WO2019233419A1 - Rrc连接重建立方法及终端 - Google Patents

Rrc连接重建立方法及终端 Download PDF

Info

Publication number
WO2019233419A1
WO2019233419A1 PCT/CN2019/090005 CN2019090005W WO2019233419A1 WO 2019233419 A1 WO2019233419 A1 WO 2019233419A1 CN 2019090005 W CN2019090005 W CN 2019090005W WO 2019233419 A1 WO2019233419 A1 WO 2019233419A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
rrc connection
terminal
connection
establishment
Prior art date
Application number
PCT/CN2019/090005
Other languages
English (en)
French (fr)
Inventor
徐海博
魏珍荣
金辉
庄宏成
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810850201.9A external-priority patent/CN110582128B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019233419A1 publication Critical patent/WO2019233419A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • This application relates to the field of wireless communications, and in particular, to a method and terminal for re-establishing an RRC connection.
  • terminals such as user equipment (UE) and mobile phones, are moving from the current serving cell (hereinafter referred to as the current cell) to the current cell.
  • the current cell the current serving cell
  • neighboring cells if the terminal detects that the difference between the signal quality of the neighboring cell and the signal quality of the current cell is greater than a preset quality threshold, and / or the signal strength of the neighboring cell and the strength of the current cell If the difference is greater than the preset strength threshold (that is, the entry conditions for the A3 event are met), the terminal will start a measurement report trigger time timer (TTT). After the TTT times out, the terminal will report the source cell and neighboring cells.
  • TTT measurement report trigger time timer
  • the terminal initiates a cell handover process with the current cell as the source cell and the neighboring cell as the target cell according to the received handover command, with a view to rebuilding the radio resource control (RRC) connection between the terminal and the communication system, and recovering Business before switching.
  • the above cell handover process may include the following steps: reporting a measurement report to the source cell; receiving a handover command received and forwarded by the source cell from the target cell, starting a handover timer T304; sending a random access preamble to the target cell; receiving the target cell A random access response and the like.
  • the terminal needs to wait for a period of time before initiating the RRC connection re-establishment process on the serving cell selected in the subsequent cell selection process. Further, if the RRC connection re-establishment process also fails, the terminal also needs to enter an idle state to re-initiate the RRC connection establishment process, and the service will be disconnected. In other words, when the cell handover fails, it takes a long time for the terminal to reestablish the RRC connection and resume the service, which results in a longer service interruption time and lower efficiency of the terminal.
  • some terminals are equipped with two sets of independent transceivers, such as two sets of independently controllable RF transceiver antennas and control circuits corresponding to each antenna, in order to support dual connectivity (DC) of the same or different standards, as A terminal maintains a communication connection with an evolved node (eBN) of an LTE system and a gNB of a new radio interface (NR) system (also called a 5G system) at the same time.
  • eBN evolved node
  • NR new radio interface
  • the present application provides an RRC connection re-establishment method and a terminal, so as to reduce the service interruption time of the terminal due to a cell handover failure and improve the efficiency of RRC connection re-establishment and restoration of service transmission.
  • the terminals in the embodiments of the present application are terminals having dual connection capabilities.
  • a method for re-establishing an RRC connection includes: when the first condition is met, the terminal initiates radio resource control to the second cell through the second connection while communicating with the first cell through the first connection.
  • RRC connection re-establishment process The first cell is the source cell of the terminal; the second cell is the target cell that meets the entry conditions for the A3 event.
  • the method for re-establishing an RRC connection enables a terminal to switch from a source cell to a target cell when a first condition is met and the cell handover fails, and a connection (first connection) with the source cell ( While the first cell) is communicating, the RRC connection re-establishment process is initiated to the target cell (second cell) that meets the A3 event entry conditions through another connection (second connection), which can reduce the number of cell failures caused by the first condition being met.
  • the above-mentioned first condition may include one of the following: the entry condition of the A3 event is satisfied, and a radio link problem (RLP) occurs in the first cell; the entry condition of the A3 event meeting triggers the terminal to report to the first A cell reports a measurement report, and a radio link problem occurs in the first cell.
  • the measurement report includes measurement reports of the source cell and / or the target cell, so that the first cell determines whether the terminal meets a preset cell switching condition, such as the S criterion, according to the measurement report.
  • the entry conditions of the above A3 event may be at least one of the following: the difference between the signal quality of the neighboring cell and the signal quality of the source cell is greater than or equal to a preset quality threshold; the difference between the signal strength of the neighboring cell and the signal strength of the source cell The value is greater than or equal to a preset intensity threshold. Given that the entry conditions for the A3 event are prior art, this application will not repeat them.
  • a radio link problem in the first cell refers to a problem in a service connection between the terminal and the first cell.
  • the bit error rate of the service and signaling received by the terminal from the first cell is higher than a preset bit error rate threshold, and the retransmission ratio or number of retransmissions of service data is greater than Preset retransmission threshold, etc.
  • the radio resource control RRC connection re-establishment process initiated to the second cell through the second connection may include: establishing a first media access control MAC entity and a first physical layer entity, and according to the first The public radio resource configuration information in the system information of the second cell configures the first MAC entity and the first physical layer entity.
  • the first MAC entity and the first physical layer entity are protocol stack entities corresponding to the second connection and / or the second cell, and are mainly used to support the terminal to initiate an RRC connection re-establishment process to the second cell through the second connection, so that Resume business as soon as possible, reduce the length of business interruption, and improve user experience.
  • the RRC connection re-establishment method provided in the first aspect of the present application may further include: when the second condition is satisfied, the terminal terminates the RRC connection re-establishment process.
  • the above-mentioned second condition may be: before the terminal receives the RRC connection re-establishment message sent by the second cell, it is determined that the radio link problem occurred in the first cell has been recovered, that is, the terminal has been recovered on the first cell For the service connection with the communication system, it is not necessary to continue the RRC connection re-establishment process on the second cell. Therefore, the terminal may choose to terminate the RRC connection re-establishment process to reduce unnecessary signaling between the terminal and the second cell. Interaction.
  • the foregoing second condition may also be: before the terminal receives the RRC connection re-establishment message sent by the second cell, it is determined that the leaving condition of the A3 event is satisfied.
  • the exit conditions of the A3 event may be at least one of the following: the difference between the signal quality of the neighboring cell and the signal quality of the source cell is less than a preset quality threshold; the signal strength of the neighboring cell and the source cell The difference between the signal strengths of is less than a preset strength threshold.
  • the above-mentioned second condition may also be: before the terminal receives the RRC connection re-establishment message sent by the second cell, it has received the handover command sent by the first cell.
  • the handover command carries configuration information of radio resources allocated to the terminal by the second cell, and is generally used to handover the terminal to the second cell.
  • the second cell has allowed the terminal to switch to the second cell and has allocated the necessary radio resources to the terminal.
  • the terminal only needs to switch to the second cell directly based on the radio resources allocated to it, and there is no need to go A longer and more complicated RRC connection re-establishment process is performed to reduce unnecessary signaling interaction between the terminal and the second cell.
  • the RRC connection re-establishment method provided in the first aspect of the present application may further include: if the terminal does not receive a handover command until the terminal receives the RRC connection re-establishment message sent by the second cell, After receiving the RRC connection re-establishment message sent by the second cell, the terminal disconnects the first connection, that is, since the service connection between the terminal and the communication system has been restored on the second cell, it is not necessary to continue to perform the terminal During the cell switching process from the source cell to the second cell, it is not necessary to continue to maintain the service connection between the terminal and the first cell. Therefore, in order to reduce the signaling interaction between the terminal and the communication system, the terminal may choose to disconnect the first connection.
  • the RRC connection re-establishment method provided in the first aspect of the present application may further include: if the terminal does not receive a handover command until the terminal receives the RRC connection re-establishment message sent by the second cell, the terminal is in After receiving the RRC connection re-establishment message sent by the second cell, the one or more first packet data convergence protocol PDCP entities and one or more first wireless chains corresponding to the first cell and / or the first connection are released.
  • the path controls the RLC entity, the second MAC entity, and the second physical layer entity to save resources.
  • an RRC connection re-establishment method including: when the third condition is satisfied, the terminal communicates with the third cell through the third connection, and initiates radio resource control to the fourth cell through the fourth connection.
  • RRC connection re-establishment process The third cell is a target cell during the cell switching process performed by the terminal, and the fourth cell is a cell selected by the terminal during the cell selection process.
  • the RRC connection re-establishment method enables a terminal to switch from a source cell to a target cell (third cell) when the third condition is met and the cell handover fails. Connection) while communicating with the target cell, initiate an RRC connection re-establishment process to the cell (fourth cell) selected by the terminal through the cell selection process through another connection (fourth connection) to reduce the cell handover when the third condition is met.
  • the third condition may be: After receiving the handover command with the third cell as the target cell, the terminal sends the random access preamble to the third cell for a preset number of times, which means that The random access procedure initiated by the terminal to the third cell has not yet succeeded.
  • the terminal may perform the cell selection process and the RRC connection re-establishment process through the fourth connection.
  • the preset number of transmissions may be equal to the maximum number of transmissions of the random access preamble specified in the existing protocol, or may be less than the above-mentioned maximum number of transmissions. For example, the preset number of transmissions is 50% of the maximum number of transmissions.
  • the radio resource control RRC connection re-establishment process initiated to the fourth cell through the fourth connection may include: establishing a third media access control MAC entity and a third physical layer entity, and according to the fourth cell's
  • the public radio resource configuration information in the system information configures a third MAC entity and a third physical layer entity.
  • the third MAC entity and the third physical layer entity are protocol stack entities corresponding to the fourth connection and / or the fourth cell, and are protocol stack entities corresponding to the fourth connection and / or the fourth cell, and are mainly used for Support the terminal to initiate the RRC connection re-establishment process to the fourth cell through the fourth connection, in order to resume the service as soon as possible, reduce the length of service interruption, and improve the user experience.
  • the RRC connection re-establishment method provided in the second aspect of the present application may further include: when the fourth condition is satisfied, the terminal terminates the RRC connection re-establishment process.
  • the fourth condition may be: before the terminal receives the RRC connection re-establishment message sent by the fourth cell, its random access process on the third cell has been successfully completed, that is, it has been restored on the third cell
  • the terminal can choose to terminate the above RRC connection re-establishment process to reduce unnecessary connections between the terminal and the fourth cell. Signaling interaction.
  • the RRC connection re-establishment method provided in the second aspect of the present application may further include: if the terminal does not successfully complete the third cell until it receives the RRC connection re-establishment message sent by the fourth cell Random access process, the terminal disconnects from the third cell after receiving the RRC connection re-establishment message, that is, the service connection between the terminal and the communication system has been restored on the fourth cell (fourth connection) Therefore, there is no need to continue the cell handover process of handing over the terminal from the source cell to the third cell. In view of this, in order to reduce the signaling interaction between the terminal and the third cell, the terminal may choose to disconnect the third connection.
  • the RRC connection re-establishment method provided in the second aspect of the present application may further include: if the RRC connection re-establishment message sent by the fourth cell is not received, the random connection on the third cell is not successfully completed.
  • the terminal After receiving the RRC connection re-establishment message, the terminal releases one or more second packet data convergence protocol PDCP entities corresponding to the third cell and / or the third connection, and one or more second wireless chains. It controls the RLC entity, the fourth MAC entity and the fourth physical layer entity to save resources.
  • a communication device including: a processing module, a first communication module, and a second communication module.
  • the processing module is configured to initiate a radio resource control RRC connection re-establishment process to the second cell through the second connection while communicating with the first cell through the first connection when the first condition is satisfied.
  • the first cell is the source cell of the terminal; the second cell is the target cell that meets the entry conditions of the A3 event; the first communication module is used to establish the first connection; the second communication module is used to establish the second connection.
  • the first condition may include one of the following: an entry condition of the A3 event is satisfied, and a radio link problem occurs in the first cell.
  • the entry conditions of the A3 event are met to trigger the terminal to report a measurement report to the first cell, and a radio link problem occurs in the first cell.
  • the processing module is configured to initiate a radio resource control RRC connection re-establishment process to the second cell through the second connection, including: establishing a first media access control MAC entity and a first physical layer entity, and The first MAC entity and the first physical layer entity are configured according to the public radio resource configuration information in the system information of the second cell; wherein the first MAC entity and the first physical layer entity correspond to the second connection and / or the second cell Protocol stack entity.
  • the processing module is further configured to terminate the RRC connection re-establishment process when the second condition is satisfied.
  • the second condition may be one of the following: before the second communication module receives the RRC connection re-establishment message sent by the second cell, the processing module determines that the radio link problem occurred in the first cell has been recovered; in the second communication module Before receiving the RRC connection re-establishment message sent by the second cell, the processing module determines that the departure condition of the A3 event is satisfied; before the second communication module receives the RRC connection re-establishment message sent by the second cell, the first communication module receives the first A handover command sent by a cell; where the handover command is used for a terminal to handover to a second cell.
  • the processing module is further configured to: if the first communication module does not receive the handover command until the second communication module receives the RRC connection re-establishment message sent by the second cell, the second communication module After receiving the RRC connection re-establishment message sent by the second cell, the first connection is disconnected.
  • the processing module is further configured to: if the first communication module does not receive the handover command until the second communication module receives the RRC connection re-establishment message sent by the second cell, After receiving the RRC connection re-establishment message sent by the second cell, the communication module releases one or more first packet data convergence protocol PDCP entities corresponding to the first cell and / or the first connection, and one or more first The radio link controls the RLC entity, the second MAC entity, and the second physical layer entity.
  • a communication device including: a processing module, a third communication module, and a fourth communication module.
  • the processing module is configured to, when the third condition is satisfied, initiate a radio resource control RRC connection re-establishment process to the fourth cell through the fourth connection while communicating with the third cell through the third connection.
  • the third cell is the target cell during the cell switching process performed by the terminal
  • the fourth cell is the cell selected by the terminal during the cell selection process
  • the third communication module is used to establish the third connection
  • the fourth communication module is used to establish the third connection.
  • Fourth connection is configured to, when the third condition is satisfied, initiate a radio resource control RRC connection re-establishment process to the fourth cell through the fourth connection while communicating with the third cell through the third connection.
  • the third condition may be that after the third communication module receives a handover command with the third cell as a target cell, the third communication module sends a random access preamble to the third cell a preset number of times.
  • the processing module is configured to initiate a radio resource control RRC connection re-establishment process to the fourth cell through the fourth connection, and includes: the processing module is configured to establish a third media access control MAC entity and the first Three physical layer entities, and configure a third MAC entity and a third physical layer entity according to the public radio resource configuration information in the system information of the fourth cell.
  • the third MAC entity and the third physical layer entity are protocol stack entities corresponding to the fourth connection and / or corresponding to the fourth cell.
  • the processing module is further configured to terminate the RRC connection re-establishment process when the fourth condition is satisfied.
  • the fourth condition is that before the fourth communication module receives the RRC connection re-establishment message sent by the fourth cell, the random access process of the communication device on the third cell is successfully completed.
  • the processing module is further configured to: if the RRC connection re-establishment message sent by the fourth cell is not received by the fourth communication module, the communication device does not successfully complete the random access procedure on the third cell, After the fourth communication module receives the RRC connection re-establishment message, it disconnects the third connection.
  • the processing module is further configured to: if the RRC connection re-establishment message sent by the fourth cell is not received by the fourth communication module, the communication device has not successfully completed random access on the third cell. Process, after the fourth communication module receives the RRC connection re-establishment message, release one or more second packet data convergence protocol PDCP entities corresponding to the third cell and / or the third connection, one or more The second radio link controls the RLC entity, the fourth MAC entity and the fourth physical layer entity.
  • a communication device for performing the RRC connection re-establishment method according to the first aspect or any possible implementation manner of the first aspect, and / or as in the second aspect or the second aspect The RRC connection re-establishment method according to any one of the possible implementation manners.
  • a communication device including: a processing module and a communication module, the processing module is configured to execute the RRC connection re-establishment method according to the first aspect or any possible implementation manner of the first aspect, and / Or the RRC connection re-establishment method according to the second aspect or any possible implementation manner of the second aspect.
  • the foregoing communication device may further include a storage module; wherein the storage module is configured to store instructions, and the processing module is configured to execute the instructions stored by the storage module, so that the processing module executes the first aspect or the first aspect
  • the RRC connection re-establishment method according to any one of the possible implementation manners, and / or the RRC connection re-establishment method according to the second aspect or any one of the possible implementation manners of the second aspect.
  • the communication device may be a chip or a chip system.
  • a terminal including: a processor, the processor being coupled to a memory.
  • the memory is configured to store a computer program; the processor is configured to execute the computer program stored in the memory, so that the terminal executes the RRC connection re-establishment method according to the first aspect or any possible implementation manner of the first aspect.
  • the terminal executes the RRC connection re-establishment method according to the second aspect or any possible implementation manner of the second aspect.
  • a computer program product includes computer program code.
  • the computer program code runs on a computer, the computer executes the program as described in the first aspect or any possible implementation manner of the first aspect.
  • a readable storage medium including a program or an instruction.
  • the program or the instruction When the program or the instruction is run on a computer, the computer executes the RRC according to the first aspect or any possible implementation manner of the first aspect.
  • the method for re-establishing an RRC connection provided by the embodiment of the present application can provide a method suitable for quickly rebuilding an RRC connection to restore terminal services in a scenario where a cell handover fails.
  • FIG. 1 is a schematic diagram of a communication system applicable to a communication method according to an embodiment of the present application
  • FIG. 3 is a schematic flowchart of an RRC connection re-establishment method 1 according to an embodiment of the present application
  • FIG. 4A is a first schematic scenario scenario 1 of an RRC connection re-establishment method 1 according to an embodiment of the present application;
  • FIG. 4A is a first schematic scenario scenario 1 of an RRC connection re-establishment method 1 according to an embodiment of the present application;
  • FIG. 4B is a second schematic scenario scenario 2 of the method 1 for re-establishing an RRC connection according to an embodiment of the present application;
  • FIG. 4C is a third schematic scenario of the application of the RRC connection re-establishment method 1 according to the embodiment of the present application;
  • FIG. 4D is a schematic diagram 4 of an applicable scenario of the first method for re-establishing an RRC connection according to an embodiment of the present application
  • FIG. 5A is a schematic diagram 5 of an applicable scenario of the first method of re-establishing an RRC connection according to an embodiment of the present application
  • FIG. 5B is a schematic diagram 6 of a scenario in which an RRC connection re-establishment method 1 according to an embodiment of the present application is applicable;
  • FIG. 5B is a schematic diagram 6 of a scenario in which an RRC connection re-establishment method 1 according to an embodiment of the present application is applicable;
  • FIG. 5C is a schematic diagram of a scenario 7 in which an RRC connection re-establishment method 1 according to an embodiment of the present application is applicable;
  • FIG. 5C is a schematic diagram of a scenario 7 in which an RRC connection re-establishment method 1 according to an embodiment of the present application is applicable;
  • FIG. 5D is a schematic diagram VIII of an applicable scenario of the first method for reestablishing RRC connection provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram 9 of a scenario where an RRC connection re-establishment method 1 according to an embodiment of the present application is applicable;
  • FIG. 7 is a schematic flowchart of an RRC connection re-establishment method 2 according to an embodiment of the present application.
  • FIG. 8 is a first schematic scenario of a scenario in which an RRC connection re-establishment method 2 according to an embodiment of the present application is applied;
  • FIG. 8 is a first schematic scenario of a scenario in which an RRC connection re-establishment method 2 according to an embodiment of the present application is applied;
  • FIG. 9 is a second schematic scenario scenario 2 where an RRC connection re-establishment method 2 according to an embodiment of the present application is applied;
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another communication device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • TDD time division duplexing
  • FDD frequency division duplexing
  • the RRC connection re-establishment method provided in the embodiment of the present application can be applied to the communication system shown in FIG. 1, and the communication system may be a communication system supporting at least one of the following systems: LTE system, worldwide interconnected microwave access (worldwide interoperability) microwave access (WiMAX) systems, 5th generation (5G) systems, such as new radio (NR) systems, and future communication systems, such as 6G systems.
  • LTE system worldwide interconnected microwave access (worldwide interoperability) microwave access (WiMAX) systems
  • WiMAX worldwide interconnected microwave access
  • 5G systems such as new radio (NR) systems
  • future communication systems such as 6G systems.
  • the communication system may include: a terminal and a network device.
  • the terminal in FIG. 1 refers to a terminal having dual connectivity (DC) capability, which is mainly used to connect to at least one network device deployed by an operator through an air interface in order to receive network services; a terminal capable of supporting dual connectivity Need to install two sets of transceivers, or two sets of transceiver chains.
  • DC dual connectivity
  • Network equipment is mainly used to implement wireless protocol stack functions, resource scheduling and wireless resource management, wireless access control, and mobility management functions.
  • the dual connection may be that the terminal communicates with network devices of different standards at the same time, or that the terminal communicates with different network devices of the same system at the same time, or that the terminal communicates with different cells of the same network device at the same time. Examples are not limited.
  • 5G NR non-independent networking is often selected, that is, long-term evolution-new air interface dual connectivity (E-UTRAN NR dual connectivity, EN-DC ) Networking.
  • E-UTRAN NR dual connectivity, EN-DC long-term evolution-new air interface dual connectivity
  • the network device 102 is an eNB in an LTE system
  • the network device 104 is a gNB in an NR system
  • the terminal 106 can communicate with the eNB and gNB respectively.
  • the network device 102 and the network device 104 are both gNBs in the NR system, and the terminal 106 can communicate with two gNBs at the same time.
  • the network device 102 and the network device 104 can also be deployed in the same site, that is, the network device 102 and the network device 104 are the same base station.
  • the base station may include at least two cells. Two cells communicate simultaneously.
  • the at least two cells mentioned above may be cells supporting the same system or cells supporting different systems, which are not limited in the embodiment of the present application.
  • the above terminal may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device , User agent, or user device.
  • the terminal in the embodiment of the present application may be a mobile phone, a tablet, a computer with a wireless transmitting and receiving function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, or an industrial terminal.
  • Wireless terminal in industrial control wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, transportation safety Wireless terminals in smart phones, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the embodiment of the present application does not limit the application scenario.
  • the foregoing terminal and chips that can be disposed in the foregoing terminal are collectively referred to as a terminal.
  • the above network device may be an access network device such as a base station, such as a node (B) in a 3rd generation (3G) mobile communication system, an evolved eNode (B) in an LTE system, GNB in NR system, etc.
  • a base station such as a node (B) in a 3rd generation (3G) mobile communication system, an evolved eNode (B) in an LTE system, GNB in NR system, etc.
  • FIG. 1 is only an exemplary architecture diagram.
  • the network architecture may further include other functional units, which are not limited in the embodiment of the present application.
  • the terminal moves from one cell (the current serving cell), such as the cell included in the network device 102, to another cell (adjacent cell), such as the cell included in the network device 104, the two
  • the terminal may perform the current cell as the source cell and the neighboring cell as the target as shown in FIG. 2 under the control of the network device. Cell handover process for a cell.
  • the above cell handover process may include S201-S210:
  • the terminal detects that the entry condition of the A3 event is satisfied.
  • the entry conditions of the A3 event may be: the difference between the signal strength of the neighboring cell received by the terminal and the signal strength of the current cell received by the terminal is greater than or equal to a preset strength threshold, and / or, the The difference between the signal quality and the signal quality of the current cell it receives is greater than or equal to a preset quality threshold.
  • the terminal when the terminal detects that the entry conditions for the A3 event are met, the terminal first starts a measurement report trigger time timer (TTT), and when the TTT times out, the terminal reports a measurement report.
  • TTT measurement report trigger time timer
  • the terminal reports a measurement report to the source cell.
  • the above measurement report carries the signal strengths of the source cell and the neighboring cell it received, and / or the signal quality of the source cell and the neighboring cell it received.
  • the terminal may report a measurement report through an air interface between the terminal and the source cell.
  • the terminal After that, during the process of S202, if the terminal detects a radio link problem (radio link problem, RLP) in the source cell, it will start timer T310, and during T310 operation, it will always try to receive the following S206. Switch command.
  • RLP radio link problem
  • the source cell determines that the foregoing terminal meets a handover condition according to a measurement report.
  • the foregoing handover condition may be determined by a network device, and may be any condition in the prior art, which is not limited in the embodiment of the present application.
  • the source cell sends a handover request to the target cell.
  • the handover request carries the identity of the terminal, current service information, and resource allocation requirements. Specifically, the handover request may be transmitted through a wired or wireless interface between the source cell and the target cell. For example, a handover request is transmitted through an X2 interface between the source cell and the target cell. In view of the fact that the handover request is a prior art, this embodiment of the present application will not repeat the details.
  • the target cell sends a handover response to the source cell according to the handover request.
  • the target cell determines whether to agree with the terminal to switch to the target cell according to a comparison result between its idle resources and the resource requirements of the current service of the terminal. If the handover is agreed, the handover response will carry RRC connection reconfiguration information for the terminal to access the target cell.
  • the source cell sends a handover command to the terminal.
  • the above handover command is generated based on the handover response, and carries information about the target cell, such as the cell identity of the target cell and RRC connection reconfiguration information. Similar to the terminal reporting a measurement report, a handover command can be transmitted through an air interface between the source cell and the terminal. In view of the fact that the handover command is the prior art, it will not be repeated in the embodiment of the present application.
  • the terminal if it detects a radio link problem (radio link problem, RLP) in the source cell, it will start timer T310. From the TTT timeout, the terminal reports the measurement report for the first time. If the terminal does not receive a handover command until T310 times out, the terminal can determine that the source cell has a radio link failure (RLF). In order to restore terminal services, the terminal will start a cell selection process to reselect a serving cell, initiate an RRC connection re-establishment process to the selected serving cell, and start a timer T311. Of course, if T311 has timed out, but the RRC connection between the terminal and the communication system has not been re-established, the terminal may determine that the RRC connection re-establishment process fails and needs to restart the network search process.
  • RLF radio link failure
  • the terminal disconnects the RRC connection with the source cell according to the handover command.
  • the terminal when it receives the handover command, it will disconnect the RRC connection with the source cell, start timer T304, and initiate the cell handover process to the target cell carried by the handover command.
  • the terminal since the terminal disconnected the RRC connection with the source cell in S207, starting from S207, the service between the terminal and the communication system has been interrupted, and the service interruption state will continue until the terminal re-establishes its communication system.
  • the RRC connection position of the home such as the current cell handover is successful, or although the current cell handover fails, the subsequent RRC connection is successfully re-established.
  • the cell handover process includes downlink synchronization between the terminal and the target cell, and a random access process.
  • the random access process may include the following S208.
  • the terminal sends a random access preamble to the target cell.
  • the target cell sends a random access response to the terminal.
  • the random access preamble is usually used for uplink synchronization between the terminal and the target cell.
  • the maximum number of times the terminal sends a random access preamble to the target cell is usually set, for example, it can be set to 4 times. If the terminal actually sends the random access preamble the maximum number of times, and the terminal does not receive the random access response sent by the target cell until T304 times out, the terminal can determine that a cell handover failure (HOF) has occurred .
  • the terminal starts a cell selection process to reselect a serving cell, initiates an RRC connection re-establishment process to the selected serving cell, and starts a timer T311. Since the cell selection process and the RRC connection re-establishment process are existing technologies, this embodiment of the present application will not repeat them.
  • the terminal reports an RRC connection reconfiguration complete message to the target cell.
  • the terminal completes its own configuration according to the RRC connection reconfiguration information carried in the random access response, and sends an RRC connection reconfiguration completion message to the target cell.
  • the serving cell of the terminal is switched from the source cell to the target cell. After that, the terminal can continue to receive network services on the target cell. .
  • the above-mentioned cell handover process includes many steps.
  • the terminal is located in the edge area of the source cell and the target cell, the signal quality is poor, the signal strength is low, and there are often strong inter-cells. Interference, that is, the wireless communication environment in which the terminal is located at this time is relatively poor, which is likely to cause the terminal to make an error in the process of performing the above S201-S210, thereby causing the above-mentioned cell handover to fail.
  • the cell handover failure may include the cell handover failure in the following two scenarios:
  • Scenario 1 Due to a wireless link problem in the source cell, the terminal fails to report a measurement report (S202), or fails to successfully receive a handover command (S206), the terminal can determine that the source cell has a radio link failure, and the cell The subsequent steps of the handover process cannot be performed, resulting in cell handover failure. That is, the cell handover failure in this scenario is caused by a wireless link failure in the source cell.
  • the cell handover failure in the scenario can be called: wireless link failure type. Cell handover failed.
  • Scenario 2 Because the terminal is in the edge area of the target cell and the wireless communication environment is poor, the target cell cannot receive the random access preamble sent by the terminal (S208), or the terminal cannot receive the random access response issued by the target cell ( S209), that is, a random access failure occurs, and the terminal cannot reestablish the RRC connection on the target cell. That is, the cell handover failure in scenario two is caused by the random access failure.
  • the cell handover failure in scenario two can be referred to as: The handover of the random access failure type cell fails.
  • the terminal can confirm that the source cell has failed in the radio link, and initiate the cell selection process and the RRC connection re-establishment process. . Therefore, even if the terminal has detected a radio link problem in the source cell, it will not initiate the cell selection process and the RRC connection re-establishment process in advance. Instead, it must wait for T310 to time out. The waiting time is longer, which results in a more efficient RRC connection reconstruction. Low, business interruption time is long, and user experience is poor.
  • the terminal receives a handover command, sends a random access preamble to the target cell, and starts T304. If T304 times out, the terminal still fails to receive a random access response from the target cell, and the terminal Only then can it be determined that a handover failure of the random access failure type has occurred, and start the cell selection process and the RRC connection re-establishment process. Therefore, even if the terminal has sent the random access preamble the maximum number of times, the terminal cannot start the cell selection process and the RRC connection re-establishment process in advance, but must wait for T304 to time out and the waiting time is longer, which results in a more efficient RRC connection re-establishment. Low, business interruption time is long, and user experience is poor.
  • the serving cell selected by the terminal during the above cell selection process may be a source cell, a target cell, or a cell other than the source cell and the target cell, which is not limited in this embodiment of the present application. .
  • the embodiments of the present application provide two RRC connection re-establishment methods when a cell handover fails, which are respectively applied to the above scenarios 1 and 2 to reduce the service interruption time of the terminal due to the cell handover failure, improve the RRC connection re-establishment efficiency, and improve user experience.
  • FIG. 3 shows an RRC connection re-establishment method applicable to scenario 1.
  • the RRC connection re-establishment method includes S301:
  • the terminal initiates a radio resource control RRC connection re-establishment process to the second cell through the second connection while communicating with the first cell through the first connection.
  • the first cell is the source cell of the terminal, as shown in FIG. 1, and the second cell is the target cell that meets the A3 event entry conditions, as shown in FIG. 1. It can be understood that the source cell and the target cell may also be different cells included in the same base station, which is not limited in the embodiment of the present application.
  • the foregoing first condition may be that an entry condition for the A3 event is satisfied, and a radio link problem occurs in the first cell, that is, the source cell. Among them, if the entry condition of the A3 event is satisfied, the terminal starts a timer TTT. If the terminal has a radio link problem in the source cell, it means that timer T310 is already running.
  • 4A-4B are schematic diagrams of two sub-scenes that meet a first condition in a scene.
  • the first cell is a primary serving cell (Primary serving cell) of the terminal.
  • the terminal detects A radio link problem occurs in the first cell, and T310 corresponding to the first cell and / or the first connection is started. That is to say, a radio link problem occurs in the first cell, that is, T310 starts later, and the entry condition of the A3 event is satisfied to trigger the terminal to start the timer TTT first.
  • FIG. 4A and FIG. 4B are only two examples. In fact, as long as the two timers TTT and T310 have a period of time (both have been started and both have not timed out), the first condition can be considered to be satisfied. As for the sequence of the start times of the two timers, The embodiments of the present application are not limited.
  • the terminal reports the measurement report to the first cell only after the TTT times out, or initiates the RRC connection re-establishment process and performs cell selection after the T310 times out.
  • the terminal when the terminal detects that the first condition shown in FIG. 4A is satisfied, it does not wait for T310 to time out before initiating the RRC connection re-establishment process to the second cell, but when the TTT is started and T310 When in operation, the RRC connection re-establishment process is immediately initiated to the second cell through the second connection, which can reduce the waiting time, thereby improving the RRC connection re-establishment efficiency.
  • the terminal detects that the first condition shown in FIG.
  • the above-mentioned first condition may also be that the entry conditions of the A3 event are met to trigger the terminal to report a measurement report to the first cell, and a radio link problem occurs in the first cell.
  • the entry condition of the A3 event meets the triggering terminal to report the measurement report to the first cell, which means that the entry condition of the A3 event meets the triggering terminal to start the timer TTT, and when the TTT expires, the triggering terminal reports the measurement report to the first cell.
  • 4C-4D show schematic diagrams of two other sub-scenes that meet the first condition at a scene.
  • the radio link problem has occurred in the first cell, that is, the timer T310 has been started. That is to say, a wireless link problem occurs in the first cell, that is, T310 starts first, and the entry condition of the A3 event meets and the timer TTT triggered by the timer expires later.
  • the timer TTT triggered by the entry condition of the A3 event meeting has expired. That is to say, a radio link problem occurs in the first cell, that is, T310 starts later, and the entry condition of the A3 event meets the timer TTT triggered by the timeout first.
  • FIG. 4C and FIG. 4D are only two examples. In fact, as long as the timer T310 is running and the terminal reports the measurement report to the first cell at the same time, it can be considered that the first condition is satisfied. As for the sequence of occurrence of the above two events (T310 start and report measurement report), this The application examples are not limited.
  • the terminal initiates the RRC connection re-establishment process and performs cell selection only after T310 times out, or the cell handover process is initiated only after the terminal receives a handover command.
  • the terminal detects that the first condition shown in FIG. 4C is satisfied, it no longer waits for T310 to time out, but immediately initiates RRC to the second cell through the second connection when the terminal reports a measurement report.
  • the connection re-establishment process reduces the waiting time, thereby improving the efficiency of RRC connection re-establishment.
  • the terminal detects that the first condition shown in FIG.
  • the second cell initiates the RRC connection re-establishment process, which also reduces the waiting time, thereby improving the RRC connection re-establishment efficiency.
  • the entry conditions of the above A3 event may be at least one of the following: the difference between the signal quality of the target cell and the signal quality of the source cell is greater than or equal to a preset quality threshold; the signal strength of the target cell and the signal strength of the source cell are The difference is greater than or equal to a preset intensity threshold.
  • the difference between the reference signal received power (RSRP) of the target cell received by the terminal and the RSRP of the source cell received by the same terminal is greater than a preset RSRP threshold.
  • the difference between the reference signal receiving quality (RSRQ) of the target cell received by the terminal and the RSRQ of the source cell received by the same terminal is greater than a preset RSRQ threshold.
  • the occurrence of a wireless link problem in the first cell refers to a problem in a wireless connection between the terminal and the first cell, which causes a bit error rate of services and / or signaling received by a receiver to be higher than a preset
  • the bit error rate threshold, or the retransmission ratio or the number of retransmission times of the service data is greater than a preset retransmission threshold.
  • the radio resource control RRC connection re-establishment process initiated to the second cell through the second connection may include: establishing a first media access control MAC entity and a first physical layer entity, and according to the first The public radio resource configuration information in the system information of the second cell configures the first MAC entity and the first physical layer entity.
  • the first MAC entity and the first physical layer entity are protocol stack entities corresponding to the second connection and / or the second cell, and are mainly used to support the terminal to initiate an RRC connection re-establishment process to the second cell through the second connection, so that Resume business as soon as possible, reduce the length of business interruption, and improve user experience.
  • the RRC connection re-establishment method shown in FIG. 3 may further include: when the second condition is satisfied, the terminal terminates the RRC connection re-establishment process.
  • the foregoing second condition may be: before the terminal receives the RRC connection re-establishment message sent by the second cell, it is determined that the radio link problem occurred in the first cell has been recovered, that is, the terminal detects on the first cell In the case of N311 consecutive in-syncs, it is not necessary to continue the RRC connection re-establishment procedure on the second cell. Therefore, the terminal may choose to terminate the RRC connection re-establishment process to reduce unnecessary signaling interaction between the terminal and the second cell, save resources and reduce power consumption.
  • FIG. 5A shows a schematic diagram of a sub-scenario that satisfies the second condition.
  • the terminal when the terminal detects that the radio link problem in the first cell has recovered, the terminal stops the T310 timing corresponding to the first cell and / or the first connection, that is, the terminal is already on the first cell at this time. To resume communication, it is not necessary to continue the RRC connection re-establishment procedure on the second cell. Therefore, the terminal can terminate its RRC connection re-establishment procedure on the second cell.
  • the foregoing second condition may also be: before the terminal receives the RRC connection re-establishment message sent by the second cell, it is determined that the leaving condition of the A3 event is satisfied.
  • the exit conditions of the A3 event may be at least one of the following: the difference between the signal quality of the neighboring cell and the signal quality of the source cell is less than a preset quality threshold; the signal strength of the neighboring cell and the source cell The difference between the signal strengths of is less than a preset strength threshold.
  • FIG. 5B shows a schematic diagram of another seed scenario that satisfies the second condition.
  • the terminal detects that the second cell meets the A3 event leaving condition
  • the terminal stops the TTT count corresponding to the second cell and / or the second connection, that is, the signal of the second cell received by the terminal at this time.
  • the quality deteriorates. For example, if the terminal has turned around away from the second cell and moved in the direction where the first cell is located, it is not necessary to continue the RRC connection re-establishment process on the second cell. Therefore, the terminal may also terminate its RRC connection re-establishment process on the second cell to reduce unnecessary signaling interaction and power consumption.
  • the foregoing second condition may further be that the terminal has received a handover command sent by the first cell before receiving the RRC connection re-establishment message sent by the second cell.
  • the terminal only needs to perform cell switching according to the handover command, and it is not necessary to perform a longer and more complicated RRC connection re-establishment process to avoid unnecessary signaling interaction between the terminal and the second cell.
  • FIG. 5C shows a schematic diagram of another seed scenario that satisfies the second condition.
  • the terminal may also terminate its RRC connection re-establishment process on the second cell to reduce unnecessary signaling interaction and power consumption.
  • the embodiment of the present application does not need to limit the initiation time of the RRC connection re-establishment process.
  • the initiation time of the RRC connection re-establishment process may be any one of FIG. 4A to FIG. 4D.
  • the initiation time of the RRC connection re-establishment process is the same as the initiation time shown in FIG. 4B (TTT starts first, T310 starts later).
  • the sub-scenario shown in FIG. 5C can be changed to FIG. 5D The child scene shown.
  • FIGS. 5C-5D are only a few examples that satisfy the second condition.
  • the terminal detects that the radio link problem in the first cell has recovered, The second cell meets the leaving condition of the A3 event, and the terminal has received a handover command sent by the first cell.
  • the method may further include: if the terminal does not receive the RRC connection re-establishment message sent by the second cell, the terminal does not receive Upon reaching the handover command, the terminal disconnects the first connection after receiving the RRC connection re-establishment message sent by the second cell.
  • the terminal's RRC connection on the second cell is successfully re-established, that is, the service has been resumed on the second cell.
  • the terminal does not need to continue the handover process of handing over the terminal from the source cell to the target cell, and it is not necessary to continue A service connection (first connection) with the first cell is maintained. In view of this, the terminal may disconnect the first connection to reduce unnecessary signaling interaction between the terminal and the first cell and save power consumption.
  • the terminal detects that the radio link problem on the first cell has recovered, and the RRC connection re-establishment process initiated by the terminal on the second cell through the second connection is successfully performed, if one of them has been performed Success, that is, the service between the terminal and the communication system has been restored.
  • the terminal may choose to terminate another process. For example, if the RRC connection re-establishment process of the terminal on the second cell has been successfully performed, the terminal may immediately disconnect the first connection. As another example, if the radio link problem of the terminal on the first cell has been recovered, the terminal may immediately terminate the RRC connection re-establishment process on the second cell.
  • the RRC connection re-establishment method shown in FIG. 3 may further include: if the terminal does not receive the handover command until the terminal receives the RRC connection re-establishment message sent by the second cell, the terminal receives the After the RRC connection re-establishment message sent by the second cell, one or more first packet data convergence protocol PDCP entities corresponding to the first cell and / or the first connection are released, and one or more first radio link control RLC entities are released. , A second MAC entity and a second physical layer entity to save resources.
  • the embodiment of the present application does not need to limit the execution sequence of releasing the PDCP entity, RLC entity, second MAC entity, and second physical layer entity corresponding to the first cell and disconnecting the first connection.
  • the disconnection operation may be performed first, and then the release operation may be performed, or the release operation may be performed first, and then the disconnection operation may be performed, and the release operation and disconnection operation may be performed simultaneously, which is not limited in the embodiment of the present application.
  • the method for re-establishing an RRC connection enables a terminal to switch from a source cell to a target cell when a first condition is met and the cell handover fails, and a connection (first connection) with the source cell ( While the first cell) is communicating, the RRC connection re-establishment process is initiated to the target cell (second cell) that meets the A3 event entry conditions through another connection (second connection), which can reduce the number of cell failures caused by the first condition being met.
  • FIG. 7 illustrates an RRC connection re-establishment method applicable to scenario 2.
  • the RRC connection re-establishment method includes S701:
  • the terminal initiates a radio resource control RRC connection re-establishment process to the fourth cell through the fourth connection while communicating with the third cell through the third connection.
  • the third cell is the target cell during the cell switching process performed by the terminal, and the fourth cell is the cell selected when the terminal performs the RRC connection reestablishment process.
  • the third cell in S701 may be the second cell shown in FIG. 3 to FIG. 6.
  • the fourth cell is a cell selected when the terminal fails to perform a cell handover in scenario 2 and performs an RRC connection re-establishment process.
  • the cell may be a serving cell (source cell) before handover or a cell other than the source cell and the third cell (target cell), which is not limited in this embodiment of the present application.
  • the above-mentioned third condition may be: After receiving the handover command with the third cell as the target cell, the terminal sends the random access preamble to the third cell for a preset number of times.
  • FIG. 8 is a schematic diagram of a sub-scenario that meets the third condition in scenario 2.
  • the terminal receives a handover command that instructs the terminal to switch to the third cell and has established its downlink synchronization with the third cell
  • the terminal attempts to establish its uplink synchronization with the third cell, such as
  • the third cell sends a random access preamble and attempts to receive a random access response sent by the third cell, so as to complete its own configuration according to the configuration information carried in the random access response, and resume the service before the handover in the third cell.
  • the terminal When the terminal sends the random access preamble for a preset number of times, the terminal continues to try to receive the random access response sent by the third cell through the third connection, and can also perform the cell selection process through the fourth connection, and
  • the fourth connection initiates an RRC connection re-establishment process to the fourth cell selected in the above-mentioned cell selection process, in order to restore the service between the terminal and the communication system as soon as possible, and reduce the service interruption time caused by the terminal due to the failure of cell switching.
  • the preset number of transmissions may be equal to the maximum number of transmissions of the random access preamble specified in the existing protocol, or may be less than the maximum number of transmissions of the random access preamble specified in the existing protocol.
  • the above-mentioned maximum number of sending times is 4 times, and the preset sending times may be any one of 1-4 times.
  • the terminal can determine that a cell handover failure has occurred only when the timer T304 expires, and initiate a cell selection process and an RRC connection re-establishment process.
  • the terminal when the terminal detects that the third condition shown in FIG. 8 is satisfied, it no longer waits for T304 to time out, but immediately initiates the RRC connection re-establishment process to the fourth cell through the fourth connection, reducing Wait time, thereby improving the efficiency of RRC connection re-establishment.
  • the radio resource control RRC connection re-establishment process initiated to the fourth cell through the fourth connection may include: establishing a third media access control MAC entity and a third physical layer entity, and according to the fourth cell's
  • the public radio resource configuration information in the system information configures a third MAC entity and a third physical layer entity.
  • the third MAC entity and the third physical layer entity are protocol stack entities corresponding to the fourth connection and / or the fourth cell, and are mainly used to support the terminal to initiate an RRC connection re-establishment process to the fourth cell through the fourth connection. .
  • the RRC connection re-establishment method shown in FIG. 7 may further include: when the fourth condition is satisfied, the terminal terminates the RRC connection re-establishment process.
  • the fourth condition may be: after the terminal initiates the RRC connection re-establishment process to the fourth cell through the fourth connection, and the terminal re-establishes the RRC connection after receiving the RRC connection sent by the fourth cell Before the message, the cell switching process on the third cell has been successfully completed, that is, the service between the terminal and the communication system has been restored on the third cell.
  • the terminal has received a random access response sent by the third cell, and completed its own configuration according to the configuration information carried in the random access response, and then sends an RRC connection reconfiguration completion message to the third cell. Since it is no longer necessary for the terminal to continue the RRC connection re-establishment process on the fourth cell, the terminal may choose to terminate the RRC connection re-establishment process to reduce unnecessary signaling interaction between the terminal and the fourth cell.
  • the RRC connection re-establishment method shown in FIG. 7 may further include: if the terminal does not successfully complete the RRC connection on the third cell until receiving the RRC connection re-establishment message sent by the fourth cell In the random access process, after receiving the RRC connection re-establishment message, the terminal disconnects from the third cell, that is, the terminal has resumed its services with the communication system on the fourth cell.
  • a cell handover procedure in which a terminal is handed over from a source cell to a third cell. In view of this, in order to reduce the signaling interaction between the terminal and the third cell, the terminal may choose to disconnect the third connection.
  • the terminal may choose to terminate another process.
  • the RRC connection re-establishment method shown in FIG. 7 may further include: if the terminal does not successfully complete random access on the third cell until it receives the RRC connection re-establishment message sent by the fourth cell Process, after receiving the RRC connection re-establishment message, the terminal releases one or more second packet data convergence protocol PDCP entities corresponding to the third cell and / or the third connection, and one or more second wireless links Control the RLC entity, the fourth MAC entity and the fourth physical layer entity to save resources.
  • the method for re-establishing an RRC connection enables a terminal to switch from a source cell to a target cell (third cell) when a third condition is met and the cell handover fails.
  • a target cell third cell
  • the RRC connection re-establishment method according to the embodiment of the present application has been described in detail above with reference to FIGS. 3 to 9.
  • the communication device capable of performing the RRC connection re-establishment method described in the embodiment of the method of the present application is described in detail below with reference to FIGS. 10 to 11.
  • the communication device 1000 includes a processing module 1001, a first communication module 1002A, and a second communication module 1002B.
  • the processing module 1001 is configured to initiate a radio resource control RRC connection re-establishment process to the second cell through the second connection while communicating with the first cell through the first connection when the first condition is met;
  • One cell is the source cell of the terminal; the second cell is the target cell that meets the entry conditions for the A3 event.
  • the first communication module 1002A is used to establish a first connection; the second communication module 1002B is used to establish a second connection.
  • the first condition may include one of the following: an entry condition of the A3 event is satisfied, and a radio link problem occurs in the first cell.
  • the entry conditions of the A3 event are met to trigger the terminal to report a measurement report to the first cell, and a radio link problem occurs in the first cell.
  • the processing module 1001 is further configured to initiate a radio resource control RRC connection re-establishment process to the second cell through the second connection, including: establishing a first media access control MAC entity and a first physical layer An entity, and configure the first MAC entity and the first physical layer entity according to the public radio resource configuration information in the system information of the second cell; wherein the first MAC entity and the first physical layer entity are connected to the second and / or the first The protocol stack entity corresponding to the two cells.
  • the processing module 1001 is further configured to terminate the RRC connection re-establishment process when the second condition is satisfied.
  • the second condition may be one of the following: Before the second communication module 1002B receives the RRC connection re-establishment message sent by the second cell, the processing module 1001 determines that the radio link problem occurred in the first cell has been recovered; Before the communication module 1002B receives the RRC connection re-establishment message sent by the second cell, the processing module 1001 determines that the departure condition of the A3 event is satisfied; before the second communication module 1002B receives the RRC connection re-establishment message sent by the second cell, the first The communication module 1002A receives a handover command sent by the first cell; wherein the handover command is used for the terminal to handover to the second cell.
  • the processing module 1001 is further configured to: if the first communication module 1002A does not receive the handover command until the second communication module 1002B receives the RRC connection re-establishment message sent by the second cell, After receiving the RRC connection re-establishment message sent by the second cell, the two communication modules 1002B disconnect the first connection.
  • the processing module 1001 is further configured to: if the first communication module 1002A does not receive the handover command until the second communication module 1002B receives the RRC connection re-establishment message sent by the second cell, then After the second communication module 1002B receives the RRC connection re-establishment message sent by the second cell, it releases one or more first packet data convergence protocol PDCP entities corresponding to the first cell and / or the first connection, one or more The first radio link controls the RLC entity, the second MAC entity, and the second physical layer entity.
  • processing module 1001 may be one or more processors, and the first communication module 1002A and the second communication module 1002B may each be one or more input / output circuits, communication interfaces, transceivers, and radio frequency chips. Wait.
  • the communication device 1000 described above may further include a storage module 1003 (see a dashed box in FIG. 10).
  • the storage module 1003 is used to store instructions
  • the processing module 1001 is used to execute the instructions stored by the storage module 1003, so that the processing module 1001 executes the RRC connection re-establishment method shown in any one of FIGS. 3 to 6.
  • the first communication module 1002A and the second communication module 1002B may also be a chip or a chip system.
  • the chip or chip system can be applied to a terminal.
  • the communication device 1100 includes a processing module 1101, a third communication module 1102A, and a fourth communication module 1102B.
  • the processing module 1101 is configured to, when the third condition is met, initiate a radio resource control RRC connection re-establishment process to the fourth cell through the fourth connection while communicating with the third cell through the third connection.
  • the third cell is the target cell during the cell switching process performed by the terminal
  • the fourth cell is the cell selected by the terminal during the cell selection process
  • the third communication module 1102A is used to establish a third connection
  • the fourth communication module 1102B is used to For establishing a fourth connection.
  • the third condition may be that after the third communication module 1102A receives a handover command with the third cell as a target cell, the third communication module 1102A sends a random access preamble to the third cell a preset number of times.
  • the processing module 1101 is further configured to initiate a radio resource control RRC connection re-establishment process to the fourth cell through the fourth connection, including establishing a third media access control MAC entity and a third physical layer.
  • An entity and configure a third MAC entity and a third physical layer entity according to the public radio resource configuration information in the system information of the fourth cell.
  • the third MAC entity and the third physical layer entity are protocol stack entities corresponding to the fourth connection and / or corresponding to the fourth cell.
  • the processing module 1101 is further configured to terminate the RRC connection re-establishment process when the fourth condition is satisfied.
  • the fourth condition is that before the fourth communication module 1102B receives the RRC connection re-establishment message sent by the fourth cell, the random access process of the communication device on the third cell is successfully completed.
  • the processing module 1101 is further configured to: if the RRC connection re-establishment message sent by the fourth cell is received until the fourth communication module 1102B, the communication device does not successfully complete the random access on the third cell. In the process, after the fourth communication module 1102B receives the RRC connection re-establishment message, it disconnects the third connection.
  • the processing module 1101 is further configured to: if the RRC connection re-establishment message sent by the fourth cell is not received until the fourth communication module 1102B, the communication device does not successfully complete randomization on the third cell.
  • the fourth communication module 1102B After the fourth communication module 1102B receives the RRC connection re-establishment message sent by the fourth cell, it releases one or more second packet data convergence protocols PDCP corresponding to the third cell and / or the third connection.
  • the processing module 1101 may be one or more processors, and the third communication module 1102 and the fourth communication module 1102B may each be one or more input / output circuits, communication interfaces, transceivers, radio frequency chips, and the like.
  • the communication device 1100 may further include a storage module 1103 (see a dashed box in FIG. 11).
  • the storage module 1103 is used to store instructions
  • the processing module 1101 is used to execute the instructions stored by the storage module 1103, so that the processing module 1101 executes the RRC connection re-establishment method shown in any one of Figs. 7-9.
  • the communication device 1100 may be a chip or a chip system.
  • the chip or chip system can be applied to a terminal.
  • An embodiment of the present application provides a terminal, including: a processor, the processor being coupled to a memory.
  • the memory is configured to store a computer program
  • the processor is configured to execute the computer program stored in the memory, so that the terminal executes the RRC connection re-establishment method shown in any one of FIGS. 3 to 9.
  • FIG. 12 shows a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • the terminal shown in FIG. 12 is applicable to the communication system shown in FIG. 1 and is configured to perform functions performed by the terminal in the foregoing method embodiment.
  • FIG. 12 shows only the main components of the terminal.
  • the terminal 1200 includes a processor, a memory, a control circuit, an antenna, and an input / output device.
  • the processor is mainly used for processing communication protocols and communication data, and controlling the entire terminal, executing software programs, and processing software program data, for example, for supporting the terminal to perform the actions described in the foregoing method embodiments, such as When the first condition is satisfied, while communicating with the first cell through the first connection, the radio resource control RRC connection re-establishment process to the second cell is initiated through the second connection.
  • the memory is mainly used to store software programs and data, such as storing entry conditions and exit conditions of the A3 event described in the above embodiments.
  • the control circuit is mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • the control circuit and the antenna can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input / output devices such as a touch screen, a display screen, and a keyboard, are mainly used to receive data input by the user and output data to the user.
  • the processor can read the software program in the memory, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit. After the radio frequency circuit processes the baseband signal, the radio frequency signal is sent out through the antenna as electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • FIG. 12 only shows one memory and one processor. In an actual terminal, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or a storage device, which is not limited in the embodiments of the present application.
  • the processor may include a baseband processor and a central processor.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processor is mainly used to control the entire terminal. Execute the software program and process the data of the software program.
  • the processor in FIG. 12 may integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, which are interconnected through technologies such as a bus.
  • the terminal may include multiple baseband processors to adapt to different network standards, the terminal may include multiple central processors to enhance its processing capabilities, and various components of the terminal may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing communication protocols and communication data may be built in the processor or stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and the control circuit having a transmitting and receiving function may be regarded as a transmitting and receiving unit of the terminal 1200.
  • the terminal 1200 includes a transceiver unit 1201A, a transceiver unit 1201B, and a processing unit 1202.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • a device used to implement a receiving function in each of the foregoing transceiver units may be regarded as a receiving unit
  • a device used to implement a transmitting function in each of the foregoing transceiver units may be regarded as a transmitting unit, that is, the transceiver unit includes a receiving unit.
  • Unit and sending unit the receiving unit can also be called a receiver, receiver, input port, receiving circuit, etc.
  • the sending unit can be called a transmitter, transmitter output port, or transmitting circuit.
  • the terminal 1200 shown in FIG. 12 includes at least two sets of transceiver units, such as the transceiver unit 1201A and the transceiver unit 1201B, and each set of the transceiver unit includes an independent control circuit and a radio frequency antenna.
  • the terminal 1200 can establish a first connection with the first cell through the transceiver unit 1201A, and establish a second connection with the second cell through the transceiver unit 1201B.
  • the terminal 1200 may establish a third connection with the third cell through the transceiver unit 1201A, and establish a fourth connection with the fourth cell through the transceiver unit 1201B.
  • the processor 1202 may be configured to execute instructions stored in the memory to control the transceiver unit 1201A to receive signals and / or send signals, and control the transceiver unit 1201B to receive signals and / or send signals to perform functions of the terminal in the foregoing method embodiments.
  • the functions of the transceiver unit 1201A and the transceiver unit 1201B may be considered to be implemented by a transceiver circuit or a dedicated transceiver chip.
  • the processor in the embodiment of the present application may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and special-purpose integrations.
  • Circuit application specific integrated circuit, ASIC
  • ready-made programmable gate array field programmable gate array, FPGA
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), or Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access Access memory
  • SDRAM synchronous dynamic random access Access memory
  • double SDRAM double SDRAM
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Fetch memory
  • direct RAMbus RAM direct RAMbus RAM, DR RAM
  • the above embodiments may be implemented in whole or in part by software, hardware (such as a circuit), firmware, or any other combination.
  • the above embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, the processes or functions according to the embodiments of the present application are wholly or partially generated.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, a computer, a server, or a data center. Transmission by wire (eg infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server, a data center, and the like, including one or more sets of available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium.
  • the semiconductor medium may be a solid state drive.
  • At least one means one or more, and “multiple” means two or more.
  • At least one or more of the following or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • at least one (a), a, b, or c can be expressed as: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • first and second are used to distinguish different objects, or to distinguish different processes on the same object, rather than to describe a specific order of the objects.
  • words such as “exemplary” or “such as” are used as examples, illustrations or illustrations. Any embodiment or design described as “exemplary” or “for example” in the embodiments of the present application should not be construed as more preferred or more advantageous than other embodiments or designs. Rather, the use of the words “exemplary” or “for example” is intended to present the relevant concept in a concrete manner.
  • the size of the sequence numbers of the above processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not deal with the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disks, mobile hard disks, read-only memories (ROM), random access memories (RAM), magnetic disks or optical disks, and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种RRC连接重建立方法及终端,该方法包括:终端在第一条件满足时,在通过第一连接与第一小区通信的同时,通过第二连接发起到第二小区的无线资源控制RRC连接重建立过程;或者,在第三条件满足时,在通过第三连接与第三小区通信的同时,通过第四连接发起到第四小区的无线资源控制RRC连接重建立过程。其中,所述第一小区为所述终端的源小区;所述第二小区为满足A3事件进入条件的目标小区,所述第三小区为所述终端执行小区切换过程中的目标小区,所述第四小区为所述终端执行小区选择过程所选择的小区。可以适用于小区切换失败场景下重建RRC连接,以便快速恢复终端业务,减少业务中断时间。

Description

RRC连接重建立方法及终端
本申请要求于2018年06月07日提交中国国家知识产权局、申请号为201810581502.6、申请名称为“一种维持通信连接的方法和装置”的中国专利申请的优先权,以及于2018年07月28日提交中国国家知识产权局、申请号为201810850201.9、申请名称为“RRC连接重建立方法及终端”的中国专利申请的优先权,它们的全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,尤其涉及一种RRC连接重建立方法及终端。
背景技术
在现有的通信系统,如长期演进(long term evolution,LTE)系统中,终端,如用户设备(user equipment,UE)、手机,在从当前服务小区(下文简称当前小区)向当前小区的相邻小区(下文简称邻小区)移动的过程中,若终端检测到邻小区的信号质量与当前小区的信号质量的差值大于预设质量阈值,和/或邻小区的信号强度与当前小区的强度的差值大于预设强度阈值(即A3事件的进入条件满足),则终端会启动测量报告触发时间定时器(time to trigger,TTT),待TTT超时后,终端会上报源小区和邻小区的测量报告。之后,终端根据接收到的切换命令,发起以当前小区为源小区、以邻小区为目标小区的小区切换过程,以期重建终端与通信系统的无线资源控制(radion resource control,RRC)连接,并恢复切换前的业务。具体地,上述小区切换过程可以包括如下步骤:向源小区上报测量报告;接收源小区从目标小区接收并转发的切换命令,启动切换定时器T304;向目标小区发送随机接入前导;接收目标小区下发的随机接入响应等步骤。
然而,若小区切换失败,如上述任一步骤失败,则终端还需要在等待一段时间之后,才能在随后的小区选择过程中选择的服务小区上发起RRC连接重建立过程。进一步地,若RRC连接重建立过程也失败,则终端还需要进入空闲态重新发起RRC连接建立过程,并会导致业务掉线。换句话说,在小区切换失败的情况下,终端重建RRC连接、恢复业务所耗费的时间较长,导致终端业务中断的时间较长,效率较低。
目前,部分终端配置有两套独立的收发装置,如两套可独立控制的射频收发天线以及每套天线各自对应的控制电路,以便支持相同或不同制式的双连接(dual connectivity,DC),如同一终端与LTE系统的演进型节点(evolved Node B,eBN)和新空口(new radio,NR)系统(也称为5G系统)的gNB同时保持通信连接。
发明内容
本申请提供一种RRC连接重建立方法及终端,以期减少终端因小区切换失败导致的业务中断时间,提高RRC连接重建立和恢复业务传输的效率。
本申请各实施例中的终端为具备双连接能力的终端。
第一方面,提供了一种RRC连接重建立方法,包括:终端在第一条件满足时,在通过第一连接与第一小区通信的同时,通过第二连接发起到第二小区的无线资源控制 RRC连接重建立过程。其中,第一小区为该终端的源小区;第二小区为满足A3事件进入条件的目标小区。
本申请实施例提供的RRC连接重建立方法,使得终端在从源小区向目标小区切换的过程中,当第一条件满足导致小区切换失败时,在通过一个连接(第一连接)与源小区(第一小区)通信的同时,通过另一个连接(第二连接)向满足A3事件进入条件的目标小区(第二小区)发起RRC连接重建立过程,能够降低在第一条件满足导致小区切换失败的情况下,必须在等待一段时间之后,才能重新发起RRC连接重建立过程所导致的业务中断时间较长、甚至掉线的问题发生的概率,从而降低业务中断时长,提高RRC连接重建立的效率。
在一些实施例中,上述第一条件可以包括如下之一:A3事件的进入条件满足,且第一小区发生无线链路问题(radio link problem,RLP);A3事件的进入条件满足触发终端向第一小区上报测量报告,且第一小区发生无线链路问题。其中,测量报告包括源小区和/或目标小区的测量报告,以便第一小区根据测量报告判断终端是否符合预设小区切换条件,如S准则。
示例性地,上述A3事件的进入条件可以为如下至少一个:邻小区的信号质量与源小区的信号质量的差值大于等于预设质量阈值;邻小区的信号强度与源小区的信号强度的差值大于等于预设强度阈值。鉴于A3事件的进入条件为现有技术,本申请不再赘述。
示例性地,上述第一小区发生无线链路问题,是指该终端与第一小区之间的业务连接发生问题。例如,由于信号较弱和/或干扰较强,该终端从第一小区接收到的业务和信令的误码率高于预设误码率阈值,业务数据的重传比例或重传次数大于预设重传阈值等。
在一种可能的设计方法中,通过第二连接发起到第二小区的无线资源控制RRC连接重建立过程,可以包括:建立第一媒体接入控制MAC实体和第一物理层实体,并根据第二小区的系统信息中的公共无线资源配置信息配置第一MAC实体和第一物理层实体。其中,第一MAC实体和第一物理层实体是与第二连接和/或第二小区对应的协议栈实体,主要用于支持终端通过第二连接向第二小区发起RRC连接重建立过程,以便尽快恢复业务,减少业务中断时长,提升用户体验。
在一种可能的设计方法中,本申请第一方面提供的RRC连接重建立方法,还可以包括:终端在第二条件满足时,终止RRC连接重建立过程。
示例性地,上述第二条件可以为:终端在接收到第二小区发送的RRC连接重建立消息前,确定第一小区发生的无线链路问题已恢复,即已经在第一小区上恢复了终端与通信系统之间的业务连接,没有必要在第二小区上继续执行RRC连接重建立过程,因此终端可以选择终止上述RRC连接重建立过程,以减少终端与第二小区之间不必要的信令交互。
示例性地,上述第二条件也可以为:终端在接收到第二小区发送的RRC连接重建立消息前,确定A3事件的离开条件满足。其中,与A3事件的进入条件相对应,A3事件的离开条件可以为如下至少一个:邻小区的信号质量与源小区的信号质量的差值小于预设质量阈值;邻小区的信号强度与源小区的信号强度的差值小于预设强度阈值。 鉴于A3事件的离开条件为现有技术,本申请不再赘述。
示例性地,上述第二条件还可以为:终端在接收到第二小区发送的RRC连接重建立消息前,已经接收到第一小区发送的切换命令。其中,切换命令携带有第二小区为终端分配的无线资源的配置信息,通常用于将该终端切换至第二小区。换句话说,第二小区已经允许终端切换至第二小区,且为终端分配了必要的无线资源,终端只需要根据为其分配的无线资源,直接切换至第二小区即可,没有必要再去执行耗时更长且更为复杂的RRC连接重建立过程,以减少终端与第二小区之间不必要的信令交互。
在一种可能的设计方法中,本申请第一方面提供的RRC连接重建立方法,还可以包括:若直到终端接收到第二小区发送的RRC连接重建立消息,终端均未接收到切换命令,则终端在接收到第二小区发送的RRC连接重建立消息后,断开第一连接,即鉴于已经在第二小区上恢复终端与通信系统之间的业务连接,因此既没有必要继续执行将终端从源小区切换至第二小区的小区切换过程,也没有必要继续维持终端与第一小区之间的业务连接。因此,为了减少该终端与通信系统之间的信令交互,终端可以选择断开第一连接。
在一些实施例中,本申请第一方面提供的RRC连接重建立方法,还可以包括:若直到终端接收到第二小区发送的RRC连接重建立消息,终端均未接收到切换命令,则终端在接收到所述第二小区发送的RRC连接重建立消息后,释放与第一小区和/或第一连接对应的一个或多个第一分组数据汇聚协议PDCP实体,一个或多个第一无线链路控制RLC实体,第二MAC实体和第二物理层实体,以节省资源。
第二方面,提供了一种RRC连接重建立方法,包括:终端在第三条件满足时,在通过第三连接与第三小区通信的同时,通过第四连接发起到第四小区的无线资源控制RRC连接重建立过程。其中,第三小区为终端执行小区切换过程中的目标小区,第四小区为终端执行小区选择过程所选择的小区。
本申请第二方面提供的RRC连接重建立方法,使得终端在从源小区向目标小区(第三小区)切换的过程中,当第三条件满足导致小区切换失败时,在通过一个连接(第三连接)与目标小区通信的同时,通过另一个连接(第四连接)向终端执行小区选择过程所选择的小区(第四小区)发起RRC连接重建立过程,以降低在第三条件满足导致小区切换失败的情况下,必须在等待一段时间之后,才能重新发起RRC连接重建立过程所导致的业务中断时间较长、甚至掉线问题的发生概率,能够降低业务中断时长,提高RRC连接重建立的效率。
在一种可能的设计方法中,上述第三条件可以为:终端在接收到以第三小区为目标小区的切换命令后,向第三小区发送随机接入前导的次数达到预设发送次数,意味着终端向第三小区发起的随机接入过程尚未成功。有鉴于此,为了尽快恢复终端与通信系统之间的业务,减少业务中断时间,在本申请实施例中,终端可以通过第四连接执行小区选择过程和RRC连接重建立过程。其中,预设发送次数可以等于现有协议所规定的发送随机接入前导的最大发送次数,也可以小于上述最大发送次数,如预设发送次数为最大发送次数的50%。
在一些实施例中,通过第四连接发起到第四小区的无线资源控制RRC连接重建立过程,可以包括:建立第三媒体接入控制MAC实体和第三物理层实体,并根据第四 小区的系统信息中的公共无线资源配置信息配置第三MAC实体和第三物理层实体。其中,第三MAC实体和第三物理层实体是与第四连接和/或与第四小区对应的协议栈实体,是与第四连接和/或第四小区对应的协议栈实体,主要用于支持该终端通过第四连接向第四小区发起RRC连接重建立过程,以便尽快恢复业务,减少业务中断时长,提升用户体验。
在一些实施例中,本申请第二方面提供的RRC连接重建立方法,还可以包括:终端在第四条件满足时,终止RRC连接重建立过程。
示例性地,第四条件可以为:终端在接收到第四小区发送的RRC连接重建立消息前,其在第三小区上的随机接入过程已成功完成,即已经在第三小区上恢复了终端与通信系统之间的业务连接,也就没有必要在第四小区上继续执行RRC连接重建立过程,因此终端可以选择终止上述RRC连接重建立过程,以减少终端与第四小区之间不必要的信令交互。
在一种可能的设计方法中,本申请第二方面提供的RRC连接重建立方法,还可以包括:终端如果直到接收到第四小区发送的RRC连接重建立消息,都没有成功完成在第三小区上的随机接入过程,则终端在接收到RRC连接重建立消息后,断开与第三小区的连接,即已经在第四小区上恢复终端与通信系统之间的业务连接(第四连接),也就没有必要继续执行将终端从源小区切换至第三小区的小区切换过程。有鉴于此,为了减少终端与第三小区之间的信令交互,终端可以选择断开第三连接。
在一些实施例中,本申请第二方面提供的RRC连接重建立方法,还可以包括:如果直到接收到第四小区发送的RRC连接重建立消息,都没有成功完成在第三小区上的随机接入过程,则终端在接收到RRC连接重建立消息后,释放与第三小区和/或与第三连接对应的一个或多个第二分组数据汇聚协议PDCP实体,一个或多个第二无线链路控制RLC实体,第四MAC实体和第四物理层实体,以节省资源。
第三方面,提供了一种通信装置,包括:处理模块、第一通信模块和第二通信模块。其中,处理模块,用于在第一条件满足时,在通过第一连接与第一小区通信的同时,通过第二连接发起到第二小区的无线资源控制RRC连接重建立过程。其中,第一小区为终端的源小区;第二小区为满足A3事件进入条件的目标小区,第一通信模块用于建立第一连接;第二通信模块用于建立第二连接。
其中,第一条件可以包括如下之一:A3事件的进入条件满足,且第一小区发生无线链路问题。A3事件的进入条件满足触发终端向第一小区上报测量报告,且第一小区发生无线链路问题。
在一种可能的设计中,处理模块用于通过第二连接发起到第二小区的无线资源控制RRC连接重建立过程,包括:建立第一媒体接入控制MAC实体和第一物理层实体,并根据第二小区的系统信息中的公共无线资源配置信息配置第一MAC实体和第一物理层实体;其中,第一MAC实体和第一物理层实体是与第二连接和/或第二小区对应的协议栈实体。
在一种可能的设计中,处理模块,还用于在第二条件满足时,终止RRC连接重建立过程。其中,第二条件可以为如下之一:在第二通信模块接收到第二小区发送的RRC连接重建立消息前,处理模块确定第一小区发生的无线链路问题已恢复;在第二通信 模块接收到第二小区发送的RRC连接重建立消息前,处理模块确定A3事件的离开条件满足;在第二通信模块接收到第二小区发送的RRC连接重建立消息前,第一通信模块接收到第一小区发送的切换命令;其中,切换命令用于终端切换至第二小区。
在一种可能的设计中,处理模块,还用于若直到第二通信模块接收到第二小区发送的RRC连接重建立消息,第一通信模块均未接收到切换命令,则在第二通信模块接收到第二小区发送的RRC连接重建立消息后,断开第一连接。
在一种可能的设计中,处理模块,还用于若直到第二通信模块接收到第二小区发送的RRC连接重建立消息,第一通信模块均未接收到所述切换命令,则在第二通信模块接收到所述第二小区发送的RRC连接重建立消息后,释放与第一小区和/或第一连接对应的一个或多个第一分组数据汇聚协议PDCP实体,一个或多个第一无线链路控制RLC实体,第二MAC实体和第二物理层实体。
第四方面,提供了一种通信装置,包括:处理模块、第三通信模块和第四通信模块。其中,处理模块,用于在第三条件满足时,在通过第三连接与第三小区通信的同时,通过第四连接发起到第四小区的无线资源控制RRC连接重建立过程。其中,第三小区为终端执行小区切换过程中的目标小区,第四小区为终端执行小区选择过程所选择的小区,第三通信模块,用于建立第三连接;第四通信模块,用于建立第四连接。
其中,第三条件可以为:在第三通信模块接收到以第三小区为目标小区的切换命令后,第三通信模块向第三小区发送随机接入前导的次数达到预设发送次数。
在一种可能的设计中,处理模块用于通过第四连接发起到第四小区的无线资源控制RRC连接重建立过程,包括:所述处理模块用于建立第三媒体接入控制MAC实体和第三物理层实体,并根据第四小区的系统信息中的公共无线资源配置信息配置第三MAC实体和第三物理层实体。其中,第三MAC实体和第三物理层实体是与第四连接和/或与第四小区对应的协议栈实体。
在一种可能的设计中,处理模块,还用于在第四条件满足时,终止RRC连接重建立过程。其中,第四条件为:在第四通信模块接收到第四小区发送的RRC连接重建立消息前,通信装置在第三小区上的随机接入过程成功完成。
在一种可能的设计中,处理模块,还用于如果直到第四通信模块接收到第四小区发送的RRC连接重建立消息,通信装置都没有成功完成在第三小区上的随机接入过程,则在第四通信模块接收到RRC连接重建立消息后,断开第三连接。
在一种可能的设计中,处理模块,还用于如果直到第四通信模块接收到第四小区发送的RRC连接重建立消息,通信装置都没有成功完成在所述第三小区上的随机接入过程,则在第四通信模块接收到所述RRC连接重建立消息后,释放与第三小区和/或与第三连接对应的一个或多个第二分组数据汇聚协议PDCP实体,一个或多个第二无线链路控制RLC实体,第四MAC实体和第四物理层实体。
第五方面,提供了一种通信装置,用于执行如第一方面或第一方面中任一种可能实现方式所述的RRC连接重建立方法,和/或如第二方面或第二方面中任一种可能实现方式所述的RRC连接重建立方法。
第六方面,提供了一种通信装置,包括:处理模块与通信模块,处理模块用于执行如第一方面或第一方面中任一种可能实现方式所述的RRC连接重建立方法,和/或 如第二方面或第二方面中任一种可能实现方式所述的RRC连接重建立方法。
在一种可能的设计中,上述通信装置还可以包括存储模块;其中,存储模块用于存储指令,处理模块用于执行存储模块存储的指令,以使得处理模块执行如第一方面或第一方面中任一种可能实现方式所述的RRC连接重建立方法,和/或如第二方面或第二方面中任一种可能实现方式所述的RRC连接重建立方法。
在一些实施例中,上述通信装置可以为芯片或芯片系统。
第七方面,提供了一种终端,包括:处理器,该处理器与存储器耦合。其中,存储器,用于存储计算机程序;处理器,用于执行存储器中存储的计算机程序,以使得终端执行如第一方面或第一方面中任一种可能实现方式所述的RRC连接重建立方法,和/或如第二方面或第二方面中任一种可能实现方式所述的RRC连接重建立方法。
第八方面,提供了一种计算机程序产品,计算机程序产品包括:计算机程序代码,当计算机程序代码在计算机上运行时,该计算机执行如第一方面或第一方面中任一种可能实现方式所述的RRC连接重建立方法,和/或如第二方面或第二方面中任一种可能实现方式所述的RRC连接重建立方法。
第九方面,提供了一种可读存储介质,包括程序或指令,当程序或指令在计算机上运行时,该计算机执行如第一方面或第一方面中任一种可能实现方式所述的RRC连接重建立方法,和/或如第二方面或第二方面中任一种可能实现方式所述的RRC连接重建立方法。
通过本申请实施例提供的RRC连接重建立方法,可以提供一种适用于小区切换失败场景下快速重建RRC连接以恢复终端业务的方法。
附图说明
图1示出了适用于本申请实施例的通信方法的通信系统的示意图;
图2为在切换失败场景下现有的RRC连接重建立方法的交互流程图;
图3为本申请实施例提供的RRC连接重建立方法一的示意性流程图;
图4A为本申请实施例提供的RRC连接重建立方法一所适用的场景示意图一;
图4B为本申请实施例提供的RRC连接重建立方法一所适用的场景示意图二;
图4C为本申请实施例提供的RRC连接重建立方法一所适用的场景示意图三;
图4D为本申请实施例提供的RRC连接重建立方法一所适用的场景示意图四;
图5A为本申请实施例提供的RRC连接重建立方法一所适用的场景示意图五;
图5B为本申请实施例提供的RRC连接重建立方法一所适用的场景示意图六;
图5C为本申请实施例提供的RRC连接重建立方法一所适用的场景示意图七;
图5D为本申请实施例提供的RRC连接重建立方法一所适用的场景示意图八;
图6为本申请实施例提供的RRC连接重建立方法一所适用的场景示意图九;
图7为本申请实施例提供的RRC连接重建立方法二的示意性流程图;
图8为本申请实施例提供的RRC连接重建立方法二所适用的场景示意图一;
图9为本申请实施例提供的RRC连接重建立方法二所适用的场景示意图二;
图10为本申请实施例提供的一种通信装置的结构示意图;
图11为本申请实施例提供的另一种通信装置的结构示意图;
图12为本申请实施例提供的终端的结构示意图。
具体实施方式
下面结合附图对本申请实施例提供的RRC连接重建立方法及终端进行详细地描述。
本申请实施例既可以应用于时分双工(time division duplexing,TDD)的场景,也可以适用于频分双工(frequency division duplexing,FDD)的场景。
本申请实施例提供的RRC连接重建立方法可以应用于图1所示的通信系统中,该通信系统可以为支持如下至少一种制式的通信系统:LTE系统,全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统,第五代(5th Generation,5G)系统,如新空口(new radio,NR)系统,及未来的通信系统,如6G系统等。
如图1所示,该通信系统可以包含:终端和网络设备。其中,图1中的终端是指具备双连接(dual connectivity,DC)能力的终端,主要用于通过空口连接到运营商部署的至少一个网络设备,以便接收网络服务;具备支持双连接能力的终端需要安装两套收发机,或者说两套收发链。网络设备主要用于实现无线协议栈功能、资源调度和无线资源管理、无线接入控制以及移动性管理功能。
其中,双连接可以是上述终端同时与不同制式的网络设备通信,也可以是上述终端同时与同一制式的不同网络设备通信,还可以是上述终端同时与同一网络设备的不同小区通信,本申请实施例不作限定。
例如,在第5代(5th generation,5G)系统部署的第一阶段,往往会选择5G NR的非独立组网方式,即长期演进-新空口双连接(E-UTRAN NR dual connectivity,EN-DC)组网。假定在采用EN-DC方式部署通信系统中,网络设备102为LTE系统中的eNB,网络设备104为NR系统中gNB,终端106可以分别与eNB和gNB通信。又例如,网络设备102和网络设备104均为NR系统中gNB,终端106可以同时与两台gNB通信。再例如,网络设备102和网络设备104也可以共站部署,即网络设备102和网络设备104为同一个基站,该基站可以包括至少两个小区,双连接也可以是终端106同时与该基站的两个小区同时通信。当然,在共站部署的情况下,上述至少两个小区,可以是支持相同制式的小区,也可以是支持不同制式的小区,本申请实施例不作限定。
其中,上述终端也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中将前述终端及可设置于前述终端的芯片统称为终端。
上述网络设备可以为基站等接入网设备,如第3代(3rd generation,3G)移动通信系统中的节点(node B,NB)、LTE系统中的演进型节点(evolved eNode B,eNB)、NR系统中的gNB等。
需要说明的是,图1仅为示例性架构图,除图1中所示功能单元之外,该网络架构还可以包括其他功能单元,本申请实施例对此不进行限定。
当上述终端从一个小区(当前服务小区),如网络设备102包含的小区,移动至另一个小区(相邻小区),如网络设备104包含的小区的过程中,上述终端接收到的上述两个小区的信号强度和/或信号质量会发生变化。如图2所示,在现有技术中,当A3事件的进入条件满足时,终端可能会在网络设备的控制下进行如图2所示的以当前小区为源小区、以相邻小区为目标小区的小区切换过程。
如图2所示,上述小区切换过程可以包括S201-S210:
S201、终端检测到A3事件的进入条件满足。
其中,A3事件的进入条件可以为:终端接收到的邻小区的信号强度与其接收到的当前小区的信号强度的差值,大于等于预设强度阈值,和/或,终端接收到的邻小区的信号质量与其接收到的当前小区的信号质量的差值,大于等于预设质量阈值。鉴于A3事件的进入条件为现有技术,本申请实施例不再赘述。
然而,当终端检测到A3事件的进入条件满足时,终端首先会启动测量报告触发时间定时器(time to trigger,TTT),且当TTT超时,终端才会上报测量报告。换句话说,即使A3事件的进入条件满足,终端也不会立即上报测量报告,而是在等待一段时间之后,才会上报测量报告。
S202、终端向源小区上报测量报告。
其中,上述测量报告携带有其接收到的源小区和相邻小区的信号强度,和/或其接收到的源小区和相邻小区的信号质量。例如,终端可以通过其与源小区之间的空口,上报测量报告。
之后,终端在执行S202的过程中,若检测到源小区发生无线链路问题(radio link problem,RLP),则会启动定时器T310,并在T310运行期间,一直尝试接收下述S206所述的切换命令。其中,现有技术中,当UE检测到N310个连续的失步(out-of-sync)情况时,认为发生无线链路问题,并启动T310。
S203、源小区根据测量报告,确定上述终端满足切换条件。
其中,上述切换条件可以由网络设备确定,可以为现有技术中的任何一种条件,本申请实施例不作限定。
S204、源小区向目标小区发送切换请求。
其中,切换请求携带有终端的标识和当前业务信息、资源分配需求等。具体地,可以通过源小区和目标小区之间的有线或无线接口,传输切换请求。例如,通过源小区和目标小区之间的X2接口,传输切换请求。鉴于切换请求为现有技术,本申请实施例不再赘述。
S205、目标小区根据上述切换请求,向源小区发送切换响应。
其中,目标小区根据其空闲资源与上述终端当前业务的资源需求的比较结果,确定是否同意上述终端切换至目标小区。若同意切换,则切换响应会携带有用于上述终端接入目标小区的RRC连接重配置信息。
S206、源小区向终端下发切换命令。
其中,上述切换命令是根据切换响应生成的,携带有目标小区的信息,如目标小 区的小区标识、RRC连接重配置信息等。与终端上报测量报告类似,可以通过源小区与终端之间的空口,传输切换命令。鉴于切换命令为现有技术,本申请实施例不再赘述。
需要说明的是,终端若检测到源小区发生无线链路问题(radio link problem,RLP),则会启动定时器T310。从TTT超时,终端首次上报测量报告开始,若直到T310超时,终端仍然没有接收到切换命令,则终端可以确定源小区发生了无线链路失败(radio link failure,RLF)。为了恢复终端业务,终端会启动小区选择过程重新选择服务小区,并向选择的服务小区发起RRC连接重建立过程,并启动定时器T311。当然,若T311已经超时,但仍然未能重建终端与通信系统的RRC连接,终端即可确定上述RRC连接重建立过程失败,并需要重新启动搜网过程。
S207、终端根据切换命令,断开与源小区的RRC连接。
具体地,当终端接收到切换命令时,会断开与源小区的RRC连接,启动定时器T304,并向切换命令携带的目标小区发起小区切换过程。
需要说明的是,鉴于S207中终端断开了与源小区的RRC连接,因此从S207开始,终端与通信系统之间的业务已经中断,且业务中断状态会一直持续到终端重新建立其与通信系统之家的RRC连接位置,如本次小区切换成功、或者虽然本次小区切换失败,但之后的RRC连接重建立成功等。
其中,小区切换过程包括:终端与目标小区的下行同步,以及随机接入过程。其中,随机接入过程可以包括下述S208。
S208、终端向目标小区发送随机接入前导。
S209、目标小区向终端下发随机接入响应。
其中,随机接入前导通常用于终端与目标小区的上行同步。
实际应用中,通常会设置终端向目标小区发送随机接入前导的最大发送次数,如可以设置为4次。若终端实际发送随机接入前导的次数已经达到最大发送次数,且直到T304超时,终端仍然没有接收到目标小区发送的随机接入响应,则终端可以确定发生了小区切换失败(handover failure,HOF)。为了恢复终端与通信系统之间的业务,终端会在确定发生了HOF之后,启动小区选择过程重新选择服务小区,并向选择的服务小区发起RRC连接重建立过程,启动定时器T311。鉴于小区选择过程和RRC连接重建立过程为现有技术,本申请实施例不再赘述。
S210、终端向目标小区上报RRC连接重配置完成消息。
具体地,终端根据随机接入响应携带的RRC连接重配置信息,完成自身配置,并向目标小区发送RRC连接重配置完成消息。
通过执行S201-S210,将终端的服务小区从源小区切换至目标小区,之后,终端就可以在目标小区上继续接收网络服务,如恢复执行上述小区切换过程之前,终端与源小区之间的业务。
需要说明的是,上述小区切换过程包括有诸多步骤,且在小区切换过程中,终端位于源小区和目标小区的边缘区域,信号质量较差、信号强度较低,且往往存在较强的小区间干扰,即此时终端所处的无线通信环境较为恶劣,很可能导致终端在执行上述S201-S210的过程中发生错误,从而导致执行上述小区切换失败。其中,根据成因, 小区切换失败可以包括如下两个场景下的小区切换失败:
场景一:由于源小区发生无线链路问题,导致终端未能成功上报测量报告(S202),或者未能成功接收切换命令(S206),则终端可以确定源小区发生了无线链路失败,且小区切换过程的后续步骤无法执行,从而导致小区切换失败,即本场景下的小区切换失败是由于源小区发生无线链路失败导致的,可以称场景一下的小区切换失败为:无线链路失败型的小区切换失败。
场景二:由于终端处于目标小区的边缘区域,无线通信环境较差,导致目标小区接收不到终端发送的随机接入前导(S208),或终端接收不到目标小区下发的随机接入响应(S209),即发生了随机接入失败,进而导致终端无法在目标小区上重建RRC连接,即场景二下的小区切换失败是由于随机接入失败导致的,可以称场景二的小区切换失败为:随机接入失败型的小区切换失败。
对于场景一,从终端上报测量报告开始,直到T310超时仍未接收到源小区下发的切换命令,终端才可以确认源小区发生了无线链路失败,并发起小区选择过程和RRC连接重建立过程。因此,即使终端已经检测到源小区发生了无线链路问题,也不会提前发起小区选择过程和RRC连接重建立过程,而必须等待T310超时,等待时间较长,从而导致重建RRC连接的效率较低,业务中断时间较长,用户体验较差。
类似地,对于场景二,从终端接收到切换命令,向目标小区发送随机接入前导,并启动T304开始,若直到T304超时,终端仍未能接收到目标小区下发的随机接入响应,终端才能最终确定发生了随机接入失败类型的切换失败,并启动小区选择过程和RRC连接重建过程。因此,即使终端发送随机接入前导的次数已经达到最大发送次数,终端也不能提前启动小区选择过程和RRC连接重建过程,而必须等待T304超时,等待时间较长,从而导致重建RRC连接的效率较低,业务中断时间较长,用户体验较差。
需要说明的是,终端在上述小区选择过程中选择的服务小区,可以是源小区,也可以是目标小区,还可以是除源小区和目标小区之外的其他小区,本申请实施例不做限定。
本申请实施例提供两种在小区切换失败时的RRC连接重建立方法,分别应用于上述场景一和场景二,以期减少终端因小区切换失败导致的业务中断时间,提高RRC连接重建立效率,提升用户体验。
图3示出了适用于场景一的一种RRC连接重建立方法。如图3所示,该RRC连接重建立方法,包括S301:
S301、终端在第一条件满足时,在通过第一连接与第一小区通信的同时,通过第二连接发起到第二小区的无线资源控制RRC连接重建立过程。
其中,第一小区为终端的源小区,如图1所示的网络设备102包括的小区;第二小区为满足A3事件进入条件的目标小区,如图1所示的网络设备104包括的小区。可以理解,源小区和目标小区也可以是同一个基站所包括的不同小区,本申请实施例不做限定。
在一些实施例中,上述第一条件可以为:A3事件的进入条件满足,且第一小区,即源小区发生无线链路问题。其中,若A3事件的进入条件满足,则终端会启动定时器TTT。终端在源小区发生无线链路问题是指定时器T310已经在运行。
图4A-图4B示出了场景一下满足第一条件的两种子场景的示意图。
示例性地,如图4A所示,当A3事件的进入条件满足触发终端启动定时器TTT时,第一小区已经发生了无线链路问题,即与第一小区和/或第一连接对应的定时器T310正在运行。也就是说,第一小区发生无线链路问题,即T310启动计时在前,而A3事件的进入条件满足触发终端启动定时器TTT在后。在一些实施例中,所述第一小区为终端的主服务小区(Primary serving Cell)。
示例性地,如图4B所示,当A3事件的进入条件满足而触发开启TTT时,第一小区和/或第一连接对应的T310还未开启,但在所述TTT运行期间,终端检测到第一小区发生无线链路问题,并启动第一小区和/或第一连接对应的T310。也就是说,第一小区发生无线链路问题,即T310启动在后,而A3事件的进入条件满足触发终端启动定时器TTT在前。
可以理解,图4A和图4B仅为其中两个实例。事实上,只要上述两个定时器TTT和T310存在共同运行(均已启动,且均未超时)的时间段,即可视为第一条件满足,至于上述两个定时器的启动时间的先后顺序,本申请实施例不做限定。
现有技术中,终端只有在TTT超时后,才会向第一小区上报测量报告,或者在T310超时后,才会发起RRC连接重建过程并进行小区选择。而在本申请实施例中,当终端检测到如图4A所示的第一条件满足时,不是等待T310超时后才向向第二小区发起RRC连接重建立过程,而是在启动TTT时且T310在运行时,立即通过第二连接向第二小区发起RRC连接重建立过程,可以减少等待时间,从而提高RRC连接重建立效率。同理,当终端检测到如图4B所示的第一条件满足时,不是等待T310超时后才向第二小区发起RRC连接重建立过程,而是在启动T310时,立即通过第二连接提前向第二小区发起RRC连接重建立过程,同样可以减少等待时间,从而提高RRC连接重建立效率。
在一些实施例中,上述第一条件也可以为:A3事件的进入条件满足触发终端向第一小区上报测量报告,且第一小区发生无线链路问题。其中,A3事件的进入条件满足触发终端向第一小区上报测量报告,是指A3事件的进入条件满足触发终端启动定时器TTT,且当TTT超时后,触发终端向第一小区上报测量报告。
图4C-图4D示出了场景一下满足第一条件的另外两种子场景的示意图。
示例性地,如图4C所示,在A3事件的进入条件满足所触发的定时器TTT超时之前,第一小区已经发生了无线链路问题,即已经启动了定时器T310。也就是说,第一小区发生无线链路问题,即T310启动在前,而A3事件的进入条件满足所触发的定时器TTT超时在后。
示例性地,如图4D所示,在第一小区发生无线链路问题,并启动定时器T310之前,A3事件的进入条件满足所触发的定时器TTT已经超时。也就是说,第一小区发生无线链路问题,即T310启动在后,而A3事件的进入条件满足所触发的定时器TTT超时在前。
可以理解,图4C和图4D仅为其中两个示例。事实上,只要上述定时器T310正在运行和终端向第一小区上报测量报告同时满足,即可视为第一条件满足,至于上述两个事件(T310启动和上报测量报告)的发生先后顺序,本申请实施例不做限定。
现有技术中,终端只有在T310超时后,才会发起RRC连接重建过程并进行小区选择,或者只有在终端接收到切换命令后,才会启动小区切换过程。而在本申请实施例中,当终端检测到如图4C所示的第一条件满足时,不再等待T310超时,而是在终端上报测量报告时,立即通过第二连接向第二小区发起RRC连接重建立过程,减少了等待时间,从而提高RRC连接重建立效率。同理,当终端检测到如图4D所示的第一条件满足时,也不是在直到T310超时才会向第二小区发起小区切换过程,而是在启动T310时,立即通过第二连接向第二小区发起RRC连接重建立过程,同样也减少了等待时间,从而提高RRC连接重建立效率。
需要说明的是,上述A3事件的进入条件可以为如下至少一个:目标小区的信号质量与源小区的信号质量的差值大于等于预设质量阈值;目标小区的信号强度与源小区的信号强度的差值大于等于预设强度阈值。例如,终端接收到的目标小区的参考信号接收功率(reference signal receiving power,RSRP)与同一终端接收到的源小区的RSRP的差值大于预设RSRP阈值。又例如,终端接收到的目标小区的参考信号接收质量(reference signal receiving quality,RSRQ)与同一终端接收到的源小区的RSRQ的差值大于预设RSRQ阈值。鉴于A3事件的进入条件为现有技术,本申请实施例不再赘述。
示例性地,上述第一小区发生无线链路问题,是指该终端与第一小区之间的无线连接发生问题,导致接收方接收到的业务和/或信令的误码率高于预设误码率阈值,或者业务数据的重传比例或重传次数大于预设重传阈值等。
在一种可能的设计方法中,通过第二连接发起到第二小区的无线资源控制RRC连接重建立过程,可以包括:建立第一媒体接入控制MAC实体和第一物理层实体,并根据第二小区的系统信息中的公共无线资源配置信息配置第一MAC实体和第一物理层实体。
其中,第一MAC实体和第一物理层实体是与第二连接和/或第二小区对应的协议栈实体,主要用于支持终端通过第二连接向第二小区发起RRC连接重建立过程,以便尽快恢复业务,减少业务中断时长,提升用户体验。
在一种可能的设计方法中,图3所示的RRC连接重建立方法,还可以包括:终端在第二条件满足时,终止RRC连接重建立过程。
在一些实施例中,上述第二条件可以为:终端在接收到第二小区发送的RRC连接重建立消息前,确定第一小区发生的无线链路问题已恢复,即终端在第一小区上检测到连续N311个同步(in-sync)的情况,没有必要在第二小区上继续执行RRC连接重建立过程。因此,终端可以选择终止上述RRC连接重建立过程,以减少终端与第二小区之间不必要的信令交互,节省资源和降低功耗。
图5A示出了场景一下满足第二条件的一种子场景的示意图。如图5A所示,当终端检测到第一小区发生的无线链路问题已恢复时,终端会停止第一小区和/或第一连接对应的T310计时,即此时终端已经在第一小区上恢复通信,没有必要继续执行在第二小区上的RRC连接重建立过程。因此,终端可以终止其在第二小区上的RRC连接重建立过程。
在一些实施例中,上述第二条件也可以为:终端在接收到第二小区发送的RRC连 接重建立消息前,确定A3事件的离开条件满足。其中,与A3事件的进入条件相对应,A3事件的离开条件可以为如下至少一个:邻小区的信号质量与源小区的信号质量的差值小于预设质量阈值;邻小区的信号强度与源小区的信号强度的差值小于预设强度阈值。鉴于A3事件的离开条件为现有技术,本申请实施例不再赘述。
图5B示出了场景一下满足第二条件的另一种子场景的示意图。如图5B所示,当终端检测到第二小区满足A3事件的离开条件时,终端会停止第二小区和/或第二连接对应的TTT计数,即此时终端接收到的第二小区的信号质量变差,如终端已经掉头远离第二小区、且向第一小区所在方向移动,也没有必要继续执行在第二小区上的RRC连接重建立过程。因此,终端也可以终止其在第二小区上的RRC连接重建立过程,以减少不必要的信令交互和降低功耗。
在一些实施例中,上述第二条件还可以为:终端在接收到第二小区发送的RRC连接重建立消息前,已经接收到第一小区发送的切换命令。终端只需要根据切换命令进行小区切换即可,没有必要再去执行耗时更长且更为复杂的RRC连接重建立过程,以避免终端与第二小区之间不必要的信令交互。
图5C示出了场景一下满足第二条件的又一种子场景的示意图。如图5C所示,直到终端接收到第一小区发送的旨在指示终端进行切换的切换命令时止,终端仍然没有接收到第二小区发送的RRC连接重建立消息。鉴于接收到切换命令表示终端已经可以进行切换,终端可以根据切换命令直接接入目标小区。因此,终端也可以终止其在第二小区上的RRC连接重建立过程,以减少不必要的信令交互和降低功耗。
需要说明的是,在图5A-图5C所示的子场景中,本申请实施例并不需要限定RRC连接重建立过程的发起时间。事实上,在图5A-图5C所示的子场景中,RRC连接重建立过程的发起时间可以为图4A-图4D中的任意一种。示例性地,在图5C所示的子场景中,RRC连接重建立过程的发起时间与图4B所示的发起时间相同(TTT启动在前,T310启动在后)。若将RRC连接重建立过程的发起时间改变为如图4C所示的发起时间(T310启动在前,TTT超时触发上报测量报告在后),则图5C所示的子场景可以改变为如图5D所示的子场景。
可以理解,图5C-图5D仅为满足第二条件的几个示例。事实上,只要终端在接收到第二小区发送的RRC连接重建立消息之前,满足如下任一条件,均可视为满足第二条件:终端检测到第一小区发生的无线链路问题已恢复,第二小区满足A3事件的离开条件,终端已接收到第一小区发送的切换命令。
在一种可能的设计方法中,如图6所示,图3所示的RRC连接重建立方法,还可以包括:若直到终端接收到第二小区发送的RRC连接重建立消息,终端均未接收到切换命令,则终端在接收到第二小区发送的RRC连接重建立消息后,断开第一连接。换句话说,终端在第二小区上的RRC连接重建立成功,即已在第二小区上恢复业务,终端既没有必要继续执行将终端从源小区切换至目标小区的切换过程,也没有必要继续维持与第一小区之间的业务连接(第一连接)。有鉴于此,终端可以断开第一连接,以减少终端与第一小区之间不必要的信令交互和节省功耗。
事实上,对于如下两个事件:终端检测到第一小区上的无线链路问题已恢复,以及终端通过第二连接在第二小区上发起的RRC连接重建立过程执行成功,若其中一个 已经执行成功,即已经恢复终端与通信系统之间的业务,则为了减少终端与另一个小区之间不必要的信令交互,终端可以选择终止另一个过程。例如,若终端在第二小区上的RRC连接重建立过程已经成功执行,则终端可以立即断开第一连接。又例如,若终端在第一小区上的无线链路问题已恢复,则终端也可以立即终止在第二小区上的RRC连接重建立过程。
在一些实施例中,图3所示的RRC连接重建立方法,还可以包括:若直到终端接收到第二小区发送的RRC连接重建立消息,终端均未接收到切换命令,则终端在接收到第二小区发送的RRC连接重建立消息后,释放与第一小区和/或第一连接对应的一个或多个第一分组数据汇聚协议PDCP实体,一个或多个第一无线链路控制RLC实体,第二MAC实体和第二物理层实体,以节省资源。
需要说明的是,本申请实施例不需要限定释放与第一小区对应的上述PDCP实体、RLC实体、第二MAC实体和第二物理层实体,与断开第一连接的执行顺序。例如,可以先执行断开操作,再执行释放操作,也可以先执行释放操作,再执行断开操作,还可以同时执行释放操作和断开操作,本申请实施例不做限定。
本申请实施例提供的RRC连接重建立方法,使得终端在从源小区向目标小区切换的过程中,当第一条件满足导致小区切换失败时,在通过一个连接(第一连接)与源小区(第一小区)通信的同时,通过另一个连接(第二连接)向满足A3事件进入条件的目标小区(第二小区)发起RRC连接重建立过程,能够降低在第一条件满足导致小区切换失败的情况下,必须在等待一段时间之后,才能重新发起RRC连接重建立过程所导致的业务中断时间较长、甚至掉线问题发生的概率,能够降低业务中断时长,提高重建RRC连接的效率。
图7示出了适用于场景二的一种RRC连接重建立方法。如图7所示,该RRC连接重建立方法,包括S701:
S701、终端在第三条件满足时,在通过第三连接与第三小区通信的同时,通过第四连接发起到第四小区的无线资源控制RRC连接重建立过程。
其中,第三小区为终端执行小区切换过程中的目标小区,第四小区为终端执行RRC连接重建过程时所选择的小区。
需要说明的是,S701中的第三小区可以为图3-图6所示的第二小区。第四小区为终端在场景二中执行小区切换失败后,执行RRC连接重建过程时所选择的小区。其中,该小区可以为切换前服务小区(源小区),也可以为除源小区和第三小区(目标小区)之外的其他小区,本申请实施例不做限定。
在一种可能的设计方法中,上述第三条件可以为:终端在接收到以第三小区为目标小区的切换命令后,向第三小区发送随机接入前导的次数达到预设发送次数。
图8示出了场景二下满足第三条件的一种子场景的示意图。如图8所示,在终端接收到旨在指示终端切换至第三小区的切换命令并已经建立其与第三小区的下行同步之后,终端会尝试建立其与第三小区的上行同步,如向第三小区发送随机接入前导,并尝试接收第三小区发送的随机接入响应,以便根据随机接入响应携带的配置信息完成自身配置,并在第三小区上恢复切换之前的业务。当终端发送随机接入前导的次数达到预设发送次数时,终端在通过第三连接继续尝试接收第三小区发送的随机接入响 应的同时,还可以通过第四连接执行小区选择过程,并通过第四连接向上述小区选择过程所选择的第四小区发起RRC连接重建立过程,以期尽快恢复终端与通信系统之间的业务,减少终端因小区切换失败所导致的业务中断时间。
示例性地,上述预设发送次数,可以等于现有协议规定的随机接入前导的最大发送次数,也可以小于现有协议规定的随机接入前导的最大发送次数。例如,现有协议规定上述最大发送次数为4次,则预设发送次数可以为1-4次中的任意一个。
现有技术中,终端只有定时器T304超时时,方可确定发生了小区切换失败,并发起小区选择过程和RRC连接重建立过程。而在本申请实施例中,当终端检测到如图8所示的第三条件满足时,不再等待T304超时,而是通过第四连接立即向第四小区发起RRC连接重建立过程,减少了等待时间,从而提高RRC连接重建立效率。
在一些实施例中,通过第四连接发起到第四小区的无线资源控制RRC连接重建立过程,可以包括:建立第三媒体接入控制MAC实体和第三物理层实体,并根据第四小区的系统信息中的公共无线资源配置信息配置第三MAC实体和第三物理层实体。其中,第三MAC实体和第三物理层实体是与第四连接和/或与第四小区对应的协议栈实体,主要用于支持该终端通过第四连接向第四小区发起RRC连接重建立过程。
在一些实施例中,图7所示的RRC连接重建立方法,还可以包括:终端在第四条件满足时,终止RRC连接重建立过程。
其中,示例性地,如图9所示,第四条件可以为:在终端通过第四连接向第四小区发起RRC连接重建立过程之后,且终端在接收到第四小区发送的RRC连接重建立消息前,其在第三小区上的小区切换过程已成功完成,即已经在第三小区上恢复了终端与通信系统之间的业务。例如,终端已经接收到第三小区发送的随机接入响应,并根据随机接入响应携带的配置信息完成自身配置后向第三小区发送了RRC连接重配置完成消息。鉴于终端已经没有必要在第四小区上继续执行RRC连接重建立过程,因此终端可以选择终止上述RRC连接重建立过程,以减少终端与第四小区之间不必要的信令交互。
在一种可能的设计方法中,图7所示的RRC连接重建立方法,还可以包括:终端如果直到接收到第四小区发送的RRC连接重建立消息,都没有成功完成在第三小区上的随机接入过程,则终端在接收到RRC连接重建立消息后,断开与第三小区的连接,即终端已经在第四小区上恢复其与通信系统之间的业务,则没有必要继续执行将终端从源小区切换至第三小区的小区切换过程。有鉴于此,为了减少终端与第三小区之间的信令交互,终端可以选择断开第三连接。
事实上,对于终端通过第三连接在第三小区上执行的小区切换过程,以及终端通过第四连接在第四小区上发起的RRC连接重建立过程,若其中一个过程已经执行成功,即已经恢复终端业务,则为了减少终端与另一个小区不必要的信令交互,终端可以选择终止另一个过程。
在一些实施例中,图7所示的RRC连接重建立方法,还可以包括:如果直到终端接收到第四小区发送的RRC连接重建立消息,都没有成功完成在第三小区上的随机接入过程,则终端在接收到RRC连接重建立消息后,释放与第三小区和/或与第三连接对应的一个或多个第二分组数据汇聚协议PDCP实体,一个或多个第二无线链路控制 RLC实体,第四MAC实体和第四物理层实体,以节省资源。
本申请实施例提供的RRC连接重建立方法,使得终端在从源小区向目标小区(第三小区)切换的过程中,当第三条件满足导致小区切换失败时,在通过一个连接(第三连接)与目标小区通信的同时,通过另一个连接(第四连接)向终端执行小区选择过程所选择的服务小区(第四小区)发起RRC连接重建立过程,以降低在第三条件满足导致小区切换失败的情况下,必须等待一段时间之后,才能重新发起RRC连接重建立过程所导致的业务中断时间较长、甚至掉线问题发生的概率,能够降低业务中断时长,提高重建RRC连接的效率。
可以理解的是,以上图3或其中任一种可能实现方式所述的RRC连接重建立方法,以及图7或其中任一种可能实现方式所述的RRC连接重建立方法可以单独实施,也可以结合使用,本申请实施例不做限定。
以上结合图3-图9详细说明了本申请实施例的RRC连接重建立方法。以下结合图10-图11详细说明能够执行本申请方法实施例所述的RRC连接重建立方法的通信装置。
本申请实施例提供了一种通信装置,用于执行如图3-图6中任一种可能实现方式所述的RRC连接重建立方法。如图10所示,通信装置1000包括:处理模块1001、第一通信模块1002A和第二通信模块1002B。其中,处理模块1001,用于在第一条件满足时,在通过第一连接与第一小区通信的同时,通过第二连接发起到第二小区的无线资源控制RRC连接重建立过程;其中,第一小区为终端的源小区;第二小区为满足A3事件进入条件的目标小区。第一通信模块1002A用于建立第一连接;第二通信模块1002B用于建立第二连接。
其中,第一条件可以包括如下之一:A3事件的进入条件满足,且第一小区发生无线链路问题。A3事件的进入条件满足触发终端向第一小区上报测量报告,且第一小区发生无线链路问题。
在一种可能的设计中,处理模块1001,还用于通过第二连接发起到第二小区的无线资源控制RRC连接重建立过程,包括:建立第一媒体接入控制MAC实体和第一物理层实体,并根据第二小区的系统信息中的公共无线资源配置信息配置第一MAC实体和第一物理层实体;其中,第一MAC实体和第一物理层实体是与第二连接和/或第二小区对应的协议栈实体。
在一种可能的设计中,处理模块1001,还用于在第二条件满足时,终止RRC连接重建立过程。其中,第二条件可以为如下之一:在第二通信模块1002B接收到第二小区发送的RRC连接重建立消息前,处理模块1001确定第一小区发生的无线链路问题已恢复;在第二通信模块1002B接收到第二小区发送的RRC连接重建立消息前,处理模块1001确定A3事件的离开条件满足;在第二通信模块1002B接收到第二小区发送的RRC连接重建立消息前,第一通信模块1002A接收到第一小区发送的切换命令;其中,切换命令用于终端切换至第二小区。
在一种可能的设计中,处理模块1001,还用于若直到第二通信模块1002B接收到第二小区发送的RRC连接重建立消息,第一通信模块1002A均未接收到切换命令,则在第二通信模块1002B接收到第二小区发送的RRC连接重建立消息后,断开第一连接。
在一种可能的设计中,处理模块1001,还用于若直到第二通信模块1002B接收到第二小区发送的RRC连接重建立消息,第一通信模块1002A均未接收到所述切换命令,则在第二通信模块1002B接收到第二小区发送的RRC连接重建立消息后,释放与第一小区和/或第一连接对应的一个或多个第一分组数据汇聚协议PDCP实体,一个或多个第一无线链路控制RLC实体,第二MAC实体和第二物理层实体。
需要说明的是,上述处理模块1001可以是一个或多个处理器,上述第一通信模块1002A和第二通信模块1002B均可以是一个或多个输入/输出电路、通信接口、收发器、射频芯片等。
在一种可能的设计中,上述通信装置1000还可以包括存储模块1003(参见图10中的虚线框)。其中,存储模块1003用于存储指令,处理模块1001用于执行存储模块1003存储的指令,以使得处理模块1001执行如图3-图6中任一项所示的RRC连接重建立方法。
在一些实施例中,上述第一通信模块1002A和第二通信模块1002B还可以为芯片或芯片系统。其中,上述芯片或芯片系统可以应用于终端。
本申请实施例还提供了一种通信装置,用于执行如图7-图9中任一种可能实现方式所述的RRC连接重建立方法。如图11所示,通信装置1100包括:处理模块1101、第三通信模块1102A和第四通信模块1102B。其中,处理模块1101,用于在第三条件满足时,在通过第三连接与第三小区通信的同时,通过第四连接发起到第四小区的无线资源控制RRC连接重建立过程。其中,第三小区为终端执行小区切换过程中的目标小区,第四小区为终端执行小区选择过程所选择的小区,第三通信模块1102A,用于建立第三连接;第四通信模块1102B,用于建立第四连接。
其中,第三条件可以为:在第三通信模块1102A接收到以第三小区为目标小区的切换命令后,第三通信模块1102A向第三小区发送随机接入前导的次数达到预设发送次数。
在一种可能的设计中,处理模块1101,还用于通过第四连接发起到第四小区的无线资源控制RRC连接重建立过程,包括:建立第三媒体接入控制MAC实体和第三物理层实体,并根据第四小区的系统信息中的公共无线资源配置信息配置第三MAC实体和第三物理层实体。其中,第三MAC实体和第三物理层实体是与第四连接和/或与第四小区对应的协议栈实体。
在一种可能的设计中,处理模块1101,还用于在第四条件满足时,终止RRC连接重建立过程。其中,第四条件为:在第四通信模块1102B接收到第四小区发送的RRC连接重建立消息前,通信装置在第三小区上的随机接入过程成功完成。
在一种可能的设计中,处理模块1101,还用于如果直到第四通信模块1102B接收到第四小区发送的RRC连接重建立消息,通信装置都没有成功完成在第三小区上的随机接入过程,则在第四通信模块1102B接收到RRC连接重建立消息后,断开第三连接。
在一种可能的设计中,处理模块1101,还用于如果直到第四通信模块1102B接收到第四小区发送的RRC连接重建立消息,通信装置都没有成功完成在所述第三小区上的随机接入过程,则在第四通信模块1102B接收到第四小区发送的RRC连接重建立 消息后,释放与第三小区和/或与第三连接对应的一个或多个第二分组数据汇聚协议PDCP实体,一个或多个第二无线链路控制RLC实体,第四MAC实体和第四物理层实体。
其中,上述处理模块1101可以是一个或多个处理器,上述第三通信模块1102和第四通信模块1102B均可以是一个或多个输入/输出电路、通信接口、收发器、射频芯片等。
在一种可能的设计中,上述通信装置1100还可以包括存储模块1103(参见图11中的虚线框)。其中,存储模块1103用于存储指令,处理模块1101用于执行存储模块1103存储的指令,以使得处理模块1101执行如图7-图9中任一项所示的RRC连接重建立方法。
在一些实施例中,上述通信装置1100可以为芯片或芯片系统。其中,上述芯片或芯片系统可以应用于终端。
本申请实施例提供一种终端,包括:处理器,该处理器与存储器耦合。其中,存储器,用于存储计算机程序;处理器,用于执行存储器中存储的计算机程序,以使得终端执行如图3-图9中任一项所示的RRC连接重建立方法。
示例性地,图12示出了本申请实施例提供的一种终端的结构示意图。图12所示的终端可适用于图1所示的通信系统中,用于执行上述方法实施例中终端所执行的功能。为了便于说明,图12仅示出了终端的主要部件。如图12所示,终端1200包括处理器、存储器、控制电路、天线以及输入输出装置。其中,处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端执行上述方法实施例中所描述的动作,如,在第一条件满足时,在通过第一连接与第一小区通信的同时,通过第二连接发起到第二小区的无线资源控制RRC连接重建立过程等。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的A3事件的进入条件和离开条件等。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端开机后,处理器可以读取存储器中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图12仅示出了一个存储器和一个处理器。在实际的终端中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限定。
作为一种在一些实施例中实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端进行控制,执行软件程序,处理软件程序的数据。图12中的处理器可以集成基带 处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端可以包括多个基带处理器以适应不同的网络制式,终端可以包括多个中央处理器以增强其处理能力,终端的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端1200的收发单元。例如,用于支持终端执行如图3-图9所示的接收功能和发送功能。将具有处理功能的处理器视为终端1200的处理单元1202。如图12所示,终端1200包括收发单元1201A、收发单元1201B和处理单元1202。收发单元也可以称为收发器、收发机、收发装置等。在一些实施例中,可以将上述每个收发单元中用于实现接收功能的器件视为接收单元,将上述每个收发单元中用于实现发送功能的器件视为发送单元,即收发单元包括接收单元和发送单元,接收单元也可以称为接收机、接收器、输入口、接收电路等,发送单元可以称为发射机、发射器输出口或者发射电路等。
需要说明的是,图12所示的终端1200包括至少2套收发单元,如收发单元1201A和收发单元1201B,且每套收发单元各自包含有独立的控制电路和射频天线。这样,终端1200可以通过收发单元1201A与第一小区建立第一连接,通过收发单元1201B与第二小区建立第二连接。在另一些实施例中,终端1200可以通过收发单元1201A与第三小区建立第三连接,通过收发单元1201B与第四小区建立第四连接。
处理器1202可用于执行该存储器存储的指令,以控制收发单元1201A接收信号和/或发送信号,以及控制收发单元1201B接收信号和/或发送信号完成上述方法实施例中终端的功能。作为一种实现方式,收发单元1201A和收发单元1201B的功能可以考虑通过收发电路或者专用收发芯片实现。
应理解,在本申请实施例中的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取 存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本申请实施例中术语“和/或”,仅仅用于描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本申请实施例中,“第一”和“第二”等是用于区别不同的对象,或者用于区别对同一对象的不同处理,而不是用于描述对象的特定顺序。
本申请实施例中,“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是在一些实施例中还包括其他没有列出的步骤或单元,或在一些实施例中还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请实施例中,“信息(information)”,“信号(signal)”,“消息(message)”,“信道(channel)”、“信令(singalling)”、“消息(message)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
在本申请实施例中,有时候下标如W1可能会笔误为非下标的形式如W1,在不强调其区别时,其所要表达的含义是一致的。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (31)

  1. 一种RRC连接重建立方法,其特征在于,包括:
    终端在第一条件满足时,在通过第一连接与第一小区通信的同时,通过第二连接发起到第二小区的无线资源控制RRC连接重建立过程;其中,所述第一小区为所述终端的源小区;所述第二小区为满足A3事件进入条件的目标小区。
  2. 根据权利要求1所述的RRC连接重建立方法,其特征在于,所述第一条件包括如下之一:
    A3事件的进入条件满足,且所述第一小区发生无线链路问题;
    A3事件的进入条件满足触发所述终端向所述第一小区上报测量报告,且所述第一小区发生无线链路问题。
  3. 根据权利要求1或2所述的RRC连接重建立方法,其特征在于,所述通过第二连接发起到第二小区的无线资源控制RRC连接重建立过程,包括:
    建立第一媒体接入控制MAC实体和第一物理层实体,并根据所述第二小区的系统信息中的公共无线资源配置信息配置所述第一MAC实体和所述第一物理层实体;其中,所述第一MAC实体和所述第一物理层实体是与所述第二连接和/或所述第二小区对应的协议栈实体。
  4. 根据权利要求1-3中任一项所述的RRC连接重建立方法,其特征在于,还包括:
    所述终端在第二条件满足时,终止所述RRC连接重建立过程;
    其中,所述第二条件为如下之一:
    所述终端在接收到所述第二小区发送的RRC连接重建立消息前,确定所述第一小区发生的无线链路问题已恢复;
    所述终端在接收到所述第二小区发送的RRC连接重建立消息前,确定A3事件的离开条件满足;
    所述终端在接收到所述第二小区发送的RRC连接重建立消息前,所述终端接收到所述第一小区发送的切换命令;其中,所述切换命令用于所述终端切换至所述第二小区。
  5. 根据权利要求4所述的RRC连接重建立方法,其特征在于,还包括:
    若直到所述终端接收到所述第二小区发送的RRC连接重建立消息,所述终端均未接收到所述切换命令,则所述终端在接收到所述第二小区发送的RRC连接重建立消息后,断开所述第一连接。
  6. 根据权利要求5所述的RRC连接重建立方法,其特征在于,还包括:
    若直到所述终端接收到所述第二小区发送的RRC连接重建立消息,所述终端均未接收到所述切换命令,则所述终端在接收到所述第二小区发送的RRC连接重建立消息后,释放与所述第一小区和/或所述第一连接对应的一个或多个第一分组数据汇聚协议PDCP实体,一个或多个第一无线链路控制RLC实体,第二MAC实体和第二物理层实体。
  7. 一种RRC连接重建立方法,其特征在于,包括:
    终端在第三条件满足时,在通过第三连接与第三小区通信的同时,通过第四连接 发起到第四小区的无线资源控制RRC连接重建立过程;其中,所述第三小区为所述终端执行小区切换过程中的目标小区,所述第四小区为所述终端执行小区选择过程所选择的小区。
  8. 根据权利要求7所述的RRC连接重建立方法,其特征在于,所述第三条件为:所述终端在接收到以所述第三小区为目标小区的切换命令后,向所述第三小区发送随机接入前导的次数达到预设发送次数。
  9. 根据权利要求7或8所述的RRC连接重建立方法,其特征在于,所述通过第四连接发起到第四小区的无线资源控制RRC连接重建立过程,包括:
    建立第三媒体接入控制MAC实体和第三物理层实体,并根据所述第四小区的系统信息中的公共无线资源配置信息配置所述第三MAC实体和所述第三物理层实体;其中,所述第三MAC实体和所述第三物理层实体是与所述第四连接和/或与所述第四小区对应的协议栈实体。
  10. 根据权利要求7-9中任一项所述的RRC连接重建立方法,其特征在于,还包括:
    所述终端在第四条件满足时,终止所述RRC连接重建立过程;其中,所述第四条件为:所述终端在接收到所述第四小区发送的RRC连接重建立消息前,所述终端在所述第三小区上的随机接入过程成功完成。
  11. 根据权利要求10所述的RRC连接重建立方法,其特征在于,还包括:
    所述终端如果直到接收到所述第四小区发送的RRC连接重建立消息,都没有成功完成在所述第三小区上的随机接入过程,则所述终端在接收到所述RRC连接重建立消息后,断开所述第三连接。
  12. 根据权利要求11所述的RRC连接重建立方法,其特征在于,还包括:
    所述终端如果直到接收到所述第四小区发送的RRC连接重建立消息,都没有成功完成在所述第三小区上的随机接入过程,则所述终端在接收到所述RRC连接重建立消息后,释放与所述第三小区和/或与所述第三连接对应的一个或多个第二分组数据汇聚协议PDCP实体,一个或多个第二无线链路控制RLC实体,第四MAC实体和第四物理层实体。
  13. 一种通信装置,其特征在于,包括:处理模块、第一通信模块和第二通信模块;其中,所述处理模块,用于在第一条件满足时,在通过第一连接与第一小区通信的同时,通过第二连接发起到第二小区的无线资源控制RRC连接重建立过程;其中,所述第一小区为所述终端的源小区;所述第二小区为满足A3事件进入条件的目标小区;
    所述第一通信模块用于建立所述第一连接;
    所述第二通信模块用于建立所述第二连接。
  14. 根据权利要求13所述的通信装置,其特征在于,所述第一条件包括如下之一:
    A3事件的进入条件满足,且所述第一小区发生无线链路问题;
    A3事件的进入条件满足触发所述终端向所述第一小区上报测量报告,且所述第一小区发生无线链路问题。
  15. 根据权利要求13或14所述的RRC通信装置,其特征在于,
    所述处理模块用于通过第二连接发起到第二小区的无线资源控制RRC连接重建立过程,包括:所述处理模块用于建立第一媒体接入控制MAC实体和第一物理层实体,并根据所述第二小区的系统信息中的公共无线资源配置信息配置所述第一MAC实体和所述第一物理层实体;其中,所述第一MAC实体和所述第一物理层实体是与所述第二连接和/或所述第二小区对应的协议栈实体。
  16. 根据权利要求13-15中任一项所述的通信装置,其特征在于,
    所述处理模块,还用于在第二条件满足时,终止所述RRC连接重建立过程;
    其中,所述第二条件为如下之一:
    在所述第二通信模块接收到所述第二小区发送的RRC连接重建立消息前,所述处理模块确定所述第一小区发生的无线链路问题已恢复;
    在所述第二通信模块接收到所述第二小区发送的RRC连接重建立消息前,所述处理模块确定A3事件的离开条件满足;
    在所述第二通信模块接收到所述第二小区发送的RRC连接重建立消息前,所述第一通信模块接收到所述第一小区发送的切换命令;其中,所述切换命令用于所述终端切换至所述第二小区。
  17. 根据权利要求16所述的通信装置,其特征在于,
    所述处理模块,还用于若直到所述第二通信模块接收到所述第二小区发送的RRC连接重建立消息,所述第一通信模块均未接收到所述切换命令,则在所述第二通信模块接收到所述第二小区发送的RRC连接重建立消息后,断开所述第一连接。
  18. 根据权利要求17所述的通信装置,其特征在于,
    所述处理模块,还用于若直到所述第二通信模块接收到所述第二小区发送的RRC连接重建立消息,所述第一通信模块均未接收到所述切换命令,则在所述第二通信模块接收到所述第二小区发送的RRC连接重建立消息后,释放与所述第一小区和/或所述第一连接对应的一个或多个第一分组数据汇聚协议PDCP实体,一个或多个第一无线链路控制RLC实体,第二MAC实体和第二物理层实体。
  19. 一种通信装置,其特征在于,包括:处理模块、第三通信模块和第四通信模块;其中,
    所述处理模块,用于在第三条件满足时,在通过第三连接与第三小区通信的同时,通过第四连接发起到第四小区的无线资源控制RRC连接重建立过程;其中,所述第三小区为所述终端执行小区切换过程中的目标小区,所述第四小区为所述终端执行小区选择过程所选择的小区;
    所述第三通信模块,用于建立所述第三连接;
    所述第四通信模块,用于建立所述第四连接。
  20. 根据权利要求19所述的通信装置,其特征在于,所述第三条件为:在所述第三通信模块接收到以所述第三小区为目标小区的切换命令后,所述第三通信模块向所述第三小区发送随机接入前导的次数达到预设发送次数。
  21. 根据权利要求19或20所述的通信装置,其特征在于,
    所述处理模块用于通过所述第四连接发起到所述第四小区的无线资源控制RRC连接重建立过程,包括:所述处理模块用于建立第三媒体接入控制MAC实体和第三 物理层实体,并根据所述第四小区的系统信息中的公共无线资源配置信息配置所述第三MAC实体和所述第三物理层实体;其中,所述第三MAC实体和所述第三物理层实体是与所述第四连接和/或与所述第四小区对应的协议栈实体。
  22. 根据权利要求19-21中任一项所述的通信装置,其特征在于,
    所述处理模块,还用于在第四条件满足时,终止所述RRC连接重建立过程;其中,所述第四条件为:在所述第四通信模块接收到所述第四小区发送的RRC连接重建立消息前,所述通信装置在所述第三小区上的随机接入过程成功完成。
  23. 根据权利要求22所述的通信装置,其特征在于,
    所述处理模块,还用于如果直到所述第四通信模块接收到所述第四小区发送的RRC连接重建立消息,所述通信装置都没有成功完成在所述第三小区上的随机接入过程,则在所述第四通信模块接收到所述RRC连接重建立消息后,断开所述第三连接。
  24. 根据权利要求23所述的通信装置,其特征在于,
    所述处理模块,还用于如果直到所述第四通信模块接收到所述第四小区发送的RRC连接重建立消息,所述通信装置都没有成功完成在所述第三小区上的随机接入过程,则在所述第四通信模块接收到所述RRC连接重建立消息后,释放与所述第三小区和/或与所述第三连接对应的一个或多个第二分组数据汇聚协议PDCP实体,一个或多个第二无线链路控制RLC实体,第四MAC实体和第四物理层实体。
  25. 一种通信装置,其特征在于,用于执行如权利要求1-12中任一项所述的RRC连接重建立方法。
  26. 一种通信装置,其特征在于,包括:处理模块,所述处理模块用于执行如权利要求1-12中任一项所述的RRC连接重建立方法。
  27. 根据权利要求26所述的通信装置,其特征在于,所述通信装置还包括存储模块;所述存储模块用于存储指令,所述处理模块用于执行所述存储模块存储的指令,以使得所述处理模块执行如权利要求1-12中任一项所述的RRC连接重建立方法。
  28. 根据权利要求26或27所述的通信装置,其特征在于,所述通信装置为芯片或芯片系统。
  29. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述通信装置执行如权利要求1-12中任一项所述的RRC连接重建立方法。
  30. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,所述计算机执行如权利要求1-12中任一项所述的RRC连接重建立方法。
  31. 一种可读存储介质,其特征在于,包括程序或指令,当所述程序或指令在计算机上运行时,所述计算机执行如权利要求1-12中任一项所述的RRC连接重建立方法。
PCT/CN2019/090005 2018-06-07 2019-06-04 Rrc连接重建立方法及终端 WO2019233419A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810581502.6 2018-06-07
CN201810581502 2018-06-07
CN201810850201.9A CN110582128B (zh) 2018-06-07 2018-07-28 Rrc连接重建立方法及终端
CN201810850201.9 2018-07-28

Publications (1)

Publication Number Publication Date
WO2019233419A1 true WO2019233419A1 (zh) 2019-12-12

Family

ID=68769169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090005 WO2019233419A1 (zh) 2018-06-07 2019-06-04 Rrc连接重建立方法及终端

Country Status (1)

Country Link
WO (1) WO2019233419A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015020321A1 (en) * 2013-08-08 2015-02-12 Lg Electronics Inc. Method and apparatus for performing operation related to radio link failure in a heterogeneous network
CN105191390A (zh) * 2013-01-18 2015-12-23 美国博通公司 多连接系统中的测量
CN105684543A (zh) * 2013-05-10 2016-06-15 瑞典爱立信有限公司 承载配置信令

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105191390A (zh) * 2013-01-18 2015-12-23 美国博通公司 多连接系统中的测量
CN105684543A (zh) * 2013-05-10 2016-06-15 瑞典爱立信有限公司 承载配置信令
WO2015020321A1 (en) * 2013-08-08 2015-02-12 Lg Electronics Inc. Method and apparatus for performing operation related to radio link failure in a heterogeneous network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "The Necessity of T312 in NR", 3GPP TSG RAN WG2 MEETING #101 R2-1802450, vol. RAN WG2, 14 February 2018 (2018-02-14), Athens, Greece, pages 1 - 4, XP051399191 *

Similar Documents

Publication Publication Date Title
TWI740254B (zh) 減少行動性中斷之方法及其使用者設備
WO2018188613A1 (zh) 一种移动性管理方法、接入网设备和终端设备
WO2018219039A1 (zh) 一种移动切换的管理方法、装置、设备及存储介质
CN110582128B (zh) Rrc连接重建立方法及终端
US20200396656A1 (en) Method and apparatus for handover
WO2018165996A1 (zh) 切换方法和装置
JP2017532874A (ja) サービス固有のエアインターフェース選択
US20220394802A1 (en) Re-establishment method and communication apparatus
WO2016176952A1 (zh) 一种实现蜂窝网络重定位的方法和基站
JP2021527357A (ja) Rlfの処理方法および装置、通信機器
JP2023500137A (ja) モビリティ最適化方法および関連する装置
TW202025820A (zh) 一種切換上報的方法及終端設備
WO2021185350A1 (zh) 一种通信方法、接入网设备、终端设备和核心网设备
US20230156587A1 (en) Transmission Configuration Method and Device
US20210385905A1 (en) Entity Establishment Processing Method and Apparatus
WO2014000687A1 (zh) 一种接入点切换过程中传输数据的方法、系统和设备
US11146993B2 (en) Handover with postponed path switch
WO2019096285A1 (zh) 一种接入网络的控制方法和装置
JP2024508557A (ja) 通信経路の切り替え方法、装置及び端末
WO2020164620A1 (zh) 一种终端信息的通信处理方法和相关设备
CN112291803B (zh) 一种通信方法、终端设备及计算机可读存储介质
US20230262567A1 (en) Communication Method and Communication Apparatus
WO2016177102A1 (zh) 定时器取值的处理方法、装置及计算机存储介质
WO2022083469A1 (zh) 一种mro临界场景的判定方法、装置及设备
WO2022006719A1 (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19815612

Country of ref document: EP

Kind code of ref document: A1