WO2019234811A1 - Vehicle drive device - Google Patents

Vehicle drive device Download PDF

Info

Publication number
WO2019234811A1
WO2019234811A1 PCT/JP2018/021492 JP2018021492W WO2019234811A1 WO 2019234811 A1 WO2019234811 A1 WO 2019234811A1 JP 2018021492 W JP2018021492 W JP 2018021492W WO 2019234811 A1 WO2019234811 A1 WO 2019234811A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
engine
rotating
electrical machine
mode
Prior art date
Application number
PCT/JP2018/021492
Other languages
French (fr)
Japanese (ja)
Inventor
忠彦 加藤
Original Assignee
株式会社ユニバンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユニバンス filed Critical 株式会社ユニバンス
Priority to JP2020523870A priority Critical patent/JP7101770B2/en
Priority to PCT/JP2018/021492 priority patent/WO2019234811A1/en
Publication of WO2019234811A1 publication Critical patent/WO2019234811A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/383One-way clutches or freewheel devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/17Control strategies specially adapted for achieving a particular effect for noise reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a vehicle drive device used in a hybrid vehicle using both an engine and a rotating electrical machine.
  • Patent Document 1 discloses an input member connected to an engine, an output member connected to a wheel, a rotating element connected to the input member, What comprises a rotating element connected to a first rotating electrical machine and a differential having a rotating element connected to an output member and a second rotating electrical machine is disclosed.
  • the vehicle drive device can transmit the torque of the first rotating electric machine and the second rotating electric machine to the output member in a state where the engine is stopped, and can drive the vehicle.
  • the propulsive force is rapidly reduced when the speed of the vehicle is increased and the rotational speed of the rotating electrical machine is increased.
  • the driving force of the first rotating electrical machine connected to the engine via the differential device is not transmitted, so the propulsive force is not so great. If the engine speed is increased and the output is increased during acceleration to compensate for the decrease in the driving force of the first rotating electrical machine, the propulsive force of driving the two rotating electrical machines can be obtained, but the noise (engine sound) is intense. The quietness of the vehicle is lost.
  • the present invention has been made to solve this problem, and an object of the present invention is to provide a vehicle drive device that can obtain a strong driving force while ensuring quietness during acceleration.
  • a vehicle drive device includes an input member connected to an engine, a first clutch for connecting / disconnecting power of the input member, an output member connected to a wheel, and an input member.
  • a switching device that switches between a state in which the second clutch is disengaged and a state in which the second clutch is engaged.
  • the second clutch allows relative rotation when the relative rotation direction of the two rotation elements is in the second direction, and the relative rotation direction of the two rotation elements is the first. The connection is made in the first direction opposite to the two directions.
  • the switching device switches between a state in which the second clutch connecting any two of the rotating elements of the differential gear is disconnected and a state in which the second clutch is connected.
  • the second clutch allows relative rotation when the relative rotation direction of the two rotation elements is in the second direction, and the relative rotation direction of the two rotation elements is the first. Connect in one direction. This eliminates the need for control to match the rotational speeds of the two rotating elements in order to connect the second clutch.
  • the rotating element rotates integrally, so that the rotational speeds of the output member, the first rotating electrical machine, and the second rotating electrical machine are determined according to the rotational speed of the engine. Therefore, a strong driving force can be obtained during acceleration.
  • the rotation speed of the engine is limited by the first rotating electric machine and the second rotating electric machine, noise can be prevented from becoming intense during acceleration, and quietness can be ensured.
  • one of the two rotating elements connected to the second clutch is a drive side driven by the engine, the other is a driven side, and the second clutch is a drive side
  • the rotation speed of the rotation element becomes higher than the rotation speed of the driven rotation element, the rotation elements are connected.
  • the second clutch is connected without impact, and a strong driving force is obtained. Therefore, in addition to the effect of the first aspect, it is possible to improve the response to the steering input while suppressing the impact when the second clutch is engaged.
  • the second clutch includes a first member having a first surface that intersects the axis of the differential, and a second surface that faces the first surface in the direction of the axis. And a second member.
  • the first member has a plurality of first holes formed on a circumference centered on the axis of the first surface, the first engagement element is swingably disposed in each of the first holes, and the second member is A plurality of second holes are formed on a circumference centered on the axis of the second surface.
  • the first engagement element is disposed in the first hole formed in the first surface of the first member, and the edge and the first hole of the second hole formed in the second surface of the second member facing the first surface Since the first clutch engages with the edge of the second clutch and the second clutch is connected, the axial length of the second clutch can be shortened. Therefore, in addition to the effect of Claim 1 or 2, the increase in the length of the vehicle drive device in the axial direction due to the arrangement of the second clutch can be suppressed.
  • FIG. 3 is a cross-sectional view of a second clutch taken along line III-III in FIG. 2.
  • FIG. 4 is a cross-sectional view of the second clutch taken along line IV-IV in FIG. 2.
  • A) is a schematic diagram of the 2nd clutch in a sliding state
  • (b) is a schematic diagram of the connected 2nd clutch. It is a block diagram which shows the electric constitution of the drive device for vehicles.
  • (A) is a schematic diagram of the first map
  • (b) is a schematic diagram of the second map.
  • FIG. It is a flowchart of a power mode process.
  • (A) is a skeleton figure of the vehicle drive device in 2nd Embodiment
  • (b) is a skeleton figure of the vehicle drive device in 3rd Embodiment.
  • FIG. 1 is a skeleton diagram of a vehicle drive device 10 according to the first embodiment.
  • the vehicle drive device 10 includes a differential device connected to an input member 14 connected to an engine (ICE) 13, a first rotating electrical machine (MG1) 11, and a second rotating electrical machine (MG2) 12. 20, an output member 27 connected to the wheel 29, a second clutch 30, and a switching device 60.
  • the rotating electrical machine is a concept that includes both a motor, a generator, and a generator motor that functions as both a motor and a generator as necessary.
  • Engine 13 is a gasoline engine or diesel engine.
  • the input member 14 is composed of a shaft member, for example.
  • the input member 14 is connected to a crankshaft or the like that is an output shaft of the engine 13.
  • the output shaft of the engine 13 and the input member 14 may be directly connected or may be connected via other members such as a damper.
  • a first clutch 16 is disposed between the input member 14 and the case 15 of the vehicle drive device 10.
  • the first clutch 16 is a one-way clutch, which allows the input member 14 to rotate forward and restricts the reverse rotation of the input member 14.
  • the forward rotation of the input member 14 is the same rotation direction as the rotation direction of the output shaft (crankshaft or the like) of the engine 13.
  • the differential device 20 is a single pinion type planetary gear device in the present embodiment.
  • the differential device 20 has three rotating elements of a sun gear 21, a carrier 22 and a ring gear 23.
  • the sun gear 21 is connected to a first rotor shaft 17 that is an output shaft of the first rotating electrical machine 11.
  • the carrier 22 is connected to the input member 14.
  • the ring gear 23 meshes with the counter gear 24.
  • the counter gear 24 meshes with the drive gear 25 connected to the second rotor shaft 18 that is the output shaft of the second rotating electrical machine 12.
  • the chain 26 is stretched between the counter gear 24 and the output member 27.
  • the output member 27 transmits driving force to the wheels 29 via the output differential device 28.
  • the output member 27 is constituted by a member that rotates integrally with the case of the output differential device 28.
  • the output member 27 connected to the wheel 29 via the output differential device 28 is connected to the ring gear 23 via the counter gear 24 and the chain 26.
  • the second clutch 30 is a device that connects any two of the rotating elements of the differential device 20.
  • the second clutch 30 is a kind of meshing clutch having a function of transmitting / blocking power between the carrier 22 and the ring gear 23.
  • the switching device 60 is a device that switches between a state in which the second clutch 30 is disengaged and a state in which the second clutch 30 is connected.
  • FIG. 2 is a cross-sectional view including the axis O of the second clutch 30,
  • FIG. 3 is a cross-sectional view of the second clutch 30 taken along line III-III in FIG. 2
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 2 is a cross-sectional view of a two-clutch 30.
  • FIG. In order to facilitate understanding, the carrier 22 and the ring gear 23 to which the second clutch 30 is coupled are not shown in FIGS.
  • the second clutch 30 includes a first member 31 and a second member 50 that rotate about the axis O.
  • the first member 31 and the second member 50 are disposed on the same axis O as the first rotor shaft 17 and the differential device 20, and are rotatably fixed to the first rotor shaft 17.
  • the first member 31 is connected to the carrier 22 (see FIG. 1), and the second member 50 is connected to the ring gear 23.
  • the first member 31 is a member formed in an annular shape centered on the axis O, and has a first hole in a flat first surface 32 that intersects the axis O (in the present embodiment, orthogonal to the axis O). 33 and a plurality of third holes 35 (see FIG. 4) are formed.
  • the first surface 32 faces the flat second surface 51 of the second member 50 in the axis O direction.
  • a third surface 37 facing the second member 50 is formed in the first hole 33 and the third hole 35.
  • the first engagement element 40 is disposed on the third surface 37 of the first hole 33, and the second engagement element 43 is disposed on the third surface 37 of the third hole 35 (see FIG. 4). Between the bottom surface 38 of the first hole 33 and the first engagement element 40, which are located farther from the second member 50 than the third surface 37, and between the bottom surface 38 of the third hole 35 and the second engagement element 43.
  • the compression springs 46 are respectively arranged. The compression spring 46 biases the first engagement element 40 and the second engagement element 43 toward the second member 50 side.
  • a retainer 47 that interferes with the first engaging element 40 and the second engaging element 43 is disposed on the first surface 32 of the first member 31.
  • the second member 50 is a member formed in an annular shape centering on the axis O, and has a second hole in the flat second surface 51 that intersects the axis O (perpendicular to the axis O in the present embodiment). A plurality of 52 are formed.
  • the second hole 52 is a portion where the first engagement element 40 and the second engagement element 43 (see FIG. 4) disposed in the first member 31 are engaged.
  • a plurality of second holes 52 are formed in the second member 50 at intervals in the circumferential direction.
  • the second holes 52 have the same size and are substantially rectangular when viewed from the axial direction.
  • the edges 53 and 54 facing the circumferential direction of the second hole 52 are located on a circumference centered on the axis O.
  • a ring groove 55 that connects the second hole 52 in the circumferential direction is formed in the second surface 51.
  • the second member 50 has a plurality of pin holes 56 communicating with the bottom of the ring groove 55.
  • the pin hole 56 penetrates the second member 50 in the axial direction.
  • the switching device 60 includes a ring 61, a pin 62, a plate member 63, and an actuator 64.
  • the ring 61 is accommodated in the ring groove 55 (see FIG. 4), and the pin 62 is accommodated in the pin hole 56.
  • the pin 62 transmits the axial force of the actuator 64 to the ring 61 through an annular plate member 63 disposed around the axis O.
  • the actuator 64 moves the ring 61 in the axial direction via the plate member 63 and the pin 62.
  • the first member 31 has first holes 33 and third holes 35 alternately arranged in the circumferential direction.
  • the first hole 33 and the third hole 35 are substantially rectangular when viewed from the direction of the axis O.
  • the circumferential length of the first hole 33 is longer than the circumferential length of the third hole 35.
  • the edge portion 34 of the first hole 33 and the edge portion 36 of the third hole 35 are located on the circumference centering on the axis O.
  • a circular groove 39 that connects the first hole 33 and the third hole 35 in the circumferential direction is formed in the first surface 32.
  • the groove 39 is a recess into which the ring 61 arranged in the second member 50 (see FIG. 2) enters.
  • the first engagement element 40 is disposed in the first hole 33, and the second engagement element 43 is disposed in the third hole 35.
  • the first engagement element 40 includes a rectangular plate-like column 41 and arms 42 that protrude from the end of the column 41 to both sides in the width direction of the column 41.
  • the second engagement element 43 includes a rectangular plate-like support 44 and arms 45 that protrude from the end of the support 44 to both sides in the width direction of the support 44.
  • the first engagement element 40 can slide in the circumferential direction on the third surface 37 of the first hole 33.
  • the first engagement element 40 and the second engagement element 43 are the same parts except that the circumferential direction arranged on the first member 31 is different.
  • the retainer 47 is a disk-shaped member, and a plurality of first arms 48 and second arms 49 extending radially are arranged alternately in the circumferential direction.
  • the retainer 47 is biased in the first direction (arrow F direction) about the axis O by a restoring force of a compression spring (not shown) disposed on the first member 31.
  • a compression spring not shown
  • FIG. 5A is a schematic diagram of the second clutch 30 in a sliding state
  • FIG. 5B is a schematic diagram of the connected second clutch 30.
  • the compression spring 46 disposed between the first engagement element 40 disposed on the third surface 37 of the first hole 33 and the bottom surface 38 of the first hole 33 includes the first An elastic force (restoring force) is applied to a portion of the support column 41 of the engagement element 40 opposite to the portion where the arm 42 (see FIG. 4) is provided.
  • the compression spring 46 is a torsion coil spring.
  • the first arm 48 of the retainer 47 see FIG.
  • the switching device 60 when the switching device 60 is operated to retract the ring 61 from the second hole 52 and the second clutch 30 is engaged (when the switching device 60 is on), the second member 50 is When the one member 31 relatively rotates in the first direction (arrow F direction), the first engaging element 40 that has entered the second hole 52 pushes the first arm 48, and the retainer 47 moves in the second direction (counter arrow F direction). Rotate. As a result, as shown in FIG. 5B, the first engagement element 40 pushes away the retainer 47 and engages with the edge 34 of the first hole 33 and the edge 53 of the second hole 52. The connected first member 31 and second member 50 rotate integrally in the first direction (arrow F direction), and the second clutch 30 transmits power.
  • the second engagement element 43 rises to the second member 50 side by the elastic force of the compression spring 46. Since the second hole 52 of the second member 50 is formed at a position where the second engaging element 43 that has risen toward the second member 50 can enter, the second engaging element 43 has the second hole 52 of the second member 50. Enter. As a result, when the first member 31 rotates relative to the second member 50 in the second direction (counter arrow F direction), the second engaging element 43 has the edge 36 of the third hole 35 and the second hole 52. The first member 31 and the second member 50 are integrally engaged with each other in the second direction (counter arrow F direction) to transmit power.
  • the first engagement element 40 and the second engagement element 43 may be retracted from the second hole 52 of the second member 50. Since the second clutch 30 can be disengaged while the first engaging element 40 is in contact with the second surface 51 of the second member 50, an axial gap (space) for disengaging the second clutch 30 is almost necessary. And not. Therefore, the length of the second clutch 30 in the axial direction can be shortened. As a result, it is possible to suppress an increase in the axial length of the vehicle drive device 10 due to the arrangement of the second clutch 30.
  • FIG. 6 is a block diagram showing an electrical configuration of the vehicle drive device 10.
  • the vehicle drive device 10 includes a main control unit 70 for controlling each part of the device.
  • the main control unit 70 can transmit information to and from the MG1 (first rotating electrical machine) control unit 81, the MG2 (second rotating electrical machine) control unit 82, and the engine control unit 83 via the input / output port 77. Is connected to the correct state.
  • the main control unit 70 includes a CPU 71, a ROM 72, and a RAM 75.
  • the ROM 72 is a non-rewritable nonvolatile memory that stores a control program executed by the CPU 71 (for example, the program of the flowchart shown in FIG. 9), the first map 73, the second map 74, and the like.
  • the RAM 75 is a memory for storing various data in a rewritable manner when the control program is executed, and is provided with a mode memory 76 for storing a traveling mode of the vehicle.
  • the MG1 control unit 81 and the MG2 control unit 82 control the first rotating electrical machine 11 and the second rotating electrical machine 12 to output desired torque and rotation via an inverter (not shown).
  • the engine control unit 83 controls each part of the engine 13 so that the engine 13 outputs desired torque and rotation.
  • the operation of the switching device 60 is performed based on a control command from the main control unit 70.
  • the battery state detection sensor 84 is a sensor for detecting information such as a charge amount of a battery (not shown).
  • the vehicle speed sensor 85 is a sensor that detects the rotational speed of the output member 27 in order to detect the vehicle speed.
  • the accelerator operation detection sensor 86 is a sensor for detecting the operation amount of the accelerator pedal.
  • the input member rotation sensor 87 is a sensor for detecting the number of rotations of the input member 14. Since the input member 14 rotates integrally with the output shaft of the engine 13 and the carrier 22, the rotational speed of the input member 14 is equal to the rotational speed of the engine 13 and the carrier 22.
  • the first rotor shaft rotation sensor 88 is a sensor for detecting the rotation speed of the first rotor shaft 17. Since the first rotor shaft 17 rotates integrally with the sun gear 21, the rotation speed of the first rotor shaft 17 is equal to the rotation speed of the sun gear 21.
  • the ring gear rotation sensor 89 is a sensor for detecting the rotation speed of the ring gear 23.
  • Each of the sensors 84 to 89 includes an output device that outputs the detection result to the main control unit 70.
  • Examples of the other input / output device 90 include a brake operation detection sensor that detects the operation amount of the brake pedal, a water temperature sensor that detects the coolant temperature of the engine 13, and an oil temperature sensor that detects the oil temperature of the engine oil.
  • the main control unit 70 stores in the ROM 72 according to the battery state detected by the battery state detection sensor 84, the vehicle speed detected by the vehicle speed sensor 85, the operation amount of the accelerator pedal detected by the accelerator operation detection sensor 86, and the like. In accordance with the first map 73 and the second map 74, the driving mode of the vehicle is selected.
  • the CPU 71 stores the selected travel mode in the mode memory 76 of the RAM 75.
  • the CPU 71 uses the first map 73 when the battery charge is large, and uses the second map 74 when the battery charge is small.
  • the driving mode using conditions such as the brake pedal operation amount, the coolant temperature of the engine 13 and the oil temperature of the engine oil. It is.
  • FIG. 7A is a schematic diagram of the first map 73
  • FIG. 7B is a schematic diagram of the second map 74.
  • the main control unit 70 operates in the EV mode, the power EV mode, the HV mode, and the power HV mode according to the state of the battery, the vehicle speed, and the accelerator opening. Control to switch to the mode.
  • FIG. 8A is a collinear diagram of the differential device 20 in the EV mode
  • FIG. 8B is a collinear diagram of the differential device 20 in the power EV mode
  • FIG. I is a collinear diagram of the differential device 20 in the HV mode
  • FIG. 8D is a collinear diagram of the differential device 20 in the power HV mode.
  • the vertical lines indicate the sun gear 21 (S) and the first rotating electrical machine 11 (MG1), the carrier 22 (C) and the engine 13 (ICE), the ring gear 23 (R), and the second rotating electrical machine 12 (MG2), respectively.
  • S sun gear 21
  • MG1 first rotating electrical machine 11
  • C carrier 22
  • ICE the engine 13
  • R ring gear 23
  • MG2 second rotating electrical machine 12
  • the EV mode shown in FIG. 8A is a travel mode in which the output member 27 is driven only by the torque of the second rotating electrical machine 12 with the first clutch 16 relatively rotating.
  • the engine 13 is in a combustion stopped state.
  • the switching device 60 is off and the three rotating elements of the differential 20 can rotate freely.
  • torque is not transmitted via the input member 14 and the sun gear 21, but only the torque of the second rotating electrical machine 12 connected to the ring gear 23 is transmitted to the output member 27 connected to the ring gear 23. .
  • the power EV mode shown in FIG. 8B is a mode in which the first clutch 16 travels at least with the torque of the first rotating electrical machine 11 in a state where negative rotation is restricted.
  • the engine 13 is in a combustion stopped state, and the switching device 60 is off.
  • the output member 27 is driven by the torque of both the first rotating electrical machine 11 and the second rotating electrical machine 12.
  • the torque of the second rotating electrical machine 12 connected to the ring gear 23 is transmitted to the output member 27 connected to the ring gear 23.
  • the rotation speed of the carrier 22 is zero, the first clutch 16 restricts negative rotation, and the first rotating electrical machine 11 outputs negative torque while rotating negatively.
  • the first clutch 16 that restricts negative rotation fixes the input member 14 and the carrier 22 to the case 15.
  • the first clutch 16 functions as a reaction force receiver for the first rotating electrical machine 11, and the torque in the negative direction of the first rotating electrical machine 11 transmitted to the sun gear 21 is coupled to the ring gear 23 by reversing the direction of the torque. It is transmitted to the output member 27. As a result, the output member 27 is driven by the torque of both the first rotating electrical machine 11 and the second rotating electrical machine 12.
  • the rotation of the engine 13 is controlled steplessly to the output member 27 by controlling the rotation of the first rotating electrical machine 11 with the first clutch 16 relatively rotating. It is a mode to transmit.
  • the engine 13 is in a combustion state, and the switching device 60 is off.
  • the differential device 20 distributes the torque of the engine 13 (carrier 22) to the sun gear 21 and the ring gear 23.
  • the first rotating electrical machine 11 functions as a reaction force receiver for the torque of the engine 13, and the torque of the engine 13 is distributed to the ring gear 23 on the output member 27 side.
  • the first rotating electrical machine 11 generates power by outputting a torque in the negative direction while rotating forward.
  • the second rotating electrical machine 12 powers and outputs a positive torque to assist the engine 13 torque transmitted to the output member 27.
  • the speed of the vehicle is increased in the power EV mode, and the rotational speeds of the first rotating electrical machine 11 and the second rotating electrical machine 12 are increased.
  • the propulsive force decreases rapidly.
  • the torque of the engine 13 is transmitted to the output member 27.
  • the driving force of the first rotating electrical machine 11 connected to the engine 13 via the differential device 20 is reduced, the overall driving force is not so much. Does not grow.
  • the power HV mode shown in FIG. 8D is a travel mode mainly used during acceleration.
  • the engine 13 is in a combustion state
  • the first clutch 16 is in a relative rotation state.
  • the switching device 60 is on, and the second clutch 30 connects the carrier 22 and the ring gear 23.
  • the sun gear 21, the carrier 22, and the ring gear 23 rotate together while the carrier 22 rotates together with the input member 14.
  • the differential device 20 outputs the rotation of the engine 13 to the ring gear 23 as it is.
  • the rotational speeds of the output member 27, the first rotating electrical machine 11 and the second rotating electrical machine 12 are determined according to the rotational speed of the engine 13.
  • the first rotating electrical machine 11 and the second rotating electrical machine 12 perform powering when the torque transmitted from the engine 13 to the output member 27 is insufficient, etc., and output torque in the positive direction to assist the torque of the engine 13. Therefore, a strong driving force can be obtained during acceleration. Further, since the rotation speed of the engine 13 is limited by the first rotating electric machine 11 and the second rotating electric machine 12, noise of the engine 13 can be prevented from becoming intense during acceleration, and the quietness of the vehicle can be ensured.
  • the second clutch 30 causes the first member 31 and the second member 50 to be moved by the second engagement element 43. Rotates integrally in the second direction (counter arrow F direction) to transmit power.
  • the sun gear 21, the carrier 22, and the ring gear 23 rotate together. Therefore, the first rotating electrical machine 11 can generate power as necessary.
  • FIG. 9 is a flowchart of power mode processing. This process is a process repeatedly executed by the CPU 71 (for example, at intervals of 0.2 seconds) while the power source of the vehicle drive device 10 is turned on.
  • the CPU 71 uses the first map 73 and the second map 74 to determine whether or not there is a request for the power HV mode based on the steering input such as the vehicle speed and the amount of operation of the accelerator pedal (S1).
  • the CPU 71 refers to the mode memory 76 and acquires the travel mode (S2).
  • the switching device 60 is turned off (S15), and the second clutch 30 cannot be connected.
  • the traveling mode is the EV mode (S3: EV)
  • the second rotating electrical machine 12 is running with the engine 13 stopped in combustion.
  • the CPU 71 starts the engine 13 using the engine control unit 83 (S4), and sets the rotational speed of the engine 13 to the minimum rotational speed (S5).
  • the minimum rotation speed is the minimum rotation speed at which the engine 13 does not stop when the output member 27 is connected to the engine 13.
  • the CPU 71 uses the detection results of the input member rotational sensor 87 and the ring gear rotational sensor 89, and the rotational speed of the ring gear 23 is determined by the carrier 22 It is determined whether the rotational speed is equal to or higher than (S7).
  • the CPU 71 turns on the switching device 60 (S9).
  • the CPU 71 uses the detection results of the first rotor shaft rotation sensor 88 and the ring gear rotation sensor 89, and the rotation speed of the ring gear 23 is the sun gear 21. It is determined whether the rotational speed is equal to or greater than (S8). When the rotational speed of the ring gear 23 is equal to or higher than the rotational speed of the sun gear 21 (S8: Yes), the CPU 71 executes the process of S9. When the rotational speed of the ring gear 23 is less than the rotational speed of the sun gear 21 (S8: Yes), S5 Return to processing.
  • the second clutch 30 When the switching device 60 is turned on in the process of S9, the second clutch 30 is connected. At this time, in the second clutch 30, the first member 31 rotates relative to the second member 50 in the second direction (counter arrow F direction) (see FIG. 5A). Since the first engaging element 40 cannot be engaged with the second hole 52, the second clutch 30 is in a sliding state. Thereby, when the switching device 60 is turned on, the first engaging element 40 can be prevented from being immediately engaged, so that an impact can be prevented from occurring at the time of connection.
  • the first member 31 rotates relative to the second member 50 in the first direction (the direction of the arrow F), and the first engagement element 40 pushes the retainer 47 away from the first member. It engages with the edge 34 of the hole 33 and the edge 53 of the second hole 52, respectively (see FIG. 5B).
  • the second clutch 30 connects the carrier 22 and the ring gear 23 without impact even without controlling the rotation speed of the carrier 22 and the rotation speed of the ring gear 23 to connect the second clutch 30, and the sun gear 21.
  • the carrier 22 and the ring gear 23 rotate together.
  • the power HV mode when the first rotating electrical machine 11 is turned on and the first rotating electrical machine 11 is powered (S11), a strong driving force is obtained. Therefore, it is possible to improve the response to the steering input while suppressing the impact when the second clutch 30 is engaged.
  • the running mode is the HV mode (S3: HV)
  • the engine 13 is running, so the CPU 71 skips the processes from S4 to S6 and executes the processes from S7 to S11. Thereby, the switching from the HV mode to the power HV mode is completed.
  • the CPU 71 uses the detection result of the vehicle speed sensor 85 to determine whether the vehicle speed is equal to or higher than the minimum speed (S12).
  • the minimum speed is the lowest vehicle speed at which the engine 13 does not stop when the output member 27 is connected to the engine 13.
  • the rotation speed of the second rotating electrical machine 12 is increased to increase the vehicle speed (S15), and this process is terminated.
  • the CPU 71 turns on the switching device 60 (S13).
  • the second clutch 30 is connected by the process of S13, the first clutch 16 fixes the input member 14 and the carrier 22 to the case 15, so that the second clutch 30 is connected to the second member 50 by the second clutch 50.
  • the one member 31 rotates relatively in the second direction (counter arrow F direction) (see FIG. 5A). Therefore, the second clutch 30 is in a sliding state that allows relative rotation between the second member 50 and the first member 31.
  • the CPU 71 starts the engine 13 (S14) and increases the rotational speed of the engine 13 (S10), the first member 31 rotates relative to the second member 50 in the first direction (arrow F direction), and the second The clutch 30 is connected (see FIG. 5B).
  • the first rotating electrical machine 11 is turned on (S11), and this process ends.
  • the EV mode, the power EV mode, and the HV mode can be switched from the travel modes to the power EV mode.
  • the second embodiment and the third embodiment will be described with reference to FIGS. 10 (a) and 10 (b).
  • the first embodiment the case has been described in which the second clutch 30 transmits and interrupts power between the carrier 22 and the ring gear 23.
  • the second clutch 30 transmits / cuts power between the sun gear 21 and the ring gear 23, and the vehicle drive device 101 according to the third embodiment
  • the second clutch 30 transmits / cuts power between the sun gear 21 and the carrier 22.
  • symbol is attached
  • FIG. 10A is a skeleton diagram of the vehicle drive device 100 in the second embodiment
  • FIG. 10B is a skeleton diagram of the vehicle drive device 101 in the third embodiment.
  • the vehicle drive devices 100 and 101 since any two of the rotating elements of the differential device 20 are connected by the second clutch 30, the same effects as those of the first embodiment can be realized.
  • the present invention has been described above based on the embodiments. However, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. It can be easily guessed.
  • the number and shape of the first engagement elements 40 and the second engagement elements 43 and the number and shape of the second holes 52 are examples, and can be set as appropriate.
  • the second clutch 30 is a two-way clutch including the first engagement element 40 and the second engagement element 43 has been described, but the present invention is not necessarily limited thereto. Of course, it is possible to omit the second engagement element 43 and make the second clutch 30 a one-way clutch.
  • the switching device 60 that makes it possible to transmit torque using the actuator 64 has been described, but the switching device 60 is not necessarily limited thereto.
  • the switching device 60 can appropriately set a known mechanism.
  • the switching device 60 of the embodiment has been described with respect to the case where the swing of the first engagement element 40 and the second engagement element 43 is regulated via the ring 61 and the pin 62, but is not necessarily limited thereto.
  • the ring 61 By omitting the ring 61 and changing the tip shape of the pin 62 and the shapes of the first and second engaging elements, the swinging of the first engaging element and the second engaging element via the pin is restricted.
  • a plate-like shutter or the like that prevents the first engagement element or the second engagement element from entering the second hole 52 can be provided as a part of the switching device. It is.
  • the present invention is not necessarily limited thereto.
  • the direction of the force of the actuator 64 can be appropriately set according to the mechanism for connecting and disconnecting the second clutch 30.
  • first engagement element 40 and the second engagement element 43 have the same shape
  • present invention is not necessarily limited thereto.
  • length, width, and thickness of the first engagement element 40 and the second engagement element 43 can be different from each other.
  • the differential device 20 including one set of gear units (three rotating elements) has been described as an example, but the present invention is not necessarily limited thereto. It is naturally possible to configure a differential device having four or more rotating elements by combining a plurality of sets of gear units.
  • a plurality of sets of gear units will be described as a first gear unit and a second gear unit.
  • the first gear unit includes a first sun gear, a first pinion that meshes with the first sun gear, a first ring gear that meshes with the first pinion, and a first carrier that rotatably supports the first pinion.
  • the second gear unit includes a second sun gear, a second pinion that meshes with the second sun gear, a second ring gear that meshes with the second pinion, and a second carrier that rotatably supports the second pinion.
  • the first carrier and the second sun gear are connected to constitute one rotating element (hereinafter referred to as “first rotating element”).
  • the first ring gear and the second carrier are connected to constitute another rotating element (hereinafter referred to as “second rotating element”).
  • the engine 13 is connected to the first carrier and the second sun gear (first rotating element).
  • the output member 27 is connected to the first ring gear and the second carrier (second rotating element).
  • the first rotating electrical machine 11 is connected to the second ring gear (third rotating element).
  • the second rotating electrical machine 12 is connected to the first sun gear (fourth rotating element).
  • a differential with two sets of gear units has four rotating elements.
  • any two rotating elements other than connecting the second rotating element connected to the output member 27 and the fourth rotating element connected to the second rotating electrical machine 12 are connected to the second clutch 30. Can be made. Furthermore, by providing the switching device 60 that switches between the state in which the second clutch 30 is disengaged and the state in which the second clutch 30 is connected, the same operational effects as those described in the embodiment can be realized.
  • the differential gear 20 has been described by exemplifying a planetary gear device, but the present invention is not necessarily limited thereto. It is naturally possible to use a planetary roller device that transmits power using traction instead of the planetary gear device. By using a planetary roller device as the differential device 20, vibration and noise can be further reduced, and backlash can be eliminated.
  • a meshing clutch such as a dog clutch or a friction clutch is used for the first clutch 16, and the first clutch 16 allows the input member 14 to rotate forward and restricts the reverse rotation of the input member 14 according to a control signal from the main control unit 70.
  • a meshing clutch such as a dog clutch or a friction clutch is used for the first clutch 16, and the first clutch 16 allows the input member 14 to rotate forward and restricts the reverse rotation of the input member 14 according to a control signal from the main control unit 70.
  • a meshing clutch such as a dog clutch or a friction clutch

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Provided is a vehicle drive device that makes it possible to maintain quietness at the time of acceleration while obtaining a strong propulsive force. The vehicle drive device (10) is provided with: an input member (14) connected to an engine (11); a first clutch (16) for connecting and disconnecting power from the input member (14); an output member (27) connected to wheels (29); a differential device (20) comprising a rotating element (22) connected to the input member (14), a rotating element (21) connected to a first rotating electric machine (11), and a rotating element (23) connected to the output member (27) and to a second rotating electric machine (12); a second clutch (30) that connects any two of the rotating elements; and a switching device (60) for switching the state of the second clutch (30). The second clutch (30) allows two of the rotating elements to rotate relative to each other when the orientation of the direction of relative rotation thereof is a second direction. The second clutch (30) connects two of the rotating elements when the orientation of the direction of relative rotation thereof is a first direction.

Description

車両用駆動装置Vehicle drive device
 本発明はエンジン及び回転電機を併用するハイブリッド車両に用いられる車両用駆動装置に関するものである。 The present invention relates to a vehicle drive device used in a hybrid vehicle using both an engine and a rotating electrical machine.
 エンジン及び回転電機を併用する車両に用いられる車両用駆動装置として、特許文献1に、エンジンに接続された入力部材と、車輪に接続された出力部材と、入力部材に接続された回転要素、第1回転電機に接続された回転要素、並びに、出力部材および第2回転電機に接続された回転要素を有する差動装置と、を備えるものが開示されている。この車両用駆動装置は、エンジンを停止した状態で、第1回転電機および第2回転電機のトルクを出力部材に伝達し、車両を走行させることができる。 As a vehicle drive device used in a vehicle that uses both an engine and a rotating electrical machine, Patent Document 1 discloses an input member connected to an engine, an output member connected to a wheel, a rotating element connected to the input member, What comprises a rotating element connected to a first rotating electrical machine and a differential having a rotating element connected to an output member and a second rotating electrical machine is disclosed. The vehicle drive device can transmit the torque of the first rotating electric machine and the second rotating electric machine to the output member in a state where the engine is stopped, and can drive the vehicle.
特開2013-18356号公報JP 2013-18356 A
 しかし、回転電機は回転数が低いほど駆動力が大きいので、上記従来の技術では、車両の速度が上がり回転電機の回転数が高くなると推進力が急激に低下する。推進力の低下を補うためにエンジンを駆動すると、差動装置を介してエンジンに繋がる第1回転電機の駆動力は伝達されない状態になるので、推進力はそれほど大きくならない。第1回転電機の駆動力の低下を補うために加速時にエンジンの回転数を高くし出力を大きくすると、2つの回転電機を駆動した程度の推進力は得られるものの、騒音(エンジン音)が激しくなり車両の静粛性が失われる。 However, since the rotating electrical machine has a higher driving force as the rotational speed is lower, in the above-described conventional technology, the propulsive force is rapidly reduced when the speed of the vehicle is increased and the rotational speed of the rotating electrical machine is increased. When the engine is driven to compensate for the decrease in the propulsive force, the driving force of the first rotating electrical machine connected to the engine via the differential device is not transmitted, so the propulsive force is not so great. If the engine speed is increased and the output is increased during acceleration to compensate for the decrease in the driving force of the first rotating electrical machine, the propulsive force of driving the two rotating electrical machines can be obtained, but the noise (engine sound) is intense. The quietness of the vehicle is lost.
 本発明はこの問題点を解決するためになされたものであり、加速時に静粛性を確保しつつ強い推進力が得られる車両用駆動装置を提供することを目的とする。 The present invention has been made to solve this problem, and an object of the present invention is to provide a vehicle drive device that can obtain a strong driving force while ensuring quietness during acceleration.
 この目的を達成するために本発明の車両用駆動装置は、エンジンに接続された入力部材と、入力部材の動力を断接する第1クラッチと、車輪に接続された出力部材と、入力部材に接続された回転要素、第1回転電機に接続された回転要素、並びに、出力部材および第2回転電機に接続された回転要素を有する差動装置と、いずれか2つの回転要素を連結する第2クラッチと、第2クラッチを切る状態と第2クラッチがつながる状態とを切り換える切換装置と、を備える。切換装置により第2クラッチがつながる状態になると、第2クラッチは、2つの回転要素の相対回転の向きが第2方向のときに相対回転を許容し、2つの回転要素の相対回転の向きが第2方向と反対の第1方向のときに連結する。 In order to achieve this object, a vehicle drive device according to the present invention includes an input member connected to an engine, a first clutch for connecting / disconnecting power of the input member, an output member connected to a wheel, and an input member. Rotating element, rotating element connected to first rotating electrical machine, differential member having rotating element connected to output member and second rotating electrical machine, and second clutch coupling any two rotating elements And a switching device that switches between a state in which the second clutch is disengaged and a state in which the second clutch is engaged. When the second clutch is connected by the switching device, the second clutch allows relative rotation when the relative rotation direction of the two rotation elements is in the second direction, and the relative rotation direction of the two rotation elements is the first. The connection is made in the first direction opposite to the two directions.
 請求項1記載の車両用駆動装置によれば、切換装置により、差動装置の回転要素のいずれか2つを連結する第2クラッチを切る状態と第2クラッチがつながる状態とが切り換えられる。切換装置により第2クラッチがつながる状態になると、第2クラッチは、2つの回転要素の相対回転の向きが第2方向のときに相対回転を許容し、2つの回転要素の相対回転の向きが第1方向のときに連結する。これにより、第2クラッチをつなぐために2つの回転要素の回転数を合わせる制御を不要にできる。第2クラッチがつながると回転要素が一体に回転するので、エンジンの回転数に応じて、出力部材、第1回転電機および第2回転電機の回転数が定められる。よって、加速時に強い推進力が得られる。また、第1回転電機および第2回転電機によってエンジンの回転数が制限されるので、加速時に騒音が激しくならないようにすることができ、静粛性を確保できる。 According to the vehicle drive device of the first aspect, the switching device switches between a state in which the second clutch connecting any two of the rotating elements of the differential gear is disconnected and a state in which the second clutch is connected. When the second clutch is connected by the switching device, the second clutch allows relative rotation when the relative rotation direction of the two rotation elements is in the second direction, and the relative rotation direction of the two rotation elements is the first. Connect in one direction. This eliminates the need for control to match the rotational speeds of the two rotating elements in order to connect the second clutch. When the second clutch is connected, the rotating element rotates integrally, so that the rotational speeds of the output member, the first rotating electrical machine, and the second rotating electrical machine are determined according to the rotational speed of the engine. Therefore, a strong driving force can be obtained during acceleration. Moreover, since the rotation speed of the engine is limited by the first rotating electric machine and the second rotating electric machine, noise can be prevented from becoming intense during acceleration, and quietness can be ensured.
 請求項2記載の車両用駆動装置によれば、第2クラッチが連結する2つの回転要素は、一方がエンジンに駆動される駆動側、他方が被動側であり、第2クラッチは、駆動側の回転要素の回転数が被動側の回転要素の回転数より高くなると連結する。これにより、エンジンの回転数を高くしていくと第2クラッチが衝撃なくつながり、強い推進力が得られる。よって、請求項1の効果に加え、第2クラッチがつながるときの衝撃を抑制しつつ操縦の入力に対する応答性を良くすることができる。 According to the vehicle drive device of the second aspect, one of the two rotating elements connected to the second clutch is a drive side driven by the engine, the other is a driven side, and the second clutch is a drive side When the rotation speed of the rotation element becomes higher than the rotation speed of the driven rotation element, the rotation elements are connected. As a result, when the engine speed is increased, the second clutch is connected without impact, and a strong driving force is obtained. Therefore, in addition to the effect of the first aspect, it is possible to improve the response to the steering input while suppressing the impact when the second clutch is engaged.
 請求項3記載の車両用駆動装置によれば、第2クラッチは、差動装置の軸線に交差する第1面を有する第1部材と、第1面と軸線の方向に対向する第2面を有する第2部材と、を備える。第1部材は、第1面の軸線を中心とする円周上に複数の第1穴が形成され、第1穴の各々に第1係合子が揺動可能に配置され、第2部材は、第2面の軸線を中心とする円周上に複数の第2穴が形成される。第1部材の第1面に形成された第1穴に第1係合子が配置され、第1面に対向する第2部材の第2面に形成された第2穴の縁部と第1穴の縁部とに第1係合子が係合して第2クラッチがつながるので、第2クラッチの軸線方向の長さを短くできる。よって、請求項1又は2の効果に加え、第2クラッチが配置されたことによる車両用駆動装置の軸線方向の長さの増加を抑制できる。 According to the vehicle drive device of the third aspect, the second clutch includes a first member having a first surface that intersects the axis of the differential, and a second surface that faces the first surface in the direction of the axis. And a second member. The first member has a plurality of first holes formed on a circumference centered on the axis of the first surface, the first engagement element is swingably disposed in each of the first holes, and the second member is A plurality of second holes are formed on a circumference centered on the axis of the second surface. The first engagement element is disposed in the first hole formed in the first surface of the first member, and the edge and the first hole of the second hole formed in the second surface of the second member facing the first surface Since the first clutch engages with the edge of the second clutch and the second clutch is connected, the axial length of the second clutch can be shortened. Therefore, in addition to the effect of Claim 1 or 2, the increase in the length of the vehicle drive device in the axial direction due to the arrangement of the second clutch can be suppressed.
第1実施の形態における車両用駆動装置のスケルトン図である。It is a skeleton figure of the drive device for vehicles in a 1st embodiment. 第2クラッチの断面図である。It is sectional drawing of a 2nd clutch. 図2のIII-III線における第2クラッチの断面図である。FIG. 3 is a cross-sectional view of a second clutch taken along line III-III in FIG. 2. 図2のIV-IV線における第2クラッチの断面図である。FIG. 4 is a cross-sectional view of the second clutch taken along line IV-IV in FIG. 2. (a)は滑り状態にある第2クラッチの模式図であり、(b)はつながった第2クラッチの模式図である。(A) is a schematic diagram of the 2nd clutch in a sliding state, (b) is a schematic diagram of the connected 2nd clutch. 車両用駆動装置の電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of the drive device for vehicles. (a)は第1マップの模式図であり、(b)は第2マップの模式図である。(A) is a schematic diagram of the first map, and (b) is a schematic diagram of the second map. (a)はEVモードの共線図であり、(b)はパワーEVモードの共線図であり、(c)はHVモードの共線図であり、(d)はパワーHVモードの共線図である。(A) is an alignment chart of EV mode, (b) is an alignment chart of power EV mode, (c) is an alignment chart of HV mode, and (d) is an alignment chart of power HV mode. FIG. パワーモード処理のフローチャートである。It is a flowchart of a power mode process. (a)は第2実施の形態における車両用駆動装置のスケルトン図であり、(b)は第3実施の形態における車両用駆動装置のスケルトン図である。(A) is a skeleton figure of the vehicle drive device in 2nd Embodiment, (b) is a skeleton figure of the vehicle drive device in 3rd Embodiment.
 以下、本発明の好ましい実施の形態について添付図面を参照して説明する。まず図1を参照して車両用駆動装置10の構成について説明する。図1は第1実施の形態における車両用駆動装置10のスケルトン図である。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. First, the configuration of the vehicle drive device 10 will be described with reference to FIG. FIG. 1 is a skeleton diagram of a vehicle drive device 10 according to the first embodiment.
 図1に示すように車両用駆動装置10は、エンジン(ICE)13に接続された入力部材14、第1回転電機(MG1)11及び第2回転電機(MG2)12に接続された差動装置20、車輪29に接続された出力部材27、第2クラッチ30及び切換装置60を備えている。なお、回転電機は、モータ、ジェネレータ、及び、必要に応じてモータ及びジェネレータの双方の機能を果たすジェネレータモータのいずれをも含む概念である。 As shown in FIG. 1, the vehicle drive device 10 includes a differential device connected to an input member 14 connected to an engine (ICE) 13, a first rotating electrical machine (MG1) 11, and a second rotating electrical machine (MG2) 12. 20, an output member 27 connected to the wheel 29, a second clutch 30, and a switching device 60. The rotating electrical machine is a concept that includes both a motor, a generator, and a generator motor that functions as both a motor and a generator as necessary.
 エンジン13はガソリンエンジンやディーゼルエンジン等が用いられる。入力部材14は例えば軸部材で構成される。入力部材14はエンジン13の出力軸であるクランクシャフト等に接続される。エンジン13の出力軸と入力部材14とは、直接的に連結されていても良いし、ダンパ等の他部材を介して連結されていても良い。 Engine 13 is a gasoline engine or diesel engine. The input member 14 is composed of a shaft member, for example. The input member 14 is connected to a crankshaft or the like that is an output shaft of the engine 13. The output shaft of the engine 13 and the input member 14 may be directly connected or may be connected via other members such as a damper.
 入力部材14と車両用駆動装置10のケース15との間に第1クラッチ16が配置されている。本実施形態では第1クラッチ16はワンウェイクラッチであり、入力部材14の正回転を許容し、入力部材14の逆回転を規制する。入力部材14の正回転は、エンジン13の出力軸(クランクシャフト等)の回転方向と同じ回転方向である。 A first clutch 16 is disposed between the input member 14 and the case 15 of the vehicle drive device 10. In the present embodiment, the first clutch 16 is a one-way clutch, which allows the input member 14 to rotate forward and restricts the reverse rotation of the input member 14. The forward rotation of the input member 14 is the same rotation direction as the rotation direction of the output shaft (crankshaft or the like) of the engine 13.
 差動装置20は、本実施形態ではシングルピニオン型の遊星歯車装置である。差動装置20は、サンギヤ21、キャリヤ22及びリングギヤ23の3つの回転要素を有する。サンギヤ21は、第1回転電機11の出力軸である第1ロータ軸17に連結されている。キャリヤ22は入力部材14に連結されている。リングギヤ23はカウンタギヤ24にかみ合う。 The differential device 20 is a single pinion type planetary gear device in the present embodiment. The differential device 20 has three rotating elements of a sun gear 21, a carrier 22 and a ring gear 23. The sun gear 21 is connected to a first rotor shaft 17 that is an output shaft of the first rotating electrical machine 11. The carrier 22 is connected to the input member 14. The ring gear 23 meshes with the counter gear 24.
 カウンタギヤ24は、第2回転電機12の出力軸である第2ロータ軸18に連結する駆動ギヤ25にかみ合う。チェーン26は、カウンタギヤ24と出力部材27との間に掛け渡されている。出力部材27は、出力用差動装置28を介して車輪29に駆動力を伝達する。本実施形態では、出力部材27は、出力用差動装置28のケースと一体に回転する部材によって構成されている。出力用差動装置28を介して車輪29に接続された出力部材27は、カウンタギヤ24及びチェーン26を介してリングギヤ23に接続されている。 The counter gear 24 meshes with the drive gear 25 connected to the second rotor shaft 18 that is the output shaft of the second rotating electrical machine 12. The chain 26 is stretched between the counter gear 24 and the output member 27. The output member 27 transmits driving force to the wheels 29 via the output differential device 28. In the present embodiment, the output member 27 is constituted by a member that rotates integrally with the case of the output differential device 28. The output member 27 connected to the wheel 29 via the output differential device 28 is connected to the ring gear 23 via the counter gear 24 and the chain 26.
 第2クラッチ30は、差動装置20の回転要素のうちいずれか2つを連結する装置である。本実施形態では、第2クラッチ30はキャリヤ22とリングギヤ23との間において動力の伝達・遮断を行う機能をもつ一種のかみ合いクラッチである。切換装置60は、第2クラッチ30を切る状態と第2クラッチ30がつながる状態とを切り換える装置である。 The second clutch 30 is a device that connects any two of the rotating elements of the differential device 20. In the present embodiment, the second clutch 30 is a kind of meshing clutch having a function of transmitting / blocking power between the carrier 22 and the ring gear 23. The switching device 60 is a device that switches between a state in which the second clutch 30 is disengaged and a state in which the second clutch 30 is connected.
 図2は第2クラッチ30の軸線Oを含む断面図であり、図3は図2のIII-III線における第2クラッチ30の断面図であり、図4は図2のIV-IV線における第2クラッチ30の断面図である。理解を容易にするため、図2から図4では第2クラッチ30が結合するキャリヤ22やリングギヤ23の図示が省略されている。 2 is a cross-sectional view including the axis O of the second clutch 30, FIG. 3 is a cross-sectional view of the second clutch 30 taken along line III-III in FIG. 2, and FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 2 is a cross-sectional view of a two-clutch 30. FIG. In order to facilitate understanding, the carrier 22 and the ring gear 23 to which the second clutch 30 is coupled are not shown in FIGS.
 図2に示すように第2クラッチ30は、軸線Oを中心に回転する第1部材31及び第2部材50を備えている。本実施形態では、第1部材31及び第2部材50は、第1ロータ軸17及び差動装置20と同一の軸線O上に配置され、第1ロータ軸17に回転自在に固定されている。本実施形態では、第1部材31はキャリヤ22(図1参照)に連結され、第2部材50はリングギヤ23に連結されている。 2, the second clutch 30 includes a first member 31 and a second member 50 that rotate about the axis O. In the present embodiment, the first member 31 and the second member 50 are disposed on the same axis O as the first rotor shaft 17 and the differential device 20, and are rotatably fixed to the first rotor shaft 17. In the present embodiment, the first member 31 is connected to the carrier 22 (see FIG. 1), and the second member 50 is connected to the ring gear 23.
 第1部材31は、軸線Oを中心とする円環状に形成される部材であり、軸線Oに交差する(本実施形態では軸線Oに直交する)平坦面状の第1面32に第1穴33及び第3穴35(図4参照)が複数形成されている。第1面32は、第2部材50の平坦面状の第2面51と軸線O方向に対向する。第1穴33及び第3穴35には、第2部材50側を向く第3面37がそれぞれ形成されている。 The first member 31 is a member formed in an annular shape centered on the axis O, and has a first hole in a flat first surface 32 that intersects the axis O (in the present embodiment, orthogonal to the axis O). 33 and a plurality of third holes 35 (see FIG. 4) are formed. The first surface 32 faces the flat second surface 51 of the second member 50 in the axis O direction. In the first hole 33 and the third hole 35, a third surface 37 facing the second member 50 is formed.
 第1穴33の第3面37には第1係合子40が配置され、第3穴35(図4参照)の第3面37には第2係合子43が配置されている。第3面37よりも第2部材50から離れた位置にある第1穴33の底面38と第1係合子40との間、第3穴35の底面38と第2係合子43との間に、圧縮ばね46がそれぞれ配置されている。圧縮ばね46は、第1係合子40及び第2係合子43を第2部材50側へ付勢する。第1部材31の第1面32には、第1係合子40及び第2係合子43と干渉するリテーナ47が配置されている。 The first engagement element 40 is disposed on the third surface 37 of the first hole 33, and the second engagement element 43 is disposed on the third surface 37 of the third hole 35 (see FIG. 4). Between the bottom surface 38 of the first hole 33 and the first engagement element 40, which are located farther from the second member 50 than the third surface 37, and between the bottom surface 38 of the third hole 35 and the second engagement element 43. The compression springs 46 are respectively arranged. The compression spring 46 biases the first engagement element 40 and the second engagement element 43 toward the second member 50 side. A retainer 47 that interferes with the first engaging element 40 and the second engaging element 43 is disposed on the first surface 32 of the first member 31.
 第2部材50は、軸線Oを中心とする円環状に形成される部材であり、軸線Oに交差する(本実施形態では軸線Oに直交する)平坦面状の第2面51に第2穴52が複数形成されている。第2穴52は、第1部材31に配置された第1係合子40及び第2係合子43(図4参照)が係合する部位である。 The second member 50 is a member formed in an annular shape centering on the axis O, and has a second hole in the flat second surface 51 that intersects the axis O (perpendicular to the axis O in the present embodiment). A plurality of 52 are formed. The second hole 52 is a portion where the first engagement element 40 and the second engagement element 43 (see FIG. 4) disposed in the first member 31 are engaged.
 図3に示すように第2穴52は、周方向に互いに間隔をあけて第2部材50に複数形成されている。第2穴52は同じ大きさであり、軸線方向から見て略矩形状である。第2穴52の周方向に対向する縁部53,54は、軸線Oを中心とする円周上に位置する。第2部材50は、第2穴52を周方向に繋ぐリング溝55が第2面51に形成されている。第2部材50は、リング溝55の溝底に連通するピン穴56が複数形成されている。 As shown in FIG. 3, a plurality of second holes 52 are formed in the second member 50 at intervals in the circumferential direction. The second holes 52 have the same size and are substantially rectangular when viewed from the axial direction. The edges 53 and 54 facing the circumferential direction of the second hole 52 are located on a circumference centered on the axis O. In the second member 50, a ring groove 55 that connects the second hole 52 in the circumferential direction is formed in the second surface 51. The second member 50 has a plurality of pin holes 56 communicating with the bottom of the ring groove 55.
 図1に戻って説明する。ピン穴56は、第2部材50を軸線方向に貫通する。切換装置60は、リング61、ピン62、板部材63及びアクチュエータ64を備えている。リング61はリング溝55(図4参照)に収容され、ピン62はピン穴56に収容される。ピン62は、軸線Oの周りに配置された円環状の板部材63を介して、アクチュエータ64の軸線方向の力をリング61に伝達する。アクチュエータ64は板部材63及びピン62を介してリング61を軸線方向へ移動させる。 Referring back to FIG. The pin hole 56 penetrates the second member 50 in the axial direction. The switching device 60 includes a ring 61, a pin 62, a plate member 63, and an actuator 64. The ring 61 is accommodated in the ring groove 55 (see FIG. 4), and the pin 62 is accommodated in the pin hole 56. The pin 62 transmits the axial force of the actuator 64 to the ring 61 through an annular plate member 63 disposed around the axis O. The actuator 64 moves the ring 61 in the axial direction via the plate member 63 and the pin 62.
 図4に示すように第1部材31は、第1穴33及び第3穴35が周方向に交互に並んでいる。第1穴33及び第3穴35は軸線O方向から見て略矩形状である。本実施形態では、第1穴33の周方向の長さは第3穴35の周方向の長さよりも長い。第1穴33の縁部34及び第3穴35の縁部36は、軸線Oを中心とする円周上に位置する。第1部材31は、第1穴33及び第3穴35を周方向に繋ぐ円形の溝39が第1面32に形成されている。溝39は、第2部材50(図2参照)に配置されたリング61が進入する窪みである。 As shown in FIG. 4, the first member 31 has first holes 33 and third holes 35 alternately arranged in the circumferential direction. The first hole 33 and the third hole 35 are substantially rectangular when viewed from the direction of the axis O. In the present embodiment, the circumferential length of the first hole 33 is longer than the circumferential length of the third hole 35. The edge portion 34 of the first hole 33 and the edge portion 36 of the third hole 35 are located on the circumference centering on the axis O. In the first member 31, a circular groove 39 that connects the first hole 33 and the third hole 35 in the circumferential direction is formed in the first surface 32. The groove 39 is a recess into which the ring 61 arranged in the second member 50 (see FIG. 2) enters.
 第1係合子40は第1穴33に配置され、第2係合子43は第3穴35に配置される。第1係合子40は、矩形の板状の支柱41と、支柱41の端から支柱41の幅方向の両側に突出する腕42と、を備えている。第2係合子43は、矩形の板状の支柱44と、支柱44の端から支柱44の幅方向の両側に突出する腕45と、を備えている。第1係合子40は、第1穴33の第3面37上を周方向にスライドできる。第1係合子40及び第2係合子43は、第1部材31に配置される周方向の向きが異なる以外は同一の部品である。 The first engagement element 40 is disposed in the first hole 33, and the second engagement element 43 is disposed in the third hole 35. The first engagement element 40 includes a rectangular plate-like column 41 and arms 42 that protrude from the end of the column 41 to both sides in the width direction of the column 41. The second engagement element 43 includes a rectangular plate-like support 44 and arms 45 that protrude from the end of the support 44 to both sides in the width direction of the support 44. The first engagement element 40 can slide in the circumferential direction on the third surface 37 of the first hole 33. The first engagement element 40 and the second engagement element 43 are the same parts except that the circumferential direction arranged on the first member 31 is different.
 リテーナ47は円板状の部材であり、放射状に延びる複数の第1腕48及び第2腕49が、周方向に交互に配置されている。リテーナ47は、第1部材31に配置された圧縮ばね(図示せず)の復元力により、軸線Oを中心に第1方向(矢印F方向)に付勢されている。リテーナ47が第1方向(矢印F方向)に付勢された状態で、第1腕48は第1係合子40の支柱41の周方向の端面に当接し、第2腕49は第2係合子43の支柱44の一部を覆う。 The retainer 47 is a disk-shaped member, and a plurality of first arms 48 and second arms 49 extending radially are arranged alternately in the circumferential direction. The retainer 47 is biased in the first direction (arrow F direction) about the axis O by a restoring force of a compression spring (not shown) disposed on the first member 31. In a state where the retainer 47 is urged in the first direction (arrow F direction), the first arm 48 contacts the circumferential end surface of the column 41 of the first engagement element 40, and the second arm 49 is the second engagement element. A portion of the 43 columns 44 is covered.
 図5(a)は滑り状態にある第2クラッチ30の模式図であり、図5(b)はつながった第2クラッチ30の模式図である。図5(a)に示すように、第1穴33の第3面37に配置された第1係合子40と第1穴33の底面38との間に配置された圧縮ばね46は、第1係合子40の支柱41のうち腕42(図4参照)が設けられた部分と反対側の部分に弾性力(復元力)を加える。本実施形態では、圧縮ばね46はねじりコイルばねである。リテーナ47(図2参照)の第1腕48は第1係合子40の腕42側の支柱41の端面に押し当てられており、第1係合子40の腕42は第2部材50の第2面51に押さえられるので、第1係合子40は腕42を中心に揺動できる。 FIG. 5A is a schematic diagram of the second clutch 30 in a sliding state, and FIG. 5B is a schematic diagram of the connected second clutch 30. As shown in FIG. 5A, the compression spring 46 disposed between the first engagement element 40 disposed on the third surface 37 of the first hole 33 and the bottom surface 38 of the first hole 33 includes the first An elastic force (restoring force) is applied to a portion of the support column 41 of the engagement element 40 opposite to the portion where the arm 42 (see FIG. 4) is provided. In the present embodiment, the compression spring 46 is a torsion coil spring. The first arm 48 of the retainer 47 (see FIG. 2) is pressed against the end face of the support column 41 on the arm 42 side of the first engagement element 40, and the arm 42 of the first engagement element 40 is the second member 50 of the second member 50. Since it is pressed by the surface 51, the first engagement element 40 can swing around the arm 42.
 しかし、切換装置60(図1参照)のリング61が第2穴52に進入している場合は(切換装置60がオフのとき)、第1係合子40は、リング61に当たって第2穴52に係合できない。一方、切換装置60を作動させてリング61が第2穴52から退出すると(切換装置60がオンのとき)、第2クラッチ30はつながる状態になる。しかし、図5(a)のように、第2部材50に対して第1部材31が第2方向(反矢印F方向)へ相対回転する場合は、第1係合子40は第2穴52に係合できないので、第2クラッチ30は滑り状態となる。このときの第2係合子43は、リテーナ47の第2腕49に支柱44の一部が覆われているので、第2穴52に進入できない。 However, when the ring 61 of the switching device 60 (see FIG. 1) has entered the second hole 52 (when the switching device 60 is off), the first engagement element 40 hits the ring 61 and enters the second hole 52. Cannot engage. On the other hand, when the switching device 60 is operated and the ring 61 is withdrawn from the second hole 52 (when the switching device 60 is on), the second clutch 30 is connected. However, as shown in FIG. 5A, when the first member 31 rotates relative to the second member 50 in the second direction (counter arrow F direction), the first engagement element 40 moves into the second hole 52. Since it cannot engage, the 2nd clutch 30 will be in a slipping state. At this time, the second engaging element 43 cannot enter the second hole 52 because the second arm 49 of the retainer 47 covers a part of the column 44.
 これに対し、切換装置60を作動させてリング61を第2穴52から退出させ、第2クラッチ30がつながる状態のときに(切換装置60がオンのとき)、第2部材50に対して第1部材31が第1方向(矢印F方向)へ相対回転すると、第2穴52に進入した第1係合子40が第1腕48を押し、リテーナ47は第2方向(反矢印F方向)へ回転する。その結果、図5(b)のように、第1係合子40はリテーナ47を押し退けて第1穴33の縁部34及び第2穴52の縁部53にそれぞれ係合する。連結された第1部材31及び第2部材50は第1方向(矢印F方向)へ一体に回転し、第2クラッチ30は動力を伝達する。 On the other hand, when the switching device 60 is operated to retract the ring 61 from the second hole 52 and the second clutch 30 is engaged (when the switching device 60 is on), the second member 50 is When the one member 31 relatively rotates in the first direction (arrow F direction), the first engaging element 40 that has entered the second hole 52 pushes the first arm 48, and the retainer 47 moves in the second direction (counter arrow F direction). Rotate. As a result, as shown in FIG. 5B, the first engagement element 40 pushes away the retainer 47 and engages with the edge 34 of the first hole 33 and the edge 53 of the second hole 52. The connected first member 31 and second member 50 rotate integrally in the first direction (arrow F direction), and the second clutch 30 transmits power.
 また、第1係合子40に押し退けられたリテーナ47の第2腕49は第2係合子43を覆えなくなるので、第2係合子43は圧縮ばね46の弾性力によって第2部材50側へ起き上がる。第2部材50の第2穴52は、第2部材50側へ起き上がった第2係合子43が進入できる位置に形成されているので、第2係合子43は第2部材50の第2穴52に進入する。これにより、第2部材50に対して第1部材31が第2方向(反矢印F方向)へ相対回転する場合に、第2係合子43は第3穴35の縁部36及び第2穴52の縁部54にそれぞれ係合して、第1部材31及び第2部材50は第2方向(反矢印F方向)へ一体に回転し、動力を伝達する。 Further, since the second arm 49 of the retainer 47 pushed away by the first engagement element 40 cannot cover the second engagement element 43, the second engagement element 43 rises to the second member 50 side by the elastic force of the compression spring 46. Since the second hole 52 of the second member 50 is formed at a position where the second engaging element 43 that has risen toward the second member 50 can enter, the second engaging element 43 has the second hole 52 of the second member 50. Enter. As a result, when the first member 31 rotates relative to the second member 50 in the second direction (counter arrow F direction), the second engaging element 43 has the edge 36 of the third hole 35 and the second hole 52. The first member 31 and the second member 50 are integrally engaged with each other in the second direction (counter arrow F direction) to transmit power.
 第2クラッチ30を切るには、第1係合子40及び第2係合子43を第2部材50の第2穴52から退出させれば良い。第2部材50の第2面51に第1係合子40を接触させた状態で第2クラッチ30を切ることができるので、第2クラッチ30を切るための軸線方向の隙間(空間)をほとんど必要としない。よって、第2クラッチ30の軸線方向の長さを短くできる。その結果、第2クラッチ30が配置されたことによる車両用駆動装置10の軸線方向の長さの増加を抑制できる。 In order to disconnect the second clutch 30, the first engagement element 40 and the second engagement element 43 may be retracted from the second hole 52 of the second member 50. Since the second clutch 30 can be disengaged while the first engaging element 40 is in contact with the second surface 51 of the second member 50, an axial gap (space) for disengaging the second clutch 30 is almost necessary. And not. Therefore, the length of the second clutch 30 in the axial direction can be shortened. As a result, it is possible to suppress an increase in the axial length of the vehicle drive device 10 due to the arrangement of the second clutch 30.
 図6は車両用駆動装置10の電気的構成を示すブロック図である。車両用駆動装置10は、装置の各部を制御するための主制御ユニット70を備えている。主制御ユニット70は、入出力ポート77を介して、MG1(第1回転電機)制御ユニット81、MG2(第2回転電機)制御ユニット82及びエンジン制御ユニット83との間で相互に情報伝達が可能な状態に接続されている。 FIG. 6 is a block diagram showing an electrical configuration of the vehicle drive device 10. The vehicle drive device 10 includes a main control unit 70 for controlling each part of the device. The main control unit 70 can transmit information to and from the MG1 (first rotating electrical machine) control unit 81, the MG2 (second rotating electrical machine) control unit 82, and the engine control unit 83 via the input / output port 77. Is connected to the correct state.
 主制御ユニット70は、CPU71、ROM72及びRAM75を備えている。ROM72は、CPU71により実行される制御プログラム(例えば図9に図示されるフローチャートのプログラム)や第1マップ73及び第2マップ74等を記憶する書き換え不能な不揮発性のメモリである。RAM75は、制御プログラムの実行時に各種のデータを書き換え可能に記憶するためのメモリであり、車両の走行モードを記憶するモードメモリ76が設けられている。 The main control unit 70 includes a CPU 71, a ROM 72, and a RAM 75. The ROM 72 is a non-rewritable nonvolatile memory that stores a control program executed by the CPU 71 (for example, the program of the flowchart shown in FIG. 9), the first map 73, the second map 74, and the like. The RAM 75 is a memory for storing various data in a rewritable manner when the control program is executed, and is provided with a mode memory 76 for storing a traveling mode of the vehicle.
 MG1制御ユニット81及びMG2制御ユニット82は、インバータ(図示せず)を介して第1回転電機11及び第2回転電機12が所望のトルク及び回転を出力するように制御する。エンジン制御ユニット83はエンジン13の各部を制御することによりエンジン13が所望のトルク及び回転を出力するように制御する。切換装置60の作動は、主制御ユニット70の制御指令に基づいて行われる。 The MG1 control unit 81 and the MG2 control unit 82 control the first rotating electrical machine 11 and the second rotating electrical machine 12 to output desired torque and rotation via an inverter (not shown). The engine control unit 83 controls each part of the engine 13 so that the engine 13 outputs desired torque and rotation. The operation of the switching device 60 is performed based on a control command from the main control unit 70.
 バッテリ状態検出センサ84は、バッテリ(図示せず)の充電量等の情報を検出するためのセンサである。車速センサ85は、車速を検出するために出力部材27の回転数を検出するセンサである。アクセル操作検出センサ86は、アクセルペダルの操作量を検出するためのセンサである。入力部材回転センサ87は、入力部材14の回転数を検出するためのセンサである。入力部材14はエンジン13の出力軸およびキャリヤ22と一体に回転するので、入力部材14の回転数はエンジン13及びキャリヤ22の回転数と等しい。 The battery state detection sensor 84 is a sensor for detecting information such as a charge amount of a battery (not shown). The vehicle speed sensor 85 is a sensor that detects the rotational speed of the output member 27 in order to detect the vehicle speed. The accelerator operation detection sensor 86 is a sensor for detecting the operation amount of the accelerator pedal. The input member rotation sensor 87 is a sensor for detecting the number of rotations of the input member 14. Since the input member 14 rotates integrally with the output shaft of the engine 13 and the carrier 22, the rotational speed of the input member 14 is equal to the rotational speed of the engine 13 and the carrier 22.
 第1ロータ軸回転センサ88は、第1ロータ軸17の回転数を検出するためのセンサである。第1ロータ軸17はサンギヤ21と一体に回転するので、第1ロータ軸17の回転数はサンギヤ21の回転数と等しい。リングギヤ回転センサ89は、リングギヤ23の回転数を検出するためのセンサである。各センサ84~89は、検出結果をそれぞれ主制御ユニット70へ出力する出力装置を備えている。 The first rotor shaft rotation sensor 88 is a sensor for detecting the rotation speed of the first rotor shaft 17. Since the first rotor shaft 17 rotates integrally with the sun gear 21, the rotation speed of the first rotor shaft 17 is equal to the rotation speed of the sun gear 21. The ring gear rotation sensor 89 is a sensor for detecting the rotation speed of the ring gear 23. Each of the sensors 84 to 89 includes an output device that outputs the detection result to the main control unit 70.
 他の入出力装置90としては、ブレーキペダルの操作量を検出するブレーキ操作検出センサ、エンジン13の冷却水の水温を検出する水温センサ、エンジンオイルの油温を検出する油温センサ等が例示される。 Examples of the other input / output device 90 include a brake operation detection sensor that detects the operation amount of the brake pedal, a water temperature sensor that detects the coolant temperature of the engine 13, and an oil temperature sensor that detects the oil temperature of the engine oil. The
 主制御ユニット70は、バッテリ状態検出センサ84により検出されるバッテリの状態、車速センサ85により検出される車速、アクセル操作検出センサ86により検出されるアクセルペダルの操作量等に応じて、ROM72に記憶された第1マップ73及び第2マップ74に従い、車両の走行モードを選択する。CPU71は選択した走行モードをRAM75のモードメモリ76に記憶する。 The main control unit 70 stores in the ROM 72 according to the battery state detected by the battery state detection sensor 84, the vehicle speed detected by the vehicle speed sensor 85, the operation amount of the accelerator pedal detected by the accelerator operation detection sensor 86, and the like. In accordance with the first map 73 and the second map 74, the driving mode of the vehicle is selected. The CPU 71 stores the selected travel mode in the mode memory 76 of the RAM 75.
 本実施形態ではCPU71は、バッテリの充電量が多いときは第1マップ73を用い、バッテリの充電量が少ないときは第2マップ74を用いる。なお、バッテリの状態、車速、アクセルペダルの操作量の他に、ブレーキペダルの操作量、エンジン13の冷却水の水温、エンジンオイルの油温等の条件を使って走行モードを選択することは可能である。 In the present embodiment, the CPU 71 uses the first map 73 when the battery charge is large, and uses the second map 74 when the battery charge is small. In addition to the battery status, vehicle speed, and accelerator pedal operation amount, it is possible to select the driving mode using conditions such as the brake pedal operation amount, the coolant temperature of the engine 13 and the oil temperature of the engine oil. It is.
 図7(a)は第1マップ73の模式図であり、図7(b)は第2マップ74の模式図である。図7(a)及び図7(b)に示すように主制御ユニット70は、バッテリの状態、車速およびアクセル開度に応じて、EVモード、パワーEVモード、HVモード、パワーHVモードの各走行モードに切り換える制御を行う。 7A is a schematic diagram of the first map 73, and FIG. 7B is a schematic diagram of the second map 74. As shown in FIGS. 7A and 7B, the main control unit 70 operates in the EV mode, the power EV mode, the HV mode, and the power HV mode according to the state of the battery, the vehicle speed, and the accelerator opening. Control to switch to the mode.
 図8(a)はEVモードのときの差動装置20の共線図であり、図8(b)はパワーEVモードのときの差動装置20の共線図であり、図8(c)はHVモードのときの差動装置20の共線図であり、図8(d)はパワーHVモードのときの差動装置20の共線図である。共線図において、縦線はそれぞれサンギヤ21(S)及び第1回転電機11(MG1)、キャリヤ22(C)及びエンジン13(ICE)、リングギヤ23(R)及び第2回転電機12(MG2)に対応する。縦軸は各回転要素の回転速度であり、+は正回転(エンジン13の出力軸の回転方向と同じ回転方向)、-は負回転を示している。 8A is a collinear diagram of the differential device 20 in the EV mode, and FIG. 8B is a collinear diagram of the differential device 20 in the power EV mode, and FIG. Is a collinear diagram of the differential device 20 in the HV mode, and FIG. 8D is a collinear diagram of the differential device 20 in the power HV mode. In the alignment chart, the vertical lines indicate the sun gear 21 (S) and the first rotating electrical machine 11 (MG1), the carrier 22 (C) and the engine 13 (ICE), the ring gear 23 (R), and the second rotating electrical machine 12 (MG2), respectively. Corresponding to The vertical axis represents the rotation speed of each rotary element, + represents positive rotation (the same rotation direction as the rotation direction of the output shaft of the engine 13), and − represents negative rotation.
 図8(a)に示すEVモードは、第1クラッチ16が相対回転する状態で、第2回転電機12のトルクのみにより出力部材27を駆動する走行モードである。エンジン13は燃焼停止状態である。切換装置60はオフであり、差動装置20の3つの回転要素は自由に回転できる。EVモードでは、入力部材14及びサンギヤ21を介したトルク伝達が行われることなく、リングギヤ23に連結された第2回転電機12のトルクのみが、リングギヤ23に連結された出力部材27に伝達される。 The EV mode shown in FIG. 8A is a travel mode in which the output member 27 is driven only by the torque of the second rotating electrical machine 12 with the first clutch 16 relatively rotating. The engine 13 is in a combustion stopped state. The switching device 60 is off and the three rotating elements of the differential 20 can rotate freely. In the EV mode, torque is not transmitted via the input member 14 and the sun gear 21, but only the torque of the second rotating electrical machine 12 connected to the ring gear 23 is transmitted to the output member 27 connected to the ring gear 23. .
 図8(b)に示すパワーEVモードは、第1クラッチ16が負回転を規制した状態で、少なくとも第1回転電機11のトルクにより走行するモードである。エンジン13は燃焼停止状態であり、切換装置60はオフである。本実施形態では、第1回転電機11及び第2回転電機12の双方のトルクにより出力部材27を駆動する。パワーEVモードでは、リングギヤ23に連結された第2回転電機12のトルクが、リングギヤ23に連結された出力部材27に伝達される。また、キャリヤ22の回転速度はゼロであり、第1クラッチ16が負回転を規制し、第1回転電機11は負回転しつつ負方向のトルクを出力する。 The power EV mode shown in FIG. 8B is a mode in which the first clutch 16 travels at least with the torque of the first rotating electrical machine 11 in a state where negative rotation is restricted. The engine 13 is in a combustion stopped state, and the switching device 60 is off. In the present embodiment, the output member 27 is driven by the torque of both the first rotating electrical machine 11 and the second rotating electrical machine 12. In the power EV mode, the torque of the second rotating electrical machine 12 connected to the ring gear 23 is transmitted to the output member 27 connected to the ring gear 23. The rotation speed of the carrier 22 is zero, the first clutch 16 restricts negative rotation, and the first rotating electrical machine 11 outputs negative torque while rotating negatively.
 負回転を規制した第1クラッチ16は、入力部材14及びキャリヤ22をケース15に固定する。第1クラッチ16は第1回転電機11の反力受けとして機能し、サンギヤ21に伝達される第1回転電機11の負方向のトルクは、トルクの向きが逆転されて、リングギヤ23に連結された出力部材27に伝達される。これにより、第1回転電機11及び第2回転電機12の双方のトルクにより出力部材27を駆動する。 The first clutch 16 that restricts negative rotation fixes the input member 14 and the carrier 22 to the case 15. The first clutch 16 functions as a reaction force receiver for the first rotating electrical machine 11, and the torque in the negative direction of the first rotating electrical machine 11 transmitted to the sun gear 21 is coupled to the ring gear 23 by reversing the direction of the torque. It is transmitted to the output member 27. As a result, the output member 27 is driven by the torque of both the first rotating electrical machine 11 and the second rotating electrical machine 12.
 図8(c)に示すHVモードは、第1クラッチ16が相対回転する状態で、第1回転電機11の回転を制御することにより、エンジン13の回転を無段階に変速して出力部材27に伝達するモードである。エンジン13は燃焼状態であり、切換装置60はオフである。差動装置20は、エンジン13(キャリヤ22)のトルクをサンギヤ21及びリングギヤ23に配分する。第1回転電機11は、エンジン13のトルクの反力受けとして機能し、エンジン13のトルクが出力部材27側のリングギヤ23に配分される。第1回転電機11は、正回転しつつ負方向のトルクを出力して発電を行う。第2回転電機12は力行し、正方向のトルクを出力して、出力部材27に伝達されるエンジン13のトルクを補助する。 In the HV mode shown in FIG. 8C, the rotation of the engine 13 is controlled steplessly to the output member 27 by controlling the rotation of the first rotating electrical machine 11 with the first clutch 16 relatively rotating. It is a mode to transmit. The engine 13 is in a combustion state, and the switching device 60 is off. The differential device 20 distributes the torque of the engine 13 (carrier 22) to the sun gear 21 and the ring gear 23. The first rotating electrical machine 11 functions as a reaction force receiver for the torque of the engine 13, and the torque of the engine 13 is distributed to the ring gear 23 on the output member 27 side. The first rotating electrical machine 11 generates power by outputting a torque in the negative direction while rotating forward. The second rotating electrical machine 12 powers and outputs a positive torque to assist the engine 13 torque transmitted to the output member 27.
 ここで、第1回転電機11及び第2回転電機12は回転数が低いほど駆動力が大きいので、パワーEVモードにおいて、車両の速度が上がり第1回転電機11及び第2回転電機12の回転数が高くなると推進力が急激に低下する。また、HVモードでは、エンジン13のトルクが出力部材27に伝達されるが、差動装置20を介してエンジン13に繋がる第1回転電機11の駆動力は低下するので、全体の推進力はそれほど大きくならない。HVモードにおいて、第1回転電機11の駆動力の低下を補うために加速時にエンジン13の回転数を高くすると、パワーEVモード程度の推進力は得られるが、エンジン13の騒音が激しくなりハイブリッド車両としての静粛性が失われる。 Here, since the first rotating electrical machine 11 and the second rotating electrical machine 12 have a higher driving force as the rotational speed is lower, the speed of the vehicle is increased in the power EV mode, and the rotational speeds of the first rotating electrical machine 11 and the second rotating electrical machine 12 are increased. As the value increases, the propulsive force decreases rapidly. In the HV mode, the torque of the engine 13 is transmitted to the output member 27. However, since the driving force of the first rotating electrical machine 11 connected to the engine 13 via the differential device 20 is reduced, the overall driving force is not so much. Does not grow. In the HV mode, if the rotational speed of the engine 13 is increased during acceleration in order to compensate for a decrease in the driving force of the first rotating electrical machine 11, a propulsive force equivalent to the power EV mode can be obtained, but the noise of the engine 13 becomes intense and the hybrid vehicle Silence as is lost.
 これに対し、図8(d)に示すパワーHVモードは、主に加速時に使われる走行モードである。エンジン13は燃焼状態であり、第1クラッチ16は相対回転する状態である。切換装置60はオンであり、第2クラッチ30はキャリヤ22とリングギヤ23とを連結する。これにより、キャリヤ22が入力部材14と一体に回転する状態で、サンギヤ21、キャリヤ22及びリングギヤ23が一体に回転する。差動装置20は、エンジン13の回転をそのままリングギヤ23に出力する。 On the other hand, the power HV mode shown in FIG. 8D is a travel mode mainly used during acceleration. The engine 13 is in a combustion state, and the first clutch 16 is in a relative rotation state. The switching device 60 is on, and the second clutch 30 connects the carrier 22 and the ring gear 23. As a result, the sun gear 21, the carrier 22, and the ring gear 23 rotate together while the carrier 22 rotates together with the input member 14. The differential device 20 outputs the rotation of the engine 13 to the ring gear 23 as it is.
 即ちパワーHVモードでは、エンジン13の回転数に応じて、出力部材27、第1回転電機11及び第2回転電機12の回転数が定まる。第1回転電機11及び第2回転電機12は、エンジン13が出力部材27に伝達するトルクが不足する場合等に力行し、正方向のトルクを出力してエンジン13のトルクを補助する。よって、加速時に強い推進力が得られる。また、第1回転電機11及び第2回転電機12によってエンジン13の回転数が制限されるので、加速時にエンジン13の騒音が激しくならないようにすることができ、車両の静粛性を確保できる。 That is, in the power HV mode, the rotational speeds of the output member 27, the first rotating electrical machine 11 and the second rotating electrical machine 12 are determined according to the rotational speed of the engine 13. The first rotating electrical machine 11 and the second rotating electrical machine 12 perform powering when the torque transmitted from the engine 13 to the output member 27 is insufficient, etc., and output torque in the positive direction to assist the torque of the engine 13. Therefore, a strong driving force can be obtained during acceleration. Further, since the rotation speed of the engine 13 is limited by the first rotating electric machine 11 and the second rotating electric machine 12, noise of the engine 13 can be prevented from becoming intense during acceleration, and the quietness of the vehicle can be ensured.
 第2クラッチ30は、第2部材50に対して第1部材31が第2方向(反矢印F方向)へ相対回転する場合に、第2係合子43によって、第1部材31及び第2部材50は第2方向(反矢印F方向)へ一体に回転し、動力を伝達する。これにより、リングギヤ23が駆動側、キャリヤ22が被動側となった場合も、サンギヤ21、キャリヤ22及びリングギヤ23が一体に回転する。よって、必要に応じて第1回転電機11に発電を行わせることができる。 When the first member 31 rotates relative to the second member 50 in the second direction (counter arrow F direction), the second clutch 30 causes the first member 31 and the second member 50 to be moved by the second engagement element 43. Rotates integrally in the second direction (counter arrow F direction) to transmit power. Thus, even when the ring gear 23 is on the driving side and the carrier 22 is on the driven side, the sun gear 21, the carrier 22, and the ring gear 23 rotate together. Therefore, the first rotating electrical machine 11 can generate power as necessary.
 図9を参照して、EVモード、パワーEVモード及びHVモードの各走行モードからパワーHVモードにするパワーモード処理について説明する。図9はパワーモード処理のフローチャートである。この処理は、車両用駆動装置10の電源が投入されている間、CPU71によって繰り返し(例えば0.2秒間隔で)実行される処理である。 Referring to FIG. 9, the power mode process for changing the EV mode, the power EV mode, and the HV mode to the power HV mode will be described. FIG. 9 is a flowchart of power mode processing. This process is a process repeatedly executed by the CPU 71 (for example, at intervals of 0.2 seconds) while the power source of the vehicle drive device 10 is turned on.
 CPU71は、第1マップ73及び第2マップ74を用い、車速やアクセルペダルの操作量等の操縦の入力に基づいて、パワーHVモードの要求があるか否かを判断する(S1)。パワーHVモードの要求があるときは(S1:Yes)、CPU71はモードメモリ76を参照して、走行モードを取得する(S2)。一方、パワーHVモードの要求がないときは(S1)、切換装置60をオフし(S15)、第2クラッチ30を連結できない状態にする。 The CPU 71 uses the first map 73 and the second map 74 to determine whether or not there is a request for the power HV mode based on the steering input such as the vehicle speed and the amount of operation of the accelerator pedal (S1). When there is a request for the power HV mode (S1: Yes), the CPU 71 refers to the mode memory 76 and acquires the travel mode (S2). On the other hand, when there is no request for the power HV mode (S1), the switching device 60 is turned off (S15), and the second clutch 30 cannot be connected.
 走行モードがEVモードの場合には(S3:EV)、エンジン13は燃焼を停止した状態で、第2回転電機12が力行している。CPU71はエンジン制御ユニット83を使ってエンジン13を始動し(S4)、エンジン13の回転数を最小回転数に設定する(S5)。最小回転数とは、出力部材27がエンジン13に連結されたときにエンジン13が停止しない最小の回転数である。これにより、EVモードからパワーHVモードに切り換えられて出力部材27がエンジン13に連結されたときに、エンジン13が停止しないようにできる。 When the traveling mode is the EV mode (S3: EV), the second rotating electrical machine 12 is running with the engine 13 stopped in combustion. The CPU 71 starts the engine 13 using the engine control unit 83 (S4), and sets the rotational speed of the engine 13 to the minimum rotational speed (S5). The minimum rotation speed is the minimum rotation speed at which the engine 13 does not stop when the output member 27 is connected to the engine 13. Thereby, when the EV mode is switched to the power HV mode and the output member 27 is connected to the engine 13, the engine 13 can be prevented from stopping.
 CPU71は、エンジン13の回転数が最小回転数を含む許容範囲にある場合に(S6:Yes)、入力部材回転センサ87及びリングギヤ回転センサ89の検出結果を使い、リングギヤ23の回転数はキャリヤ22の回転数以上かを判断する(S7)。リングギヤ23の回転数がキャリヤ22の回転数以上の場合(S7:Yes)、CPU71は切換装置60をオンする(S9)。一方、リングギヤ23の回転数がキャリヤ22の回転数未満の場合(S7:No)、CPU71は第1ロータ軸回転センサ88及びリングギヤ回転センサ89の検出結果を使い、リングギヤ23の回転数はサンギヤ21の回転数以上かを判断する(S8)。リングギヤ23の回転数がサンギヤ21の回転数以上の場合(S8:Yes)、CPU71はS9の処理を実行し、リングギヤ23の回転数がサンギヤ21の回転数未満の場合(S8:Yes)、S5の処理に戻す。 When the rotational speed of the engine 13 is within an allowable range including the minimum rotational speed (S6: Yes), the CPU 71 uses the detection results of the input member rotational sensor 87 and the ring gear rotational sensor 89, and the rotational speed of the ring gear 23 is determined by the carrier 22 It is determined whether the rotational speed is equal to or higher than (S7). When the rotation speed of the ring gear 23 is equal to or higher than the rotation speed of the carrier 22 (S7: Yes), the CPU 71 turns on the switching device 60 (S9). On the other hand, when the rotation speed of the ring gear 23 is less than the rotation speed of the carrier 22 (S7: No), the CPU 71 uses the detection results of the first rotor shaft rotation sensor 88 and the ring gear rotation sensor 89, and the rotation speed of the ring gear 23 is the sun gear 21. It is determined whether the rotational speed is equal to or greater than (S8). When the rotational speed of the ring gear 23 is equal to or higher than the rotational speed of the sun gear 21 (S8: Yes), the CPU 71 executes the process of S9. When the rotational speed of the ring gear 23 is less than the rotational speed of the sun gear 21 (S8: Yes), S5 Return to processing.
 S9の処理において切換装置60がオンされると、第2クラッチ30はつながる状態になる。このときの第2クラッチ30は、第2部材50に対して第1部材31が第2方向(反矢印F方向)へ相対回転している(図5(a)参照)。第1係合子40は第2穴52に係合できないので、第2クラッチ30は滑り状態となる。これにより、切換装置60がオンされたときに第1係合子40が直ちに係合しないようにできるので、連結時に衝撃が生じないようにできる。 When the switching device 60 is turned on in the process of S9, the second clutch 30 is connected. At this time, in the second clutch 30, the first member 31 rotates relative to the second member 50 in the second direction (counter arrow F direction) (see FIG. 5A). Since the first engaging element 40 cannot be engaged with the second hole 52, the second clutch 30 is in a sliding state. Thereby, when the switching device 60 is turned on, the first engaging element 40 can be prevented from being immediately engaged, so that an impact can be prevented from occurring at the time of connection.
 エンジン13の回転数を上げると(S10)、第2部材50に対して第1部材31が第1方向(矢印F方向)へ相対回転し、第1係合子40はリテーナ47を押し退けて第1穴33の縁部34及び第2穴52の縁部53にそれぞれ係合する(図5(b)参照)。これにより、第2クラッチ30をつなぐためにキャリヤ22の回転数とリングギヤ23の回転数を合わせる制御をしなくても、第2クラッチ30はキャリヤ22とリングギヤ23とを衝撃なく連結し、サンギヤ21、キャリヤ22及びリングギヤ23が一体に回転する。パワーHVモードでは、第1回転電機11をオンして第1回転電機11が力行すると(S11)、強い推進力が得られる。よって、第2クラッチ30がつながるときの衝撃を抑制しつつ操縦の入力に対する応答性を良くすることができる。 When the rotational speed of the engine 13 is increased (S10), the first member 31 rotates relative to the second member 50 in the first direction (the direction of the arrow F), and the first engagement element 40 pushes the retainer 47 away from the first member. It engages with the edge 34 of the hole 33 and the edge 53 of the second hole 52, respectively (see FIG. 5B). As a result, the second clutch 30 connects the carrier 22 and the ring gear 23 without impact even without controlling the rotation speed of the carrier 22 and the rotation speed of the ring gear 23 to connect the second clutch 30, and the sun gear 21. The carrier 22 and the ring gear 23 rotate together. In the power HV mode, when the first rotating electrical machine 11 is turned on and the first rotating electrical machine 11 is powered (S11), a strong driving force is obtained. Therefore, it is possible to improve the response to the steering input while suppressing the impact when the second clutch 30 is engaged.
 走行モードがHVモードの場合には(S3:HV)、エンジン13は力行しているので、CPU71はS4からS6の処理をスキップしてS7からS11の処理を実行する。これにより、HVモードからパワーHVモードの切り換えが終了する。 When the running mode is the HV mode (S3: HV), the engine 13 is running, so the CPU 71 skips the processes from S4 to S6 and executes the processes from S7 to S11. Thereby, the switching from the HV mode to the power HV mode is completed.
 走行モードがパワーEVモードの場合には(S3:パワーEV)、CPU71は車速センサ85の検出結果を使い、車速が最低速度以上かを判断する(S12)。最低速度とは、出力部材27がエンジン13に連結されたときにエンジン13が停止しない最低の車速である。車速が最低速度未満のときは(S12:No)、第2回転電機12の回転数を上げて車速を上昇させ(S15)、この処理を終了する。これにより、パワーEVモードからパワーHVモードに切り換えられて出力部材27がエンジン13に連結されたときに、エンジン13が停止しないようにできる。 When the travel mode is the power EV mode (S3: power EV), the CPU 71 uses the detection result of the vehicle speed sensor 85 to determine whether the vehicle speed is equal to or higher than the minimum speed (S12). The minimum speed is the lowest vehicle speed at which the engine 13 does not stop when the output member 27 is connected to the engine 13. When the vehicle speed is less than the minimum speed (S12: No), the rotation speed of the second rotating electrical machine 12 is increased to increase the vehicle speed (S15), and this process is terminated. Thereby, when the power EV mode is switched to the power HV mode and the output member 27 is connected to the engine 13, the engine 13 can be prevented from stopping.
 車速が最低速度以上のときは(S12:Yes)、CPU71は切換装置60をオンする(S13)。S13の処理によって第2クラッチ30はつながる状態になるが、第1クラッチ16は入力部材14及びキャリヤ22をケース15に固定しているので、第2クラッチ30は、第2部材50に対して第1部材31が第2方向(反矢印F方向)へ相対回転する(図5(a)参照)。よって、第2クラッチ30は、第2部材50と第1部材31との相対回転を許容する滑り状態となる。 When the vehicle speed is equal to or higher than the minimum speed (S12: Yes), the CPU 71 turns on the switching device 60 (S13). Although the second clutch 30 is connected by the process of S13, the first clutch 16 fixes the input member 14 and the carrier 22 to the case 15, so that the second clutch 30 is connected to the second member 50 by the second clutch 50. The one member 31 rotates relatively in the second direction (counter arrow F direction) (see FIG. 5A). Therefore, the second clutch 30 is in a sliding state that allows relative rotation between the second member 50 and the first member 31.
 CPU71はエンジン13を始動し(S14)、エンジン13の回転数を上げると(S10)、第2部材50に対して第1部材31が第1方向(矢印F方向)へ相対回転し、第2クラッチ30がつながる(図5(b)参照)。第1回転電機11をオンして(S11)、この処理を終了する。以上のように、EVモード、パワーEVモード、HVモードの各走行モードからパワーEVモードへの切り換えができる。 When the CPU 71 starts the engine 13 (S14) and increases the rotational speed of the engine 13 (S10), the first member 31 rotates relative to the second member 50 in the first direction (arrow F direction), and the second The clutch 30 is connected (see FIG. 5B). The first rotating electrical machine 11 is turned on (S11), and this process ends. As described above, the EV mode, the power EV mode, and the HV mode can be switched from the travel modes to the power EV mode.
 図10(a)及び図10(b)を参照して第2実施の形態および第3実施の形態について説明する。第1実施形態では、キャリヤ22とリングギヤ23との間において第2クラッチ30が動力の伝達・遮断を行う場合について説明した。これに対し第2実施の形態における車両用駆動装置100は、サンギヤ21とリングギヤ23との間において第2クラッチ30が動力の伝達・遮断を行い、第3実施の形態における車両用駆動装置101は、サンギヤ21とキャリヤ22との間において第2クラッチ30が動力の伝達・遮断を行う。なお、第1実施形態で説明した部分と同一の部分については、同一の符号を付して以下の説明を省略する。 The second embodiment and the third embodiment will be described with reference to FIGS. 10 (a) and 10 (b). In the first embodiment, the case has been described in which the second clutch 30 transmits and interrupts power between the carrier 22 and the ring gear 23. On the other hand, in the vehicle drive device 100 according to the second embodiment, the second clutch 30 transmits / cuts power between the sun gear 21 and the ring gear 23, and the vehicle drive device 101 according to the third embodiment The second clutch 30 transmits / cuts power between the sun gear 21 and the carrier 22. In addition, about the part same as the part demonstrated in 1st Embodiment, the same code | symbol is attached | subjected and the following description is abbreviate | omitted.
 図10(a)は第2実施の形態における車両用駆動装置100のスケルトン図であり、図10(b)は第3実施の形態における車両用駆動装置101のスケルトン図である。車両用駆動装置100,101は、差動装置20の回転要素のいずれか2つを第2クラッチ30が連結するので、第1実施形態と同様の作用効果を実現できる。 FIG. 10A is a skeleton diagram of the vehicle drive device 100 in the second embodiment, and FIG. 10B is a skeleton diagram of the vehicle drive device 101 in the third embodiment. In the vehicle drive devices 100 and 101, since any two of the rotating elements of the differential device 20 are connected by the second clutch 30, the same effects as those of the first embodiment can be realized.
 以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、第1係合子40や第2係合子43の数や形状、第2穴52の数や形状は一例であり、適宜設定できる。 The present invention has been described above based on the embodiments. However, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. It can be easily guessed. For example, the number and shape of the first engagement elements 40 and the second engagement elements 43 and the number and shape of the second holes 52 are examples, and can be set as appropriate.
 実施形態では、第2クラッチ30が、第1係合子40及び第2係合子43を備える二方向クラッチの場合について説明したが、必ずしもこれに限られるものではない。第2係合子43を省略して、第2クラッチ30を一方向クラッチとすることは当然可能である。 In the embodiment, the case where the second clutch 30 is a two-way clutch including the first engagement element 40 and the second engagement element 43 has been described, but the present invention is not necessarily limited thereto. Of course, it is possible to omit the second engagement element 43 and make the second clutch 30 a one-way clutch.
 実施形態では、圧縮ばね46としてねじりコイルばねを第2クラッチ30に用いる場合について説明したが、必ずしもこれに限られるものではない。ねじりコイルばねの代わりに、圧縮コイルばね等の他の圧縮ばねを用いることは当然可能である。 In the embodiment, the case where a torsion coil spring is used for the second clutch 30 as the compression spring 46 has been described, but the present invention is not necessarily limited thereto. Of course, other compression springs such as a compression coil spring can be used instead of the torsion coil spring.
 実施形態では、アクチュエータ64を用いてトルクを伝達できる状態にする切換装置60について説明したが、必ずしもこれに限られるものではない。切換装置60は、公知の機構を適宜設定できる。 In the embodiment, the switching device 60 that makes it possible to transmit torque using the actuator 64 has been described, but the switching device 60 is not necessarily limited thereto. The switching device 60 can appropriately set a known mechanism.
 実施形態の切換装置60は、リング61やピン62を介して第1係合子40及び第2係合子43の揺動を規制する場合について説明したが、必ずしもこれに限られるものではない。リング61を省略し、ピン62の先端形状や第1係合子および第2係合子の形状を変更することで、ピンを介して第1係合子および第2係合子の揺動を規制することは当然可能である。また、ピンやリングに代えて、第2穴52に第1係合子や第2係合子が進入できないようにする板状のシャッター等を設け、それを切換装置の一部とすることは当然可能である。 The switching device 60 of the embodiment has been described with respect to the case where the swing of the first engagement element 40 and the second engagement element 43 is regulated via the ring 61 and the pin 62, but is not necessarily limited thereto. By omitting the ring 61 and changing the tip shape of the pin 62 and the shapes of the first and second engaging elements, the swinging of the first engaging element and the second engaging element via the pin is restricted. Of course it is possible. In addition, instead of a pin or a ring, a plate-like shutter or the like that prevents the first engagement element or the second engagement element from entering the second hole 52 can be provided as a part of the switching device. It is.
 実施形態では、切換装置60のアクチュエータ64が軸線方向の力を発生して第2クラッチ30を断接する場合について説明したが、必ずしもこれに限られるものではない。アクチュエータ64の力の向きは、第2クラッチ30を断接する機構に応じて適宜設定できる。 In the embodiment, the case where the actuator 64 of the switching device 60 generates an axial force to connect and disconnect the second clutch 30 has been described, but the present invention is not necessarily limited thereto. The direction of the force of the actuator 64 can be appropriately set according to the mechanism for connecting and disconnecting the second clutch 30.
 実施形態では、第1係合子40及び第2係合子43が同一形状の場合について説明したが、必ずしもこれに限られるものではない。第1係合子40及び第2係合子43の長さ、幅、厚さが互いに異なるようにすることは当然可能である。 In the embodiment, the case where the first engagement element 40 and the second engagement element 43 have the same shape has been described, but the present invention is not necessarily limited thereto. Of course, the length, width, and thickness of the first engagement element 40 and the second engagement element 43 can be different from each other.
 実施形態では、1組のギヤユニット(3つの回転要素)からなる差動装置20を例示して説明したが、必ずしもこれに限られるものではない。複数組のギヤユニットを組み合わせて、4つ以上の回転要素をもつ差動装置を構成することは当然可能である。以下、複数組のギヤユニットの一例を第1ギヤユニット及び第2ギヤユニットとして説明する。 In the embodiment, the differential device 20 including one set of gear units (three rotating elements) has been described as an example, but the present invention is not necessarily limited thereto. It is naturally possible to configure a differential device having four or more rotating elements by combining a plurality of sets of gear units. Hereinafter, an example of a plurality of sets of gear units will be described as a first gear unit and a second gear unit.
 第1ギヤユニットは、第1サンギヤ、第1サンギヤとかみ合う第1ピニオン、第1ピニオンとかみ合う第1リングギヤ、及び、第1ピニオンを回転自在に支持する第1キャリヤからなる。第2ギヤユニットは、第2サンギヤ、第2サンギヤとかみ合う第2ピニオン、第2ピニオンとかみ合う第2リングギヤ、及び、第2ピニオンを回転自在に支持する第2キャリヤからなる。第1キャリヤと第2サンギヤとが連結され1つの回転要素(以下「第1回転要素」と称す)を構成する。第1リングギヤと第2キャリヤとが連結され別の回転要素(以下「第2回転要素」と称す)を構成する。第1キャリヤ及び第2サンギヤ(第1回転要素)にエンジン13が連結される。第1リングギヤ及び第2キャリヤ(第2回転要素)に出力部材27が連結される。第2リングギヤ(第3回転要素)に第1回転電機11が連結される。第1サンギヤ(第4回転要素)に第2回転電機12が連結される。2組のギヤユニットをもつ差動装置は4つの回転要素をもつ。 The first gear unit includes a first sun gear, a first pinion that meshes with the first sun gear, a first ring gear that meshes with the first pinion, and a first carrier that rotatably supports the first pinion. The second gear unit includes a second sun gear, a second pinion that meshes with the second sun gear, a second ring gear that meshes with the second pinion, and a second carrier that rotatably supports the second pinion. The first carrier and the second sun gear are connected to constitute one rotating element (hereinafter referred to as “first rotating element”). The first ring gear and the second carrier are connected to constitute another rotating element (hereinafter referred to as “second rotating element”). The engine 13 is connected to the first carrier and the second sun gear (first rotating element). The output member 27 is connected to the first ring gear and the second carrier (second rotating element). The first rotating electrical machine 11 is connected to the second ring gear (third rotating element). The second rotating electrical machine 12 is connected to the first sun gear (fourth rotating element). A differential with two sets of gear units has four rotating elements.
 この場合、出力部材27に連結された第2回転要素と、第2回転電機12に連結された第4回転要素と、を連結させる以外の、いずれか2つの回転要素を第2クラッチ30に連結させることができる。さらに、この第2クラッチ30を切る状態と第2クラッチ30がつながる状態とを切り換える切換装置60を備えることにより、実施形態で説明した作用効果と同様の作用効果を実現できる。 In this case, any two rotating elements other than connecting the second rotating element connected to the output member 27 and the fourth rotating element connected to the second rotating electrical machine 12 are connected to the second clutch 30. Can be made. Furthermore, by providing the switching device 60 that switches between the state in which the second clutch 30 is disengaged and the state in which the second clutch 30 is connected, the same operational effects as those described in the embodiment can be realized.
 実施形態では、遊星歯車装置を例示して差動装置20を説明したが、必ずしもこれに限られるものではない。遊星歯車装置に代えて、トラクションを利用して動力を伝達する遊星ローラ装置を用いることは当然可能である。差動装置20として遊星ローラ装置を用いることにより、振動や騒音をさらに小さくできると共に、バックラッシを無くすことができる。 In the embodiment, the differential gear 20 has been described by exemplifying a planetary gear device, but the present invention is not necessarily limited thereto. It is naturally possible to use a planetary roller device that transmits power using traction instead of the planetary gear device. By using a planetary roller device as the differential device 20, vibration and noise can be further reduced, and backlash can be eliminated.
 実施形態では、第1クラッチ16に一方向クラッチを用いる場合を説明したが、必ずしもこれに限られるものではない。ドグクラッチ等のかみ合いクラッチや摩擦クラッチ等を第1クラッチ16に用い、主制御ユニット70からの制御信号によって、第1クラッチ16により入力部材14の正回転を許容し、入力部材14の逆回転を規制することは当然可能である。 In the embodiment, the case where a one-way clutch is used as the first clutch 16 has been described, but the present invention is not necessarily limited thereto. A meshing clutch such as a dog clutch or a friction clutch is used for the first clutch 16, and the first clutch 16 allows the input member 14 to rotate forward and restricts the reverse rotation of the input member 14 according to a control signal from the main control unit 70. Of course it is possible to do.
 10,100,101 車両用駆動装置
 11 第1回転電機
 12 第2回転電機
 13 エンジン
 14 入力部材
 16 第1クラッチ
 20 差動装置
 21 サンギヤ(回転要素)
 22 キャリヤ(回転要素)
 23 リングギヤ(回転要素)
 27 出力部材
 29 車輪
 30 第2クラッチ
 31 第1部材
 32 第1面
 33 第1穴
 34 縁部
 40 第1係合子
 50 第2部材
 52 第2穴
 53 縁部
 60 切換装置
 O  軸線
DESCRIPTION OF SYMBOLS 10,100,101 Vehicle drive device 11 1st rotary electric machine 12 2nd rotary electric machine 13 Engine 14 Input member 16 1st clutch 20 Differential device 21 Sun gear (rotary element)
22 Carrier (Rotating element)
23 Ring gear (rotating element)
27 Output member 29 Wheel 30 Second clutch 31 First member 32 First surface 33 First hole 34 Edge 40 First engagement element 50 Second member 52 Second hole 53 Edge 60 Switching device O Axis

Claims (3)

  1.  エンジンに接続された入力部材と、
     前記入力部材の動力を断接する第1クラッチと、
     車輪に接続された出力部材と、
     前記入力部材に接続された回転要素、第1回転電機に接続された回転要素、前記出力部材および第2回転電機に接続された回転要素を有する差動装置と、
     前記回転要素のうちいずれか2つの回転要素を連結する第2クラッチと、
     前記第2クラッチを切る状態と前記第2クラッチがつながる状態とを切り換える切換装置と、を備え、
     前記切換装置により前記第2クラッチがつながる状態になると、前記第2クラッチは、前記2つの回転要素の相対回転の向きが第2方向のときに相対回転を許容し、前記2つの回転要素の相対回転の向きが前記第2方向と反対の第1方向のときに連結する車両用駆動装置。
    An input member connected to the engine;
    A first clutch that connects and disconnects the power of the input member;
    An output member connected to the wheel;
    A differential element having a rotating element connected to the input member, a rotating element connected to a first rotating electrical machine, a rotating element connected to the output member and a second rotating electrical machine;
    A second clutch that connects any two of the rotating elements;
    A switching device that switches between disengaging the second clutch and connecting the second clutch;
    When the second clutch is connected by the switching device, the second clutch allows relative rotation when the direction of relative rotation of the two rotation elements is the second direction, and the relative relationship between the two rotation elements is A vehicle drive device connected when the direction of rotation is a first direction opposite to the second direction.
  2.  前記第2クラッチが連結する前記2つの回転要素は、一方が前記エンジンに駆動される駆動側、他方が被動側であり、
     前記第2クラッチは、前記駆動側の回転要素の回転数が前記被動側の回転要素の回転数より高くなると連結する請求項1記載の車両用駆動装置。
    One of the two rotating elements connected to the second clutch is a driving side driven by the engine, and the other is a driven side,
    2. The vehicle drive device according to claim 1, wherein the second clutch is connected when the rotational speed of the driving-side rotational element is higher than the rotational speed of the driven-side rotational element.
  3.  前記第2クラッチは、前記差動装置の軸線に交差する第1面を有する第1部材と、
     前記第1面と前記軸線の方向に対向する第2面を有する第2部材と、を備え、
     前記第1部材は、前記第1面の前記軸線を中心とする円周上に複数の第1穴が形成され、
     前記第1穴の各々に第1係合子が揺動可能に配置され、
     前記第2部材は、前記第2面の前記軸線を中心とする円周上に複数の第2穴が形成され、
     前記第2クラッチをつなぐときは前記第1係合子が前記第1穴の縁部および前記第2穴の縁部にそれぞれ係合する請求項1又は2に記載の車両用駆動装置。
    The second clutch includes a first member having a first surface intersecting an axis of the differential;
    A second member having a second surface facing the first surface and the direction of the axis,
    The first member has a plurality of first holes formed on a circumference around the axis of the first surface,
    A first engagement element is swingably disposed in each of the first holes,
    The second member has a plurality of second holes formed on a circumference around the axis of the second surface,
    3. The vehicle drive device according to claim 1, wherein when the second clutch is engaged, the first engagement element engages with an edge portion of the first hole and an edge portion of the second hole, respectively.
PCT/JP2018/021492 2018-06-05 2018-06-05 Vehicle drive device WO2019234811A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020523870A JP7101770B2 (en) 2018-06-05 2018-06-05 Vehicle drive
PCT/JP2018/021492 WO2019234811A1 (en) 2018-06-05 2018-06-05 Vehicle drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/021492 WO2019234811A1 (en) 2018-06-05 2018-06-05 Vehicle drive device

Publications (1)

Publication Number Publication Date
WO2019234811A1 true WO2019234811A1 (en) 2019-12-12

Family

ID=68770892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021492 WO2019234811A1 (en) 2018-06-05 2018-06-05 Vehicle drive device

Country Status (2)

Country Link
JP (1) JP7101770B2 (en)
WO (1) WO2019234811A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095386A (en) * 2011-11-04 2013-05-20 Fine Mec:Kk Vehicle drive device
JP2015209882A (en) * 2014-04-25 2015-11-24 トヨタ自動車株式会社 Control device of vehicle power transmission device
JP2016175575A (en) * 2015-03-20 2016-10-06 アイシン・エィ・ダブリュ株式会社 Vehicle drive device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095386A (en) * 2011-11-04 2013-05-20 Fine Mec:Kk Vehicle drive device
JP2015209882A (en) * 2014-04-25 2015-11-24 トヨタ自動車株式会社 Control device of vehicle power transmission device
JP2016175575A (en) * 2015-03-20 2016-10-06 アイシン・エィ・ダブリュ株式会社 Vehicle drive device

Also Published As

Publication number Publication date
JP7101770B2 (en) 2022-07-15
JPWO2019234811A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
CN109496185B (en) Power plant
US9770971B1 (en) Drive unit
US9975545B2 (en) Hybrid vehicle
JP4852474B2 (en) Power equipment
WO2013128992A1 (en) Hybrid-drive device
US8696510B2 (en) Driveline for four-wheel drive vehicle
US10173515B2 (en) Hybrid vehicle
CN107461476B (en) Differential assembly with axle torque vector
JPH09301002A (en) Driving force transmitting device for hybrid vehicle
US20180009432A1 (en) Hybrid vehicle
JP2009120043A (en) Device for driving hybrid vehicle
JP4915217B2 (en) Vehicle power train
US20140073472A1 (en) Four-wheel drive vehicle
JP7193002B2 (en) power transmission device
WO2019234811A1 (en) Vehicle drive device
JP2019085089A (en) Power transmission device, and motorcycle
US11085533B2 (en) Vehicle power unit
US11511623B2 (en) Power transmission device and vehicle including the same
JP4893566B2 (en) Hybrid drive unit
JP7314753B2 (en) Vehicle drive system
JP6040572B2 (en) Driving force transmission control device
JP2018001897A (en) Vehicle control device
JP5282811B2 (en) Hybrid vehicle drive system
JP6575376B2 (en) Continuously variable transmission
JP2019037043A (en) Driving device of vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921323

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020523870

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921323

Country of ref document: EP

Kind code of ref document: A1