WO2019233033A1 - 一种太赫兹时域光谱数据采集系统 - Google Patents
一种太赫兹时域光谱数据采集系统 Download PDFInfo
- Publication number
- WO2019233033A1 WO2019233033A1 PCT/CN2018/114430 CN2018114430W WO2019233033A1 WO 2019233033 A1 WO2019233033 A1 WO 2019233033A1 CN 2018114430 W CN2018114430 W CN 2018114430W WO 2019233033 A1 WO2019233033 A1 WO 2019233033A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage signal
- digital
- analog
- data acquisition
- acquisition system
- Prior art date
Links
- 238000001228 spectrum Methods 0.000 title abstract description 6
- 238000001914 filtration Methods 0.000 claims abstract description 20
- 230000003595 spectral effect Effects 0.000 claims description 39
- 230000003321 amplification Effects 0.000 claims description 16
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 16
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 230000009977 dual effect Effects 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 4
- 238000013461 design Methods 0.000 abstract description 4
- 238000000034 method Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000013480 data collection Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000001328 terahertz time-domain spectroscopy Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/12—Generating the spectrum; Monochromators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J2003/283—Investigating the spectrum computer-interfaced
- G01J2003/2833—Investigating the spectrum computer-interfaced and memorised spectra collection
Definitions
- the present application relates to the technical field of terahertz, and in particular, to a terahertz time-domain spectral data acquisition system.
- Terahertz radiation has provided new and higher power emission sources, and terahertz technology has undergone revolutionary changes.
- Terahertz technology has been proven to have broad scientific research value and application prospects in many fields such as biomedical imaging, security inspection, broadband communication and radar.
- the embodiment of the present application provides a terahertz time-domain spectral data acquisition system, which adopts a single board design to realize terahertz time-domain spectral data acquisition, which is characterized by being small, fast, and easy to integrate.
- a first aspect of the embodiments of the present application provides a terahertz time-domain spectral data acquisition system, including a phase-locked amplifier, a preamplifier, an active filter, an attenuation amplifier, an analog-to-digital converter, and a digital-to-analog converter connected in sequence. ;
- the phase-locked amplifier is configured to amplify the weak current signal generated by the photoconductive receiving antenna and output a first weak voltage signal
- the preamplifier is used for compensating the amplification capability of the phase-locked amplifier, and amplifying the first weak voltage signal to obtain a second weak voltage signal;
- the active filter is configured to amplify the second weak voltage signal after low-pass filtering to obtain a third weak voltage signal
- the attenuation amplifier is configured to convert the third weak voltage signal into a fourth weak voltage signal
- the analog-to-digital converter is configured to collect the fourth weak voltage signal and convert it into a digital voltage signal
- the digital-to-analog converter is configured to convert the digital voltage signal into an analog voltage signal.
- the preamplifier is powered by a single power supply or a dual power supply, which can drive an infinite capacitive load while maintaining signal integrity.
- the active filter implements low-pass filtering and voltage amplification functions through a KRC second-order low-pass filtering circuit.
- the attenuation amplifier provides attenuation coefficients of 0.4 times and 0.8 times, and is capable of converting common mode levels and converting single-ended signals to differential signals.
- the analog-to-digital converter is a fully differential 18-bit successive approximation analog-to-digital converter, and the signal-to-noise ratio is 98dB when the reference voltage source is 4.096V.
- the digital-to-analog converter uses a Schmitt trigger input, a single power supply, an external reference voltage is adopted, and a single-channel 16-bit analog-to-digital converter is used to complete Digital-to-analog conversion provides input signals to the delay control system.
- the terahertz time-domain spectral data acquisition system further includes:
- a controller for transmitting the collected digital voltage signal to a computer for processing and display.
- the terahertz time-domain spectral data acquisition system further includes:
- a photoelectric switch communicatively connected to the controller is used to realize a laser path or an open circuit by a control voltage, so as to correspondingly control the laser on or off.
- the digital-to-analog converter is further used to control a closed-loop delay system.
- a second aspect of the embodiments of the present application provides a terahertz time-domain spectral data acquisition system, including a phase-locked amplifier, a preamplifier, an active filter, an attenuation amplifier, an analog-to-digital converter, and a digital-to-analog converter connected in sequence. ;
- the phase-locked amplifier is configured to amplify the weak current signal generated by the photoconductive receiving antenna and output a first weak voltage signal
- the preamplifier is used for compensating the amplification capability of the phase-locked amplifier, and amplifying the first weak voltage signal to obtain a second weak voltage signal;
- the active filter is configured to amplify the second weak voltage signal after low-pass filtering to obtain a third weak voltage signal
- the attenuation amplifier is configured to convert the third weak voltage signal into a fourth weak voltage signal
- the analog-to-digital converter is configured to collect the fourth weak voltage signal and convert it into a digital voltage signal
- the digital-to-analog converter is configured to convert the digital voltage signal into an analog voltage signal
- the preamplifier is powered by a single power supply or a dual power supply, which can drive an infinite capacitive load while maintaining signal integrity.
- the terahertz time-domain spectral data acquisition system in the embodiment of the present application includes: a phase-locked amplifier, a preamplifier, an active filter, and attenuation connected in this order.
- the phase-locked amplifier is used to amplify the weak current signal generated by the photoconductive receiving antenna and output a first weak voltage signal
- the pre-amplifier is used to compensate the lock Phase amplifier's amplification capability to amplify the first weak voltage signal to obtain a second weak voltage signal
- the active filter is used to amplify the second weak voltage signal after low-pass filtering to obtain a third weak voltage signal Voltage signal
- the attenuation amplifier is used to convert the third weak voltage signal into a fourth weak voltage signal
- the analog-to-digital converter is used to collect the fourth weak voltage signal and convert it into a digital voltage signal
- the digital-to-analog converter is configured to convert the digital voltage signal into an analog voltage signal.
- the embodiment of the present application adopts the design of a single board to realize terahertz time-domain spectral data collection, which has the characteristics of small size, fast speed, easy integration, and strong ease of use and practicability.
- FIG. 1 is a schematic diagram of a terahertz time-domain spectral data acquisition system provided in Embodiment 1 of the present application;
- FIG. 2 is a waveform diagram of a terahertz time-domain spectrum signal acquisition provided by an embodiment of the present application
- FIG. 3 is a schematic diagram of a terahertz time-domain spectral data acquisition system provided in Embodiment 2 of the present application.
- An embodiment of the present application provides a terahertz time-domain spectral data acquisition system.
- the terahertz time-domain spectral data acquisition system includes:
- Phase-locked amplifier 11 preamplifier 12, active filter 13, attenuation amplifier 14, analog-to-digital converter 15, and digital-to-analog converter 16 connected in this order;
- the phase-locked amplifier 11 is configured to amplify a weak current signal generated by the photoconductive receiving antenna and output a first weak voltage signal
- a preamplifier 12 for compensating the amplification capability of the phase-locked amplifier to amplify the first weak voltage signal to obtain a second weak voltage signal
- the active filter 13 is configured to amplify the second weak voltage signal by low-pass filtering to obtain a third weak voltage signal
- An attenuation amplifier 14 configured to convert the third weak voltage signal into a fourth weak voltage signal
- An analog-to-digital converter 15 for collecting the fourth weak voltage signal and converting it into a digital voltage signal
- a digital-to-analog converter 16 is configured to convert the digital voltage signal into an analog voltage signal.
- the phase-locked amplifier 11 is used to amplify the weak current signal generated by the photoconductive antenna; the preamplifier circuit 12 is connected to the output signal of the phase-locked amplifier 11 to compensate the amplification capability of the phase-locked amplifier 11; the active filter 13 is connected to the output signal of the preamplifier circuit 12 for low-pass filtering and voltage amplification; the output signal of the attenuation amplifier 14 and the active filter 13 is connected for accurate common-mode level conversion and single-ended to Differential conversion; analog-to-digital converter 15 and attenuation amplifier 14 are connected to collect the amplified voltage signal; digital-to-analog converter 16 and analog-to-digital converter 15 are connected to convert the digital voltage signal into an analog voltage signal.
- the phase-locked amplifier 11 is connected to the photoconductive antenna.
- the weak current signal from the photoconductive antenna passes through the phase-locked amplifier 6 and becomes a weak voltage signal (the first weak voltage signal).
- the weak voltage signal is further compensated and amplified to obtain a second weak voltage signal, and then enters the active low-pass filter 13 to perform filtering to obtain a third weak voltage signal.
- FIG. 2 shows a terahertz time-domain spectral signal acquisition waveform.
- the filtered signal first enters the attenuation amplifier 14 to attenuate the voltage signal into the AD chip input full-scale voltage range, and the single-ended signal is converted into a differential signal to obtain the fourth signal.
- the analog-to-digital converter 15 converts an analog voltage signal (a fourth weak voltage signal) into a digital voltage signal. This process is controlled by a controller (not shown in FIG. 1).
- the controller outputs digital signals to the digital-to-analog converter 16, generates analog signals, and sends them to the delay control system, which is used to provide a controllable delay for the terahertz pump light.
- the preamplifier is powered by a single power supply or a dual power supply, which can drive an infinite capacitive load while maintaining signal integrity.
- the preamp is a low-cost, low-power, high-speed operational amplifier. It uses single or dual power supplies and has high output current driving capability. Therefore, it can drive infinite capacitive loads while maintaining signal integrity.
- the active filter implements low-pass filtering and voltage amplification functions through a KRC second-order low-pass filtering circuit.
- This filter circuit has extremely low offset voltage, low input bias current, low noise, input overvoltage protection function, and overload recovery function.
- the attenuation amplifier provides attenuation coefficients of 0.4 and 0.8 times, and is capable of converting common-mode levels and converting single-ended signals to differential signals.
- the analog-to-digital converter is a fully differential 18-bit successive approximation analog-to-digital converter.
- the reference voltage source is 4.096V
- the signal-to-noise ratio is 98dB.
- the digital-to-analog converter adopts a Schmitt trigger input, which is powered by a single power source and adopts an external reference voltage.
- a single-channel 16-bit analog-to-digital converter is used to complete the digital-to-analog conversion and provide the delay control system. Provide input signals.
- the terahertz time-domain spectral data acquisition system in the embodiment of the present application includes: a phase-locked amplifier, a preamplifier, an active filter, an attenuation amplifier, an analog-to-digital converter, and a digital-to-analog converter connected in this order.
- the phase-locked amplifier is used to amplify the weak current signal generated by the photoconductive receiving antenna and output a first weak voltage signal; the pre-amplifier is used to compensate the amplification capability of the phase-locked amplifier, and The weak voltage signal is amplified to obtain a second weak voltage signal; the active filter is used to amplify the second weak voltage signal after low-pass filtering to obtain a third weak voltage signal; the attenuation amplifier is used to The third weak voltage signal is converted into a fourth weak voltage signal; the analog-to-digital converter is used to collect the fourth weak voltage signal and converted into a digital voltage signal; the digital-to-analog converter is used to convert the The digital voltage signal is converted into an analog voltage signal.
- the embodiment of the present application adopts the design of a single board to realize terahertz time-domain spectral data collection, which has the characteristics of small size, fast speed, easy integration, and strong ease of use and practicability.
- An embodiment of the present application provides a terahertz time-domain spectral data acquisition system.
- the terahertz time-domain spectral data acquisition system includes:
- Phase-locked amplifier 11 preamplifier 12, active filter 13, attenuation amplifier 14, analog-to-digital converter 15, digital-to-analog converter 16, controller 17, computer 18, photoelectric switch 19, and delay control system connected in this order 20.
- the phase-locked amplifier 11 is configured to amplify a weak current signal generated by the photoconductive receiving antenna and output a first weak voltage signal
- a preamplifier 12 for compensating the amplification capability of the phase-locked amplifier to amplify the first weak voltage signal to obtain a second weak voltage signal
- the active filter 13 is configured to amplify the second weak voltage signal by low-pass filtering to obtain a third weak voltage signal
- An attenuation amplifier 14 configured to convert the third weak voltage signal into a fourth weak voltage signal
- An analog-to-digital converter 15 for collecting the fourth weak voltage signal and converting it into a digital voltage signal
- a digital-to-analog converter 16 is configured to convert the digital voltage signal into an analog voltage signal.
- the phase-locked amplifier 11 is connected to the photoconductive antenna.
- the phase-locked amplifier 11 is used to amplify the weak current signal generated by the photoconductive antenna.
- the preamplifier circuit 12 is connected to the output signal of the phase-locked amplifier 11 to compensate the lock.
- the amplification energy of the phase amplifier 11; the active filter 13 is connected to the output signal of the preamplifier circuit 12 for low-pass filtering and voltage amplification; the output signal of the attenuation amplifier 14 and the active filter 13 is connected for Accurate common-mode level conversion and single-ended to differential conversion; analog-to-digital converter 15 and attenuation amplifier 14 are connected to collect the amplified voltage signal; digital-to-analog converter 16 and analog-to-digital converter 15 are connected, and And converting the digital voltage signal into an analog voltage signal.
- the controller 17 is configured to transmit the digital voltage signal collected by the analog-to-digital converter 15 to the computer 18 for processing and display.
- the digital-to-analog converter 16 is connected to a laser (not shown in FIG.
- the photoelectric switch 19 is connected to the controller 17 (not shown in FIG. 3), and is configured to implement a laser path or an open circuit through a control voltage to control the on or off of the laser.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Optical Communication System (AREA)
Abstract
一种太赫兹时域光谱数据采集系统,包括:依次连接的锁相放大器(11)、前置放大器(12)、有源滤波器(13)、衰减放大器(14)、模数转换器(15)和数模转换器(16);锁相放大器(11),用于放大光电导接收天线产生的微弱电流信号,输出第一弱电压信号;前置放大器(12),用于补偿锁相放大器(11)的放大能力,对第一弱电压信号进行放大得到第二弱电压信号;有源滤波器(13),用于对第二弱电压信号进行低通滤波后进行放大,得到第三弱电压信号;衰减放大器(14),用于将第三弱电压信号转换为第四弱电压信号;模数转换器(15),用于采集第四弱电压信号并转换为数字电压信号;数模转换器(16),用于将数字电压信号转换为模拟电压信号。太赫兹时域光谱数据采集系统采用单板的设计实现太赫兹时域光谱数据采集,具备小型、快速、易于集成的特点,有较强的易用性和实用性。
Description
本申请涉及太赫兹技术领域,尤其涉及一种太赫兹时域光谱数据采集系统。
在过去的30年中,伴随着各种新材料、新技术的不断涌现,为太赫兹辐射提供了新的更高功率的发射源,太赫兹技术已经发生了革命性的变化。太赫兹技术已经被证明在生物医学成像、安全检查、宽带通信与雷达等众多领域有着广阔的科研价值和应用前景。
关于太赫兹波的产生和检测的研究还处于起步阶段。经过近二十年的努力太赫兹波的产生和检测技术已经基本成熟,并有多种商业化的产品。目前主流的脉冲太赫兹时域光谱仪采用光电导的方法产生脉冲太赫兹,而检测则使用光电导或电光取样技术。基于太赫兹时域光谱系统的发展现状,亟需开发一套成熟快速的模数转换的电路系统,进而采集到完整准确的太赫兹时域光谱脉冲信号。
现有的太赫兹时域光谱采集系统采用商业仪器,从而造成体积庞大,不利于系统集成,资源利用率不高。
【发明内容】
有鉴于此,本申请实施例提供了一种太赫兹时域光谱数据采集系统,采用单板的设计实现太赫兹时域光谱数据采集,具备小型,快速,易于集成的特点。
本申请实施例的第一方面提供了一种太赫兹时域光谱数据采集系统,包括依次连接的锁相放大器、前置放大器、有源滤波器、衰减放大器、模数转换器和数模转换器;
所述锁相放大器,用于放大光电导接收天线产生的微弱电流信号,输出第一弱电压信号;
所述前置放大器,用于补偿所述锁相放大器的放大能力,对所述第一弱电压信号进行放大得到第二弱电压信号;
所述有源滤波器,用于对第二弱电压信号进行低通滤波后进行放大,得到第三弱电压信号;
所述衰减放大器,用于将所述第三弱电压信号转换为第四弱电压信号;
所述模数转换器,用于采集所述第四弱电压信号并转换为数字电压信号;
所述数模转换器,用于将所述数字电压信号转换为模拟电压信号。
基于第一方面,在第一种可能的实现方式中,所述锁相放大器用于接收来自光电导天线的微弱电流I,输出所述第一弱电压V=IR,R为所述锁相放大器的跨阻。
基于第一方面,在第二种可能的实现方式中,所述前置放大器采用单电源或双电源供电,能够驱动无限大容性负载的同时保持信号完整性。
基于第一方面,在第三种可能的实现方式中,所述有源滤波器通过KRC二阶低通滤波电路来实现低通滤波和电压放大功能。
基于第一方面,在第四种可能的实现方式中,所述衰减放大器提供0.4倍和0.8倍的衰减系数,并且能够对共模电平转换,以及单端信号至差分信号的转换。
基于第一方面,在第五种可能的实现方式中,所述模数转换器为全差分18位逐次逼近型模数转换器,当基准电压源为4.096V时信噪比为98dB。
基于第一方面,在第六种可能的实现方式中,所述数模转换器采用施密特触发式输入,单电源供电,采取外部参考电压,单通道16位模数转换器,用来完成数模转换,给延时控制系统提供输入信号。
基于第一方面,在第七种可能的实现方式中,所述太赫兹时域光谱数据采集系统还包括:
控制器,用于将采集到的所述数字电压信号传输至计算机进行处理和显示。
基于第一方面的第七种可能的实现方式,在第八种可能的实现方式中,所述太赫兹时域光谱数据采集系统还包括:
与所述控制器通信连接的光电开关,用于通过控制电压实现激光器通路或开路,以对应控制激光器的开启或关闭。
基于第一方面,在第九种可能的实现方式中,所述数模转换器还用于控制闭环延时系统。
本申请实施例的第二方面提供了一种太赫兹时域光谱数据采集系统,包括依次连接的锁相放大器、前置放大器、有源滤波器、衰减放大器、模数转换器和数模转换器;
所述锁相放大器,用于放大光电导接收天线产生的微弱电流信号,输出第一弱电压信号;
所述前置放大器,用于补偿所述锁相放大器的放大能力,对所述第一弱电压信号进行放大得到第二弱电压信号;
所述有源滤波器,用于对第二弱电压信号进行低通滤波后进行放大,得到第三弱电压信号;
所述衰减放大器,用于将所述第三弱电压信号转换为第四弱电压信号;
所述模数转换器,用于采集所述第四弱电压信号并转换为数字电压信号;
所述数模转换器,用于将所述数字电压信号转换为模拟电压信号;
所述锁相放大器用于接收来自光电导天线的微弱电流I,输出所述第一弱电压V=IR,R为所述锁相放大器的跨阻;
所述前置放大器采用单电源或双电源供电,能够驱动无限大容性负载的同时保持信号完整性。
本申请实施例与现有技术相比存在的有益效果是:本申请实施例中的太赫兹时域光谱数据采集系统,包括:依次连接的锁相放大器、前置放大器、有源滤波器、衰减放大器、模数转换器和数模转换器;所述锁相放大器,用于放大光电导接收天线产生的微弱电流信号,输出第一弱电压信号;所述前置放大器,用于补偿所述锁相放大器的放大能力,对所述第一弱电压信号进行放大得到第二弱电压信号;所述有源滤波器,用于对第二弱电压信号进行低通滤波后进行放大,得到第三弱电压信号;所述衰减放大器,用于将所述第三弱电压信号转换为第四弱电压信号;所述模数转换器,用于采集所述第四弱电压信号并转换为数字电压信号;所述数模转换器,用于将所述数字电压信号转换为模拟电压信号。本申请实施例采用单板的设计实现太赫兹时域光谱数据采集,具备小型,快速,易于集成的特点,具有较强的易用性和实用性。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例一提供的太赫兹时域光谱数据采集系统的示意图;
图2是本申请实施例提供的太赫兹时域光谱信号采集波形图;
图3是本申请实施例二提供的太赫兹时域光谱数据采集系统的示意图。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
需要说明的是,本申请的说明书和权利要求书中的术语“包括”以及它们任何变形,意图在于覆盖不排他的包含。例如包含一系列步骤或单元的过程、方法或系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,术语“第一”、“第二”和“第三”等是用于区别不同对象,而非用于描述特定顺序。
为使得本申请的发明目的、特征、优点能够更加的明显和易懂,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,下面所描述的实施例仅仅是本申请一部分实施例,而非全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
实施例一
本申请实施例提供一种太赫兹时域光谱数据采集系统,如图1所示,太赫兹时域光谱数据采集系统包括:
依次连接的锁相放大器11、前置放大器12、有源滤波器13、衰减放大器14、模数转换器15和数模转换器16;
在本申请实施例中,锁相放大器11,用于放大光电导接收天线产生的微弱电流信号,输出第一弱电压信号;
前置放大器12,用于补偿所述锁相放大器的放大能力,对所述第一弱电压信号进行放大得到第二弱电压信号;
有源滤波器13,用于对第二弱电压信号进行低通滤波后进行放大,得到第三弱电压信号;
衰减放大器14,用于将所述第三弱电压信号转换为第四弱电压信号;
模数转换器15,用于采集所述第四弱电压信号并转换为数字电压信号;
数模转换器16,用于将所述数字电压信号转换为模拟电压信号。
具体地,锁相放大器11用于放大光电导天线产生的微弱电流信号;前置放大电路12与锁相放大器11的输出信号相接,用于补偿锁相放大器11的放大能力;有源滤波器13与前置放大电路12的输出信号相接,用于低通滤波和电压放大;衰减放大器14和有源滤波器13的输出信号相接,用于精确的共模电平转换和单端至差分转换;模数转换器15和衰减放大器14相接,用于采集放大后的电压信号;数模转换器16和模数转换器15相接,用于将所述数字电压信号转换为模拟电压信号。
具体地,锁相放大器11与光电导天线相接,从光电导天线出来的微弱电流信号通过锁相放大器6之后变成弱电压信号(第一弱电压信号),然后前置放大器12对第一弱电压信号进一步补偿放大得到第二弱电压信号,之后进入有源低通滤波器13进行滤波得到第三弱电压信号,图2示出了太赫兹时域光谱信号采集波形图。为了使信号满量程的进入模数转换器,提高精度,滤波完的信号先进入衰减放大器14,将电压信号衰减成AD芯片输入满量程电压范围,并将单端信号转成差分信号得到第四弱电压信号,模数转换器15将模拟电压信号(第四弱电压信号)转换成数字电压信号,此过程由控制器(在图1中未示出)控制完成。控制器输出数字信号给数模转换器16,产生模拟信号,送至延时控制系统,用于给太赫兹泵浦光提供可控的延时。
在一个实施例中,所述锁相放大器用于接收来自光电导天线的微弱电流I,输出所述第一弱电压V=IR,R为所述锁相放大器的跨阻。
在一个实施例中,所述前置放大器采用单电源或双电源供电,能够驱动无限大容性负载的同时保持信号完整性。其中,前置放大器是一款低成本、低功耗、高速运算的放大器,采用单电源或双电源供电,有高输出电流驱动能力,因此能够驱动无限大容性负载的同时保持信号完整性。
在一个实施例中,所述有源滤波器通过KRC二阶低通滤波电路来实现低通滤波和电压放大功能。此滤波电路具有极低的失调电压、低输入偏置电流、低噪声、具备输入过压保护功能、过载恢复功能。
在一个实施例中,所述衰减放大器提供0.4倍和0.8倍的衰减系数,并且能够对共模电平转换,以及单端信号至差分信号的转换。
在一个实施例中,所述模数转换器为全差分18位逐次逼近型模数转换器,当基准电压源为4.096V时信噪比为98dB。
在一个实施例中,所述数模转换器采用施密特触发式输入,单电源供电,采取外部参考电压,单通道16位模数转换器,用来完成数模转换,给延时控制系统提供输入信号。
由此可见,在本申请实施例中的太赫兹时域光谱数据采集系统,包括:依次连接的锁相放大器、前置放大器、有源滤波器、衰减放大器、模数转换器和数模转换器;所述锁相放大器,用于放大光电导接收天线产生的微弱电流信号,输出第一弱电压信号;所述前置放大器,用于补偿所述锁相放大器的放大能力,对所述第一弱电压信号进行放大得到第二弱电压信号;所述有源滤波器,用于对第二弱电压信号进行低通滤波后进行放大,得到第三弱电压信号;所述衰减放大器,用于将所述第三弱电压信号转换为第四弱电压信号;所述模数转换器,用于采集所述第四弱电压信号并转换为数字电压信号;所述数模转换器,用于将所述数字电压信号转换为模拟电压信号。本申请实施例采用单板的设计实现太赫兹时域光谱数据采集,具备小型,快速,易于集成的特点,具有较强的易用性和实用性。
实施例二
本申请实施例提供一种太赫兹时域光谱数据采集系统。如图3所示,太赫兹时域光谱数据采集系统包括:
依次连接的锁相放大器11、前置放大器12、有源滤波器13、衰减放大器14、模数转换器15、数模转换器16、控制器17、计算机18、光电开关19和延时控制系统20。
在本申请实施例中,锁相放大器11,用于放大光电导接收天线产生的微弱电流信号,输出第一弱电压信号;
前置放大器12,用于补偿所述锁相放大器的放大能力,对所述第一弱电压信号进行放大得到第二弱电压信号;
有源滤波器13,用于对第二弱电压信号进行低通滤波后进行放大,得到第三弱电压信号;
衰减放大器14,用于将所述第三弱电压信号转换为第四弱电压信号;
模数转换器15,用于采集所述第四弱电压信号并转换为数字电压信号;
数模转换器16,用于将所述数字电压信号转换为模拟电压信号。
具体地,锁相放大器11与光电导天线相接,锁相放大器11用于放大光电导天线产生的微弱电流信号;前置放大电路12与锁相放大器11的输出信号相 接,用于补偿锁相放大器11的放大能;有源滤波器13与前置放大电路12的输出信号相接,用于低通滤波和电压放大;衰减放大器14和有源滤波器13的输出信号相接,用于精确的共模电平转换和单端至差分转换;模数转换器15和衰减放大器14相接,用于采集放大后的电压信号;数模转换器16和模数转换器15相接,用于将所述数字电压信号转换为模拟电压信号。控制器17,用于将模数转换器15采集到的数字电压信号传输至计算机18进行处理和显示。数模转换器16与激光器(图3中未示出)相接,输出模拟信号,用于控制闭环延时系统20。光电开关19与控制器17(图3中未示出)相接,用于通过控制电压实现激光器通路或开路,以对应控制激光器的开启或关闭。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。
Claims (20)
- 一种太赫兹时域光谱数据采集系统,其中,包括依次连接的锁相放大器、前置放大器、有源滤波器、衰减放大器、模数转换器和数模转换器;所述锁相放大器,用于放大光电导接收天线产生的微弱电流信号,输出第一弱电压信号;所述前置放大器,用于补偿所述锁相放大器的放大能力,对所述第一弱电压信号进行放大得到第二弱电压信号;所述有源滤波器,用于对第二弱电压信号进行低通滤波后进行放大,得到第三弱电压信号;所述衰减放大器,用于将所述第三弱电压信号转换为第四弱电压信号;所述模数转换器,用于采集所述第四弱电压信号并转换为数字电压信号;所述数模转换器,用于将所述数字电压信号转换为模拟电压信号;所述锁相放大器用于接收来自光电导天线的微弱电流I,输出所述第一弱电压V=IR,R为所述锁相放大器的跨阻;所述前置放大器采用单电源或双电源供电,能够驱动无限大容性负载的同时保持信号完整性。
- 如权利要求1所述的太赫兹时域光谱数据采集系统,其中,所述有源滤波器通过KRC二阶低通滤波电路来实现低通滤波和电压放大功能。
- 如权利要求1所述的太赫兹时域光谱数据采集系统,其中,所述衰减放大器提供0.4倍和0.8倍的衰减系数,并且能够对共模电平转换,以及单端信号至差分信号的转换。
- 如权利要求1所述的太赫兹时域光谱数据采集系统,其中,所述模数转换器为全差分18位逐次逼近型模数转换器,当基准电压源为4.096V时信噪比为98dB。
- 如权利要求1所述的太赫兹时域光谱数据采集系统,其中,所述数模转换器采用施密特触发式输入,单电源供电,采取外部参考电压,单通道16位模数转换器,用来完成数模转换,给延时控制系统提供输入信号。
- 如权利要求1所述的太赫兹时域光谱数据采集系统,其中,还包括:控制器,用于将采集到的所述数字电压信号传输至计算机进行处理和显示。
- 如权利要求8所述的太赫兹时域光谱数据采集系统,其中,还包括:与所述控制器通信连接的光电开关,用于通过控制电压实现激光器通路或开路,以对应控制激光器的开启或关闭。
- 如权利要求1所述的太赫兹时域光谱数据采集系统,其中,所述数模转换器还用于产生模拟信号,送至延时控制系统以控制所述延时控制系统。
- 如权利要求8所述的太赫兹时域光谱数据采集系统,其中,还包括:与所述数模转换器连接的所述延时控制系统,用于给太赫兹泵浦光提供可控的延时。
- 一种太赫兹时域光谱数据采集系统,其中,包括依次连接的锁相放大器、前置放大器、有源滤波器、衰减放大器、模数转换器和数模转换器;所述锁相放大器,用于放大光电导接收天线产生的微弱电流信号,输出第一弱电压信号;所述前置放大器,用于补偿所述锁相放大器的放大能力,对所述第一弱电压信号进行放大得到第二弱电压信号;所述有源滤波器,用于对第二弱电压信号进行低通滤波后进行放大,得到第三弱电压信号;所述衰减放大器,用于将所述第三弱电压信号转换为第四弱电压信号;所述模数转换器,用于采集所述第四弱电压信号并转换为数字电压信号;所述数模转换器,用于将所述数字电压信号转换为模拟电压信号。
- 如权利要10所述的太赫兹时域光谱数据采集系统,其中,所述锁相放大器用于接收来自光电导天线的微弱电流I,输出所述第一弱电压V=IR,R为 所述锁相放大器的跨阻。
- 如权利要10所述的太赫兹时域光谱数据采集系统,其中,所述前置放大器采用单电源或双电源供电,能够驱动无限大容性负载的同时保持信号完整性。
- 如权利要求10所述的太赫兹时域光谱数据采集系统,其中,所述有源滤波器通过KRC二阶低通滤波电路来实现低通滤波和电压放大功能。
- 如权利要求10所述的太赫兹时域光谱数据采集系统,其中,所述衰减放大器提供0.4倍和0.8倍的衰减系数,并且能够对共模电平转换,以及单端信号至差分信号的转换。
- 如权利要求10所述的太赫兹时域光谱数据采集系统,其中,所述模数转换器为全差分18位逐次逼近型模数转换器,当基准电压源为4.096V时信噪比为98dB。
- 如权利要求10所述的太赫兹时域光谱数据采集系统,其中,所述数模转换器采用施密特触发式输入,单电源供电,采取外部参考电压,单通道16位模数转换器,用来完成数模转换,给延时控制系统提供输入信号。
- 如权利要求10所述的太赫兹时域光谱数据采集系统,其中,还包括:控制器,用于将采集到的所述数字电压信号传输至计算机进行处理和显示。
- 如权利要求17所述的太赫兹时域光谱数据采集系统,其中,还包括:与所述控制器通信连接的光电开关,用于通过控制电压实现激光器通路或开路,以对应控制激光器的开启或关闭。
- 如权利要求10所述的太赫兹时域光谱数据采集系统,其中,所述数模转换器还用于输出模拟信号,以控制闭环延时控制系统。
- 如权利要求19所述的太赫兹时域光谱数据采集系统,其中,还包括:与所述数模转换器连接的所述闭环延时控制系统,用于给太赫兹泵浦光提供可控的延时。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810581358.6 | 2018-06-07 | ||
CN201810581358.6A CN109000793B (zh) | 2018-06-07 | 2018-06-07 | 一种太赫兹时域光谱数据采集系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019233033A1 true WO2019233033A1 (zh) | 2019-12-12 |
Family
ID=64600232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/114430 WO2019233033A1 (zh) | 2018-06-07 | 2018-11-07 | 一种太赫兹时域光谱数据采集系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109000793B (zh) |
WO (1) | WO2019233033A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112510352A (zh) * | 2020-11-04 | 2021-03-16 | 西南科技大学 | 一种微结构光电导天线太赫兹波辐射方法及系统 |
WO2024012018A1 (zh) * | 2022-07-14 | 2024-01-18 | 四川太赫兹通信有限公司 | 一种太赫兹频谱环境地图构建方法及设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101964633A (zh) * | 2010-10-22 | 2011-02-02 | 天津大学 | 用于探测太赫兹脉冲信号的锁相放大电路 |
CN201830211U (zh) * | 2010-10-22 | 2011-05-11 | 天津大学 | 采用cd552-r3芯片的锁相放大电路 |
CN103389161A (zh) * | 2013-07-30 | 2013-11-13 | 东莞理工学院 | 一种用于检测太赫兹弱信号的方法及锁相放大器装置 |
CN104833650A (zh) * | 2015-05-29 | 2015-08-12 | 南开大学 | 单光导天线的脉冲太赫兹时域光谱系统及探测方法 |
WO2016053049A1 (ko) * | 2014-10-02 | 2016-04-07 | 광주과학기술원 | 위상잡음 보상 방법을 이용한 광혼합 방식의 연속파 테라헤르츠 발생 및 검출 장치 |
CN107144545A (zh) * | 2017-06-09 | 2017-09-08 | 深圳市太赫兹科技创新研究院 | 全光纤式太赫兹时域光谱仪 |
-
2018
- 2018-06-07 CN CN201810581358.6A patent/CN109000793B/zh active Active
- 2018-11-07 WO PCT/CN2018/114430 patent/WO2019233033A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101964633A (zh) * | 2010-10-22 | 2011-02-02 | 天津大学 | 用于探测太赫兹脉冲信号的锁相放大电路 |
CN201830211U (zh) * | 2010-10-22 | 2011-05-11 | 天津大学 | 采用cd552-r3芯片的锁相放大电路 |
CN103389161A (zh) * | 2013-07-30 | 2013-11-13 | 东莞理工学院 | 一种用于检测太赫兹弱信号的方法及锁相放大器装置 |
WO2016053049A1 (ko) * | 2014-10-02 | 2016-04-07 | 광주과학기술원 | 위상잡음 보상 방법을 이용한 광혼합 방식의 연속파 테라헤르츠 발생 및 검출 장치 |
CN104833650A (zh) * | 2015-05-29 | 2015-08-12 | 南开大学 | 单光导天线的脉冲太赫兹时域光谱系统及探测方法 |
CN107144545A (zh) * | 2017-06-09 | 2017-09-08 | 深圳市太赫兹科技创新研究院 | 全光纤式太赫兹时域光谱仪 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112510352A (zh) * | 2020-11-04 | 2021-03-16 | 西南科技大学 | 一种微结构光电导天线太赫兹波辐射方法及系统 |
WO2024012018A1 (zh) * | 2022-07-14 | 2024-01-18 | 四川太赫兹通信有限公司 | 一种太赫兹频谱环境地图构建方法及设备 |
Also Published As
Publication number | Publication date |
---|---|
CN109000793A (zh) | 2018-12-14 |
CN109000793B (zh) | 2019-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7800439B2 (en) | High speed preamplifier circuit, detection electronics, and radiation detection systems therefrom | |
KR101701560B1 (ko) | 포토다이오드들에 대한 회로 아키텍처 | |
CN105300530A (zh) | 带有读出电路的太赫兹波探测器 | |
CN103023502A (zh) | 一种消除斩波纹波的方法及实现该方法的模数转换电路 | |
CN105286793B (zh) | 生理信号调理电路和生理信号采集系统 | |
WO2019233033A1 (zh) | 一种太赫兹时域光谱数据采集系统 | |
CN103259980B (zh) | 一种tdi ccd输出信号预处理器 | |
CN107014495A (zh) | 超短脉冲门控的高速低噪声单光子探测器 | |
CN218006205U (zh) | 光学采集放大电路及装置 | |
Liu et al. | Design of a prototype readout electronics with a few picosecond time resolution for MRPC detectors | |
CN117419805A (zh) | 一种微弱红外信号处理采集装置 | |
CN110278040A (zh) | 一种高速微弱光信号接收模块 | |
CN206804152U (zh) | 一种频率可调谐的单光子探测器 | |
CN116026215A (zh) | 基于石墨烯-锗基位置敏感探测器的光斑位置检测系统 | |
CN111404547A (zh) | 一种宽带毫米波信号模数转换方法及系统 | |
CN114136891A (zh) | 一种用于太赫兹光谱和成像系统的fA级微弱信号检测方法及装置 | |
CN216955713U (zh) | 一种太赫兹系统中自适应调整滤波带宽的信号直接采集装置 | |
CN112415539B (zh) | 一种星载大气激光雷达pmt探测装置 | |
CN113189046B (zh) | 一种微量气体浓度检测装置 | |
CN214372914U (zh) | 一种基于正交锁相放大技术的激光信号检测电路及装置 | |
CN214066924U (zh) | Ndir气体分析仪的多路信号采集及处理系统 | |
CN105938012B (zh) | 太赫兹探测装置 | |
CN113670345A (zh) | 一种用于光电流信号分解的低噪声光电探测装置 | |
CN217484155U (zh) | 用于太赫兹光谱和成像系统的fA级微弱信号检测装置 | |
Gasmi | A low-cost, ultra-fast and ultra-low noise preamplifier for silicon avalanche photodiodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18922013 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18922013 Country of ref document: EP Kind code of ref document: A1 |