.)], conductive polymers (eg polyacetylene and poly Rolls, etc.), metals (tin, aluminum, zirconium, titanium, etc.
  • those that do not contain lithium or lithium ions may be subjected to a pre-doping treatment in which lithium or lithium ions are included in part or all of the negative electrode active material in advance.
  • a carbon-based material a silicon-based material, and a mixture thereof are preferable.
  • the carbon-based material graphite, non-graphitizable carbon, and amorphous carbon are more preferable.
  • silicon oxide and silicon-carbon composite are more preferable.
  • the volume average particle diameter of the negative electrode active material particles is preferably from 0.01 to 100 ⁇ m, more preferably from 0.1 to 20 ⁇ m, and even more preferably from 2 to 10 ⁇ m, from the viewpoint of the electric characteristics of the battery.
  • the volume average particle diameters of the positive electrode active material particles and the negative electrode active material particles are integrated values in the particle size distribution on the volume basis determined by the microtrack method and the laser diffraction / scattering method described in JIS Z 8825: 2013. Mean particle size (Dv50) at 50%.
  • the microtrack method is a method for obtaining a particle size distribution using scattered light obtained by irradiating particles with laser light.
  • the Nikkiso Co., Ltd. microtrack etc. can be used for the measurement of a volume average particle diameter.
  • the electrode active material may be a coated active material in which at least a part of its surface is coated with a coating layer containing a polymer compound.
  • a coating layer containing a polymer compound.
  • a coated active material when a positive electrode active material is used as the electrode active material is referred to as a coated positive electrode active material, and a coated active material layer is also referred to as a coated positive electrode active material layer.
  • a coated active material when a negative electrode active material is used as the electrode active material is referred to as a coated negative electrode active material, and a coated active material layer is also referred to as a coated negative electrode active material layer.
  • the coating resin constituting the coating layer those described as a resin for coating a non-aqueous secondary battery active material in Japanese Patent Application Laid-Open No. 2017-054703 can be suitably used.
  • the coated electrode active material particles can be obtained by mixing the coating resin and the electrode active material particles by the method described in 1. above.
  • a conductive material may further be included in the coating layer as necessary, and the same material as the conductive additive (b) can be suitably used.
  • the conductive auxiliary agent (b) can be clearly distinguished in that it is not included in the coating layer.
  • the conductive auxiliary agent (b) is selected from conductive materials.
  • metal nickel, aluminum, stainless steel (SUS), silver, copper, titanium, etc.
  • carbon graphite and carbon black (acetylene black, ketjen black (registered trademark), furnace black, channel black, thermal lamp) Black) and the like]
  • conductive assistants may be used alone or in combination of two or more.
  • aluminum, stainless steel, carbon, silver, copper, titanium and a mixture thereof are preferable, silver, aluminum, stainless steel and carbon are more preferable, and carbon is more preferable.
  • the thing which coated the electroconductive material metal thing among the materials of the above-mentioned conductive support agent) by plating etc. around the particle-type ceramic material or the resin material may be used.
  • the shape (form) of the conductive auxiliary agent is not particularly limited, and may be particulate or fibrous, and carbon nanotubes, carbon nanofibers, conductive fibers, or the like can also be used.
  • the average particle diameter of the particulate conductive additive is not particularly limited, but is preferably 0.01 to 10 ⁇ m, more preferably 0.02 to 5 ⁇ m from the viewpoint of the electric characteristics of the battery. Preferably, it is 0.03 to 1 ⁇ m.
  • the “particle diameter of the conductive additive” means the maximum distance L among the distances between any two points on the contour line of the conductive additive.
  • the value of the “average particle diameter of the conductive auxiliary agent” is several to several in an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM) according to the method described in JIS Z 8827-1: 2008. The value calculated as the average value of the particle diameter of the conductive additive observed in the ten visual fields shall be adopted.
  • Examples of conductive fibers include carbon fibers such as PAN-based carbon fibers and pitch-based carbon fibers, conductive fibers obtained by uniformly dispersing highly conductive metal and graphite in synthetic fibers, and metals such as stainless steel. Examples thereof include fiberized metal fibers, conductive fibers in which the surface of organic fiber is coated with metal, and conductive fibers in which the surface of organic fiber is coated with a resin containing a conductive substance. Among these conductive fibers, carbon fibers are preferable. A polypropylene resin in which graphene is kneaded is also preferable. When the conductive auxiliary agent is a conductive fiber, the average fiber diameter is preferably 0.1 to 20 ⁇ m.
  • the pressure sensitive adhesive (c) exhibits adhesiveness to the surface of the electrode active material particles (a). Therefore, the electrode active material particles can be granulated by mixing and stirring the electrode active material particles (a) and the pressure-sensitive adhesive (c), and electrode active material particle aggregates can be obtained.
  • the pressure-sensitive adhesive (c) is sticky at room temperature and has a property of adhering to an adherend with light pressure, as defined in JIS K6800: 2006 “Adhesive / Adhesion Term”.
  • the pressure-sensitive adhesive (c) is used in the form of a solution obtained by dissolving the pressure-sensitive adhesive (c) in a solvent in the method for producing an electrode active material particle aggregate of the present invention.
  • the pressure-sensitive adhesive (c) As the pressure-sensitive adhesive (c), the pressure-sensitive adhesive composition described in JP-A No. 2004-143420 and the acrylic pressure-sensitive adhesive composition described in JP-A No. 2000-239633 can be used. It is preferable to include a polymer containing at least one monomer selected from the group consisting of 2-ethylhexyl (meth) acrylate, (meth) acrylic acid, and butyl (meth) acrylate.
  • (meth) acrylic acid indicates acrylic acid and / or methacrylic acid
  • (meth) acrylate indicates acrylate and / or methacrylate
  • the pressure-sensitive adhesive (c) preferably contains a copolymer containing at least 2-ethylhexyl (meth) acrylate and (meth) acrylic acid as constituent monomers.
  • the total mass of 2-ethylhexyl (meth) acrylate and (meth) acrylic acid in the constituent monomer of the copolymer is 10% by mass with respect to the total mass of the constituent monomer of the copolymer. The above is preferable.
  • the total mass of 2-ethylhexyl (meth) acrylate and (meth) acrylic acid in the constituent monomer of the copolymer is 65% by mass or less based on the total mass of the constituent monomers of the copolymer. It is preferable.
  • the strength of the electrode active material particle aggregate is favorable, which is preferable.
  • the constituent monomer other than the above is not particularly limited, and examples thereof include vinyl acetate and 2-hydroxyethyl (meth) acrylate.
  • the pressure-sensitive adhesive (c) only one type may be used, or two or more types may be used in combination.
  • the ratio of the copolymer containing 2-ethylhexyl (meth) acrylate and (meth) acrylic acid as constituent monomers to the total amount of the pressure-sensitive adhesive (c) used is 80% by mass or more. 90% by mass or more, more preferably 95% by mass or more, still more preferably 99% by mass or more, and most preferably 100% by mass.
  • the preferable lower limit of the weight average molecular weight of the pressure-sensitive adhesive (c) is 10,000, more preferably 50,000, still more preferably 100,000, and the preferable upper limit is 1,000,000, more preferably 800,000, 500,000 is preferable, and 450,000 is particularly preferable.
  • the weight average molecular weight of the at least 1 sort is the said range, and it is more preferable that all the weight average molecular weights are the said range.
  • the weight average molecular weight of the pressure-sensitive adhesive (c) can be determined by gel permeation chromatography (hereinafter abbreviated as GPC) measurement under the following conditions.
  • the pressure-sensitive adhesive (c) is a known polymerization initiator ⁇ azo initiator [2,2′-azobis (2-methylpropionitrile), 2,2′-azobis (2-methylbutyronitrile), 2, 2′-azobis (2,4-dimethylvaleronitrile, etc.)], peroxide-based initiators (benzoyl peroxide, di-t-butyl peroxide, lauryl peroxide, etc.), etc. ⁇ Solution polymerization).
  • the amount of the polymerization initiator used is preferably from 0.01 to 5% by mass, more preferably from 0.05 to 2% by mass, and even more preferably from the viewpoint of adjusting the molecular weight to a preferable range.
  • the polymerization temperature and polymerization time are adjusted according to the type of the polymerization initiator, etc., but the polymerization temperature is preferably ⁇ 5 to 150 ° C. (more preferably 30 to 120 ° C.), and the reaction time is preferably 0.1 to 50 hours (more preferably 2 to 24 hours).
  • Examples of the solvent used for the polymerization include esters (having 2 to 8 carbon atoms such as ethyl acetate and butyl acetate), alcohols (having 1 to 8 carbon atoms such as methanol, ethanol and octanol), hydrocarbons (having 4 to 8 carbon atoms).
  • esters having 2 to 8 carbon atoms such as ethyl acetate and butyl acetate
  • alcohols having 1 to 8 carbon atoms such as methanol, ethanol and octanol
  • hydrocarbons having 4 to 8 carbon atoms
  • ketones having 3 to 9 carbon atoms, for example, methyl ethyl ketone.
  • the amount used is based on the total mass of the monomers.
  • the monomer concentration is preferably 10 to 95% by mass, more preferably 20 to 90% by mass, Particularly preferred is 30 to 80% by mass.
  • chain transfer agents such as mercapto compounds (such as dodecyl mercaptan and n-butyl mercaptan) and / or halogenated hydrocarbons (such as carbon tetrachloride, carbon tetrabromide and benzyl chloride) can be used.
  • mercapto compounds such as dodecyl mercaptan and n-butyl mercaptan
  • halogenated hydrocarbons such as carbon tetrachloride, carbon tetrabromide and benzyl chloride
  • pressure-sensitive adhesive (c) a commercially available pressure-sensitive adhesive [polysic series (manufactured by Sanyo Chemical Industries, Ltd.), etc.] may be used.
  • the pressure-sensitive adhesive (c) is a known dry-type binder for lithium ion battery electrodes (starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose, polyvinylpyrrolidone, tetrafluoroethylene, styrene-butadiene rubber, polyethylene, polypropylene and styrene. -A material different from butadiene copolymer or the like).
  • the electrode active material particle aggregate obtained by the method for producing an electrode active material particle aggregate of the present invention the electrode active material particle aggregate is integrated with the electrode active material particle and the conductive additive. Even when deformed, the electrode active material particles and the conductive additive can move freely to some extent following the deformation. Therefore, even when the electrode active material particles expand and contract and the electrode active material particle aggregates are deformed, it is possible to suppress the electrode active material particles and the conductive auxiliary agent from dropping from the electrode active material particle aggregates. it can.
  • the electrode active material particles are self-destructed due to expansion / contraction, they are not easily isolated electrically because they are bundled with the adhesive.
  • the solvent-dried electrode binder is a material that is dried and solidified by volatilizing the solvent component to firmly fix the electrode active material particles to each other and the electrode active material particles and the current collector.
  • the surface is not sticky.
  • the pressure-sensitive adhesive is a material having a property of having adhesiveness even when the solvent component is volatilized and dried. That is, in the method for producing an electrode active material particle aggregate and the method for producing an electrode of the present invention, it is preferable not to use the solvent-drying type electrode binder.
  • the electrode active material particle aggregate obtained by the method for producing an electrode active material particle aggregate of the present invention preferably has a volume average particle diameter of 20 to 350 ⁇ m.
  • this volume average particle diameter is a particle diameter as an aggregate.
  • the volume average particle diameter of the electrode active material particle aggregate is an integrated value of 50% in the particle size distribution on the volume basis determined by the microtrack method and the laser diffraction / scattering method described in JIS Z 8825: 2013. Mean particle size (Dv50).
  • the microtrack method is a method for obtaining a particle size distribution using scattered light obtained by irradiating particles with laser light.
  • the Nikkiso Co., Ltd. microtrack etc. can be used for the measurement of a volume average particle diameter.
  • the electrode active material particles (a) and the conductive additive (b) are dry mixed to obtain a mixture.
  • the order of mixing in the first mixing step is not particularly limited, and the conductive additive (b) may be mixed with the electrode active material particles (a), and the electrode active material particles (a) may be mixed with the conductive auxiliary agent (b). You may mix. Mixing is performed by dry mixing to obtain a mixture of the electrode active material particles (a) and the conductive additive (b).
  • the apparatus used for dry mixing is not particularly limited, a mixer described later can be preferably used. Preferred mixing conditions when using the mixer will also be described later.
  • the adhesive (c) is added in the form of a solution to the mixture obtained in the first mixing step under stirring.
  • Adhesive (c) is added in the form of a solution.
  • the solution in the present specification means a state in which a component exhibiting adhesiveness contained in an adhesive is dissolved in a solvent, and has a transparent appearance. That is, it is different from an opaque suspension in which fine particles are dispersed in a liquid, such as a latex binder.
  • the solution of the pressure-sensitive adhesive (c) can be obtained by dissolving the pressure-sensitive adhesive (c) in a solvent capable of dissolving the pressure-sensitive adhesive (c) by a known method.
  • the concentration of the pressure-sensitive adhesive (c) in the solution is preferably 0.01 to 20% by mass, and more preferably 5 to 10% by mass.
  • the electrode active material particles (a), the conductive auxiliary agent (b) and the pressure-sensitive adhesive (c) can be uniformly mixed to improve the yield of the aggregate. Can be made.
  • the concentration of the pressure-sensitive adhesive (c) in the solution is measured as a ratio of the mass of evaporation residue remaining after evaporation of the solvent in the solution by heating (preferably 80 to 120 ° C.) as necessary.
  • any solvent that can dissolve the pressure-sensitive adhesive (c) can be used without limitation, but ester solvents are preferable, and ethyl acetate is more preferable.
  • the first mixing step and the second mixing step are distinguished from each other in that the electrode active material particles (a), the conductive auxiliary agent (b), and the adhesive (c) This means that the order of mixing is important, and it is a feature of the present invention that the adhesive (c) is added later to the mixture of the electrode active material particles (a) and the conductive additive (b). Yes.
  • the added amount of the pressure-sensitive adhesive (c) is less than 0.01% by mass with respect to the total mass of the electrode active material particles (a), the amount of the pressure-sensitive adhesive (c) is too small and the electrode active material is hardly aggregated. The strength of the resulting aggregate is not sufficient.
  • an adhesive (c) exceeds 10 mass% with respect to the total mass of electrode active material particle (a)
  • there is too much quantity of an adhesive (c) and an excess adhesive (c) will become an electrode. Since it coexists with the active material particle aggregate, the fluidity of the electrode active material particle aggregate becomes low.
  • the adhesive (c) in the form of a solution with respect to the total mass of the electrode active material particles (a). This range is preferable because it is easier to achieve both the strength and fluidity of the electrode active material particle aggregate.
  • the addition amount of the pressure-sensitive adhesive (c) in this specification is an amount that can be determined by multiplying the blending amount of the solution and the concentration of the pressure-sensitive adhesive (c) in the solution. The amount added.
  • the amount of the pressure-sensitive adhesive (c) thus determined is set to 0.01 to 10% by mass with respect to the total mass of the electrode active material particles (a).
  • the addition of the pressure-sensitive adhesive (c) in the second mixing step is performed with stirring.
  • the apparatus used for stirring is not specifically limited, The mixer mentioned later can be used conveniently. Preferred stirring conditions when using the mixer will also be described later.
  • the addition of the pressure-sensitive adhesive (c) in the second mixing step may be performed at a time or may be performed in divided portions.
  • the first addition of the pressure-sensitive adhesive is defined as the start of the second mixing step.
  • the mixture obtained in the second mixing step (a mixture of the electrode active material particles (a), the conductive additive (b), and the pressure-sensitive adhesive (c)) is stirred.
  • This stirring is preferably performed continuously with the second mixing step, and continuing the stirring as it is after adding the pressure-sensitive adhesive (c) under stirring in the second mixing step corresponds to the stirring step.
  • Stirring conditions in the stirring step are not particularly limited, and may be the same stirring conditions when adding the pressure-sensitive adhesive (c) under stirring in the second mixing step, or may be different stirring conditions. When setting it as different stirring conditions, it is equivalent to a stirring process to stir on the stirring conditions different from the stirring conditions at the time of adding an adhesive (c).
  • the apparatus used for stirring is not particularly limited, a mixer described later can be preferably used. Preferred stirring conditions when using the mixer will also be described later. By stirring in the stirring step, electrode active material particle aggregates are obtained.
  • At least one of the dry mixing in the first mixing step, the stirring in the second mixing step, and the stirring in the stirring step contains the contents.
  • a rotating container that rotates as it is, and a stirring blade that is disposed inward of the rotating container and deviated from the rotating center axis of the rotating container in parallel with the rotating center axis, and the rotating container and the stirring blade It is preferable to use a mixer that rotates and mixes the contents.
  • mixers examples include the mixers described in JP2013-017923A, and examples of commercially available mixers include Eirich Intensive Mixer (manufactured by Eirich Japan).
  • FIG. 1 is a perspective view schematically showing an example of a mixer that can be preferably used in the method for producing an electrode active material particle aggregate of the present invention.
  • a mixer 1 shown in FIG. 1 includes a rotating container 4 that rotates while containing contents.
  • the rotating container 4 rotates around a rotation center axis CL 1 (hereinafter also referred to as center axis CL 1 ).
  • the central axis CL 1 is preferably tilted with respect to the horizontal plane (indicated by line H in the figure).
  • the mixer 1 includes a stirring blade 3 that rotates about a rotation center axis CL 2 (hereinafter also referred to as a center axis CL 2 ).
  • the stirring blade 3 has a head portion 5 that is rotationally driven and a rod-like member 6 that is attached to the head portion 5 and extends to the vicinity of the bottom plate 7 of the rotating container 4.
  • Stirring blades 3 are disposed eccentrically from the center axis line CL 1 of the rotary vessel position. Stirring blade 3 is to be located at a position eccentric from the center axis line CL 1 of the rotating container, the central axis CL 2 of rotation of the stirring blade 3 means that does not coincide with the center axis line CL 1 of the rotary vessel.
  • the shape of the rod-shaped member is not limited to a linear shape, and may be formed by bending into a predetermined shape.
  • the cross-sectional shape of the rod-shaped member is preferably circular, but may be an ellipse, a polygon, or other predetermined shape.
  • the contents in the mixer 1 are agitated by rotating around the central axis CL 1 of the rotating container 4 or rotating around the central axis CL 2 of the stirring blade 3. If this is a mixer 1, the rotation about the center axis line CL 1 of the rotating container 4, and it is preferable to perform the rotation about the center axis line CL 2 of the agitating blades 3 at the same time. By performing these two types of rotation simultaneously, an electrode active material particle aggregate with higher fluidity can be obtained.
  • the rotation direction of the rotating container and the rotation direction of the stirring blade may be the same direction or the opposite direction.
  • FIG. 1 shows an example in which the rotation direction of the rotating container (arrow B 1 ) is clockwise and the rotation direction of the stirring blade (arrow B 2 ) is also clockwise.
  • the rod-shaped member moves in the circumferential direction in the rotating container, and the rod-shaped member can stir the mixture over a wide area in the rotating container.
  • the mixer can be used in any of the first mixing step, the second mixing step, and the stirring step.
  • Preferred stirring conditions in each step when using the mixer are as follows.
  • the electrode active material particle aggregate obtained through the stirring step may be subjected to a treatment such as drying as necessary.
  • the method for producing an electrode of the present invention is characterized by including a coating step of coating the electrode active material particle aggregate obtained by the method for producing an electrode active material particle aggregate of the present invention on a substrate.
  • the current collector is not particularly limited, but a known metal current collector and a resin current collector composed of a conductive material and a resin (described in JP 2012-150905 A) and the like are preferably used. Can be used.
  • the metal current collector is, for example, selected from the group consisting of copper, aluminum, titanium, nickel, tantalum, niobium, hafnium, zirconium, zinc, tungsten, bismuth, antimony and alloys containing one or more of these, and stainless steel alloys.
  • These metal materials may be used in the form of a thin plate or a metal foil, and the above metal material is formed on the surface of the substrate by a technique such as sputtering, electrodeposition or coating. There may be.
  • the conductive material constituting the resin current collector is selected from materials having conductivity. Specifically, metal [nickel, aluminum, stainless steel (SUS), silver, copper, titanium, etc.], carbon [graphite and carbon black (acetylene black, ketjen black (registered trademark), furnace black, channel black, thermal lamp) Black) and the like], and mixtures thereof, but are not limited thereto.
  • These conductive materials may be used alone or in combination of two or more. Further, these alloys or metal oxides may be used. From the viewpoint of electrical stability, aluminum, stainless steel, carbon, silver, copper, titanium and a mixture thereof are preferable, silver, aluminum, stainless steel and carbon are more preferable, and carbon is more preferable. Moreover, as these electrically conductive materials, what coated the electroconductive material (metal thing among the above-mentioned electrically conductive materials) by plating etc. around the particulate ceramic material or the resin material may be used.
  • the resin constituting the resin current collector includes polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyether nitrile (PEN), polytetra Fluoroethylene (PTFE), styrene butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVdF), epoxy resin, silicone resin or a mixture thereof Is mentioned.
  • PE polyethylene
  • PP polypropylene
  • PMP polymethylpentene
  • PCO polycycloolefin
  • PET polyethylene terephthalate
  • PEN polyether nitrile
  • PTFE polytetra Fluoroethylene
  • SBR styrene butadiene rubber
  • PAN polyacrylonitrile
  • PMA polymethyl acrylate
  • PMMA polymethyl methacrylate
  • polyethylene (PE), polypropylene (PP), polymethylpentene (PMP) and polycycloolefin (PCO) are preferable, and polyethylene (PE), polypropylene (PP) and polymethylpentene are more preferable. (PMP).
  • the electrode active material particle aggregate obtained by the method for producing the electrode active material particle aggregate of the present invention is coated on a substrate.
  • the agglomerated particles are preferably not bound to each other, that is, the electrode active material layer obtained by applying the electrode active material particle agglomerates on the substrate may be non-bound.
  • the non-binding body means that the electrode active material particles constituting the electrode active material layer are not bonded to each other. The bond is irreversibly fixed to the electrode active material particles. Means that.
  • the electrode active material particle aggregate obtained by the method for producing an electrode active material particle aggregate of the present invention is formed by integrating the electrode active material particles and the conductive additive with an adhesive, an electrode including an adhesive is produced.
  • the electrode active material layer is maintained as a non-binding body.
  • the electrode active material particle aggregate can freely move to some extent in the electrode active material layer. Therefore, even if expansion / contraction of the electrode active material particles occurs, the volume change can be absorbed by the electrode active material particles moving through the electrode active material particle aggregates. Peeling from the current collector can also be suppressed.
  • the electrode active material particles are self-destructed due to expansion / contraction, they are collected by the pressure-sensitive adhesive (c), so that they do not fall off from the electrode active material layer and become electrically isolated.
  • the electrode active material layer is not bound by not using a known electrode binder (a known lithium ion battery electrode binder which is a solvent dry type) in combination. It can be a body.
  • a known electrode binder a known lithium ion battery electrode binder which is a solvent dry type
  • the electrode active material particle aggregate obtained by the method for producing the material particle aggregate contains an adhesive, the electrode active material particle aggregate is in powder form without using the above-mentioned known electrode binder.
  • the electrode active material layer can be formed without performing a drying step, for example, by coating on a material and compressing. When an electrode active material layer is formed without performing a drying step, shrinkage and cracking of the electrode active material layer due to heating are unlikely to occur, the electrode active material layer can be thickened, and a high-capacity battery can be obtained. This is preferable.
  • Electrode active material particle aggregate on the base material is a method of dispersing the electrode active material particle aggregate in the electrolytic solution and a non-aqueous solvent contained in the electrolytic solution, and applying using a known coating apparatus, and For example, a method of applying the electrode active material particle aggregate as a powder on a substrate can be used.
  • the thickness adjusting step is preferably a flattening step using a squeegee.
  • the electrode active material particle aggregate is applied to the base material while aligning the thickness by quantitatively supplying the electrode active material particle aggregate to the moving base material, thereby simultaneously performing the coating process and the thickness adjusting process. It may be a form that is performed.
  • the electrode active material particle aggregate obtained by the method for producing an electrode active material particle aggregate of the present invention has high fluidity, the electrode active material particle aggregate can be appropriately spread on the substrate when applied to the substrate. And thickness can be easily adjusted with a thickness adjustment process.
  • the pressurizing step can be performed using roll rolling or the like, whereby an electrode in which electrode active material particle aggregates are uniformly provided at a predetermined position on the substrate with a predetermined basis weight can be obtained.
  • the force applied when pressurizing by roll rolling is preferably 4.9 kN to 295 kN.
  • the linear pressure when rolling using a roll having a diameter of 250 mm ⁇ length of 250 mm is 19.6 kN / m to 1176.5 kN / m is preferable.
  • the electrode obtained in this manner can be made into a battery by a treatment such as being housed in a battery outer package in combination with an electrolytic solution, a separator, and a counter electrode.
  • a solution prepared by dissolving 0.800 part of 2,2′-azobis (2,4-dimethylvaleronitrile) in 12.4 parts of ethyl acetate was used to start polymerization using a dropping funnel after the start of polymerization. Added continuously over time. Furthermore, after the polymerization was continued for 2 hours at the boiling point, while maintaining the temperature, the inside of the Kolben was gradually reduced with a vacuum pump, and the ethyl acetate was distilled off by maintaining the temperature until no ethyl acetate flow was observed. A polymer was obtained. When the molecular weight of the obtained polymer was measured by GPC, the weight average molecular weight (hereinafter abbreviated as Mw) was 420,000. The measurement conditions for Mw are as described above.
  • Example 1 The following 1st mixing process, 2nd mixing process, and stirring process were performed, and the electrode active material particle aggregate (1) concerning Example 1 was manufactured.
  • a mixer having the shape shown in FIG. 1 [manufactured by Japan Eirich Co., Ltd., Eirich Intensive Mixer, Model EL-1] was prepared, and LiNi 0.8 Co 0.15 Al 0.05 having a number average particle size of 5 ⁇ m was placed in the rotating container of the mixer. 95 parts of O 2 particles [Toda Kogyo Co., Ltd. (hereinafter referred to as NCA)] and 2 parts of carbon nanofiber [Showa Denko Co., Ltd., carbon nanotube VGCF (hereinafter referred to as CNF)] as a conductive auxiliary agent are added.
  • NCA Toda Kogyo Co., Ltd.
  • CNF carbon nanofiber
  • the mixture was obtained by mixing at the rotation speed of the rotating container (also referred to as a mixing pan) at 85 rpm (inner diameter of the mixing pan). : 400 mm, peripheral speed 1.8 m / s), the peripheral speed of the stirring blade (also called rotor) is set to 17 m / s, and the dry mixing time is 7 minutes.
  • the rotation speed of the rotating container also referred to as a mixing pan
  • the peripheral speed of the stirring blade also called rotor
  • the dry mixing time is 7 minutes.
  • (Second mixing step) 30 parts of an ethyl acetate solution (adhesive concentration: 10% by mass) of an adhesive obtained by dissolving 3 parts of the adhesive produced in Production Example 1 in 27 parts of ethyl acetate (ethyl acetate solution (1) of adhesive)
  • the second mixing step was performed by adding the mixture in the mixing pan of the mixer after performing the first mixing step into three parts in the mixing pan after stirring in the mixer at intervals of 5 minutes.
  • Mixing in the second mixing step is performed by setting the rotation speed of the mixing pan to 85 rpm in the direction opposite to that of the stirring blade, the peripheral speed of the rotor to 17 m / s, and the mixing time with the initial adhesive solution being charged as 0 minutes. This was done for 12 minutes.
  • the rotation speed of the mixing pan is set to 85 rpm in the direction opposite to that of the stirring blade, and the circumferential speed of the rotor is set to 24 m / s, so that the ethyl acetate naturally evaporates during mixing.
  • the electrode active material particle aggregate (1) according to Example 1 was manufactured by mixing for 20 minutes with the suction port opened and performing a stirring step.
  • Example 2 (Example 2) Implemented except that the NCA was changed to 98 parts in the first mixing step of Example 1, and the amount of the ethyl acetate solution (1) in the adhesive was changed to 0.098 parts in the second mixing step of Example 1. In the same manner as in Example 1, an electrode active material particle aggregate (2) according to Example 2 was produced.
  • Example 3 Except that the NCA was changed to 88.2 parts in the first mixing step of Example 1, and the input amount of the ethyl acetate solution (1) of the adhesive was changed to 88.2 parts in the second mixing step of Example 1. Produced an electrode active material particle aggregate (3) according to Example 3 in the same manner as in Example 1.
  • Example 4 In the second mixing step of Example 1, the pressure-sensitive adhesive concentration of the ethyl acetate solution of the pressure-sensitive adhesive was changed to 20% by mass (the pressure-sensitive adhesive ethyl acetate solution (2)), and the pressure-sensitive adhesive ethyl acetate solution (2) was added.
  • An electrode active material particle aggregate (4) according to Example 4 was produced in the same manner as in Example 1 except that the amount was changed to 15 parts.
  • Example 5 In the second mixing step of Example 1, the pressure-sensitive adhesive concentration of the ethyl acetate solution of the pressure-sensitive adhesive was changed to 5 mass% (ethyl acetate solution of the pressure-sensitive adhesive (3)), and further the ethyl acetate solution of the pressure-sensitive adhesive (3) was added.
  • An electrode active material particle aggregate (5) according to Example 5 was produced in the same manner as in Example 1 except that the amount was changed to 60 parts.
  • Example 6 In the second mixing step of Example 1, the pressure-sensitive adhesive concentration of the ethyl acetate solution of the pressure-sensitive adhesive was changed to 0.01 mass% (pressure-sensitive adhesive ethyl acetate solution (4)), and the pressure-sensitive adhesive ethyl acetate solution (4).
  • An electrode active material particle agglomerate (6) according to Example 6 was produced in the same manner as in Example 1 except that the input amount of was changed to 30000 parts.
  • Example 7 In the second mixing step of Example 1, the same procedure as in Example 1 was performed except that 30 parts of the ethyl acetate solution (1) (adhesive concentration: 10% by mass) of the adhesive was added all at once. Thus, an electrode active material particle aggregate (7) according to Example 7 was produced.
  • Example 8 Example 1 The same as Example 1 except that 95 parts of NCA were changed to 95 parts of hard carbon [manufactured by Kureha Corporation, Carbotron PS (F) (hereinafter referred to as HC)] in the first mixing step of Example 1.
  • An electrode active material particle aggregate (8) according to No. 8 was produced.
  • Example 9 The following 1st mixing process, 2nd mixing process, and stirring process were performed, and the electrode active material particle aggregate (9) concerning Example 9 was manufactured.
  • (Second mixing step) 30 parts of an ethyl acetate solution (adhesive concentration: 10% by mass) of an adhesive obtained by dissolving 3 parts of the adhesive produced in Production Example 1 in 27 parts of ethyl acetate (ethyl acetate solution (1) of adhesive)
  • the second mixing step was performed by adding the mixture in the mixer container after the first mixing step into three in 3 minutes and under the stirring of the mixer at intervals of 5 minutes. Mixing in the second mixing step was performed by setting the peripheral speed of the stirring blade to 17 m / s, setting the initial pressure-sensitive adhesive solution to 0 minutes, and setting the mixing time to 12 minutes.
  • Comparative Example 1 100 parts of NCA and 1 part of carbon nanofibers were added to the mixer used in Example 9, and dry blended for 10 minutes. Next, a 40% by mass aqueous dispersion of a styrene-butadiene copolymer (SBR) as a binder [Latex BM-400B, manufactured by Nippon Zeon Co., Ltd.] was bonded to the mixture of NCA and conductive additive in the mixer. Spraying was performed in such an amount that the adsorbent was 1 part in terms of solid content. After adding the aqueous dispersion of the binder, the kneading step was performed for 3 minutes with the peripheral speed of the stirring blade being 17 m / s. Thereafter, the stirring blade was further moved at a peripheral speed of 24 m / s for 2 minutes to perform a crushing process, and then dried under reduced pressure at 50 ° C. for 30 minutes to produce a comparative electrode active material particle aggregate (H1).
  • SBR styrene
  • Comparative Example 2 The following mixing operation was performed to produce a comparative electrode active material particle aggregate (H2) according to Comparative Example 2.
  • (First mixing step) Prepare the same mixer as used in Example 1, and mix 95 parts of NCA in the mixing pan of the mixer with the rotating speed of the mixing pan set to 85 rpm in the direction opposite to the stirring blades and the peripheral speed of the rotor set to 24 m / s. 2 parts of carbon nanofibers and 30 parts of an ethyl acetate solution (1) of the same adhesive as used in Example 1 were added at a time, and stirring was continued for 30 minutes after the addition.
  • Angle of repose of electrode active material particle aggregate A glass funnel (the length of the funnel foot: 50 mm, the inner diameter: 4 mm) was placed horizontally so that the tip of the funnel was located 10 cm above the surface of the horizontally placed flat metal plate.
  • An electrode active material particle aggregate having an apparent volume of 15 ml was supplied to the funnel using a 15 ml capacity container, and a conical laminate was formed on the metal plate by the electrode active material particle aggregate dropped from the funnel.
  • the angle formed between the portion corresponding to the generatrix of the laminated body and the surface of the metal flat plate was measured using a Keyence 3D shape measuring instrument VR-3200. The angle was measured at a location where the bottom of the cone was divided into 8 equal portions of 45 degrees, and the average value was taken as the repose angle of the electrode active material particle aggregate.
  • the mixing pan means a rotating container that rotates while containing the contents, and the rotor means a stirring blade arranged in the rotating container.
  • the FM mixer used in Example 9 and Comparative Example 1 does not rotate the container but rotates the stirring blade in the container.
  • an electrode active material particle aggregate having high fluidity can be produced, and the electrode active material particle aggregate is suitable for producing an electrode. Yes.
  • the method for producing electrode active material particle aggregates of the present invention produces electrodes for bipolar secondary batteries and lithium ion secondary batteries used for mobile phones, personal computers, hybrid vehicles and electric vehicles, in particular. Therefore, it is useful as a method for producing an electrode active material particle aggregate used for the purpose.

Abstract

[Problem] To provide a method for producing electrode active material particle aggregates which have high fluidity and are suitable for planarization. [Solution] A method for producing electrode active material particle aggregates which contain (a) electrode active material particles, (b) a conductive assistant and (c) an adhesive. This method for producing electrode active material particle aggregates is characterized by comprising: a first mixing step wherein the electrode active material particles (a) and the conductive assistant (b) are dry-mixed, thereby obtaining a mixture; a second mixing step wherein the adhesive (c) is added, in the form of a solution, to the mixture obtained in the first mixing step, while stirring the mixture, in an amount of 0.01-10% by mass relative to the total mass of the electrode active material particles (a), thereby obtaining a mixture; and a stirring step wherein the mixture obtained in the second mixing step is stirred.

Description

電極活物質粒子凝集体の製造方法、及び、電極の製造方法Method for producing electrode active material particle aggregate, and method for producing electrode
 本発明は、電極活物質粒子凝集体の製造方法、及び、電極の製造方法に関する。 The present invention relates to a method for producing an electrode active material particle aggregate and a method for producing an electrode.
 近年、環境保護のため、二酸化炭素排出量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用二次電池の開発が鋭意行われている。二次電池としては、高エネルギー密度、高出力密度が達成できるリチウムイオン二次電池に注目が集まっている。 In recent years, reduction of carbon dioxide emissions has been strongly desired for environmental protection. In the automobile industry, there are high expectations for reducing carbon dioxide emissions by introducing electric vehicles (EVs) and hybrid electric vehicles (HEVs), and we are eager to develop secondary batteries for motor drives that hold the key to their practical application. Has been done. As a secondary battery, attention is focused on a lithium ion secondary battery that can achieve a high energy density and a high output density.
 特許文献1には、リチウムイオン二次電池の製造に使用できるとされる、電気化学素子用造粒粒子の製造方法が記載されている。 Patent Document 1 describes a method for producing granulated particles for electrochemical elements, which can be used for the production of lithium ion secondary batteries.
国際公開第2015/029829号International Publication No. 2015/029829
 特許文献1には、粒子状結着剤分散液と電極活物質を混合して混合物を得て、この混合物を攪拌翼で攪拌して得られた均一分散混合物を解砕翼で解砕して造粒粒子を得ることが記載されている。この方法は、解砕造粒という造粒粒子の製法であり、この製法に用いる粒子状結着剤分散液としては、ラテックスのごとき粒子状の結着剤が水に分散した状態のものが挙げられている。 In Patent Document 1, a particulate binder dispersion and an electrode active material are mixed to obtain a mixture, and the resulting mixture is stirred with a stirring blade. Obtaining particles is described. This method is a method for producing granulated particles called pulverization granulation, and examples of the particulate binder dispersion used in this production method include those in which a particulate binder such as latex is dispersed in water. It has been.
 ここで、リチウムイオン二次電池の電極の製造方法として、電極活物質を含む造粒粒子を集電体等のシート状部材の上に供給し、スキージ等を用いて平坦化して電極活物質層を形成する方法が知られている。 Here, as a method for manufacturing an electrode of a lithium ion secondary battery, granulated particles containing an electrode active material are supplied onto a sheet-like member such as a current collector, and are flattened using a squeegee or the like to form an electrode active material layer A method of forming is known.
 このような方法に使用する造粒粒子として、特許文献1に記載された方法で得られた造粒粒子を使用した場合、造粒粒子の流動性が低いことから、スキージによる平坦化(すり切り)の際に造粒粒子が引っ掛かって電極活物質層の表面が荒れることがあった。また、スキージによる平坦化を行った際に造粒粒子の大部分が引っ掛かってスキージに持っていかれてしまう傾向があり、電極活物質層を狙いの厚みに平坦化することが難しいという問題があった。 When the granulated particles obtained by the method described in Patent Document 1 are used as the granulated particles used in such a method, since the fluidity of the granulated particles is low, flattening (slicing) with a squeegee In this case, the surface of the electrode active material layer may be roughened due to the granulated particles being caught. Also, when flattening with a squeegee, most of the granulated particles tend to be caught and carried by the squeegee, making it difficult to flatten the electrode active material layer to the target thickness. It was.
 以上の状況を踏まえて、本発明は、流動性が高く、平坦化を行うのに適した電極活物質粒子凝集体の製造方法を提供することを目的とする。本発明はまた、上記製造方法で得られた電極活物質粒子凝集体を使用して電極を製造する方法を提供することを目的とする。 Based on the above situation, an object of the present invention is to provide a method for producing an electrode active material particle aggregate that has high fluidity and is suitable for flattening. Another object of the present invention is to provide a method for producing an electrode using the electrode active material particle aggregate obtained by the above production method.
 本発明者らは、上記課題を解決するために鋭意検討した結果、本発明に想到した。すなわち、本発明は、電極活物質粒子(a)、導電助剤(b)及び粘着剤(c)を含む電極活物質粒子凝集体の製造方法であって、上記電極活物質粒子(a)及び上記導電助剤(b)を乾式混合して混合物を得る第1混合工程と、上記第1混合工程で得られた混合物に対し、攪拌下で、上記電極活物質粒子(a)の合計質量に対して0.01~10質量%の上記粘着剤(c)を溶液の形で加えて混合物を得る第2混合工程と、上記第2混合工程で得られた混合物を攪拌する攪拌工程とを含むことを特徴とする、電極活物質粒子凝集体の製造方法;本発明の電極活物質粒子凝集体の製造方法で得られた電極活物質粒子凝集体を基材上に塗布する塗布工程を含むことを特徴とする、電極の製造方法に関する。 The inventors of the present invention have come up with the present invention as a result of intensive studies to solve the above problems. That is, this invention is a manufacturing method of the electrode active material particle aggregate containing an electrode active material particle (a), a conductive support agent (b), and an adhesive (c), Comprising: Said electrode active material particle (a) and A first mixing step in which the conductive auxiliary agent (b) is dry-mixed to obtain a mixture, and the mixture obtained in the first mixing step is stirred to a total mass of the electrode active material particles (a). A second mixing step of adding 0.01 to 10% by mass of the pressure-sensitive adhesive (c) in the form of a solution to obtain a mixture, and a stirring step of stirring the mixture obtained in the second mixing step. A method for producing an electrode active material particle aggregate, comprising: an application step of coating the electrode active material particle aggregate obtained by the method for producing an electrode active material particle aggregate of the present invention on a substrate; It is related with the manufacturing method of the electrode characterized by these.
図1は、本発明の電極活物質粒子凝集体の製造方法において好ましく使用することができるミキサーの一例を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing an example of a mixer that can be preferably used in the method for producing an electrode active material particle aggregate of the present invention.
 以下、本発明を詳細に説明する。
なお、本明細書において、リチウムイオン電池と記載する場合、リチウムイオン二次電池も含む概念とする。
Hereinafter, the present invention will be described in detail.
Note that in this specification, a lithium ion battery includes a lithium ion secondary battery.
 本発明の電極活物質粒子凝集体の製造方法は、電極活物質粒子(a)、導電助剤(b)及び粘着剤(c)を含む電極活物質粒子凝集体の製造方法であって、上記電極活物質粒子(a)及び上記導電助剤(b)を乾式混合して混合物を得る第1混合工程と、上記第1混合工程で得られた混合物に対し、攪拌下で、上記電極活物質粒子(a)の合計質量に対して0.01~10質量%の上記粘着剤(c)を溶液の形で加えて混合物を得る第2混合工程と、上記第2混合工程で得られた混合物を攪拌する攪拌工程とを含むことを特徴とする。 The method for producing an electrode active material particle aggregate according to the present invention is a method for producing an electrode active material particle aggregate containing electrode active material particles (a), a conductive additive (b) and an adhesive (c), A first mixing step in which electrode active material particles (a) and the conductive auxiliary agent (b) are dry-mixed to obtain a mixture, and the mixture obtained in the first mixing step is stirred under the above electrode active material A second mixing step in which 0.01 to 10% by mass of the pressure-sensitive adhesive (c) is added in the form of a solution to the total mass of the particles (a) to obtain a mixture, and the mixture obtained in the second mixing step And a stirring step of stirring.
 本発明の電極活物質粒子凝集体の製造方法によると、流動性が高く、平坦化を行うのに適した電極活物質粒子凝集体を得ることができる。このような流動性の高い電極活物質粒子凝集体は、電極活物質粒子凝集体を基材上に塗布する塗布工程を含む電極の製造方法に好適に使用することができる。 According to the method for producing an electrode active material particle aggregate of the present invention, an electrode active material particle aggregate having high fluidity and suitable for flattening can be obtained. Such an electrode active material particle aggregate having high fluidity can be suitably used in a method for producing an electrode including a coating step of coating the electrode active material particle aggregate on a substrate.
 まず、本発明の電極活物質粒子凝集体の製造方法において製造する電極活物質粒子凝集体及び電極活物質粒子凝集体を構成する材料について説明する。 First, an electrode active material particle aggregate produced in the method for producing an electrode active material particle aggregate of the present invention and materials constituting the electrode active material particle aggregate will be described.
 電極活物質粒子凝集体は、電極活物質粒子が粘着剤によりさらに凝集して形成された凝集体である。この形態では充放電に伴う電極活物質粒子の膨張・収縮にあわせて凝集粒子が膨張・収縮する。凝集粒子はその中に電極活物質粒子の増加した体積を吸収できる空隙を有していることによって、電極活物質粒子の自壊を抑制しやすくなると考えられる。なお、本発明の凝集体を形成する電極活物質粒子は、一次粒子であっても、一次粒子の付着力によって凝集した二次粒子であってもよい。 The electrode active material particle aggregate is an aggregate formed by further aggregating electrode active material particles with an adhesive. In this form, the aggregated particles expand / contract according to the expansion / contraction of the electrode active material particles accompanying charge / discharge. It is considered that the aggregated particles have a void that can absorb the increased volume of the electrode active material particles therein, thereby making it easier to suppress self-destruction of the electrode active material particles. The electrode active material particles forming the aggregate of the present invention may be primary particles or secondary particles aggregated by the adhesion force of the primary particles.
 電極活物質粒子凝集体において、電極活物質粒子(a)同士及び電極活物質粒子(a)と導電助剤(b)とは、粘着剤で接着されているため電極活物質粒子凝集体中の凝集粒子が隣接する凝集粒子に可逆的に拘束されている。そのため、一次粒子の膨張・収縮が発生したとしても、その体積変化を容易に吸収することができるため、電極活物質粒子の自壊を抑制できるだけでなく、電極活物質粒子凝集体の崩壊を抑制することができる。さらに、粘着剤により粘着されているため、一次粒子が膨張・収縮によって自壊した場合であったとしても自壊した電極活物質粒子は分離することがなく、電気的に孤立しにくい。 In the electrode active material particle aggregate, the electrode active material particles (a) and the electrode active material particles (a) and the conductive auxiliary agent (b) are bonded with a pressure-sensitive adhesive. Aggregated particles are reversibly bound to adjacent aggregated particles. Therefore, even if the primary particles expand and contract, the volume change can be easily absorbed, so that not only the electrode active material particles can be prevented from self-destructing, but also the electrode active material particle aggregates can be prevented from collapsing. be able to. Furthermore, since the primary particles are self-destructed due to expansion / contraction, the self-destructed electrode active material particles are not separated and are not easily isolated electrically because they are adhered by an adhesive.
 電極活物質粒子凝集体は、電極活物質粒子(a)、導電助剤(b)及び粘着剤(c)を含む。電極活物質粒子凝集体は、複数の電極活物質粒子(a)と導電助剤(b)とが会合し、粘着剤(c)を介して一体にまとまった粒子の集合体である。以下、電極活物質粒子(a)、導電助剤(b)及び粘着剤(c)について説明する。 The electrode active material particle aggregate includes electrode active material particles (a), a conductive additive (b), and an adhesive (c). The electrode active material particle aggregate is an aggregate of particles in which a plurality of electrode active material particles (a) and a conductive auxiliary agent (b) are combined to form a single body via an adhesive (c). Hereinafter, the electrode active material particles (a), the conductive assistant (b), and the pressure-sensitive adhesive (c) will be described.
 電極活物質粒子(a)は、正極活物質の粒子であっても負極活物質の粒子であってもよい。正極活物質としては、リチウムと遷移金属との複合酸化物{遷移金属が1種である複合酸化物(LiCoO、LiNiO、LiAlMnO、LiMnO及びLiMn等)、遷移金属元素が2種である複合酸化物(例えばLiFeMnO、LiNi1-xCo、LiMn1-yCo、LiNi1/3Co1/3Al1/3及びLiNi0.8Co0.15Al0.05)及び金属元素が3種類以上である複合酸化物[例えばLiMM’M’’(M、M’及びM’’はそれぞれ異なる遷移金属元素であり、a+b+c=1を満たす。例えばLiNi1/3Mn1/3Co1/3)等]等}、リチウム含有遷移金属リン酸塩(例えばLiFePO、LiCoPO、LiMnPO及びLiNiPO)、遷移金属酸化物(例えばMnO及びV)、遷移金属硫化物(例えばMoS及びTiS)及び導電性高分子(例えばポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン及びポリ-p-フェニレン及びポリビニルカルバゾール)等が挙げられ、2種以上を併用してもよい。なお、リチウム含有遷移金属リン酸塩は、遷移金属サイトの一部を他の遷移金属で置換したものであってもよい。 The electrode active material particles (a) may be positive electrode active material particles or negative electrode active material particles. As the positive electrode active material, a composite oxide of lithium and a transition metal (a composite oxide having one kind of transition metal (such as LiCoO 2 , LiNiO 2 , LiAlMnO 4 , LiMnO 2, and LiMn 2 O 4 ), a transition metal element is used. Two kinds of complex oxides (for example, LiFeMnO 4 , LiNi 1-x Co x O 2 , LiMn 1-y Co y O 2 , LiNi 1/3 Co 1/3 Al 1/3 O 2 and LiNi 0.8 Co 0.15 Al 0.05 O 2 ) and a composite oxide having three or more metal elements [for example, LiM a M ′ b M ″ c O 2 (M, M ′, and M ″ are different transition metal elements, respectively) , and the meet a + b + c = 1. for example LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) , etc.] or the like}, lithium-containing transition metal phosphate (e.g. LiFePO 4, LiCo O 4, LiMnPO 4 and LiNiPO 4), transition metal oxides (e.g., MnO 2 and V 2 O 5), transition metal sulfides (e.g., MoS 2 and TiS 2) and the conductive polymer (such as polyaniline, polypyrrole, polythiophene, Polyacetylene, poly-p-phenylene, and polyvinylcarbazole), and the like may be used in combination. The lithium-containing transition metal phosphate may be one in which a part of the transition metal site is substituted with another transition metal.
 正極活物質粒子の体積平均粒子径は、電池の電気特性の観点から、0.01~100μmであることが好ましく、0.1~35μmであることがより好ましく、2~30μmであることがさらに好ましい。 The volume average particle diameter of the positive electrode active material particles is preferably 0.01 to 100 μm, more preferably 0.1 to 35 μm, and further preferably 2 to 30 μm, from the viewpoint of the electric characteristics of the battery. preferable.
 負極活物質としては、炭素系材料[黒鉛、難黒鉛化性炭素(ハードカーボン)、アモルファス炭素、樹脂焼成体(例えばフェノール樹脂及びフラン樹脂等を焼成し炭素化したもの等)、コークス類(例えばピッチコークス、ニードルコークス及び石油コークス等)及び炭素繊維等]、珪素系材料[珪素、酸化珪素(SiOx)、珪素-炭素複合体(炭素粒子の表面を珪素及び/又は炭化珪素で被覆したもの、珪素粒子又は酸化珪素粒子の表面を炭素及び/又は炭化珪素で被覆したもの並びに炭化珪素等)及び珪素合金(珪素-アルミニウム合金、珪素-リチウム合金、珪素-ニッケル合金、珪素-鉄合金、珪素-チタン合金、珪素-マンガン合金、珪素-銅合金及び珪素-スズ合金等)等]、導電性高分子(例えばポリアセチレン及びポリピロール等)、金属(スズ、アルミニウム、ジルコニウム及びチタン等)、金属酸化物(チタン酸化物及びリチウム・チタン酸化物等)及び金属合金(例えばリチウム-スズ合金、リチウム-アルミニウム合金及びリチウム-アルミニウム-マンガン合金等)等及びこれらと炭素系材料との混合物等が挙げられる。 Examples of the negative electrode active material include carbon-based materials [graphite, non-graphitizable carbon (hard carbon), amorphous carbon, resin fired bodies (for example, those obtained by firing and carbonizing phenol resin, furan resin, etc.), cokes (for example, Pitch coke, needle coke, petroleum coke, etc.) and carbon fiber, etc.], silicon-based materials [silicon, silicon oxide (SiOx), silicon-carbon composites (the surface of carbon particles coated with silicon and / or silicon carbide, The surface of silicon particles or silicon oxide particles coated with carbon and / or silicon carbide and silicon carbide) and silicon alloys (silicon-aluminum alloy, silicon-lithium alloy, silicon-nickel alloy, silicon-iron alloy, silicon- Titanium alloys, silicon-manganese alloys, silicon-copper alloys, silicon-tin alloys, etc.)], conductive polymers (eg polyacetylene and poly Rolls, etc.), metals (tin, aluminum, zirconium, titanium, etc.), metal oxides (titanium oxide and lithium / titanium oxide, etc.) and metal alloys (eg lithium-tin alloys, lithium-aluminum alloys and lithium-aluminum) And a mixture of these with a carbon-based material.
 上記負極活物質のうち、内部にリチウム又はリチウムイオンを含まないものについては、予め負極活物質の一部又は全部にリチウム又はリチウムイオンを含ませるプレドープ処理を施してもよい。 Among the negative electrode active materials described above, those that do not contain lithium or lithium ions may be subjected to a pre-doping treatment in which lithium or lithium ions are included in part or all of the negative electrode active material in advance.
 これらの中でも、電池容量等の観点から、炭素系材料、珪素系材料及びこれらの混合物が好ましく、炭素系材料としては、黒鉛、難黒鉛化性炭素及びアモルファス炭素がさらに好ましく、珪素系材料としては、酸化珪素及び珪素-炭素複合体がさらに好ましい。 Among these, from the viewpoint of battery capacity and the like, a carbon-based material, a silicon-based material, and a mixture thereof are preferable. As the carbon-based material, graphite, non-graphitizable carbon, and amorphous carbon are more preferable. Further, silicon oxide and silicon-carbon composite are more preferable.
 負極活物質粒子の体積平均粒子径は、電池の電気特性の観点から、0.01~100μmが好ましく、0.1~20μmであることがより好ましく、2~10μmであることがさらに好ましい。 The volume average particle diameter of the negative electrode active material particles is preferably from 0.01 to 100 μm, more preferably from 0.1 to 20 μm, and even more preferably from 2 to 10 μm, from the viewpoint of the electric characteristics of the battery.
 本明細書において、正極活物質粒子及び負極活物質粒子の体積平均粒子径は、マイクロトラック法及びJIS Z 8825:2013に記載のレーザー回折・散乱法によって求めた体積基準での粒度分布における積算値50%での粒径(Dv50)を意味する。マイクロトラック法とは、レーザー光を粒子に照射することによって得られる散乱光を利用して粒度分布を求める方法である。なお、体積平均粒子径の測定には、日機装株式会社製のマイクロトラック等を用いることができる。 In this specification, the volume average particle diameters of the positive electrode active material particles and the negative electrode active material particles are integrated values in the particle size distribution on the volume basis determined by the microtrack method and the laser diffraction / scattering method described in JIS Z 8825: 2013. Mean particle size (Dv50) at 50%. The microtrack method is a method for obtaining a particle size distribution using scattered light obtained by irradiating particles with laser light. In addition, the Nikkiso Co., Ltd. microtrack etc. can be used for the measurement of a volume average particle diameter.
 電極活物質は、その表面の少なくとも一部が高分子化合物を含む被覆層により被覆された被覆活物質であってもよい。電極活物質の周囲が被覆層で被覆されていると、電極の体積変化をさらに緩和し易くなり、電極の膨張を抑制することができる点で好ましい。 The electrode active material may be a coated active material in which at least a part of its surface is coated with a coating layer containing a polymer compound. When the periphery of the electrode active material is covered with a coating layer, it is preferable in that the volume change of the electrode can be further eased and the expansion of the electrode can be suppressed.
 なお、電極活物質として正極活物質を使用した場合の被覆活物質を被覆正極活物質といい、被覆活物質層を被覆正極活物質層ともいう。また電極活物質として負極活物質を使用した場合の被覆活物質を被覆負極活物質といい、被覆活物質層を被覆負極活物質層ともいう。 Note that a coated active material when a positive electrode active material is used as the electrode active material is referred to as a coated positive electrode active material, and a coated active material layer is also referred to as a coated positive electrode active material layer. A coated active material when a negative electrode active material is used as the electrode active material is referred to as a coated negative electrode active material, and a coated active material layer is also referred to as a coated negative electrode active material layer.
 被覆層を構成する被覆用樹脂としては、特開2017-054703号公報に非水系二次電池活物質被覆用樹脂として記載されたものを好適に用いることができ、特開2017-054703号公報等に記載の方法で被覆用樹脂及び電極活物質粒子を混合すること等によって被覆電極活物質粒子が得られる。なお、被覆層には必要に応じてさらに導電材料を含んでもよく、導電助剤(b)と同様のものを好適に用いることができる。 As the coating resin constituting the coating layer, those described as a resin for coating a non-aqueous secondary battery active material in Japanese Patent Application Laid-Open No. 2017-054703 can be suitably used. The coated electrode active material particles can be obtained by mixing the coating resin and the electrode active material particles by the method described in 1. above. In addition, a conductive material may further be included in the coating layer as necessary, and the same material as the conductive additive (b) can be suitably used.
 ただし、導電材料は被覆電極活物質の一部を構成する被覆層に含まれるのに対して、導電助剤(b)は被覆層に含まれない点で明確に区別できる。 However, while the conductive material is included in the coating layer constituting a part of the coated electrode active material, the conductive auxiliary agent (b) can be clearly distinguished in that it is not included in the coating layer.
 導電助剤(b)は、導電性を有する材料から選択される。 The conductive auxiliary agent (b) is selected from conductive materials.
 具体的には、金属[ニッケル、アルミニウム、ステンレス(SUS)、銀、銅及びチタン等]、カーボン[グラファイト及びカーボンブラック(アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラック、チャンネルブラック、サーマルランプブラック等)等]、及びこれらの混合物等が挙げられるが、これらに限定されるわけではない。
これらの導電助剤は1種単独で用いてもよいし、2種以上併用してもよい。また、前記の金属の合金を用いてもよい。電気的安定性の観点から、好ましくはアルミニウム、ステンレス、カーボン、銀、銅、チタン及びこれらの混合物であり、より好ましくは銀、アルミニウム、ステンレス及びカーボンであり、さらに好ましくはカーボンである。またこれらの導電助剤としては、粒子系セラミック材料や樹脂材料の周りに導電性材料(上記した導電助剤の材料のうち金属のもの)をめっき等でコーティングしたものでもよい。
Specifically, metal [nickel, aluminum, stainless steel (SUS), silver, copper, titanium, etc.], carbon [graphite and carbon black (acetylene black, ketjen black (registered trademark), furnace black, channel black, thermal lamp) Black) and the like], and mixtures thereof, but are not limited thereto.
These conductive assistants may be used alone or in combination of two or more. Moreover, you may use the alloy of the said metal. From the viewpoint of electrical stability, aluminum, stainless steel, carbon, silver, copper, titanium and a mixture thereof are preferable, silver, aluminum, stainless steel and carbon are more preferable, and carbon is more preferable. Moreover, as these conductive support agents, the thing which coated the electroconductive material (metal thing among the materials of the above-mentioned conductive support agent) by plating etc. around the particle-type ceramic material or the resin material may be used.
 導電助剤の形状(形態)は、特に限定されず、粒子状であっても繊維状であってもよく、カーボンナノチューブ、カーボンナノファイバー、又は導電性繊維等を用いることもできる。 The shape (form) of the conductive auxiliary agent is not particularly limited, and may be particulate or fibrous, and carbon nanotubes, carbon nanofibers, conductive fibers, or the like can also be used.
 粒子状の導電助剤の平均粒子径は、特に限定されるものではないが、電池の電気特性の観点から、0.01~10μmであることが好ましく、0.02~5μmであることがより好ましく、0.03~1μmであることがさらに好ましい。なお、本明細書中において、「導電助剤の粒子径」とは、導電助剤の輪郭線上の任意の2点間の距離のうち、最大の距離Lを意味する。「導電助剤の平均粒子径」の値としては、JIS Z 8827-1:2008に記載の方法に従い、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)等の観察手段において数~数十視野中に観察される導電助剤の粒子径の平均値として算出される値を採用するものとする。 The average particle diameter of the particulate conductive additive is not particularly limited, but is preferably 0.01 to 10 μm, more preferably 0.02 to 5 μm from the viewpoint of the electric characteristics of the battery. Preferably, it is 0.03 to 1 μm. In the present specification, the “particle diameter of the conductive additive” means the maximum distance L among the distances between any two points on the contour line of the conductive additive. The value of the “average particle diameter of the conductive auxiliary agent” is several to several in an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM) according to the method described in JIS Z 8827-1: 2008. The value calculated as the average value of the particle diameter of the conductive additive observed in the ten visual fields shall be adopted.
 導電性繊維としては、PAN系炭素繊維、ピッチ系炭素繊維等の炭素繊維、合成繊維の中に導電性のよい金属や黒鉛を均一に分散させてなる導電性繊維、ステンレス鋼のような金属を繊維化した金属繊維、有機物繊維の表面を金属で被覆した導電性繊維、有機物繊維の表面を導電性物質を含む樹脂で被覆した導電性繊維等が挙げられる。これらの導電性繊維の中では炭素繊維が好ましい。また、グラフェンを練りこんだポリプロピレン樹脂も好ましい。導電助剤が導電性繊維である場合、その平均繊維径は0.1~20μmであることが好ましい。 Examples of conductive fibers include carbon fibers such as PAN-based carbon fibers and pitch-based carbon fibers, conductive fibers obtained by uniformly dispersing highly conductive metal and graphite in synthetic fibers, and metals such as stainless steel. Examples thereof include fiberized metal fibers, conductive fibers in which the surface of organic fiber is coated with metal, and conductive fibers in which the surface of organic fiber is coated with a resin containing a conductive substance. Among these conductive fibers, carbon fibers are preferable. A polypropylene resin in which graphene is kneaded is also preferable. When the conductive auxiliary agent is a conductive fiber, the average fiber diameter is preferably 0.1 to 20 μm.
 粘着剤(pressure sensitive adhesive)(c)は、電極活物質粒子(a)の表面に対して粘着性を示す。そのため、電極活物質粒子(a)と粘着剤(c)を混合して攪拌することで電極活物質粒子の造粒を行うことができ、電極活物質粒子凝集体を得ることができる。 The pressure sensitive adhesive (c) exhibits adhesiveness to the surface of the electrode active material particles (a). Therefore, the electrode active material particles can be granulated by mixing and stirring the electrode active material particles (a) and the pressure-sensitive adhesive (c), and electrode active material particle aggregates can be obtained.
 粘着剤(c)は、JIS K6800:2006「接着剤・接着用語」に規定されるように、常温で粘着性を有し、軽い圧力で被着材に接着する性質を有する。 The pressure-sensitive adhesive (c) is sticky at room temperature and has a property of adhering to an adherend with light pressure, as defined in JIS K6800: 2006 “Adhesive / Adhesion Term”.
 粘着剤(c)は、本発明の電極活物質粒子凝集体の製造方法において粘着剤(c)を溶剤に溶解した溶液の形で使用される。 The pressure-sensitive adhesive (c) is used in the form of a solution obtained by dissolving the pressure-sensitive adhesive (c) in a solvent in the method for producing an electrode active material particle aggregate of the present invention.
 粘着剤(c)としては、特開2004―143420号公報に記載の粘着剤組成物及び特開2000-239633号公報等に記載のアクリル系感圧接着剤組成物等を用いることができ、中でも2-エチルヘキシル(メタ)アクリレート、(メタ)アクリル酸、およびブチル(メタ)アクリレートからなる群から選択された少なくとも1種の単量体を含む重合体を含むことが好ましい。 As the pressure-sensitive adhesive (c), the pressure-sensitive adhesive composition described in JP-A No. 2004-143420 and the acrylic pressure-sensitive adhesive composition described in JP-A No. 2000-239633 can be used. It is preferable to include a polymer containing at least one monomer selected from the group consisting of 2-ethylhexyl (meth) acrylate, (meth) acrylic acid, and butyl (meth) acrylate.
 なお、本明細書において、(メタ)アクリル酸とは、アクリル酸及び/又はメタクリル酸を示しており、(メタ)アクリレートとは、アクリレート及び/又はメタクリレートを示している。 In this specification, (meth) acrylic acid indicates acrylic acid and / or methacrylic acid, and (meth) acrylate indicates acrylate and / or methacrylate.
 特に、前記粘着剤(c)は、少なくとも2-エチルヘキシル(メタ)アクリレートと(メタ)アクリル酸とを構成単量体として含む共重合体を含むことが好ましい。また、この場合、共重合体の構成単量体中の2-エチルヘキシル(メタ)アクリレートおよび(メタ)アクリル酸の合計質量が、共重合体の構成単量体の合計質量に対して10質量%以上であることが好ましい。また、共重合体の構成単量体中の2-エチルヘキシル(メタ)アクリレートおよび(メタ)アクリル酸の合計質量が、共重合体の構成単量体の合計質量に対して65質量%以下であることが好ましい。共重合体の構成単量体中の2-エチルヘキシル(メタ)アクリレートおよび(メタ)アクリル酸の合計質量がこの範囲であると、電極活物質粒子凝集体の強度が良好となり好ましい。上記以外の構成単量体としては、特に制限されないが、例えば、酢酸ビニル、2-ヒドロキシエチル(メタ)アクリレートなどが挙げられる。 In particular, the pressure-sensitive adhesive (c) preferably contains a copolymer containing at least 2-ethylhexyl (meth) acrylate and (meth) acrylic acid as constituent monomers. In this case, the total mass of 2-ethylhexyl (meth) acrylate and (meth) acrylic acid in the constituent monomer of the copolymer is 10% by mass with respect to the total mass of the constituent monomer of the copolymer. The above is preferable. Further, the total mass of 2-ethylhexyl (meth) acrylate and (meth) acrylic acid in the constituent monomer of the copolymer is 65% by mass or less based on the total mass of the constituent monomers of the copolymer. It is preferable. When the total mass of 2-ethylhexyl (meth) acrylate and (meth) acrylic acid in the constituent monomer of the copolymer is within this range, the strength of the electrode active material particle aggregate is favorable, which is preferable. The constituent monomer other than the above is not particularly limited, and examples thereof include vinyl acetate and 2-hydroxyethyl (meth) acrylate.
 上記粘着剤(c)としては、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。好ましくは、使用する粘着剤(c)の全量に対して、上記2-エチルヘキシル(メタ)アクリレートと(メタ)アクリル酸とを構成単量体として含む共重合体の割合は80質量%以上であり、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましく、99質量%以上であることがさらにより好ましく、100質量%であることが最も好ましい。 As the pressure-sensitive adhesive (c), only one type may be used, or two or more types may be used in combination. Preferably, the ratio of the copolymer containing 2-ethylhexyl (meth) acrylate and (meth) acrylic acid as constituent monomers to the total amount of the pressure-sensitive adhesive (c) used is 80% by mass or more. 90% by mass or more, more preferably 95% by mass or more, still more preferably 99% by mass or more, and most preferably 100% by mass.
 粘着剤(c)の重量平均分子量の好ましい下限は10,000、より好ましくは50,000、さらに好ましくは100,000であり、好ましい上限は1,000,000、より好ましくは800,000、さらに好ましくは500,000、特に好ましくは450,000である。2種以上の粘着剤を用いる場合は、その少なくとも1種の重量平均分子量が上記範囲であることが好ましく、すべての重量平均分子量が上記範囲であることがより好ましい。 The preferable lower limit of the weight average molecular weight of the pressure-sensitive adhesive (c) is 10,000, more preferably 50,000, still more preferably 100,000, and the preferable upper limit is 1,000,000, more preferably 800,000, 500,000 is preferable, and 450,000 is particularly preferable. When using 2 or more types of adhesives, it is preferable that the weight average molecular weight of the at least 1 sort is the said range, and it is more preferable that all the weight average molecular weights are the said range.
 粘着剤(c)の重量平均分子量は、以下の条件でゲルパーミエーションクロマトグラフィー(以下GPCと略記)測定により求めることができる。 The weight average molecular weight of the pressure-sensitive adhesive (c) can be determined by gel permeation chromatography (hereinafter abbreviated as GPC) measurement under the following conditions.
 装置:「HLC-8120GPC」[東ソー株式会社製]
 カラム:「TSKgel GMHXL」(2本)、「TSKgel Multipore HXL-Mを各1本連結したもの」[いずれも東ソー株式会社製]
 試料溶液:0.25質量%のテトラヒドロフラン溶液
 溶液注入量:10μL
 流量:0.6mL/分
 測定温度:40℃
 検出装置:屈折率検出器
 基準物質:標準ポリスチレン[東ソー株式会社製]。
Equipment: “HLC-8120GPC” [manufactured by Tosoh Corporation]
Column: "TSKgel GMHXL" (2), "TSKgel Multipore HXL-M each connected" [all manufactured by Tosoh Corporation]
Sample solution: 0.25 mass% tetrahydrofuran solution Solution injection amount: 10 μL
Flow rate: 0.6 mL / min Measurement temperature: 40 ° C
Detector: Refractive index detector Reference material: Standard polystyrene [manufactured by Tosoh Corporation].
 粘着剤(c)は、公知の重合開始剤{アゾ系開始剤[2,2’-アゾビス(2-メチルプロピオニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル等)]、パーオキサイド系開始剤(ベンゾイルパーオキサイド、ジ-t-ブチルパーオキサイド、ラウリルパーオキサイド等)等}を使用して公知の重合方法(溶液重合)により製造することができる。 The pressure-sensitive adhesive (c) is a known polymerization initiator {azo initiator [2,2′-azobis (2-methylpropionitrile), 2,2′-azobis (2-methylbutyronitrile), 2, 2′-azobis (2,4-dimethylvaleronitrile, etc.)], peroxide-based initiators (benzoyl peroxide, di-t-butyl peroxide, lauryl peroxide, etc.), etc.} Solution polymerization).
 重合開始剤の使用量は、分子量を好ましい範囲に調整する等の観点から、モノマーの全質量に対して好ましくは0.01~5質量%、より好ましくは0.05~2質量%、さらに好ましくは0.1~1.5質量%であり、重合温度及び重合時間は重合開始剤の種類等に応じて調整されるが、重合温度は好ましくは-5~150℃、(より好ましくは30~120℃)、反応時間は好ましくは0.1~50時間(より好ましくは2~24時間)で行われる。 The amount of the polymerization initiator used is preferably from 0.01 to 5% by mass, more preferably from 0.05 to 2% by mass, and even more preferably from the viewpoint of adjusting the molecular weight to a preferable range. The polymerization temperature and polymerization time are adjusted according to the type of the polymerization initiator, etc., but the polymerization temperature is preferably −5 to 150 ° C. (more preferably 30 to 120 ° C.), and the reaction time is preferably 0.1 to 50 hours (more preferably 2 to 24 hours).
 重合に使用される溶媒としては、例えばエステル(炭素数2~8、例えば酢酸エチル及び酢酸ブチル)、アルコール(炭素数1~8、例えばメタノール、エタノール及びオクタノール)、炭化水素(炭素数4~8、例えばn-ブタン、シクロヘキサン及びトルエン)及びケトン(炭素数3~9、例えばメチルエチルケトン)が挙げられ、分子量を好ましい範囲に調整する等の観点から、その使用量はモノマーの合計質量に対して、好ましくは5~900質量%、より好ましくは10~400質量%、特に好ましくは30~300質量%であり、モノマー濃度としては、好ましくは10~95質量%、より好ましくは20~90質量%、特に好ましくは30~80質量%である。 Examples of the solvent used for the polymerization include esters (having 2 to 8 carbon atoms such as ethyl acetate and butyl acetate), alcohols (having 1 to 8 carbon atoms such as methanol, ethanol and octanol), hydrocarbons (having 4 to 8 carbon atoms). For example, n-butane, cyclohexane and toluene) and ketones (having 3 to 9 carbon atoms, for example, methyl ethyl ketone). From the viewpoint of adjusting the molecular weight to a preferred range, the amount used is based on the total mass of the monomers. Preferably, it is 5 to 900% by mass, more preferably 10 to 400% by mass, particularly preferably 30 to 300% by mass, and the monomer concentration is preferably 10 to 95% by mass, more preferably 20 to 90% by mass, Particularly preferred is 30 to 80% by mass.
 重合に際しては、公知の連鎖移動剤、例えばメルカプト化合物(ドデシルメルカプタン、n-ブチルメルカプタン等)及び/又はハロゲン化炭化水素(四塩化炭素、四臭化炭素、塩化ベンジル等)を使用することができる。 In the polymerization, known chain transfer agents such as mercapto compounds (such as dodecyl mercaptan and n-butyl mercaptan) and / or halogenated hydrocarbons (such as carbon tetrachloride, carbon tetrabromide and benzyl chloride) can be used. .
 粘着剤(c)としては、市販の粘着剤[ポリシックシリーズ(三洋化成工業株式会社製)等]を用いても良い。 As the pressure-sensitive adhesive (c), a commercially available pressure-sensitive adhesive [polysic series (manufactured by Sanyo Chemical Industries, Ltd.), etc.] may be used.
 粘着剤(c)は、溶剤乾燥型である公知のリチウムイオン電池電極用バインダー(デンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン、テトラフルオロエチレン、スチレン-ブタジエンゴム、ポリエチレン、ポリプロピレン及びスチレン-ブタジエン共重合体等)とは異なる材料である。 The pressure-sensitive adhesive (c) is a known dry-type binder for lithium ion battery electrodes (starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose, polyvinylpyrrolidone, tetrafluoroethylene, styrene-butadiene rubber, polyethylene, polypropylene and styrene. -A material different from butadiene copolymer or the like).
 本発明の電極活物質粒子凝集体の製造方法で得られた電極活物質粒子凝集体は、電極活物質粒子と導電助剤とを粘着剤で一体にしているため、電極活物質粒子凝集体が変形しても電極活物質粒子と導電助剤とは変形に追従してある程度自由に移動することができる。そのため、電極活物質粒子の膨張・収縮が発生して電極活物質粒子凝集体が変形したとしても、電極活物質粒子凝集体から電極活物質粒子や導電助剤が脱落することを抑制することができる。 In the electrode active material particle aggregate obtained by the method for producing an electrode active material particle aggregate of the present invention, the electrode active material particle aggregate is integrated with the electrode active material particle and the conductive additive. Even when deformed, the electrode active material particles and the conductive additive can move freely to some extent following the deformation. Therefore, even when the electrode active material particles expand and contract and the electrode active material particle aggregates are deformed, it is possible to suppress the electrode active material particles and the conductive auxiliary agent from dropping from the electrode active material particle aggregates. it can.
 さらに、電極活物質粒子が膨張・収縮によって自壊したとしても粘着剤で纏まっているために電気的に孤立しにくい。 Furthermore, even if the electrode active material particles are self-destructed due to expansion / contraction, they are not easily isolated electrically because they are bundled with the adhesive.
 なお、溶剤乾燥型の電極用バインダーは、溶媒成分を揮発させることで乾燥、固体化して電極活物質粒子同士及び電極活物質粒子と集電体とを強固に固定する材料であり、その固体の表面は粘着性を示さない。一方、粘着剤は、溶媒成分を揮発させて乾燥させても粘着性を有する性質を有する材料である。すなわち、本発明の電極活物質粒子凝集体の製造方法、および電極の製造方法においては、上記の溶剤乾燥型の電極用バインダーを用いないことが好ましい。 The solvent-dried electrode binder is a material that is dried and solidified by volatilizing the solvent component to firmly fix the electrode active material particles to each other and the electrode active material particles and the current collector. The surface is not sticky. On the other hand, the pressure-sensitive adhesive is a material having a property of having adhesiveness even when the solvent component is volatilized and dried. That is, in the method for producing an electrode active material particle aggregate and the method for producing an electrode of the present invention, it is preferable not to use the solvent-drying type electrode binder.
 本発明の電極活物質粒子凝集体の製造方法で得られた電極活物質粒子凝集体は、体積平均粒子径が20~350μmであることが好ましい。
なお、この体積平均粒子径は凝集体としての粒子径である。
The electrode active material particle aggregate obtained by the method for producing an electrode active material particle aggregate of the present invention preferably has a volume average particle diameter of 20 to 350 μm.
In addition, this volume average particle diameter is a particle diameter as an aggregate.
 本明細書において、電極活物質粒子凝集体の体積平均粒子径は、マイクロトラック法及びJIS Z 8825:2013に記載のレーザー回折・散乱法によって求めた体積基準での粒度分布における積算値50%での粒径(Dv50)を意味する。マイクロトラック法とは、レーザー光を粒子に照射することによって得られる散乱光を利用して粒度分布を求める方法である。なお、体積平均粒子径の測定には、日機装株式会社製のマイクロトラック等を用いることができる。 In this specification, the volume average particle diameter of the electrode active material particle aggregate is an integrated value of 50% in the particle size distribution on the volume basis determined by the microtrack method and the laser diffraction / scattering method described in JIS Z 8825: 2013. Mean particle size (Dv50). The microtrack method is a method for obtaining a particle size distribution using scattered light obtained by irradiating particles with laser light. In addition, the Nikkiso Co., Ltd. microtrack etc. can be used for the measurement of a volume average particle diameter.
 続いて、本発明の電極活物質粒子凝集体の製造方法の各工程について説明する。 Then, each process of the manufacturing method of the electrode active material particle aggregate of this invention is demonstrated.
 第1混合工程では、電極活物質粒子(a)及び導電助剤(b)を乾式混合して混合物を得る。 In the first mixing step, the electrode active material particles (a) and the conductive additive (b) are dry mixed to obtain a mixture.
 第1混合工程における混合の順序は特に限定されず、電極活物質粒子(a)に導電助剤(b)を混合してもよく、導電助剤(b)に電極活物質粒子(a)を混合してもよい。混合は乾式混合により行い、電極活物質粒子(a)と導電助剤(b)の混合物を得る。乾式混合に使用する装置は特に限定されるものではないが、後述するミキサーを好適に使用することができる。上記ミキサーを使用した場合の好ましい混合条件についても後述する。 The order of mixing in the first mixing step is not particularly limited, and the conductive additive (b) may be mixed with the electrode active material particles (a), and the electrode active material particles (a) may be mixed with the conductive auxiliary agent (b). You may mix. Mixing is performed by dry mixing to obtain a mixture of the electrode active material particles (a) and the conductive additive (b). Although the apparatus used for dry mixing is not particularly limited, a mixer described later can be preferably used. Preferred mixing conditions when using the mixer will also be described later.
 第2混合工程では、第1混合工程で得られた混合物に対し、攪拌下で、粘着剤(c)を溶液の形で加える。 In the second mixing step, the adhesive (c) is added in the form of a solution to the mixture obtained in the first mixing step under stirring.
 粘着剤(c)は溶液の形で加えられる。本明細書における溶液とは、粘着剤に含まれる粘着性を発揮する成分が溶媒に溶解している状態を意味しており、透明な外観を有する。すなわち、ラテックスバインダのような、微粒子が液中に分散してなる不透明な懸濁液とは異なる態様である。 Adhesive (c) is added in the form of a solution. The solution in the present specification means a state in which a component exhibiting adhesiveness contained in an adhesive is dissolved in a solvent, and has a transparent appearance. That is, it is different from an opaque suspension in which fine particles are dispersed in a liquid, such as a latex binder.
 粘着剤(c)の溶液は、前記の粘着剤(c)を溶解可能な溶剤に粘着剤(c)を公知の方法で溶解することで得られる。溶液中の粘着剤(c)の濃度が0.01~20質量%であることが好ましく、5~10質量%であることがより好ましい。 The solution of the pressure-sensitive adhesive (c) can be obtained by dissolving the pressure-sensitive adhesive (c) in a solvent capable of dissolving the pressure-sensitive adhesive (c) by a known method. The concentration of the pressure-sensitive adhesive (c) in the solution is preferably 0.01 to 20% by mass, and more preferably 5 to 10% by mass.
 溶液中の粘着剤(c)の濃度が上記範囲であると、電極活物質粒子(a)、導電助剤(b)及び粘着剤(c)が均一に混合でき、凝集体の収率を向上させることができる。 When the concentration of the pressure-sensitive adhesive (c) in the solution is within the above range, the electrode active material particles (a), the conductive auxiliary agent (b) and the pressure-sensitive adhesive (c) can be uniformly mixed to improve the yield of the aggregate. Can be made.
 なお、溶液中の粘着剤(c)の濃度は溶液中の溶剤を必要に応じて加熱(好ましくは80~120℃)して蒸発させた後に残留する蒸発残渣質量の溶液質量に対する割合として測定される。 The concentration of the pressure-sensitive adhesive (c) in the solution is measured as a ratio of the mass of evaporation residue remaining after evaporation of the solvent in the solution by heating (preferably 80 to 120 ° C.) as necessary. The
 粘着剤(c)の溶液の溶媒としては、粘着剤(c)を溶解できる溶媒であれば制限なく使用できるが、エステル系溶媒等が好ましく、酢酸エチルが更に好ましい。 As a solvent for the solution of the pressure-sensitive adhesive (c), any solvent that can dissolve the pressure-sensitive adhesive (c) can be used without limitation, but ester solvents are preferable, and ethyl acetate is more preferable.
 本発明の電極活物質粒子凝集体の製造方法において、第1混合工程と第2混合工程を区別しているのは、電極活物質粒子(a)と導電助剤(b)と粘着剤(c)の混合の順序が重要であり、電極活物質粒子(a)と導電助剤(b)の混合物に対して粘着剤(c)を後で加えることが本発明の特徴であることを意味している。 In the method for producing an electrode active material particle aggregate of the present invention, the first mixing step and the second mixing step are distinguished from each other in that the electrode active material particles (a), the conductive auxiliary agent (b), and the adhesive (c) This means that the order of mixing is important, and it is a feature of the present invention that the adhesive (c) is added later to the mixture of the electrode active material particles (a) and the conductive additive (b). Yes.
 電極活物質粒子(a)と導電助剤(b)と粘着剤(c)を一括混合したり、電極活物質粒子(a)と粘着剤(c)を混合した後で導電助剤(b)を加えたり、導電助剤(b)と粘着剤(c)を混合した後で電極活物質粒子(a)を加えたりすると流動性の高い電極活物質粒子凝集体を製造することができない。 Conductive aid (b) after electrode active material particles (a), conductive additive (b) and pressure-sensitive adhesive (c) are mixed at once, or mixed with electrode active material particles (a) and pressure-sensitive adhesive (c). If the electrode active material particles (a) are added after mixing the conductive assistant (b) and the pressure sensitive adhesive (c), an electrode active material particle aggregate having high fluidity cannot be produced.
 第2混合工程では、電極活物質粒子(a)の合計質量に対して0.01~10質量%の粘着剤(c)を溶液の形で加える。 In the second mixing step, 0.01 to 10% by mass of the pressure-sensitive adhesive (c) is added in the form of a solution with respect to the total mass of the electrode active material particles (a).
 粘着剤(c)の添加量が電極活物質粒子(a)の合計質量に対して0.01質量%未満であると粘着剤(c)の量が少なすぎて電極活物質が凝集体となり難く、出来た凝集体の強度も十分ではない。 When the added amount of the pressure-sensitive adhesive (c) is less than 0.01% by mass with respect to the total mass of the electrode active material particles (a), the amount of the pressure-sensitive adhesive (c) is too small and the electrode active material is hardly aggregated. The strength of the resulting aggregate is not sufficient.
 また、粘着剤(c)の添加量が電極活物質粒子(a)の合計質量に対して10質量%を超えると粘着剤(c)の量が多すぎて過剰の粘着剤(c)が電極活物質粒子凝集体と共存するために電極活物質粒子凝集体の流動性が低くなってしまう。 Moreover, when the addition amount of an adhesive (c) exceeds 10 mass% with respect to the total mass of electrode active material particle (a), there is too much quantity of an adhesive (c) and an excess adhesive (c) will become an electrode. Since it coexists with the active material particle aggregate, the fluidity of the electrode active material particle aggregate becomes low.
 また、電極活物質粒子(a)の合計質量に対して1~5質量%、特には1~3質量%の粘着剤(c)を溶液の形で加えることが好ましい。この範囲であると電極活物質粒子凝集体の強度と流動性との両立がより容易になり好ましい。 Further, it is preferable to add 1 to 5% by mass, particularly 1 to 3% by mass of the adhesive (c) in the form of a solution with respect to the total mass of the electrode active material particles (a). This range is preferable because it is easier to achieve both the strength and fluidity of the electrode active material particle aggregate.
 本明細書における粘着剤(c)の添加量は、溶液の配合量と溶液中の粘着剤(c)の濃度を乗ずることにより定めることができる量であり、粘着剤純分としての粘着剤の添加量である。 The addition amount of the pressure-sensitive adhesive (c) in this specification is an amount that can be determined by multiplying the blending amount of the solution and the concentration of the pressure-sensitive adhesive (c) in the solution. The amount added.
 このように定めた粘着剤(c)の添加量が、電極活物質粒子(a)の合計質量に対して0.01~10質量%となるようにする。 The amount of the pressure-sensitive adhesive (c) thus determined is set to 0.01 to 10% by mass with respect to the total mass of the electrode active material particles (a).
 第2混合工程における粘着剤(c)の添加は、攪拌下で行う。攪拌に使用する装置は特に限定されるものではないが、後述するミキサーを好適に使用することができる。上記ミキサーを使用した場合の好ましい攪拌条件についても後述する。 The addition of the pressure-sensitive adhesive (c) in the second mixing step is performed with stirring. Although the apparatus used for stirring is not specifically limited, The mixer mentioned later can be used conveniently. Preferred stirring conditions when using the mixer will also be described later.
 また、第2混合工程における粘着剤(c)の添加は一度に行なってもよく、分割して行ってもよい。この際、1回目の粘着剤の添加時を第2混合工程の開始時とする。 In addition, the addition of the pressure-sensitive adhesive (c) in the second mixing step may be performed at a time or may be performed in divided portions. At this time, the first addition of the pressure-sensitive adhesive is defined as the start of the second mixing step.
 攪拌工程では、第2混合工程で得られた混合物(電極活物質粒子(a)と導電助剤(b)と粘着剤(c)の混合物)を攪拌する。 In the stirring step, the mixture obtained in the second mixing step (a mixture of the electrode active material particles (a), the conductive additive (b), and the pressure-sensitive adhesive (c)) is stirred.
 この攪拌は第2混合工程と連続して行うことが好ましく、第2混合工程において攪拌下で粘着剤(c)を加えたのちにそのまま攪拌を続けることが攪拌工程に相当する。 This stirring is preferably performed continuously with the second mixing step, and continuing the stirring as it is after adding the pressure-sensitive adhesive (c) under stirring in the second mixing step corresponds to the stirring step.
 攪拌工程における攪拌条件は、特に限定されるものではなく、第2混合工程において攪拌下で粘着剤(c)を加える際の攪拌条件のままとしてもよいし、異なる攪拌条件としてもよい。異なる攪拌条件とする場合は、粘着剤(c)を加える際の攪拌条件と異なる攪拌条件で攪拌を行うことが攪拌工程に相当する。 Stirring conditions in the stirring step are not particularly limited, and may be the same stirring conditions when adding the pressure-sensitive adhesive (c) under stirring in the second mixing step, or may be different stirring conditions. When setting it as different stirring conditions, it is equivalent to a stirring process to stir on the stirring conditions different from the stirring conditions at the time of adding an adhesive (c).
 攪拌に使用する装置は特に限定されるものではないが、後述するミキサーを好適に使用することができる。上記ミキサーを使用した場合の好ましい攪拌条件についても後述する。攪拌工程において攪拌をすることにより、電極活物質粒子凝集体が得られる。 Although the apparatus used for stirring is not particularly limited, a mixer described later can be preferably used. Preferred stirring conditions when using the mixer will also be described later. By stirring in the stirring step, electrode active material particle aggregates are obtained.
 続いて、本発明の電極活物質粒子凝集体の製造方法において好ましく使用することができるミキサーについて説明する。 Subsequently, a mixer that can be preferably used in the method for producing an electrode active material particle aggregate of the present invention will be described.
 本発明の電極活物質粒子凝集体の製造方法では、上記第1混合工程における乾式混合、上記第2混合工程における攪拌、及び上記攪拌工程における攪拌のうち少なくとも1つの工程を、内容物を収納したまま回転する回転容器と、上記回転容器の内方でかつ上記回転容器の回転中心軸線より偏心した位置に上記回転中心軸線と平行に配置された攪拌羽根とを備え、上記回転容器と上記攪拌羽根がそれぞれ回転して内容物の混合を行うミキサーを用いて行うことが好ましい。 In the method for producing an electrode active material particle aggregate of the present invention, at least one of the dry mixing in the first mixing step, the stirring in the second mixing step, and the stirring in the stirring step contains the contents. A rotating container that rotates as it is, and a stirring blade that is disposed inward of the rotating container and deviated from the rotating center axis of the rotating container in parallel with the rotating center axis, and the rotating container and the stirring blade It is preferable to use a mixer that rotates and mixes the contents.
 この様なミキサーとしては特開2013-017923号公報に記載のミキサー等があげられ、市販のミキサーとしてはアイリッヒ インテンシブ ミキサー(日本アイリッヒ株式会社製)等があげられる。 Examples of such mixers include the mixers described in JP2013-017923A, and examples of commercially available mixers include Eirich Intensive Mixer (manufactured by Eirich Japan).
 図1は、本発明の電極活物質粒子凝集体の製造方法において好ましく使用することができるミキサーの一例を模式的に示す斜視図である。 FIG. 1 is a perspective view schematically showing an example of a mixer that can be preferably used in the method for producing an electrode active material particle aggregate of the present invention.
 図1に示すミキサー1は、内容物を収納したまま回転する回転容器4を備える。回転容器4は回転中心軸線CL(以下、中心軸線CLともいう)を中心に回転する。中心軸線CLは水平面(図中に線Hで示す)に対して傾いていることが好ましい。ミキサー1は、回転中心軸線CL(以下、中心軸線CLともいう)を中心に回転する攪拌羽根3を備える。攪拌羽根3は回転駆動するヘッド部5とヘッド部5に取り付けられ回転容器4の底板7の近傍まで延びた棒状部材6を有する。棒状部材6は少なくとも1本設けられていることが好ましいが、図1に示すミキサーでは6本設けられている。攪拌羽根3は回転容器の中心軸線CLより偏心した位置に配置される。攪拌羽根3が回転容器の中心軸線CLより偏心した位置に配置されるとは、攪拌羽根3の回転の中心軸線CLが回転容器の中心軸線CLと一致しないことを意味する。 A mixer 1 shown in FIG. 1 includes a rotating container 4 that rotates while containing contents. The rotating container 4 rotates around a rotation center axis CL 1 (hereinafter also referred to as center axis CL 1 ). The central axis CL 1 is preferably tilted with respect to the horizontal plane (indicated by line H in the figure). The mixer 1 includes a stirring blade 3 that rotates about a rotation center axis CL 2 (hereinafter also referred to as a center axis CL 2 ). The stirring blade 3 has a head portion 5 that is rotationally driven and a rod-like member 6 that is attached to the head portion 5 and extends to the vicinity of the bottom plate 7 of the rotating container 4. Although at least one rod-like member 6 is preferably provided, six are provided in the mixer shown in FIG. Stirring blades 3 are disposed eccentrically from the center axis line CL 1 of the rotary vessel position. Stirring blade 3 is to be located at a position eccentric from the center axis line CL 1 of the rotating container, the central axis CL 2 of rotation of the stirring blade 3 means that does not coincide with the center axis line CL 1 of the rotary vessel.
 攪拌羽根3のヘッド部5は、回転容器の中心軸線CLと平行に配置されて回転駆動される。そして、ヘッド部5には棒状部材6が中心軸線CLを中心にして周囲に均等角度でかつ同一距離に複数本配置されている。棒状部材の形状は直線状に限定されるものではなく所定形状に曲がって形成されていてもよい。また、棒状部材の断面形状は円形が好ましいが、楕円形、多角形その他の所定形状であってもよい。 Head portion of the stirring blade 35 is rotated is parallel to the center axis CL 1 of the rotary vessel. Then, it is parallelly arranged evenly angle and the same distance to the environment around the rod-like member 6 of the central axis CL 2 the head portion 5. The shape of the rod-shaped member is not limited to a linear shape, and may be formed by bending into a predetermined shape. The cross-sectional shape of the rod-shaped member is preferably circular, but may be an ellipse, a polygon, or other predetermined shape.
 回転容器4の中心軸線CLを中心とした回転、又は、攪拌羽根3の中心軸線CLを中心とした回転が行われることにより、ミキサー1内での内容物の攪拌が行われる。このミキサー1を使用する場合には、回転容器4の中心軸線CLを中心とした回転、及び、攪拌羽根3の中心軸線CLを中心とした回転を同時に行うことが好ましい。この2種類の回転を同時に行うことにより、より流動性の高い電極活物質粒子凝集体を得ることができる。 The contents in the mixer 1 are agitated by rotating around the central axis CL 1 of the rotating container 4 or rotating around the central axis CL 2 of the stirring blade 3. If this is a mixer 1, the rotation about the center axis line CL 1 of the rotating container 4, and it is preferable to perform the rotation about the center axis line CL 2 of the agitating blades 3 at the same time. By performing these two types of rotation simultaneously, an electrode active material particle aggregate with higher fluidity can be obtained.
 回転容器の回転方向と攪拌羽根の回転方向は同一方向であっても逆方向であってもよい。図1には回転容器の回転方向(矢印B)が時計回りであり攪拌羽根の回転方向(矢印B)も時計回りである例を示している。回転容器と攪拌羽根がこのように運動することにより、棒状部材が回転容器内を円周運動して、棒状部材が混合物を回転容器内の広い面積にわたって攪拌することができる。 The rotation direction of the rotating container and the rotation direction of the stirring blade may be the same direction or the opposite direction. FIG. 1 shows an example in which the rotation direction of the rotating container (arrow B 1 ) is clockwise and the rotation direction of the stirring blade (arrow B 2 ) is also clockwise. When the rotating container and the stirring blade move in this way, the rod-shaped member moves in the circumferential direction in the rotating container, and the rod-shaped member can stir the mixture over a wide area in the rotating container.
 本発明の電極活物質粒子凝集体の製造方法では、第1混合工程、第2混合工程及び攪拌工程のいずれにおいても上記ミキサーを使用することができる。 In the method for producing an electrode active material particle aggregate of the present invention, the mixer can be used in any of the first mixing step, the second mixing step, and the stirring step.
 第1混合工程、第2混合工程及び攪拌工程を同一のミキサーを用いて続けて行うことも好ましい。 It is also preferable to perform the first mixing step, the second mixing step, and the stirring step continuously using the same mixer.
 上記ミキサーを使用した場合の各工程における好ましい攪拌条件は以下の通りである。 Preferred stirring conditions in each step when using the mixer are as follows.
 (1)第1混合工程における乾式混合条件
 回転容器の回転条件:攪拌羽根と逆回転で低速回転(好ましい周速度は1~3m/s)
 攪拌羽根の周速度:10~20m/s
 乾式混合の時間:5~10分
 (2)第2混合工程において粘着剤(c)を加える際の攪拌条件
 回転容器の回転条件:攪拌羽根と逆回転で低速回転(好ましい周速度は1~3m/s)
 攪拌羽根の周速度:10~20m/s
 粘着剤を加える速度:電極活物質粒子100部に対して1分間に加える粘着剤(c)の部数が0.1~1部となる速度
 (3)攪拌工程における攪拌条件
 回転容器の回転条件:攪拌羽根と逆回転で低速回転(好ましい周速度は1~3m/s)
 攪拌羽根の周速度:20~30m/s
 攪拌時間:15~25分。
(1) Dry mixing conditions in the first mixing step Rotational conditions of the rotating container: low speed rotation reverse to the stirring blades (preferred peripheral speed is 1 to 3 m / s)
Stirring blade peripheral speed: 10-20m / s
Dry mixing time: 5 to 10 minutes (2) Stirring conditions when adding the pressure-sensitive adhesive (c) in the second mixing step Rotating condition of the rotating container: Low speed rotation reverse to the stirring blades (preferred peripheral speed is 1 to 3 m / S)
Stirring blade peripheral speed: 10-20m / s
Speed at which the pressure-sensitive adhesive is added: Speed at which the number of parts of the pressure-sensitive adhesive (c) added per minute to 100 parts of the electrode active material particles is 0.1 to 1 part. (3) Stirring conditions in the stirring step Reverse rotation with stirring blades and low speed rotation (preferred peripheral speed is 1 to 3 m / s)
Stirring blade peripheral speed: 20-30m / s
Stirring time: 15-25 minutes.
 攪拌工程までを経て得られた電極活物質粒子凝集体に対しては、必要に応じて乾燥等の処理を行ってもよい。 The electrode active material particle aggregate obtained through the stirring step may be subjected to a treatment such as drying as necessary.
 続いて、本発明の電極活物質粒子凝集体の製造方法で得られた電極活物質粒子凝集体を使用して電極を製造する、本発明の電極の製造方法について説明する。 Subsequently, an electrode manufacturing method of the present invention in which an electrode is manufactured using the electrode active material particle aggregate obtained by the electrode active material particle aggregate manufacturing method of the present invention will be described.
 本発明の電極の製造方法は、本発明の電極活物質粒子凝集体の製造方法で得られた電極活物質粒子凝集体を基材上に塗布する塗布工程を含むことを特徴とする。 The method for producing an electrode of the present invention is characterized by including a coating step of coating the electrode active material particle aggregate obtained by the method for producing an electrode active material particle aggregate of the present invention on a substrate.
 電極を製造するために使用する基材としては、集電体を使用することが好ましい。集電体としては特に限定されないが、公知の金属集電体及び導電材料と樹脂とから構成されてなる樹脂集電体(特開2012-150905号公報等に記載されている)等を好適に用いることができる。 It is preferable to use a current collector as the base material used for manufacturing the electrode. The current collector is not particularly limited, but a known metal current collector and a resin current collector composed of a conductive material and a resin (described in JP 2012-150905 A) and the like are preferably used. Can be used.
 金属集電体としては、例えば、銅、アルミニウム、チタン、ニッケル、タンタル、ニオブ、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン及びこれらの一種以上を含む合金、ならびにステンレス合金からなる群から選択される一種以上の金属材料が挙げられ、これらの金属材料を薄板や金属箔等の形態で用いてもよく、基材表面にスパッタリング、電着、塗布等の手法により上記金属材料を形成したものであってもよい。 The metal current collector is, for example, selected from the group consisting of copper, aluminum, titanium, nickel, tantalum, niobium, hafnium, zirconium, zinc, tungsten, bismuth, antimony and alloys containing one or more of these, and stainless steel alloys. These metal materials may be used in the form of a thin plate or a metal foil, and the above metal material is formed on the surface of the substrate by a technique such as sputtering, electrodeposition or coating. There may be.
 樹脂集電体を構成する導電材料は、導電性を有する材料から選択される。具体的には、金属[ニッケル、アルミニウム、ステンレス(SUS)、銀、銅及びチタン等]、カーボン[グラファイト及びカーボンブラック(アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラック、チャンネルブラック、サーマルランプブラック等)等]、及びこれらの混合物等が挙げられるが、これらに限定されるわけではない。 The conductive material constituting the resin current collector is selected from materials having conductivity. Specifically, metal [nickel, aluminum, stainless steel (SUS), silver, copper, titanium, etc.], carbon [graphite and carbon black (acetylene black, ketjen black (registered trademark), furnace black, channel black, thermal lamp) Black) and the like], and mixtures thereof, but are not limited thereto.
 これらの導電材料は1種単独で用いてもよいし、2種以上併用してもよい。また、これらの合金又は金属酸化物を用いてもよい。電気的安定性の観点から、好ましくはアルミニウム、ステンレス、カーボン、銀、銅、チタン及びこれらの混合物であり、より好ましくは銀、アルミニウム、ステンレス及びカーボンであり、さらに好ましくはカーボンである。またこれらの導電材料としては、粒子系セラミック材料や樹脂材料の周りに導電性材料(上記した導電材料のうち金属のもの)をめっき等でコーティングしたものでもよい。 These conductive materials may be used alone or in combination of two or more. Further, these alloys or metal oxides may be used. From the viewpoint of electrical stability, aluminum, stainless steel, carbon, silver, copper, titanium and a mixture thereof are preferable, silver, aluminum, stainless steel and carbon are more preferable, and carbon is more preferable. Moreover, as these electrically conductive materials, what coated the electroconductive material (metal thing among the above-mentioned electrically conductive materials) by plating etc. around the particulate ceramic material or the resin material may be used.
 樹脂集電体を構成する樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)、ポリシクロオレフィン(PCO)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリフッ化ビニリデン(PVdF)、エポキシ樹脂、シリコーン樹脂又はこれらの混合物等が挙げられる。 The resin constituting the resin current collector includes polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyether nitrile (PEN), polytetra Fluoroethylene (PTFE), styrene butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVdF), epoxy resin, silicone resin or a mixture thereof Is mentioned.
 電気的安定性の観点から、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)及びポリシクロオレフィン(PCO)が好ましく、さらに好ましくはポリエチレン(PE)、ポリプロピレン(PP)及びポリメチルペンテン(PMP)である。 From the viewpoint of electrical stability, polyethylene (PE), polypropylene (PP), polymethylpentene (PMP) and polycycloolefin (PCO) are preferable, and polyethylene (PE), polypropylene (PP) and polymethylpentene are more preferable. (PMP).
 塗布工程では、本発明の電極活物質粒子凝集体の製造方法で得られた電極活物質粒子凝集体を基材上に塗布する。 In the coating step, the electrode active material particle aggregate obtained by the method for producing the electrode active material particle aggregate of the present invention is coated on a substrate.
 本発明の電極において、凝集粒子同士は互いに結着していないことが好ましく、すなわち電極活物質粒子凝集体を基材上に塗布して得られる電極活物質層は非結着体であることが好ましい。ここで、非結着体とは、電極活物質層を構成する電極活物質粒子同士が、互いに結合していないことを意味し、結合とは不可逆的に電極活物質粒子同士が固定されていることを意味する。 In the electrode of the present invention, the agglomerated particles are preferably not bound to each other, that is, the electrode active material layer obtained by applying the electrode active material particle agglomerates on the substrate may be non-bound. preferable. Here, the non-binding body means that the electrode active material particles constituting the electrode active material layer are not bonded to each other. The bond is irreversibly fixed to the electrode active material particles. Means that.
 本発明の電極活物質粒子凝集体の製造方法で得られた電極活物質粒子凝集体は、電極活物質粒子と導電助剤とを粘着剤で一体にしているため、粘着剤を含む電極を作製した際に電極活物質層が非結着体のままで維持される。電極活物質層が非結着体であると、電極活物質粒子凝集体は電極活物質層中である程度自由に移動することができる。そのため、電極活物質粒子の膨張・収縮が発生したとしても、電極活物質粒子が電極活物質粒子凝集体中を移動することによってその体積変化を吸収することができ、電極活物質粒子凝集体が集電体上から剥離することも抑制することができる。 Since the electrode active material particle aggregate obtained by the method for producing an electrode active material particle aggregate of the present invention is formed by integrating the electrode active material particles and the conductive additive with an adhesive, an electrode including an adhesive is produced. In this case, the electrode active material layer is maintained as a non-binding body. When the electrode active material layer is a non-binding body, the electrode active material particle aggregate can freely move to some extent in the electrode active material layer. Therefore, even if expansion / contraction of the electrode active material particles occurs, the volume change can be absorbed by the electrode active material particles moving through the electrode active material particle aggregates. Peeling from the current collector can also be suppressed.
 さらに、電極活物質粒子が膨張・収縮によって自壊したとしても粘着剤(c)で纏まっているために電極活物質層から脱落等して電気的に孤立することがない。 Furthermore, even if the electrode active material particles are self-destructed due to expansion / contraction, they are collected by the pressure-sensitive adhesive (c), so that they do not fall off from the electrode active material layer and become electrically isolated.
 なお、電極活物質粒子凝集体を基材上に塗布する際に公知の電極用バインダー(溶剤乾燥型である公知のリチウムイオン電池電極用バインダー)を併用しないことによって電極活物質層を非結着体とすることができる。 In addition, when applying the electrode active material particle aggregate on the substrate, the electrode active material layer is not bound by not using a known electrode binder (a known lithium ion battery electrode binder which is a solvent dry type) in combination. It can be a body.
 上記の公知の電極用バインダーを併用して電極活物質層を形成するためには電極活物質粒子凝集体を基材上に塗布したあとに乾燥工程を行う必要があるが、本発明の電極活物質粒子凝集体の製造方法で得られた電極活物質粒子凝集体は、粘着剤を含むため、上記の公知の電極用バインダーを使用することなく、電極活物質粒子凝集体を粉体のまま基材上に塗布して圧縮する等して、乾燥工程を行うことなく電極活物質層を形成することができる。乾燥工程を行うことなく電極活物質層を形成する場合、加熱による電極活物質層の収縮や亀裂の発生が起こりにくく、電極活物質層を厚くすることができ、高容量の電池を得ることができ好ましい。 In order to form an electrode active material layer using the above known electrode binder together, it is necessary to perform a drying step after applying the electrode active material particle aggregate on the substrate. Since the electrode active material particle aggregate obtained by the method for producing the material particle aggregate contains an adhesive, the electrode active material particle aggregate is in powder form without using the above-mentioned known electrode binder. The electrode active material layer can be formed without performing a drying step, for example, by coating on a material and compressing. When an electrode active material layer is formed without performing a drying step, shrinkage and cracking of the electrode active material layer due to heating are unlikely to occur, the electrode active material layer can be thickened, and a high-capacity battery can be obtained. This is preferable.
 電極活物質粒子凝集体の基材上への塗布は、電極活物質粒子凝集体を電解液及び電解液に含まれる非水系溶剤等に分散し、公知のコーティング装置を用いて塗布する方法、及び電極活物質粒子凝集体を粉体のまま基材上に塗布する方法等を用いることができる。 Application of the electrode active material particle aggregate on the base material is a method of dispersing the electrode active material particle aggregate in the electrolytic solution and a non-aqueous solvent contained in the electrolytic solution, and applying using a known coating apparatus, and For example, a method of applying the electrode active material particle aggregate as a powder on a substrate can be used.
 基材上に塗布した電極活物質粒子凝集体に対しては、その厚さを調整する厚さ調整工程を行うことが好ましい。厚さ調整工程は、スキージによる平坦化工程であることが好ましい。また、基材に塗布した電極活物質粒子凝集体に振動を与えて電極活物質粒子凝集体の厚さを調整する工程であることも好ましい。また、動く基材に対して電極活物質粒子凝集体を定量供給することにより厚さを揃えながら電極活物質粒子凝集体を基材に対して塗布することによって塗布工程と厚さ調整工程を同時に行うような形態であってもよい。 It is preferable to perform a thickness adjusting step for adjusting the thickness of the electrode active material particle aggregate applied on the substrate. The thickness adjusting step is preferably a flattening step using a squeegee. Moreover, it is also preferable to be a step of adjusting the thickness of the electrode active material particle aggregate by applying vibration to the electrode active material particle aggregate applied to the substrate. In addition, the electrode active material particle aggregate is applied to the base material while aligning the thickness by quantitatively supplying the electrode active material particle aggregate to the moving base material, thereby simultaneously performing the coating process and the thickness adjusting process. It may be a form that is performed.
 本発明の電極活物質粒子凝集体の製造方法で得られた電極活物質粒子凝集体は流動性が高いため、基材に塗布した場合に基材上に適度に拡がることができる。そして、厚さ調整工程によって容易に厚さを調整することができる。 Since the electrode active material particle aggregate obtained by the method for producing an electrode active material particle aggregate of the present invention has high fluidity, the electrode active material particle aggregate can be appropriately spread on the substrate when applied to the substrate. And thickness can be easily adjusted with a thickness adjustment process.
 続けて、基材上に塗布し、必要に応じて厚さ調整工程を経た電極活物質粒子凝集体を加圧する加圧工程を行うことが好ましい。加圧工程はロール圧延等を用いて行うことができ、これにより基材上の必要な位置に電極活物質粒子凝集体が所定の目付量で均一に設けられた電極を得ることができる。ロール圧延で加圧する場合に掛ける力は4.9kN~295kNとすることが好ましく、例えば直径250mm×長さ250mmのロールを用いて圧延する場合の線圧は19.6kN/m~1176.5kN/mであることが好ましい。 Subsequently, it is preferable to perform a pressurizing step of applying pressure on the electrode active material particle aggregate that has been applied on the substrate and subjected to a thickness adjusting step as necessary. The pressurizing step can be performed using roll rolling or the like, whereby an electrode in which electrode active material particle aggregates are uniformly provided at a predetermined position on the substrate with a predetermined basis weight can be obtained. The force applied when pressurizing by roll rolling is preferably 4.9 kN to 295 kN. For example, the linear pressure when rolling using a roll having a diameter of 250 mm × length of 250 mm is 19.6 kN / m to 1176.5 kN / m is preferable.
 このようにして得られた電極は、電解液、セパレータ、対極となる電極と組み合わせて電池外装体内に収容する等の処理によって電池とすることができる。 The electrode obtained in this manner can be made into a battery by a treatment such as being housed in a battery outer package in combination with an electrolytic solution, a separator, and a counter electrode.
 次に本発明を実施例によって具体的に説明するが、本発明の主旨を逸脱しない限り本発明は実施例に限定されるものではない。なお、特記しない限り部は質量部、%は質量%を意味する。 Next, the present invention will be specifically described by way of examples. However, the present invention is not limited to the examples without departing from the gist of the present invention. Unless otherwise specified, “part” means “part by mass” and “%” means “% by mass”.
 製造例1
 (粘着剤の製造)
 攪拌機、温度計、還流冷却管、滴下ロートおよび窒素ガス導入管を付した4つ口コルベンに、酢酸ビニル5.0部、2-エチルヘキシルアクリレート23.7部および酢酸エチル185.5部を仕込み75℃に昇温した。酢酸ビニル11.1部、2-エチルヘキシルアクリレート21.0部、2-ヒドロキシエチルメタクリレート28.1部、アクリル酸11.1部および2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.200部および2,2’-アゾビス(2-メチルブチロニトリル)0.200部を混合して得られた単量体混合液を75℃に昇温した前記の4つ口コルベン内に窒素を吹き込みながら、滴下ロートで4時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.800部を酢酸エチル12.4部に溶解した溶液を滴下ロートを用いて、重合を開始してから6~8時間目にかけて連続的に追加した。さらに、沸点で重合を2時間継続した後、温度を維持したままコルベン内部を真空ポンプで徐々に減圧し、酢酸エチルの流出が観察されなくなるまで維持して酢酸エチルを留去し、粘着剤である重合体を得た。得られた重合体の分子量をGPCにて測定したところ、重量平均分子量(以下、Mwと略記する)は420,000であった。Mwの測定条件は上述の通りである。
Production Example 1
(Manufacture of adhesives)
A 4-neck Kolben equipped with a stirrer, thermometer, reflux condenser, dropping funnel and nitrogen gas inlet tube was charged with 5.0 parts of vinyl acetate, 23.7 parts of 2-ethylhexyl acrylate, and 185.5 parts of ethyl acetate 75 The temperature was raised to ° C. 11.1 parts vinyl acetate, 21.0 parts 2-ethylhexyl acrylate, 28.1 parts 2-hydroxyethyl methacrylate, 11.1 parts acrylic acid and 2,2′-azobis (2,4-dimethylvaleronitrile) 200 parts of the monomer mixture obtained by mixing 200 parts and 2,2′-azobis (2-methylbutyronitrile) 0.200 parts was heated to 75 ° C., and nitrogen was introduced into the four-necked Kolben. While blowing, radical polymerization was carried out by continuously dropping with a dropping funnel over 4 hours. After completion of the dropwise addition, a solution prepared by dissolving 0.800 part of 2,2′-azobis (2,4-dimethylvaleronitrile) in 12.4 parts of ethyl acetate was used to start polymerization using a dropping funnel after the start of polymerization. Added continuously over time. Furthermore, after the polymerization was continued for 2 hours at the boiling point, while maintaining the temperature, the inside of the Kolben was gradually reduced with a vacuum pump, and the ethyl acetate was distilled off by maintaining the temperature until no ethyl acetate flow was observed. A polymer was obtained. When the molecular weight of the obtained polymer was measured by GPC, the weight average molecular weight (hereinafter abbreviated as Mw) was 420,000. The measurement conditions for Mw are as described above.
 (実施例1)
 下記の第1混合工程、第2混合工程及び攪拌工程を行って実施例1にかかる電極活物質粒子凝集体(1)を製造した。
(Example 1)
The following 1st mixing process, 2nd mixing process, and stirring process were performed, and the electrode active material particle aggregate (1) concerning Example 1 was manufactured.
 (第1混合工程)
 図1に示す形状のミキサー[日本アイリッヒ株式会社製、アイリッヒ インテンシブ ミキサー、型式EL-1]を準備し、ミキサーの回転容器に数平均粒子径5μmのLiNi0.8Co0.15Al0.05粒子[戸田工業株式会社製(以下NCAと記載する]95部と導電助剤であるカーボンナノファイバー[昭和電工株式会社製、カーボンナノチューブVGCF(以下CNFと記載する)]2部とを投入して第1混合工程である乾式混合を行って混合物を得た。第1混合工程における混合は回転容器(混合パンともいう)の回転速度を攪拌羽根とは逆方向に85rpm(混合パンの内径:400mm、周速度1.8m/s)に、攪拌羽根(ローターともいう)の周速度を17m/sにセットし、乾式混合の時間を7分間として行った。
(First mixing step)
A mixer having the shape shown in FIG. 1 [manufactured by Japan Eirich Co., Ltd., Eirich Intensive Mixer, Model EL-1] was prepared, and LiNi 0.8 Co 0.15 Al 0.05 having a number average particle size of 5 μm was placed in the rotating container of the mixer. 95 parts of O 2 particles [Toda Kogyo Co., Ltd. (hereinafter referred to as NCA)] and 2 parts of carbon nanofiber [Showa Denko Co., Ltd., carbon nanotube VGCF (hereinafter referred to as CNF)] as a conductive auxiliary agent are added. In the first mixing step, the mixture was obtained by mixing at the rotation speed of the rotating container (also referred to as a mixing pan) at 85 rpm (inner diameter of the mixing pan). : 400 mm, peripheral speed 1.8 m / s), the peripheral speed of the stirring blade (also called rotor) is set to 17 m / s, and the dry mixing time is 7 minutes. Was Tsu.
 (第2混合工程)
 製造例1で製造した粘着剤3部を酢酸エチル27部に溶解して得た粘着剤の酢酸エチル溶液(粘着剤濃度:10質量%)(粘着剤の酢酸エチル溶液(1))30部を3分割して5分間隔で、第1混合工程を行った後のミキサーの混合パン中の混合物に、ミキサーの攪拌下で投入して第2混合工程を行った。第2混合工程における混合は混合パンの回転速度を攪拌羽根とは逆方向に85rpmに、ローターの周速度を17m/sにセットし、最初の粘着剤溶液の投入時を0分として混合時間を12分間として行った。
(Second mixing step)
30 parts of an ethyl acetate solution (adhesive concentration: 10% by mass) of an adhesive obtained by dissolving 3 parts of the adhesive produced in Production Example 1 in 27 parts of ethyl acetate (ethyl acetate solution (1) of adhesive) The second mixing step was performed by adding the mixture in the mixing pan of the mixer after performing the first mixing step into three parts in the mixing pan after stirring in the mixer at intervals of 5 minutes. Mixing in the second mixing step is performed by setting the rotation speed of the mixing pan to 85 rpm in the direction opposite to that of the stirring blade, the peripheral speed of the rotor to 17 m / s, and the mixing time with the initial adhesive solution being charged as 0 minutes. This was done for 12 minutes.
 (攪拌工程)
 第2混合工程の終了後、混合パンの回転速度を攪拌羽根とは逆方向に85rpmに、ローターの周速度を24m/sにセットし、混合中に酢酸エチルが自然蒸発していくよう混合パンの吸引口を開放した状態で20分間の混合を行って攪拌工程を行って実施例1にかかる電極活物質粒子凝集体(1)を製造した。
(Stirring process)
After the end of the second mixing step, the rotation speed of the mixing pan is set to 85 rpm in the direction opposite to that of the stirring blade, and the circumferential speed of the rotor is set to 24 m / s, so that the ethyl acetate naturally evaporates during mixing. The electrode active material particle aggregate (1) according to Example 1 was manufactured by mixing for 20 minutes with the suction port opened and performing a stirring step.
 (実施例2)
 実施例1の第1混合工程においてNCAを98部に変更し、実施例1の第2混合工程において粘着剤の酢酸エチル溶液(1)の投入量を0.098部に変更したこと以外は実施例1と同様にして実施例2にかかる電極活物質粒子凝集体(2)を製造した。
(Example 2)
Implemented except that the NCA was changed to 98 parts in the first mixing step of Example 1, and the amount of the ethyl acetate solution (1) in the adhesive was changed to 0.098 parts in the second mixing step of Example 1. In the same manner as in Example 1, an electrode active material particle aggregate (2) according to Example 2 was produced.
 (実施例3)
 実施例1の第1混合工程においてNCAを88.2部に変更し、実施例1の第2混合工程において粘着剤の酢酸エチル溶液(1)の投入量を88.2部に変更したこと以外は実施例1と同様にして実施例3にかかる電極活物質粒子凝集体(3)を製造した。
(Example 3)
Except that the NCA was changed to 88.2 parts in the first mixing step of Example 1, and the input amount of the ethyl acetate solution (1) of the adhesive was changed to 88.2 parts in the second mixing step of Example 1. Produced an electrode active material particle aggregate (3) according to Example 3 in the same manner as in Example 1.
 (実施例4)
 実施例1の第2混合工程において粘着剤の酢酸エチル溶液の粘着剤濃度を20質量%に変更し(粘着剤の酢酸エチル溶液(2))、さらに粘着剤の酢酸エチル溶液(2)の投入量を15部に変更したこと以外は実施例1と同様にして実施例4にかかる電極活物質粒子凝集体(4)を製造した。
Example 4
In the second mixing step of Example 1, the pressure-sensitive adhesive concentration of the ethyl acetate solution of the pressure-sensitive adhesive was changed to 20% by mass (the pressure-sensitive adhesive ethyl acetate solution (2)), and the pressure-sensitive adhesive ethyl acetate solution (2) was added. An electrode active material particle aggregate (4) according to Example 4 was produced in the same manner as in Example 1 except that the amount was changed to 15 parts.
 (実施例5)
 実施例1の第2混合工程において粘着剤の酢酸エチル溶液の粘着剤濃度を5質量%に変更し(粘着剤の酢酸エチル溶液(3))、さらに粘着剤の酢酸エチル溶液(3)の投入量を60部に変更したこと以外は実施例1と同様にして実施例5にかかる電極活物質粒子凝集体(5)を製造した。
(Example 5)
In the second mixing step of Example 1, the pressure-sensitive adhesive concentration of the ethyl acetate solution of the pressure-sensitive adhesive was changed to 5 mass% (ethyl acetate solution of the pressure-sensitive adhesive (3)), and further the ethyl acetate solution of the pressure-sensitive adhesive (3) was added. An electrode active material particle aggregate (5) according to Example 5 was produced in the same manner as in Example 1 except that the amount was changed to 60 parts.
 (実施例6)
 実施例1の第2混合工程において粘着剤の酢酸エチル溶液の粘着剤濃度を0.01質量%に変更し(粘着剤の酢酸エチル溶液(4))、さらに粘着剤の酢酸エチル溶液(4)の投入量を30000部に変更したこと以外は実施例1と同様にして実施例6にかかる電極活物質粒子凝集体(6)を製造した。
(Example 6)
In the second mixing step of Example 1, the pressure-sensitive adhesive concentration of the ethyl acetate solution of the pressure-sensitive adhesive was changed to 0.01 mass% (pressure-sensitive adhesive ethyl acetate solution (4)), and the pressure-sensitive adhesive ethyl acetate solution (4). An electrode active material particle agglomerate (6) according to Example 6 was produced in the same manner as in Example 1 except that the input amount of was changed to 30000 parts.
 (実施例7)
 実施例1の第2混合工程において粘着剤の酢酸エチル溶液(1)(粘着剤濃度:10質量%)30部の投入を分割せずに一括して行ったこと以外は実施例1と同様にして実施例7にかかる電極活物質粒子凝集体(7)を製造した。
(Example 7)
In the second mixing step of Example 1, the same procedure as in Example 1 was performed except that 30 parts of the ethyl acetate solution (1) (adhesive concentration: 10% by mass) of the adhesive was added all at once. Thus, an electrode active material particle aggregate (7) according to Example 7 was produced.
 (実施例8)
 実施例1の第1混合工程においてNCA95部をハードカーボン[格式会社クレハ製、カーボトロンPS(F)(以下HCと記載する)]95部に変更したこと以外は実施例1と同様にして実施例8にかかる電極活物質粒子凝集体(8)を製造した。
(Example 8)
Example 1 The same as Example 1 except that 95 parts of NCA were changed to 95 parts of hard carbon [manufactured by Kureha Corporation, Carbotron PS (F) (hereinafter referred to as HC)] in the first mixing step of Example 1. An electrode active material particle aggregate (8) according to No. 8 was produced.
 (実施例9)
 下記の第1混合工程、第2混合工程及び攪拌工程を行って実施例9にかかる電極活物質粒子凝集体(9)を製造した。
Example 9
The following 1st mixing process, 2nd mixing process, and stirring process were performed, and the electrode active material particle aggregate (9) concerning Example 9 was manufactured.
 (第1混合工程)
 混合容器の底の中心部に上下に重なった2枚の形状の異なる攪拌羽根を有するミキサー[日本コークス株式会社製、FMミキサー、型式FM 10C/I]を準備し、ミキサーの容器にNCA95部とカーボンナノファイバー2部とを投入して第1混合工程である乾式混合を行って混合物を得た。第1混合工程における混合は、攪拌羽根の周速度を17m/sにセットし、乾式混合の時間を10分間として行った。
(First mixing step)
A mixer [Nippon Coke Co., Ltd., FM mixer, type FM 10C / I] having two differently shaped stirring blades vertically stacked at the center of the bottom of the mixing vessel was prepared. 2 parts of carbon nanofibers were added and dry mixing as the first mixing step was performed to obtain a mixture. Mixing in the first mixing step was performed by setting the peripheral speed of the stirring blade to 17 m / s and the dry mixing time as 10 minutes.
 (第2混合工程)
 製造例1で製造した粘着剤3部を酢酸エチル27部に溶解して得た粘着剤の酢酸エチル溶液(粘着剤濃度:10質量%)(粘着剤の酢酸エチル溶液(1))30部を3分割して5分間隔で、第1混合工程を行った後のミキサー容器中の混合物に、ミキサーの攪拌下で投入して第2混合工程を行った。第2混合工程における混合は、攪拌羽根の周速度を17m/sにセットし、最初の粘着剤溶液の投入時を0分として混合時間を12分間として行った。
(Second mixing step)
30 parts of an ethyl acetate solution (adhesive concentration: 10% by mass) of an adhesive obtained by dissolving 3 parts of the adhesive produced in Production Example 1 in 27 parts of ethyl acetate (ethyl acetate solution (1) of adhesive) The second mixing step was performed by adding the mixture in the mixer container after the first mixing step into three in 3 minutes and under the stirring of the mixer at intervals of 5 minutes. Mixing in the second mixing step was performed by setting the peripheral speed of the stirring blade to 17 m / s, setting the initial pressure-sensitive adhesive solution to 0 minutes, and setting the mixing time to 12 minutes.
 (攪拌工程)
 第2混合工程の終了後、攪拌羽根の周速度を24m/sにセットし、20分間の混合を行って攪拌工程を行って実施例9にかかる電極活物質粒子凝集体(9)を製造した。
(Stirring process)
After the end of the second mixing step, the peripheral speed of the stirring blade was set at 24 m / s, and the stirring step was performed by mixing for 20 minutes to produce the electrode active material particle aggregate (9) according to Example 9. .
 (比較例1)
 実施例9で用いたミキサーにNCA100部とカーボンナノファイバー1部とを投入し、10分間ドライブレンドを行った。次いで、結着剤であるスチレン・ブタジエン共重合体(SBR)の40質量%水分散液[日本ゼオン株式会社製、ラテックスBM-400B]を、ミキサー内のNCAと導電助剤の混合物に、結着剤が固形分換算で1部となる量でスプレーした。結着剤の水分散液を投入後、攪拌羽根の周速度を17m/sにして3分間混練工程を行った。その後、2分間さらに攪拌羽根を周速度24m/sで動かし、解砕工程を行って、その後、30分間50℃で減圧乾燥し、比較用電極活物質粒子凝集体(H1)を製造した。
(Comparative Example 1)
100 parts of NCA and 1 part of carbon nanofibers were added to the mixer used in Example 9, and dry blended for 10 minutes. Next, a 40% by mass aqueous dispersion of a styrene-butadiene copolymer (SBR) as a binder [Latex BM-400B, manufactured by Nippon Zeon Co., Ltd.] was bonded to the mixture of NCA and conductive additive in the mixer. Spraying was performed in such an amount that the adsorbent was 1 part in terms of solid content. After adding the aqueous dispersion of the binder, the kneading step was performed for 3 minutes with the peripheral speed of the stirring blade being 17 m / s. Thereafter, the stirring blade was further moved at a peripheral speed of 24 m / s for 2 minutes to perform a crushing process, and then dried under reduced pressure at 50 ° C. for 30 minutes to produce a comparative electrode active material particle aggregate (H1).
 (比較例2)
下記の混合操作を行って比較例2にかかる比較用電極活物質粒子凝集体(H2)を製造した。
(Comparative Example 2)
The following mixing operation was performed to produce a comparative electrode active material particle aggregate (H2) according to Comparative Example 2.
 (第1混合工程)
 実施例1で用いたものと同じミキサーを準備し、混合パンの回転速度を攪拌羽根とは逆方向に85rpmに、ローターの周速度を24m/sにセットしたミキサーの混合パン内にNCA95部とカーボンナノファイバー2部と実施例1で用いたのと同じ粘着剤の酢酸エチル溶液(1)30部を一度に投入し、投入後から30分間攪拌を継続した。
(First mixing step)
Prepare the same mixer as used in Example 1, and mix 95 parts of NCA in the mixing pan of the mixer with the rotating speed of the mixing pan set to 85 rpm in the direction opposite to the stirring blades and the peripheral speed of the rotor set to 24 m / s. 2 parts of carbon nanofibers and 30 parts of an ethyl acetate solution (1) of the same adhesive as used in Example 1 were added at a time, and stirring was continued for 30 minutes after the addition.
 実施例1~9で得られた電極活物質粒子凝集体(1)~(9)及び比較例1~2で得られた比較用電極活物質粒子凝集体(H1)~(H2)の流動性を以下の項目で評価し、その結果を電極活物質粒子凝集体の製造条件と共に表1に記載した。 Fluidity of electrode active material particle aggregates (1) to (9) obtained in Examples 1 to 9 and comparative electrode active material particle aggregates (H1) to (H2) obtained in Comparative Examples 1 and 2 Were evaluated in the following items, and the results are shown in Table 1 together with the production conditions of the electrode active material particle aggregates.
 <1.粉体層作成時の流動性>
 電極活物質粒子凝集体による粉体層の表面を平らな板で摺り切った場合の粉体流動性の評価を以下の方法で行った。
<1. Fluidity when creating a powder layer>
Evaluation of powder fluidity when the surface of the powder layer made of the electrode active material particle aggregates was scraped with a flat plate was performed by the following method.
 (1)粉体層の表面の摺り切り
 アプリケータ用自動塗工機[イーガーコーポレーション製卓上テストコーター(型式:EGPI-1210)]にセットした厚さ100μmのPP製樹脂フィルム上に、5gの電極活物質粒子凝集体を山状に乗せ、厚さ600μmのフィルムアプリケータを電極活物質粒子凝集体の山の上を移動速度10mm/sの一定速度で平行移動させ、山の表面を摺切る操作を行った。なお、摺切りを行った後、表面に線状のキズが観察された場合にはキズの発生がない表面が得られるまで摺り切りの操作をやり直した。
(1) Grinding the surface of the powder layer 5 g of electrode on a 100 μm thick PP resin film set on an automatic applicator for applicators [Desktop Test Coater (model: EGPI-1210) manufactured by Eager Corporation] The active material particle aggregate is placed in a mountain shape, and a film applicator having a thickness of 600 μm is translated on the mountain of the electrode active material particle aggregate at a constant speed of 10 mm / s, and the surface of the mountain is rubbed off. It was. In addition, after performing scraping, when linear scratches were observed on the surface, the scraping operation was repeated until a surface having no scratch was obtained.
 (2)粉体層の平均厚み
 PP製樹脂フィルムの上に作製した粉体層の厚さ(PP製樹脂フィルムの表面から粉体層表面までの高さ)をキーエンス製3次元形状測定器VR-3200によって測定した。測定は測定場所を変えながら任意の場所で合計3回行い、その平均値を平均厚みとした。
(2) Average thickness of powder layer The thickness of the powder layer produced on the PP resin film (the height from the surface of the PP resin film to the surface of the powder layer) is measured by Keyence's three-dimensional shape measuring instrument VR. -3200. The measurement was performed 3 times in total at any location while changing the measurement location, and the average value was defined as the average thickness.
 (3)粉体層のバラツキ
 前記平均厚みと3箇所の測定点での厚さとの差の絶対値の平均値を計算し、その値をバラツキとした。バラツキは、その値が小さいほど粉体層の表面の平滑性が高いことを表し、バラツキが50μm未満の場合は平滑性が非常に優れるので判定を◎とし、50~100μmの範囲であれば判定を○とし、100μmを超えていれば判定を×とした。
(3) Variation of powder layer The average value of the absolute value of the difference between the average thickness and the thickness at three measurement points was calculated, and the value was regarded as variation. The variation indicates that the smaller the value, the higher the smoothness of the surface of the powder layer. If the variation is less than 50 μm, the smoothness is very good, and the determination is ◎, and if it is in the range of 50 to 100 μm, the determination is made. Was evaluated as “good”, and when it exceeded 100 μm, the determination was made “poor”.
 <2.電極活物質粒子凝集体の安息角>
 水平に設置した金属平板の表面から上に10cmの場所に漏斗の先端が位置する様にガラス製漏斗(漏斗足部の長さ:50mm、内径:4mm)を水平に設置した。容量15mlの匙を使って見掛け容積15mlの電極活物質粒子凝集体を漏斗に供給し、漏斗から落下した電極活物質粒子凝集体によって金属平板の上に円錐状の積層体を形成した。積層体が形成する円錐の母線に当たる部分と金属平板表面とが成す角度をキーエンス製3次元形状測定器VR-3200を用いて測定した。角度は円錐の底面を45度ずつ8等分した場所でそれぞれ行い、その平均値を電極活物質粒子凝集体の安息角とした。
<2. Angle of repose of electrode active material particle aggregate>
A glass funnel (the length of the funnel foot: 50 mm, the inner diameter: 4 mm) was placed horizontally so that the tip of the funnel was located 10 cm above the surface of the horizontally placed flat metal plate. An electrode active material particle aggregate having an apparent volume of 15 ml was supplied to the funnel using a 15 ml capacity container, and a conical laminate was formed on the metal plate by the electrode active material particle aggregate dropped from the funnel. The angle formed between the portion corresponding to the generatrix of the laminated body and the surface of the metal flat plate was measured using a Keyence 3D shape measuring instrument VR-3200. The angle was measured at a location where the bottom of the cone was divided into 8 equal portions of 45 degrees, and the average value was taken as the repose angle of the electrode active material particle aggregate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1において、混合パンとは内容物を収納したまま回転する回転容器を意味し、ローターとは回転容器内に配置された攪拌羽根を意味する。なお、実施例9及び比較例1で用いたFMミキサーは容器は回転せずに容器内で攪拌羽根が回転する。 In Table 1, the mixing pan means a rotating container that rotates while containing the contents, and the rotor means a stirring blade arranged in the rotating container. In addition, the FM mixer used in Example 9 and Comparative Example 1 does not rotate the container but rotates the stirring blade in the container.
 以上の結果から、本発明の電極活物質粒子凝集体の製造方法によると流動性の高い電極活物質粒子凝集体を製造することができ、当該電極活物質粒子凝集体は電極の製造に適している。 From the above results, according to the method for producing an electrode active material particle aggregate of the present invention, an electrode active material particle aggregate having high fluidity can be produced, and the electrode active material particle aggregate is suitable for producing an electrode. Yes.
 本発明の電極活物質粒子凝集体の製造方法は、特に、携帯電話、パーソナルコンピューター、ハイブリッド自動車及び電気自動車用に用いられる双極型二次電池用及びリチウムイオン二次電池用等の電極を製造するために使用する電極活物質粒子凝集体の製造方法として有用である。 The method for producing electrode active material particle aggregates of the present invention produces electrodes for bipolar secondary batteries and lithium ion secondary batteries used for mobile phones, personal computers, hybrid vehicles and electric vehicles, in particular. Therefore, it is useful as a method for producing an electrode active material particle aggregate used for the purpose.
 本出願は、2018年6月6日に出願された日本国特許出願第2018-108625号に基づいており、その開示内容は、参照により全体として引用されている。 This application is based on Japanese Patent Application No. 2018-108625 filed on June 6, 2018, the disclosure content of which is incorporated by reference in its entirety.
1 ミキサー
3 攪拌羽根
4 回転容器
5 ヘッド部
6 棒状部材
7 底板
 回転容器の回転方向
 攪拌羽根の回転方向
CL 回転容器の回転中心軸線
CL 攪拌羽根の回転中心軸線
H 水平面
DESCRIPTION OF SYMBOLS 1 Mixer 3 Stirring blade 4 Rotating container 5 Head part 6 Bar-shaped member 7 Bottom plate B Rotating direction B of 1 rotating container 2 Rotating direction CL of 1 rotating container CL Rotating center axis CL of 2 rotating blades 2 Rotating center axis H of 2 stirring blades Horizontal plane

Claims (8)

  1.  電極活物質粒子(a)、導電助剤(b)及び粘着剤(c)を含む電極活物質粒子凝集体の製造方法であって、
     前記電極活物質粒子(a)及び前記導電助剤(b)を乾式混合して混合物を得る第1混合工程と、
     前記第1混合工程で得られた混合物に対し、攪拌下で、前記電極活物質粒子(a)の合計質量に対して0.01~10質量%の前記粘着剤(c)を溶液の形で加えて混合物を得る第2混合工程と、
     前記第2混合工程で得られた混合物を攪拌する攪拌工程とを含むことを特徴とする、電極活物質粒子凝集体の製造方法。
    A method for producing an electrode active material particle aggregate comprising electrode active material particles (a), a conductive additive (b) and an adhesive (c),
    A first mixing step of dry mixing the electrode active material particles (a) and the conductive additive (b) to obtain a mixture;
    In the form of a solution, 0.01 to 10% by mass of the pressure-sensitive adhesive (c) with respect to the total mass of the electrode active material particles (a) is stirred with respect to the mixture obtained in the first mixing step. In addition, a second mixing step to obtain a mixture;
    And a stirring step of stirring the mixture obtained in the second mixing step. A method for producing electrode active material particle aggregates.
  2. 前記溶液中の前記粘着剤(c)の濃度が0.01~20質量%である請求項1に記載の電極活物質粒子凝集体の製造方法。 The method for producing an electrode active material particle aggregate according to claim 1, wherein the concentration of the pressure-sensitive adhesive (c) in the solution is 0.01 to 20% by mass.
  3.  前記粘着剤が、少なくとも2-エチルヘキシル(メタ)アクリレートと(メタ)アクリル酸とを構成単量体として含む共重合体を含む請求項1または2に記載の電極活物質粒子凝集体の製造方法。 The method for producing an aggregate of electrode active material particles according to claim 1 or 2, wherein the pressure-sensitive adhesive contains a copolymer containing at least 2-ethylhexyl (meth) acrylate and (meth) acrylic acid as constituent monomers.
  4.  前記共重合体の構成単量体中の2-エチルヘキシル(メタ)アクリレートおよび(メタ)アクリル酸の合計質量が、前記共重合体の構成単量体の合計質量に対して10質量%以上である請求項3に記載の電極活物質粒子凝集体の製造方法。 The total mass of 2-ethylhexyl (meth) acrylate and (meth) acrylic acid in the constituent monomer of the copolymer is 10% by mass or more based on the total mass of the constituent monomers of the copolymer. The manufacturing method of the electrode active material particle aggregate of Claim 3.
  5.  前記第1混合工程における乾式混合、前記第2混合工程における攪拌、及び前記攪拌工程における攪拌のうち少なくとも1つの工程を、
     内容物を収納したまま回転する回転容器と、前記回転容器の内方でかつ前記回転容器の回転中心軸線より偏心した位置に前記回転中心軸線と平行に配置された攪拌羽根とを備え、
     前記回転容器と前記攪拌羽根がそれぞれ回転して内容物の混合を行うミキサーを用いて行う請求項1~4のいずれか1項に記載の電極活物質粒子凝集体の製造方法。
    At least one of the dry mixing in the first mixing step, the stirring in the second mixing step, and the stirring in the stirring step,
    A rotating container that rotates with the contents stored therein, and a stirring blade that is disposed in parallel to the rotation center axis at a position that is inward of the rotation container and eccentric from the rotation center axis of the rotation container,
    The method for producing an electrode active material particle aggregate according to any one of claims 1 to 4, wherein the method is performed using a mixer in which the rotating container and the stirring blade rotate to mix the contents.
  6.  前記攪拌羽根が、前記回転容器の前記回転中心軸線と平行に配置されて回転駆動されるヘッド部と、前記ヘッド部に取り付けられ前記回転容器の底板の近傍まで延びた少なくとも1本の棒状部材とを有し、前記棒状部材が前記回転容器内を円周運動する請求項5に記載の電極活物質粒子凝集体の製造方法。 A head portion that is disposed in parallel with the rotation center axis of the rotating container and is driven to rotate; and at least one rod-like member attached to the head portion and extending to the vicinity of the bottom plate of the rotating container; The method for producing an electrode active material particle aggregate according to claim 5, wherein the rod-shaped member moves circumferentially in the rotary container.
  7.  請求項1~6のいずれか1項に記載の電極活物質粒子凝集体の製造方法で得られた電極活物質粒子凝集体を基材上に塗布する塗布工程を含むことを特徴とする、電極の製造方法。 An electrode comprising an application step of applying an electrode active material particle aggregate obtained by the method for producing an electrode active material particle aggregate according to any one of claims 1 to 6 on a substrate. Manufacturing method.
  8.  前記基材上に塗布した前記電極活物質粒子凝集体を加圧する加圧工程を含む請求項7に記載の電極の製造方法。 The method for producing an electrode according to claim 7, further comprising a pressurizing step of pressurizing the electrode active material particle aggregate applied on the substrate.
PCT/JP2019/022354 2018-06-06 2019-06-05 Method for producing electrode active material particle aggregates and method for producing electrode WO2019235531A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018108625A JP7074570B2 (en) 2018-06-06 2018-06-06 Method for manufacturing electrode active material particle agglomerates and method for manufacturing electrodes
JP2018-108625 2018-06-06

Publications (1)

Publication Number Publication Date
WO2019235531A1 true WO2019235531A1 (en) 2019-12-12

Family

ID=68770473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022354 WO2019235531A1 (en) 2018-06-06 2019-06-05 Method for producing electrode active material particle aggregates and method for producing electrode

Country Status (2)

Country Link
JP (1) JP7074570B2 (en)
WO (1) WO2019235531A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114768661A (en) * 2022-06-22 2022-07-22 妙可蓝多(天津)食品科技有限公司 Mixed emulsification method of low-fat high-calcium cheese

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022167572A (en) * 2021-04-23 2022-11-04 三洋化成工業株式会社 Production method of electrode composition for lithium ion battery and production method of electrode for lithium ion battery
KR102626081B1 (en) * 2021-09-17 2024-01-18 나노캡 주식회사 Method for manufacturing solvent-free electrode for electrical energy storage device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016131092A (en) * 2015-01-14 2016-07-21 トヨタ自動車株式会社 Method for manufacturing electrode and wet granulated body
JP2016149239A (en) * 2015-02-12 2016-08-18 トヨタ自動車株式会社 Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery
JP2017111963A (en) * 2015-12-16 2017-06-22 トヨタ自動車株式会社 Method of producing electrode
JP2017134911A (en) * 2016-01-25 2017-08-03 トヨタ自動車株式会社 Method for manufacturing electrode for battery
JP2018085177A (en) * 2016-11-21 2018-05-31 トヨタ自動車株式会社 Method for manufacturing mass of granulated material, method for manufacturing electrode plate, and method for manufacturing battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016131092A (en) * 2015-01-14 2016-07-21 トヨタ自動車株式会社 Method for manufacturing electrode and wet granulated body
JP2016149239A (en) * 2015-02-12 2016-08-18 トヨタ自動車株式会社 Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery
JP2017111963A (en) * 2015-12-16 2017-06-22 トヨタ自動車株式会社 Method of producing electrode
JP2017134911A (en) * 2016-01-25 2017-08-03 トヨタ自動車株式会社 Method for manufacturing electrode for battery
JP2018085177A (en) * 2016-11-21 2018-05-31 トヨタ自動車株式会社 Method for manufacturing mass of granulated material, method for manufacturing electrode plate, and method for manufacturing battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114768661A (en) * 2022-06-22 2022-07-22 妙可蓝多(天津)食品科技有限公司 Mixed emulsification method of low-fat high-calcium cheese
CN114768661B (en) * 2022-06-22 2022-09-16 妙可蓝多(天津)食品科技有限公司 Mixed emulsification method of low-fat high-calcium cheese

Also Published As

Publication number Publication date
JP7074570B2 (en) 2022-05-24
JP2019212513A (en) 2019-12-12

Similar Documents

Publication Publication Date Title
TWI648901B (en) Adhesive composition for power storage device electrode, slurry for power storage device electrode, power storage device electrode, and power storage device
JP5644851B2 (en) All-solid secondary battery and method for producing all-solid secondary battery
JP6090213B2 (en) Binder composition, electrode slurry, electrode and non-aqueous electrolyte secondary battery
JP6642000B2 (en) Slurry composition for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR102039034B1 (en) Composite particles for negative electrodes of secondary batteries, use of same, method for producing same, and binder composition
KR102015376B1 (en) Binder composition for negative electrodes of secondary batteries, negative electrode for secondary batteries, slurry composition for negative electrodes of secondary batteries, production method, and secondary battery
WO2016152262A1 (en) All-solid secondary battery
WO2019235531A1 (en) Method for producing electrode active material particle aggregates and method for producing electrode
WO2006038652A1 (en) Electrode composition, electrode and battery
JPWO2004077467A1 (en) Method for producing electrode for electrochemical device
EP3457477B1 (en) Binder particle aggregate for electrochemical device electrode, slurry composition for electrochemical device electrode, production methods therefor, electrode for electrochemical device, and electrochemical device
KR20150035515A (en) Negative electrode for secondary cell, and secondary cell
JP2016131092A (en) Method for manufacturing electrode and wet granulated body
JP2016058185A (en) Binder composition for power storage device electrode, slurry for power storage device electrode, power storage device electrode, and power storage device
WO2015133154A1 (en) Binder composition for lithium ion secondary battery, slurry composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery porous membrane, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7034777B2 (en) Lithium-ion battery manufacturing method
CN107925090B (en) Electrode active material slurry and lithium secondary battery comprising the same
JP2016058184A (en) Binder composition for power storage device electrode, slurry for power storage device electrode, power storage device electrode, and power storage device
WO2021095883A1 (en) Lithium ion battery collector, production method for lithium ion battery collector, and lithium ion battery electrode
JP7267131B2 (en) Positive electrode active material slurry for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2016181472A (en) All-solid secondary battery
JP7148479B2 (en) Current collector for lithium ion battery and electrode for lithium ion battery
JP7130541B2 (en) Negative electrode for lithium ion battery and lithium ion battery
JP7109494B2 (en) Electrodes for lithium-ion batteries
JP7148489B2 (en) Current collector for lithium ion battery, method for producing current collector for lithium ion battery, and electrode for lithium ion battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19814244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19814244

Country of ref document: EP

Kind code of ref document: A1