WO2019235485A1 - Buffer structure for armature, rotation transmitting device, and rotation braking device - Google Patents

Buffer structure for armature, rotation transmitting device, and rotation braking device Download PDF

Info

Publication number
WO2019235485A1
WO2019235485A1 PCT/JP2019/022201 JP2019022201W WO2019235485A1 WO 2019235485 A1 WO2019235485 A1 WO 2019235485A1 JP 2019022201 W JP2019022201 W JP 2019022201W WO 2019235485 A1 WO2019235485 A1 WO 2019235485A1
Authority
WO
WIPO (PCT)
Prior art keywords
armature
rotor
rubber
buffer
electromagnet
Prior art date
Application number
PCT/JP2019/022201
Other languages
French (fr)
Japanese (ja)
Inventor
齋藤 隆英
佐藤 光司
匡顕 松木
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2019235485A1 publication Critical patent/WO2019235485A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/10Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/10Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings
    • F16D27/108Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members
    • F16D27/112Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members with flat friction surfaces, e.g. discs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D41/064Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by rolling and having a circular cross-section, e.g. balls
    • F16D41/066Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by rolling and having a circular cross-section, e.g. balls all members having the same size and only one of the two surfaces being cylindrical
    • F16D41/067Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by rolling and having a circular cross-section, e.g. balls all members having the same size and only one of the two surfaces being cylindrical and the members being distributed by a separate cage encircling the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D41/08Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface with provision for altering the freewheeling action
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers

Definitions

  • the present invention relates to an armature buffer structure, and a rotation transmission device and a rotation braking device that employ the armature buffer structure.
  • Patent Document 1 As a rotation transmission device used for switching between a state in which rotation is transmitted from an input shaft to an output shaft and a state in which transmission of the rotation is interrupted, for example, the one described in Patent Document 1 is known.
  • the rotation transmission device described in Patent Document 1 includes an outer ring, an inner member disposed inside the outer ring, and an electromagnetic clutch that switches between transmission and interruption of rotation between the outer ring and the inner member.
  • the electromagnetic clutch includes an armature supported so as to be movable in the axial direction, a rotor disposed so as to face the armature in the axial direction, a spring member that urges the armature in a direction away from the rotor, and an armature that is energized to the rotor. And an electromagnet to be adsorbed.
  • a buffer member is provided between the armature and the rotor to absorb an impact when the armature is attracted to the rotor.
  • the buffer member is bonded to the annular surface of the metal ring so that the armature is supported so as to be movable in the axial direction and the armature is compressed in the axial direction between the armature and the metal ring as the armature approaches the rotor. With cushioning rubber.
  • the force with which the armature is attracted to the rotor by energizing the electromagnet changes according to the distance between the armature and the rotor, and increases as the armature approaches the rotor. This increase is gradual when the armature is relatively far from the rotor and abrupt when the armature is relatively close to the rotor. That is, the armature tends to accelerate greatly as it approaches the rotor.
  • the method of increasing the force required to compress the shock absorbing rubber in the axial direction becomes gentle when the amount of axial compression of the shock absorbing rubber is small.
  • a shock absorbing rubber having a compression load characteristic of becoming steep when the amount of compression in the axial direction is large is employed.
  • a plurality of protrusions having different heights are formed on a buffer rubber made of a single rubber material, and the cross-sectional shape of these protrusions is changed according to the height of the protrusions. By adopting different shapes, the compression load characteristics as described above are obtained.
  • the method of increasing the force required to compress the shock absorbing rubber in the axial direction becomes gentle when the amount of compression of the shock absorbing rubber in the axial direction is small, and becomes steep when the amount of compressing rubber in the axial direction is large.
  • a method for obtaining the compression load characteristic a plurality of protrusions having different heights are formed on a buffer rubber made of a single rubber material as in Patent Document 1, and the cross-sectional shape of the protrusions is defined as the height of the protrusions. It was found that there was a problem in terms of durability and ease of design of the shock absorbing rubber if it was designed individually according to each.
  • the problem to be solved by the present invention is to provide an armature buffer structure excellent in durability and design ease of a buffer member that absorbs an impact when the armature is adsorbed.
  • the present invention provides an armature buffer structure having the following configuration.
  • An armature supported so as to be movable in the axial direction;
  • An electromagnet disposed axially opposite the armature and attracting the armature axially by energization;
  • a buffer member disposed between the armature and the electromagnet;
  • the buffer member includes a metal ring having an annular surface and a buffer rubber bonded to the annular surface.
  • the armature buffer structure characterized in that the buffer rubber has a high hardness rubber portion and a low hardness rubber portion made of a rubber material having a lower hardness than the rubber material forming the high hardness rubber portion.
  • the low-hardness rubber portion and the high-hardness rubber portion are provided so that the low-hardness rubber portion is compressed in preference to the high-hardness rubber portion.
  • Compressive load in which the force required to compress the rubber in the axial direction becomes gentle when the amount of compression of the shock absorbing rubber is small and becomes steep when the amount of compression of the shock absorbing rubber is large Characteristics can be obtained. Therefore, the acceleration of the armature just before the armature is attracted to the rotor is effectively suppressed, and the collision noise between the armature and the rotor can be effectively reduced.
  • a soft compression load characteristic is obtained by the low hardness rubber portion and the compression amount of the buffer rubber in the axial direction is large.
  • a hard compression load characteristic can be obtained by the high-hardness rubber part, so that it is not necessary to provide a protrusion with a cross-sectional shape with a narrow tip as in the case of forming the buffer rubber with a single rubber material. Excellent durability of shock absorbing rubber.
  • the compression load characteristics of the shock-absorbing rubber can be easily adjusted, so the cross-sectional shape of the shock-absorbing rubber can be easily designed. is there.
  • the low-hardness rubber portion and the high-hardness rubber portion are arranged on the annular surface at a circumferential interval, and the axial thickness of the low-hardness rubber portion is determined by the axial thickness of the high-hardness rubber portion. Can also be used.
  • the axial thickness of the low-hardness rubber part is larger than the axial thickness of the high-hardness rubber part, first, in the process in which the buffer rubber is compressed in the axial direction, Compression is started in preference to the rubber part, and then the buffer rubber is further compressed in the axial direction, and the high-hardness rubber part starts compression. Therefore, it is possible to adjust the compression load characteristic of the buffer rubber by adjusting the axial thickness of the low hardness rubber portion and the axial thickness of the high hardness rubber portion, respectively.
  • the low-hardness rubber part and the high-hardness rubber part may be laminated in the axial direction.
  • the low-hardness rubber portion and the high-hardness rubber portion are laminated in the axial direction, in the process in which the buffer rubber is compressed in the axial direction, first, the low-hardness rubber portion is more than the high-hardness rubber portion. After preferentially compressing and sufficiently compressing the low-hardness rubber part, the buffering action by the compression of the high-hardness rubber part becomes dominant. Therefore, it is possible to adjust the compression load characteristic of the buffer rubber by adjusting the axial thickness of the low hardness rubber portion and the axial thickness of the high hardness rubber portion, respectively.
  • the laminated arrangement it is possible to adopt an arrangement in which the low-hardness rubber portion is bonded to the annular surface and the high-hardness rubber portion is bonded to the surface of the low-hardness rubber portion. It is preferable to employ an arrangement in which the portion is bonded to the annular surface and the low hardness rubber portion is bonded to the surface of the high hardness rubber portion.
  • the low hardness rubber portion becomes a buffer rubber configured to be supported by the high hardness rubber portion
  • the case where the high hardness rubber portion is configured to be supported by the low hardness rubber portion is adopted than when the buffer rubber is adopted.
  • the buffer member When further providing a rotor disposed between the armature and the electromagnet and attracting the armature by energization of the electromagnet, the buffer member absorbs an impact when the armature is attracted to the rotor. It can be arranged between the armature and the rotor.
  • a spring member that urges the armature in a direction away from the rotor can be further provided.
  • the metal ring is provided so as to be movable in the axial direction on one member of the armature and the rotor,
  • the buffer rubber may be provided so as to be compressed in the axial direction between the one member and the metal ring as the armature approaches the rotor.
  • the present invention also provides the following as a rotation transmission device using the armature cushioning structure described above.
  • the above armature buffer structure An outer ring rotatably supported; An inner member supported to be rotatable relative to the outer ring; An engagement member incorporated between the inner periphery of the outer ring and the outer periphery of the inner member; It is movable between an engagement position for engaging the engagement element between the outer ring and the inner member and an engagement release position for releasing the engagement of the engagement element between the outer ring and the inner member.
  • An engaging cage supported by An operation conversion mechanism that converts the movement of the armature in the axial direction by energization of the electromagnet into the movement of the engagement holder moving from one of the engagement position and the engagement release position to the other.
  • Rotation transmission device
  • a rotor that rotates integrally with the inner member is disposed between axially facing surfaces of the armature and the electromagnet so that the armature is attracted to the rotor by energization of the electromagnet.
  • the present invention also provides the following as a rotary braking device using the armature buffer structure described above.
  • the above armature buffer structure An outer ring supported in a state where rotation is restricted, An inner member supported to be rotatable relative to the outer ring; An engagement member incorporated between the inner periphery of the outer ring and the outer periphery of the inner member; It is movable between an engagement position for engaging the engagement element between the outer ring and the inner member and an engagement release position for releasing the engagement of the engagement element between the outer ring and the inner member.
  • An engaging cage supported by An operation conversion mechanism that converts the movement of the armature in the axial direction by energization of the electromagnet into the movement of the engagement holder moving from one of the engagement position and the engagement release position to the other.
  • Rotating braking device
  • the rotary braking device can be configured such that the armature is attracted to the electromagnet when the electromagnet is energized.
  • the shock absorbing structure of the armature of the present invention is a process of compressing the shock absorbing rubber in the axial direction, and at the stage where the amount of compressing rubber in the axial direction is small, a soft compressive load characteristic is obtained by the low hardness rubber portion.
  • the hard rubber part can obtain a hard compression load characteristic, so the cross-sectional shape with a narrow tip as in the case of forming the buffer rubber with a single rubber material It is not necessary to provide protrusions, and the cushioning rubber is excellent in durability.
  • the compression load characteristics of the shock-absorbing rubber can be easily adjusted, so the cross-sectional shape of the shock-absorbing rubber can be easily designed. is there.
  • Sectional drawing which shows the rotation transmission apparatus which employ
  • the expanded sectional view which shows the state which moved each roller in the direction where the space
  • Sectional drawing which expands and shows the vicinity of the low-hardness rubber part of the buffer member shown in FIG.
  • Sectional drawing which expands and shows the vicinity of the high hardness rubber
  • FIG. 1 shows a rotation transmission device employing an armature buffer structure according to an embodiment of the present invention.
  • This rotation transmission device transmits and blocks rotation between the outer ring 1 that is rotatably supported, the inner member 2 that is supported to be rotatable relative to the outer ring 1, and the outer ring 1 and the inner member 2.
  • an electromagnetic clutch 3 for switching between.
  • the electromagnetic clutch 3 has a plurality of rollers 4a and 4b incorporated between the inner periphery of the outer ring 1 and the outer periphery of the inner member 2, and a roller holder 5 that holds these rollers 4a and 4b.
  • An input shaft 6 is connected to the inner member 2, and an output shaft 7 is connected to the outer ring 1.
  • the input shaft 6 and the output shaft 7 are arranged on the same axis.
  • the electromagnetic clutch 3 switches between energization of the electromagnet 32 and stop of energization, whereby the transmission of rotation from the input shaft 6 to the output shaft 7 is interrupted, and the rotation is transmitted from the input shaft 6 to the output shaft 7. It is a clutch which switches the state to be made.
  • the input shaft 6 has a serration shaft portion 8 having serrations formed on the outer periphery.
  • the serration shaft portion 8 is fitted into a serration hole 9 formed at the center of the inner member 2.
  • the input shaft 6 is connected to the inner member 2 so as to rotate integrally with the inner member 2.
  • the input shaft 6 and the inner member 2 are separate members.
  • the input shaft 6 and the inner member 2 may be formed as a seamless integral member.
  • the output shaft 7 is formed integrally with the outer ring 1.
  • the output shaft 7 and the outer ring 1 are integrally formed as a seamless member.
  • the output shaft 7 and the outer ring 1 are separate members, and the output shaft 7 is attached to the outer ring 1 so as to rotate integrally with the outer ring 1.
  • a rolling bearing 10 is incorporated between the outer ring 1 and the inner member 2 to support the inner member 2 so as to be rotatable relative to the outer ring 1.
  • a rolling bearing 12 that rotatably supports the output shaft 7 is incorporated in an end portion on the output shaft 7 side of the cylindrical housing 11 that houses the constituent members of the rotation transmission device.
  • a plurality of cam surfaces 13 are provided on the outer periphery of the inner member 2 at equal intervals in the circumferential direction.
  • the cam surface 13 includes a front cam surface 13a and a rear cam surface 13b disposed behind the inner cam 2 in the forward rotation direction with respect to the front cam surface 13a.
  • a cylindrical surface 14 that is opposed to the cam surface 13 in the radial direction is provided on the inner periphery of the outer ring 1.
  • a pair of rollers 4a and 4b that are opposed to each other in the circumferential direction with a spring member 15 interposed therebetween are incorporated.
  • the forward roller 4a in the forward rotation direction is incorporated between the front cam surface 13a and the cylindrical surface 14
  • the rear roller 4b in the forward rotation direction is the rear cam surface 13b and the cylindrical surface 14. Is built in between.
  • the spring member 15 is incorporated between the pair of rollers 4a and 4b so as to press the rollers 4a and 4b in a direction in which the distance between the pair of rollers 4a and 4b is increased.
  • the front cam surface 13a is formed such that the radial distance from the cylindrical surface 14 gradually decreases from the position of the roller 4a toward the front in the forward rotation direction.
  • the rear cam surface 13b is formed such that the radial distance from the cylindrical surface 14 gradually decreases from the position of the roller 4b toward the rear in the forward rotation direction.
  • the front cam surface 13a and the rear cam surface 13b are formed so as to be separate planes inclined in opposite directions, but the front cam surface 13a and the rear cam surface 13b are in a single plane normal rotation. It is also possible to form them on the same plane so that the front part in the direction is the front cam surface 13a and the rear part is the rear cam surface 13b.
  • the front cam surface 13a and the rear cam surface 13b can be curved surfaces. However, if the front cam surface 13a and the rear cam surface 13b are flat as shown in the figure, the processing cost can be reduced.
  • the roller holder 5 includes a first divided holder 5A that supports one roller 4a of a pair of rollers 4a and 4b that are opposed to each other in the circumferential direction with a spring member 15 therebetween. And a second divided holder 5B that supports the other roller 4b.
  • the first divided holder 5A and the second divided holder 5B are supported so as to be rotatable relative to each other, and the pair of rollers 4a, 4b is changed so that the distance between the pair of rollers 4a, 4b changes according to the relative rotation. Are supported individually.
  • the first split cage 5A has a plurality of column portions 16a arranged at intervals in the circumferential direction, and an annular flange portion 17a that connects the ends of these column portions 16a.
  • retainer 5B also has the some pillar part 16b arrange
  • the column portion 16a of the first divided cage 5A and the column portion 16b of the second divided cage 5B sandwich the pair of rollers 4a and 4b facing each other in the circumferential direction with the spring member 15 in between. Thus, it is inserted between the inner periphery of the outer ring 1 and the outer periphery of the inner member 2.
  • the flange portion 17a of the first split cage 5A and the flange portion 17b of the second split cage 5B are the same as the flange portion 17b of the second split cage 5B. It is arranged so as to face the axial direction in a direction closer to the axial direction with respect to the inner member 2 than the flange portion 17a of 5A.
  • the flange portion 17b of the second split cage 5B is provided with a plurality of notches 18 at intervals in the circumferential direction to avoid interference with the column portion 16a of the first split cage 5A. .
  • the inner circumference of the flange portion 17a of the first split cage 5A and the inner circumference of the flange portion 17b of the second split cage 5B are respectively rotatably supported by a cylindrical surface 19 provided on the outer circumference of the input shaft 6. ing.
  • the first divided holder 5A and the second divided holder 5B engage each roller 4a, 4b between the cylindrical surface 14 and the cam surface 13 by widening the distance between the pair of rollers 4a, 4b.
  • the flange portion 17a of the first split cage 5A is supported in the axial direction by an annular projection 21 provided on the outer periphery of the input shaft 6 via the thrust bearing 20, and thereby movement in the axial direction is restricted. .
  • a side plate 22 is fixed to the side surface of the inner member 2.
  • the side plate 22 has a stopper piece 23 positioned between both pillar portions 16a and 16b that face each other in the circumferential direction with the pair of rollers 4a and 4b interposed therebetween.
  • the stopper piece 23 when both the pillar portions 16a and 16b are moved in the direction of narrowing the distance between the pair of rollers 4a and 4b, the edges on both sides of the stopper piece 23 receive the pillar portions 16a and 16b. Accordingly, the spring member 15 between the pair of rollers 4a and 4b is prevented from being excessively compressed and broken, and each roller with respect to the inner member 2 when the distance between the pair of rollers 4a and 4b is narrowed.
  • the positions of 4a and 4b can be made constant.
  • the side plate 22 has a spring holding piece 24 that holds the spring member 15.
  • the spring holding piece 24 is formed integrally with the stopper piece 23 so as to extend in the axial direction between the inner circumference of the outer ring 1 and the outer circumference of the inner member 2.
  • the spring holding piece 24 is disposed so as to face the spring support surface 25 (see FIG. 2) formed between the front cam surface 13a and the rear cam surface 13b on the outer periphery of the inner member 2 in the radial direction. Yes.
  • a concave portion 26 for accommodating the spring member 15 is formed on the surface of the spring holding piece 24 that faces the spring support surface 25.
  • the spring member 15 is a coil spring.
  • the spring holding piece 24 prevents the spring member 15 from dropping in the axial direction from between the inner periphery of the outer ring 1 and the outer periphery of the inner member 2 by restricting the movement of the spring member 15 by the recess 26. ing.
  • the armature 30 As shown in FIG. 1, as a means for moving the first divided holder 5A and the second divided holder 5B from the engaged position to the disengaged position, the armature 30 supported so as to be movable in the axial direction.
  • a rotor 31 disposed opposite to the armature 30 in the axial direction, an electromagnet 32 that attracts the armature 30 to the rotor 31 by energization, and an operation in which the armature 30 is attracted to the rotor 31.
  • 5A and the second divided holder 5B have a ball ramp mechanism 33 that converts the movement from the engagement position to the engagement release position.
  • the armature 30 includes an annular disk part 34 and a cylindrical part 35 that is integrally formed so as to extend in the axial direction from the outer periphery of the disk part 34.
  • the cylindrical portion 35 of the armature 30 is press-fitted with a cylindrical portion 36 that is integrally formed so as to extend in the axial direction from the outer periphery of the flange portion 17b of the second split cage 5B.
  • the second split holder 5B is connected to the second split holder 5B so as to move integrally with the second split holder 5B in the axial direction.
  • the armature 30 is supported by a cylindrical surface 37 provided on the outer periphery of the input shaft 6 so as to be rotatable and movable in the axial direction.
  • the armature 30 is supported by the armature 30 so as to be movable in the axial direction at two locations separated in the axial direction (that is, the inner circumference of the armature 30 and the inner circumference of the second split cage 5B). Is prevented from tilting with respect to the direction perpendicular to the axis.
  • the rotor 31 is disposed between opposing surfaces of the armature 30 and the electromagnet 32 in the axial direction.
  • the rotor 31 is fitted to the outer periphery of the input shaft 6 with a tightening margin, so that the rotor 31 rotates together with the inner member 2 and does not move in either the axial direction or the circumferential direction. It is supported by.
  • the rotor 31 and the armature 30 are made of a ferromagnetic metal.
  • On the surface of the rotor 31 facing the armature 30, a plurality of long holes 38 that penetrate the rotor 31 in the axial direction and extend in the circumferential direction are formed at intervals in the circumferential direction.
  • the electromagnet 32 is arranged to face the armature 30 in the axial direction so as to attract the armature 30 in the axial direction.
  • the electromagnet 32 includes a solenoid coil 39 and a field core 40 around which the solenoid coil 39 is wound.
  • the field core 40 is inserted into the end portion of the housing 11 on the input shaft 6 side and is prevented from coming off by a retaining ring 41.
  • a rolling bearing 42 that rotatably supports the input shaft 6 is incorporated in the inner periphery of the field core 40.
  • the electromagnet 32 energizes the solenoid coil 39 to form a magnetic path that passes through the field core 40, the rotor 31, and the armature 30, and causes the armature 30 to be attracted to the rotor 31.
  • the surface of the armature 30 facing the rotor 31 is in surface contact with the surface of the rotor 31 facing the armature 30.
  • the ball ramp mechanism 33 has an inclination provided on the surface of the flange portion 17a of the first split cage 5A facing the flange portion 17b of the second split cage 5B.
  • the groove 43a, the inclined groove 43b provided on the surface of the flange portion 17b of the second divided retainer 5B facing the flange portion 17a of the first divided retainer 5A, and the inclined groove 43a and the inclined groove 43b are incorporated.
  • Ball 44 formed.
  • the inclined groove 43a and the inclined groove 43b are formed so as to extend in the circumferential direction, respectively.
  • the inclined groove 43a has a shape having a groove bottom that is inclined so as to gradually become shallower in the circumferential direction from the deepest portion 45a having the deepest axial depth, and the inclined groove 43b is also formed in the axial direction.
  • the shape is such that the groove bottom is inclined so as to gradually become shallower from the deepest portion 45b having the deepest depth toward the other direction in the circumferential direction.
  • the ball 44 is disposed so as to be sandwiched between the groove bottoms.
  • the ball ramp mechanism 33 is configured such that when the flange portion 17b of the second split cage 5B moves in the axial direction toward the flange portion 17a of the first split cage 5A, the ball 44 is moved to each inclined groove 43a, By rolling toward the deepest portions 45a and 45b of 43b, the first split holder 5A and the second split holder 5B rotate relative to each other, and as a result, the column part 16a of the first split holder 5A and the first The column part 16b of the two split cages 5B operates so as to move in the direction of narrowing the distance between the pair of rollers 4a and 4b.
  • the armature 30 is urged away from the rotor 31 by the force of the spring member 15. That is, the force by which the spring member 15 shown in FIG. 2 presses the rollers 4a and 4b in the direction of increasing the distance between the pair of rollers 4a and 4b is transmitted to the first divided holder 5A and the second divided holder 5B. To do.
  • the circumferential force received by the first split holder 5A and the second split holder 5B is axially moved away from the rotor 31 by the ball ramp mechanism 33 shown in FIGS. 6, 7A and 7B. It is converted into force and transmitted to the second divided holder 5B.
  • the armature 30 is fixed to the second split cage 5 ⁇ / b> B, so that the armature 30 is eventually transmitted by the force transmitted from the spring member 15 via the ball ramp mechanism 33. It is in a state of being biased in a direction away from the rotor 31.
  • a buffer member 50 is provided between the armature 30 and the rotor 31 to absorb an impact when the armature 30 is attracted to the rotor 31.
  • the buffer member 50 is disposed between the armature 30 and the electromagnet 32.
  • the buffer member 50 includes a metal ring 51 and a buffer rubber 52 fixed to the metal ring 51.
  • the metal ring 51 is supported by the armature 30 so as to be movable in the axial direction.
  • the metal ring 51 has an annular surface 53 that faces the armature 30 in the axial direction.
  • the buffer rubber 52 is bonded to the annular surface 53 of the metal ring 51 so that the armature 30 is compressed in the axial direction between the armature 30 and the metal ring 51 as the armature 30 approaches the rotor 31.
  • the metal ring 51 is made of stainless steel (for example, SUS304).
  • the buffer rubber 52 is formed of rubber (for example, ethylene propylene diene rubber (EPDM)).
  • the metal ring 51 includes an annular plate portion 54 having an annular surface 53 to which the buffer rubber 52 is bonded and fixed, and an outer cylindrical portion 55 that extends in the axial direction from the outer edge of the annular plate portion 54 so as to cover the outer diameter side of the buffer rubber 52. And an annular inner protrusion 56 extending from the inner edge of the annular plate portion 54 to the side where the shock absorbing rubber 52 is disposed.
  • the opposing surface of the armature 30 to the rotor 31 is provided with an annular recess 57 formed open to the outer periphery of the armature 30 and an annular groove 58 formed adjacent to the inner diameter side of the annular recess 57.
  • the annular plate portion 54 faces the axial direction with the annular recess 57 of the armature 30 and the buffer rubber 52 interposed therebetween, and the outer cylindrical portion 55 faces the outer periphery of the armature 30 in the radial direction. As shown, the armature 30 is attached.
  • the annular plate portion 54 is more elastic than the surface of the armature 30 facing the rotor 31 by the elastic restoring force of the buffer rubber 52. It is in a state of protruding to the side.
  • a retaining protrusion 60 that engages with a circumferential groove 59 formed on the outer periphery of the armature 30 is formed on the outer cylindrical portion 55 of the metal ring 51.
  • the retaining protrusion 60 is in contact with the inner surface 61 of the circumferential groove 59 on the side close to the rotor 31, thereby restricting the movement range of the metal ring 51 in the direction approaching the rotor 31, and the buffer member 50 from the armature 30. Prevents falling off.
  • the retaining protrusion 60 is formed by pressing the outer cylinder portion 55 so that an opening penetrating the outer cylinder portion 55 in the radial direction does not occur.
  • the circumferential groove 59 on the outer periphery of the armature 30 has a shape with axial play with respect to the retaining protrusion 60 so as to allow the metal ring 51 to move in the axial direction accompanying the compression of the shock absorbing rubber 52 in the axial direction.
  • the groove width of the circumferential groove 59 on the outer periphery of the armature 30 is larger than the axial width of the retaining protrusion 60 so that the retaining protrusion 60 can move in the direction away from the rotor 31 in the circumferential groove 59. Is set.
  • the retaining protrusion 60 is prevented from interfering with the inner side surface 62 of the circumferential groove 59 far from the rotor 31, and the metal accompanying the compression of the buffer rubber 52 is prevented.
  • the ring 51 can be moved in the axial direction.
  • the annular groove 58 on the surface facing the rotor 31 of the armature 30 is disposed so as to face the inner protrusion 56 of the metal ring 51 in the axial direction.
  • An axial gap is provided between the inner protrusion 56 and the annular groove 58 so that the inner protrusion 56 does not contact the inner surface of the annular groove 58 when the armature 30 is attracted to the rotor 31.
  • the inner protrusion 56 of the metal ring 51 is arranged such that the tip of the inner protrusion 56 is positioned in the annular recess 57 in a state where the retaining protrusion 60 contacts the inner surface 61 of the circumferential groove 59 on the side close to the rotor 31. (That is, the tip of the inner protrusion 56 is positioned on the inner side in the axial direction from the surface of the armature 30 facing the rotor 31).
  • the buffer rubber 52 is vulcanized and bonded to the surface (annular surface 53) of the metal ring 51 opposite to the side in contact with the rotor 31.
  • the buffer rubber 52 has a high hardness rubber portion 63 and a low hardness rubber portion 64.
  • the high hardness rubber portion 63 and the low hardness rubber portion 64 are formed of rubber materials having different hardness, and the rubber material forming the low hardness rubber portion 64 is lower than the rubber material forming the high hardness rubber portion 63. Those with hardness are used.
  • the low-hardness rubber portion 64 and the high-hardness rubber portion 63 are provided so that the low-hardness rubber portion 64 is compressed in preference to the high-hardness rubber portion 63 in the process in which the buffer rubber 52 is compressed in the axial direction. .
  • a low hardness rubber portion 64 and a high hardness rubber portion 63 in this embodiment, as shown in FIGS. 10 to 13, they are arranged on the annular surface 53 of the metal ring 51 at intervals in the circumferential direction.
  • a low-hardness rubber portion 64 and a high-hardness rubber portion 63 are employed in which the axial thickness of the low-hardness rubber portion 64 is set larger than the axial thickness of the high-hardness rubber portion 63.
  • the low-hardness rubber part 64 and the high-hardness rubber part 63 are each formed to have a constant cross-sectional shape along the circumferential direction of the metal ring 51.
  • the low-hardness rubber portion 64 has a root portion 64 a having a taper-shaped cross section that becomes wider toward the annular surface 53 of the metal ring 51, and a constant portion that extends from the root portion 64 a toward the armature 30. And a leading end portion 64b having a width.
  • the distal end portion 64b has a straight cross section in which the radial width dimension is constant along the axial direction.
  • the contact surface of the low hardness rubber portion 64 with respect to the armature 30 is easy to manufacture if it is a plane perpendicular to the axial direction, but instead, it swells slightly more than the plane perpendicular to the axial direction. It may be a convex curved surface.
  • the high-hardness rubber portion 63 includes a root portion 63 a having a tapered cross-sectional shape that becomes wider toward the annular surface 53 of the metal ring 51, and the root portion, similarly to the low-hardness rubber portion 64. And a tip 63b having a constant width extending from the arm 63 toward the armature 30.
  • the distal end portion 63b has a straight cross section in which the radial width dimension is constant along the axial direction.
  • the contact surface of the high hardness rubber portion 63 with respect to the armature 30 is easy to manufacture if it is a plane perpendicular to the axial direction, but instead, it swells slightly more than the plane perpendicular to the axial direction. It may be a convex curved surface.
  • the cross-sectional shape and dimensions of the base portion 63a of the high-hardness rubber portion 63 are the same as the cross-sectional shape and dimensions of the base portion 64a of the low-hardness rubber portion 64.
  • the width dimension in the radial direction of the tip part 63 b of the high hardness rubber part 63 is the same as the width dimension in the radial direction of the tip part 64 b of the low hardness rubber part 64.
  • the axial length dimension of the distal end portion 63b of the high hardness rubber portion 63 is not the same as the axial length dimension of the distal end portion 64b of the low hardness rubber portion 64, and the distal end portion 64b of the low hardness rubber portion 64. Is longer than the axial length of the tip 63b of the high-hardness rubber portion 63.
  • the cushion rubber 52 When the compression rubber 52 is compressed in the axial direction because the axial thickness of the low hardness rubber portion 64 is larger than the axial thickness of the high hardness rubber portion 63, the cushion rubber 52 has a relatively small amount of compression. In the low hardness rubber portion 64 and the high hardness rubber portion 63, only the low hardness rubber portion 64 is compressed in the axial direction, and when the amount of compression is relatively large, the low hardness rubber portion 64 and the high hardness rubber portion 63 Is also compressed in the axial direction.
  • the method of increasing the force required to compress the shock absorbing rubber 52 in the axial direction becomes gentle when the amount of compressing in the axial direction of the shock absorbing rubber 52 is small, and the force in the axial direction of the shock absorbing rubber 52 is reduced.
  • the compression load characteristic is steep when the compression amount is large (see FIG. 17).
  • the axial thickness of the low hardness rubber portion 64 is low even when the retaining projection 60 is in contact with the inner surface 61 of the circumferential groove 59 on the side close to the rotor 31. Is set to such a height as to maintain contact without separating from the inner surface of the annular recess 57. Thereby, rattling of the buffer member 50 in a state where the armature 30 is separated from the rotor 31 is prevented.
  • the rotation transmission device is in an engaged state in which rotation is transmitted between the input shaft 6 and the output shaft 7. That is, the armature 30 is separated from the rotor 31 by the force of the spring member 15 when energization to the electromagnet 32 is stopped.
  • the roller 4a on the front side in the forward rotation direction causes the cylindrical surface on the inner periphery of the outer ring 1 by the force of the spring member 15 that presses the rollers 4a and 4b in the direction in which the distance between the pair of rollers 4a and 4b increases.
  • the rotation transmission device is in an engagement disengaged state (idle state) in which the rotation transmission between the input shaft 6 and the output shaft 7 is interrupted. That is, when the electromagnet 32 is energized, the armature 30 is attracted to the rotor 31, and in conjunction with the operation of the armature 30, the flange portion 17b of the second split cage 5B is connected to the flange portion 17a of the first split cage 5A. Move axially toward At this time, the ball 44 of the ball ramp mechanism 33 rolls toward the deepest portions 45a and 45b of the inclined grooves 43a and 43b, so that the first divided holder 5A and the second divided holder 5B rotate relative to each other. .
  • the electromagnet 32 when the electromagnet 32 is energized, not only the force attracted to the rotor 31 by the energization of the electromagnet 32 but also the force in the direction away from the rotor 31 by the buffer rubber 52 and the spring member 15 acts.
  • the armature 30 is attracted to the rotor 31 when the force that the armature 30 is attracted to the rotor 31 by energizing the electromagnet 32 exceeds the force in the direction away from the rotor 31 by the buffer rubber 52 and the spring member 15.
  • the force with which the armature 30 is attracted to the rotor 31 by energization of the electromagnet 32 changes according to the distance between the armature 30 and the rotor 31, and increases as the armature 30 approaches the rotor 31.
  • This increase is gradual when the armature 30 is relatively far from the rotor 31, and is abrupt when the armature 30 is relatively close to the rotor 31. That is, the armature 30 tends to accelerate greatly as it approaches the rotor 31.
  • a force that urges the armature 30 away from the rotor 31 by the spring member 15 (hereinafter referred to as “spring load”) and a force required to compress the shock absorbing rubber 52 in the axial direction (hereinafter referred to as “rubber compression load”).
  • spring load a force that urges the armature 30 away from the rotor 31 by the spring member 15
  • rubber compression load a force required to compress the shock absorbing rubber 52 in the axial direction
  • the manner of increasing the spring load is approximately constant and linear. For example, when a rubber member made of a single material having a constant axial thickness over the entire circumference is used instead of the buffer rubber 52, the method of increasing the rubber compressive load is also approximately the same. Constant and linear.
  • the distance between the armature 30 and the rotor 31 is relatively long.
  • the force (spring load + rubber compression load) in the direction away from the rotor 31 received by the armature 30 from the buffer rubber 52 and the spring member 15 is the force (electromagnet) that the armature 30 is attracted to the rotor 31 by energizing the electromagnet 32.
  • the suction force of 32 will be temporarily exceeded.
  • the armature 30 is not attracted to the rotor 31 and the operation of the armature 30 may become unstable.
  • the low hardness rubber portion 64 starts to be compressed in preference to the high hardness rubber portion 63, and thereafter Further, when the cushioning rubber 52 is compressed in the axial direction and the armature 30 comes into contact with the high-hardness rubber part 63, the high-hardness rubber part 63 starts to be compressed, so as shown in FIG.
  • the level of compression in the direction is small (that is, the low hardness rubber portion 64 is compressed in the axial direction but the high hardness rubber portion 63 is not compressed in the axial direction. In FIG. 17, the gap between the armature 30 and the rotor 31.
  • this rotation transmission device obtains a soft compressive load characteristic by the low-hardness rubber portion 64 at a stage where the amount of compression of the buffer rubber 52 in the axial direction is small, and also provides buffering.
  • a hard compression load characteristic can be obtained by the high-hardness rubber portion 63. Therefore, as in the case where the buffer rubber 52 is formed of a single rubber material, the tip is There is no need to provide a projection having a thin and sharp cross-sectional shape, and the durability of the buffer rubber 52 is excellent.
  • this rotation transmission device can easily adjust the compression load characteristics of the buffer rubber 52 by adjusting the axial thicknesses of the low-hardness rubber portion 64 and the high-hardness rubber portion 63.
  • the cross-sectional shape of 52 can be easily designed.
  • the metal ring 51 has the outer cylindrical portion 55 extending so as to cover the outer diameter side of the buffer rubber 52.
  • a part of 52 for example, a part of the low-hardness rubber part 64
  • the broken piece is received by the outer cylinder part 55 of the metal ring 51, and the broken piece of the buffer rubber 52 becomes the metal ring. It is possible to prevent the foreign matter 51 from being discharged as foreign matter. As a result, it is possible to prevent poor engagement of the rollers 4a and 4b due to mixing of fragments of the buffer rubber 52.
  • the metal ring 51 has the annular inner protrusion 56 extending from the inner edge of the annular plate portion 54. Therefore, in the unlikely event, a part of the buffer rubber 52 (for example, the low hardness rubber portion 64). Can be prevented from being discharged radially inward of the metal ring 51. As a result, it is possible to more effectively prevent poor engagement of the rollers 4a and 4b due to mixing of fragments of the buffer rubber 52.
  • FIG. 14, FIG. 15 and FIG. 16 show other examples of the shock absorbing rubber 52.
  • FIG. Portions corresponding to the above embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the low-hardness rubber portion 64 and the high-hardness rubber portion 63 are provided so that the low-hardness rubber portion 64 is compressed in preference to the high-hardness rubber portion 63 in the process in which the buffer rubber 52 is compressed in the axial direction. .
  • the low hardness rubber portion 64 and the high hardness rubber portion 63 arranged on the annular surface 53 of the metal ring 51 at intervals in the circumferential direction. 63, in which a low-hardness rubber portion 64 and a high-hardness rubber portion 63 are laminated in the axial direction.
  • the high hardness rubber portion 63 is bonded to the annular surface 53, and the low hardness rubber portion 64 is bonded to the surface of the high hardness rubber portion 63.
  • the high-hardness rubber part 63 and the low-hardness rubber part 64 are laminated so as to overlap in the axial direction.
  • the low-hardness rubber part 64 and the high-hardness rubber part 63 are each formed to have a constant cross-sectional shape along the circumferential direction of the metal ring 51.
  • the high-hardness rubber portion 63 is formed in a square cross section with one side in contact with the annular surface 53.
  • the low hardness rubber portion 64 has a cross-sectional shape covering the periphery of the high hardness rubber portion 63, and is in contact with the annular surface 53 on the radially outer side and the radially inner side with respect to the high hardness rubber portion 63.
  • the contact surface of the low hardness rubber portion 64 with respect to the armature 30 is easy to manufacture if it is a plane perpendicular to the axial direction, but instead, it swells slightly more than the plane perpendicular to the axial direction. It may be a convex curved surface.
  • the above-described shock-absorbing rubber 52 first has a low-hardness rubber portion 64 in the process of compressing the shock-absorbing rubber 52 in the axial direction.
  • the buffering action by the compression of the high-hardness rubber part 63 becomes dominant.
  • the method of increasing the force required to compress the shock absorbing rubber 52 in the axial direction becomes gentle when the amount of compressing in the axial direction of the shock absorbing rubber 52 is small, and the force in the axial direction of the shock absorbing rubber 52 is reduced.
  • the compression load characteristic is steep when the compression amount is large (see FIG. 17).
  • the buffer rubber 52 of this form is employed, the low hardness rubber portion 64 is compressed in preference to the high hardness rubber portion 63 when the amount of compression of the buffer rubber 52 in the axial direction is small as shown in FIG. Therefore, the method of increasing the rubber compression load becomes gradual, and at the stage where the amount of compression of the shock absorbing rubber 52 in the axial direction is large, the buffer action due to the compression of the high hardness rubber portion 63 becomes dominant, and therefore the rubber compressing load increases. The way of is sudden.
  • a soft compression load characteristic is obtained by the low hardness rubber portion 64, and the axial direction of the buffer rubber 52 is increased.
  • a hard compression load characteristic can be obtained by the high hardness rubber portion 63, so that the tip of the buffer rubber 52 is formed with a single rubber material, as in the case where the buffer rubber 52 is formed of a single rubber material. There is no need to provide protrusions, and the cushioning rubber 52 is excellent in durability.
  • the compression load characteristic of the rubber 52 can be easily adjusted, and the cross-sectional shape of the buffer rubber 52 can be easily designed.
  • the buffer member 50 is mounted on the armature 30, but the buffer member 50 may be mounted on the rotor 31 instead of the armature 30.
  • the ball ramp mechanism 33 is employed as an operation conversion mechanism that converts the operation of the armature 30 being attracted to the rotor 31 into the operation of the roller holder 5 moving from the engagement position to the engagement release position.
  • other types of motion conversion mechanisms may be employed.
  • the cylindrical surface 14 is provided in the inner periphery of the outer ring
  • the cam surface 13 is provided in the outer periphery of the inner member 2
  • the cam surface 13 front cam surface 13a and the inner periphery of the outer ring 1 is provided.
  • a rear cam surface 13b is provided, a cylindrical surface 14 is provided on the outer periphery of the inner member 2, and a pair of rollers 4a, 4b is provided between the inner peripheral cam surface 13 of the outer ring 1 and the outer peripheral cylindrical surface 14 of the inner member 2. May be incorporated.
  • the rollers 4a and 4b are employed as the engaging members incorporated between the inner periphery of the outer ring 1 and the outer periphery of the inner member 2.
  • engaging members other than the rollers 4a and 4b may be employed. Is possible.
  • between the cylindrical surface formed on the inner periphery of the outer ring 1 and the cylindrical surface formed on the outer periphery of the inner member 2 it engages between the inner periphery of the outer ring 1 and the outer periphery of the inner member 2 in a standing state.
  • a plurality of sprags (not shown) having a shape whose height dimension changes according to the posture can be incorporated so that the engagement is released in the lying state.
  • FIG. 18 shows a modification of the rotation transmission device shown in FIG.
  • the rotor 31 of the rotation transmission device shown in FIG. 1 is omitted, and the other configurations are the same. Therefore, the parts corresponding to those in FIG.
  • the buffer member 50 is disposed between the armature 30 and the electromagnet 32 so as to absorb an impact when the armature 30 is attracted to the electromagnet 32.
  • the configuration of the buffer member 50 is the same as in the above embodiment.
  • This rotation transmission device is in an engaged state in which rotation is transmitted between the input shaft 6 and the output shaft 7 when energization to the electromagnet 32 is stopped. That is, when energization to the electromagnet 32 is stopped, the armature 30 is separated from the electromagnet 32 by the force of the spring member 15 (see FIG. 2). In this state, when the inner member 2 rotates in the forward rotation direction, the rotation is transmitted from the inner member 2 to the outer ring 1 via the roller 4b on the rear side in the forward rotation direction. Further, when the inner member 2 rotates in the reverse rotation direction, the rotation is transmitted from the inner member 2 to the outer ring 1 via the front roller 4a in the normal rotation direction.
  • the disengaged state is established in which the rotation transmission between the input shaft 6 and the output shaft 7 is interrupted. That is, when the electromagnet 32 is energized, the armature 30 is attracted to the electromagnet 32. At this time, as shown in FIG. 3, the engagement of the front roller 4a in the forward rotation direction between the inner cylindrical surface 14 of the outer ring 1 and the outer front cam surface 13a of the inner member 2 is released. In addition, the engagement of the roller 4b on the rear side in the forward rotation direction between the cylindrical surface 14 on the inner periphery of the outer ring 1 and the rear cam surface 13b on the outer periphery of the inner member 2 is also released. In this state, even if rotation is input to the inner member 2, the rotation is not transmitted from the inner member 2 to the outer ring 1, and the inner member 2 idles.
  • FIG. 19 shows an example of a rotary braking device using the armature buffer structure of the embodiment of the present invention.
  • the rotation braking device rotates between an outer ring 1 supported in a state in which rotation is restricted, an inner member 2 supported so as to be rotatable relative to the outer ring 1, and the outer ring 1 and the inner member 2.
  • An electromagnetic clutch 3 for switching between transmission and disconnection is provided.
  • the rotor 31 of the rotation transmission device shown in FIG. 1 is omitted and the outer ring 1 is prevented from rotating around the housing 11, and the other configurations are the same. Therefore, the parts corresponding to those in FIG.
  • the outer ring 1 is supported in a state where rotation is restricted. That is, the outer periphery of the outer ring 1 is supported by the inner periphery of the housing 11, and the anti-rotation protrusion 70 formed on the outer periphery of the outer ring 1 engages with the anti-rotation groove 71 formed on the inner periphery of the housing 11.
  • the outer ring 1 is prevented from rotating around the housing 11 by the engagement between the protrusion 70 and the rotation preventing groove 71.
  • the housing 11 is supported by a bolt or the like so that it cannot be rotated outside, or is allowed to rotate only within a certain range such that the wiring of the solenoid coil 39 is not broken, and further rotation is restricted.
  • the outer ring 1 is prevented from being detached from the housing 11 by a retaining ring 72 attached to the inner periphery of the end portion of the housing 11.
  • a seal member 73 is incorporated between the fitting surfaces of the outer ring 1 and the housing 11.
  • the buffer member 50 is disposed between the armature 30 and the electromagnet 32 so as to absorb an impact when the armature 30 is attracted to the electromagnet 32.
  • the configuration of the buffer member 50 is the same as in the above embodiment.
  • the rotary braking device When the electromagnet 32 is energized, the rotary braking device is in a braking release state in which the input shaft 6 can rotate without being braked. That is, when the electromagnet 32 is energized, the armature 30 is attracted to the electromagnet 32. At this time, as shown in FIG. 3, the engagement of the front roller 4a in the forward rotation direction between the inner cylindrical surface 14 of the outer ring 1 and the outer front cam surface 13a of the inner member 2 is released. In addition, the engagement of the roller 4b on the rear side in the forward rotation direction between the cylindrical surface 14 on the inner periphery of the outer ring 1 and the rear cam surface 13b on the outer periphery of the inner member 2 is also released. In this state, the input shaft 6 and the inner member 2 can freely rotate in both forward and reverse directions.
  • the braking state for braking the rotation of the input shaft 6 and the inner member 2 is established. That is, when the energization to the electromagnet 32 is stopped, the armature 30 is separated from the electromagnet 32 by the force of the spring member 15 (see FIG. 2). At this time, even if the inner member 2 is to be rotated in the forward direction, the inner member 2 does not rotate because the roller 4b on the rear side in the forward direction is engaged between the inner member 2 and the outer ring 1.
  • the inner member 2 does not rotate because the front roller 4 a in the forward direction is engaged between the inner member 2 and the outer ring 1.
  • the input shaft 6 and the inner member 2 are in a state in which the rotation is restricted in both the forward and reverse directions.

Abstract

In a rotation transmitting device which includes a buffer member (50) disposed between an armature (30) and an electromagnet (32), and in which the buffer member (50) includes a metal ring (51) having an annular surface (53), and a buffer rubber (52) bonded to the annular surface (53), the buffer rubber (52) is configured to include a high hardness rubber portion (63) and a low hardness rubber portion (64).

Description

アーマチュアの緩衝構造、回転伝達装置、および回転制動装置Armature buffer structure, rotation transmission device, and rotation braking device
 この発明は、アーマチュアの緩衝構造、およびそのアーマチュアの緩衝構造を採用した回転伝達装置および回転制動装置に関する。 The present invention relates to an armature buffer structure, and a rotation transmission device and a rotation braking device that employ the armature buffer structure.
 入力軸から出力軸に回転が伝達する状態と、その回転の伝達を遮断する状態とを切り換えるために用いられる回転伝達装置として、例えば、特許文献1に記載のものが知られている。 As a rotation transmission device used for switching between a state in which rotation is transmitted from an input shaft to an output shaft and a state in which transmission of the rotation is interrupted, for example, the one described in Patent Document 1 is known.
 特許文献1に記載の回転伝達装置は、外輪と、外輪の内側に配置された内方部材と、外輪と内方部材との間で回転の伝達と遮断を切り換える電磁クラッチとを有する。電磁クラッチは、軸方向に移動可能に支持されたアーマチュアと、アーマチュアと軸方向に対向して配置されたロータと、アーマチュアをロータから離れる方向に付勢するばね部材と、通電によりアーマチュアをロータに吸着させる電磁石とを有する。 The rotation transmission device described in Patent Document 1 includes an outer ring, an inner member disposed inside the outer ring, and an electromagnetic clutch that switches between transmission and interruption of rotation between the outer ring and the inner member. The electromagnetic clutch includes an armature supported so as to be movable in the axial direction, a rotor disposed so as to face the armature in the axial direction, a spring member that urges the armature in a direction away from the rotor, and an armature that is energized to the rotor. And an electromagnet to be adsorbed.
 そして、この特許文献1の回転伝達装置は、電磁石への通電を遮断しているときは、ばね部材の力によってアーマチュアがロータから離反し、外輪と内方部材との間で回転が伝達する係合状態となる。一方、電磁石に通電しているときは、電磁石の吸引力によってアーマチュアがロータに吸着され、外輪と内方部材との間での回転の伝達が遮断された空転状態となる。 In the rotation transmission device of Patent Document 1, when the energization to the electromagnet is interrupted, the armature is separated from the rotor by the force of the spring member, and the rotation is transmitted between the outer ring and the inner member. It becomes a joint state. On the other hand, when the electromagnet is energized, the armature is attracted to the rotor due to the attraction force of the electromagnet, and the rotation state between the outer ring and the inner member is cut off.
 ここで、電磁石への通電によりアーマチュアがロータに吸着されるとき、アーマチュアとロータの間に衝突音が生じる場合があり、この衝突音は、近年、高い静音性が求められる自動車の分野においては特に問題となる。 Here, when the armature is attracted to the rotor by energizing the electromagnet, a collision sound may be generated between the armature and the rotor, and this collision sound is particularly important in the field of automobiles that require high silence in recent years. It becomes a problem.
 そこで、アーマチュアとロータの衝突音を低減するため、特許文献1の回転伝達装置においては、アーマチュアとロータの間に、アーマチュアがロータに吸着されるときの衝撃を吸収する緩衝部材を設けている。緩衝部材は、アーマチュアに軸方向に移動可能に支持された金属環と、アーマチュアがロータに近づくに従ってアーマチュアと金属環との間で軸方向に圧縮されるように金属環の環状面に接着された緩衝ゴムとを有する。 Therefore, in order to reduce the collision noise between the armature and the rotor, in the rotation transmission device of Patent Document 1, a buffer member is provided between the armature and the rotor to absorb an impact when the armature is attracted to the rotor. The buffer member is bonded to the annular surface of the metal ring so that the armature is supported so as to be movable in the axial direction and the armature is compressed in the axial direction between the armature and the metal ring as the armature approaches the rotor. With cushioning rubber.
 ところで、特許文献1のように、アーマチュアとロータの間に緩衝ゴムを介在させた場合、アーマチュアの動作が不安定となるおそれがある。すなわち、電磁石に通電したとき、アーマチュアには、電磁石への通電によってロータに引き寄せられる力だけでなく、緩衝ゴムとばね部材によってロータから離反する方向の力も作用する。そして、アーマチュアがロータに引き寄せられる力が、ロータから離反する方向の力を上回ることにより、アーマチュアはロータに吸着される。 By the way, as in Patent Document 1, when a buffer rubber is interposed between the armature and the rotor, the operation of the armature may become unstable. That is, when the electromagnet is energized, not only the force attracted to the rotor by the energization of the electromagnet but also the force in the direction away from the rotor by the buffer rubber and the spring member acts. The armature is attracted to the rotor when the force with which the armature is attracted to the rotor exceeds the force in the direction away from the rotor.
 ここで、電磁石への通電によってアーマチュアがロータに引き寄せられる力は、アーマチュアとロータの距離に応じて変化し、アーマチュアがロータに近づくに従って増加する。この増加の仕方は、アーマチュアがロータから比較的遠いときは緩やかであり、アーマチュアがロータに比較的近いときは急となる。つまり、アーマチュアはロータに近づくほど大きく加速する傾向がある。 Here, the force with which the armature is attracted to the rotor by energizing the electromagnet changes according to the distance between the armature and the rotor, and increases as the armature approaches the rotor. This increase is gradual when the armature is relatively far from the rotor and abrupt when the armature is relatively close to the rotor. That is, the armature tends to accelerate greatly as it approaches the rotor.
 そのため、ゴム圧縮荷重(すなわち、緩衝ゴムを圧縮するのに要する力)の小さい緩衝ゴムを使用したのでは、アーマチュアがロータに吸着される寸前でのアーマチュアの加速を抑えることができず、アーマチュアとロータの衝突音を効果的に低減することができない。一方、ゴム圧縮荷重の大きい緩衝ゴムを使用すると、アーマチュアがロータに向けて動き始めてからロータに吸着されるまでの途中において、アーマチュアが緩衝ゴムとばね部材から受けるロータから離反する方向の力が、電磁石への通電によってアーマチュアがロータに引き寄せられる力を一時的に上回る可能性が生じ、アーマチュアがロータに吸着されず、アーマチュアの動作が不安定となるおそれがある。 For this reason, using a shock absorbing rubber with a small rubber compression load (ie, the force required to compress the shock absorbing rubber) cannot suppress the acceleration of the armature just before the armature is adsorbed to the rotor. The impact noise of the rotor cannot be reduced effectively. On the other hand, if a rubber cushion with a large rubber compression load is used, the force in the direction away from the rotor that the armature receives from the buffer rubber and the spring member during the period from when the armature starts moving toward the rotor to be attracted to the rotor, There is a possibility that the armature may temporarily exceed the force attracted to the rotor by energizing the electromagnet, the armature is not attracted to the rotor, and the operation of the armature may become unstable.
 この問題に対し、特許文献1の回転伝達装置においては、緩衝ゴムを軸方向に圧縮するのに要する力の増加の仕方が、緩衝ゴムの軸方向の圧縮量が小さい段階では緩やかとなり、緩衝ゴムの軸方向の圧縮量が大きい段階では急となるという圧縮荷重特性をもつ緩衝ゴムを採用している。そして、このような圧縮荷重特性を得るために、単一のゴム材料からなる緩衝ゴムに、高さが異なる複数の突起を形成し、これら突起の断面形状を、突起の高さに応じてそれぞれ異なる形状とすることで、上記のような圧縮荷重特性を得るようにしている。 With respect to this problem, in the rotation transmission device of Patent Document 1, the method of increasing the force required to compress the shock absorbing rubber in the axial direction becomes gentle when the amount of axial compression of the shock absorbing rubber is small. A shock absorbing rubber having a compression load characteristic of becoming steep when the amount of compression in the axial direction is large is employed. In order to obtain such compressive load characteristics, a plurality of protrusions having different heights are formed on a buffer rubber made of a single rubber material, and the cross-sectional shape of these protrusions is changed according to the height of the protrusions. By adopting different shapes, the compression load characteristics as described above are obtained.
特開2015-140911号公報Japanese Patent Laying-Open No. 2015-140911
 しかしながら、緩衝ゴムを軸方向に圧縮するのに要する力の増加の仕方が、緩衝ゴムの軸方向の圧縮量が小さい段階では緩やかとなり、緩衝ゴムの軸方向の圧縮量が大きい段階では急となるという圧縮荷重特性を得る方法として、特許文献1のように、単一のゴム材料からなる緩衝ゴムに、高さが互いに異なる複数の突起を形成し、それら突起の断面形状を、突起の高さに応じて個別に設計したのでは、緩衝ゴムの耐久性と設計容易性の点で問題があることが分かった。 However, the method of increasing the force required to compress the shock absorbing rubber in the axial direction becomes gentle when the amount of compression of the shock absorbing rubber in the axial direction is small, and becomes steep when the amount of compressing rubber in the axial direction is large. As a method for obtaining the compression load characteristic, a plurality of protrusions having different heights are formed on a buffer rubber made of a single rubber material as in Patent Document 1, and the cross-sectional shape of the protrusions is defined as the height of the protrusions. It was found that there was a problem in terms of durability and ease of design of the shock absorbing rubber if it was designed individually according to each.
 すなわち、上記の圧縮荷重特性を得る方法として、突起の断面形状を、突起の高さに応じて個別に設計する場合、緩衝ゴムの軸方向の圧縮量が小さい段階での柔らかい圧縮荷重特性を得るため、高さの高い突起は、突起の先端が細くとがった断面形状を採用する必要がある。そのため、緩衝ゴムの高さの高い突起の部分の耐久性を確保するのが難しい。また、互いに異なる高さをもつ複数の突起の断面形状を、突起の高さごとに異なる形状に設計する場合、その突起が圧縮変形するときの突起の変形挙動を、突起の形状ごとに解析する必要があり、突起の断面形状の設計に要する労力が大きい。 That is, as a method for obtaining the above compression load characteristics, when the cross-sectional shape of the protrusion is individually designed according to the height of the protrusion, a soft compression load characteristic at a stage where the compression amount of the shock absorbing rubber is small is obtained. For this reason, it is necessary to adopt a cross-sectional shape in which the tip of the protrusion is narrow and the protrusion having a high height. For this reason, it is difficult to ensure the durability of the high protrusion portion of the buffer rubber. In addition, when the cross-sectional shape of multiple protrusions with different heights is designed to be different for each protrusion height, the deformation behavior of the protrusion when the protrusion is compressively deformed is analyzed for each protrusion shape. This is necessary, and the labor required for designing the cross-sectional shape of the protrusion is large.
 この発明が解決しようとする課題は、アーマチュアが吸着されるときの衝撃を吸収する緩衝部材の耐久性と設計容易性に優れたアーマチュアの緩衝構造を提供することである。 The problem to be solved by the present invention is to provide an armature buffer structure excellent in durability and design ease of a buffer member that absorbs an impact when the armature is adsorbed.
 上記の課題を解決するため、この発明においては、以下の構成のアーマチュアの緩衝構造を提供する。
 軸方向に移動可能に支持されたアーマチュアと、
 前記アーマチュアと軸方向に対向して配置され、通電により前記アーマチュアを軸方向に吸引する電磁石と、
 前記アーマチュアと前記電磁石の間に配置された緩衝部材とを有し、
 前記緩衝部材は、環状面をもつ金属環と、前記環状面に接着された緩衝ゴムとを有するアーマチュアの緩衝構造において、
 前記緩衝ゴムは、高硬度ゴム部と、その高硬度ゴム部を形成するゴム材料よりも低い硬度をもつゴム材料で形成された低硬度ゴム部とを有することを特徴とするアーマチュアの緩衝構造。
In order to solve the above-described problems, the present invention provides an armature buffer structure having the following configuration.
An armature supported so as to be movable in the axial direction;
An electromagnet disposed axially opposite the armature and attracting the armature axially by energization;
A buffer member disposed between the armature and the electromagnet;
In the buffer structure of the armature, the buffer member includes a metal ring having an annular surface and a buffer rubber bonded to the annular surface.
The armature buffer structure characterized in that the buffer rubber has a high hardness rubber portion and a low hardness rubber portion made of a rubber material having a lower hardness than the rubber material forming the high hardness rubber portion.
 このようにすると、緩衝ゴムが軸方向に圧縮される過程で、低硬度ゴム部が高硬度ゴム部よりも優先して圧縮するように低硬度ゴム部と高硬度ゴム部を設けることで、緩衝ゴムを軸方向に圧縮するのに要する力の増加の仕方が、緩衝ゴムの軸方向の圧縮量が小さい段階では緩やかとなり、緩衝ゴムの軸方向の圧縮量が大きい段階では急となるという圧縮荷重特性を得ることができる。そのため、アーマチュアがロータに吸着される寸前でのアーマチュアの加速が効果的に抑えられ、アーマチュアとロータの衝突音を効果的に低減することが可能となる。また、緩衝ゴムを軸方向に圧縮する過程で、緩衝ゴムの軸方向の圧縮量が小さい段階では、低硬度ゴム部によって、柔らかい圧縮荷重特性を得るとともに、緩衝ゴムの軸方向の圧縮量が大きい段階では、高硬度ゴム部によって、硬い圧縮荷重特性を得ることができるので、緩衝ゴムを単一のゴム材料で形成する場合のように、先端が細くとがった断面形状の突起を設ける必要がなく、緩衝ゴムの耐久性に優れる。また、低硬度ゴム部と高硬度ゴム部のそれぞれの軸方向厚さを調節することにより、緩衝ゴムの圧縮荷重特性を容易に調節することができるので、緩衝ゴムの断面形状の設計が容易である。 In this way, in the process in which the buffer rubber is compressed in the axial direction, the low-hardness rubber portion and the high-hardness rubber portion are provided so that the low-hardness rubber portion is compressed in preference to the high-hardness rubber portion. Compressive load in which the force required to compress the rubber in the axial direction becomes gentle when the amount of compression of the shock absorbing rubber is small and becomes steep when the amount of compression of the shock absorbing rubber is large Characteristics can be obtained. Therefore, the acceleration of the armature just before the armature is attracted to the rotor is effectively suppressed, and the collision noise between the armature and the rotor can be effectively reduced. In addition, in the process of compressing the buffer rubber in the axial direction, at a stage where the compression amount of the buffer rubber in the axial direction is small, a soft compression load characteristic is obtained by the low hardness rubber portion and the compression amount of the buffer rubber in the axial direction is large. At the stage, a hard compression load characteristic can be obtained by the high-hardness rubber part, so that it is not necessary to provide a protrusion with a cross-sectional shape with a narrow tip as in the case of forming the buffer rubber with a single rubber material. Excellent durability of shock absorbing rubber. Also, by adjusting the axial thickness of each of the low-hardness rubber part and the high-hardness rubber part, the compression load characteristics of the shock-absorbing rubber can be easily adjusted, so the cross-sectional shape of the shock-absorbing rubber can be easily designed. is there.
 前記低硬度ゴム部と前記高硬度ゴム部は、前記環状面上に周方向に間隔をおいて配置され、前記低硬度ゴム部の軸方向厚さを、前記高硬度ゴム部の軸方向厚さよりも大きく設定したものを採用することができる。 The low-hardness rubber portion and the high-hardness rubber portion are arranged on the annular surface at a circumferential interval, and the axial thickness of the low-hardness rubber portion is determined by the axial thickness of the high-hardness rubber portion. Can also be used.
 このようにすると、低硬度ゴム部の軸方向厚さが、高硬度ゴム部の軸方向厚さよりも大きいので、緩衝ゴムが軸方向に圧縮される過程において、まず、低硬度ゴム部が高硬度ゴム部よりも優先して圧縮を開始し、その後、さらに緩衝ゴムが軸方向に圧縮されて、高硬度ゴム部が圧縮を開始する。そのため、低硬度ゴム部の軸方向厚さと高硬度ゴム部の軸方向厚さをそれぞれ調節することにより、緩衝ゴムの圧縮荷重特性を調節することが可能である。 In this way, since the axial thickness of the low-hardness rubber part is larger than the axial thickness of the high-hardness rubber part, first, in the process in which the buffer rubber is compressed in the axial direction, Compression is started in preference to the rubber part, and then the buffer rubber is further compressed in the axial direction, and the high-hardness rubber part starts compression. Therefore, it is possible to adjust the compression load characteristic of the buffer rubber by adjusting the axial thickness of the low hardness rubber portion and the axial thickness of the high hardness rubber portion, respectively.
 前記低硬度ゴム部と前記高硬度ゴム部は、軸方向に積層配置したものを採用することができる。 The low-hardness rubber part and the high-hardness rubber part may be laminated in the axial direction.
 このようにすると、低硬度ゴム部と高硬度ゴム部が軸方向に積層配置されているので、緩衝ゴムが軸方向に圧縮される過程において、まず、低硬度ゴム部が高硬度ゴム部よりも優先して圧縮し、低硬度ゴム部が十分に圧縮した後は、高硬度ゴム部の圧縮による緩衝作用が支配的となる。そのため、低硬度ゴム部の軸方向厚さと高硬度ゴム部の軸方向厚さをそれぞれ調節することにより、緩衝ゴムの圧縮荷重特性を調節することが可能である。 In this way, since the low-hardness rubber portion and the high-hardness rubber portion are laminated in the axial direction, in the process in which the buffer rubber is compressed in the axial direction, first, the low-hardness rubber portion is more than the high-hardness rubber portion. After preferentially compressing and sufficiently compressing the low-hardness rubber part, the buffering action by the compression of the high-hardness rubber part becomes dominant. Therefore, it is possible to adjust the compression load characteristic of the buffer rubber by adjusting the axial thickness of the low hardness rubber portion and the axial thickness of the high hardness rubber portion, respectively.
 前記積層配置としては、前記低硬度ゴム部を前記環状面に接着し、その低硬度ゴム部の表面に前記高硬度ゴム部を接着した配置を採用することも可能であるが、前記高硬度ゴム部を前記環状面に接着し、その高硬度ゴム部の表面に前記低硬度ゴム部を接着した配置を採用すると好ましい。 As the laminated arrangement, it is possible to adopt an arrangement in which the low-hardness rubber portion is bonded to the annular surface and the high-hardness rubber portion is bonded to the surface of the low-hardness rubber portion. It is preferable to employ an arrangement in which the portion is bonded to the annular surface and the low hardness rubber portion is bonded to the surface of the high hardness rubber portion.
 このようにすると、低硬度ゴム部が高硬度ゴム部で支持された構成の緩衝ゴムとなるため、高硬度ゴム部が低硬度ゴム部で支持された構成の緩衝ゴムを採用する場合よりも、緩衝ゴムが軸方向に圧縮されるときの緩衝ゴムの変形の仕方が安定する。 In this case, since the low hardness rubber portion becomes a buffer rubber configured to be supported by the high hardness rubber portion, the case where the high hardness rubber portion is configured to be supported by the low hardness rubber portion is adopted than when the buffer rubber is adopted. When the shock absorbing rubber is compressed in the axial direction, the way the shock absorbing rubber is deformed is stabilized.
 前記アーマチュアと前記電磁石の間に配置され、前記電磁石の通電により前記アーマチュアが吸着されるロータを更に設ける場合、前記緩衝部材は、前記アーマチュアが前記ロータに吸着されるときの衝撃を吸収するように前記アーマチュアと前記ロータの間に配置することができる。 When further providing a rotor disposed between the armature and the electromagnet and attracting the armature by energization of the electromagnet, the buffer member absorbs an impact when the armature is attracted to the rotor. It can be arranged between the armature and the rotor.
 また、前記アーマチュアを前記ロータから離れる方向に付勢するばね部材を更に設けることができる。 Further, a spring member that urges the armature in a direction away from the rotor can be further provided.
 前記金属環は、前記アーマチュアと前記ロータのうちいずれか一方の部材に軸方向に移動可能に支持して設け、
 前記緩衝ゴムは、前記アーマチュアが前記ロータに近づくに従って前記一方の部材と前記金属環との間で軸方向に圧縮されるように設けることができる。
The metal ring is provided so as to be movable in the axial direction on one member of the armature and the rotor,
The buffer rubber may be provided so as to be compressed in the axial direction between the one member and the metal ring as the armature approaches the rotor.
 また、この発明では、上記のアーマチュアの緩衝構造を用いた回転伝達装置として、以下のものを併せて提供する。
 上記のアーマチュアの緩衝構造と、
 回転可能に支持された外輪と、
 前記外輪に対して相対回転可能に支持された内方部材と、
 前記外輪の内周と前記内方部材の外周との間に組み込まれた係合子と、
 前記係合子を前記外輪と内方部材の間に係合させる係合位置と、前記外輪と内方部材の間への前記係合子の係合を解除する係合解除位置との間で移動可能に支持された係合子保持器と、
 前記電磁石の通電により前記アーマチュアが軸方向に移動する動作を、前記係合子保持器が前記係合位置と係合解除位置のうち一方から他方に移動する動作に変換する動作変換機構と、を備える回転伝達装置。
The present invention also provides the following as a rotation transmission device using the armature cushioning structure described above.
The above armature buffer structure,
An outer ring rotatably supported;
An inner member supported to be rotatable relative to the outer ring;
An engagement member incorporated between the inner periphery of the outer ring and the outer periphery of the inner member;
It is movable between an engagement position for engaging the engagement element between the outer ring and the inner member and an engagement release position for releasing the engagement of the engagement element between the outer ring and the inner member. An engaging cage supported by
An operation conversion mechanism that converts the movement of the armature in the axial direction by energization of the electromagnet into the movement of the engagement holder moving from one of the engagement position and the engagement release position to the other. Rotation transmission device.
 この回転伝達装置は、前記アーマチュアと前記電磁石の軸方向の対向面間に、前記内方部材と一体に回転するロータを配置し、前記電磁石の通電により前記アーマチュアが前記ロータに吸着されるように構成することができる。 In this rotation transmission device, a rotor that rotates integrally with the inner member is disposed between axially facing surfaces of the armature and the electromagnet so that the armature is attracted to the rotor by energization of the electromagnet. Can be configured.
 また、この発明では、上記のアーマチュアの緩衝構造を用いた回転制動装置として、以下のものを併せて提供する。
 上記のアーマチュアの緩衝構造と、
 回転を規制した状態に支持された外輪と、
 前記外輪に対して相対回転可能に支持された内方部材と、
 前記外輪の内周と前記内方部材の外周との間に組み込まれた係合子と、
 前記係合子を前記外輪と内方部材の間に係合させる係合位置と、前記外輪と内方部材の間への前記係合子の係合を解除する係合解除位置との間で移動可能に支持された係合子保持器と、
 前記電磁石の通電により前記アーマチュアが軸方向に移動する動作を、前記係合子保持器が前記係合位置と係合解除位置のうち一方から他方に移動する動作に変換する動作変換機構と、を備える回転制動装置。
The present invention also provides the following as a rotary braking device using the armature buffer structure described above.
The above armature buffer structure,
An outer ring supported in a state where rotation is restricted,
An inner member supported to be rotatable relative to the outer ring;
An engagement member incorporated between the inner periphery of the outer ring and the outer periphery of the inner member;
It is movable between an engagement position for engaging the engagement element between the outer ring and the inner member and an engagement release position for releasing the engagement of the engagement element between the outer ring and the inner member. An engaging cage supported by
An operation conversion mechanism that converts the movement of the armature in the axial direction by energization of the electromagnet into the movement of the engagement holder moving from one of the engagement position and the engagement release position to the other. Rotating braking device.
 この回転制動装置は、前記電磁石の通電により前記アーマチュアが前記電磁石に吸着されるように構成することができる。 The rotary braking device can be configured such that the armature is attracted to the electromagnet when the electromagnet is energized.
 この発明のアーマチュアの緩衝構造は、緩衝ゴムを軸方向に圧縮する過程で、緩衝ゴムの軸方向の圧縮量が小さい段階では、低硬度ゴム部によって、柔らかい圧縮荷重特性を得るとともに、緩衝ゴムの軸方向の圧縮量が大きい段階では、高硬度ゴム部によって、硬い圧縮荷重特性を得ることができるので、緩衝ゴムを単一のゴム材料で形成する場合のように、先端が細くとがった断面形状の突起を設ける必要がなく、緩衝ゴムの耐久性に優れる。また、低硬度ゴム部と高硬度ゴム部のそれぞれの軸方向厚さを調節することにより、緩衝ゴムの圧縮荷重特性を容易に調節することができるので、緩衝ゴムの断面形状の設計が容易である。 The shock absorbing structure of the armature of the present invention is a process of compressing the shock absorbing rubber in the axial direction, and at the stage where the amount of compressing rubber in the axial direction is small, a soft compressive load characteristic is obtained by the low hardness rubber portion. In the stage where the amount of compression in the axial direction is large, the hard rubber part can obtain a hard compression load characteristic, so the cross-sectional shape with a narrow tip as in the case of forming the buffer rubber with a single rubber material It is not necessary to provide protrusions, and the cushioning rubber is excellent in durability. Also, by adjusting the axial thickness of each of the low-hardness rubber part and the high-hardness rubber part, the compression load characteristics of the shock-absorbing rubber can be easily adjusted, so the cross-sectional shape of the shock-absorbing rubber can be easily designed. is there.
この発明の実施形態にかかるアーマチュアの緩衝構造を採用した回転伝達装置を示す断面図Sectional drawing which shows the rotation transmission apparatus which employ | adopted the armature buffer structure concerning embodiment of this invention 図1のII-II線に沿った断面図Sectional view along the line II-II in FIG. 図2に示す第1の分割保持器と第2の分割保持器とを相対回転させることで対向一対のローラの間隔が狭まる方向に各ローラを移動させた状態を示す拡大断面図The expanded sectional view which shows the state which moved each roller in the direction where the space | interval of a pair of opposing roller narrows by rotating the 1st division holder shown in FIG. 2 and the 2nd division holder relatively 図1のIV-IV線に沿った断面図Sectional view along line IV-IV in FIG. 図4のV-V線に沿った断面図Sectional view along line VV in FIG. 図1のVI-VI線に沿った断面図Sectional view along line VI-VI in Fig. 1 図6のVII-VII線に沿った断面図Sectional view along line VII-VII in FIG. 図7Aに示すボールが各傾斜溝の最深部に向けて転がることにより、第1の分割保持器と第2の分割保持器が相対回転した状態を示す断面図Sectional drawing which shows the state which the 1st division | segmentation holder | retainer and the 2nd division | segmentation holder | retainer rotated relatively, when the ball | bowl shown to FIG. 7A rolls toward the deepest part of each inclination groove | channel. 図1に示す緩衝部材の低硬度ゴム部の近傍を拡大して示す断面図Sectional drawing which expands and shows the vicinity of the low-hardness rubber part of the buffer member shown in FIG. 図1に示す緩衝部材の高硬度ゴム部の近傍を拡大して示す断面図Sectional drawing which expands and shows the vicinity of the high hardness rubber | gum part of the buffer member shown in FIG. 図1に示す緩衝部材を取り出して緩衝ゴムの側から軸方向に見た図The figure which took out the buffer member shown in FIG. 1, and looked at the axial direction from the buffer rubber side 図10のXI-XI線に沿った断面図Sectional view along line XI-XI in FIG. 図10のXII-XII線に沿った断面図Sectional view along line XII-XII in FIG. 図10のXIII-XIII線に沿った断面図Sectional view along line XIII-XIII in FIG. この発明の他の実施形態にかかるアーマチュアの緩衝構造を図10に対応して示す図The figure which shows the buffer structure of the armature concerning other embodiment of this invention corresponding to FIG. 図14のXV-XV線に沿った断面図Sectional view along line XV-XV in FIG. 図14のXVI-XVI線に沿った断面図Sectional view along line XVI-XVI in FIG. この発明の実施形態にかかるアーマチュアの緩衝構造を採用した回転伝達装置において、アーマチュアがロータに引き寄せられる力と、ゴム圧縮荷重とが、アーマチュアとロータの間の距離に応じてそれぞれどのように変化するかを示した図In the rotation transmission device employing the armature buffer structure according to the embodiment of the present invention, the force with which the armature is attracted to the rotor and the rubber compression load change in accordance with the distance between the armature and the rotor. Figure showing 図1の回転伝達装置の変形例を示す図The figure which shows the modification of the rotation transmission apparatus of FIG. この発明の実施形態にかかるアーマチュアの緩衝構造を採用した回転制動装置の一例を示す図The figure which shows an example of the rotary braking device which employ | adopted the armature buffer structure concerning embodiment of this invention
 図1に、この発明の実施形態にかかるアーマチュアの緩衝構造を採用した回転伝達装置を示す。この回転伝達装置は、回転可能に支持された外輪1と、外輪1に対して相対回転可能に支持された内方部材2と、外輪1と内方部材2との間で回転の伝達と遮断を切り換える電磁クラッチ3とを有する。 FIG. 1 shows a rotation transmission device employing an armature buffer structure according to an embodiment of the present invention. This rotation transmission device transmits and blocks rotation between the outer ring 1 that is rotatably supported, the inner member 2 that is supported to be rotatable relative to the outer ring 1, and the outer ring 1 and the inner member 2. And an electromagnetic clutch 3 for switching between.
 電磁クラッチ3は、外輪1の内周と内方部材2の外周との間に組み込まれた複数のローラ4a,4bと、これらのローラ4a,4bを保持するローラ保持器5とを有する。内方部材2には入力軸6が接続され、外輪1には出力軸7が接続されている。入力軸6と出力軸7は同軸上に配置されている。この電磁クラッチ3は、電磁石32の通電と通電の停止とを切り換えることにより、入力軸6から出力軸7への回転の伝達が遮断される状態と、入力軸6から出力軸7に回転が伝達される状態とを切り換えるクラッチである。 The electromagnetic clutch 3 has a plurality of rollers 4a and 4b incorporated between the inner periphery of the outer ring 1 and the outer periphery of the inner member 2, and a roller holder 5 that holds these rollers 4a and 4b. An input shaft 6 is connected to the inner member 2, and an output shaft 7 is connected to the outer ring 1. The input shaft 6 and the output shaft 7 are arranged on the same axis. The electromagnetic clutch 3 switches between energization of the electromagnet 32 and stop of energization, whereby the transmission of rotation from the input shaft 6 to the output shaft 7 is interrupted, and the rotation is transmitted from the input shaft 6 to the output shaft 7. It is a clutch which switches the state to be made.
 入力軸6は、セレーションが外周に形成されたセレーション軸部8を有する。セレーション軸部8は、内方部材2の中心に形成されたセレーション穴9に嵌め込まれている。このセレーション軸部8とセレーション穴9の嵌合により、入力軸6は、内方部材2と一体回転するように内方部材2に接続されている。この実施形態では、入力軸6と内方部材2を別部材としているが、入力軸6と内方部材2を継ぎ目のない一体の部材として形成してもよい。 The input shaft 6 has a serration shaft portion 8 having serrations formed on the outer periphery. The serration shaft portion 8 is fitted into a serration hole 9 formed at the center of the inner member 2. By fitting the serration shaft portion 8 and the serration hole 9, the input shaft 6 is connected to the inner member 2 so as to rotate integrally with the inner member 2. In this embodiment, the input shaft 6 and the inner member 2 are separate members. However, the input shaft 6 and the inner member 2 may be formed as a seamless integral member.
 出力軸7は、外輪1と一体に形成されている。この実施形態では、出力軸7と外輪1を継ぎ目のない一体の部材としているが、出力軸7と外輪1を別部材とし、その出力軸7を、外輪1と一体回転するように外輪1に接続してもよい。外輪1と内方部材2の間には、内方部材2を外輪1に対して相対回転可能に支持する転がり軸受10が組み込まれている。回転伝達装置の構成部材を収容する筒状のハウジング11の出力軸7側の端部には、出力軸7を回転可能に支持する転がり軸受12が組み込まれている。 The output shaft 7 is formed integrally with the outer ring 1. In this embodiment, the output shaft 7 and the outer ring 1 are integrally formed as a seamless member. However, the output shaft 7 and the outer ring 1 are separate members, and the output shaft 7 is attached to the outer ring 1 so as to rotate integrally with the outer ring 1. You may connect. A rolling bearing 10 is incorporated between the outer ring 1 and the inner member 2 to support the inner member 2 so as to be rotatable relative to the outer ring 1. A rolling bearing 12 that rotatably supports the output shaft 7 is incorporated in an end portion on the output shaft 7 side of the cylindrical housing 11 that houses the constituent members of the rotation transmission device.
 図2、図3に示すように、内方部材2の外周には、周方向に等間隔に複数のカム面13が設けられている。カム面13は、前方カム面13aと、前方カム面13aに対して内方部材2の正転方向後方に配置された後方カム面13bとからなる。外輪1の内周には、カム面13と半径方向に対向する円筒面14が設けられている。 2 and 3, a plurality of cam surfaces 13 are provided on the outer periphery of the inner member 2 at equal intervals in the circumferential direction. The cam surface 13 includes a front cam surface 13a and a rear cam surface 13b disposed behind the inner cam 2 in the forward rotation direction with respect to the front cam surface 13a. A cylindrical surface 14 that is opposed to the cam surface 13 in the radial direction is provided on the inner periphery of the outer ring 1.
 カム面13と円筒面14の間には、ばね部材15を間に挟んで周方向に対向する一対のローラ4a,4bが組み込まれている。この一対のローラ4a,4bのうち正転方向の前側のローラ4aは前方カム面13aと円筒面14の間に組み込まれ、正転方向の後側のローラ4bは後方カム面13bと円筒面14の間に組み込まれている。ばね部材15は、一対のローラ4a,4bの間隔を広げる方向に各ローラ4a,4bを押圧するように一対のローラ4a,4bの間に組み込まれている。 Between the cam surface 13 and the cylindrical surface 14, a pair of rollers 4a and 4b that are opposed to each other in the circumferential direction with a spring member 15 interposed therebetween are incorporated. Of the pair of rollers 4a and 4b, the forward roller 4a in the forward rotation direction is incorporated between the front cam surface 13a and the cylindrical surface 14, and the rear roller 4b in the forward rotation direction is the rear cam surface 13b and the cylindrical surface 14. Is built in between. The spring member 15 is incorporated between the pair of rollers 4a and 4b so as to press the rollers 4a and 4b in a direction in which the distance between the pair of rollers 4a and 4b is increased.
 前方カム面13aは、円筒面14との間の径方向の距離が、ローラ4aの位置から正転方向前方に向かって次第に小さくなるように形成されている。後方カム面13bは、円筒面14との間の径方向の距離が、ローラ4bの位置から正転方向後方に向かって次第に小さくなるように形成されている。図では、前方カム面13aと後方カム面13bを、相反する方向に傾斜した別々の平面となるように形成しているが、前方カム面13aと後方カム面13bは、単一平面の正転方向の前側部分が前方カム面13a、後側部分が後方カム面13bとなるように、同一平面上に形成することも可能である。また、前方カム面13aと後方カム面13bは、曲面とすることも可能であるが、図のように平面とすると加工コストを低減することができる。 The front cam surface 13a is formed such that the radial distance from the cylindrical surface 14 gradually decreases from the position of the roller 4a toward the front in the forward rotation direction. The rear cam surface 13b is formed such that the radial distance from the cylindrical surface 14 gradually decreases from the position of the roller 4b toward the rear in the forward rotation direction. In the figure, the front cam surface 13a and the rear cam surface 13b are formed so as to be separate planes inclined in opposite directions, but the front cam surface 13a and the rear cam surface 13b are in a single plane normal rotation. It is also possible to form them on the same plane so that the front part in the direction is the front cam surface 13a and the rear part is the rear cam surface 13b. Further, the front cam surface 13a and the rear cam surface 13b can be curved surfaces. However, if the front cam surface 13a and the rear cam surface 13b are flat as shown in the figure, the processing cost can be reduced.
 図1~図3に示すように、ローラ保持器5は、ばね部材15を間にして周方向に対向する一対のローラ4a,4bのうち一方のローラ4aを支持する第1の分割保持器5Aと、他方のローラ4bを支持する第2の分割保持器5Bとからなる。第1の分割保持器5Aと第2の分割保持器5Bは相対回転可能に支持されており、その相対回転に応じて一対のローラ4a,4bの間隔が変化するように一対のローラ4a,4bを個別に支持している。 As shown in FIGS. 1 to 3, the roller holder 5 includes a first divided holder 5A that supports one roller 4a of a pair of rollers 4a and 4b that are opposed to each other in the circumferential direction with a spring member 15 therebetween. And a second divided holder 5B that supports the other roller 4b. The first divided holder 5A and the second divided holder 5B are supported so as to be rotatable relative to each other, and the pair of rollers 4a, 4b is changed so that the distance between the pair of rollers 4a, 4b changes according to the relative rotation. Are supported individually.
 第1の分割保持器5Aは、周方向に間隔をおいて配置された複数の柱部16aと、これらの柱部16aの端部同士を連結する環状のフランジ部17aとを有する。同様に、第2の分割保持器5Bも、周方向に間隔をおいて配置された複数の柱部16bと、これらの柱部16bの端部同士を連結する環状のフランジ部17bとを有する。 The first split cage 5A has a plurality of column portions 16a arranged at intervals in the circumferential direction, and an annular flange portion 17a that connects the ends of these column portions 16a. Similarly, the 2nd division | segmentation holder | retainer 5B also has the some pillar part 16b arrange | positioned at intervals in the circumferential direction, and the cyclic | annular flange part 17b which connects the edge parts of these pillar parts 16b.
 第1の分割保持器5Aの柱部16aと第2の分割保持器5Bの柱部16bは、ばね部材15を間にして周方向に対向する一対のローラ4a,4bを周方向の両側から挟み込むように、外輪1の内周と内方部材2の外周の間に挿入されている。 The column portion 16a of the first divided cage 5A and the column portion 16b of the second divided cage 5B sandwich the pair of rollers 4a and 4b facing each other in the circumferential direction with the spring member 15 in between. Thus, it is inserted between the inner periphery of the outer ring 1 and the outer periphery of the inner member 2.
 図1に示すように、第1の分割保持器5Aのフランジ部17aと第2の分割保持器5Bのフランジ部17bは、第2の分割保持器5Bのフランジ部17bが第1の分割保持器5Aのフランジ部17aよりも内方部材2に対して軸方向に近い側となる向きで、軸方向に対向して配置されている。そして、第2の分割保持器5Bのフランジ部17bには、第1の分割保持器5Aの柱部16aとの干渉を避けるための切欠き18が周方向に間隔をおいて複数設けられている。 As shown in FIG. 1, the flange portion 17a of the first split cage 5A and the flange portion 17b of the second split cage 5B are the same as the flange portion 17b of the second split cage 5B. It is arranged so as to face the axial direction in a direction closer to the axial direction with respect to the inner member 2 than the flange portion 17a of 5A. The flange portion 17b of the second split cage 5B is provided with a plurality of notches 18 at intervals in the circumferential direction to avoid interference with the column portion 16a of the first split cage 5A. .
 第1の分割保持器5Aのフランジ部17aの内周と第2の分割保持器5Bのフランジ部17bの内周は、入力軸6の外周に設けられた円筒面19でそれぞれ回転可能に支持されている。これにより、第1の分割保持器5Aと第2の分割保持器5Bは、一対のローラ4a,4bの間隔を広げることにより円筒面14とカム面13との間に各ローラ4a,4bを係合させる係合位置と、一対のローラ4a,4bの間隔を狭めることにより円筒面14とカム面13との間への各ローラ4a,4bの係合を解除させる係合解除位置との間で移動可能となっている。第1の分割保持器5Aのフランジ部17aは、スラスト軸受20を介して、入力軸6の外周に設けられた環状突起21で軸方向に支持され、これにより軸方向の移動が規制されている。 The inner circumference of the flange portion 17a of the first split cage 5A and the inner circumference of the flange portion 17b of the second split cage 5B are respectively rotatably supported by a cylindrical surface 19 provided on the outer circumference of the input shaft 6. ing. As a result, the first divided holder 5A and the second divided holder 5B engage each roller 4a, 4b between the cylindrical surface 14 and the cam surface 13 by widening the distance between the pair of rollers 4a, 4b. Between the engagement position to be combined and the engagement release position for releasing the engagement of the rollers 4a and 4b between the cylindrical surface 14 and the cam surface 13 by narrowing the distance between the pair of rollers 4a and 4b. It is movable. The flange portion 17a of the first split cage 5A is supported in the axial direction by an annular projection 21 provided on the outer periphery of the input shaft 6 via the thrust bearing 20, and thereby movement in the axial direction is restricted. .
 図4に示すように、内方部材2の側面には、サイドプレート22が固定されている。サイドプレート22は、一対のローラ4a,4bを間に挟んで周方向に対向する両柱部16a,16bの間に位置するストッパ片23を有する。このストッパ片23は、両柱部16a,16bが一対のローラ4a,4bの間隔を狭める方向に移動したときに、ストッパ片23の両側の縁が各柱部16a,16bを受け止める。これにより、一対のローラ4a,4bの間にあるばね部材15が過度に圧縮して破損するのを防止するとともに、一対のローラ4a,4bの間隔が狭まったときの内方部材2に対する各ローラ4a,4bの位置を一定させることが可能となっている。 As shown in FIG. 4, a side plate 22 is fixed to the side surface of the inner member 2. The side plate 22 has a stopper piece 23 positioned between both pillar portions 16a and 16b that face each other in the circumferential direction with the pair of rollers 4a and 4b interposed therebetween. In the stopper piece 23, when both the pillar portions 16a and 16b are moved in the direction of narrowing the distance between the pair of rollers 4a and 4b, the edges on both sides of the stopper piece 23 receive the pillar portions 16a and 16b. Accordingly, the spring member 15 between the pair of rollers 4a and 4b is prevented from being excessively compressed and broken, and each roller with respect to the inner member 2 when the distance between the pair of rollers 4a and 4b is narrowed. The positions of 4a and 4b can be made constant.
 図5に示すように、サイドプレート22は、ばね部材15を保持するばね保持片24を有する。ばね保持片24は、外輪1の内周と内方部材2の外周の間を軸方向に延びるようにストッパ片23と一体に形成されている。ばね保持片24は、内方部材2の外周の前方カム面13aと後方カム面13bとの間に形成されたばね支持面25(図2参照)に対して半径方向に対向するように配置されている。ばね保持片24のばね支持面25に対する対向面には、ばね部材15を収容する凹部26が形成されている。ばね部材15はコイルばねである。このばね保持片24は、ばね部材15の移動を凹部26で規制することにより、ばね部材15が外輪1の内周と内方部材2の外周との間から軸方向に脱落するのを防止している。 As shown in FIG. 5, the side plate 22 has a spring holding piece 24 that holds the spring member 15. The spring holding piece 24 is formed integrally with the stopper piece 23 so as to extend in the axial direction between the inner circumference of the outer ring 1 and the outer circumference of the inner member 2. The spring holding piece 24 is disposed so as to face the spring support surface 25 (see FIG. 2) formed between the front cam surface 13a and the rear cam surface 13b on the outer periphery of the inner member 2 in the radial direction. Yes. A concave portion 26 for accommodating the spring member 15 is formed on the surface of the spring holding piece 24 that faces the spring support surface 25. The spring member 15 is a coil spring. The spring holding piece 24 prevents the spring member 15 from dropping in the axial direction from between the inner periphery of the outer ring 1 and the outer periphery of the inner member 2 by restricting the movement of the spring member 15 by the recess 26. ing.
 図1に示すように、第1の分割保持器5Aおよび第2の分割保持器5Bを係合位置から係合解除位置に移動させるための手段として、軸方向に移動可能に支持されたアーマチュア30と、アーマチュア30と軸方向に対向して配置されたロータ31と、通電によりアーマチュア30をロータ31に吸着させる電磁石32と、アーマチュア30がロータ31に吸着される動作を、第1の分割保持器5Aおよび第2の分割保持器5Bが係合位置から係合解除位置に移動する動作に変換するボールランプ機構33とを有する。 As shown in FIG. 1, as a means for moving the first divided holder 5A and the second divided holder 5B from the engaged position to the disengaged position, the armature 30 supported so as to be movable in the axial direction. A rotor 31 disposed opposite to the armature 30 in the axial direction, an electromagnet 32 that attracts the armature 30 to the rotor 31 by energization, and an operation in which the armature 30 is attracted to the rotor 31. 5A and the second divided holder 5B have a ball ramp mechanism 33 that converts the movement from the engagement position to the engagement release position.
 アーマチュア30は、環状の円盤部34と、円盤部34の外周から軸方向に延びるように一体に形成された円筒部35とを有する。アーマチュア30の円筒部35には、第2の分割保持器5Bのフランジ部17bの外周から軸方向に延びるように一体に形成された円筒部36が圧入され、この圧入により、アーマチュア30は、第2の分割保持器5Bと軸方向に一体に移動するように第2の分割保持器5Bに連結されている。また、アーマチュア30は、入力軸6の外周に設けられた円筒面37で回転可能かつ軸方向に移動可能に支持されている。ここで、アーマチュア30は、軸方向に離れた2箇所(すなわちアーマチュア30の内周と、第2の分割保持器5Bの内周)において軸方向に移動可能に支持することにより、アーマチュア30の姿勢が軸直角方向に対して傾くのが防止されている。 The armature 30 includes an annular disk part 34 and a cylindrical part 35 that is integrally formed so as to extend in the axial direction from the outer periphery of the disk part 34. The cylindrical portion 35 of the armature 30 is press-fitted with a cylindrical portion 36 that is integrally formed so as to extend in the axial direction from the outer periphery of the flange portion 17b of the second split cage 5B. The second split holder 5B is connected to the second split holder 5B so as to move integrally with the second split holder 5B in the axial direction. The armature 30 is supported by a cylindrical surface 37 provided on the outer periphery of the input shaft 6 so as to be rotatable and movable in the axial direction. Here, the armature 30 is supported by the armature 30 so as to be movable in the axial direction at two locations separated in the axial direction (that is, the inner circumference of the armature 30 and the inner circumference of the second split cage 5B). Is prevented from tilting with respect to the direction perpendicular to the axis.
 ロータ31は、アーマチュア30と電磁石32の軸方向の対向面間に配置されている。また、ロータ31は、締め代をもって入力軸6の外周に嵌合することにより、内方部材2と一体に回転するとともに、軸方向と周方向のいずれにも移動しないように入力軸6の外周で支持されている。ロータ31およびアーマチュア30は強磁性を有する金属で形成されている。ロータ31のアーマチュア30に対する対向面には、ロータ31を軸方向に貫通するとともに、円周方向に細長く延びる長孔38が周方向に間隔をおいて複数形成されている。 The rotor 31 is disposed between opposing surfaces of the armature 30 and the electromagnet 32 in the axial direction. In addition, the rotor 31 is fitted to the outer periphery of the input shaft 6 with a tightening margin, so that the rotor 31 rotates together with the inner member 2 and does not move in either the axial direction or the circumferential direction. It is supported by. The rotor 31 and the armature 30 are made of a ferromagnetic metal. On the surface of the rotor 31 facing the armature 30, a plurality of long holes 38 that penetrate the rotor 31 in the axial direction and extend in the circumferential direction are formed at intervals in the circumferential direction.
 電磁石32は、アーマチュア30を軸方向に吸引するように、アーマチュア30と軸方向に対向して配置されている。電磁石32は、ソレノイドコイル39と、ソレノイドコイル39が巻回されたフィールドコア40とを有する。フィールドコア40は、ハウジング11の入力軸6側の端部に挿入されて、止め輪41で抜け止めされている。フィールドコア40の内周には、入力軸6を回転可能に支持する転がり軸受42が組み込まれている。この電磁石32は、ソレノイドコイル39に通電することにより、フィールドコア40とロータ31とアーマチュア30を通る磁路を形成し、アーマチュア30をロータ31に吸着させる。このとき、アーマチュア30のロータ31に対する対向面は、ロータ31のアーマチュア30に対する対向面に面接触した状態となる。 The electromagnet 32 is arranged to face the armature 30 in the axial direction so as to attract the armature 30 in the axial direction. The electromagnet 32 includes a solenoid coil 39 and a field core 40 around which the solenoid coil 39 is wound. The field core 40 is inserted into the end portion of the housing 11 on the input shaft 6 side and is prevented from coming off by a retaining ring 41. A rolling bearing 42 that rotatably supports the input shaft 6 is incorporated in the inner periphery of the field core 40. The electromagnet 32 energizes the solenoid coil 39 to form a magnetic path that passes through the field core 40, the rotor 31, and the armature 30, and causes the armature 30 to be attracted to the rotor 31. At this time, the surface of the armature 30 facing the rotor 31 is in surface contact with the surface of the rotor 31 facing the armature 30.
 図6、図7Aおよび図7Bに示すように、ボールランプ機構33は、第1の分割保持器5Aのフランジ部17aの第2の分割保持器5Bのフランジ部17bに対する対向面に設けられた傾斜溝43aと、第2の分割保持器5Bのフランジ部17bの第1の分割保持器5Aのフランジ部17aに対する対向面に設けられた傾斜溝43bと、傾斜溝43aと傾斜溝43bの間に組み込まれたボール44とからなる。傾斜溝43aと傾斜溝43bは、それぞれ周方向に延びるように形成されている。また、傾斜溝43aは、軸方向の深さが最も深い最深部45aから周方向の一方向に向かって次第に浅くなるように傾斜した溝底をもつ形状とされ、傾斜溝43bも、軸方向の深さが最も深い最深部45bから周方向の他方向に向かって次第に浅くなるように傾斜した溝底をもつ形状とされている。ボール44は溝底と溝底の間に挟まれるように配置されている。 As shown in FIGS. 6, 7A, and 7B, the ball ramp mechanism 33 has an inclination provided on the surface of the flange portion 17a of the first split cage 5A facing the flange portion 17b of the second split cage 5B. The groove 43a, the inclined groove 43b provided on the surface of the flange portion 17b of the second divided retainer 5B facing the flange portion 17a of the first divided retainer 5A, and the inclined groove 43a and the inclined groove 43b are incorporated. Ball 44 formed. The inclined groove 43a and the inclined groove 43b are formed so as to extend in the circumferential direction, respectively. In addition, the inclined groove 43a has a shape having a groove bottom that is inclined so as to gradually become shallower in the circumferential direction from the deepest portion 45a having the deepest axial depth, and the inclined groove 43b is also formed in the axial direction. The shape is such that the groove bottom is inclined so as to gradually become shallower from the deepest portion 45b having the deepest depth toward the other direction in the circumferential direction. The ball 44 is disposed so as to be sandwiched between the groove bottoms.
 このボールランプ機構33は、第2の分割保持器5Bのフランジ部17bが、第1の分割保持器5Aのフランジ部17aに向かって軸方向に移動したときに、ボール44が各傾斜溝43a,43bの最深部45a,45bに向けて転がることにより、第1の分割保持器5Aと第2の分割保持器5Bが相対回転し、その結果、第1の分割保持器5Aの柱部16aと第2の分割保持器5Bの柱部16bとが一対のローラ4a,4bの間隔を狭める方向に移動するように動作する。 The ball ramp mechanism 33 is configured such that when the flange portion 17b of the second split cage 5B moves in the axial direction toward the flange portion 17a of the first split cage 5A, the ball 44 is moved to each inclined groove 43a, By rolling toward the deepest portions 45a and 45b of 43b, the first split holder 5A and the second split holder 5B rotate relative to each other, and as a result, the column part 16a of the first split holder 5A and the first The column part 16b of the two split cages 5B operates so as to move in the direction of narrowing the distance between the pair of rollers 4a and 4b.
 アーマチュア30は、ばね部材15の力によって、ロータ31から離れる方向に付勢されている。すなわち、図2に示すばね部材15が一対のローラ4a,4bの間隔を広げる方向に各ローラ4a,4bを押圧する力が、第1の分割保持器5Aと第2の分割保持器5Bに伝達する。そして、第1の分割保持器5Aと第2の分割保持器5Bが受ける周方向の力は、図6、図7Aおよび図7Bに示すボールランプ機構33によって、ロータ31から遠ざかる方向の軸方向の力に変換されて第2の分割保持器5Bに伝達する。ここで、図1に示すように、アーマチュア30は、第2の分割保持器5Bに固定されているので、結局、アーマチュア30は、ばね部材15からボールランプ機構33を介して伝達する力によって、ロータ31から離れる方向に付勢された状態となっている。 The armature 30 is urged away from the rotor 31 by the force of the spring member 15. That is, the force by which the spring member 15 shown in FIG. 2 presses the rollers 4a and 4b in the direction of increasing the distance between the pair of rollers 4a and 4b is transmitted to the first divided holder 5A and the second divided holder 5B. To do. The circumferential force received by the first split holder 5A and the second split holder 5B is axially moved away from the rotor 31 by the ball ramp mechanism 33 shown in FIGS. 6, 7A and 7B. It is converted into force and transmitted to the second divided holder 5B. Here, as shown in FIG. 1, the armature 30 is fixed to the second split cage 5 </ b> B, so that the armature 30 is eventually transmitted by the force transmitted from the spring member 15 via the ball ramp mechanism 33. It is in a state of being biased in a direction away from the rotor 31.
 図1に示すように、アーマチュア30とロータ31の間には、アーマチュア30がロータ31に吸着されるときの衝撃を吸収する緩衝部材50が設けられている。緩衝部材50は、アーマチュア30と電磁石32の間に配置されている。 As shown in FIG. 1, a buffer member 50 is provided between the armature 30 and the rotor 31 to absorb an impact when the armature 30 is attracted to the rotor 31. The buffer member 50 is disposed between the armature 30 and the electromagnet 32.
 図8、図9に示すように、緩衝部材50は、金属環51と、金属環51に固定された緩衝ゴム52とからなる。金属環51は、アーマチュア30に軸方向に移動可能に支持されている。金属環51は、アーマチュア30と軸方向に対向する環状面53を有する。緩衝ゴム52は、アーマチュア30がロータ31に近づくに従って、アーマチュア30と金属環51との間で軸方向に圧縮されるように金属環51の環状面53に接着されている。金属環51は、ステンレススチール(例えばSUS304)で形成されている。緩衝ゴム52は、ゴム(例えばエチレンプロピレンジエンゴム(EPDM))で形成されている。 8 and 9, the buffer member 50 includes a metal ring 51 and a buffer rubber 52 fixed to the metal ring 51. The metal ring 51 is supported by the armature 30 so as to be movable in the axial direction. The metal ring 51 has an annular surface 53 that faces the armature 30 in the axial direction. The buffer rubber 52 is bonded to the annular surface 53 of the metal ring 51 so that the armature 30 is compressed in the axial direction between the armature 30 and the metal ring 51 as the armature 30 approaches the rotor 31. The metal ring 51 is made of stainless steel (for example, SUS304). The buffer rubber 52 is formed of rubber (for example, ethylene propylene diene rubber (EPDM)).
 金属環51は、緩衝ゴム52が接着固定される環状面53をもつ環状板部54と、緩衝ゴム52の外径側を覆うように環状板部54の外縁から軸方向に延びる外側筒部55と、環状板部54の内縁から緩衝ゴム52が配置された側に延びる環状の内側突起56とを有する。 The metal ring 51 includes an annular plate portion 54 having an annular surface 53 to which the buffer rubber 52 is bonded and fixed, and an outer cylindrical portion 55 that extends in the axial direction from the outer edge of the annular plate portion 54 so as to cover the outer diameter side of the buffer rubber 52. And an annular inner protrusion 56 extending from the inner edge of the annular plate portion 54 to the side where the shock absorbing rubber 52 is disposed.
 一方、アーマチュア30のロータ31に対する対向面には、アーマチュア30の外周に開放して形成された環状凹部57と、環状凹部57の内径側に隣接して形成された環状溝58とが設けられている。そして、この金属環51は、環状板部54がアーマチュア30の環状凹部57と緩衝ゴム52を間に挟んで軸方向に対向するとともに、外側筒部55が、アーマチュア30の外周と半径方向に対向するように、アーマチュア30に装着されている。ここで、環状板部54は、電磁石32への通電を停止してアーマチュア30がロータ31から離反しているとき、緩衝ゴム52の弾性復元力でアーマチュア30のロータ31に対する対向面よりもロータ31の側に突出した状態となっている。 On the other hand, the opposing surface of the armature 30 to the rotor 31 is provided with an annular recess 57 formed open to the outer periphery of the armature 30 and an annular groove 58 formed adjacent to the inner diameter side of the annular recess 57. Yes. In the metal ring 51, the annular plate portion 54 faces the axial direction with the annular recess 57 of the armature 30 and the buffer rubber 52 interposed therebetween, and the outer cylindrical portion 55 faces the outer periphery of the armature 30 in the radial direction. As shown, the armature 30 is attached. Here, when the energization of the electromagnet 32 is stopped and the armature 30 is separated from the rotor 31, the annular plate portion 54 is more elastic than the surface of the armature 30 facing the rotor 31 by the elastic restoring force of the buffer rubber 52. It is in a state of protruding to the side.
 図8に示すように、金属環51の外側筒部55には、アーマチュア30の外周に形成された円周溝59に係合する抜け止め突起60が形成されている。抜け止め突起60は、円周溝59のロータ31に近い側の内側面61に接触することで、金属環51のロータ31に接近する方向の移動範囲を規制し、緩衝部材50がアーマチュア30から脱落するのを防止している。抜け止め突起60は、外側筒部55を半径方向に貫通する開口が生じないように外側筒部55をプレスして形成されている。 As shown in FIG. 8, a retaining protrusion 60 that engages with a circumferential groove 59 formed on the outer periphery of the armature 30 is formed on the outer cylindrical portion 55 of the metal ring 51. The retaining protrusion 60 is in contact with the inner surface 61 of the circumferential groove 59 on the side close to the rotor 31, thereby restricting the movement range of the metal ring 51 in the direction approaching the rotor 31, and the buffer member 50 from the armature 30. Prevents falling off. The retaining protrusion 60 is formed by pressing the outer cylinder portion 55 so that an opening penetrating the outer cylinder portion 55 in the radial direction does not occur.
 アーマチュア30の外周の円周溝59は、緩衝ゴム52の軸方向の圧縮に伴う金属環51の軸方向移動を許容するように、抜け止め突起60に対して軸方向の遊びをもたせた形状とされている。すなわち、抜け止め突起60が円周溝59内をロータ31から遠ざかる方向に移動できるように、アーマチュア30の外周の円周溝59の溝幅は、抜け止め突起60の軸方向の幅よりも大きく設定されている。これにより、緩衝ゴム52が軸方向に圧縮したときに、抜け止め突起60が円周溝59のロータ31から遠い側の内側面62に干渉するのを防止し、緩衝ゴム52の圧縮に伴う金属環51の軸方向移動を可能としている。 The circumferential groove 59 on the outer periphery of the armature 30 has a shape with axial play with respect to the retaining protrusion 60 so as to allow the metal ring 51 to move in the axial direction accompanying the compression of the shock absorbing rubber 52 in the axial direction. Has been. That is, the groove width of the circumferential groove 59 on the outer periphery of the armature 30 is larger than the axial width of the retaining protrusion 60 so that the retaining protrusion 60 can move in the direction away from the rotor 31 in the circumferential groove 59. Is set. Thereby, when the buffer rubber 52 is compressed in the axial direction, the retaining protrusion 60 is prevented from interfering with the inner side surface 62 of the circumferential groove 59 far from the rotor 31, and the metal accompanying the compression of the buffer rubber 52 is prevented. The ring 51 can be moved in the axial direction.
 アーマチュア30のロータ31に対する対向面の環状溝58は、金属環51の内側突起56と軸方向に対向するように配置されている。内側突起56と環状溝58の間には、アーマチュア30がロータ31に吸着されたときに内側突起56が環状溝58の内面に接触しないように、軸方向の隙間が設けられている。また、金属環51の内側突起56は、抜け止め突起60が円周溝59のロータ31に近い側の内側面61に接触した状態において、内側突起56の先端が環状凹部57内に位置するように(すなわち、内側突起56の先端が、アーマチュア30のロータ31に対する対向面よりも軸方向の内側に位置するように)形成されている。 The annular groove 58 on the surface facing the rotor 31 of the armature 30 is disposed so as to face the inner protrusion 56 of the metal ring 51 in the axial direction. An axial gap is provided between the inner protrusion 56 and the annular groove 58 so that the inner protrusion 56 does not contact the inner surface of the annular groove 58 when the armature 30 is attracted to the rotor 31. Further, the inner protrusion 56 of the metal ring 51 is arranged such that the tip of the inner protrusion 56 is positioned in the annular recess 57 in a state where the retaining protrusion 60 contacts the inner surface 61 of the circumferential groove 59 on the side close to the rotor 31. (That is, the tip of the inner protrusion 56 is positioned on the inner side in the axial direction from the surface of the armature 30 facing the rotor 31).
 緩衝ゴム52は、金属環51の環状板部54のロータ31と接触する側とは反対側の表面(環状面53)に加硫接着されている。緩衝ゴム52は、高硬度ゴム部63と低硬度ゴム部64とを有する。高硬度ゴム部63と低硬度ゴム部64は、異なる硬度をもつゴム材料で形成されており、低硬度ゴム部64を形成するゴム材料は、高硬度ゴム部63を形成するゴム材料よりも低い硬度をもつものが用いられている。 The buffer rubber 52 is vulcanized and bonded to the surface (annular surface 53) of the metal ring 51 opposite to the side in contact with the rotor 31. The buffer rubber 52 has a high hardness rubber portion 63 and a low hardness rubber portion 64. The high hardness rubber portion 63 and the low hardness rubber portion 64 are formed of rubber materials having different hardness, and the rubber material forming the low hardness rubber portion 64 is lower than the rubber material forming the high hardness rubber portion 63. Those with hardness are used.
 低硬度ゴム部64と高硬度ゴム部63は、緩衝ゴム52が軸方向に圧縮される過程で、低硬度ゴム部64が高硬度ゴム部63よりも優先して圧縮するように設けられている。そのような低硬度ゴム部64と高硬度ゴム部63として、この実施形態では、図10~図13に示すように、金属環51の環状面53上に周方向に間隔をおいて配置された低硬度ゴム部64と高硬度ゴム部63であって、低硬度ゴム部64の軸方向厚さが、高硬度ゴム部63の軸方向厚さよりも大きく設定されたものを採用している。低硬度ゴム部64と高硬度ゴム部63は、それぞれ金属環51の周方向に沿って一定の断面形状を有するように形成されている。 The low-hardness rubber portion 64 and the high-hardness rubber portion 63 are provided so that the low-hardness rubber portion 64 is compressed in preference to the high-hardness rubber portion 63 in the process in which the buffer rubber 52 is compressed in the axial direction. . As such a low hardness rubber portion 64 and a high hardness rubber portion 63, in this embodiment, as shown in FIGS. 10 to 13, they are arranged on the annular surface 53 of the metal ring 51 at intervals in the circumferential direction. A low-hardness rubber portion 64 and a high-hardness rubber portion 63 are employed in which the axial thickness of the low-hardness rubber portion 64 is set larger than the axial thickness of the high-hardness rubber portion 63. The low-hardness rubber part 64 and the high-hardness rubber part 63 are each formed to have a constant cross-sectional shape along the circumferential direction of the metal ring 51.
 図11に示すように、低硬度ゴム部64は、金属環51の環状面53に向かって幅広となるテーパ形状の断面をもつ根元部64aと、根元部64aからアーマチュア30に向かって延び出す一定幅の先端部64bとを有する。先端部64bは、径方向の幅寸法が軸方向に沿って一定となるストレート形状の断面を有する。低硬度ゴム部64のアーマチュア30に対する接触面は、図に示すように、軸方向に直角な平面とすると製造が容易であるが、これに代えて、軸方向に直角な平面よりも僅かに膨らんだ凸曲面としてもよい。 As shown in FIG. 11, the low-hardness rubber portion 64 has a root portion 64 a having a taper-shaped cross section that becomes wider toward the annular surface 53 of the metal ring 51, and a constant portion that extends from the root portion 64 a toward the armature 30. And a leading end portion 64b having a width. The distal end portion 64b has a straight cross section in which the radial width dimension is constant along the axial direction. As shown in the figure, the contact surface of the low hardness rubber portion 64 with respect to the armature 30 is easy to manufacture if it is a plane perpendicular to the axial direction, but instead, it swells slightly more than the plane perpendicular to the axial direction. It may be a convex curved surface.
 図12に示すように、高硬度ゴム部63は、低硬度ゴム部64と同様に、金属環51の環状面53に向かって幅広となるテーパ状の断面形状をもつ根元部63aと、根元部63aからアーマチュア30に向かって延び出す一定幅の先端部63bとを有する。先端部63bは、径方向の幅寸法が軸方向に沿って一定となるストレート形状の断面を有する。高硬度ゴム部63のアーマチュア30に対する接触面は、図に示すように、軸方向に直角な平面とすると製造が容易であるが、これに代えて、軸方向に直角な平面よりも僅かに膨らんだ凸曲面としてもよい。 As shown in FIG. 12, the high-hardness rubber portion 63 includes a root portion 63 a having a tapered cross-sectional shape that becomes wider toward the annular surface 53 of the metal ring 51, and the root portion, similarly to the low-hardness rubber portion 64. And a tip 63b having a constant width extending from the arm 63 toward the armature 30. The distal end portion 63b has a straight cross section in which the radial width dimension is constant along the axial direction. As shown in the figure, the contact surface of the high hardness rubber portion 63 with respect to the armature 30 is easy to manufacture if it is a plane perpendicular to the axial direction, but instead, it swells slightly more than the plane perpendicular to the axial direction. It may be a convex curved surface.
 図11、図12に示すように、高硬度ゴム部63の根元部63aの断面形状および寸法は、低硬度ゴム部64の根元部64aの断面形状および寸法と同一とされている。高硬度ゴム部63の先端部63bの径方向の幅寸法は、低硬度ゴム部64の先端部64bの径方向の幅寸法と同一とされている。ただし、高硬度ゴム部63の先端部63bの軸方向の長さ寸法は、低硬度ゴム部64の先端部64bの軸方向の長さ寸法と同一ではなく、低硬度ゴム部64の先端部64bの軸方向の長さ寸法が、高硬度ゴム部63の先端部63bの軸方向の長さ寸法よりも長い。 11 and 12, the cross-sectional shape and dimensions of the base portion 63a of the high-hardness rubber portion 63 are the same as the cross-sectional shape and dimensions of the base portion 64a of the low-hardness rubber portion 64. The width dimension in the radial direction of the tip part 63 b of the high hardness rubber part 63 is the same as the width dimension in the radial direction of the tip part 64 b of the low hardness rubber part 64. However, the axial length dimension of the distal end portion 63b of the high hardness rubber portion 63 is not the same as the axial length dimension of the distal end portion 64b of the low hardness rubber portion 64, and the distal end portion 64b of the low hardness rubber portion 64. Is longer than the axial length of the tip 63b of the high-hardness rubber portion 63.
 上記の緩衝ゴム52は、低硬度ゴム部64の軸方向厚さが、高硬度ゴム部63の軸方向厚さよりも大きいことから、軸方向に圧縮したときに、その圧縮量が比較的小さいときは、低硬度ゴム部64と高硬度ゴム部63のうち低硬度ゴム部64のみが軸方向に圧縮され、圧縮量が比較的大きいときは、低硬度ゴム部64と高硬度ゴム部63がいずれも軸方向に圧縮されるようになっている。そのため、この緩衝ゴム52は、緩衝ゴム52を軸方向に圧縮するのに要する力の増加の仕方が、緩衝ゴム52の軸方向の圧縮量が小さい段階では緩やかとなり、緩衝ゴム52の軸方向の圧縮量が大きい段階では急となるという圧縮荷重特性を有する(図17参照)。 When the compression rubber 52 is compressed in the axial direction because the axial thickness of the low hardness rubber portion 64 is larger than the axial thickness of the high hardness rubber portion 63, the cushion rubber 52 has a relatively small amount of compression. In the low hardness rubber portion 64 and the high hardness rubber portion 63, only the low hardness rubber portion 64 is compressed in the axial direction, and when the amount of compression is relatively large, the low hardness rubber portion 64 and the high hardness rubber portion 63 Is also compressed in the axial direction. For this reason, in the shock absorbing rubber 52, the method of increasing the force required to compress the shock absorbing rubber 52 in the axial direction becomes gentle when the amount of compressing in the axial direction of the shock absorbing rubber 52 is small, and the force in the axial direction of the shock absorbing rubber 52 is reduced. The compression load characteristic is steep when the compression amount is large (see FIG. 17).
 図8に示すように、低硬度ゴム部64の軸方向厚さは、抜け止め突起60が円周溝59のロータ31に近い側の内側面61に接触した状態においても、低硬度ゴム部64が環状凹部57の内面から離反せずに接触を保つ程度の高さに設定されている。これにより、アーマチュア30がロータ31から離反した状態での緩衝部材50のがたつきを防止している。 As shown in FIG. 8, the axial thickness of the low hardness rubber portion 64 is low even when the retaining projection 60 is in contact with the inner surface 61 of the circumferential groove 59 on the side close to the rotor 31. Is set to such a height as to maintain contact without separating from the inner surface of the annular recess 57. Thereby, rattling of the buffer member 50 in a state where the armature 30 is separated from the rotor 31 is prevented.
 この回転伝達装置の動作例を説明する。 An example of operation of this rotation transmission device will be described.
 図1に示すように、電磁石32への通電を停止しているとき、この回転伝達装置は、入力軸6と出力軸7の間で回転が伝達する係合状態となる。すなわち、電磁石32への通電を停止しているとき、アーマチュア30は、ばね部材15の力によってロータ31から離反した状態となっている。また、このとき、一対のローラ4a,4bの間隔が広がる方向に各ローラ4a,4bを押圧するばね部材15の力によって、正転方向の前側のローラ4aは、外輪1の内周の円筒面14と内方部材2の外周の前方カム面13aとの間に係合し、かつ、正転方向の後側のローラ4bは、外輪1の内周の円筒面14と内方部材2の外周の後方カム面13bとの間に係合した状態となっている。この状態で、内方部材2が正転方向に回転すると、その回転は、正転方向の後側のローラ4bを介して内方部材2から外輪1に伝達する。また、内方部材2が逆転方向に回転すると、その回転は、正転方向の前側のローラ4aを介して内方部材2から外輪1に伝達する。 As shown in FIG. 1, when the energization to the electromagnet 32 is stopped, the rotation transmission device is in an engaged state in which rotation is transmitted between the input shaft 6 and the output shaft 7. That is, the armature 30 is separated from the rotor 31 by the force of the spring member 15 when energization to the electromagnet 32 is stopped. At this time, the roller 4a on the front side in the forward rotation direction causes the cylindrical surface on the inner periphery of the outer ring 1 by the force of the spring member 15 that presses the rollers 4a and 4b in the direction in which the distance between the pair of rollers 4a and 4b increases. 14 and the front cam surface 13a on the outer periphery of the inner member 2 and the roller 4b on the rear side in the forward rotation direction is connected to the cylindrical surface 14 on the inner periphery of the outer ring 1 and the outer periphery of the inner member 2 The rear cam surface 13b is engaged. In this state, when the inner member 2 rotates in the forward rotation direction, the rotation is transmitted from the inner member 2 to the outer ring 1 via the roller 4b on the rear side in the forward rotation direction. Further, when the inner member 2 rotates in the reverse rotation direction, the rotation is transmitted from the inner member 2 to the outer ring 1 via the front roller 4a in the normal rotation direction.
 一方、電磁石32に通電しているとき、この回転伝達装置は、入力軸6と出力軸7の間での回転伝達が遮断される係合解除状態(空転状態)となる。すなわち、電磁石32に通電すると、アーマチュア30はロータ31に吸着され、このアーマチュア30の動作に連動して、第2の分割保持器5Bのフランジ部17bが第1の分割保持器5Aのフランジ部17aに向かって軸方向に移動する。このとき、ボールランプ機構33のボール44が各傾斜溝43a,43bの最深部45a,45bに向けて転がることにより、第1の分割保持器5Aと第2の分割保持器5Bとが相対回転する。そして、この第1の分割保持器5Aと第2の分割保持器5Bの相対回転により、第1の分割保持器5Aの柱部16aと第2の分割保持器5Bの柱部16bとが、一対のローラ4a,4bの間隔が狭まる方向に各ローラ4a,4bを押圧し、その結果、図3に示すように、外輪1の内周の円筒面14と内方部材2の外周の前方カム面13aとの間への正転方向の前側のローラ4aの係合が解除されるとともに、外輪1の内周の円筒面14と内方部材2の外周の後方カム面13bとの間への正転方向の後側のローラ4bの係合も解除された状態となる。この状態で、内方部材2に回転が入力されても、その回転は内方部材2から外輪1に伝達せず、内方部材2は空転する。 On the other hand, when the electromagnet 32 is energized, the rotation transmission device is in an engagement disengaged state (idle state) in which the rotation transmission between the input shaft 6 and the output shaft 7 is interrupted. That is, when the electromagnet 32 is energized, the armature 30 is attracted to the rotor 31, and in conjunction with the operation of the armature 30, the flange portion 17b of the second split cage 5B is connected to the flange portion 17a of the first split cage 5A. Move axially toward At this time, the ball 44 of the ball ramp mechanism 33 rolls toward the deepest portions 45a and 45b of the inclined grooves 43a and 43b, so that the first divided holder 5A and the second divided holder 5B rotate relative to each other. . Then, due to the relative rotation of the first divided holder 5A and the second divided holder 5B, a pair of the column part 16a of the first divided holder 5A and the column part 16b of the second divided holder 5B are paired. The rollers 4a and 4b are pressed in the direction in which the distance between the rollers 4a and 4b is reduced. As a result, as shown in FIG. 3, the inner peripheral cylindrical surface 14 of the outer ring 1 and the outer cam surface of the inner member 2 are front cam surfaces. The engagement of the front roller 4a in the forward rotation direction with the forward rotation direction 13a is released, and the positive rotation between the inner peripheral cylindrical surface 14 of the outer ring 1 and the rear outer cam surface 13b of the inner member 2 is positive. The engagement of the roller 4b on the rear side in the rolling direction is also released. In this state, even if rotation is input to the inner member 2, the rotation is not transmitted from the inner member 2 to the outer ring 1, and the inner member 2 idles.
 ところで、電磁石32に通電したとき、アーマチュア30には、電磁石32への通電によってロータ31に引き寄せられる力だけでなく、緩衝ゴム52とばね部材15によってロータ31から離反する方向の力も作用する。そして、電磁石32への通電によってアーマチュア30がロータ31に引き寄せられる力が、緩衝ゴム52とばね部材15によってロータ31から離反する方向の力を上回ることにより、アーマチュア30はロータ31に吸着される。 By the way, when the electromagnet 32 is energized, not only the force attracted to the rotor 31 by the energization of the electromagnet 32 but also the force in the direction away from the rotor 31 by the buffer rubber 52 and the spring member 15 acts. The armature 30 is attracted to the rotor 31 when the force that the armature 30 is attracted to the rotor 31 by energizing the electromagnet 32 exceeds the force in the direction away from the rotor 31 by the buffer rubber 52 and the spring member 15.
 ここで、電磁石32への通電によってアーマチュア30がロータ31に引き寄せられる力は、アーマチュア30とロータ31の距離に応じて変化し、アーマチュア30がロータ31に近づくに従って増加する。この増加の仕方は、アーマチュア30がロータ31から比較的遠いときは緩やかであり、アーマチュア30がロータ31に比較的近いときは急となる。つまり、アーマチュア30はロータ31に近づくほど大きく加速する傾向がある。 Here, the force with which the armature 30 is attracted to the rotor 31 by energization of the electromagnet 32 changes according to the distance between the armature 30 and the rotor 31, and increases as the armature 30 approaches the rotor 31. This increase is gradual when the armature 30 is relatively far from the rotor 31, and is abrupt when the armature 30 is relatively close to the rotor 31. That is, the armature 30 tends to accelerate greatly as it approaches the rotor 31.
 一方、ばね部材15によってアーマチュア30がロータ31から離反する方向に付勢される力(以下「ばね荷重」という)や、緩衝ゴム52を軸方向に圧縮するのに要する力(以下「ゴム圧縮荷重」という)も、アーマチュア30がロータ31に近づくに従って増加する。そして、ばね荷重の増加の仕方はおよそ一定であり、直線的である。ゴム圧縮荷重の増加の仕方も、例えば、緩衝ゴム52にかえて、軸方向厚さが全周にわたって一定の単一材料からなるゴム部材を使用した場合は、ゴム圧縮荷重の増加の仕方もおよそ一定であり、直線的となる。 On the other hand, a force that urges the armature 30 away from the rotor 31 by the spring member 15 (hereinafter referred to as “spring load”) and a force required to compress the shock absorbing rubber 52 in the axial direction (hereinafter referred to as “rubber compression load”). Also increases as the armature 30 approaches the rotor 31. The manner of increasing the spring load is approximately constant and linear. For example, when a rubber member made of a single material having a constant axial thickness over the entire circumference is used instead of the buffer rubber 52, the method of increasing the rubber compressive load is also approximately the same. Constant and linear.
 そのため、仮に、上記実施形態の緩衝ゴム52にかえて、軸方向厚さが全周にわたって一定の単一材料からなるゴム部材を使用した場合、アーマチュア30とロータ31の間の距離が比較的遠い段階において、アーマチュア30が緩衝ゴム52とばね部材15から受けるロータ31から離反する方向の力(ばね荷重+ゴム圧縮荷重)が、電磁石32への通電によってアーマチュア30がロータ31に引き寄せられる力(電磁石32による吸引力)を一時的に上回る可能性が生じる。このとき、アーマチュア30がロータ31に吸着されず、アーマチュア30の動作が不安定となるおそれがある。 Therefore, if a rubber member made of a single material having a constant axial thickness over the entire circumference is used instead of the buffer rubber 52 of the above embodiment, the distance between the armature 30 and the rotor 31 is relatively long. In the stage, the force (spring load + rubber compression load) in the direction away from the rotor 31 received by the armature 30 from the buffer rubber 52 and the spring member 15 is the force (electromagnet) that the armature 30 is attracted to the rotor 31 by energizing the electromagnet 32. There is a possibility that the suction force of 32 will be temporarily exceeded. At this time, the armature 30 is not attracted to the rotor 31 and the operation of the armature 30 may become unstable.
 これに対し、上記実施形態の回転伝達装置では、緩衝ゴム52が軸方向に圧縮される過程において、まず、低硬度ゴム部64が高硬度ゴム部63よりも優先して圧縮を開始し、その後、さらに緩衝ゴム52が軸方向に圧縮されてアーマチュア30が高硬度ゴム部63に接触したときに、高硬度ゴム部63が圧縮を開始するので、図17に示すように、緩衝ゴム52の軸方向の圧縮量が小さい段階(すなわち、低硬度ゴム部64が軸方向に圧縮されるが、高硬度ゴム部63は軸方向に圧縮されない段階。図17では、アーマチュア30とロータ31の間のギャップがまだ約0.4mmよりも大きい段階)では、ゴム圧縮荷重の増加の仕方が緩やかとなり、緩衝ゴム52の軸方向の圧縮量が大きい段階(すなわち、低硬度ゴム部64と高硬度ゴム部63の両方が軸方向に圧縮される段階。図17では、アーマチュア30とロータ31の間のギャップが約0.4mmよりも小さくなった段階)では、ゴム圧縮荷重の増加の仕方が急となる。そのため、電磁石32への通電によりアーマチュア30がロータ31に吸着されるときに、アーマチュア30が緩衝ゴム52とばね部材15から受けるロータ31から離反する方向の力(ばね荷重+ゴム圧縮荷重)が、電磁石32への通電によってアーマチュア30がロータ31に引き寄せられる力(電磁石32による吸引力)を上回る事態が防止され、その結果、アーマチュア30がロータ31に吸着される動作が安定する。また、アーマチュア30がロータ31に吸着される寸前でのアーマチュア30の加速が効果的に抑えられ、アーマチュア30とロータ31の衝突音を効果的に低減することが可能となっている。 On the other hand, in the rotation transmission device of the above embodiment, in the process in which the buffer rubber 52 is compressed in the axial direction, first, the low hardness rubber portion 64 starts to be compressed in preference to the high hardness rubber portion 63, and thereafter Further, when the cushioning rubber 52 is compressed in the axial direction and the armature 30 comes into contact with the high-hardness rubber part 63, the high-hardness rubber part 63 starts to be compressed, so as shown in FIG. The level of compression in the direction is small (that is, the low hardness rubber portion 64 is compressed in the axial direction but the high hardness rubber portion 63 is not compressed in the axial direction. In FIG. 17, the gap between the armature 30 and the rotor 31. Is still larger than about 0.4 mm), the method of increasing the rubber compression load is moderate, and the amount of compression of the shock absorbing rubber 52 in the axial direction is large (that is, the low hardness rubber portion 64 and the high hardness rubber). In the stage where both of the parts 63 are compressed in the axial direction (in FIG. 17, when the gap between the armature 30 and the rotor 31 is smaller than about 0.4 mm), the rubber compression load is suddenly increased. Become. Therefore, when the armature 30 is attracted to the rotor 31 by energization of the electromagnet 32, the force (spring load + rubber compression load) in the direction in which the armature 30 is separated from the rotor 31 received from the buffer rubber 52 and the spring member 15 is The situation in which the armature 30 exceeds the force (attraction force by the electromagnet 32) attracted to the rotor 31 by energization of the electromagnet 32 is prevented, and as a result, the operation of attracting the armature 30 to the rotor 31 is stabilized. Further, the acceleration of the armature 30 immediately before the armature 30 is attracted to the rotor 31 is effectively suppressed, and the collision sound between the armature 30 and the rotor 31 can be effectively reduced.
 また、この回転伝達装置は、緩衝ゴム52を軸方向に圧縮する過程で、緩衝ゴム52の軸方向の圧縮量が小さい段階では、低硬度ゴム部64によって、柔らかい圧縮荷重特性を得るとともに、緩衝ゴム52の軸方向の圧縮量が大きい段階では、高硬度ゴム部63によって、硬い圧縮荷重特性を得ることができるので、緩衝ゴム52を単一のゴム材料で形成する場合のように、先端が細くとがった断面形状の突起を設ける必要がなく、緩衝ゴム52の耐久性に優れる。 Further, in the process of compressing the buffer rubber 52 in the axial direction, this rotation transmission device obtains a soft compressive load characteristic by the low-hardness rubber portion 64 at a stage where the amount of compression of the buffer rubber 52 in the axial direction is small, and also provides buffering. When the compression amount of the rubber 52 in the axial direction is large, a hard compression load characteristic can be obtained by the high-hardness rubber portion 63. Therefore, as in the case where the buffer rubber 52 is formed of a single rubber material, the tip is There is no need to provide a projection having a thin and sharp cross-sectional shape, and the durability of the buffer rubber 52 is excellent.
 また、この回転伝達装置は、低硬度ゴム部64と高硬度ゴム部63のそれぞれの軸方向厚さを調節することにより、緩衝ゴム52の圧縮荷重特性を容易に調節することができ、緩衝ゴム52の断面形状の設計が容易である。 Further, this rotation transmission device can easily adjust the compression load characteristics of the buffer rubber 52 by adjusting the axial thicknesses of the low-hardness rubber portion 64 and the high-hardness rubber portion 63. The cross-sectional shape of 52 can be easily designed.
 また、上記実施形態の回転伝達装置では、図8、図9に示すように、金属環51が緩衝ゴム52の外径側を覆うように延びる外側筒部55を有するので、万一、緩衝ゴム52の一部(例えば、低硬度ゴム部64の一部)が破損して破片となったときに、その破片が金属環51の外側筒部55で受け止められ、緩衝ゴム52の破片が金属環51の外側に異物として排出されるのを防止することができる。その結果、緩衝ゴム52の破片の混入によるローラ4a,4bの係合不良等を防止することが可能となっている。 Further, in the rotation transmission device of the above embodiment, as shown in FIGS. 8 and 9, the metal ring 51 has the outer cylindrical portion 55 extending so as to cover the outer diameter side of the buffer rubber 52. When a part of 52 (for example, a part of the low-hardness rubber part 64) breaks and becomes a broken piece, the broken piece is received by the outer cylinder part 55 of the metal ring 51, and the broken piece of the buffer rubber 52 becomes the metal ring. It is possible to prevent the foreign matter 51 from being discharged as foreign matter. As a result, it is possible to prevent poor engagement of the rollers 4a and 4b due to mixing of fragments of the buffer rubber 52.
 また、上記実施形態の回転伝達装置では、金属環51が、環状板部54の内縁から延びる環状の内側突起56を有するので、万一、緩衝ゴム52の一部(例えば、低硬度ゴム部64の一部)が破損して破片となったときに、その破片が金属環51の径方向内方に排出されるのを防止することができる。その結果、緩衝ゴム52の破片の混入によるローラ4a,4bの係合不良等をより効果的に防止することが可能となっている。 In the rotation transmission device of the above embodiment, the metal ring 51 has the annular inner protrusion 56 extending from the inner edge of the annular plate portion 54. Therefore, in the unlikely event, a part of the buffer rubber 52 (for example, the low hardness rubber portion 64). Can be prevented from being discharged radially inward of the metal ring 51. As a result, it is possible to more effectively prevent poor engagement of the rollers 4a and 4b due to mixing of fragments of the buffer rubber 52.
 図14、図15、図16に、緩衝ゴム52の他の例を示す。上記実施形態に対応する部分は同一の符号を付して説明を省略する。 FIG. 14, FIG. 15 and FIG. 16 show other examples of the shock absorbing rubber 52. FIG. Portions corresponding to the above embodiment are denoted by the same reference numerals and description thereof is omitted.
 低硬度ゴム部64と高硬度ゴム部63は、緩衝ゴム52が軸方向に圧縮される過程で、低硬度ゴム部64が高硬度ゴム部63よりも優先して圧縮するように設けられている。そのような低硬度ゴム部64と高硬度ゴム部63として、この実施形態では、金属環51の環状面53上に周方向に間隔をおいて配置された低硬度ゴム部64と高硬度ゴム部63であって、低硬度ゴム部64と高硬度ゴム部63を軸方向に積層配置したものを採用している。 The low-hardness rubber portion 64 and the high-hardness rubber portion 63 are provided so that the low-hardness rubber portion 64 is compressed in preference to the high-hardness rubber portion 63 in the process in which the buffer rubber 52 is compressed in the axial direction. . As such a low hardness rubber portion 64 and a high hardness rubber portion 63, in this embodiment, the low hardness rubber portion 64 and the high hardness rubber portion arranged on the annular surface 53 of the metal ring 51 at intervals in the circumferential direction. 63, in which a low-hardness rubber portion 64 and a high-hardness rubber portion 63 are laminated in the axial direction.
 図15に示すように、高硬度ゴム部63は環状面53に接着され、その高硬度ゴム部63の表面に低硬度ゴム部64が接着されている。これにより、高硬度ゴム部63と低硬度ゴム部64は、軸方向に重なる積層配置となっている。低硬度ゴム部64と高硬度ゴム部63は、それぞれ金属環51の周方向に沿って一定の断面形状を有するように形成されている。高硬度ゴム部63は、一辺が環状面53に接する断面方形に形成されている。低硬度ゴム部64は、高硬度ゴム部63の周囲を覆う断面形状を有し、高硬度ゴム部63に対して径方向外側と径方向内側とで環状面53に接している。低硬度ゴム部64のアーマチュア30に対する接触面は、図に示すように、軸方向に直角な平面とすると製造が容易であるが、これに代えて、軸方向に直角な平面よりも僅かに膨らんだ凸曲面としてもよい。 As shown in FIG. 15, the high hardness rubber portion 63 is bonded to the annular surface 53, and the low hardness rubber portion 64 is bonded to the surface of the high hardness rubber portion 63. Thereby, the high-hardness rubber part 63 and the low-hardness rubber part 64 are laminated so as to overlap in the axial direction. The low-hardness rubber part 64 and the high-hardness rubber part 63 are each formed to have a constant cross-sectional shape along the circumferential direction of the metal ring 51. The high-hardness rubber portion 63 is formed in a square cross section with one side in contact with the annular surface 53. The low hardness rubber portion 64 has a cross-sectional shape covering the periphery of the high hardness rubber portion 63, and is in contact with the annular surface 53 on the radially outer side and the radially inner side with respect to the high hardness rubber portion 63. As shown in the figure, the contact surface of the low hardness rubber portion 64 with respect to the armature 30 is easy to manufacture if it is a plane perpendicular to the axial direction, but instead, it swells slightly more than the plane perpendicular to the axial direction. It may be a convex curved surface.
 上記の緩衝ゴム52は、低硬度ゴム部64と高硬度ゴム部63が軸方向に積層配置されていることから、緩衝ゴム52が軸方向に圧縮される過程において、まず、低硬度ゴム部64が高硬度ゴム部63よりも優先して圧縮し、低硬度ゴム部64が十分に圧縮した後は、高硬度ゴム部63の圧縮による緩衝作用が支配的となるようになっている。そのため、この緩衝ゴム52は、緩衝ゴム52を軸方向に圧縮するのに要する力の増加の仕方が、緩衝ゴム52の軸方向の圧縮量が小さい段階では緩やかとなり、緩衝ゴム52の軸方向の圧縮量が大きい段階では急となるという圧縮荷重特性を有する(図17参照)。 Since the low-hardness rubber portion 64 and the high-hardness rubber portion 63 are laminated in the axial direction, the above-described shock-absorbing rubber 52 first has a low-hardness rubber portion 64 in the process of compressing the shock-absorbing rubber 52 in the axial direction. However, after the low-hardness rubber part 64 is sufficiently compressed, the buffering action by the compression of the high-hardness rubber part 63 becomes dominant. For this reason, in the shock absorbing rubber 52, the method of increasing the force required to compress the shock absorbing rubber 52 in the axial direction becomes gentle when the amount of compressing in the axial direction of the shock absorbing rubber 52 is small, and the force in the axial direction of the shock absorbing rubber 52 is reduced. The compression load characteristic is steep when the compression amount is large (see FIG. 17).
 この形態の緩衝ゴム52を採用しても、図17に示すように、緩衝ゴム52の軸方向の圧縮量が小さい段階では、低硬度ゴム部64が高硬度ゴム部63よりも優先して圧縮するので、ゴム圧縮荷重の増加の仕方が緩やかとなり、緩衝ゴム52の軸方向の圧縮量が大きい段階では、高硬度ゴム部63の圧縮による緩衝作用が支配的となるので、ゴム圧縮荷重の増加の仕方が急となる。そのため、電磁石32への通電によりアーマチュア30がロータ31に吸着されるときに、アーマチュア30が緩衝ゴム52とばね部材15から受けるロータ31から離反する方向の力(ばね荷重+ゴム圧縮荷重)が、電磁石32への通電によってアーマチュア30がロータ31に引き寄せられる力(電磁石32による吸引力)を上回る事態が防止され、その結果、アーマチュア30がロータ31に吸着される動作が安定する。また、アーマチュア30がロータ31に吸着される寸前でのアーマチュア30の加速が効果的に抑えられ、アーマチュア30とロータ31の衝突音を効果的に低減することが可能となっている。 Even when the buffer rubber 52 of this form is employed, the low hardness rubber portion 64 is compressed in preference to the high hardness rubber portion 63 when the amount of compression of the buffer rubber 52 in the axial direction is small as shown in FIG. Therefore, the method of increasing the rubber compression load becomes gradual, and at the stage where the amount of compression of the shock absorbing rubber 52 in the axial direction is large, the buffer action due to the compression of the high hardness rubber portion 63 becomes dominant, and therefore the rubber compressing load increases. The way of is sudden. Therefore, when the armature 30 is attracted to the rotor 31 by energization of the electromagnet 32, the force (spring load + rubber compression load) in the direction in which the armature 30 is separated from the rotor 31 received from the buffer rubber 52 and the spring member 15 is The situation in which the armature 30 exceeds the force (attraction force by the electromagnet 32) attracted to the rotor 31 by energization of the electromagnet 32 is prevented, and as a result, the operation of attracting the armature 30 to the rotor 31 is stabilized. Further, the acceleration of the armature 30 immediately before the armature 30 is attracted to the rotor 31 is effectively suppressed, and the collision sound between the armature 30 and the rotor 31 can be effectively reduced.
 また、緩衝ゴム52を軸方向に圧縮する過程で、緩衝ゴム52の軸方向の圧縮量が小さい段階では、低硬度ゴム部64によって、柔らかい圧縮荷重特性を得るとともに、緩衝ゴム52の軸方向の圧縮量が大きい段階では、高硬度ゴム部63によって、硬い圧縮荷重特性を得ることができるので、緩衝ゴム52を単一のゴム材料で形成する場合のように、先端が細くとがった断面形状の突起を設ける必要がなく、緩衝ゴム52の耐久性に優れる。 Further, in the process of compressing the buffer rubber 52 in the axial direction, at a stage where the compression amount of the buffer rubber 52 in the axial direction is small, a soft compression load characteristic is obtained by the low hardness rubber portion 64, and the axial direction of the buffer rubber 52 is increased. At a stage where the compression amount is large, a hard compression load characteristic can be obtained by the high hardness rubber portion 63, so that the tip of the buffer rubber 52 is formed with a single rubber material, as in the case where the buffer rubber 52 is formed of a single rubber material. There is no need to provide protrusions, and the cushioning rubber 52 is excellent in durability.
 また、低硬度ゴム部64の軸方向厚さ(特に高硬度ゴム部63に軸方向に重なる部分の軸方向厚さ)と高硬度ゴム部63の軸方向厚さをそれぞれ調節することにより、緩衝ゴム52の圧縮荷重特性を容易に調節することができ、緩衝ゴム52の断面形状の設計が容易である。 Further, by adjusting the axial thickness of the low-hardness rubber portion 64 (particularly the axial thickness of the portion overlapping the high-hardness rubber portion 63 in the axial direction) and the axial thickness of the high-hardness rubber portion 63, respectively, The compression load characteristic of the rubber 52 can be easily adjusted, and the cross-sectional shape of the buffer rubber 52 can be easily designed.
 上記実施形態では、アーマチュア30に緩衝部材50を装着しているが、アーマチュア30にかえてロータ31に緩衝部材50を装着するようにしてもよい。 In the above embodiment, the buffer member 50 is mounted on the armature 30, but the buffer member 50 may be mounted on the rotor 31 instead of the armature 30.
 また、上記実施形態では、アーマチュア30がロータ31に吸着される動作を、ローラ保持器5が係合位置から係合解除位置に移動する動作に変換する動作変換機構としてボールランプ機構33を採用しているが、他の形式の動作変換機構を採用することも可能である。 In the above embodiment, the ball ramp mechanism 33 is employed as an operation conversion mechanism that converts the operation of the armature 30 being attracted to the rotor 31 into the operation of the roller holder 5 moving from the engagement position to the engagement release position. However, other types of motion conversion mechanisms may be employed.
 また、上記実施形態では、外輪1の内周に円筒面14を設け、内方部材2の外周にカム面13を設けているが、外輪1の内周にカム面13(前方カム面13aと後方カム面13b)を設け、内方部材2の外周に円筒面14を設け、外輪1の内周のカム面13と内方部材2の外周の円筒面14の間に一対のローラ4a,4bを組み込むようにしてもよい。 Moreover, in the said embodiment, although the cylindrical surface 14 is provided in the inner periphery of the outer ring | wheel 1, and the cam surface 13 is provided in the outer periphery of the inner member 2, the cam surface 13 (front cam surface 13a and the inner periphery of the outer ring 1 is provided. A rear cam surface 13b) is provided, a cylindrical surface 14 is provided on the outer periphery of the inner member 2, and a pair of rollers 4a, 4b is provided between the inner peripheral cam surface 13 of the outer ring 1 and the outer peripheral cylindrical surface 14 of the inner member 2. May be incorporated.
 また、上記実施形態では、外輪1の内周と内方部材2の外周の間に組み込む係合子としてローラ4a,4bを採用しているが、ローラ4a,4b以外の係合子を採用することも可能である。例えば、外輪1の内周に形成した円筒面と内方部材2の外周に形成した円筒面の間に、起立状態では外輪1の内周と内方部材2の外周との間に係合し、倒伏状態では係合が解除されるように、姿勢に応じて高さ寸法が変化する形状を持つ複数のスプラグ(図示せず)を組み込むことができる。 In the above-described embodiment, the rollers 4a and 4b are employed as the engaging members incorporated between the inner periphery of the outer ring 1 and the outer periphery of the inner member 2. However, engaging members other than the rollers 4a and 4b may be employed. Is possible. For example, between the cylindrical surface formed on the inner periphery of the outer ring 1 and the cylindrical surface formed on the outer periphery of the inner member 2, it engages between the inner periphery of the outer ring 1 and the outer periphery of the inner member 2 in a standing state. A plurality of sprags (not shown) having a shape whose height dimension changes according to the posture can be incorporated so that the engagement is released in the lying state.
 図18に、図1に示す回転伝達装置の変形例を示す。この回転伝達装置は、図1に示す回転伝達装置のロータ31を省略したものであり、他の構成は同一である。そのため、図1に対応する部分には同一の符号を付して説明を省略する。 FIG. 18 shows a modification of the rotation transmission device shown in FIG. In this rotation transmission device, the rotor 31 of the rotation transmission device shown in FIG. 1 is omitted, and the other configurations are the same. Therefore, the parts corresponding to those in FIG.
 図18において、緩衝部材50は、アーマチュア30が電磁石32に吸着されるときの衝撃を吸収するように、アーマチュア30と電磁石32の間に配置されている。緩衝部材50の構成は、上記実施形態と同一である。 18, the buffer member 50 is disposed between the armature 30 and the electromagnet 32 so as to absorb an impact when the armature 30 is attracted to the electromagnet 32. The configuration of the buffer member 50 is the same as in the above embodiment.
 この回転伝達装置は、電磁石32への通電を停止しているとき、入力軸6と出力軸7の間で回転が伝達する係合状態となる。すなわち、電磁石32への通電を停止しているとき、アーマチュア30は、ばね部材15(図2参照)の力によって電磁石32から離反した状態となっている。この状態で、内方部材2が正転方向に回転すると、その回転は、正転方向の後側のローラ4bを介して内方部材2から外輪1に伝達する。また、内方部材2が逆転方向に回転すると、その回転は、正転方向の前側のローラ4aを介して内方部材2から外輪1に伝達する。 This rotation transmission device is in an engaged state in which rotation is transmitted between the input shaft 6 and the output shaft 7 when energization to the electromagnet 32 is stopped. That is, when energization to the electromagnet 32 is stopped, the armature 30 is separated from the electromagnet 32 by the force of the spring member 15 (see FIG. 2). In this state, when the inner member 2 rotates in the forward rotation direction, the rotation is transmitted from the inner member 2 to the outer ring 1 via the roller 4b on the rear side in the forward rotation direction. Further, when the inner member 2 rotates in the reverse rotation direction, the rotation is transmitted from the inner member 2 to the outer ring 1 via the front roller 4a in the normal rotation direction.
 一方、電磁石32に通電しているとき、入力軸6と出力軸7の間での回転伝達が遮断される係合解除状態となる。すなわち、電磁石32に通電すると、アーマチュア30は電磁石32に吸着される。このとき、図3に示すように、外輪1の内周の円筒面14と内方部材2の外周の前方カム面13aとの間への正転方向の前側のローラ4aの係合が解除されるとともに、外輪1の内周の円筒面14と内方部材2の外周の後方カム面13bとの間への正転方向の後側のローラ4bの係合も解除された状態となる。この状態で、内方部材2に回転が入力されても、その回転は内方部材2から外輪1に伝達せず、内方部材2は空転する。 On the other hand, when the electromagnet 32 is energized, the disengaged state is established in which the rotation transmission between the input shaft 6 and the output shaft 7 is interrupted. That is, when the electromagnet 32 is energized, the armature 30 is attracted to the electromagnet 32. At this time, as shown in FIG. 3, the engagement of the front roller 4a in the forward rotation direction between the inner cylindrical surface 14 of the outer ring 1 and the outer front cam surface 13a of the inner member 2 is released. In addition, the engagement of the roller 4b on the rear side in the forward rotation direction between the cylindrical surface 14 on the inner periphery of the outer ring 1 and the rear cam surface 13b on the outer periphery of the inner member 2 is also released. In this state, even if rotation is input to the inner member 2, the rotation is not transmitted from the inner member 2 to the outer ring 1, and the inner member 2 idles.
 図19に、この発明の実施形態のアーマチュアの緩衝構造を用いた回転制動装置の例を示す。この回転制動装置は、回転を規制した状態で支持された外輪1と、外輪1に対して相対回転可能に支持された内方部材2と、外輪1と内方部材2との間で回転の伝達と遮断を切り換える電磁クラッチ3とを有する。この回転制動装置は、図1に示す回転伝達装置のロータ31を省略するとともに、外輪1をハウジング11に回り止めしたものであり、他の構成は同一である。そのため、図1に対応する部分には同一の符号を付して説明を省略する。 FIG. 19 shows an example of a rotary braking device using the armature buffer structure of the embodiment of the present invention. The rotation braking device rotates between an outer ring 1 supported in a state in which rotation is restricted, an inner member 2 supported so as to be rotatable relative to the outer ring 1, and the outer ring 1 and the inner member 2. An electromagnetic clutch 3 for switching between transmission and disconnection is provided. In this rotation braking device, the rotor 31 of the rotation transmission device shown in FIG. 1 is omitted and the outer ring 1 is prevented from rotating around the housing 11, and the other configurations are the same. Therefore, the parts corresponding to those in FIG.
 図19において、外輪1は、回転を規制した状態で支持されている。すなわち、外輪1の外周はハウジング11の内周で支持され、外輪1の外周に形成された回り止め突起70がハウジング11の内周に形成された回り止め溝71に係合し、その回り止め突起70と回り止め溝71の係合によって外輪1がハウジング11に回り止めされている。ハウジング11は、ボルト等で外部に回転不能に固定されるか、ソレノイドコイル39の配線が断線しない程度の一定範囲のみの回転を許容し、それ以上の回転を規制するように支持されている。外輪1は、ハウジング11の端部内周に装着した止め輪72でハウジング11から抜け止めされている。外輪1とハウジング11の嵌合面間には、シール部材73が組み込まれている。緩衝部材50は、アーマチュア30が電磁石32に吸着されるときの衝撃を吸収するように、アーマチュア30と電磁石32の間に配置されている。緩衝部材50の構成は、上記実施形態と同一である。 In FIG. 19, the outer ring 1 is supported in a state where rotation is restricted. That is, the outer periphery of the outer ring 1 is supported by the inner periphery of the housing 11, and the anti-rotation protrusion 70 formed on the outer periphery of the outer ring 1 engages with the anti-rotation groove 71 formed on the inner periphery of the housing 11. The outer ring 1 is prevented from rotating around the housing 11 by the engagement between the protrusion 70 and the rotation preventing groove 71. The housing 11 is supported by a bolt or the like so that it cannot be rotated outside, or is allowed to rotate only within a certain range such that the wiring of the solenoid coil 39 is not broken, and further rotation is restricted. The outer ring 1 is prevented from being detached from the housing 11 by a retaining ring 72 attached to the inner periphery of the end portion of the housing 11. A seal member 73 is incorporated between the fitting surfaces of the outer ring 1 and the housing 11. The buffer member 50 is disposed between the armature 30 and the electromagnet 32 so as to absorb an impact when the armature 30 is attracted to the electromagnet 32. The configuration of the buffer member 50 is the same as in the above embodiment.
 この回転制動装置は、電磁石32に通電しているとき、入力軸6が制動を受けずに回転可能な制動解除状態となる。すなわち、電磁石32に通電すると、アーマチュア30は電磁石32に吸着される。このとき、図3に示すように、外輪1の内周の円筒面14と内方部材2の外周の前方カム面13aとの間への正転方向の前側のローラ4aの係合が解除されるとともに、外輪1の内周の円筒面14と内方部材2の外周の後方カム面13bとの間への正転方向の後側のローラ4bの係合も解除された状態となる。この状態では、入力軸6および内方部材2は、正逆両方向に自由に回転することができる。 When the electromagnet 32 is energized, the rotary braking device is in a braking release state in which the input shaft 6 can rotate without being braked. That is, when the electromagnet 32 is energized, the armature 30 is attracted to the electromagnet 32. At this time, as shown in FIG. 3, the engagement of the front roller 4a in the forward rotation direction between the inner cylindrical surface 14 of the outer ring 1 and the outer front cam surface 13a of the inner member 2 is released. In addition, the engagement of the roller 4b on the rear side in the forward rotation direction between the cylindrical surface 14 on the inner periphery of the outer ring 1 and the rear cam surface 13b on the outer periphery of the inner member 2 is also released. In this state, the input shaft 6 and the inner member 2 can freely rotate in both forward and reverse directions.
 一方、電磁石32への通電を停止しているとき、入力軸6および内方部材2の回転を制動する制動状態となる。すなわち、電磁石32への通電を停止すると、アーマチュア30は、ばね部材15(図2参照)の力によって電磁石32から離反した状態となる。このとき、内方部材2を正転方向に回転させようとしても、正転方向の後側のローラ4bが内方部材2と外輪1の間に噛み込むので、内方部材2は回転しない。同様に、内方部材2を逆転方向に回転させようとしても、正転方向の前側のローラ4aが内方部材2と外輪1の間に噛み込むので、内方部材2は回転しない。このように、入力軸6および内方部材2は、正逆両方向に回転が規制された状態となる。 On the other hand, when the energization to the electromagnet 32 is stopped, the braking state for braking the rotation of the input shaft 6 and the inner member 2 is established. That is, when the energization to the electromagnet 32 is stopped, the armature 30 is separated from the electromagnet 32 by the force of the spring member 15 (see FIG. 2). At this time, even if the inner member 2 is to be rotated in the forward direction, the inner member 2 does not rotate because the roller 4b on the rear side in the forward direction is engaged between the inner member 2 and the outer ring 1. Similarly, even if the inner member 2 is to be rotated in the reverse direction, the inner member 2 does not rotate because the front roller 4 a in the forward direction is engaged between the inner member 2 and the outer ring 1. Thus, the input shaft 6 and the inner member 2 are in a state in which the rotation is restricted in both the forward and reverse directions.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1    外輪
2    内方部材
3    電磁クラッチ
15   ばね部材
30   アーマチュア
31   ロータ
32   電磁石
50   緩衝部材
51   金属環
52   緩衝ゴム
53   環状面
63   高硬度ゴム部
64   低硬度ゴム部
DESCRIPTION OF SYMBOLS 1 Outer ring 2 Inner member 3 Electromagnetic clutch 15 Spring member 30 Armature 31 Rotor 32 Electromagnet 50 Buffer member 51 Metal ring 52 Buffer rubber 53 Annular surface 63 High hardness rubber part 64 Low hardness rubber part

Claims (11)

  1.  軸方向に移動可能に支持されたアーマチュア(30)と、
     前記アーマチュア(30)と軸方向に対向して配置され、通電により前記アーマチュア(30)を軸方向に吸引する電磁石(32)と、
     前記アーマチュア(30)と前記電磁石(32)の間に配置された緩衝部材(50)とを有し、
     前記緩衝部材(50)は、環状面(53)をもつ金属環(51)と、前記環状面(53)に接着された緩衝ゴム(52)とを有するアーマチュアの緩衝構造において、
     前記緩衝ゴム(52)は、高硬度ゴム部(63)と、その高硬度ゴム部(63)を形成するゴム材料よりも低い硬度をもつゴム材料で形成された低硬度ゴム部(64)とを有することを特徴とするアーマチュアの緩衝構造。
    An axially supported armature (30);
    An electromagnet (32) disposed axially opposite the armature (30) and attracting the armature (30) in the axial direction by energization;
    A buffer member (50) disposed between the armature (30) and the electromagnet (32);
    The buffer member (50) is an armature buffer structure including a metal ring (51) having an annular surface (53) and a buffer rubber (52) bonded to the annular surface (53).
    The buffer rubber (52) includes a high-hardness rubber part (63) and a low-hardness rubber part (64) formed of a rubber material having a lower hardness than the rubber material forming the high-hardness rubber part (63). Armature buffer structure characterized by comprising:
  2.  前記低硬度ゴム部(64)と前記高硬度ゴム部(63)は、前記環状面(53)上に周方向に間隔をおいて配置され、
     前記低硬度ゴム部(64)の軸方向厚さが、前記高硬度ゴム部(63)の軸方向厚さよりも大きく設定されている請求項1に記載のアーマチュアの緩衝構造。
    The low-hardness rubber part (64) and the high-hardness rubber part (63) are arranged on the annular surface (53) at intervals in the circumferential direction,
    The armature buffer structure according to claim 1, wherein an axial thickness of the low hardness rubber portion (64) is set larger than an axial thickness of the high hardness rubber portion (63).
  3.  前記低硬度ゴム部(64)と前記高硬度ゴム部(63)は、軸方向に積層配置されている請求項1に記載のアーマチュアの緩衝構造。 The armature buffer structure according to claim 1, wherein the low-hardness rubber part (64) and the high-hardness rubber part (63) are laminated in the axial direction.
  4.  前記積層配置は、前記高硬度ゴム部(63)を前記環状面(53)に接着し、その高硬度ゴム部(63)の表面に前記低硬度ゴム部(64)を接着した配置である請求項3に記載のアーマチュアの緩衝構造。 The laminated arrangement is an arrangement in which the high hardness rubber portion (63) is bonded to the annular surface (53), and the low hardness rubber portion (64) is bonded to the surface of the high hardness rubber portion (63). Item 4. The armature buffer structure according to Item 3.
  5.  前記アーマチュア(30)と前記電磁石(32)の間に配置され、前記電磁石(32)の通電により前記アーマチュア(30)が吸着されるロータ(31)を更に有し、
     前記緩衝部材(50)は、前記アーマチュア(30)が前記ロータ(31)に吸着されるときの衝撃を吸収するように前記アーマチュア(30)と前記ロータ(31)の間に配置されている請求項1から4のいずれかに記載のアーマチュアの緩衝構造。
    A rotor (31) disposed between the armature (30) and the electromagnet (32), to which the armature (30) is attracted by energization of the electromagnet (32);
    The buffer member (50) is disposed between the armature (30) and the rotor (31) so as to absorb an impact when the armature (30) is attracted to the rotor (31). Item 5. The armature buffer structure according to any one of Items 1 to 4.
  6.  前記アーマチュア(30)を前記ロータ(31)から離れる方向に付勢するばね部材(15)を更に有する請求項5に記載のアーマチュアの緩衝構造。 The armature cushioning structure according to claim 5, further comprising a spring member (15) for biasing the armature (30) in a direction away from the rotor (31).
  7.  前記金属環(51)は、前記アーマチュア(30)と前記ロータ(31)のうちいずれか一方の部材に軸方向に移動可能に支持され、
     前記緩衝ゴム(52)は、前記アーマチュア(30)が前記ロータ(31)に近づくに従って前記一方の部材と前記金属環(51)との間で軸方向に圧縮されるように設けられている請求項5または6に記載のアーマチュアの緩衝構造。
    The metal ring (51) is supported by one member of the armature (30) and the rotor (31) so as to be movable in the axial direction,
    The buffer rubber (52) is provided to be compressed in the axial direction between the one member and the metal ring (51) as the armature (30) approaches the rotor (31). Item 7. The armature buffer structure according to Item 5 or 6.
  8.  請求項1から7のいずれかに記載のアーマチュアの緩衝構造と、
     回転可能に支持された外輪(1)と、
     前記外輪(1)に対して相対回転可能に支持された内方部材(2)と、
     前記外輪(1)の内周と前記内方部材(2)の外周との間に組み込まれた係合子(4a,4b)と、
     前記係合子(4a,4b)を前記外輪(1)と内方部材(2)の間に係合させる係合位置と、前記外輪(1)と内方部材(2)の間への前記係合子(4a,4b)の係合を解除する係合解除位置との間で移動可能に支持された係合子保持器(5)と、
     前記電磁石(32)の通電により前記アーマチュア(30)が軸方向に移動する動作を、前記係合子保持器(5)が前記係合位置と係合解除位置のうち一方から他方に移動する動作に変換する動作変換機構(33)と、を備える回転伝達装置。
    Armature buffer structure according to any one of claims 1 to 7,
    An outer ring (1) rotatably supported;
    An inner member (2) supported to be rotatable relative to the outer ring (1);
    Engaging members (4a, 4b) incorporated between the inner periphery of the outer ring (1) and the outer periphery of the inner member (2);
    An engagement position for engaging the engaging elements (4a, 4b) between the outer ring (1) and the inner member (2), and the engagement between the outer ring (1) and the inner member (2). An engagement holder (5) supported so as to be movable between an engagement release position for releasing the engagement of the coupling elements (4a, 4b);
    The operation in which the armature (30) moves in the axial direction by energization of the electromagnet (32) is changed to the operation in which the engagement holder (5) moves from one of the engagement position and the engagement release position to the other. A rotation transmission device comprising: a motion conversion mechanism (33) for converting.
  9.  前記アーマチュア(30)と前記電磁石(32)の軸方向の対向面間に配置され、前記内方部材(2)と一体に回転するロータ(31)を更に有し、
     前記アーマチュア(30)は、前記電磁石(32)の通電により前記ロータ(31)に吸着される請求項8に記載の回転伝達装置。
    A rotor (31) disposed between the axially opposed surfaces of the armature (30) and the electromagnet (32) and rotating integrally with the inner member (2);
    The rotation transmission device according to claim 8, wherein the armature (30) is attracted to the rotor (31) by energization of the electromagnet (32).
  10.  請求項1から7のいずれかに記載のアーマチュアの緩衝構造と、
     回転を規制した状態に支持された外輪(1)と、
     前記外輪(1)に対して相対回転可能に支持された内方部材(2)と、
     前記外輪(1)の内周と前記内方部材(2)の外周との間に組み込まれた係合子(4a,4b)と、
     前記係合子(4a,4b)を前記外輪(1)と内方部材(2)の間に係合させる係合位置と、前記外輪(1)と内方部材(2)の間への前記係合子(4a,4b)の係合を解除する係合解除位置との間で移動可能に支持された係合子保持器(5)と、
     前記電磁石(32)の通電により前記アーマチュア(30)が軸方向に移動する動作を、前記係合子保持器(5)が前記係合位置と係合解除位置のうち一方から他方に移動する動作に変換する動作変換機構(33)と、を備える回転制動装置。
    Armature buffer structure according to any one of claims 1 to 7,
    An outer ring (1) supported in a state where rotation is restricted;
    An inner member (2) supported to be rotatable relative to the outer ring (1);
    Engaging members (4a, 4b) incorporated between the inner periphery of the outer ring (1) and the outer periphery of the inner member (2);
    An engagement position for engaging the engaging elements (4a, 4b) between the outer ring (1) and the inner member (2), and the engagement between the outer ring (1) and the inner member (2). An engagement holder (5) supported so as to be movable between an engagement release position for releasing the engagement of the coupling elements (4a, 4b);
    The operation in which the armature (30) moves in the axial direction by energization of the electromagnet (32) is changed to the operation in which the engagement holder (5) moves from one of the engagement position and the engagement release position to the other. A rotation braking device comprising: a motion conversion mechanism (33) for converting.
  11.  前記アーマチュア(30)は、前記電磁石(32)の通電により前記電磁石(32)に吸着される請求項10に記載の回転制動装置。 The rotary braking device according to claim 10, wherein the armature (30) is attracted to the electromagnet (32) by energization of the electromagnet (32).
PCT/JP2019/022201 2018-06-08 2019-06-04 Buffer structure for armature, rotation transmitting device, and rotation braking device WO2019235485A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-110419 2018-06-08
JP2018110419A JP2019211057A (en) 2018-06-08 2018-06-08 Shock-absorbing structure of armature, rotation transmission device, and rotation brake device

Publications (1)

Publication Number Publication Date
WO2019235485A1 true WO2019235485A1 (en) 2019-12-12

Family

ID=68770442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022201 WO2019235485A1 (en) 2018-06-08 2019-06-04 Buffer structure for armature, rotation transmitting device, and rotation braking device

Country Status (2)

Country Link
JP (1) JP2019211057A (en)
WO (1) WO2019235485A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140911A (en) * 2014-01-30 2015-08-03 Ntn株式会社 Rotation transmission device
JP2015230020A (en) * 2014-06-04 2015-12-21 Ntn株式会社 Electromagnetic coupling device
JP2016205551A (en) * 2015-04-24 2016-12-08 Nok株式会社 Buffer stopper
JP2018043650A (en) * 2016-09-15 2018-03-22 Nok株式会社 Buffer stopper

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140911A (en) * 2014-01-30 2015-08-03 Ntn株式会社 Rotation transmission device
JP2015230020A (en) * 2014-06-04 2015-12-21 Ntn株式会社 Electromagnetic coupling device
JP2016205551A (en) * 2015-04-24 2016-12-08 Nok株式会社 Buffer stopper
JP2018043650A (en) * 2016-09-15 2018-03-22 Nok株式会社 Buffer stopper

Also Published As

Publication number Publication date
JP2019211057A (en) 2019-12-12

Similar Documents

Publication Publication Date Title
CN109458405B (en) Adsorption structure of armature and rotor
JP6093582B2 (en) Rotation transmission device
WO2013150982A1 (en) Rotation transmitting device
JP6352015B2 (en) Rotation transmission device
JP2009293759A (en) Rotation transmitting device
JP5179953B2 (en) Rotation transmission device
WO2019235485A1 (en) Buffer structure for armature, rotation transmitting device, and rotation braking device
JP6267962B2 (en) Rotation transmission device
JP6086735B2 (en) Rotation transmission device
JP6426817B2 (en) Adsorption structure of armature and rotor
JP6385104B2 (en) Rotation transmission device
WO2017145647A1 (en) Reverse input blocking device
JP2019011868A (en) Adsorption structure of armature by electromagnet
JP4106647B2 (en) Clutch release bearing device
JP2021001674A (en) Rotation transmission device and manufacturing method of the same
JP6190139B2 (en) Rotation transmission device
JP4055199B2 (en) Clutch release bearing device
JP2000346097A (en) One-way clutch and mounting structure thereof
JP2007132366A (en) Linear one-way clutch
JP2020125811A (en) Rotation transmitting device
WO2018061943A1 (en) Reverse input blocking device
JP2003028196A (en) One-way clutch
JP2015194180A (en) Rotation transmission device
JP2006010023A (en) Clutch release bearing device
CN112352114A (en) Friction clutch device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19815748

Country of ref document: EP

Kind code of ref document: A1