WO2019234868A1 - Bipolar plate, cell frame, cell stack, and redox flow battery - Google Patents

Bipolar plate, cell frame, cell stack, and redox flow battery Download PDF

Info

Publication number
WO2019234868A1
WO2019234868A1 PCT/JP2018/021777 JP2018021777W WO2019234868A1 WO 2019234868 A1 WO2019234868 A1 WO 2019234868A1 JP 2018021777 W JP2018021777 W JP 2018021777W WO 2019234868 A1 WO2019234868 A1 WO 2019234868A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
bipolar plate
discharge
introduction
electrode
Prior art date
Application number
PCT/JP2018/021777
Other languages
French (fr)
Japanese (ja)
Inventor
慶 花房
尚馬 伊田
宗一郎 奥村
将司 津島
喜久雄 藤田
慎太郎 山▲崎▼
謙太郎 矢地
鈴木 崇弘
Original Assignee
住友電気工業株式会社
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 国立大学法人大阪大学 filed Critical 住友電気工業株式会社
Priority to PCT/JP2018/021777 priority Critical patent/WO2019234868A1/en
Priority to TW108119515A priority patent/TW202002378A/en
Publication of WO2019234868A1 publication Critical patent/WO2019234868A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a bipolar plate, a cell frame, a cell stack, and a redox flow battery.
  • a redox flow battery (hereinafter sometimes referred to as “RF battery”) is known (see, for example, Patent Documents 1 and 2).
  • RF battery uses a cell stack in which a plurality of cell frames, positive electrodes, diaphragms, and negative electrodes are stacked.
  • the cell frame includes a bipolar plate disposed between the positive electrode and the negative electrode, and a frame provided on the outer periphery of the bipolar plate.
  • positive and negative electrodes are arranged between bipolar plates of adjacent cell frames with a diaphragm interposed therebetween to form one cell.
  • the RF battery performs charging / discharging by circulating an electrolyte solution in a cell containing an electrode by a pump.
  • Patent Documents 1 and 2 describe that a channel is formed by forming a plurality of grooves through which an electrolytic solution flows on the electrode side surface of a bipolar plate.
  • the bipolar plate of the present disclosure is A bipolar plate having a facing surface facing an electrode of a redox flow battery, and an introduction portion and a discharging portion for an electrolyte solution disposed on the facing surface, A groove portion CI n branching from the groove portion CI 0, and the groove CI 0 to be connected to the inlet portion, and the introduction groove not connect any of the grooves in the discharge portion, A groove portion CO 0 connected to the discharge portion, and a groove portion CO m branched from the groove portion CO 0 , each of the groove portions including a discharge groove not connected to the introduction portion, Groove CI n branches in a direction crossing the extending direction of the groove CI n-1 from the groove CI n-1, Groove CO m branches in a direction crossing the extending direction of the groove CO m-1 from the groove CO m-1, When the bipolar plate is viewed in plan, the tip of each groove is tapered. However, n and m are 1 or more arbitrary natural numbers.
  • the cell frame of the present disclosure is The bipolar plate of the present disclosure and a frame body provided on the outer periphery of the bipolar plate.
  • the cell stack of the present disclosure is The cell frame of the present disclosure is provided.
  • the redox flow battery of the present disclosure is The cell stack of the present disclosure is provided.
  • the electrode of the redox flow battery functions as a reaction field that promotes the battery reaction of the active material (metal ions) contained in the supplied electrolyte.
  • a porous material such as carbon felt made of carbon fiber is usually used for the electrode, and an electrolytic solution flows in the electrode.
  • a flow path having a groove through which the electrolytic solution flows is provided on the electrode side surface of the bipolar plate, the flow resistance of the electrolytic solution can be reduced, and the pressure loss due to the flow resistance of the electrolytic solution can be reduced.
  • a bipolar plate having a channel having a groove the flow of the electrolyte solution penetrating into the electrode can be controlled, and the distribution of the electrolyte solution in the electrode can be suppressed from becoming non-uniform. By suppressing variations in the distribution of the electrolyte solution penetrating into the electrode, the reactivity between the electrode and the electrolyte solution can be improved, and the reaction resistance at the electrode can be reduced.
  • the bipolar plate according to the embodiment is A bipolar plate having a facing surface facing an electrode of a redox flow battery, and an introduction portion and a discharging portion for an electrolyte solution disposed on the facing surface, A groove portion CI n branching from the groove portion CI 0, and the groove CI 0 to be connected to the inlet portion, and the introduction groove not connect any of the grooves in the discharge portion, A groove portion CO 0 connected to the discharge portion, and a groove portion CO m branched from the groove portion CO 0 , each of the groove portions including a discharge groove not connected to the introduction portion, Groove CI n branches in a direction crossing the extending direction of the groove CI n-1 from the groove CI n-1, Groove CO m branches in a direction crossing the extending direction of the groove CO m-1 from the groove CO m-1, When the bipolar plate is viewed in plan, the tip of each groove is tapered. However, n and m are 1 or more arbitrary natural numbers.
  • the introduction groove shown in the above definition is formed in a tree shape with the groove part CI 0 as a trunk and the groove part CI n as a branch. It can be said that the introduction groove is formed in a tree shape also in that the tip of each groove part of the introduction groove is tapered.
  • the discharge groove is formed in a tree shape with the groove portion CO 0 as a trunk and the groove portion CO m as a branch, and the discharge groove has a tree shape in that the tip of each groove portion of the discharge groove is tapered. It can be said that it is formed.
  • the electrolyte solution can be quickly dispersed in the plane direction of the bipolar plate, so that the flow resistance of the electrolyte solution can be reduced. At the same time, it is easy to distribute the electrolyte uniformly throughout the electrode.
  • the groove width in each groove portion of the introduction groove becomes smaller toward the tip side, the pressure of the electrolyte solution increases as it approaches the tip side, and the electrolyte solution easily penetrates and diffuses from the groove portion into the electrode.
  • the groove width in each groove portion of the discharge groove is reduced toward the tip side, it is possible to suppress the electrolyte from moving excessively from the electrode to the discharge groove, and it is discharged to the discharge groove without reacting with the electrode.
  • the amount of electrolyte solution can be reduced.
  • the electrolyte can be uniformly distributed to the electrode, and the reactivity between the electrode and the electrolyte can be improved, so that the internal resistance (cell resistance) of the redox flow battery can be improved. Can be reduced.
  • the amount of the electrolytic solution flowing so as to cross between the introduction groove and the discharge groove can be increased.
  • the electrolyte solution that permeates and diffuses into the electrode can be increased, and the reaction efficiency between the electrode and the electrolyte solution can be increased.
  • the opposing comb-tooth region only needs to be on at least a part of the opposing surface of the bipolar plate, and there may be a portion where the groove portion of the introduction groove and the groove portion of the discharge groove are not alternately arranged.
  • the intermediate groove has a groove part CC 0 extending from the introduction part side toward the discharge part side, and a groove part CC k branched from the groove part CC 0 , Groove CC k branches in a direction crossing the extending direction of the groove CC k-1 from the groove CC k-1,
  • k is an arbitrary natural number of 1 or more.
  • the electrolyte can be more quickly dispersed over the entire surface of the electrode. As a result, it is possible to reduce the flow resistance of the electrolytic solution and to make the distribution of the electrolytic solution more uniform.
  • the opposed comb tooth region By forming the opposed comb tooth region, it is possible to increase the amount of the electrolyte flowing so as to cross between the introduction groove and the intermediate groove and between the intermediate groove and the discharge groove. As a result, the electrolyte solution that permeates and diffuses into the electrode can be increased, and the reaction efficiency between the electrode and the electrolyte solution can be increased.
  • Examples include a form in which all the groove portions are non-linear and the groove widths are randomly changed.
  • the groove has the largest groove width at the base and the narrowest groove width at the tip.
  • the groove width of the groove part may be gradually narrowed from the root of the groove part toward the tip, or may be locally widened in the middle.
  • the said structure has shown that the introduction groove
  • the above configuration is a configuration in which the opening area of the groove portion decreases step by step each time a branch is made.
  • the electrolyte solution In the introduction groove, after the electrolyte solution is quickly spread to every corner of the introduction groove, the electrolyte solution easily penetrates and diffuses from each groove portion to the electrode. Further, in the discharge groove, the electrolyte solution is prevented from excessively moving from the electrode to each groove portion, and the reactivity between the electrode and the electrolyte solution is improved, and the electrolyte solution collected in each groove portion is quickly guided to the outlet. Thereby, the distribution
  • the introduction part includes an inlet of the electrolyte solution in the bipolar plate, and an introduction side rectification part formed along the edge of the bipolar plate from the inlet
  • the said discharge part is a form provided with the exit of the said electrolyte solution in the said bipolar plate, and the discharge side rectification
  • the electrolyte introduced from the inlet can be efficiently diffused into the introduction groove. Further, by providing the discharge side rectification unit in the discharge unit, the electrolyte solution can be efficiently recovered from the discharge groove and the electrolyte solution can be discharged from the outlet.
  • the effective electrode region that actually faces the electrode is rectangular,
  • the inlet and the outlet are provided at diagonal positions of the effective electrode region;
  • region make is 40 degrees or more and 50 degrees or less is mentioned.
  • the pressure loss in each rectifying unit can be reduced by making the angle between each rectifying unit and the diagonal line of the effective electrode region be 40 ° or more and 50 ° or less.
  • a / S is more than 0.5 and less than 0.95, where S is the area of the facing surface and A is the contact area of the facing surface that contacts the electrode.
  • the ratio A / S of the contact area (A) of the electrode to the area (S) of the opposing surface of the bipolar plate is more than 0.5, the contact area between the electrode and the bipolar plate is secured, and the electrode and the bipolar plate The contact resistance between the plates can be reduced. Thereby, the internal resistance (cell resistance) of the battery can be reduced.
  • the ratio A / S of the contact area of the electrode is preferably less than 0.95, whereby the electrolyte solution The distribution resistance can be effectively reduced.
  • the cell frame according to the embodiment is The bipolar plate according to any one of (1) to (9) above and a frame provided on the outer periphery of the bipolar plate.
  • the cell frame includes the bipolar plate according to the above-described embodiment, the reactivity between the electrode and the electrolytic solution can be improved while reducing the flow resistance of the electrolytic solution. While being able to reduce, it is possible to reduce the reaction resistance at the electrode. Therefore, when the cell frame is used in a redox flow battery, the internal resistance (cell resistance) of the battery can be reduced, and the battery performance can be improved.
  • the cell stack according to the embodiment is The cell frame according to (10) is provided.
  • the cell stack includes the cell frame according to the above-described embodiment, so that the reaction resistance at the electrode can be reduced while the pressure loss due to the flow resistance of the electrolytic solution can be reduced. Therefore, when the cell stack is used for a redox flow battery, the internal resistance (cell resistance) of the battery can be reduced, and the battery performance can be improved.
  • the redox flow battery according to the embodiment is The cell stack described in (11) above is provided.
  • the redox flow battery includes the cell stack according to the above-described embodiment, it is possible to reduce the reaction loss at the electrode while reducing the pressure loss due to the flow resistance of the electrolytic solution. Resistance (cell resistance) can be reduced. Therefore, the redox flow battery is excellent in battery performance.
  • FIG. 4 is a schematic plan view of the cell frame 3 including the bipolar plate 31 according to the embodiment when viewed from the one surface side of the bipolar plate 31.
  • One of the features of the bipolar plate 31 of the embodiment is that it has a tree-like flow path 4 (introduction path 41, discharge path 42) through which the electrolyte flows on the facing surface facing the electrode 14, as shown in FIG. In the point.
  • the RF battery 1 shown in FIG. 1 and FIG. 2 uses an electrolytic solution containing, as an active material, a metal ion whose valence changes as a result of oxidation and reduction in the positive electrode electrolyte and the negative electrode electrolyte.
  • the battery performs charging / discharging by utilizing the difference between the redox potential and the redox potential of ions contained in the negative electrode electrolyte.
  • a vanadium-based RF battery using a vanadium electrolyte solution containing V ions in the positive electrode electrolyte and the negative electrode electrolyte is shown.
  • a solid line arrow in the cell 10 in FIG. 1 indicates a charging reaction, and a broken line arrow indicates a discharging reaction.
  • the RF battery 1 is connected to the electric power system P via an AC / DC converter C, for example, for load leveling applications, applications such as sag compensation and emergency power supplies, natural energy power generation such as solar power generation and wind power generation. Used for output smoothing.
  • the RF battery 1 includes a cell 10 for charging / discharging, tanks 106 and 107 for storing an electrolyte, and circulation channels 100P and 100N for circulating the electrolyte between the tanks 106 and 107 and the cell 10. .
  • the cell 10 includes a positive electrode 14, a negative electrode 15, and a diaphragm 11 interposed between the electrodes 14 and 15.
  • the structure of the cell 10 is separated into a positive electrode cell 12 and a negative electrode cell 13 with a diaphragm 11 interposed therebetween, and a positive electrode 14 is incorporated in the positive electrode cell 12 and a negative electrode 15 is incorporated in the negative electrode cell 13.
  • Each electrode of the positive electrode 14 and the negative electrode 15 is formed of a carbon fiber aggregate including carbon fibers. Since the electrode of the carbon fiber aggregate is porous and has voids in the electrode, the electrolytic solution flows through the electrode, and the electrolytic solution can permeate and diffuse.
  • Examples of the carbon fiber aggregate include carbon felt, carbon cloth, and carbon paper.
  • Examples of the carbon fiber include PAN-based carbon fiber using polyacrylonitrile (PAN) fiber as a raw material, pitch-based carbon fiber using pitch fiber as a raw material, and rayon-based carbon fiber using rayon fiber as a raw material.
  • the diaphragm 11 is formed of, for example, an ion exchange membrane that transmits hydrogen ions.
  • an electrolytic solution (a positive electrode electrolytic solution and a negative electrode electrolytic solution) circulates through the circulation channels 100P and 100N.
  • a positive electrode electrolyte tank 106 that stores a positive electrode electrolyte is connected to the positive electrode cell 12 via a positive electrode circulation channel 100P.
  • a negative electrode electrolyte tank 107 that stores a negative electrode electrolyte is connected to the negative electrode cell 13 via a negative electrode circulation channel 100N.
  • Each circulation flow path 100P, 100N has forward piping 108, 109 for sending the electrolytic solution from each tank 106, 107 to the cell 10 and return piping 110, 111 for returning the electrolytic solution from the cell 10 to each tank 106, 107.
  • Pumps 112 and 113 for pumping the electrolytic solution stored in the tanks 106 and 107 are provided in the outgoing pipes 108 and 109, and the electrolytic solution is circulated to the cell 10 by the pumps 112 and 113.
  • the cell 10 may be configured as a single cell including a single cell 10 or may be configured as a multi-cell including a plurality of cells 10.
  • the cell 10 is normally used in a form called a cell stack 2 including a plurality of stacked cells 10 as shown in FIG.
  • the cell stack 2 is configured by sandwiching the sub stack 200 from two end plates 220 from both sides and fastening the end plates 220 on both sides by a fastening mechanism 230.
  • FIG. 3 illustrates a cell stack 2 including a plurality of substacks 200.
  • a plurality of sub-stacks 200 are stacked in the order of the cell frame 3, the positive electrode 14, the diaphragm 11, and the negative electrode 15 (see the upper diagram of FIG.
  • the cell frame 3 includes a bipolar plate 31 disposed between the positive electrode 14 and the negative electrode 15 and a frame body 32 provided around the bipolar plate 31 (see FIG. 3). (See also 4).
  • the positive electrode 14 is disposed so as to face the other surface, and on the other surface side of the bipolar plate 31, the negative electrode 15 is disposed so as to face it.
  • a bipolar plate 31 is provided inside the frame body 32, and a recess 32 o is formed by the bipolar plate 31 and the frame body 32.
  • the concave portions 32o are formed on both sides of the bipolar plate 31, and the positive electrode 14 and the negative electrode 15 are accommodated in the concave portions 32o with the bipolar plate 31 interposed therebetween.
  • Each recessed part 32o forms each cell space of the positive electrode cell 12 and the negative electrode cell 13 (refer FIG. 1).
  • the planar shape of each of the positive electrode 14 and the negative electrode 15 is not particularly limited, but is rectangular in this embodiment. Moreover, the planar opening shape of the recessed part 32o is the same rectangular shape as an electrode, and the size of the recessed part 32o and an electrode is substantially the same. And the effective electrode area
  • the bipolar plate 31 is made of, for example, plastic carbon
  • the frame body 32 is made of, for example, plastic such as vinyl chloride resin (PVC), polypropylene, polyethylene, fluorine resin, or epoxy resin.
  • PVC vinyl chloride resin
  • polypropylene polypropylene
  • polyethylene polyethylene
  • fluorine resin or epoxy resin.
  • a frame 32 is integrated around the bipolar plate 31 by injection molding or the like.
  • the one surface side and the other surface side of the frame 32 of each adjacent cell frame 3 face each other and face each other, and between the bipolar plates 31 of each adjacent cell frame 3 respectively.
  • One cell 10 is formed.
  • the electrodes 14 and 15 are accommodated in the recessed portions 32o of the frame body 32 in a compressed state in the thickness direction.
  • An annular seal member 37 such as an O-ring or a flat packing is disposed between the frame bodies 32 of each cell frame 3 in order to suppress leakage of the electrolytic solution.
  • a seal groove 38 (see FIG. 4) for arranging the seal member 37 is formed in the frame body 32.
  • the electrolyte solution in the cell 10 flows through the supply manifolds 33 and 34 and the drainage manifolds 35 and 36 formed through the frame 32 of the cell frame 3 and the supply slits 33 s formed in the frame 32. , 34s and drainage slits 35s, 36s.
  • the positive electrode electrolyte is supplied from a liquid supply manifold 33 formed in the lower part of the frame body 32 through a liquid supply slit 33s formed on one surface side of the frame body 32. Are supplied to the positive electrode 14 and discharged to the drainage manifold 35 through the drainage slit 35 s formed in the upper part of the frame 32.
  • the negative electrode electrolyte is supplied from the liquid supply manifold 34 formed in the lower part of the frame 32 to the negative electrode 15 through the liquid supply slit 34 s formed on the other surface side of the frame 32, and the frame 32.
  • the liquid is discharged to the drainage manifold 36 through the drainage slit 36s formed in the upper part.
  • the liquid supply manifolds 33 and 34 and the drainage manifolds 35 and 36 constitute a flow path for the electrolytic solution by stacking the cell frames 3.
  • These flow paths communicate with the forward pipes 108 and 109 and the return pipes 110 and 111 of the circulation flow paths 100P and 100N (see FIGS. 1 and 2) via the supply / discharge plate 210 (see the lower figure of FIG. 3), respectively. It is possible to distribute the electrolyte in the cell 10.
  • the electrolytic solution is introduced from the lower side of the positive electrode 14 and the negative electrode 15, and the electrolytic solution is discharged from the upper side of the electrodes 14, 15.
  • the electrolyte flows from the lower edge of 15 toward the upper edge. 2 and 3, the arrows in the electrodes 14 and 15 indicate the overall flow direction of the electrolytic solution.
  • a flow path 4 through which an electrolytic solution flows is formed on the opposing surface of the bipolar plate 31 that faces the electrodes 14 and 15.
  • the flow path 4 of this embodiment is comprised by the introduction part 4A, the introduction path 41, the discharge part 4B, and the discharge path 42 which are mentioned later.
  • the portion where the flow path 4 is not formed is hatched.
  • One side (the front side of the drawing) of the bipolar plate 31 shown in FIG. 4 is a facing surface facing the positive electrode 14, and the other side (the back side of the drawing) is the negative electrode 15 (see FIG. 3, not shown in FIG. 4). It is the opposing surface which opposes.
  • the lower side to which the liquid supply slit 33s is connected is the positive electrode electrolyte introduction side
  • the upper side to which the drainage slit 35s is connected is the positive electrode electrolyte discharge side.
  • the thick line arrow on the left side of the drawing indicates the overall flow direction of the electrolytic solution.
  • FIG. 4 only one surface side of the bipolar plate 31 facing the positive electrode 14 is shown, but the flow path of the electrolytic solution is also provided on the other surface side of the bipolar plate 31 facing the negative electrode 15, similarly to the one surface side. Is formed. Since the structure of the negative electrode electrolyte channel formed on the other surface side of the bipolar plate 31 is the same as that of the positive electrode electrolyte channel 4 shown in FIG.
  • the introduction part 4 ⁇ / b> A is a part for introducing the electrolytic solution into the bipolar plate 31.
  • 4 A of introduction parts of this example are provided with the inlet 4i of electrolyte solution, and the introduction side rectification
  • the inlet 4i is a portion to which the liquid supply slit 33s is connected, and the electrolytic solution is introduced from the inlet 4i through the liquid supply slit 33s.
  • the inlet 4i is located at the center of the lower side of the effective electrode region.
  • the introduction side rectification unit 410 is formed along the lower edge of the bipolar plate 31.
  • the introduction path 41 is connected to the introduction side rectification unit 410 and communicates with the inlet 4 i through the introduction side rectification unit 410.
  • the introduction-side rectification unit 410 diffuses the electrolyte introduced from the inlet 4 i along the lower edge of the bipolar plate 31 and uniformly introduces the electrolyte into each introduction path 41.
  • the introduction side rectification unit 410 may be omitted, and in this case, the introduction unit 4A is configured only by the inlet 4i.
  • the discharge part 4 ⁇ / b> B is a part for discharging the electrolytic solution from the bipolar plate 31.
  • the discharge unit 4B of the present example includes an outlet 4o for the electrolyte, and a discharge-side rectifying unit 420 formed along the edge of the bipolar plate 31 from the outlet 4o.
  • the outlet 4o is a portion to which the drainage slit 35s is connected, and the electrolytic solution is discharged from the outlet 4o to the drainage slit 35s.
  • the outlet 4o is located at the center of the upper side of the effective electrode region.
  • the discharge side rectification unit 420 is formed along the upper edge of the bipolar plate 31.
  • the discharge path 42 formed in a tree shape is connected to the discharge side rectification unit 420 and communicates with the outlet 4o via the discharge side rectification unit 420.
  • the discharge side rectification unit 420 collects the electrolyte discharged from each discharge path 42 along the upper edge of the bipolar plate 31 at the outlet 4o.
  • the discharge side rectification unit 420 may be omitted, and in that case, the discharge unit 4B is configured only by the outlet 4o.
  • the introduction path 41 includes a plurality of introduction grooves 51 a, 51 b, 51 c connected to the introduction part 4 ⁇ / b> A, and diffuses the electrolytic solution from the introduction part 4 ⁇ / b> A in the planar direction of the bipolar plate 31.
  • the discharge path 42 is composed of a plurality of discharge grooves 52a, 52b, 52c connected to the discharge part 4B, collects the electrolyte solution diffused in the plane direction of the bipolar plate 31, and guides it to the discharge part 4B.
  • the introduction path 41 and the discharge path 42 are independent without communicating with each other.
  • the electrolytic solution flows so as to cross between the introduction path 41 and the discharge path 42, and at that time, the electrolytic solution permeates and diffuses into the electrode 14.
  • the electrolytic solution can be uniformly distributed throughout the electrode 14.
  • the distribution of the electrolytic solution in the electrode 14 can be made more effective and uniform, and the reactivity between the electrode 14 and the electrolytic solution can be further improved.
  • the flow path 4 shown in FIG. 4 is axisymmetric (left-right symmetric) with a center line (indicated by a one-dot chain line in the figure) connecting the inlet 4i and the outlet 4o as an axis of symmetry, and further, the inlet 4i side ( The lower side is asymmetric with the outlet 4o side (upper side). Since the flow path 4 is formed asymmetrically between the introduction side and the discharge side, it is possible to improve the flow of the electrolyte solution on the discharge side where the pressure of the electrolyte solution decreases.
  • the introduction grooves 51a to 51c constituting the introduction path 41 are connected to the introduction side rectification unit 410, extend from the introduction side (lower side) to the discharge side (upper side), and the distal end on the discharge side is a closed end.
  • the discharge grooves 52a to 52c constituting the discharge path 42 are connected to the discharge side rectification unit 420, extend from the discharge side (upper side) toward the introduction side (lower side), and the leading end on the introduction side is a closed end. .
  • Each groove 5 (introduction grooves 51a to 51c and discharge grooves 52a to 52c) is open on the surface of the bipolar plate 31 facing the electrode 14, and as shown in FIG. It is formed so as to become smaller toward.
  • the opening width decreases toward the tip side, so that the pressure of the electrolyte increases as it approaches the tip side, and the electrolyte solution easily penetrates into the electrode 14 from the introduction grooves 51a to 51c.
  • the “opening width” of the groove 5 refers to a groove width orthogonal to the longitudinal direction of the groove 5.
  • the opening width (groove width) and depth (groove depth) of the groove 5 can be appropriately selected according to the size and thickness of the bipolar plate 31 and are not particularly limited.
  • the groove width is, for example, from 0.2 mm to 10 mm, further from 0.5 mm to 5 mm, and the groove depth is, for example, from 0.1 mm to 3 mm, further from 0.2 mm to 2 mm.
  • the surface of the bipolar plate 31 is cut with a cutting tool such as an end mill.
  • a cutting tool such as an end mill.
  • a / S is preferably more than 0.5 and less than 0.95. Since the ratio A / S of the contact area (A) of the electrode 14 to the area (S) of the opposite surface of the bipolar plate 31 is more than 0.5, the contact area between the electrode 14 and the bipolar plate 31 is secured. The contact resistance between the electrode 14 and the bipolar plate 31 can be reduced. Thereby, the internal resistance (cell resistance) of the battery can be reduced.
  • the ratio A / S of the contact area of the electrode 14 is preferably less than 0.95.
  • the ratio A / S of the contact area of the electrode 14 is, for example, preferably 0.6 or more and 0.9 or less, and more preferably 0.7 or more and 0.8 or less.
  • the “planar opening area” of the groove 5 refers to the opening area of the groove 5 on the facing surface when the bipolar plate 31 is viewed in plan.
  • FIG. 6 shows a cross-sectional shape of the groove 5 in the present embodiment.
  • the width of the groove 5 on the opening 56 side is equal to or larger than the width on the bottom 57 side in the cross section orthogonal to the flow direction of the electrolyte in the groove 5.
  • the cross-sectional shape is tapered from the opening 56 side toward the bottom 57 side. Therefore, when the width of the groove 5 on the opening 56 side is equal to or larger than the width on the bottom 57 side, the groove 5 can be formed more easily than the case where the width on the bottom 57 side is wider than the opening 56 side.
  • the cross-sectional shape of the groove 5 (particularly, the introduction grooves 51a to 51c) is tapered from the opening 56 side toward the bottom 57 side, the electrolytic solution can easily penetrate from the groove 5 into the electrode.
  • the cross-sectional shape of the groove 5 include a rectangular shape, a triangular shape (V shape), a trapezoidal shape, a semicircular shape, and a semielliptical shape.
  • ⁇ Dendritic groove> Among the grooves 5 shown in FIG. 4, at least a part of the introduction groove and at least a part of the discharge groove are formed in a tree shape.
  • the dendritic introduction groove is an introduction groove that satisfies the following three conditions.
  • the introduction grooves 51a and 51c correspond to the dendritic introduction grooves.
  • ⁇ Groove CI n has branches in a direction intersecting the groove CI n-1 in the groove CI n-1 in the stretching direction. When the bipolar plate 31 is viewed in plan, the tip width of any groove is narrower than the width of other portions.
  • the groove portion CI 0 is referred to as a trunk groove portion 60
  • the groove portion CI 1 is referred to as a branch groove portion 61
  • the groove portion CI 2 is referred to as a branch groove portion 62.
  • the number of branching of the branch groove that is, n is preferably 3 or less. By limiting n to 3 or less, excessive narrowing of the groove width of the branch groove portion due to branching can be avoided.
  • the tree-shaped discharge groove is a discharge groove that satisfies the following three conditions, and in this example, the discharge grooves 52a and 52c correspond to the tree-shaped discharge grooves.
  • the tree-shaped discharge groove has a groove portion CO 0 connected to the discharge portion 4B and a groove portion CO m branched from the groove portion CO 0 (m is a natural number of 1 or more), and any groove portion is connected to the introduction portion 4A. do not do.
  • ⁇ Groove CO m has branches in a direction intersecting the groove CO m-1 in the extending direction of the groove CO m-1. When the bipolar plate 31 is viewed in plan, the tip width of any groove is narrower than the width of other portions.
  • the groove CO 0 is referred to as a trunk groove 70
  • the groove CO 1 is referred to as a branch groove 71
  • the groove CO 2 is referred to as a branch groove 72.
  • the number of branching of the branch groove portion that is, m is preferably 3 or less. By limiting m to 3 or less, excessive narrowing of the groove width of the branch groove portion due to branching can be avoided.
  • At least a part of the introduction grooves 51a and 51c and at least a part of the discharge grooves 52a and 52c are formed in a tree shape, so that the electrolyte can easily permeate and diffuse over a wide range in the electrode 14. It is possible to make the distribution of the electrolytic solution in the electrode 14 more uniform. Therefore, the reactivity between the electrode 14 and the electrolytic solution can be further improved.
  • the configuration of the introduction groove and the discharge groove formed in a tree shape will be described in detail by taking the introduction groove 51c and the discharge groove 52c as examples.
  • the introduction groove 51 c includes a trunk groove part 60, two branch groove parts 61 branched from the trunk groove part 60, and a branch groove part 62 branched from one branch groove part 61.
  • the opening width (W a1 ) of the branch groove portion 61 is smaller than the opening width (W a0 ) of the trunk groove portion 60.
  • the opening width (W a2 ) of the branch groove portion 62 is smaller than the opening width (W b1 ) of the branch groove portion 61.
  • the relationship between the opening widths before and after branching is the same even when the number of branches is further increased, and the opening widths of the groove portions 60, 61, and 62 are gradually reduced as they branch. Therefore, the total area of the trunk groove part 60> the total area of the two branch groove parts 61> the total area of the branch groove part 62. With such a configuration, the contact area between the electrode 14 and the bipolar plate 31 is increased, and the contact resistance between the electrode 14 and the bipolar plate 31 can be reduced.
  • the discharge groove 52 c includes a trunk groove part 70 and a branch groove part 71 branched from the trunk groove part 70.
  • the opening width (W c1 ) of the branch groove portion 71 is smaller than the opening width (W c0 ) of the trunk groove portion 70.
  • the relationship between the opening widths before and after branching is the same even if the number of branches is further increased, and the opening widths of the groove portions 70 and 71 are gradually reduced as the branching is performed. Therefore, the total area of the trunk groove part 70> the total area of the branch groove part 71.
  • the branch groove part 61 (71) intersects the trunk groove part 60 (70) non-orthogonally. . Since the branch groove portion 61 (71) intersects the trunk groove portion 60 (70) in a non-orthogonal direction, the flow resistance of the electrolytic solution is larger than when the branch groove portion 61 (71) is perpendicular to the trunk groove portion 60 (70). Can be reduced. “Intersecting non-orthogonally” typically refers to a case where the inclination angle ⁇ ( ⁇ ) of the branch groove portion 61 (71) in the extending direction with respect to the extending direction of the trunk groove portion 60 (70) is an acute angle. The inclination angle ⁇ ( ⁇ ) is, for example, not less than 10 ° and not more than 80 °.
  • the introduction grooves 51a to 51c of the introduction path 41 and the discharge grooves 52a to 52c of the discharge path 42 have opposing comb tooth regions that are alternately arranged facing each other.
  • the branch groove portions 61 of the introduction groove 51a and the branch groove portions 72 of the discharge groove 52a are alternately arranged facing each other, and these also form an opposing comb tooth region.
  • the flow path 4 has the opposing comb tooth region, the amount of the electrolyte flowing so as to cross between the introduction path 41 (introduction grooves 51a to 51c) and the discharge path 42 (discharge grooves 52a to 52c) increases.
  • the electrolyte solution that permeates and diffuses into the electrode 14 increases. Thereby, the reaction efficiency of the electrode 14 and electrolyte solution can be improved.
  • a convex portion 59 protruding from the bottom portion may be formed in the wide portion. Since the convex portion 59 is provided in the wide portion of the groove 5, it is possible to suppress the electrode 14 from being buried in the groove 5.
  • the base end sides (sides connected to the rectifying units 410 and 420) of the introduction groove 51a and the discharge groove 52a are partially widened, and the portion Convex part 59 is provided in this.
  • the shape of the convex portion 59 when viewed in plan is not particularly limited, and various shapes such as a polygonal shape such as a triangle and a quadrangle, a circular shape, and an elliptical shape can be employed. Further, the number of the convex portions 59 arranged in the wide portion may be one or plural.
  • All the groove portions 60, 61, 62, 70, 71, 72 constituting the introduction grooves 51a to 51c and the discharge grooves 52a to 52c may be non-linear and the groove width may be changed randomly. This indicates that the introduction grooves 51a to 51c and the discharge grooves 52a to 52c are formed in a more organic dendritic shape. Such organic dendritic introduction grooves 51a to 51c and discharge grooves 52a to 52c facilitate uniform dispersion of the electrolyte over the entire surface of the electrode 14.
  • the electrolyte solution can be uniformly distributed on the electrode 14 and the reactivity between the electrode 14 and the electrolyte solution can be improved, so that the internal resistance of the redox flow battery ( (Cell resistance) can be reduced.
  • the cell frame 3 includes the bipolar plate 31, the reactivity between the electrode 14 and the electrolytic solution can be improved while reducing the flow resistance of the electrolytic solution.
  • the reaction resistance at the electrode 14 can be reduced.
  • the cell stack 2 includes the cell frame 3, it is possible to reduce the reaction resistance at the electrode 14 while reducing the pressure loss due to the flow resistance of the electrolytic solution.
  • the reaction resistance at the electrode 14 can be reduced while the pressure loss due to the flow resistance of the electrolytic solution can be reduced. Resistance (cell resistance) can be reduced.
  • the effective electrode area of the bipolar plate 31 shown in FIG. 7 is rectangular.
  • the inlet 4i is positioned at the lower right corner of the effective electrode region
  • the outlet 4o is positioned at the upper left corner of the effective electrode region
  • the inlet 4i and the outlet 4o are the effective electrodes. It is provided at a diagonal position of the region.
  • the introduction side rectification unit connected to the inlet 4i is formed along the introduction side rectification unit 410 formed along the lower edge portion of the bipolar plate 31 and the right edge portion of the bipolar plate 31.
  • an introduction side rectification unit 411 is formed along the introduction side rectification unit 410 formed along the lower edge portion of the bipolar plate 31 and the right edge portion of the bipolar plate 31.
  • a discharge side rectification unit connected to the outlet 4o a discharge side rectification unit 420 formed along the upper edge of the bipolar plate 31, and a discharge side rectification formed along the left edge of the bipolar plate 31 Part 421.
  • the introduction side rectification units 410 and 411 and the discharge side rectification units 420 and 421 are formed so as not to communicate with each other.
  • the introduction path 41 includes introduction grooves 51a to 51d connected to the introduction side rectification sections 410 and 411
  • the discharge path 42 includes discharge grooves 52a to 52d connected to the discharge side rectification sections 420 and 421.
  • the introduction grooves 51c and 51d are dendritic grooves formed in a tree shape, and the trunk groove portion 60 (70) and the branch groove portion 61 branched from the trunk groove portion 60 (70). (71).
  • the branch groove part 61 (71) intersects the trunk groove part 60 (70) non-orthogonally.
  • the flow path 4 is axisymmetric with respect to a diagonal line (indicated by a one-dot chain line in the figure) connecting the inlet 4i and the outlet 4o. Further, the angle formed by the rectifying units 410, 411, 420, and 421 and the diagonal line of the effective electrode region (the diagonal line connecting the inlet 4i and the outlet 4o) is 40 ° or more and 50 ° or less. By setting the angle formed between each rectifying unit 410, 411, 420, 421 and the diagonal line of the effective electrode region within the above range, pressure loss in the rectifying units 410, 411, 420, 421 can be reduced.
  • the intermediate groove 54 is an independent closed groove that does not communicate with the introduction-side rectification units 410 and 411 and the discharge-side rectification units 420 and 421, and the introduction grooves 51a to 51d and the discharge grooves 52a to 52d.
  • the intermediate groove 54 is a dendritic groove that satisfies the following three conditions.
  • ⁇ Groove CC k has branches in a direction intersecting the groove CC k-1 in the extending direction of the groove CC k-1.
  • the tip width of any groove is narrower than the width of other portions.
  • the groove portion CC 0 is referred to as a trunk groove portion 80
  • the groove portion CC 1 is referred to as a branch groove portion 81
  • the groove portion CC 2 is referred to as a branch groove portion 82.
  • the number of branches of the branch groove portion that is, k is 3 or less. By limiting k to 3 or less, excessive narrowing of the groove width of the branch groove portion due to branching can be avoided.
  • the trunk groove 80 of the intermediate groove 44 extends along a diagonal line connecting the inlet 4i and the outlet 4o.
  • the branch groove portion 81 is branched from each end portion on the introduction side (lower right side) and the discharge side (upper left side) of the trunk groove portion 80. Furthermore, the branch groove part 82 branches off from the tip of each branch groove part 81. In the intermediate groove 54, the branch groove portion 81 intersects the trunk groove portion 80 in a non-orthogonal manner.
  • the opposed comb tooth region formed by the introduction grooves 51a to 51c or the discharge grooves 52a to 52c and the intermediate groove 54 have By forming these opposed comb-tooth regions, it is easy to diffuse the electrolytic solution over a wide range with respect to the electrode, and it is easy to make the distribution of the electrolytic solution in the electrode more uniform.
  • the introduction groove 51a and the trunk groove part 60 of the intermediate groove 54 each have a wide part, and the convex part 59 is arranged in each wide part.
  • Test Example 1 A bipolar plate having an electrolyte flow path corresponding to the embodiment was fabricated, and an RF battery was assembled using the bipolar plate, and the cell resistivity was examined.
  • test Example 1 sample No. 1 in which the flow path shown in FIGS. 1-No. Three grooved bipolar plates were prepared.
  • the material of the bipolar plate is plastic carbon.
  • the bipolar plate No. 3 has the same shape and size, and only the flow path is different, and the electrode contact area A on the surface facing the electrode and the planar opening area B of the grooves constituting the flow path are different.
  • the area (S) of the opposing surface of each bipolar plate is the same at 891 mm 2 (27 mm ⁇ 33 mm).
  • Table 1 shows the electrode contact area A of the bipolar plate in each sample and the ratio A / S of the electrode contact area (A) to the area (S) of the facing surface.
  • Sample No. 1-No. A single cell RF battery was assembled using 3 bipolar plates.
  • the single cell was prepared by placing positive and negative electrodes on both sides of the diaphragm and sandwiching the cell frame with bipolar plates from both sides. Carbon felt was used for each positive and negative electrode.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

A bipolar plate that has a facing surface facing an electrode of a redox flow battery, and an electrolytic solution introduction section and discharge section positioned on the facing surface, said bipolar plate comprising: an introduction path that has a groove section CI0 connecting to the introduction section and a groove section CIn branching off from the groove section CI0, neither of said grooves connecting to the discharge section; and a discharge path that has a groove section CO0 connecting to the discharge section and a groove section COm branching off from the groove section CO0, neither of said grooves connecting to the introduction section, wherein the groove section CIn branches off from a groove section CIn-1 in a direction intersecting the direction of extension of the groove section CIn-1, the groove section COm branches off from a groove section COm-1 in a direction intersecting the direction of extension of the groove section COm-1, and when the bipolar plate is in planar view, tip end sections of all of the grooves are tapered. Here, n and m are arbitrary natural numbers greater than or equal to 1.

Description

双極板、セルフレーム、セルスタック、及びレドックスフロー電池Bipolar plate, cell frame, cell stack, and redox flow battery
 本発明は、双極板、セルフレーム、セルスタック、及びレドックスフロー電池に関する。 The present invention relates to a bipolar plate, a cell frame, a cell stack, and a redox flow battery.
 大容量の蓄電池の一つとして、レドックスフロー電池(以下、「RF電池」と呼ぶ場合がある)が知られている(例えば、特許文献1、2を参照)。一般的に、RF電池では、セルフレーム、正極電極、隔膜、負極電極をそれぞれ複数積層してなるセルスタックが使用されている。セルフレームは、正極電極と負極電極との間に配置される双極板と、双極板の外周に設けられる枠体とを備えている。セルスタックは、隣接するセルフレームの双極板の間に、隔膜を挟んで正負の電極が配置され、1つのセルが形成される。RF電池は、電極が内蔵されたセルに電解液をポンプで循環させて充放電を行う。 As one of large-capacity storage batteries, a redox flow battery (hereinafter sometimes referred to as “RF battery”) is known (see, for example, Patent Documents 1 and 2). In general, an RF battery uses a cell stack in which a plurality of cell frames, positive electrodes, diaphragms, and negative electrodes are stacked. The cell frame includes a bipolar plate disposed between the positive electrode and the negative electrode, and a frame provided on the outer periphery of the bipolar plate. In the cell stack, positive and negative electrodes are arranged between bipolar plates of adjacent cell frames with a diaphragm interposed therebetween to form one cell. The RF battery performs charging / discharging by circulating an electrolyte solution in a cell containing an electrode by a pump.
 特許文献1、2には、双極板の電極側の面に電解液が流通する複数の溝を形成して流路を構成することが記載されている。 Patent Documents 1 and 2 describe that a channel is formed by forming a plurality of grooves through which an electrolytic solution flows on the electrode side surface of a bipolar plate.
特開2015-122230号公報JP2015-122230A 特開2015-210849号公報JP 2015-210849 A
 本開示の双極板は、
 レドックスフロー電池の電極に対向する対向面と、前記対向面に配置される電解液の導入部及び排出部と、を有する双極板であって、
 前記導入部に接続する溝部CI、及び前記溝部CIから分岐する溝部CIを有し、いずれの溝部も前記排出部に接続しない導入溝と、
 前記排出部に接続する溝部CO、及び前記溝部COから分岐する溝部COを有し、いずれの溝部も前記導入部に接続しない排出溝と、を備え、
 溝部CIは、溝部CIn-1から溝部CIn-1の延伸方向に交差する方向に分岐し、
 溝部COは、溝部COm-1から溝部COm-1の延伸方向に交差する方向に分岐し、
 前記双極板を平面視したとき、いずれの溝部においてもその先端部が先細りとなっている。
 但し、n、mは1以上の任意の自然数である。
The bipolar plate of the present disclosure is
A bipolar plate having a facing surface facing an electrode of a redox flow battery, and an introduction portion and a discharging portion for an electrolyte solution disposed on the facing surface,
A groove portion CI n branching from the groove portion CI 0, and the groove CI 0 to be connected to the inlet portion, and the introduction groove not connect any of the grooves in the discharge portion,
A groove portion CO 0 connected to the discharge portion, and a groove portion CO m branched from the groove portion CO 0 , each of the groove portions including a discharge groove not connected to the introduction portion,
Groove CI n branches in a direction crossing the extending direction of the groove CI n-1 from the groove CI n-1,
Groove CO m branches in a direction crossing the extending direction of the groove CO m-1 from the groove CO m-1,
When the bipolar plate is viewed in plan, the tip of each groove is tapered.
However, n and m are 1 or more arbitrary natural numbers.
 本開示のセルフレームは、
 上記本開示の双極板と、前記双極板の外周に設けられる枠体と、を備える。
The cell frame of the present disclosure is
The bipolar plate of the present disclosure and a frame body provided on the outer periphery of the bipolar plate.
 本開示のセルスタックは、
 上記本開示のセルフレームを備える。
The cell stack of the present disclosure is
The cell frame of the present disclosure is provided.
 本開示のレドックスフロー電池は、
 上記本開示のセルスタックを備える。
The redox flow battery of the present disclosure is
The cell stack of the present disclosure is provided.
実施形態に係るレドックスフロー電池の動作原理図である。It is an operation principle figure of the redox flow battery concerning an embodiment. 実施形態に係るレドックスフロー電池の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the redox flow battery which concerns on embodiment. 実施形態に係るセルスタックの一例を示す概略構成図である。It is a schematic block diagram which shows an example of the cell stack which concerns on embodiment. 実施形態に係る双極板を備えるセルフレームを、双極板の一面側から平面視したときの概略平面図である。It is a schematic plan view when a cell frame provided with the bipolar plate which concerns on embodiment is planarly viewed from the one surface side of the bipolar plate. 図4に示す電解液の流路の一部を抜き出して示す拡大図である。It is an enlarged view which extracts and shows a part of flow path of the electrolyte solution shown in FIG. 実施形態における溝の断面形状を模式的に示す概略断面図である。It is a schematic sectional drawing which shows typically the cross-sectional shape of the groove | channel in embodiment. 実施形態に係る双極板の変形例を示す概略平面図である。It is a schematic plan view which shows the modification of the bipolar plate which concerns on embodiment. 試験例1に用いた試料No.1の双極板を示す平面図である。Sample No. used in Test Example 1 It is a top view which shows 1 bipolar plate. 試験例1に用いた試料No.2の双極板を示す平面図である。Sample No. used in Test Example 1 It is a top view which shows 2 bipolar plates. 試験例1に用いた試料No.3の双極板を示す平面図である。Sample No. used in Test Example 1 3 is a plan view showing a bipolar plate 3. FIG.
 [本開示が解決しようとする課題]
 レドックスフロー電池の更なる電池性能の向上が望まれており、電池性能を向上する観点から、電池の内部抵抗(セル抵抗)を低減することが求められている。内部抵抗の要因としては、電解液の流通状態、例えば、電解液の流通抵抗、電極での反応抵抗などが挙げられる。
[Problems to be solved by the present disclosure]
Further improvement of the battery performance of the redox flow battery is desired. From the viewpoint of improving the battery performance, it is required to reduce the internal resistance (cell resistance) of the battery. As a factor of the internal resistance, there are a flow state of the electrolytic solution, for example, a flow resistance of the electrolytic solution, a reaction resistance at the electrode, and the like.
 レドックスフロー電池の電極は、供給された電解液に含まれる活物質(金属イオン)の電池反応を促進させる反応場として機能する。電極には、通常、炭素繊維からなるカーボンフェルトなどの多孔質材料が利用されており、電極内に電解液が流通する。双極板の電極側の面に電解液が流通する溝を有する流路を備える場合、電解液の流通抵抗を低減でき、電解液の流通抵抗による圧力損失を低減できる。また、溝を有する流路を備える双極板を用いることで、電極内に浸透する電解液の流れを制御して、電極内での電解液の分布が不均一になることを抑制できる。電極内に浸透する電解液の分布のバラツキを抑制することにより、電極と電解液との反応性を向上でき、電極での反応抵抗を低減できる。 The electrode of the redox flow battery functions as a reaction field that promotes the battery reaction of the active material (metal ions) contained in the supplied electrolyte. A porous material such as carbon felt made of carbon fiber is usually used for the electrode, and an electrolytic solution flows in the electrode. When a flow path having a groove through which the electrolytic solution flows is provided on the electrode side surface of the bipolar plate, the flow resistance of the electrolytic solution can be reduced, and the pressure loss due to the flow resistance of the electrolytic solution can be reduced. Further, by using a bipolar plate having a channel having a groove, the flow of the electrolyte solution penetrating into the electrode can be controlled, and the distribution of the electrolyte solution in the electrode can be suppressed from becoming non-uniform. By suppressing variations in the distribution of the electrolyte solution penetrating into the electrode, the reactivity between the electrode and the electrolyte solution can be improved, and the reaction resistance at the electrode can be reduced.
 しかしながら、従来では、電極での電解液の流通状態を十分に考慮した上で内部抵抗を低減することについて、必ずしも十分な検討がなされているとは言えなかった。従来の双極板は、流路が主として直線状の溝で構成されているため、溝のレイアウトの自由度が低く、電極内での電解液の分布の均一性を十分に高めることが難しいなど、電極と電解液との反応性を改善する余地がある。 However, in the past, it has not been said that sufficient studies have been made to reduce the internal resistance after sufficiently considering the flow state of the electrolyte solution at the electrode. In the conventional bipolar plate, since the flow path is mainly composed of linear grooves, the degree of freedom in the layout of the grooves is low, and it is difficult to sufficiently improve the uniformity of the distribution of the electrolyte in the electrodes. There is room for improving the reactivity between the electrode and the electrolyte.
 そこで、本開示は、電解液の流通抵抗を低減しつつ、電極と電解液との反応性を向上できる双極板を提供することを目的の一つとする。また、本開示は、電池性能を向上できるセルフレーム及びセルスタックを提供することを目的の一つとする。更に、本開示は、電池性能に優れるレドックスフロー電池を提供することを目的の一つとする。 Therefore, an object of the present disclosure is to provide a bipolar plate that can improve the reactivity between the electrode and the electrolyte while reducing the flow resistance of the electrolyte. Another object of the present disclosure is to provide a cell frame and a cell stack that can improve battery performance. Furthermore, an object of the present disclosure is to provide a redox flow battery having excellent battery performance.
 [本開示の効果]
 本開示によれば、電解液の流通抵抗を低減しつつ、電極と電解液との反応性を向上できる双極板を提供できる。また、本開示によれば、電池性能を向上できるセルフレーム及びセルスタックを提供できる。更に、本開示によれば、電池性能に優れるレドックスフロー電池を提供できる。
[Effects of the present disclosure]
According to the present disclosure, it is possible to provide a bipolar plate that can improve the reactivity between the electrode and the electrolytic solution while reducing the flow resistance of the electrolytic solution. Moreover, according to this indication, the cell frame and cell stack which can improve battery performance can be provided. Furthermore, according to the present disclosure, a redox flow battery having excellent battery performance can be provided.
 [本願発明の実施形態の説明]
 最初に本願発明の実施形態の内容を列記して説明する。
[Description of Embodiment of Present Invention]
First, the contents of the embodiments of the present invention will be listed and described.
 (1)実施形態に係る双極板は、
 レドックスフロー電池の電極に対向する対向面と、前記対向面に配置される電解液の導入部及び排出部と、を有する双極板であって、
 前記導入部に接続する溝部CI、及び前記溝部CIから分岐する溝部CIを有し、いずれの溝部も前記排出部に接続しない導入溝と、
 前記排出部に接続する溝部CO、及び前記溝部COから分岐する溝部COを有し、いずれの溝部も前記導入部に接続しない排出溝と、を備え、
 溝部CIは、溝部CIn-1から溝部CIn-1の延伸方向に交差する方向に分岐し、
 溝部COは、溝部COm-1から溝部COm-1の延伸方向に交差する方向に分岐し、
 前記双極板を平面視したとき、いずれの溝部においてもその先端部が先細りとなっている。
 但し、n、mは1以上の任意の自然数である。
(1) The bipolar plate according to the embodiment is
A bipolar plate having a facing surface facing an electrode of a redox flow battery, and an introduction portion and a discharging portion for an electrolyte solution disposed on the facing surface,
A groove portion CI n branching from the groove portion CI 0, and the groove CI 0 to be connected to the inlet portion, and the introduction groove not connect any of the grooves in the discharge portion,
A groove portion CO 0 connected to the discharge portion, and a groove portion CO m branched from the groove portion CO 0 , each of the groove portions including a discharge groove not connected to the introduction portion,
Groove CI n branches in a direction crossing the extending direction of the groove CI n-1 from the groove CI n-1,
Groove CO m branches in a direction crossing the extending direction of the groove CO m-1 from the groove CO m-1,
When the bipolar plate is viewed in plan, the tip of each groove is tapered.
However, n and m are 1 or more arbitrary natural numbers.
 上記規定に示す導入溝は、溝部CIを幹、溝部CIを枝とする樹状に形成されている。導入溝の各溝部の先端部が先細りとなっている点でも、導入溝は樹状に形成されていると言える。同様に、排出溝は、溝部COを幹、溝部COを枝とする樹状に形成されており、排出溝の各溝部の先端部が先細りとなっている点でも排出溝は樹状に形成されていると言える。 The introduction groove shown in the above definition is formed in a tree shape with the groove part CI 0 as a trunk and the groove part CI n as a branch. It can be said that the introduction groove is formed in a tree shape also in that the tip of each groove part of the introduction groove is tapered. Similarly, the discharge groove is formed in a tree shape with the groove portion CO 0 as a trunk and the groove portion CO m as a branch, and the discharge groove has a tree shape in that the tip of each groove portion of the discharge groove is tapered. It can be said that it is formed.
 双極板の対向面に、互いに独立した樹状の導入溝と排出溝とを設けることで、双極板の平面方向に電解液を速やかに分散させることができるので、電解液の流通抵抗を低減できると共に、電極全体に電解液を均一に行き渡らせ易い。特に、導入溝の各溝部における溝幅が先端側に向かって小さくなることで、先端側に近づくにつれて電解液の圧力が高くなり、溝部から電極内へ電解液を浸透・拡散させ易い。更に、排出溝の各溝部における溝幅が先端側に向って小さくなっていることで、電極から排出溝に電解液が移動し過ぎることを抑制でき、電極と反応することなく排出溝に排出される電解液の量を低減できる。このように、実施形態の双極板によれば、電極に均一的に電解液を分布させ、電極と電解液との反応性を向上させることができるので、レドックスフロー電池の内部抵抗(セル抵抗)を低減することが可能である。 By providing a tree-like introduction groove and discharge groove that are independent of each other on the opposite surface of the bipolar plate, the electrolyte solution can be quickly dispersed in the plane direction of the bipolar plate, so that the flow resistance of the electrolyte solution can be reduced. At the same time, it is easy to distribute the electrolyte uniformly throughout the electrode. In particular, since the groove width in each groove portion of the introduction groove becomes smaller toward the tip side, the pressure of the electrolyte solution increases as it approaches the tip side, and the electrolyte solution easily penetrates and diffuses from the groove portion into the electrode. Furthermore, since the groove width in each groove portion of the discharge groove is reduced toward the tip side, it is possible to suppress the electrolyte from moving excessively from the electrode to the discharge groove, and it is discharged to the discharge groove without reacting with the electrode. The amount of electrolyte solution can be reduced. As described above, according to the bipolar plate of the embodiment, the electrolyte can be uniformly distributed to the electrode, and the reactivity between the electrode and the electrolyte can be improved, so that the internal resistance (cell resistance) of the redox flow battery can be improved. Can be reduced.
 (2)上記双極板の一形態として、
 前記導入溝の一部の溝部と前記排出溝の一部の溝部とが互いに噛み合う対向櫛歯領域を有する形態が挙げられる。
(2) As one form of the bipolar plate,
The form which has an opposing comb-tooth area | region where the one part groove part of the said introduction groove | channel and the one part groove part of the said discharge groove mutually mesh | engage is mentioned.
 導入溝の一部の溝部と排出溝の一部の溝部とが互いに噛み合う対向櫛歯領域、即ち導入溝の一部の溝部と排出溝の一部の溝部とが互いに向かい合った状態で交互に配置された領域を形成することで、導入溝と排出溝との間を渡るように流通する電解液の量を増加させることができる。その結果、電極内に浸透・拡散する電解液を増加させ、電極と電解液との反応効率を高めることができる。対向櫛歯領域は双極板の対向面の少なくとも一部にあれば良く、導入溝の溝部と排出溝の溝部が交互に配置されない箇所があっても構わない。 Opposing comb teeth regions where a part of the introduction groove and a part of the discharge groove mesh with each other, i.e., a part of the introduction groove and a part of the discharge groove are alternately arranged facing each other. By forming the formed region, the amount of the electrolytic solution flowing so as to cross between the introduction groove and the discharge groove can be increased. As a result, the electrolyte solution that permeates and diffuses into the electrode can be increased, and the reaction efficiency between the electrode and the electrolyte solution can be increased. The opposing comb-tooth region only needs to be on at least a part of the opposing surface of the bipolar plate, and there may be a portion where the groove portion of the introduction groove and the groove portion of the discharge groove are not alternately arranged.
 (3)上記双極板の一形態として、
前記導入部、前記排出部、前記導入溝、及び前記排出溝のいずれにも接続しない中間溝を備え、
 前記中間溝は、前記導入部側から前記排出部側に向って延びる溝部CC、及び前記溝部CCから分岐する溝部CCを有し、
 溝部CCは、溝部CCk-1から溝部CCk-1の延伸方向に交差する方向に分岐し、
 前記双極板を平面視したとき、いずれの溝部においてもその先端幅が他の部分の幅に比べて狭い形態が挙げられる。
 但し、kは1以上の任意の自然数である。
(3) As one form of the bipolar plate,
An intermediate groove not connected to any of the introduction part, the discharge part, the introduction groove, and the discharge groove;
The intermediate groove has a groove part CC 0 extending from the introduction part side toward the discharge part side, and a groove part CC k branched from the groove part CC 0 ,
Groove CC k branches in a direction crossing the extending direction of the groove CC k-1 from the groove CC k-1,
When the bipolar plate is viewed in plan, the shape of the tip of any groove may be narrower than the width of other portions.
However, k is an arbitrary natural number of 1 or more.
 導入溝と排出溝に加えて上記中間溝を形成することで、より一層、電極の全面に電解液を速やかに分散させることができる。その結果、電解液の流通抵抗を低減できると共に、電解液の分布をより均一にし易い。 </ RTI> By forming the intermediate groove in addition to the introduction groove and the discharge groove, the electrolyte can be more quickly dispersed over the entire surface of the electrode. As a result, it is possible to reduce the flow resistance of the electrolytic solution and to make the distribution of the electrolytic solution more uniform.
 (4)上記(3)の双極板の一形態として、
 前記導入溝の一部の溝部と前記中間溝の一部の溝部とが互いに噛み合う対向櫛歯領域を有し、
 前記排出溝の一部の溝部と前記中間溝の一部の溝部とが互いに噛み合う対向櫛歯領域を有する形態が挙げられる。
(4) As one form of the bipolar plate of (3) above,
Having a counter comb tooth region in which a part of the groove part of the introduction groove and a part of the groove part of the intermediate groove mesh with each other;
The form which has an opposing comb-tooth area | region where the one part groove part of the said discharge groove and the one part groove part of the said intermediate groove mutually mesh | engage is mentioned.
 上記対向櫛歯領域を形成することで、導入溝と中間溝との間、及び中間溝と排出溝との間を渡るように流通する電解液の量を増加させることができる。その結果、電極内に浸透・拡散する電解液を増加させ、電極と電解液との反応効率を高めることができる。 By forming the opposed comb tooth region, it is possible to increase the amount of the electrolyte flowing so as to cross between the introduction groove and the intermediate groove and between the intermediate groove and the discharge groove. As a result, the electrolyte solution that permeates and diffuses into the electrode can be increased, and the reaction efficiency between the electrode and the electrolyte solution can be increased.
 (5)上記双極板の一形態として、
 全ての溝部が非直線状で、かつその溝幅がランダムに変化する形態が挙げられる。
(5) As one form of the bipolar plate,
Examples include a form in which all the groove portions are non-linear and the groove widths are randomly changed.
 溝部は、その根元の溝幅が最も太く、先端の溝幅が最も狭い。溝部の溝幅は、溝部の根元から先端に向うに従って徐々に狭くなっても良いし、途中で局所的に広くなっていても構わない。上記構成は、導入溝と排出溝がより有機的な樹状形状に形成されていることを示している。このような有機的な樹状形状の導入溝と排出溝とすることで、電極の全面に電解液を均一的に分散させ易くなる。 The groove has the largest groove width at the base and the narrowest groove width at the tip. The groove width of the groove part may be gradually narrowed from the root of the groove part toward the tip, or may be locally widened in the middle. The said structure has shown that the introduction groove | channel and the discharge groove | channel are formed in more organic dendritic shape. By using such organic dendritic introduction grooves and discharge grooves, the electrolyte can be easily dispersed uniformly over the entire surface of the electrode.
 (6)上記双極板の一形態として、
 前記双極板を平面視したときの溝部CIの総面積は、溝部CIn-1の総面積よりも小さく、かつ前記双極板を平面視したときの溝部COの総面積は溝部COm-1の総面積よりも小さい形態が挙げられる。
(6) As one form of the bipolar plate,
The total area of the groove CI n when bipolar plate in a plan view, the groove CI less than the total area of the n-1, and the total area of the groove CO m in a plan view the bipolar plate groove CO m- A form smaller than the total area of 1 is mentioned.
 上記構成は、分岐を経るごとに段階的に溝部の開口面積が小さくなる構成である。導入溝においては、導入溝の隅々に電解液を素早く行き渡らせた後、各溝部から電極に電解液を浸透・拡散させ易くなる。また、排出溝においては、電極から各溝部に電解液が移動し過ぎることを抑制し、電極と電解液との反応性を向上させると共に、各溝部で回収された電解液を速やかに出口に導くことで、電解液の流通抵抗を低減できる。 The above configuration is a configuration in which the opening area of the groove portion decreases step by step each time a branch is made. In the introduction groove, after the electrolyte solution is quickly spread to every corner of the introduction groove, the electrolyte solution easily penetrates and diffuses from each groove portion to the electrode. Further, in the discharge groove, the electrolyte solution is prevented from excessively moving from the electrode to each groove portion, and the reactivity between the electrode and the electrolyte solution is improved, and the electrolyte solution collected in each groove portion is quickly guided to the outlet. Thereby, the distribution | circulation resistance of electrolyte solution can be reduced.
 (7)上記双極板の一形態として、
 前記導入部は、前記双極板における前記電解液の入口と、前記入口から前記双極板の縁部に沿って形成される導入側整流部と、を備え、
 前記排出部は、前記双極板における前記電解液の出口と、前記出口から前記双極板の縁部に沿って形成される排出側整流部と、を備える形態が挙げられる。
(7) As one form of the bipolar plate,
The introduction part includes an inlet of the electrolyte solution in the bipolar plate, and an introduction side rectification part formed along the edge of the bipolar plate from the inlet,
The said discharge part is a form provided with the exit of the said electrolyte solution in the said bipolar plate, and the discharge side rectification | straightening part formed along the edge of the said bipolar plate from the said exit.
 導入部に導入側整流部を設けることで、入口から導入された電解液を導入溝に効率良く拡散させられる。また、排出部に排出側整流部を設けることで、排出溝から電解液を効率良く回収し、出口から電解液を排出させられる。 By providing the introduction side rectification unit in the introduction part, the electrolyte introduced from the inlet can be efficiently diffused into the introduction groove. Further, by providing the discharge side rectification unit in the discharge unit, the electrolyte solution can be efficiently recovered from the discharge groove and the electrolyte solution can be discharged from the outlet.
 (8)上記(7)の双極板の一形態として、
 前記対向面のうち、実際に前記電極に対向する有効電極領域が矩形状であり、
 前記入口と前記出口とが前記有効電極領域の対角位置に設けられており、
 前記導入側整流部及び前記排出側整流部と、前記有効電極領域の対角線と、がなす角度が40°以上50°以下である形態が挙げられる。
(8) As one form of the bipolar plate of (7),
Of the opposed surfaces, the effective electrode region that actually faces the electrode is rectangular,
The inlet and the outlet are provided at diagonal positions of the effective electrode region;
The form which the angle which the said introduction side rectification part and the said discharge side rectification part and the diagonal of the said effective electrode area | region make is 40 degrees or more and 50 degrees or less is mentioned.
 各整流部と有効電極領域の対角線とのなす角度が40°以上50°以下であることで、各整流部での圧力損失を低減できる。 The pressure loss in each rectifying unit can be reduced by making the angle between each rectifying unit and the diagonal line of the effective electrode region be 40 ° or more and 50 ° or less.
 (9)上記双極板の一形態として、
 前記対向面の面積をS、前記対向面のうち、前記電極と接触する接触面積をAとしたとき、A/Sが0.5超0.95未満であることが挙げられる。
(9) As one form of the bipolar plate,
It is mentioned that A / S is more than 0.5 and less than 0.95, where S is the area of the facing surface and A is the contact area of the facing surface that contacts the electrode.
 双極板の対向面の面積(S)に占める電極の接触面積(A)の割合A/Sが0.5超であることで、電極と双極板との接触面積を確保して、電極と双極板間の接触抵抗を低減できる。これにより、電池の内部抵抗(セル抵抗)を低減することが可能である。また、双極板の対向面における溝の形成面積(電解液の流路面積)を確保する観点から、電極の接触面積の割合A/Sは0.95未満であることが好ましく、これにより電解液の流通抵抗を効果的に低減できる。 Since the ratio A / S of the contact area (A) of the electrode to the area (S) of the opposing surface of the bipolar plate is more than 0.5, the contact area between the electrode and the bipolar plate is secured, and the electrode and the bipolar plate The contact resistance between the plates can be reduced. Thereby, the internal resistance (cell resistance) of the battery can be reduced. In addition, from the viewpoint of ensuring the groove formation area (electrolyte flow path area) on the opposing surface of the bipolar plate, the ratio A / S of the contact area of the electrode is preferably less than 0.95, whereby the electrolyte solution The distribution resistance can be effectively reduced.
 (10)実施形態に係るセルフレームは、
 上記(1)から(9)のいずれかの双極板と、前記双極板の外周に設けられる枠体と、を備える。
(10) The cell frame according to the embodiment is
The bipolar plate according to any one of (1) to (9) above and a frame provided on the outer periphery of the bipolar plate.
 上記セルフレームは、上記した実施形態に係る双極板を備えることで、電解液の流通抵抗を低減しつつ、電極と電解液との反応性を向上できるので、電解液の流通抵抗による圧力損失を低減できながら、電極での反応抵抗を低減することが可能である。そのため、上記セルフレームをレドックスフロー電池に用いた場合、電池の内部抵抗(セル抵抗)を低減することが可能であり、電池性能を向上できる。 Since the cell frame includes the bipolar plate according to the above-described embodiment, the reactivity between the electrode and the electrolytic solution can be improved while reducing the flow resistance of the electrolytic solution. While being able to reduce, it is possible to reduce the reaction resistance at the electrode. Therefore, when the cell frame is used in a redox flow battery, the internal resistance (cell resistance) of the battery can be reduced, and the battery performance can be improved.
 (11)実施形態に係るセルスタックは、
 上記(10)に記載のセルフレームを備える。
(11) The cell stack according to the embodiment is
The cell frame according to (10) is provided.
 上記セルスタックは、上記した実施形態に係るセルフレームを備えることで、電解液の流通抵抗による圧力損失を低減できながら、電極での反応抵抗を低減することが可能である。そのため、上記セルスタックをレドックスフロー電池に用いた場合、電池の内部抵抗(セル抵抗)を低減することが可能であり、電池性能を向上できる。 The cell stack includes the cell frame according to the above-described embodiment, so that the reaction resistance at the electrode can be reduced while the pressure loss due to the flow resistance of the electrolytic solution can be reduced. Therefore, when the cell stack is used for a redox flow battery, the internal resistance (cell resistance) of the battery can be reduced, and the battery performance can be improved.
 (12)実施形態に係るレドックスフロー電池は、
 上記(11)に記載のセルスタックを備える。
(12) The redox flow battery according to the embodiment is
The cell stack described in (11) above is provided.
 上記レドックスフロー電池は、上記した実施形態に係るセルスタックを備えることで、電解液の流通抵抗による圧力損失を低減できながら、電極での反応抵抗を低減することが可能であるので、電池の内部抵抗(セル抵抗)を低減することが可能である。そのため、上記レドックスフロー電池は、電池性能に優れる。 Since the redox flow battery includes the cell stack according to the above-described embodiment, it is possible to reduce the reaction loss at the electrode while reducing the pressure loss due to the flow resistance of the electrolytic solution. Resistance (cell resistance) can be reduced. Therefore, the redox flow battery is excellent in battery performance.
 [本願発明の実施形態の詳細]
 本願発明の実施形態に係るレドックスフロー電池用の双極板、セルフレーム及びセルスタック、並びにレドックスフロー電池(RF電池)の具体例を、以下に図面を参照しつつ説明する。図中の同一符号は同一又は相当部分を示す。なお、本願発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
[Details of the embodiment of the present invention]
Specific examples of a bipolar plate for a redox flow battery, a cell frame and a cell stack, and a redox flow battery (RF battery) according to an embodiment of the present invention will be described below with reference to the drawings. The same reference numerals in the drawings indicate the same or corresponding parts. In addition, this invention is not limited to these illustrations, is shown by the claim, and it is intended that all the changes within the meaning and range equivalent to a claim are included.
 図4は、実施形態に係る双極板31を備えるセルフレーム3を、双極板31の一面側から平面視した概略平面図である。実施形態の双極板31の特徴の1つは、図4に示すように、電極14に対向する対向面に電解液が流通する樹状の流路4(導入路41、排出路42)を有する点にある。 FIG. 4 is a schematic plan view of the cell frame 3 including the bipolar plate 31 according to the embodiment when viewed from the one surface side of the bipolar plate 31. One of the features of the bipolar plate 31 of the embodiment is that it has a tree-like flow path 4 (introduction path 41, discharge path 42) through which the electrolyte flows on the facing surface facing the electrode 14, as shown in FIG. In the point.
 以下では、先に、図1~図4を参照して、実施形態に係るRF電池1、並びに、RF電池1に備えるセル10(セルスタック2)及び双極板31(セルフレーム3)の概要を説明する。その後、主に図4~図6を参照して、実施形態に係る双極板31に備える流路4について詳しく説明する。 In the following, referring to FIG. 1 to FIG. 4, the outline of the RF battery 1 according to the embodiment, and the cell 10 (cell stack 2) and the bipolar plate 31 (cell frame 3) included in the RF battery 1 will be described. explain. Thereafter, the flow path 4 provided in the bipolar plate 31 according to the embodiment will be described in detail mainly with reference to FIGS.
 《RF電池》
 初めに、図1~図3を参照して、実施形態に係るRF電池1及びセル10(セルスタック2)の一例を説明する。図1、図2に示すRF電池1は、正極電解液及び負極電解液に酸化還元により価数が変化する金属イオンを活物質として含有する電解液を使用し、正極電解液に含まれるイオンの酸化還元電位と、負極電解液に含まれるイオンの酸化還元電位との差を利用して充放電を行う電池である。ここでは、RF電池1の一例として、正極電解液及び負極電解液にVイオンを含有するバナジウム電解液を使用したバナジウム系RF電池を示す。図1中のセル10内の実線矢印は充電反応を、破線矢印は放電反応をそれぞれ示している。RF電池1は、交流/直流変換器Cを介して電力系統Pに接続され、例えば、負荷平準化用途、瞬低補償や非常用電源などの用途、太陽光発電や風力発電といった自然エネルギー発電の出力平滑化用途に利用される。
<< RF battery >>
First, an example of the RF battery 1 and the cell 10 (cell stack 2) according to the embodiment will be described with reference to FIGS. The RF battery 1 shown in FIG. 1 and FIG. 2 uses an electrolytic solution containing, as an active material, a metal ion whose valence changes as a result of oxidation and reduction in the positive electrode electrolyte and the negative electrode electrolyte. The battery performs charging / discharging by utilizing the difference between the redox potential and the redox potential of ions contained in the negative electrode electrolyte. Here, as an example of the RF battery 1, a vanadium-based RF battery using a vanadium electrolyte solution containing V ions in the positive electrode electrolyte and the negative electrode electrolyte is shown. A solid line arrow in the cell 10 in FIG. 1 indicates a charging reaction, and a broken line arrow indicates a discharging reaction. The RF battery 1 is connected to the electric power system P via an AC / DC converter C, for example, for load leveling applications, applications such as sag compensation and emergency power supplies, natural energy power generation such as solar power generation and wind power generation. Used for output smoothing.
 RF電池1には、充放電を行うセル10と、電解液を貯留するタンク106、107と、タンク106、107とセル10との間で電解液を循環させる循環流路100P、100Nとを備える。 The RF battery 1 includes a cell 10 for charging / discharging, tanks 106 and 107 for storing an electrolyte, and circulation channels 100P and 100N for circulating the electrolyte between the tanks 106 and 107 and the cell 10. .
 《セル》
 セル10は、図1に示すように、正極電極14と、負極電極15と、両電極14、15間に介在される隔膜11とを有する。セル10の構造は、隔膜11を挟んで正極セル12と負極セル13とに分離され、正極セル12に正極電極14、負極セル13に負極電極15が内蔵されている。
"cell"
As shown in FIG. 1, the cell 10 includes a positive electrode 14, a negative electrode 15, and a diaphragm 11 interposed between the electrodes 14 and 15. The structure of the cell 10 is separated into a positive electrode cell 12 and a negative electrode cell 13 with a diaphragm 11 interposed therebetween, and a positive electrode 14 is incorporated in the positive electrode cell 12 and a negative electrode 15 is incorporated in the negative electrode cell 13.
 正極電極14及び負極電極15の各電極は、炭素繊維を含む炭素繊維集合体で形成されている。炭素繊維集合体の電極は多孔質であり、電極内に空隙を有しているため、電極内に電解液が流通し、電解液を浸透・拡散させることができる。炭素繊維集合体としては、例えば、カーボンフェルト、カーボンクロス、カーボンペーパーなどが挙げられる。炭素繊維としては、例えば、ポリアクリロニトリル(PAN)繊維を原料とするPAN系炭素繊維、ピッチ繊維を原料とするピッチ系炭素繊維、レーヨン繊維を原料とするレーヨン系炭素繊維などが挙げられる。隔膜11は、例えば、水素イオンを透過するイオン交換膜で形成されている。 Each electrode of the positive electrode 14 and the negative electrode 15 is formed of a carbon fiber aggregate including carbon fibers. Since the electrode of the carbon fiber aggregate is porous and has voids in the electrode, the electrolytic solution flows through the electrode, and the electrolytic solution can permeate and diffuse. Examples of the carbon fiber aggregate include carbon felt, carbon cloth, and carbon paper. Examples of the carbon fiber include PAN-based carbon fiber using polyacrylonitrile (PAN) fiber as a raw material, pitch-based carbon fiber using pitch fiber as a raw material, and rayon-based carbon fiber using rayon fiber as a raw material. The diaphragm 11 is formed of, for example, an ion exchange membrane that transmits hydrogen ions.
 セル10(正極セル12及び負極セル13)には、循環流路100P、100Nを通して電解液(正極電解液及び負極電解液)が循環する。正極セル12には、正極電解液を貯留する正極電解液タンク106が正極循環流路100Pを介して接続されている。同様に、負極セル13には、負極電解液を貯留する負極電解液タンク107が負極循環流路100Nを介して接続されている。各循環流路100P、100Nは、各タンク106、107からセル10へ電解液を送る往路配管108、109と、セル10から各タンク106、107へ電解液を戻す復路配管110、111と有する。各往路配管108、109には、各タンク106、107に貯留される電解液を圧送するポンプ112、113が設けられており、ポンプ112、113により電解液をセル10に循環させる。 In the cell 10 (the positive electrode cell 12 and the negative electrode cell 13), an electrolytic solution (a positive electrode electrolytic solution and a negative electrode electrolytic solution) circulates through the circulation channels 100P and 100N. A positive electrode electrolyte tank 106 that stores a positive electrode electrolyte is connected to the positive electrode cell 12 via a positive electrode circulation channel 100P. Similarly, a negative electrode electrolyte tank 107 that stores a negative electrode electrolyte is connected to the negative electrode cell 13 via a negative electrode circulation channel 100N. Each circulation flow path 100P, 100N has forward piping 108, 109 for sending the electrolytic solution from each tank 106, 107 to the cell 10 and return piping 110, 111 for returning the electrolytic solution from the cell 10 to each tank 106, 107. Pumps 112 and 113 for pumping the electrolytic solution stored in the tanks 106 and 107 are provided in the outgoing pipes 108 and 109, and the electrolytic solution is circulated to the cell 10 by the pumps 112 and 113.
 《セルスタック》
 セル10は、単数のセル10を備える単セルで構成されていてもよいし、複数のセル10を備える多セルで構成されていてもよい。セル10は通常、図2に示すような、セル10を複数積層して備えるセルスタック2と呼ばれる形態で利用される。セルスタック2は、図3の下図に示すように、サブスタック200をその両側から2枚のエンドプレート220で挟み込み、両側のエンドプレート220を締付機構230で締め付けることで構成されている。図3では、複数のサブスタック200を備えるセルスタック2を例示している。サブスタック200は、セルフレーム3、正極電極14、隔膜11、負極電極15の順に複数積層され(図3の上図参照)、その積層体の両端に給排板210(図3の下図参照、図2では図示略)が配置された構造である。給排板210には、各循環流路100P、100N(図1、図2参照)の往路配管108、109及び復路配管110、111が接続される。
Cell stack
The cell 10 may be configured as a single cell including a single cell 10 or may be configured as a multi-cell including a plurality of cells 10. The cell 10 is normally used in a form called a cell stack 2 including a plurality of stacked cells 10 as shown in FIG. As shown in the lower diagram of FIG. 3, the cell stack 2 is configured by sandwiching the sub stack 200 from two end plates 220 from both sides and fastening the end plates 220 on both sides by a fastening mechanism 230. FIG. 3 illustrates a cell stack 2 including a plurality of substacks 200. A plurality of sub-stacks 200 are stacked in the order of the cell frame 3, the positive electrode 14, the diaphragm 11, and the negative electrode 15 (see the upper diagram of FIG. 3), and supply / discharge plates 210 (see the lower diagram of FIG. 2 is not shown in FIG. Connected to the supply / discharge plate 210 are the forward pipes 108 and 109 and the return pipes 110 and 111 of the circulation passages 100P and 100N (see FIGS. 1 and 2).
 《セルフレーム》
 セルフレーム3は、図3の上図に示すように、正極電極14と負極電極15との間に配置される双極板31と、双極板31の周囲に設けられる枠体32とを有する(図4も参照)。双極板31の一面側には、正極電極14が対向するように配置され、双極板31の他面側には、負極電極15が対向するように配置される。枠体32の内側には、双極板31が設けられ、双極板31と枠体32により凹部32oが形成される。凹部32oは、双極板31の両側にそれぞれ形成され、各凹部32o内に正極電極14及び負極電極15が双極板31を挟んで収納される。各凹部32oは、正極セル12及び負極セル13(図1参照)の各セル空間を形成する。正極電極14及び負極電極15の各電極の平面形状は、特に問わないが、本実施形態では、矩形状である。また、凹部32oの平面開口形状は電極と同じ矩形状であり、凹部32oと電極のサイズが実質的に同じである。そして、双極板31における各電極が積層方向に重なる有効電極領域が矩形状である。本例では、正極電極14と負極電極15とが同じ大きさであるので、図4に示す双極板31と電極14とが対向する領域が有効電極領域となる。正極電極14と負極電極15とが異なる大きさの場合、正極電極14と負極電極15と双極板31の3者が重複する領域が有効電極領域である。
《Cell Frame》
3, the cell frame 3 includes a bipolar plate 31 disposed between the positive electrode 14 and the negative electrode 15 and a frame body 32 provided around the bipolar plate 31 (see FIG. 3). (See also 4). On one surface side of the bipolar plate 31, the positive electrode 14 is disposed so as to face the other surface, and on the other surface side of the bipolar plate 31, the negative electrode 15 is disposed so as to face it. A bipolar plate 31 is provided inside the frame body 32, and a recess 32 o is formed by the bipolar plate 31 and the frame body 32. The concave portions 32o are formed on both sides of the bipolar plate 31, and the positive electrode 14 and the negative electrode 15 are accommodated in the concave portions 32o with the bipolar plate 31 interposed therebetween. Each recessed part 32o forms each cell space of the positive electrode cell 12 and the negative electrode cell 13 (refer FIG. 1). The planar shape of each of the positive electrode 14 and the negative electrode 15 is not particularly limited, but is rectangular in this embodiment. Moreover, the planar opening shape of the recessed part 32o is the same rectangular shape as an electrode, and the size of the recessed part 32o and an electrode is substantially the same. And the effective electrode area | region where each electrode in the bipolar plate 31 overlaps with a lamination direction is a rectangular shape. In this example, since the positive electrode 14 and the negative electrode 15 have the same size, a region where the bipolar plate 31 and the electrode 14 shown in FIG. 4 face each other is an effective electrode region. When the positive electrode 14 and the negative electrode 15 have different sizes, a region where the three of the positive electrode 14, the negative electrode 15, and the bipolar plate 31 overlap is an effective electrode region.
 双極板31は、例えば、プラスチックカーボンなどで形成され、枠体32は、例えば、塩化ビニル樹脂(PVC)、ポリプロピレン、ポリエチレン、フッ素樹脂、エポキシ樹脂などのプラスチックで形成されている。セルフレーム3は、双極板31の周囲に枠体32が射出成型などにより一体化されている。 The bipolar plate 31 is made of, for example, plastic carbon, and the frame body 32 is made of, for example, plastic such as vinyl chloride resin (PVC), polypropylene, polyethylene, fluorine resin, or epoxy resin. In the cell frame 3, a frame 32 is integrated around the bipolar plate 31 by injection molding or the like.
 セルスタック2(サブスタック200)では、隣接する各セルフレーム3の枠体32の一面側と他面側とが互いに対向して突き合わされ、隣接する各セルフレーム3の双極板31の間にそれぞれ1つのセル10が形成されることになる。各電極14、15は、セル10を組み立てたとき、枠体32の各凹部32o内に厚さ方向に圧縮された状態で収納される。各セルフレーム3の枠体32の間には、電解液の漏洩を抑制するため、Oリングや平パッキンなどの環状のシール部材37が配置されている。枠体32には、シール部材37を配置するためのシール溝38(図4参照)が形成されている。 In the cell stack 2 (sub-stack 200), the one surface side and the other surface side of the frame 32 of each adjacent cell frame 3 face each other and face each other, and between the bipolar plates 31 of each adjacent cell frame 3 respectively. One cell 10 is formed. When the cell 10 is assembled, the electrodes 14 and 15 are accommodated in the recessed portions 32o of the frame body 32 in a compressed state in the thickness direction. An annular seal member 37 such as an O-ring or a flat packing is disposed between the frame bodies 32 of each cell frame 3 in order to suppress leakage of the electrolytic solution. A seal groove 38 (see FIG. 4) for arranging the seal member 37 is formed in the frame body 32.
 セル10内の電解液の流通は、セルフレーム3の枠体32に貫通して形成された給液マニホールド33、34及び排液マニホールド35、36と、枠体32に形成された給液スリット33s、34s及び排液スリット35s、36sにより行われる。この例に示すセルフレーム3(枠体32)の場合、正極電解液は、枠体32の下部に形成された給液マニホールド33から枠体32の一面側に形成された給液スリット33sを介して正極電極14に供給され、枠体32の上部に形成された排液スリット35sを介して排液マニホールド35に排出される。同様に、負極電解液は、枠体32の下部に形成された給液マニホールド34から枠体32の他面側に形成された給液スリット34sを介して負極電極15に供給され、枠体32の上部に形成された排液スリット36sを介して排液マニホールド36に排出される。給液マニホールド33、34及び排液マニホールド35、36は、セルフレーム3が積層されることによって電解液の流路を構成する。これら流路は、給排板210(図3の下図参照)を介して各循環流路100P、100N(図1、図2参照)の往路配管108、109及び復路配管110、111にそれぞれ連通しており、セル10内に電解液を流通させることが可能である。 The electrolyte solution in the cell 10 flows through the supply manifolds 33 and 34 and the drainage manifolds 35 and 36 formed through the frame 32 of the cell frame 3 and the supply slits 33 s formed in the frame 32. , 34s and drainage slits 35s, 36s. In the case of the cell frame 3 (frame body 32) shown in this example, the positive electrode electrolyte is supplied from a liquid supply manifold 33 formed in the lower part of the frame body 32 through a liquid supply slit 33s formed on one surface side of the frame body 32. Are supplied to the positive electrode 14 and discharged to the drainage manifold 35 through the drainage slit 35 s formed in the upper part of the frame 32. Similarly, the negative electrode electrolyte is supplied from the liquid supply manifold 34 formed in the lower part of the frame 32 to the negative electrode 15 through the liquid supply slit 34 s formed on the other surface side of the frame 32, and the frame 32. The liquid is discharged to the drainage manifold 36 through the drainage slit 36s formed in the upper part. The liquid supply manifolds 33 and 34 and the drainage manifolds 35 and 36 constitute a flow path for the electrolytic solution by stacking the cell frames 3. These flow paths communicate with the forward pipes 108 and 109 and the return pipes 110 and 111 of the circulation flow paths 100P and 100N (see FIGS. 1 and 2) via the supply / discharge plate 210 (see the lower figure of FIG. 3), respectively. It is possible to distribute the electrolyte in the cell 10.
 この例に示すセル10では、正極電極14及び負極電極15の下側からそれぞれ電解液が導入され、各電極14、15の上側から電解液が排出されるようになっており、各電極14、15の下縁部から上縁部に向かって電解液が流れる。図2及び図3の上図中、各電極14、15内の矢印は電解液の全体的な流通方向を示す。 In the cell 10 shown in this example, the electrolytic solution is introduced from the lower side of the positive electrode 14 and the negative electrode 15, and the electrolytic solution is discharged from the upper side of the electrodes 14, 15. The electrolyte flows from the lower edge of 15 toward the upper edge. 2 and 3, the arrows in the electrodes 14 and 15 indicate the overall flow direction of the electrolytic solution.
 《双極板》
 双極板31の各電極14、15に対向する対向面には、図4に示すように、電解液が流通する流路4が形成されている。本実施形態の流路4は、後述する導入部4Aと導入路41と排出部4Bと排出路42とで構成される。図4では、流路4が形成されていない部分にハッチングを付している。図4に示す双極板31の一面側(紙面表側)は、正極電極14に対向する対向面であり、他面側(紙面裏側)は、負極電極15(図3参照、図4では図示略)に対向する対向面である。また、図4に示す双極板31において、給液スリット33sがつながる下側が正極電解液の導入側であり、排液スリット35sがつながる上側が正極電解液の排出側である。図4中、紙面左側の太線矢印は、電解液の全体的な流通方向を示す。
《Dipolar plate》
As shown in FIG. 4, a flow path 4 through which an electrolytic solution flows is formed on the opposing surface of the bipolar plate 31 that faces the electrodes 14 and 15. The flow path 4 of this embodiment is comprised by the introduction part 4A, the introduction path 41, the discharge part 4B, and the discharge path 42 which are mentioned later. In FIG. 4, the portion where the flow path 4 is not formed is hatched. One side (the front side of the drawing) of the bipolar plate 31 shown in FIG. 4 is a facing surface facing the positive electrode 14, and the other side (the back side of the drawing) is the negative electrode 15 (see FIG. 3, not shown in FIG. 4). It is the opposing surface which opposes. In the bipolar plate 31 shown in FIG. 4, the lower side to which the liquid supply slit 33s is connected is the positive electrode electrolyte introduction side, and the upper side to which the drainage slit 35s is connected is the positive electrode electrolyte discharge side. In FIG. 4, the thick line arrow on the left side of the drawing indicates the overall flow direction of the electrolytic solution.
 図4では、正極電極14に対向する双極板31の一面側しか図示していないが、負極電極15に対向する双極板31の他面側にも、一面側と同様に、電解液の流路が形成されている。双極板31の他面側に形成された負極電解液の流路の構成は、図4に示す正極電解液の流路4と同様であるので、その説明を省略する。 In FIG. 4, only one surface side of the bipolar plate 31 facing the positive electrode 14 is shown, but the flow path of the electrolytic solution is also provided on the other surface side of the bipolar plate 31 facing the negative electrode 15, similarly to the one surface side. Is formed. Since the structure of the negative electrode electrolyte channel formed on the other surface side of the bipolar plate 31 is the same as that of the positive electrode electrolyte channel 4 shown in FIG.
 〈導入部〉
 導入部4Aは、電解液を双極板31に導入する部分である。本例の導入部4Aは、電解液の入口4iと、入口4iから双極板31の縁部に沿って形成される導入側整流部410と、を備える。入口4iは、給液スリット33sが接続される部分であり、給液スリット33sを通じて入口4iから電解液が導入される。本実施形態では、入口4iが有効電極領域の下辺中央部に位置している。一方、導入側整流部410は、双極板31の下縁部に沿って形成されている。導入路41は、導入側整流部410に接続されており、導入側整流部410を介して入口4iに連通している。導入側整流部410は、入口4iから導入された電解液を双極板31の下縁部に沿って拡散させ、各導入路41に電解液を満遍なく導入する。導入側整流部410は無くても良く、その場合、導入部4Aは入口4iのみで構成される。
<Introduction>
The introduction part 4 </ b> A is a part for introducing the electrolytic solution into the bipolar plate 31. 4 A of introduction parts of this example are provided with the inlet 4i of electrolyte solution, and the introduction side rectification | straightening part 410 formed along the edge of the bipolar plate 31 from the inlet 4i. The inlet 4i is a portion to which the liquid supply slit 33s is connected, and the electrolytic solution is introduced from the inlet 4i through the liquid supply slit 33s. In the present embodiment, the inlet 4i is located at the center of the lower side of the effective electrode region. On the other hand, the introduction side rectification unit 410 is formed along the lower edge of the bipolar plate 31. The introduction path 41 is connected to the introduction side rectification unit 410 and communicates with the inlet 4 i through the introduction side rectification unit 410. The introduction-side rectification unit 410 diffuses the electrolyte introduced from the inlet 4 i along the lower edge of the bipolar plate 31 and uniformly introduces the electrolyte into each introduction path 41. The introduction side rectification unit 410 may be omitted, and in this case, the introduction unit 4A is configured only by the inlet 4i.
 〈排出部〉
 排出部4Bは、双極板31から電解液を排出する部分である。本例の排出部4Bは、電解液の出口4oと、出口4oから双極板31の縁部に沿って形成される排出側整流部420と、を備える。出口4oは、排液スリット35sが接続される部分であり、出口4oから排液スリット35sに電解液が排出される。本実施形態では、出口4oが有効電極領域の上辺中央部に位置している。一方、排出側整流部420は、双極板31の上縁部に沿って形成されている。樹状に形成される排出路42は、排出側整流部420に接続されており、排出側整流部420を介して出口4oに連通している。排出側整流部420は、各排出路42から排出された電解液を双極板31の上縁部に沿って出口4oに集約する。排出側整流部420は無くても良く、その場合、排出部4Bは出口4oのみで構成される。
<Discharge unit>
The discharge part 4 </ b> B is a part for discharging the electrolytic solution from the bipolar plate 31. The discharge unit 4B of the present example includes an outlet 4o for the electrolyte, and a discharge-side rectifying unit 420 formed along the edge of the bipolar plate 31 from the outlet 4o. The outlet 4o is a portion to which the drainage slit 35s is connected, and the electrolytic solution is discharged from the outlet 4o to the drainage slit 35s. In the present embodiment, the outlet 4o is located at the center of the upper side of the effective electrode region. On the other hand, the discharge side rectification unit 420 is formed along the upper edge of the bipolar plate 31. The discharge path 42 formed in a tree shape is connected to the discharge side rectification unit 420 and communicates with the outlet 4o via the discharge side rectification unit 420. The discharge side rectification unit 420 collects the electrolyte discharged from each discharge path 42 along the upper edge of the bipolar plate 31 at the outlet 4o. The discharge side rectification unit 420 may be omitted, and in that case, the discharge unit 4B is configured only by the outlet 4o.
 〈導入路・排出路〉
 導入路41は、導入部4Aに繋がる複数の導入溝51a、51b、51cで構成され、導入部4Aからの電解液を双極板31の平面方向に拡散させる。一方、排出路42は、排出部4Bに繋がる複数の排出溝52a、52b、52cで構成され、双極板31の平面方向に拡散した電解液を回収し、排出部4Bに導く。導入路41と排出路42とは互いに連通せずに独立している。双極板31に導入路41と排出路42とを備える場合、電解液が導入路41と排出路42との間を渡るように流通し、その際に電解液が電極14内に浸透・拡散して、電解液を電極14全体に均一に行き渡らせることができる。これにより、電極14内での電解液の分布をより効果的に均一にすることが可能であり、電極14と電解液との反応性をより向上できる。
<Introduction route / Discharge route>
The introduction path 41 includes a plurality of introduction grooves 51 a, 51 b, 51 c connected to the introduction part 4 </ b> A, and diffuses the electrolytic solution from the introduction part 4 </ b> A in the planar direction of the bipolar plate 31. On the other hand, the discharge path 42 is composed of a plurality of discharge grooves 52a, 52b, 52c connected to the discharge part 4B, collects the electrolyte solution diffused in the plane direction of the bipolar plate 31, and guides it to the discharge part 4B. The introduction path 41 and the discharge path 42 are independent without communicating with each other. When the bipolar plate 31 includes the introduction path 41 and the discharge path 42, the electrolytic solution flows so as to cross between the introduction path 41 and the discharge path 42, and at that time, the electrolytic solution permeates and diffuses into the electrode 14. Thus, the electrolytic solution can be uniformly distributed throughout the electrode 14. As a result, the distribution of the electrolytic solution in the electrode 14 can be made more effective and uniform, and the reactivity between the electrode 14 and the electrolytic solution can be further improved.
 図4に示す流路4は、入口4iと出口4oとを結ぶ中心線(図中、一点鎖線で示す)を対称軸とする線対称(左右対称)になっており、更に、入口4i側(下側)と出口4o側(上側)とで上下非対称になっている。流路4が導入側と排出側とで非対称に形成されていることで、電解液の圧力が低下する排出側の電解液の流れを改善することが可能である。 The flow path 4 shown in FIG. 4 is axisymmetric (left-right symmetric) with a center line (indicated by a one-dot chain line in the figure) connecting the inlet 4i and the outlet 4o as an axis of symmetry, and further, the inlet 4i side ( The lower side is asymmetric with the outlet 4o side (upper side). Since the flow path 4 is formed asymmetrically between the introduction side and the discharge side, it is possible to improve the flow of the electrolyte solution on the discharge side where the pressure of the electrolyte solution decreases.
 (溝)
 導入路41を構成する導入溝51a~51cは、導入側整流部410に接続され、導入側(下側)から排出側(上側)に向かって伸び、排出側の先端が閉鎖端になっている。排出路42を構成する排出溝52a~52cは、排出側整流部420に接続され、排出側(上側)から導入側(下側)に向かって伸び、導入側の先端が閉鎖端になっている。
(groove)
The introduction grooves 51a to 51c constituting the introduction path 41 are connected to the introduction side rectification unit 410, extend from the introduction side (lower side) to the discharge side (upper side), and the distal end on the discharge side is a closed end. . The discharge grooves 52a to 52c constituting the discharge path 42 are connected to the discharge side rectification unit 420, extend from the discharge side (upper side) toward the introduction side (lower side), and the leading end on the introduction side is a closed end. .
 各溝5(導入溝51a~51c及び排出溝52a~52c)は、双極板31の電極14との対向面に開口しており、図4に示すように、各溝5の開口幅が先端側に向かって小さくなるように形成されている。導入溝51a~51cの場合、開口幅が先端側に向かって小さくなることで、先端側に近づくにつれて電解液の圧力が高くなり、導入溝51a~51cから電極14内へ電解液を浸透させ易い。溝5の「開口幅」とは、溝5の長手方向に直交する溝幅をいう。 Each groove 5 (introduction grooves 51a to 51c and discharge grooves 52a to 52c) is open on the surface of the bipolar plate 31 facing the electrode 14, and as shown in FIG. It is formed so as to become smaller toward. In the case of the introduction grooves 51a to 51c, the opening width decreases toward the tip side, so that the pressure of the electrolyte increases as it approaches the tip side, and the electrolyte solution easily penetrates into the electrode 14 from the introduction grooves 51a to 51c. . The “opening width” of the groove 5 refers to a groove width orthogonal to the longitudinal direction of the groove 5.
 溝5の開口幅(溝幅)や深さ(溝深さ)は、双極板31のサイズや厚さに応じて適宜選択することができ、特に限定されない。溝幅は、例えば0.2mm以上10mm以下、更に0.5mm以上5mm以下、溝深さは、例えば0.1mm以上3mm以下、更に0.2mm以上2mm以下であることが挙げられる。 The opening width (groove width) and depth (groove depth) of the groove 5 can be appropriately selected according to the size and thickness of the bipolar plate 31 and are not particularly limited. The groove width is, for example, from 0.2 mm to 10 mm, further from 0.5 mm to 5 mm, and the groove depth is, for example, from 0.1 mm to 3 mm, further from 0.2 mm to 2 mm.
 溝5の形成方法としては、例えば、双極板31の表面をエンドミルなどの切削工具で切削加工することが挙げられる。或いは、双極板31を成形する金型に溝5の形状に対応した凸部を設けておき、射出成型などの金型成形により溝5を形成することも可能である。 As a method for forming the groove 5, for example, the surface of the bipolar plate 31 is cut with a cutting tool such as an end mill. Alternatively, it is also possible to provide a projection corresponding to the shape of the groove 5 in the mold for forming the bipolar plate 31 and form the groove 5 by mold forming such as injection molding.
 〈電極の接触面積の割合〉
 双極板31の電極14との対向面(即ち有効電極領域)の面積をS、その対向面のうち、電極14と接触する接触面積(図4に示す双極板31のハッチング部分の面積)をAとしたとき、A/Sが0.5超0.95未満であることが好ましい。双極板31の対向面の面積(S)に占める電極14の接触面積(A)の割合A/Sが0.5超であることで、電極14と双極板31との接触面積を確保して、電極14と双極板31間の接触抵抗を低減できる。これにより、電池の内部抵抗(セル抵抗)を低減することが可能である。また、双極板31の対向面における溝5の形成面積(電解液の流路面積)を確保する観点から、電極14の接触面積の割合A/Sは0.95未満であることが好ましく、これにより、電解液の流通抵抗を効果的に低減できる。電極14の接触面積の割合A/Sは、例えば0.6以上0.9以下、更に0.7以上0.8以下であることがより好ましい。溝5の「平面開口面積」とは、双極板31を平面視したとき、対向面における溝5の開口面積をいう。
<Percentage of electrode contact area>
The area of the surface of the bipolar plate 31 facing the electrode 14 (ie, the effective electrode region) is S, and the contact area of the facing surface that is in contact with the electrode 14 (the area of the hatched portion of the bipolar plate 31 shown in FIG. 4) is A. , A / S is preferably more than 0.5 and less than 0.95. Since the ratio A / S of the contact area (A) of the electrode 14 to the area (S) of the opposite surface of the bipolar plate 31 is more than 0.5, the contact area between the electrode 14 and the bipolar plate 31 is secured. The contact resistance between the electrode 14 and the bipolar plate 31 can be reduced. Thereby, the internal resistance (cell resistance) of the battery can be reduced. Further, from the viewpoint of securing the formation area of the grooves 5 (electrolyte flow passage area) on the opposing surface of the bipolar plate 31, the ratio A / S of the contact area of the electrode 14 is preferably less than 0.95. Thus, the flow resistance of the electrolytic solution can be effectively reduced. The ratio A / S of the contact area of the electrode 14 is, for example, preferably 0.6 or more and 0.9 or less, and more preferably 0.7 or more and 0.8 or less. The “planar opening area” of the groove 5 refers to the opening area of the groove 5 on the facing surface when the bipolar plate 31 is viewed in plan.
 〈断面形状〉
 図6は、本実施形態における溝5の断面形状を示している。本実施形態では、図6に示すように、溝5の電解液の流通方向に直交する断面において、溝5の開口部56側の幅が底部57側の幅以上であり、更に、溝5の断面形状が開口部56側から底部57側に向けてテーパ状に形成されている。そのため、溝5の開口部56側の幅が底部57側の幅以上であることで、開口部56側よりも底部57側の方が幅が広い場合に比べて、溝5を形成し易い。また、溝5(特に導入溝51a~51c)の断面形状が開口部56側から底部57側に向けてテーパ状に形成されている場合は、溝5から電極内へ電解液を浸透させ易い。溝5の断面形状としては、例えば、矩形状、三角形状(V字状)、台形状、半円形状や半楕円形状などが挙げられる。
<Cross-sectional shape>
FIG. 6 shows a cross-sectional shape of the groove 5 in the present embodiment. In the present embodiment, as shown in FIG. 6, the width of the groove 5 on the opening 56 side is equal to or larger than the width on the bottom 57 side in the cross section orthogonal to the flow direction of the electrolyte in the groove 5. The cross-sectional shape is tapered from the opening 56 side toward the bottom 57 side. Therefore, when the width of the groove 5 on the opening 56 side is equal to or larger than the width on the bottom 57 side, the groove 5 can be formed more easily than the case where the width on the bottom 57 side is wider than the opening 56 side. Further, when the cross-sectional shape of the groove 5 (particularly, the introduction grooves 51a to 51c) is tapered from the opening 56 side toward the bottom 57 side, the electrolytic solution can easily penetrate from the groove 5 into the electrode. Examples of the cross-sectional shape of the groove 5 include a rectangular shape, a triangular shape (V shape), a trapezoidal shape, a semicircular shape, and a semielliptical shape.
 〈樹状溝〉
 図4に示す溝5のうち、導入溝の少なくとも一部と、排出溝の少なくとも一部は樹状に形成されている。
<Dendritic groove>
Among the grooves 5 shown in FIG. 4, at least a part of the introduction groove and at least a part of the discharge groove are formed in a tree shape.
 樹状の導入溝とは、以下の三つの条件を満たす導入溝のことで、本例では導入溝51a、51cが樹状の導入溝に相当する。
・導入部4Aに接続する溝部CI、及び溝部CIから分岐する溝部CI(nは1以上の自然数)を有し、いずれの溝部も排出部4Bに接続しない。
・溝部CIが、溝部CIn-1から溝部CIn-1の延伸方向に交差する方向に分岐している。
・双極板31を平面視したとき、いずれの溝部においてもその先端幅が他の部分の幅に比べて狭い。
 以降、溝部CIを幹溝部60、溝部CIを枝溝部61、溝部CIを枝溝部62とする。ここで、枝溝部の枝分かれ回数、即ちnは3以下とすることが好ましい。nを3以下に制限することで、枝分かれによる枝溝部の溝幅の過度な狭小化を回避できる。
The dendritic introduction groove is an introduction groove that satisfies the following three conditions. In this example, the introduction grooves 51a and 51c correspond to the dendritic introduction grooves.
· Groove CI 0 to be connected to inlet portion 4A, and (the n 1 or more natural number) grooves CI n branching from the groove portion CI 0 has, not connected to the discharge unit 4B none of the grooves.
· Groove CI n has branches in a direction intersecting the groove CI n-1 in the groove CI n-1 in the stretching direction.
When the bipolar plate 31 is viewed in plan, the tip width of any groove is narrower than the width of other portions.
Hereinafter, the groove portion CI 0 is referred to as a trunk groove portion 60, the groove portion CI 1 is referred to as a branch groove portion 61, and the groove portion CI 2 is referred to as a branch groove portion 62. Here, the number of branching of the branch groove, that is, n is preferably 3 or less. By limiting n to 3 or less, excessive narrowing of the groove width of the branch groove portion due to branching can be avoided.
 一方、樹状の排出溝とは、以下の三つの条件を満たす排出溝のことで、本例では排出溝52a、52cが樹状の排出溝に相当する。
・樹状の排出溝とは、排出部4Bに接続する溝部CO、及び溝部COから分岐する溝部CO(mは1以上の自然数)を有し、いずれの溝部も導入部4Aに接続しない。
・溝部COが、溝部COm-1から溝部COm-1の延伸方向に交差する方向に分岐している。
・双極板31を平面視したとき、いずれの溝部においてもその先端幅が他の部分の幅に比べて狭い。
 以降、溝部COを幹溝部70、溝部COを枝溝部71、溝部COを枝溝部72とする。ここで、枝溝部の枝分かれ回数、即ちmは3以下とすることが好ましい。mを3以下に制限することで、枝分かれによる枝溝部の溝幅の過度な狭小化を回避できる。
On the other hand, the tree-shaped discharge groove is a discharge groove that satisfies the following three conditions, and in this example, the discharge grooves 52a and 52c correspond to the tree-shaped discharge grooves.
The tree-shaped discharge groove has a groove portion CO 0 connected to the discharge portion 4B and a groove portion CO m branched from the groove portion CO 0 (m is a natural number of 1 or more), and any groove portion is connected to the introduction portion 4A. do not do.
· Groove CO m has branches in a direction intersecting the groove CO m-1 in the extending direction of the groove CO m-1.
When the bipolar plate 31 is viewed in plan, the tip width of any groove is narrower than the width of other portions.
Hereinafter, the groove CO 0 is referred to as a trunk groove 70, the groove CO 1 is referred to as a branch groove 71, and the groove CO 2 is referred to as a branch groove 72. Here, the number of branching of the branch groove portion, that is, m is preferably 3 or less. By limiting m to 3 or less, excessive narrowing of the groove width of the branch groove portion due to branching can be avoided.
 上述したように、少なくとも一部の導入溝51a、51cと、少なくとも一部の排出溝52a、52cが樹状に形成されていることで、電極14内の広範囲にわたって電解液を浸透・拡散させ易く、電極14内での電解液の分布をより均一にすることが可能である。よって、電極14と電解液との反応性をより向上できる。 As described above, at least a part of the introduction grooves 51a and 51c and at least a part of the discharge grooves 52a and 52c are formed in a tree shape, so that the electrolyte can easily permeate and diffuse over a wide range in the electrode 14. It is possible to make the distribution of the electrolytic solution in the electrode 14 more uniform. Therefore, the reactivity between the electrode 14 and the electrolytic solution can be further improved.
 図5を参照し、導入溝51cと排出溝52cを例にして、樹状に形成される導入溝と排出溝の構成を詳細に説明する。 Referring to FIG. 5, the configuration of the introduction groove and the discharge groove formed in a tree shape will be described in detail by taking the introduction groove 51c and the discharge groove 52c as examples.
 図5に示すように、導入溝51cは、幹溝部60と、幹溝部60から分岐する二つの枝溝部61と、一方の枝溝部61から分岐する枝溝部62と、を備える。幹溝部60から枝溝部61が分岐する箇所では、枝溝部61の開口幅(Wa1)が幹溝部60の開口幅(Wa0)よりも小さい。また、枝溝部61から枝溝部62が分岐する箇所では、枝溝部62の開口幅(Wa2)が枝溝部61の開口幅(Wb1)よりも小さい。このような枝分かれ前後の開口幅の関係は、枝分かれ数が更に多くなっても同様であり、各溝部60、61、62の開口幅は分岐を経るごとに段階的に小さくなっていく。そのため、幹溝部60の総面積>二つの枝溝部61の総面積>枝溝部62の総面積となる。このような構成となっていることで、電極14と双極板31との接触面積が増え、電極14と双極板31間の接触抵抗を低減できる。 As shown in FIG. 5, the introduction groove 51 c includes a trunk groove part 60, two branch groove parts 61 branched from the trunk groove part 60, and a branch groove part 62 branched from one branch groove part 61. At the location where the branch groove portion 61 branches from the trunk groove portion 60, the opening width (W a1 ) of the branch groove portion 61 is smaller than the opening width (W a0 ) of the trunk groove portion 60. Further, at the location where the branch groove portion 62 branches from the branch groove portion 61, the opening width (W a2 ) of the branch groove portion 62 is smaller than the opening width (W b1 ) of the branch groove portion 61. The relationship between the opening widths before and after branching is the same even when the number of branches is further increased, and the opening widths of the groove portions 60, 61, and 62 are gradually reduced as they branch. Therefore, the total area of the trunk groove part 60> the total area of the two branch groove parts 61> the total area of the branch groove part 62. With such a configuration, the contact area between the electrode 14 and the bipolar plate 31 is increased, and the contact resistance between the electrode 14 and the bipolar plate 31 can be reduced.
 一方、排出溝52cは、幹溝部70と、幹溝部70から分岐する枝溝部71と、を備える。幹溝部70から枝溝部71が分岐する箇所では、枝溝部71の開口幅(Wc1)が幹溝部70の開口幅(Wc0)よりも小さい。このような枝分かれ前後の開口幅の関係は、枝分かれ数が更に多くなっても同様であり、各溝部70、71の開口幅は分岐を経るごとに段階的に小さくなっていく。そのため、幹溝部70の総面積>枝溝部71の総面積となる。このような構成となっていることで、電極14と双極板31との接触面積が増え、電極14と双極板31間の接触抵抗を低減できる。 On the other hand, the discharge groove 52 c includes a trunk groove part 70 and a branch groove part 71 branched from the trunk groove part 70. At the location where the branch groove portion 71 branches from the trunk groove portion 70, the opening width (W c1 ) of the branch groove portion 71 is smaller than the opening width (W c0 ) of the trunk groove portion 70. The relationship between the opening widths before and after branching is the same even if the number of branches is further increased, and the opening widths of the groove portions 70 and 71 are gradually reduced as the branching is performed. Therefore, the total area of the trunk groove part 70> the total area of the branch groove part 71. With such a configuration, the contact area between the electrode 14 and the bipolar plate 31 is increased, and the contact resistance between the electrode 14 and the bipolar plate 31 can be reduced.
 更に、本実施形態では、図5に示すように、樹状の導入溝51c(排出溝52c)において、枝溝部61(71)が幹溝部60(70)に対して非直交に交差している。枝溝部61(71)が幹溝部60(70)に対して非直交に交差することにより、枝溝部61(71)が幹溝部60(70)に直交する場合に比べて、電解液の流通抵抗を低減することが可能である。「非直交に交差する」とは、代表的には、幹溝部60(70)の延伸方向に対する枝溝部61(71)の延伸方向の傾斜角α(β)が鋭角である場合をいう。傾斜角α(β)は、例えば10°以上80°以下である。 Furthermore, in this embodiment, as shown in FIG. 5, in the tree-like introduction groove 51c (discharge groove 52c), the branch groove part 61 (71) intersects the trunk groove part 60 (70) non-orthogonally. . Since the branch groove portion 61 (71) intersects the trunk groove portion 60 (70) in a non-orthogonal direction, the flow resistance of the electrolytic solution is larger than when the branch groove portion 61 (71) is perpendicular to the trunk groove portion 60 (70). Can be reduced. “Intersecting non-orthogonally” typically refers to a case where the inclination angle α (β) of the branch groove portion 61 (71) in the extending direction with respect to the extending direction of the trunk groove portion 60 (70) is an acute angle. The inclination angle α (β) is, for example, not less than 10 ° and not more than 80 °.
 〈対向櫛歯領域〉
 本実施形態では、導入路41の導入溝51a~51cと排出路42の排出溝52a~52cとが互いに向かい合って交互に配列された対向櫛歯領域を有する。更に、図4に示す流路4の場合、例えば、導入溝51aの枝溝部61と排出溝52aの枝溝部72とが互いに向かい合って交互に配列されており、これらによっても対向櫛歯領域が形成されている。流路4が対向櫛歯領域を有することで、導入路41(導入溝51a~51c)と排出路42(排出溝52a~52c)との間を渡るように流通する電解液の量が増加し、電極14内に浸透・拡散する電解液が増える。これにより、電極14と電解液との反応効率を高めることができる。
<Counter comb region>
In the present embodiment, the introduction grooves 51a to 51c of the introduction path 41 and the discharge grooves 52a to 52c of the discharge path 42 have opposing comb tooth regions that are alternately arranged facing each other. Further, in the case of the flow path 4 shown in FIG. 4, for example, the branch groove portions 61 of the introduction groove 51a and the branch groove portions 72 of the discharge groove 52a are alternately arranged facing each other, and these also form an opposing comb tooth region. Has been. Since the flow path 4 has the opposing comb tooth region, the amount of the electrolyte flowing so as to cross between the introduction path 41 (introduction grooves 51a to 51c) and the discharge path 42 (discharge grooves 52a to 52c) increases. The electrolyte solution that permeates and diffuses into the electrode 14 increases. Thereby, the reaction efficiency of the electrode 14 and electrolyte solution can be improved.
 〈凸部〉
 溝5の少なくとも一部に開口幅が2mm以上の幅広部を有する場合、この幅広部内に底部から突出する凸部59が形成されていてもよい。溝5の幅広部内に凸部59が設けられていることで、電極14が溝5内に埋没することを抑制できる。本実施形態では、図4に示すように、導入溝51a及び排出溝52aの各々の基端側(整流部410、420に接続される側)が部分的に幅広部になっており、その部分に凸部59が設けられている。平面視したときの凸部59の形状は、特に限定されるものではなく、例えば、三角形や四角形といった多角形状、円形状や楕円形状などの種々の形状を採用できる。また、幅広部内に配置する凸部59の個数は、1つでもよいし、複数でもよい。
<Convex>
When at least a part of the groove 5 has a wide portion with an opening width of 2 mm or more, a convex portion 59 protruding from the bottom portion may be formed in the wide portion. Since the convex portion 59 is provided in the wide portion of the groove 5, it is possible to suppress the electrode 14 from being buried in the groove 5. In the present embodiment, as shown in FIG. 4, the base end sides (sides connected to the rectifying units 410 and 420) of the introduction groove 51a and the discharge groove 52a are partially widened, and the portion Convex part 59 is provided in this. The shape of the convex portion 59 when viewed in plan is not particularly limited, and various shapes such as a polygonal shape such as a triangle and a quadrangle, a circular shape, and an elliptical shape can be employed. Further, the number of the convex portions 59 arranged in the wide portion may be one or plural.
 〈その他〉
 導入溝51a~51cと排出溝52a~52cを構成する全ての溝部60、61、62、70、71、72が非直線状で、かつその溝幅がランダムに変化していても良い。これは、導入溝51a~51cと排出溝52a~52cがより有機的な樹状形状に形成されていることを示している。このような有機的な樹状形状の導入溝51a~51cと排出溝52a~52cとすることで、電極14の全面に電解液を均一的に分散させ易くなる。
<Others>
All the groove portions 60, 61, 62, 70, 71, 72 constituting the introduction grooves 51a to 51c and the discharge grooves 52a to 52c may be non-linear and the groove width may be changed randomly. This indicates that the introduction grooves 51a to 51c and the discharge grooves 52a to 52c are formed in a more organic dendritic shape. Such organic dendritic introduction grooves 51a to 51c and discharge grooves 52a to 52c facilitate uniform dispersion of the electrolyte over the entire surface of the electrode 14.
 [実施形態の効果]
 実施形態に示すように、双極板31の対向面に、互いに独立した樹状の導入溝51a、51cと排出溝52a、52cとを設けることで、双極板31の平面方向に電解液を速やかに分散させることができる。その結果、電解液の流通抵抗を低減できると共に、電極14全体に電解液を均一に行き渡らせ易い。特に、導入溝51a、51cの幹溝部60と枝溝部61、62の溝幅が先端側に向かって小さくなることで、先端側に近づくにつれて電解液の圧力が高くなり、幹溝部60と枝溝部61、62から電極14内へ電解液を浸透・拡散させ易い。更に、排出溝52a、52cの幹溝部70と枝溝部71、72の溝幅が先端側に向って小さくなっていることで、電極14から排出溝52a、52cに電解液が移動し過ぎることを抑制でき、電極14と反応することなく排出溝52a、52cに排出される電解液の量を低減できる。このように、実施形態の双極板31によれば、電極14に均一的に電解液を分布させ、電極14と電解液との反応性を向上させることができるので、レドックスフロー電池の内部抵抗(セル抵抗)を低減することが可能である。
[Effect of the embodiment]
As shown in the embodiment, by providing tree- like introduction grooves 51 a and 51 c and discharge grooves 52 a and 52 c that are independent from each other on the opposing surface of the bipolar plate 31, the electrolyte solution can be quickly supplied in the planar direction of the bipolar plate 31. Can be dispersed. As a result, the flow resistance of the electrolytic solution can be reduced, and the electrolytic solution can be easily distributed uniformly throughout the electrode 14. In particular, since the groove widths of the trunk groove portion 60 and the branch groove portions 61 and 62 of the introduction grooves 51a and 51c become smaller toward the distal end side, the pressure of the electrolytic solution becomes higher as approaching the distal end side. It is easy to permeate and diffuse the electrolytic solution from 61 and 62 into the electrode 14. Further, since the groove widths of the trunk groove portion 70 and the branch groove portions 71 and 72 of the discharge grooves 52a and 52c are reduced toward the distal end side, the electrolyte solution moves too much from the electrode 14 to the discharge grooves 52a and 52c. The amount of the electrolytic solution discharged to the discharge grooves 52a and 52c without reacting with the electrode 14 can be reduced. Thus, according to the bipolar plate 31 of the embodiment, the electrolyte solution can be uniformly distributed on the electrode 14 and the reactivity between the electrode 14 and the electrolyte solution can be improved, so that the internal resistance of the redox flow battery ( (Cell resistance) can be reduced.
 実施形態に係るセルフレーム3は、上記双極板31を備えることで、電解液の流通抵抗を低減しつつ、電極14と電解液との反応性を向上できるので、電解液の流通抵抗による圧力損失を低減できながら、電極14での反応抵抗を低減することが可能である。 Since the cell frame 3 according to the embodiment includes the bipolar plate 31, the reactivity between the electrode 14 and the electrolytic solution can be improved while reducing the flow resistance of the electrolytic solution. The reaction resistance at the electrode 14 can be reduced.
 実施形態に係るセルスタック2は、上記セルフレーム3を備えることで、電解液の流通抵抗による圧力損失を低減できながら、電極14での反応抵抗を低減することが可能である。 Since the cell stack 2 according to the embodiment includes the cell frame 3, it is possible to reduce the reaction resistance at the electrode 14 while reducing the pressure loss due to the flow resistance of the electrolytic solution.
 実施形態に係るRF電池1は、上記セルスタック2を備えることで、電解液の流通抵抗による圧力損失を低減できながら、電極14での反応抵抗を低減することが可能であるので、電池の内部抵抗(セル抵抗)を低減することが可能である。 Since the RF battery 1 according to the embodiment includes the cell stack 2, the reaction resistance at the electrode 14 can be reduced while the pressure loss due to the flow resistance of the electrolytic solution can be reduced. Resistance (cell resistance) can be reduced.
 [変形例]
 図7を参照して、双極板31の変形例を説明する。図7に示す双極板31は、電解液の流路4の構成が上述した図4に示す実施形態の双極板31と相違する。以下では、上述した実施形態との相違点を中心に説明する。
[Modification]
A modification of the bipolar plate 31 will be described with reference to FIG. The bipolar plate 31 shown in FIG. 7 is different from the bipolar plate 31 of the embodiment shown in FIG. Below, it demonstrates centering on difference with embodiment mentioned above.
 図7に示す双極板31の有効電極領域は矩形状である。変形例では、図7に示すように、入口4iが有効電極領域の右下角部に位置し、出口4oが有効電極領域の左上角部に位置しており、入口4iと出口4oとが有効電極領域の対角位置に設けられている。更に、変形例では、入口4iに接続される導入側整流部として、双極板31の下縁部に沿って形成される導入側整流部410と、双極板31の右縁部に沿って形成される導入側整流部411と、を有する。また、出口4oに接続される排出側整流部として、双極板31の上縁部に沿って形成される排出側整流部420と、双極板31の左縁部に沿って形成される排出側整流部421と、を有する。導入側整流部410、411と排出側整流部420、421とは互いに連通しないように形成されている。 The effective electrode area of the bipolar plate 31 shown in FIG. 7 is rectangular. In the modification, as shown in FIG. 7, the inlet 4i is positioned at the lower right corner of the effective electrode region, the outlet 4o is positioned at the upper left corner of the effective electrode region, and the inlet 4i and the outlet 4o are the effective electrodes. It is provided at a diagonal position of the region. Further, in the modification, the introduction side rectification unit connected to the inlet 4i is formed along the introduction side rectification unit 410 formed along the lower edge portion of the bipolar plate 31 and the right edge portion of the bipolar plate 31. And an introduction side rectification unit 411. Further, as a discharge side rectification unit connected to the outlet 4o, a discharge side rectification unit 420 formed along the upper edge of the bipolar plate 31, and a discharge side rectification formed along the left edge of the bipolar plate 31 Part 421. The introduction side rectification units 410 and 411 and the discharge side rectification units 420 and 421 are formed so as not to communicate with each other.
 図7に示す流路4は、導入路41と排出路42とを備える。導入路41は、導入側整流部410、411に接続される導入溝51a~51dを備え、排出路42は、排出側整流部420、421に接続される排出溝52a~52dを備える。これらの溝のうち、導入溝51c、51d(排出溝52c)は、樹状に形成された樹状溝であり、幹溝部60(70)と、幹溝部60(70)から分岐する枝溝部61(71)とを備える。導入溝51c、51d(排出溝52c)において、幹溝部60(70)に対して枝溝部61(71)が非直交に交差している。 7 includes an introduction path 41 and a discharge path 42. The introduction path 41 includes introduction grooves 51a to 51d connected to the introduction side rectification sections 410 and 411, and the discharge path 42 includes discharge grooves 52a to 52d connected to the discharge side rectification sections 420 and 421. Among these grooves, the introduction grooves 51c and 51d (discharge grooves 52c) are dendritic grooves formed in a tree shape, and the trunk groove portion 60 (70) and the branch groove portion 61 branched from the trunk groove portion 60 (70). (71). In the introduction grooves 51c and 51d (discharge groove 52c), the branch groove part 61 (71) intersects the trunk groove part 60 (70) non-orthogonally.
 流路4は、入口4iと出口4oとを結ぶ対角線(図中、一点鎖線で示す)を対称軸とする線対称になっている。また、整流部410、411、420、421と有効電極領域の対角線(入口4iと出口4oとを結ぶ対角線)とがなす角度が40°以上50°以下である。各整流部410、411、420、421と有効電極領域の対角線とのなす角度を上記範囲内に設定することで、整流部410、411、420、421での圧力損失を低減できる。 The flow path 4 is axisymmetric with respect to a diagonal line (indicated by a one-dot chain line in the figure) connecting the inlet 4i and the outlet 4o. Further, the angle formed by the rectifying units 410, 411, 420, and 421 and the diagonal line of the effective electrode region (the diagonal line connecting the inlet 4i and the outlet 4o) is 40 ° or more and 50 ° or less. By setting the angle formed between each rectifying unit 410, 411, 420, 421 and the diagonal line of the effective electrode region within the above range, pressure loss in the rectifying units 410, 411, 420, 421 can be reduced.
 変形例では、図7に示すように、導入路41及び排出路42に接続されない中間溝54を有する。中間溝54は、導入側の整流部410、411及び排出側の整流部420、421、並びに、導入溝51a~51d及び排出溝52a~52dに連通しない独立した閉鎖溝である。 7 has an intermediate groove 54 that is not connected to the introduction path 41 and the discharge path 42, as shown in FIG. The intermediate groove 54 is an independent closed groove that does not communicate with the introduction- side rectification units 410 and 411 and the discharge- side rectification units 420 and 421, and the introduction grooves 51a to 51d and the discharge grooves 52a to 52d.
 この中間溝54は、以下の三つの条件を満たす樹状溝である。
・導入部4Aに接続する溝部CC、及び溝部CCから分岐する溝部CC(kは1以上の自然数)を有する。
・溝部CCkが、溝部CCk-1から溝部CCk-1の延伸方向に交差する方向に分岐している。
・双極板31を平面視したとき、いずれの溝部においてもその先端幅が他の部分の幅に比べて狭い。
 以降、溝部CCを幹溝部80、溝部CCを枝溝部81、溝部CCを枝溝部82とする。ここで、枝溝部の枝分かれ回数、即ちkは3以下とすることが好ましい。kを3以下に制限することで、枝分かれによる枝溝部の溝幅の過度な狭小化を回避できる。
The intermediate groove 54 is a dendritic groove that satisfies the following three conditions.
· Groove CC 0 to be connected to the inlet section 4A, and the groove CC k branching from the groove section CC 0 (k is a natural number of 1 or more) having a.
· Groove CC k has branches in a direction intersecting the groove CC k-1 in the extending direction of the groove CC k-1.
When the bipolar plate 31 is viewed in plan, the tip width of any groove is narrower than the width of other portions.
Hereinafter, the groove portion CC 0 is referred to as a trunk groove portion 80, the groove portion CC 1 is referred to as a branch groove portion 81, and the groove portion CC 2 is referred to as a branch groove portion 82. Here, it is preferable that the number of branches of the branch groove portion, that is, k is 3 or less. By limiting k to 3 or less, excessive narrowing of the groove width of the branch groove portion due to branching can be avoided.
 中間溝44の幹溝部80は、入口4iと出口4oとを結ぶ対角線に沿って伸びている。枝溝部81は、幹溝部80の導入側(右下側)及び排出側(左上側)の各々の端部からそれぞれ分岐している。更に枝溝部82は、各枝溝部81の先端から分岐している。中間溝54において、枝溝部81は幹溝部80に対して非直交に交差している。 The trunk groove 80 of the intermediate groove 44 extends along a diagonal line connecting the inlet 4i and the outlet 4o. The branch groove portion 81 is branched from each end portion on the introduction side (lower right side) and the discharge side (upper left side) of the trunk groove portion 80. Furthermore, the branch groove part 82 branches off from the tip of each branch groove part 81. In the intermediate groove 54, the branch groove portion 81 intersects the trunk groove portion 80 in a non-orthogonal manner.
 図7に示す流路4では、導入溝51c、51dと排出溝52c、52dとによる対向櫛歯領域に加え、導入溝51a~51c又は排出溝52a~52cと中間溝54とによる対向櫛歯領域を有する。これら対向櫛歯領域が形成されていることで、電極に対して広範囲にわたって電解液を拡散させ易い上に、電極内の電解液の分布をより均一的にし易い。 In the flow path 4 shown in FIG. 7, in addition to the opposing comb tooth region formed by the introduction grooves 51c and 51d and the discharge grooves 52c and 52d, the opposed comb tooth region formed by the introduction grooves 51a to 51c or the discharge grooves 52a to 52c and the intermediate groove 54. Have By forming these opposed comb-tooth regions, it is easy to diffuse the electrolytic solution over a wide range with respect to the electrode, and it is easy to make the distribution of the electrolytic solution in the electrode more uniform.
 更に、変形例では、導入溝51a及び中間溝54の幹溝部60にそれぞれ幅広部を有しており、各々の幅広部内に凸部59が配置されている。 Furthermore, in the modification, the introduction groove 51a and the trunk groove part 60 of the intermediate groove 54 each have a wide part, and the convex part 59 is arranged in each wide part.
 [試験例1]
 実施形態に相当する電解液の流路が形成された双極板を作製し、これを用いてRF電池を組み立て、セル抵抗率を調べた。
[Test Example 1]
A bipolar plate having an electrolyte flow path corresponding to the embodiment was fabricated, and an RF battery was assembled using the bipolar plate, and the cell resistivity was examined.
 試験例1では、図8A~図8Cに示す流路が形成された試料No.1~No.3の溝付き双極板を用意した。双極板の材質はプラスチックカーボンである。試料No.1~No.3の双極板は、形状・サイズが同じで、流路のみを異ならせており、電極との対向面における電極接触面積A及び流路を構成する溝の平面開口面積Bが異なっている。各双極板の対向面の面積(S)は891mm(27mm×33mm)で同じである。各試料における双極板の電極接触面積A、及び対向面の面積(S)に占める電極接触面積(A)の割合A/Sを表1に示す。 In Test Example 1, sample No. 1 in which the flow path shown in FIGS. 1-No. Three grooved bipolar plates were prepared. The material of the bipolar plate is plastic carbon. Sample No. 1-No. The bipolar plate No. 3 has the same shape and size, and only the flow path is different, and the electrode contact area A on the surface facing the electrode and the planar opening area B of the grooves constituting the flow path are different. The area (S) of the opposing surface of each bipolar plate is the same at 891 mm 2 (27 mm × 33 mm). Table 1 shows the electrode contact area A of the bipolar plate in each sample and the ratio A / S of the electrode contact area (A) to the area (S) of the facing surface.
 試料No.1~No.3の双極板を用いて単セルのRF電池を組み立てた。単セルは、隔膜の両側に正負の電極をそれぞれ配置し、その両側から双極板を備えるセルフレームで挟んで作製した。正負の各電極には、カーボンフェルトを用いた。 Sample No. 1-No. A single cell RF battery was assembled using 3 bipolar plates. The single cell was prepared by placing positive and negative electrodes on both sides of the diaphragm and sandwiching the cell frame with bipolar plates from both sides. Carbon felt was used for each positive and negative electrode.
 (セル抵抗率の測定)
 各試料の双極板を用いた単セルのRF電池について、以下に示す試験条件で充放電試験を行った。そして、3サイクル充放電時におけるセル抵抗率(Ω・cm)を求めた。各試料におけるセル抵抗率を表1に示す。セル抵抗率は、下記に示す計算式により算出した。
(Measurement of cell resistivity)
A single cell RF battery using the bipolar plate of each sample was subjected to a charge / discharge test under the following test conditions. And the cell resistivity (ohm * cm < 2 >) at the time of 3 cycles charging / discharging was calculated | required. Table 1 shows the cell resistivity of each sample. The cell resistivity was calculated by the calculation formula shown below.
〈試験条件〉
 《電解液》
 硫酸バナジウム水溶液(V濃度:1.7mol/L、硫酸濃度:3.4mol/L)
 《電解液流量》
 入口流量:0.31(mL/min)
 出口流量:自由流出
 《充放電条件》
 充放電方法:定電流
 電流密度:70(mA/cm
 充電終了電圧:1.55(V)
 放電終了電圧:1.00(V)
 温度:25℃
〈セル抵抗率〉
 式:R=(V2-V1)/2I
 R:セル抵抗率(Ω・cm
 I:電流密度(A/cm
 V1:充電時間の中間時点における電圧(V)
 V2:放電時間の中間時点における電圧(V)
<Test conditions>
<Electrolyte>
Vanadium sulfate aqueous solution (V concentration: 1.7 mol / L, sulfuric acid concentration: 3.4 mol / L)
<Electrolyte flow rate>
Inlet flow rate: 0.31 (mL / min)
Outlet flow rate: Free outflow
Charging / discharging method: constant current Current density: 70 (mA / cm 2 )
Charging end voltage: 1.55 (V)
Discharge end voltage: 1.00 (V)
Temperature: 25 ° C
<Cell resistivity>
Formula: R = (V2-V1) / 2I
R: Cell resistivity (Ω · cm 2 )
I: Current density (A / cm 2 )
V1: Voltage (V) at the middle of the charging time
V2: Voltage (V) at the intermediate point of the discharge time
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、試料No.1~No.3のセル抵抗率は、No.1>No.2>No.3の順に小さくなっており、試料No.2、No.3は、試料No.1に比べてセル抵抗率を大幅に低減できている。この結果から、電極接触面積の割合(A/S)は0.5超が好ましいことが分かる。 As shown in Table 1, sample no. 1-No. The cell resistivity of No. 3 1> No. 2> No. No. 3 in order, sample No. 2, No. 3 is sample No. Compared with 1, the cell resistivity can be greatly reduced. From this result, it is understood that the ratio (A / S) of the electrode contact area is preferably more than 0.5.
 1 レドックスフロー電池(RF電池)
 2 セルスタック
 10 セル
 11 隔膜
 12 正極セル  13 負極セル
 14 正極電極  15 負極電極
 3 セルフレーム
 31 双極板  32 枠体
 32o 凹部
 33、34 給液マニホールド  35、36 排液マニホールド
 33s、34s 給液スリット  35s、36s 排液スリット
 37 シール部材  38 シール溝
 4 流路
 4A 導入部 4B 排出部
 4i 入口  4o 出口
 41 導入路  42 排出路
 5 溝
 51a、51b、51c、51d 導入溝
 52a、52b、52c、52d 排出溝
 410、411 導入側整流部
 420、421 排出側整流部
 54 中間溝
 56 開口部  57 底部
 59 凸部
 60 幹溝部(溝部CI
 61 枝溝部(溝部CI
 62 枝溝部(溝部CI
 70 幹溝部(溝部CO
 71 枝溝部(溝部CO
 72 枝溝部(溝部CO
 80 幹溝部(溝部CC
 81 枝溝部(溝部CC
 82 枝溝部(溝部CC
 100P 正極循環流路  100N 負極循環流路
 106 正極電解液タンク  107 負極電解液タンク
 108、109 往路配管  110、111 復路配管
 112、113 ポンプ
 200 サブスタック
 210 給排板  220 エンドプレート  230 締付機構
 C 交流/直流変換器  P 電力系統
1 Redox flow battery (RF battery)
2 cell stack 10 cell 11 diaphragm 12 positive electrode cell 13 negative electrode cell 14 positive electrode 15 negative electrode 3 cell frame 31 bipolar plate 32 frame 32o recess 33, 34 liquid supply manifold 35, 36 drainage manifold 33s, 34s liquid supply slit 35s, 36s Drain slit 37 Seal member 38 Seal groove 4 Flow path 4A Introducing section 4B Discharging section 4i Inlet 4o Outlet 41 Introducing path 42 Discharging path 5 Grooves 51a, 51b, 51c, 51d Introducing grooves 52a, 52b, 52c, 52d Discharging groove 410 411 Inlet side rectifying portion 420, 421 Discharge side rectifying portion 54 Intermediate groove 56 Opening portion 57 Bottom portion 59 Protruding portion 60 Trunk portion (groove portion CI 0 )
61 Branch groove part (groove part CI 1 )
62 Branch groove part (groove part CI 2 )
70 Trunk groove (groove CO 0 )
71 Branch groove part (groove part CO 1 )
72 Branch groove part (groove part CO 2 )
80 Trunk groove (groove CC 0 )
81 Branch groove part (groove part CC 1 )
82 Branch groove (groove CC 2 )
100P Cathode circulation channel 100N Cathode circulation channel 106 Cathode electrolyte tank 107 Cathode electrolyte tank 108, 109 Outward piping 110, 111 Return piping 112, 113 Pump 200 Substack 210 Supply / discharge plate 220 End plate 230 Tightening mechanism C AC / DC converter P Power system

Claims (12)

  1.  レドックスフロー電池の電極に対向する対向面と、前記対向面に配置される電解液の導入部及び排出部と、を有する双極板であって、
     前記導入部に接続する溝部CI、及び前記溝部CIから分岐する溝部CIを有し、いずれの溝部も前記排出部に接続しない導入溝と、
     前記排出部に接続する溝部CO、及び前記溝部COから分岐する溝部COを有し、いずれの溝部も前記導入部に接続しない排出溝と、を備え、
     溝部CIは、溝部CIn-1から溝部CIn-1の延伸方向に交差する方向に分岐し、
     溝部COは、溝部COm-1から溝部COm-1の延伸方向に交差する方向に分岐し、
     前記双極板を平面視したとき、いずれの溝部においてもその先端部が先細りとなっている双極板。
     但し、n、mは1以上の任意の自然数である。
    A bipolar plate having a facing surface facing an electrode of a redox flow battery, and an introduction portion and a discharging portion for an electrolyte solution disposed on the facing surface,
    A groove portion CI n branching from the groove portion CI 0, and the groove CI 0 to be connected to the inlet portion, and the introduction groove not connect any of the grooves in the discharge portion,
    A groove portion CO 0 connected to the discharge portion, and a groove portion CO m branched from the groove portion CO 0 , each of the groove portions including a discharge groove not connected to the introduction portion,
    Groove CI n branches in a direction crossing the extending direction of the groove CI n-1 from the groove CI n-1,
    Groove CO m branches in a direction crossing the extending direction of the groove CO m-1 from the groove CO m-1,
    A bipolar plate having a tapered tip at any groove when the bipolar plate is viewed in plan.
    However, n and m are 1 or more arbitrary natural numbers.
  2.  前記導入溝の一部の溝部と前記排出溝の一部の溝部とが互いに噛み合う対向櫛歯領域を有する請求項1に記載の双極板。 2. The bipolar plate according to claim 1, wherein the bipolar plate has an opposing comb tooth region in which a part of the introduction groove and a part of the discharge groove are engaged with each other.
  3.  前記導入部、前記排出部、前記導入溝、及び前記排出溝のいずれにも接続しない中間溝を備え、
     前記中間溝は、前記導入部側から前記排出部側に向って延びる溝部CC、及び前記溝部CCから分岐する溝部CCを有し、
     溝部CCは、溝部CCk-1から溝部CCk-1の延伸方向に交差する方向に分岐し、
     前記双極板を平面視したとき、いずれの溝部においてもその先端幅が他の部分の幅に比べて狭い請求項1又は請求項2に記載の双極板。
     但し、kは1以上の任意の自然数である。
    An intermediate groove not connected to any of the introduction part, the discharge part, the introduction groove, and the discharge groove;
    The intermediate groove has a groove part CC 0 extending from the introduction part side toward the discharge part side, and a groove part CC k branched from the groove part CC 0 ,
    Groove CC k branches in a direction crossing the extending direction of the groove CC k-1 from the groove CC k-1,
    3. The bipolar plate according to claim 1, wherein when the bipolar plate is viewed in plan, the tip width of any groove is narrower than the width of the other portion.
    However, k is an arbitrary natural number of 1 or more.
  4.  前記導入溝の一部の溝部と前記中間溝の一部の溝部とが互いに噛み合う対向櫛歯領域を有し、
     前記排出溝の一部の溝部と前記中間溝の一部の溝部とが互いに噛み合う対向櫛歯領域を有する請求項3に記載の双極板。
    Having a counter comb tooth region in which a part of the groove part of the introduction groove and a part of the groove part of the intermediate groove mesh with each other;
    The bipolar plate according to claim 3, wherein the bipolar plate has an opposing comb tooth region in which a part of the groove of the discharge groove and a part of the groove of the intermediate groove are engaged with each other.
  5.  全ての溝部が非直線状で、かつその溝幅がランダムに変化する請求項1から請求項4のいずれか1項に記載の双極板。 The bipolar plate according to any one of claims 1 to 4, wherein all the groove portions are non-linear, and the groove width changes randomly.
  6.  前記双極板を平面視したときの溝部CIの総面積は、溝部CIn-1の総面積よりも小さく、かつ前記双極板を平面視したときの溝部COの総面積は溝部COm-1の総面積よりも小さい請求項1から請求項5のいずれか1項に記載の双極板。 The total area of the groove CI n when bipolar plate in a plan view, the groove CI less than the total area of the n-1, and the total area of the groove CO m in a plan view the bipolar plate groove CO m- bipolar plate according to any one of claims 5 smaller claims 1 than the total area of 1.
  7.  前記導入部は、前記双極板における前記電解液の入口と、前記入口から前記双極板の縁部に沿って形成される導入側整流部と、を備え、
     前記排出部は、前記双極板における前記電解液の出口と、前記出口から前記双極板の縁部に沿って形成される排出側整流部と、を備える請求項1から請求項6のいずれか1項に記載の双極板。
    The introduction part includes an inlet of the electrolyte solution in the bipolar plate, and an introduction side rectification part formed along the edge of the bipolar plate from the inlet,
    The said discharge part is provided with the exit of the said electrolyte solution in the said bipolar plate, and the discharge side rectification | straightening part formed along the edge of the said bipolar plate from the said exit. The bipolar plate according to item.
  8.  前記対向面のうち、実際に前記電極に対向する有効電極領域が矩形状であり、
     前記入口と前記出口とが前記有効電極領域の対角位置に設けられており、
     前記導入側整流部及び前記排出側整流部と、前記有効電極領域の対角線と、がなす角度が40°以上50°以下である請求項7に記載の双極板。
    Of the opposed surfaces, the effective electrode region that actually faces the electrode is rectangular,
    The inlet and the outlet are provided at diagonal positions of the effective electrode region;
    The bipolar plate according to claim 7, wherein an angle formed by the introduction-side rectification unit and the discharge-side rectification unit and a diagonal line of the effective electrode region is 40 ° or more and 50 ° or less.
  9.  前記対向面の面積をS、前記対向面のうち、前記電極と接触する接触面積をAとしたとき、A/Sが0.5超0.95未満である請求項1から請求項8のいずれか1項に記載の双極板。 9. The A / S is more than 0.5 and less than 0.95, where S is the area of the facing surface and A is the contact area of the facing surface that contacts the electrode. 2. The bipolar plate according to item 1.
  10.  請求項1から請求項9のいずれか1項に記載の双極板と、前記双極板の外周に設けられる枠体と、を備えるセルフレーム。 A cell frame comprising: the bipolar plate according to any one of claims 1 to 9; and a frame provided on an outer periphery of the bipolar plate.
  11.  請求項10に記載のセルフレームを備えるセルスタック。 A cell stack comprising the cell frame according to claim 10.
  12.  請求項11に記載のセルスタックを備えるレドックスフロー電池。 A redox flow battery comprising the cell stack according to claim 11.
PCT/JP2018/021777 2018-06-06 2018-06-06 Bipolar plate, cell frame, cell stack, and redox flow battery WO2019234868A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/021777 WO2019234868A1 (en) 2018-06-06 2018-06-06 Bipolar plate, cell frame, cell stack, and redox flow battery
TW108119515A TW202002378A (en) 2018-06-06 2019-06-05 Bipolar plate, cell frame, cell stack, and redox flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/021777 WO2019234868A1 (en) 2018-06-06 2018-06-06 Bipolar plate, cell frame, cell stack, and redox flow battery

Publications (1)

Publication Number Publication Date
WO2019234868A1 true WO2019234868A1 (en) 2019-12-12

Family

ID=68770181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021777 WO2019234868A1 (en) 2018-06-06 2018-06-06 Bipolar plate, cell frame, cell stack, and redox flow battery

Country Status (2)

Country Link
TW (1) TW202002378A (en)
WO (1) WO2019234868A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148659A (en) * 1988-11-30 1990-06-07 Toyobo Co Ltd Liquid flow type electrolytic cell
JPH08287923A (en) * 1995-04-13 1996-11-01 Toyobo Co Ltd Electrode material for flowing liquid electrolytic cell
JP2000260461A (en) * 1999-03-05 2000-09-22 Sumitomo Electric Ind Ltd Cell for fluid flow-through battery
JP2015210849A (en) * 2014-04-23 2015-11-24 住友電気工業株式会社 Bipolar plate, redox flow cell, and method of manufacturing bipolar plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148659A (en) * 1988-11-30 1990-06-07 Toyobo Co Ltd Liquid flow type electrolytic cell
JPH08287923A (en) * 1995-04-13 1996-11-01 Toyobo Co Ltd Electrode material for flowing liquid electrolytic cell
JP2000260461A (en) * 1999-03-05 2000-09-22 Sumitomo Electric Ind Ltd Cell for fluid flow-through battery
JP2015210849A (en) * 2014-04-23 2015-11-24 住友電気工業株式会社 Bipolar plate, redox flow cell, and method of manufacturing bipolar plate

Also Published As

Publication number Publication date
TW202002378A (en) 2020-01-01

Similar Documents

Publication Publication Date Title
CN107710487B (en) Bipolar plate, cell frame, cell stack and redox flow cell
WO2017150170A1 (en) Electrode and electrolytic solution circulation type battery
US20190267657A1 (en) Redox flow battery
JP6970388B2 (en) Redox flow battery electrodes, redox flow battery cells and redox flow batteries
JP6525120B1 (en) Cell frame, cell stack, and redox flow battery
WO2019234868A1 (en) Bipolar plate, cell frame, cell stack, and redox flow battery
WO2019234869A1 (en) Bipolar plate, cell frame, cell stack, and redox flow battery
KR20170034995A (en) Flow flame and redox flow secondary battery having the same
JP7435479B2 (en) Battery cells, cell stacks, and redox flow batteries
JP7068613B2 (en) Redox flow battery cell and redox flow battery
JP7101771B2 (en) Bipolar plate, cell frame, cell stack, and redox flow battery
TW202036971A (en) Battery cell, cell stack and redox flow battery
WO2020166418A1 (en) Bipolar plate, cell frame, cell stack, and redox flow battery
JP7461614B2 (en) Bipolar plate, cell frame, battery cell, cell stack, and redox flow battery
JP7347448B2 (en) Battery cells, cell stacks, and redox flow batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP