WO2019231265A1 - Microfluidic chip for three-dimensional cell culturing and three-dimensional cell culturing method using same - Google Patents

Microfluidic chip for three-dimensional cell culturing and three-dimensional cell culturing method using same Download PDF

Info

Publication number
WO2019231265A1
WO2019231265A1 PCT/KR2019/006532 KR2019006532W WO2019231265A1 WO 2019231265 A1 WO2019231265 A1 WO 2019231265A1 KR 2019006532 W KR2019006532 W KR 2019006532W WO 2019231265 A1 WO2019231265 A1 WO 2019231265A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell culture
microfluidic chip
flow rate
cell
dimensional
Prior art date
Application number
PCT/KR2019/006532
Other languages
French (fr)
Korean (ko)
Inventor
문성환
Original Assignee
주종일
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주종일 filed Critical 주종일
Publication of WO2019231265A1 publication Critical patent/WO2019231265A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/16Microfluidic devices; Capillary tubes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • C12M3/06Tissue, human, animal or plant cell, or virus culture apparatus with filtration, ultrafiltration, inverse osmosis or dialysis means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0062General methods for three-dimensional culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2535/00Supports or coatings for cell culture characterised by topography

Definitions

  • the present invention relates to a three-dimensional cell culture microfluidic chip and a three-dimensional culture method of cells using the microfluidic chip.
  • the present invention has been made by the task number 2015M3A9C7030091 under the support of the Ministry of Science and ICT, the research management specialized organization of the task is the Korea Research Foundation, the research project name is “bio medical technology development project”, the research title is "human stem cell derived Establishment of Toxicity Evaluation Platform and Systematization of New Drug Candidates through Systematic Target Cell Production ", Organized by Konkuk University Global Industry-Academic Cooperation Group, Research Period ⁇ 2020.05.31.
  • the present invention was made by the task number 71500307 under the support of the Ministry of Agriculture, Food and rural Affairs of the Republic of Korea, the research and management agency of the project is the Ministry of Agriculture, Forestry and Food Technology Planning and Evaluation, the research project name is "Agriculture and Livestock Food Research Center Support Project”, and the research project name is "Establishment of high quality black cow production system using cell utilization technology", the host institution is the University-Industry Foundation of Cheju National University, and the research period is 2015.12.02. ⁇ 2022.12.01.
  • the present invention was made by the task number 2016M3A9B4919616 under the support of the Ministry of Science and Technology Information and Communication, the research management specialized organization of the project is the Korea Research Foundation, the research project name is “bio medical technology development project”, the research project title is “Biofunctionality Establishment of polymer-based stem cell mass production system ", host organization is Chungnam National University Industry-Academic Cooperation Group ⁇ 2021.03.31.
  • cultivation in a culture dish or flask differs from the three-dimensional soft environment in which cells proliferate in a living body by culturing cells in a two-dimensional hardness environment, and thus there is a risk of inducing denaturation of cultured cells. have.
  • uniform sized three-dimensional cross-linked alginate inverse opal scaffolds can be used to create uniform sized three-dimensional cells.
  • microfluidic platforms have recently been developed to produce cells of uniform size and shape, including array-well and channel platforms, all of which are advantageous in terms of producing cells of uniform size. It is difficult to control its size extensively, and the process is complicated.
  • the present inventors earnestly tried to develop a method for three-dimensional culture of cells with uniform size.
  • the present invention was completed by clarifying that the three-dimensional culture and maintenance effect of the cells is excellent when the cells are cultured under specific flow conditions using a cell culture support including a concave pattern.
  • Another object of the present invention is to provide a three-dimensional culture method of cells using a microfluidic chip for three-dimensional cell culture.
  • the present inventors earnestly tried to develop a method for three-dimensional culture of cells with uniform size. As a result, it was found that when the cells were cultured under specific flow conditions using a cell culture support including a concave pattern, the three-dimensional culture and maintenance effect of the cells was excellent.
  • the present invention relates to a three-dimensional culture method of cells using a microfluidic chip for three-dimensional cell culture and a microfluidic chip for three-dimensional cell culture.
  • One aspect of the present invention is a cell culture unit consisting of one or more cell culture support; An inlet connected to one side of the cell culture support for injecting the cell culture solution; A control part connected to the inlet part for injecting the cell culture fluid at a constant flow rate and flow rate; And an outlet portion connected to the other side of the cell culture support to recover the cell culture solution, wherein the cell culture support includes a concave pattern and each of the outlet portions connected to the one or more cell culture supports. Is in communication with each other relates to a three-dimensional cell culture microfluidic chip, characterized in that for recovering the cell culture.
  • the cell may include any cell as long as the cell requires culture in three dimensions.
  • the cells are, for example, embryonic stem cells (ESC), mesenchymal stem cells (MSC), endothelial progenitor cells (EPC), fibroblasts and keratin. It may be a cell (Keratinocyte), but is not limited thereto.
  • the flow rate (average) in the microfluidic chip is, for example, 0.001 to 0.5 mL / h, 0.010 to 0.5 mL / h, 0.010 to 0.4 mL / h, 0.010 to 0.3 mL / h, 0.010 to 0.2 mL / h, 0.015 to 0.2 mL / h, 0.015 to 0.1 mL / h, 0.02 to 0.1 mL / h, 0.02 to 0.1 mL / h, 0.02 to 0.09 mL / h, 0.03 to 0.09 mL / h, 0.03 to 0.08 mL / h, 0.04 To 0.08 mL / h, 0.04 to 0.07 mL / h, 0.05 to 0.07 mL / h, 0.05 to 0.06 mL / h, or 0.05 mL / h, but is not limited thereto.
  • the flow rate (average) in the microfluidic chip is, for example, 1 to 25 mm / h, 1 to 24 mm / h, 2 to 24 mm / h, 2 to 23 mm / h, 3 to 23 mm / h, 3 to 22 mm / h, 3 to 20 mm / h, 4 to 22 mm / h, 4 to 21 mm / h, 5 to 21 mm / h, 5 to 20 mm / h, 6 to 20 mm / h, 6 To 19 mm / h, 7 to 19 mm / h, 7 to 18 mm / h, 8 to 18 mm / h, 8 to 17 mm / h, 9 to 17 mm / h, 9 to 16 mm / h, 10 to 16 mm / h, 10 to 15 mm / h, 10 to 14 mm / h, 10 to 13 mm / h, 10 to 12 mm
  • the difference in velocity occurs at least two times in the center and the edge of the cell culture scaffold (cell culture part), and the difference in the degree of the cells absorbing nutrients from the injected cell culture solution. Since it occurs, it is difficult to see that all the cells in the cell culture support have been cultured in the same environment. In other words, when the flow rate is exceeded, a problem may arise in that growth rates of cells cultured in one cell culture support are different from each other.
  • concave refers to a concave shape of the surface, and specifically, to a hemisphere shape in which the surface is concave.
  • concave pattern refers to a plurality of concaves arranged in a predetermined direction.
  • the concave may be arranged multiseriate in the horizontal and vertical direction.
  • the concave pattern is arranged in multiple rows, and each row of the pattern may be specifically arranged in parallel.
  • parallel is meant to include not only complete parallelism, but also arranged at a level that can be viewed as being substantially parallel.
  • the diameter of the concave is, for example, 0.1 to 1.0 mm, 0.15 to 1.0 mm, 0.2 to 1.0 mm, 0.25 to 1.0 mm, 0.3 to 1.0 mm, 0.35 to 1.0 mm, 0.4 to 1.0 mm, 0.45 to 1.0 mm , 0.5 to 1.0 mm, 0.55 to 1.0 mm, 0.6 to 1.0 mm, 0.65 to 1.0 mm, 0.7 to 1.0 mm, 0.75 to 1.0 mm, 0.8 to 1.0 mm, 0.85 to 1.0 mm, 0.9 to 1.0 mm, 0.95 to 1.0 mm Or 0.3 mm, but is not limited thereto.
  • the cell growth rate can be maximized.
  • the size of embryonic bodies (EB) during the differentiation of cells is an important parameter for differentiation, the use of the optimal size of EB can improve the efficiency of differentiation into cells.
  • the diameter of the concave pattern included in the cell culture support for each cell may be different.
  • the diameter and spacing of the concave may be a length ratio of 1: 1 to 1.5.
  • the cell yield which is the rate at which cells are formed in three dimensions with respect to the supplied cells, can be maximized.
  • the number of the concave may be 1 to 34 in one direction, for example, 1 to 34 in the horizontal direction and 1 to 10 in the vertical direction, but is not limited thereto.
  • the horizontal-vertical ratio according to the number of the concave may vary depending on the microfluidic chip structure to be manufactured, and may be equally applied to each cell.
  • the cell culture support is polydimethylsiloxane (PDMS), glass, glass, and polystyrene-based plastic materials such as polystyrene, polycarbonate, polyethylene, and polypropylene. It may be, but is not limited thereto.
  • PDMS polydimethylsiloxane
  • glass glass
  • polystyrene-based plastic materials such as polystyrene, polycarbonate, polyethylene, and polypropylene. It may be, but is not limited thereto.
  • Another aspect of the invention relates to a three-dimensional cell culture method comprising the following steps.
  • the injection step may be to inject the cell culture at a constant flow rate and flow rate.
  • the cell may include any cell as long as the cell requires culture in three dimensions.
  • the cells are, for example, embryonic stem cells (ESC), mesenchymal stem cells (MSC), endothelial progenitor cells (EPC), fibroblasts and keratin. It may be a cell (Keratinocyte), but is not limited thereto.
  • the microfluidic chip according to the present invention is characterized by being capable of culturing and maintaining cells in three dimensions by injecting a cell culture solution into a cell culture support at a constant flow rate and flow rate.
  • the microfluidic chip according to the present invention can supply a culture medium at a low speed, thereby minimizing physical effects on the cells and continuously supplying a fresh medium to extend the culture period of the cells and increase the growth rate of the cells. It features.
  • FIG. 1 is a plan view schematically illustrating a microfluidic chip for three-dimensional cell culture according to an embodiment of the present invention. Specifically, FIG. 1A is a plan view illustrating a microfluidic chip including one cell culture support, and FIG. 1B is a plan view illustrating a microfluidic chip including three cell culture supports.
  • the three-dimensional cell culture microfluidic chip 1 according to an embodiment of the present invention, the cell culture unit 10, the inlet 20, the control unit 30 and the outlet 40 It may be configured to include.
  • Cell culture unit 10 may be configured to consist of one or more cell culture support (11). When composed of one or more cell culture supports, each cell culture support may be configured to be connected in parallel.
  • the cell culture support may comprise a concave pattern.
  • the concave pattern may include a plurality of concave arranged in a predetermined direction.
  • the concave may be arranged multiseriate in the horizontal and vertical direction.
  • the diameter of the concave is, for example, 0.1 to 1.0 mm, 0.15 to 1.0 mm, 0.2 to 1.0 mm, 0.25 to 1.0 mm, 0.3 to 1.0 mm, 0.35 to 1.0 mm, 0.4 to 1.0 mm, 0.45 to 1.0 mm , 0.5 to 1.0 mm, 0.55 to 1.0 mm, 0.6 to 1.0 mm, 0.65 to 1.0 mm, 0.7 to 1.0 mm, 0.75 to 1.0 mm, 0.8 to 1.0 mm, 0.85 to 1.0 mm, 0.9 to 1.0 mm, 0.95 to 1.0 mm Or 0.3 mm, but is not limited thereto.
  • the cell growth rate can be maximized.
  • the diameter and spacing of the concave may be a length ratio of 1: 1 to 1.5.
  • the cell yield which is the rate at which cells are formed in three dimensions with respect to the supplied cells, can be maximized.
  • the number of the concave may be 1 to 34 in one direction, for example, 1 to 34 in the horizontal direction and 1 to 10 in the vertical direction, but is not limited thereto.
  • the horizontal-vertical ratio according to the number of the concave may vary depending on the microfluidic chip structure to be manufactured, and may be equally applied to each cell.
  • the cell culture support is polydimethylsiloxane (PDMS), glass, glass, and polystyrene-based plastic materials such as polystyrene, polycarbonate, polyethylene, and polypropylene. It may be, but is not limited thereto.
  • PDMS polydimethylsiloxane
  • glass glass
  • polystyrene-based plastic materials such as polystyrene, polycarbonate, polyethylene, and polypropylene. It may be, but is not limited thereto.
  • the inlet 20 is an injection port for injecting the cell culture solution, and may be configured to be connected to one side of the cell culture support.
  • the tube connecting the inlet and the cell culture support may be made of a pipe (tube) structure, the outer diameter (outer diameter) of 1 to 1.5 mm, the inner diameter (inner diameter) may be 0.1 to 0.5 mm.
  • the invention is carried out within the outer / inner diameter range of the tube described above, there is an advantage that the cell culture solution can be injected under the flow conditions (flow rate and flow rate).
  • the material of the tube may include any material used to manufacture a tube in the art.
  • the control unit 30 is configured to inject the cell culture fluid at a constant flow rate and flow rate, and may be configured to be connected to the inlet.
  • the flow rate (average) in the microfluidic chip is, for example, 0.001 to 0.5 mL / h, 0.010 to 0.5 mL / h, 0.010 to 0.4 mL / h, 0.010 to 0.3 mL / h, 0.010 to 0.2 mL / h, 0.015 to 0.2 mL / h, 0.015 to 0.1 mL / h, 0.02 to 0.1 mL / h, 0.02 to 0.1 mL / h, 0.02 to 0.09 mL / h, 0.03 to 0.09 mL / h, 0.03 to 0.08 mL / h, 0.04 To 0.08 mL / h, 0.04 to 0.07 mL / h, 0.05 to 0.07 mL / h, 0.05 to 0.06 mL / h, or 0.05 mL / h, but is not limited thereto.
  • the flow rate (average) in the microfluidic chip is, for example, 1 to 25 mm / h, 1 to 24 mm / h, 2 to 24 mm / h, 2 to 23 mm / h, 3 to 23 mm / h, 3 to 22 mm / h, 3 to 20 mm / h, 4 to 22 mm / h, 4 to 21 mm / h, 5 to 21 mm / h, 5 to 20 mm / h, 6 to 20 mm / h, 6 To 19 mm / h, 7 to 19 mm / h, 7 to 18 mm / h, 8 to 18 mm / h, 8 to 17 mm / h, 9 to 17 mm / h, 9 to 16 mm / h, 10 to 16 mm / h, 10 to 15 mm / h, 10 to 14 mm / h, 10 to 13 mm / h, 10 to 12 mm
  • the outlet portion 40 is an outlet for recovering the cell culture solution, and may be configured to be connected to the other side of the cell culture support.
  • the tube connecting the outlet and the cell culture support may be made of a pipe (tube) structure, the outer diameter (outer diameter) of 1 to 1.5 mm, the inner diameter (inner diameter) may be 0.1 to 0.5 mm.
  • the invention is carried out within the outer / inner diameter range of the tube described above, there is an advantage that the cell culture solution can be injected under the flow conditions (flow rate and flow rate).
  • the material of the tube may include any material used to manufacture a tube in the art.
  • each of the outlet portions connected to the cell culture support may be in communication with each other to recover the cell culture solution.
  • the present invention relates to a three-dimensional culture method of cells using a three-dimensional cell culture microfluidic chip and a three-dimensional cell culture microfluidic chip, wherein the three-dimensional cell culture microfluidic chip is a cell containing a concave pattern
  • the three-dimensional cell culture microfluidic chip is a cell containing a concave pattern
  • FIG. 1A is a plan view schematically illustrating a three-dimensional cell culture microfluidic chip according to an embodiment of the present invention, and is a plan view schematically illustrating a microfluidic chip including one cell culture support.
  • Figure 1b is a plan view of the three-dimensional cell culture microfluidic chip according to an embodiment of the present invention, a plan view of a microfluidic chip containing three cell culture support.
  • FIG. 2 is a diagram (unit: mm, R: radius) of an entire modeling shape for deriving an optimal flow condition according to an exemplary embodiment of the present invention.
  • FIG 3 is a view showing the final modeling shape of the concave pattern for deriving the optimum flow conditions according to an experimental example of the present invention.
  • Figure 4a is a diagram confirming the velocity distribution when the flow rate is 0.1 mL / h, in order to derive the optimum flow conditions according to an experimental example of the present invention.
  • Figure 4b is a diagram confirming the velocity distribution when the flow rate is 0.05 mL / h, in order to derive the optimum flow conditions according to an experimental example of the present invention.
  • Figure 4c is a diagram confirming the velocity distribution when the flow rate is 0.015 mL / h, in order to derive the optimum flow conditions according to an experimental example of the present invention.
  • Figure 5a is a diagram confirming the local velocity distribution at the inlet and outlet when the flow rate is 0.1 mL / h, in order to derive the optimum flow conditions according to an experimental example of the present invention.
  • Figure 5b is a diagram confirming the local velocity distribution at the inlet and outlet when the flow rate is 0.05 mL / h, in order to derive the optimum flow conditions according to an experimental example of the present invention.
  • Figure 5c is a diagram confirming the local velocity distribution at the inlet and outlet when the flow rate is 0.015 mL / h, in order to derive the optimum flow conditions according to an experimental example of the present invention.
  • Figure 6a shows the local velocity distribution at the inlet side when the flow rate is 0.1 mL / h, 0.05 mL / h and 0.015 mL / h in order to derive the optimum flow conditions according to an experimental example of the present invention It is also.
  • Figure 6b is a side view of the local velocity distribution at the outlet when the flow rate is 0.1 mL / h, 0.05 mL / h and 0.015 mL / h in order to derive the optimum flow conditions according to an experimental example of the present invention It is also.
  • Figure 7a is a diagram confirming the shear stress (Shear stress) at the inlet in order to derive the optimum flow conditions according to an experimental example of the present invention.
  • Figure 7b is a diagram confirming the shear stress (Shear stress) at the outlet in order to derive the optimum flow conditions according to an experimental example of the present invention.
  • FIG. 8 is a view evaluating the effectiveness of the three-dimensional cell culture microfluidic chip according to an embodiment of the present invention.
  • Concave patterns included in the cell culture support were prepared by known methods (Moon et al., Optimizing human embryonic stem cells differentiation efficiency by screening size-tunable homogenous embryoid bodies, Biomaterials, 2014; 35: 5987-97. ).
  • modeling shapes of cell culture scaffolds containing concave patterns were prepared (see FIG. 1). At this time, the cells are cultured in a three-dimensional spheroid (spheroid) form in the concave pattern of the cell culture support, it was used in the modeling shape by proceeding to simplify the form (see Fig. 2).
  • Shaped concave (cell) diameter 0.3 mm
  • Optimum flow conditions refer to conditions that exhibit the maximum flow rate with minimal effect on the cell.
  • the velocity distribution was the fastest distribution at the flow rate 0.1 mL / h, there was a difference in the flow rate distribution of the upper and bottom layers, a medium distribution at the flow rate 0.05 mL / h, and a flow rate of 0.015
  • the slowest flow at mL / h shows that the flow rate distributions of the top and bottom layers are almost identical.
  • the local velocity distribution on the side of the inlet and outlet is the fastest distribution at the flow rate 0.1 mL / h
  • the median distribution and the slowest flow at a flow rate of 0.015 mL / h indicated that the flow rates of the top and bottom layers were nearly identical.
  • the optimum flow condition was a rate of 22 mm / h to 3 mm / h at a flow rate of 0.1 to 0.015 mL / h.
  • a cell culture support was prepared, and the five cell culture supports were connected to prepare a microfluidic chip.
  • DiO Lipophilic Tracers; DiO, THERMO FISHER, USA
  • human Adipose-derived Mesenchymal stem cells human AD-MSC, LONZA, Swiss
  • DMEM Dulbecco's Modified Eagle's medium
  • FBS Fetal bovine serum
  • PS Penicillin-streptomycin
  • ⁇ -mercaptoethanol ⁇ -mercaptoethanol
  • the present invention relates to a three-dimensional cell culture microfluidic chip and a three-dimensional culture method of cells using the microfluidic chip.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Water Supply & Treatment (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a microfluidic chip for three-dimensional cell culturing and a three-dimensional cell culturing method using the microfluidic chip for three-dimensional cell culturing. As the microfluidic chip for three-dimensional cell culturing comprises a cell culture support having a concave pattern, the microfluidic chip has excellent three-dimensional culturing of and maintenance effect on a cell when the cell is cultured under a specific flow condition. Accordingly, the microfluidic chip can be effectively used for three-dimensional cell culturing.

Description

3 차원 세포 배양용 미세유체칩 및 이를 이용한 3 차원 세포 배양방법Microfluidic chip for 3D cell culture and 3D cell culture method using the same
본 발명은 3 차원 세포 배양용 미세유체칩 및 상기 미세유체칩을 이용한 세포의 3 차원 배양방법에 관한 것이다.The present invention relates to a three-dimensional cell culture microfluidic chip and a three-dimensional culture method of cells using the microfluidic chip.
본 발명은 대한민국 과학기술정보통신부의 지원 하에서 과제번호 2015M3A9C7030091에 의해 이루어진 것으로서, 상기 과제의 연구관리전문기관은 한국연구재단, 연구사업명은 "바이오의료기술개발사업", 연구과제명은 "인간줄기세포유래 타켓세포 생산 체계화를 통한 독성평가 플랫폼 구축 및 신약 후보물질 발굴", 주관기관은 건국대학교 글로컬산학협력단, 연구기간은 2015.06.01. ~ 2020.05.31.이다. 또한, 본 발명은 대한민국 농림축산식품부의 지원 하에서 과제번호 71500307에 의해 이루어진 것으로서, 상기 과제의 연구관리전문기관은 농림식품기술기획평가원, 연구사업명은 "농림축산식품연구센터지원사업", 연구과제명은 "세포 활용 기술을 이용한 고품질 흑우 생산 시스템 구축", 주관기관은 제주대학교 산학협력단, 연구기간은 2015.12.02. ~ 2022.12.01.이다. 또한, 본 발명은 대한민국 과학기술정보통신부의 지원 하에서 과제번호 2016M3A9B4919616에 의해 이루어진 것으로서, 상기 과제의 연구관리전문기관은 한국연구재단, 연구사업명은 "바이오의료기술개발사업", 연구과제명은 "생기능성 고분자 기반 줄기세포 대량생산 시스템 구축", 주관기관은 충남대학교 산학협력단, 연구기간은 2016.07.01. ~ 2021.03.31.이다.The present invention has been made by the task number 2015M3A9C7030091 under the support of the Ministry of Science and ICT, the research management specialized organization of the task is the Korea Research Foundation, the research project name is "bio medical technology development project", the research title is "human stem cell derived Establishment of Toxicity Evaluation Platform and Systematization of New Drug Candidates through Systematic Target Cell Production ", Organized by Konkuk University Global Industry-Academic Cooperation Group, Research Period ~ 2020.05.31. In addition, the present invention was made by the task number 71500307 under the support of the Ministry of Agriculture, Food and Rural Affairs of the Republic of Korea, the research and management agency of the project is the Ministry of Agriculture, Forestry and Food Technology Planning and Evaluation, the research project name is "Agriculture and Livestock Food Research Center Support Project", and the research project name is "Establishment of high quality black cow production system using cell utilization technology", the host institution is the University-Industry Foundation of Cheju National University, and the research period is 2015.12.02. ~ 2022.12.01. In addition, the present invention was made by the task number 2016M3A9B4919616 under the support of the Ministry of Science and Technology Information and Communication, the research management specialized organization of the project is the Korea Research Foundation, the research project name is "bio medical technology development project", the research project title is "Biofunctionality Establishment of polymer-based stem cell mass production system ", host organization is Chungnam National University Industry-Academic Cooperation Group ~ 2021.03.31.
본 특허출원은 2018년 6월 1일에 대한민국 특허청에 제출된 대한민국 특허출원 제10-2018-0063732호에 대하여 우선권을 주장하며, 상기 특허출원의 개시 사항은 본 명세서에 참조로서 삽입된다.This patent application claims priority to Korean Patent Application No. 10-2018-0063732 filed with the Korean Patent Office on June 1, 2018, the disclosure of which is hereby incorporated by reference.
세포치료법이나 약물전달을 비롯한 임상응용을 위해서는 대량의 세포가 필요한데, 일반적인 배양방법으로 세포를 배양할 경우 많은 양의 배양접시나 플라스크를 사용하여야 한다.Clinical applications, including cell therapy and drug delivery, require large numbers of cells. When culturing cells in a general culture method, a large amount of culture dish or flask must be used.
그러나, 배양접시나 플라스크에서의 배양은 2 차원인 경도의 환경에서 세포를 배양하여, 실제 생체 내에서 세포가 증식하는 3 차원의 연성의 환경과 차이가 있어 배양된 세포의 변성을 유도할 위험성이 있다.However, cultivation in a culture dish or flask differs from the three-dimensional soft environment in which cells proliferate in a living body by culturing cells in a two-dimensional hardness environment, and thus there is a risk of inducing denaturation of cultured cells. have.
이러한 위험성을 줄이기 위하여 여러 가지의 3 차원 세포 배양방법이 개발되었다. 예를 들어, 균일한 크기의 3 차원 교차-결합된 알지네이트 역 오팔(alginate inverse opal) 스캐폴드를 이용하면 균일한 크기의 3 차원 세포를 생성할 수 있다.To reduce this risk, several three-dimensional cell culture methods have been developed. For example, uniform sized three-dimensional cross-linked alginate inverse opal scaffolds can be used to create uniform sized three-dimensional cells.
그러나, 이러한 스캐폴드는 균일한 크기의 세포 생성 측면에서는 유리하지만, 그 과정에서 스캐폴드의 붕괴가 필요하기 때문에 생성된 세포의 회수가 어려운 문제가 있다.However, although such scaffolds are advantageous in terms of producing cells of uniform size, there is a problem that recovery of generated cells is difficult because the scaffolds need to be collapsed in the process.
또한, 균일한 크기 및 모양의 세포를 생성하기 위하여 최근 어레이-웰(array-well) 및 채널 플랫폼을 포함하여 몇 가지 미세유체 플랫폼이 개발되었으나, 이들 모두 균일한 크기의 세포 생성 측면에서는 유리하지만, 그 크기를 광범위하게 제어하는 것이 어렵고, 그 과정이 복잡한 문제가 있다.In addition, several microfluidic platforms have recently been developed to produce cells of uniform size and shape, including array-well and channel platforms, all of which are advantageous in terms of producing cells of uniform size. It is difficult to control its size extensively, and the process is complicated.
이에 따라, 세포를 다양한 범위의 균일한 크기로 3 차원 배양하는 방법에 관한 기술의 개발이 시급하다.Accordingly, there is an urgent need to develop a technique relating to a method of three-dimensional culture of cells in a uniform size in a wide range.
본 발명자들은 세포를 균일한 크기로 3 차원 배양하기 위한 방법을 개발하고자 예의 연구 노력하였다. 그 결과, 콘케이브(concave)형 패턴을 포함하는 세포 배양 지지체를 사용하여 세포를 특정 유동 조건으로 배양하는 경우, 세포의 3 차원 배양 및 유지 효과가 우수함을 규명함으로써, 본 발명을 완성하게 되었다.The present inventors earnestly tried to develop a method for three-dimensional culture of cells with uniform size. As a result, the present invention was completed by clarifying that the three-dimensional culture and maintenance effect of the cells is excellent when the cells are cultured under specific flow conditions using a cell culture support including a concave pattern.
따라서, 본 발명의 목적은 3 차원 세포 배양용 미세유체칩을 제공하는 것이다.Accordingly, it is an object of the present invention to provide a microfluidic chip for three-dimensional cell culture.
본 발명의 다른 목적은 3 차원 세포 배양용 미세유체칩을 이용한 세포의 3 차원 배양방법을 제공하는 것이다.Another object of the present invention is to provide a three-dimensional culture method of cells using a microfluidic chip for three-dimensional cell culture.
본 발명자들은 세포를 균일한 크기로 3 차원 배양하기 위한 방법을 개발하고자 예의 연구 노력하였다. 그 결과, 콘케이브형 패턴을 포함하는 세포 배양 지지체를 사용하여 세포를 특정 유동 조건에서 배양하는 경우, 세포의 3 차원 배양 및 유지 효과가 우수함을 규명하였다.The present inventors earnestly tried to develop a method for three-dimensional culture of cells with uniform size. As a result, it was found that when the cells were cultured under specific flow conditions using a cell culture support including a concave pattern, the three-dimensional culture and maintenance effect of the cells was excellent.
본 발명은 3 차원 세포 배양용 미세유체칩 및 3 차원 세포 배양용 미세유체칩을 이용한 세포의 3 차원 배양방법에 관한 것이다.The present invention relates to a three-dimensional culture method of cells using a microfluidic chip for three-dimensional cell culture and a microfluidic chip for three-dimensional cell culture.
이하, 본 발명을 더욱 자세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail.
본 발명의 일 양태는 하나 이상의 세포 배양 지지체로 이루어진 세포 배양부; 세포 배양액을 주입하기 위하여 상기 세포 배양 지지체의 일측에 연결된 입구부; 세포 배양액을 일정한 유량 및 유속으로 주입하기 위하여 상기 입구부에 연결된 컨드롤부; 및 세포 배양액을 회수하기 위하여 상기 세포 배양 지지체의 다른 일측에 연결된 출구부;를 구비하고, 상기 세포 배양 지지체는 콘케이브(concave)형 패턴을 포함하고, 상기 하나 이상의 세포 배양 지지체에 연결된 출구부들 각각은 서로 연통되어 세포 배양액을 회수하는 것을 특징으로 하는 3 차원 세포 배양용 미세유체칩에 관한 것이다.One aspect of the present invention is a cell culture unit consisting of one or more cell culture support; An inlet connected to one side of the cell culture support for injecting the cell culture solution; A control part connected to the inlet part for injecting the cell culture fluid at a constant flow rate and flow rate; And an outlet portion connected to the other side of the cell culture support to recover the cell culture solution, wherein the cell culture support includes a concave pattern and each of the outlet portions connected to the one or more cell culture supports. Is in communication with each other relates to a three-dimensional cell culture microfluidic chip, characterized in that for recovering the cell culture.
상기 세포는 당업계에서 3 차원으로 배양이 필요한 세포라면 어떠한 세포도 포함할 수 있다.The cell may include any cell as long as the cell requires culture in three dimensions.
상기 세포는, 예를 들어, 배아줄기세포(Embryonic stem cell; ESC), 중간엽줄기세포(Mesenchymal stem cell; MSC), 혈관내피전구세포(Endothelial progenitor cell, EPC), 섬유아세포(Fibroblast) 및 케라틴세포(Keratinocyte) 일 수 있으나, 이에 한정되지 않는다.The cells are, for example, embryonic stem cells (ESC), mesenchymal stem cells (MSC), endothelial progenitor cells (EPC), fibroblasts and keratin. It may be a cell (Keratinocyte), but is not limited thereto.
상기 미세유체칩에서 유량(평균)은, 예를 들어, 0.001 내지 0.5 mL/h, 0.010 내지 0.5 mL/h, 0.010 내지 0.4 mL/h, 0.010 내지 0.3 mL/h, 0.010 내지 0.2 mL/h, 0.015 내지 0.2 mL/h, 0.015 내지 0.1 mL/h, 0.02 내지 0.1 mL/h, 0.02 내지 0.1 mL/h, 0.02 내지 0.09 mL/h, 0.03 내지 0.09 mL/h, 0.03 내지 0.08 mL/h, 0.04 내지 0.08 mL/h, 0.04 내지 0.07 mL/h, 0.05 내지 0.07 mL/h, 0.05 내지 0.06 mL/h 또는 0.05 mL/h 일 수 있으나, 이에 한정되는 것은 아니다.The flow rate (average) in the microfluidic chip is, for example, 0.001 to 0.5 mL / h, 0.010 to 0.5 mL / h, 0.010 to 0.4 mL / h, 0.010 to 0.3 mL / h, 0.010 to 0.2 mL / h, 0.015 to 0.2 mL / h, 0.015 to 0.1 mL / h, 0.02 to 0.1 mL / h, 0.02 to 0.1 mL / h, 0.02 to 0.09 mL / h, 0.03 to 0.09 mL / h, 0.03 to 0.08 mL / h, 0.04 To 0.08 mL / h, 0.04 to 0.07 mL / h, 0.05 to 0.07 mL / h, 0.05 to 0.06 mL / h, or 0.05 mL / h, but is not limited thereto.
상기 미세유체칩에서 유속(평균)은, 예를 들어, 1 내지 25 mm/h, 1 내지 24 mm/h, 2 내지 24 mm/h, 2 내지 23 mm/h, 3 내지 23 mm/h, 3 내지 22 mm/h, 3 내지 20 mm/h, 4 내지 22 mm/h, 4 내지 21 mm/h, 5 내지 21 mm/h, 5 내지 20 mm/h, 6 내지 20 mm/h, 6 내지 19 mm/h, 7 내지 19 mm/h, 7 내지 18 mm/h, 8 내지 18 mm/h, 8 내지 17 mm/h, 9 내지 17 mm/h, 9 내지 16 mm/h, 10 내지 16 mm/h, 10 내지 15 mm/h, 10 내지 14 mm/h, 10 내지 13 mm/h, 10 내지 12 mm/h, 10 내지 11 mm/h 또는 10 mm/h 일 수 있으나, 이에 한정되는 것은 아니다.The flow rate (average) in the microfluidic chip is, for example, 1 to 25 mm / h, 1 to 24 mm / h, 2 to 24 mm / h, 2 to 23 mm / h, 3 to 23 mm / h, 3 to 22 mm / h, 3 to 20 mm / h, 4 to 22 mm / h, 4 to 21 mm / h, 5 to 21 mm / h, 5 to 20 mm / h, 6 to 20 mm / h, 6 To 19 mm / h, 7 to 19 mm / h, 7 to 18 mm / h, 8 to 18 mm / h, 8 to 17 mm / h, 9 to 17 mm / h, 9 to 16 mm / h, 10 to 16 mm / h, 10 to 15 mm / h, 10 to 14 mm / h, 10 to 13 mm / h, 10 to 12 mm / h, 10 to 11 mm / h or 10 mm / h, but is not limited thereto. It doesn't happen.
상술한 유동 조건(유량 및 유속) 내에서 발명을 실시하는 경우, 세포 배양액 공급 시 세포에 가해지는 물리적 영향, 즉 전단응력(shear stress)으로 인한 영향이 최소화 될 수 있다.When the invention is carried out in the above-described flow conditions (flow rate and flow rate), the physical effect applied to the cell when supplying the cell culture solution, that is, the effect due to shear stress can be minimized.
특히, 상기 유속 범위를 초과하는 경우 세포 배양 지지체(세포배양부)의 가운데 부분과 가장자리 부분에서 속도가 최소 2배 이상 차이가 발생하게 되어, 주입되는 세포 배양액으로부터 세포들이 영양분을 흡수하는 정도의 차이가 발생하게 되므로, 세포 배양 지지체 내 모든 세포가 동일한 환경에서 배양이 이루어졌다고 보기 어렵게 되는 문제가 있다. 다시 말해, 상기 유속 범위를 초과하는 경우 하나의 세포 배양 지지체 내에서 배양된 세포들의 생장률이 서로 달라지는 문제가 발생할 수 있다.In particular, if the flow rate is exceeded, the difference in velocity occurs at least two times in the center and the edge of the cell culture scaffold (cell culture part), and the difference in the degree of the cells absorbing nutrients from the injected cell culture solution. Since it occurs, it is difficult to see that all the cells in the cell culture support have been cultured in the same environment. In other words, when the flow rate is exceeded, a problem may arise in that growth rates of cells cultured in one cell culture support are different from each other.
본 명세서에서 "콘케이브(concave)"는 표면이 오목(凹)한 형태를 의미하며, 구체적으로는 표면이 오목한 반구 형태를 의미한다.As used herein, "concave" refers to a concave shape of the surface, and specifically, to a hemisphere shape in which the surface is concave.
본 명세서에서 "콘케이브형 패턴"은 일정 방향으로 배열된 복수개의 콘케이브를 의미한다.As used herein, the term "concave pattern" refers to a plurality of concaves arranged in a predetermined direction.
상기 콘케이브는 가로 세로 방향으로 다열(multiseriate) 배열될 수 있다. 콘케이브형 패턴은 다열 배열되는 것으로서, 패턴의 각 열은, 구체적으로는 평행하게 배열될 수 있다. 본 명세서에서 "평행"은 완전한 평행뿐만 아니라 실질적으로 평행하다고 볼 수 있는 수준으로 배열된 것까지 포함하는 의미이다.The concave may be arranged multiseriate in the horizontal and vertical direction. The concave pattern is arranged in multiple rows, and each row of the pattern may be specifically arranged in parallel. As used herein, "parallel" is meant to include not only complete parallelism, but also arranged at a level that can be viewed as being substantially parallel.
상기 콘케이브의 직경은, 예를 들어, 0.1 내지 1.0 mm, 0.15 내지 1.0 mm, 0.2 내지 1.0 mm, 0.25 내지 1.0 mm, 0.3 내지 1.0 mm, 0.35 내지 1.0 mm, 0.4 내지 1.0 mm, 0.45 내지 1.0 mm, 0.5 내지 1.0 mm, 0.55 내지 1.0 mm, 0.6 내지 1.0 mm, 0.65 내지 1.0 mm, 0.7 내지 1.0 mm, 0.75 내지 1.0 mm, 0.8 내지 1.0 mm, 0.85 내지 1.0 mm, 0.9 내지 1.0 mm, 0.95 내지 1.0 mm 또는 0.3 mm 일 수 있으나, 이에 한정되는 것은 아니다. The diameter of the concave is, for example, 0.1 to 1.0 mm, 0.15 to 1.0 mm, 0.2 to 1.0 mm, 0.25 to 1.0 mm, 0.3 to 1.0 mm, 0.35 to 1.0 mm, 0.4 to 1.0 mm, 0.45 to 1.0 mm , 0.5 to 1.0 mm, 0.55 to 1.0 mm, 0.6 to 1.0 mm, 0.65 to 1.0 mm, 0.7 to 1.0 mm, 0.75 to 1.0 mm, 0.8 to 1.0 mm, 0.85 to 1.0 mm, 0.9 to 1.0 mm, 0.95 to 1.0 mm Or 0.3 mm, but is not limited thereto.
상술한 콘케이브의 직경 내에서 발명을 실시하는 경우, 세포 생장율이 극대화 될 수 있다. When the invention is carried out within the diameter of the above-mentioned concave, the cell growth rate can be maximized.
구체적으로, 콘케이브의 직경이 상기 범위를 초과하는 경우 3 차원 배양된 세포들이 세포괴사(necrocytosis)되는 문제가 있고, 콘케이브 직경이 상기 범위 미만인 경우 세포의 3 차원 배양 자체가 불가능한 문제가 있다.Specifically, when the diameter of the concave exceeds the above range, three-dimensional cultured cells have a problem of cell necrosis (necrocytosis), and when the diameter of the concave is less than the above range, there is a problem that the three-dimensional culture of the cells itself is impossible.
특히, 세포의 분화 과정 중 배상체(embryoid bodies; EB)의 크기는 분화에 있어 중요한 매개 변수로, 최적 크기의 EB 사용이 세포로의 분화 효율을 향상 시킬 수 있다. 또한, 상이한 세포주는 상이한 최적의 EB 크기를 가지므로, 분화 효율을 향상시키기 위하여 세포 별로 EB 크기를 제어할 필요가 있다. 따라서, 세포 별로 세포 배양 지지체에 포함된 콘케이브형 패턴의 직경이 상이할 수 있다. 상술한 콘케이브의 직경 내에서 발명을 실시하는 경우, 세포 생장율이 극대화 될 수 있다.In particular, the size of embryonic bodies (EB) during the differentiation of cells is an important parameter for differentiation, the use of the optimal size of EB can improve the efficiency of differentiation into cells. In addition, since different cell lines have different optimal EB sizes, it is necessary to control the EB size on a cell-by-cell basis to improve differentiation efficiency. Therefore, the diameter of the concave pattern included in the cell culture support for each cell may be different. When the invention is carried out within the diameter of the above-mentioned concave, the cell growth rate can be maximized.
상기 콘케이브의 직경 및 간격은 그 길이비가 1: 1 내지 1.5 일 수 있다.The diameter and spacing of the concave may be a length ratio of 1: 1 to 1.5.
상술한 콘케이브의 직경 및 간격 내에서 발명을 실시하는 경우, 공급된 세포에 대하여 3 차원으로 세포가 형성되는 비율인 세포 수율이 극대화 될 수 있다.When the invention is carried out within the diameter and spacing of the above-mentioned concave, the cell yield, which is the rate at which cells are formed in three dimensions with respect to the supplied cells, can be maximized.
상기 콘케이브의 개수는 일 방향으로 1 내지 34 개, 예를 들어, 가로 방향으로 1 내지 34 개 및 세로 방향으로 1 내지 10 개 일 수 있으나, 이에 한정되는 것은 아니다.The number of the concave may be 1 to 34 in one direction, for example, 1 to 34 in the horizontal direction and 1 to 10 in the vertical direction, but is not limited thereto.
상기 콘케이브의 개수에 따른 가로-세로 비율은 제작하는 미세유체칩 구조에 따라 달라질 수 있으며, 세포마다 동일하게 적용 가능하다.The horizontal-vertical ratio according to the number of the concave may vary depending on the microfluidic chip structure to be manufactured, and may be equally applied to each cell.
상기 세포 배양 지지체는 폴리다이메틸실록산(Polydimethylsiloxane; PDMS), 유리(Glass), 및 폴리스티렌(Polystyrene), 폴리카보네이트(Polycarbonate), 폴리에틸렌(Polyethylene) 및 폴리프로필렌(Polypropylene) 등 폴리(Poly) 계열 플라스틱 재질일 수 있으나, 이에 한정되는 것은 아니다.The cell culture support is polydimethylsiloxane (PDMS), glass, glass, and polystyrene-based plastic materials such as polystyrene, polycarbonate, polyethylene, and polypropylene. It may be, but is not limited thereto.
본 발명의 다른 일 양태는 다음 단계를 포함하는 세포 3 차원 배양방법에 관한 것이다.Another aspect of the invention relates to a three-dimensional cell culture method comprising the following steps.
세포 배양 지지체를 포함하는 세포 배양용 미세유체칩 준비 단계; 및Preparing a microfluidic chip for cell culture comprising a cell culture support; And
미세유체칩에 세포 배양액을 주입하는 주입 단계.Injecting the cell culture solution to the microfluidic chip.
상기 주입 단계는 세포 배양액을 일정한 유량 및 유속으로 주입하는 것일 수 있다.The injection step may be to inject the cell culture at a constant flow rate and flow rate.
상기 세포는 당업계에서 3 차원으로 배양이 필요한 세포라면 어떠한 세포도 포함할 수 있다.The cell may include any cell as long as the cell requires culture in three dimensions.
상기 세포는, 예를 들어, 배아줄기세포(Embryonic stem cell; ESC), 중간엽줄기세포(Mesenchymal stem cell; MSC), 혈관내피전구세포(Endothelial progenitor cell, EPC), 섬유아세포(Fibroblast) 및 케라틴세포(Keratinocyte) 일 수 있으나, 이에 한정되지 않는다.The cells are, for example, embryonic stem cells (ESC), mesenchymal stem cells (MSC), endothelial progenitor cells (EPC), fibroblasts and keratin. It may be a cell (Keratinocyte), but is not limited thereto.
상기 세포 배양용 미세유체칩의 중복되는 내용은 본 명세서의 복잡성을 고려하여 생략한다.The overlapping contents of the microfluidic chip for cell culture are omitted in consideration of the complexity of the present specification.
본 발명에 따른 미세유체칩은 세포 배양 지지체에 세포 배양액을 일정한 유량 및 유속으로 주입함으로써, 세포를 3 차원으로 배양 및 유지시킬 수 있는 것을 특징으로 한다.The microfluidic chip according to the present invention is characterized by being capable of culturing and maintaining cells in three dimensions by injecting a cell culture solution into a cell culture support at a constant flow rate and flow rate.
즉, 본 발명에 따른 미세유체칩은 저속으로 일정하게 배양액을 공급을 함으로써, 세포에 물리적 영향을 최소화 하는 동시에 신선한 배지를 계속적으로 공급하여 세포의 배양 기간을 연장하고 세포의 생장율을 높일 수 있는 것을 특징으로 한다.In other words, the microfluidic chip according to the present invention can supply a culture medium at a low speed, thereby minimizing physical effects on the cells and continuously supplying a fresh medium to extend the culture period of the cells and increase the growth rate of the cells. It features.
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 따른 3 차원 세포 배양용 미세유체칩에 대하여 구체적으로 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail for the three-dimensional cell culture microfluidic chip according to an embodiment of the present invention.
도 1은 본 발명의 실시예에 따른 3 차원 세포 배양용 미세유체칩을 도식화한 평면도이다. 구체적으로, 도 1a는 세포 배양 지지체가 1 개 포함된 미세유체칩을 도식화한 평면도이고, 도 1b는 세포 배양 지지체가 3 개 포함된 미세유체칩을 도식화한 평면도이다.1 is a plan view schematically illustrating a microfluidic chip for three-dimensional cell culture according to an embodiment of the present invention. Specifically, FIG. 1A is a plan view illustrating a microfluidic chip including one cell culture support, and FIG. 1B is a plan view illustrating a microfluidic chip including three cell culture supports.
상기 도면을 참조하면, 본 발명의 실시예에 따른 3 차원 세포 배양용 미세유체칩(1)은, 세포 배양부(10), 입구부(20), 컨트롤부(30) 및 출구부(40)를 포함하여 구성될 수 있다.Referring to the drawings, the three-dimensional cell culture microfluidic chip 1 according to an embodiment of the present invention, the cell culture unit 10, the inlet 20, the control unit 30 and the outlet 40 It may be configured to include.
세포 배양부(10)는 하나 이상의 세포 배양 지지체(11)로 이루어지도록 구성될 수 있다. 하나 이상의 세포 배양 지지체로 이루어지는 경우, 각각의 세포 배양 지지체는 병렬로 연결되도록 구성될 수 있다. Cell culture unit 10 may be configured to consist of one or more cell culture support (11). When composed of one or more cell culture supports, each cell culture support may be configured to be connected in parallel.
상기 세포 배양 지지체는 콘케이브(concave)형 패턴을 포함할 수 있다.The cell culture support may comprise a concave pattern.
상기 콘케이브형 패턴은 일정 방향으로 배열된 복수개의 콘케이브를 포함할 수 있다.The concave pattern may include a plurality of concave arranged in a predetermined direction.
상기 콘케이브는 가로 세로 방향으로 다열(multiseriate) 배열될 수 있다.The concave may be arranged multiseriate in the horizontal and vertical direction.
상기 콘케이브의 직경은, 예를 들어, 0.1 내지 1.0 mm, 0.15 내지 1.0 mm, 0.2 내지 1.0 mm, 0.25 내지 1.0 mm, 0.3 내지 1.0 mm, 0.35 내지 1.0 mm, 0.4 내지 1.0 mm, 0.45 내지 1.0 mm, 0.5 내지 1.0 mm, 0.55 내지 1.0 mm, 0.6 내지 1.0 mm, 0.65 내지 1.0 mm, 0.7 내지 1.0 mm, 0.75 내지 1.0 mm, 0.8 내지 1.0 mm, 0.85 내지 1.0 mm, 0.9 내지 1.0 mm, 0.95 내지 1.0 mm 또는 0.3 mm 일 수 있으나, 이에 한정되는 것은 아니다. The diameter of the concave is, for example, 0.1 to 1.0 mm, 0.15 to 1.0 mm, 0.2 to 1.0 mm, 0.25 to 1.0 mm, 0.3 to 1.0 mm, 0.35 to 1.0 mm, 0.4 to 1.0 mm, 0.45 to 1.0 mm , 0.5 to 1.0 mm, 0.55 to 1.0 mm, 0.6 to 1.0 mm, 0.65 to 1.0 mm, 0.7 to 1.0 mm, 0.75 to 1.0 mm, 0.8 to 1.0 mm, 0.85 to 1.0 mm, 0.9 to 1.0 mm, 0.95 to 1.0 mm Or 0.3 mm, but is not limited thereto.
상술한 콘케이브의 직경 내에서 발명을 실시하는 경우, 세포 생장율이 극대화 될 수 있다.When the invention is carried out within the diameter of the above-mentioned concave, the cell growth rate can be maximized.
상기 콘케이브의 직경 및 간격은 그 길이비가 1: 1 내지 1.5 일 수 있다.The diameter and spacing of the concave may be a length ratio of 1: 1 to 1.5.
상술한 콘케이브의 직경 및 간격 내에서 발명을 실시하는 경우, 공급된 세포에 대하여 3 차원으로 세포가 형성되는 비율인 세포 수율이 극대화 될 수 있다.When the invention is carried out within the diameter and spacing of the above-mentioned concave, the cell yield, which is the rate at which cells are formed in three dimensions with respect to the supplied cells, can be maximized.
상기 콘케이브의 개수는 일 방향으로 1 내지 34 개, 예를 들어, 가로 방향으로 1 내지 34 개 및 세로 방향으로 1 내지 10 개 일 수 있으나, 이에 한정되는 것은 아니다.The number of the concave may be 1 to 34 in one direction, for example, 1 to 34 in the horizontal direction and 1 to 10 in the vertical direction, but is not limited thereto.
상기 콘케이브의 개수에 따른 가로-세로 비율은 제작하는 미세유체칩 구조에 따라 달라질 수 있으며, 세포마다 동일하게 적용 가능하다.The horizontal-vertical ratio according to the number of the concave may vary depending on the microfluidic chip structure to be manufactured, and may be equally applied to each cell.
상기 세포 배양 지지체는 폴리다이메틸실록산(Polydimethylsiloxane; PDMS), 유리(Glass), 및 폴리스티렌(Polystyrene), 폴리카보네이트(Polycarbonate), 폴리에틸렌(Polyethylene) 및 폴리프로필렌(Polypropylene) 등 폴리(Poly) 계열 플라스틱 재질일 수 있으나, 이에 한정되는 것은 아니다.The cell culture support is polydimethylsiloxane (PDMS), glass, glass, and polystyrene-based plastic materials such as polystyrene, polycarbonate, polyethylene, and polypropylene. It may be, but is not limited thereto.
입구부(20)는 세포 배양액을 주입하기 위한 주입구로, 상기 세포 배양 지지체의 일 측에 연결되도록 구성될 수 있다.The inlet 20 is an injection port for injecting the cell culture solution, and may be configured to be connected to one side of the cell culture support.
상기 입구부와 세포 배양 지지체를 연결하는 관은 파이프(튜브) 구조로 이루어질 수 있으며, 외경(바깥 지름)이 1 내지 1.5 mm, 내경(안쪽 지름)이 0.1 내지 0.5 mm일 수 있다. 상술한 관의 외/내경 범위 내에서 발명을 실시하는 경우, 상기 유동 조건(유량 및 유속)으로 세포 배양액의 주입이 가능한 장점이 있다.The tube connecting the inlet and the cell culture support may be made of a pipe (tube) structure, the outer diameter (outer diameter) of 1 to 1.5 mm, the inner diameter (inner diameter) may be 0.1 to 0.5 mm. When the invention is carried out within the outer / inner diameter range of the tube described above, there is an advantage that the cell culture solution can be injected under the flow conditions (flow rate and flow rate).
상기 관의 재질은 당업계에서 관을 제조하기 위하여 이용되는 어떠한 재질도 포함할 수 있다.The material of the tube may include any material used to manufacture a tube in the art.
컨트롤부(30)는 세포 배양액을 일정한 유량 및 유속으로 주입하기 위한 구성으로, 상기 입구부에 연결되도록 구성될 수 있다.The control unit 30 is configured to inject the cell culture fluid at a constant flow rate and flow rate, and may be configured to be connected to the inlet.
상기 미세유체칩에서 유량(평균)은, 예를 들어, 0.001 내지 0.5 mL/h, 0.010 내지 0.5 mL/h, 0.010 내지 0.4 mL/h, 0.010 내지 0.3 mL/h, 0.010 내지 0.2 mL/h, 0.015 내지 0.2 mL/h, 0.015 내지 0.1 mL/h, 0.02 내지 0.1 mL/h, 0.02 내지 0.1 mL/h, 0.02 내지 0.09 mL/h, 0.03 내지 0.09 mL/h, 0.03 내지 0.08 mL/h, 0.04 내지 0.08 mL/h, 0.04 내지 0.07 mL/h, 0.05 내지 0.07 mL/h, 0.05 내지 0.06 mL/h 또는 0.05 mL/h 일 수 있으나, 이에 한정되는 것은 아니다.The flow rate (average) in the microfluidic chip is, for example, 0.001 to 0.5 mL / h, 0.010 to 0.5 mL / h, 0.010 to 0.4 mL / h, 0.010 to 0.3 mL / h, 0.010 to 0.2 mL / h, 0.015 to 0.2 mL / h, 0.015 to 0.1 mL / h, 0.02 to 0.1 mL / h, 0.02 to 0.1 mL / h, 0.02 to 0.09 mL / h, 0.03 to 0.09 mL / h, 0.03 to 0.08 mL / h, 0.04 To 0.08 mL / h, 0.04 to 0.07 mL / h, 0.05 to 0.07 mL / h, 0.05 to 0.06 mL / h, or 0.05 mL / h, but is not limited thereto.
상기 미세유체칩에서 유속(평균)은, 예를 들어, 1 내지 25 mm/h, 1 내지 24 mm/h, 2 내지 24 mm/h, 2 내지 23 mm/h, 3 내지 23 mm/h, 3 내지 22 mm/h, 3 내지 20 mm/h, 4 내지 22 mm/h, 4 내지 21 mm/h, 5 내지 21 mm/h, 5 내지 20 mm/h, 6 내지 20 mm/h, 6 내지 19 mm/h, 7 내지 19 mm/h, 7 내지 18 mm/h, 8 내지 18 mm/h, 8 내지 17 mm/h, 9 내지 17 mm/h, 9 내지 16 mm/h, 10 내지 16 mm/h, 10 내지 15 mm/h, 10 내지 14 mm/h, 10 내지 13 mm/h, 10 내지 12 mm/h, 10 내지 11 mm/h 또는 10 mm/h 일 수 있으나, 이에 한정되는 것은 아니다.The flow rate (average) in the microfluidic chip is, for example, 1 to 25 mm / h, 1 to 24 mm / h, 2 to 24 mm / h, 2 to 23 mm / h, 3 to 23 mm / h, 3 to 22 mm / h, 3 to 20 mm / h, 4 to 22 mm / h, 4 to 21 mm / h, 5 to 21 mm / h, 5 to 20 mm / h, 6 to 20 mm / h, 6 To 19 mm / h, 7 to 19 mm / h, 7 to 18 mm / h, 8 to 18 mm / h, 8 to 17 mm / h, 9 to 17 mm / h, 9 to 16 mm / h, 10 to 16 mm / h, 10 to 15 mm / h, 10 to 14 mm / h, 10 to 13 mm / h, 10 to 12 mm / h, 10 to 11 mm / h or 10 mm / h, but is not limited thereto. It doesn't happen.
상술한 유동 조건(유량 및 유속) 내에서 발명을 실시하는 경우, 세포 배양액 공급 시 세포에 가해지는 물리적 영향, 즉 전단응력(shear stress)으로 인한 영향이 최소화 될 수 있다.When the invention is carried out in the above-described flow conditions (flow rate and flow rate), the physical effect applied to the cell when supplying the cell culture solution, that is, the effect due to shear stress can be minimized.
출구부(40)는 세포 배양액을 회수하기 위한 배출구로, 상기 세포 배양 지지체의 다른 일 측에 연결되도록 구성될 수 있다.The outlet portion 40 is an outlet for recovering the cell culture solution, and may be configured to be connected to the other side of the cell culture support.
상기 출구부와 세포 배양 지지체를 연결하는 관은 파이프(튜브) 구조로 이루어질 수 있으며, 외경(바깥 지름)이 1 내지 1.5 mm, 내경(안쪽 지름)이 0.1 내지 0.5 mm일 수 있다. 상술한 관의 외/내경 범위 내에서 발명을 실시하는 경우, 상기 유동 조건(유량 및 유속)으로 세포 배양액의 주입이 가능한 장점이 있다.The tube connecting the outlet and the cell culture support may be made of a pipe (tube) structure, the outer diameter (outer diameter) of 1 to 1.5 mm, the inner diameter (inner diameter) may be 0.1 to 0.5 mm. When the invention is carried out within the outer / inner diameter range of the tube described above, there is an advantage that the cell culture solution can be injected under the flow conditions (flow rate and flow rate).
상기 관의 재질은 당업계에서 관을 제조하기 위하여 이용되는 어떠한 재질도 포함할 수 있다.The material of the tube may include any material used to manufacture a tube in the art.
특히, 세포 배양부가 하나 이상의 세포 배양 지지체로 이루어진 구성에서, 상기 세포 배양 지지체에 연결된 출구부들 각각은 서로 연통되어 세포 배양액을 회수할 수 있다.In particular, in the configuration in which the cell culture portion is composed of one or more cell culture supports, each of the outlet portions connected to the cell culture support may be in communication with each other to recover the cell culture solution.
본 발명은 3 차원 세포 배양용 미세유체칩 및 3 차원 세포 배양용 미세유체칩을 이용한 세포의 3 차원 배양방법에 관한 것으로, 상기 3 차원 세포 배양용 미세유체칩은 콘케이브형 패턴을 포함하는 세포 배양 지지체를 포함함으로써, 특정 유동 조건에서 세포를 배양하는 경우, 세포의 3 차원 배양 및 유지 효과가 우수하므로, 3 차원 세포 배양 용도로서 유용하게 사용될 수 있다.The present invention relates to a three-dimensional culture method of cells using a three-dimensional cell culture microfluidic chip and a three-dimensional cell culture microfluidic chip, wherein the three-dimensional cell culture microfluidic chip is a cell containing a concave pattern By including a culture support, when culturing cells under specific flow conditions, the three-dimensional culture and maintenance effect of the cells are excellent, and thus can be usefully used as three-dimensional cell culture applications.
도 1a는 본 발명의 일 실시예에 따른 3 차원 세포 배양용 미세유체칩을 도식화한 평면도로, 세포 배양 지지체가 1 개 포함된 미세유체칩을 도식화한 평면도이다.1A is a plan view schematically illustrating a three-dimensional cell culture microfluidic chip according to an embodiment of the present invention, and is a plan view schematically illustrating a microfluidic chip including one cell culture support.
도 1b는 본 발명의 일 실시예에 따른 3 차원 세포 배양용 미세유체칩을 도식화한 평면도로, 세포 배양 지지체가 3 개 포함된 미세유체칩을 도식화한 평면도이다.Figure 1b is a plan view of the three-dimensional cell culture microfluidic chip according to an embodiment of the present invention, a plan view of a microfluidic chip containing three cell culture support.
도 2는 본 발명의 일 실험예에 따른 최적의 유동 조건을 도출하기 위한 전체 모델링 형상에 대한 도면(단위: mm, R: 반지름)이다.FIG. 2 is a diagram (unit: mm, R: radius) of an entire modeling shape for deriving an optimal flow condition according to an exemplary embodiment of the present invention.
도 3은 본 발명의 일 실험예에 따른 최적의 유동 조건을 도출하기 위한 콘케이브형 패턴의 최종 모델링 형상을 나타낸 도이다.3 is a view showing the final modeling shape of the concave pattern for deriving the optimum flow conditions according to an experimental example of the present invention.
도 4a는 본 발명의 일 실험예에 따른 최적의 유동 조건을 도출하기 위하여, 유량이 0.1 mL/h 일 때, 속도 분포를 확인한 도이다.Figure 4a is a diagram confirming the velocity distribution when the flow rate is 0.1 mL / h, in order to derive the optimum flow conditions according to an experimental example of the present invention.
도 4b는 본 발명의 일 실험예에 따른 최적의 유동 조건을 도출하기 위하여, 유량이 0.05 mL/h 일 때, 속도 분포를 확인한 도이다.Figure 4b is a diagram confirming the velocity distribution when the flow rate is 0.05 mL / h, in order to derive the optimum flow conditions according to an experimental example of the present invention.
도 4c는 본 발명의 일 실험예에 따른 최적의 유동 조건을 도출하기 위하여, 유량이 0.015 mL/h 일 때, 속도 분포를 확인한 도이다.Figure 4c is a diagram confirming the velocity distribution when the flow rate is 0.015 mL / h, in order to derive the optimum flow conditions according to an experimental example of the present invention.
도 5a는 본 발명의 일 실험예에 따른 최적의 유동 조건을 도출하기 위하여, 유량이 0.1 mL/h 일 때, 입구부 및 출구부에서의 국지적 속도 분포를 확인한 도이다.Figure 5a is a diagram confirming the local velocity distribution at the inlet and outlet when the flow rate is 0.1 mL / h, in order to derive the optimum flow conditions according to an experimental example of the present invention.
도 5b는 본 발명의 일 실험예에 따른 최적의 유동 조건을 도출하기 위하여, 유량이 0.05 mL/h 일 때, 입구부 및 출구부에서의 국지적 속도 분포를 확인한 도이다.Figure 5b is a diagram confirming the local velocity distribution at the inlet and outlet when the flow rate is 0.05 mL / h, in order to derive the optimum flow conditions according to an experimental example of the present invention.
도 5c는 본 발명의 일 실험예에 따른 최적의 유동 조건을 도출하기 위하여, 유량이 0.015 mL/h 일 때, 입구부 및 출구부에서의 국지적 속도 분포를 확인한 도이다.Figure 5c is a diagram confirming the local velocity distribution at the inlet and outlet when the flow rate is 0.015 mL / h, in order to derive the optimum flow conditions according to an experimental example of the present invention.
도 6a는 본 발명의 일 실험예에 따른 최적의 유동 조건을 도출하기 위하여, 유량이 0.1 mL/h, 0.05 mL/h 및 0.015 mL/h 일 때, 입구부에서의 국지적 속도 분포를 측면에서 확인한 도이다.Figure 6a shows the local velocity distribution at the inlet side when the flow rate is 0.1 mL / h, 0.05 mL / h and 0.015 mL / h in order to derive the optimum flow conditions according to an experimental example of the present invention It is also.
도 6b는 본 발명의 일 실험예에 따른 최적의 유동 조건을 도출하기 위하여, 유량이 0.1 mL/h, 0.05 mL/h 및 0.015 mL/h 일 때, 출구부에서의 국지적 속도 분포를 측면에서 확인한 도이다.Figure 6b is a side view of the local velocity distribution at the outlet when the flow rate is 0.1 mL / h, 0.05 mL / h and 0.015 mL / h in order to derive the optimum flow conditions according to an experimental example of the present invention It is also.
도 7a는 본 발명의 일 실험예에 따른 최적의 유동 조건을 도출하기 위하여, 입구부에서의 전단 응력(Shear stress)을 확인한 도이다.Figure 7a is a diagram confirming the shear stress (Shear stress) at the inlet in order to derive the optimum flow conditions according to an experimental example of the present invention.
도 7b는 본 발명의 일 실험예에 따른 최적의 유동 조건을 도출하기 위하여, 출구부에서의 전단 응력(Shear stress)을 확인한 도이다.Figure 7b is a diagram confirming the shear stress (Shear stress) at the outlet in order to derive the optimum flow conditions according to an experimental example of the present invention.
도 8은 본 발명의 일 실시예에 따른 3 차원 세포 배양용 미세유체칩의 유효성을 평가한 도이다.8 is a view evaluating the effectiveness of the three-dimensional cell culture microfluidic chip according to an embodiment of the present invention.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. .
제조예. 콘케이브(concave)형 패턴의 제조Preparation example. Fabrication of Concave Patterns
세포 배양 지지체에 포함된 콘케이브형 패턴은 공지된 방법에 의해 제조하였다(Moon et al., Optimizing human embryonic stem cells differentiation efficiency by screening size-tunable homogenous embryoid bodies, Biomaterials, 2014;35:5987-97.).Concave patterns included in the cell culture support were prepared by known methods (Moon et al., Optimizing human embryonic stem cells differentiation efficiency by screening size-tunable homogenous embryoid bodies, Biomaterials, 2014; 35: 5987-97. ).
실험예 1. 컴퓨터 시물레이션을 통한 최적의 유동 조건 분석Experimental Example 1. Analysis of Optimal Flow Conditions through Computer Simulation
3 차원 세포를 배양하기 위한 최적의 유동 조건을 탐색하기 위하여, 콘케이브형 패턴을 포함하는 세포 배양 지지체의 모델링 형상을 제조하였다(도 1 참조). 이때, 세포는 상기 세포 배양 지지체의 콘케이브형 패턴 내에서 3 차원 스페로이드(spheroid) 형태로 배양되므로, 그 형태로 단순화 작업을 진행하여 모델링 형상에 사용하였다(도 2 참조).In order to explore the optimal flow conditions for culturing three-dimensional cells, modeling shapes of cell culture scaffolds containing concave patterns were prepared (see FIG. 1). At this time, the cells are cultured in a three-dimensional spheroid (spheroid) form in the concave pattern of the cell culture support, it was used in the modeling shape by proceeding to simplify the form (see Fig. 2).
상기 모델링 형상을 이용하여, 하기와 같이 다양한 유동 조건에서 압력 분포, 속도 분포 및 전단 응력(Shear Stress)을 평가하였다. 그 결과(속도 분포, 국지적 속도 분포, 전단 응력 등)는 도 4 내지 7에 나타내었다.Using this modeling shape, pressure distribution, velocity distribution and shear stress were evaluated under various flow conditions as follows. The results (velocity distribution, local velocity distribution, shear stress, etc.) are shown in Figures 4-7.
- 사용한 유동 해석 프로그램: 상용 전산 유체 역학(Computational Fluid Dynamics; CFD) 프로그램Flow analysis program used: Commercial Computational Fluid Dynamics (CFD) program
- 유량: 0.015 mL/h ~ 0.1 mL/hFlow rate: 0.015 mL / h to 0.1 mL / h
- 속도: 3 mm/h ~ 20 mm/hSpeed: 3 mm / h to 20 mm / h
- 형상화된 콘케이브(세포) 직경: 0.3 mmShaped concave (cell) diameter: 0.3 mm
- 형상화된 콘케이브(세포)와 콘케이브(세포) 사이 거리: 0.4 mmDistance between the shaped concave (cell) and the concave (cell): 0.4 mm
- 결과 측정 위치: 바닥으로부터 0.05 mm 지점Result measuring position: 0.05 mm from bottom
- 채널 내에 형상화된 세포 개수: 34*10 개Number of cells shaped in the channel: 34 * 10
최적의 유동 조건은 세포에 영향이 극히 적으면서, 최대의 유동 속도를 나타내는 조건을 의미한다.Optimum flow conditions refer to conditions that exhibit the maximum flow rate with minimal effect on the cell.
도 4a ~ 4c에서 확인할 수 있듯이, 속도 분포는 유량 0.1 mL/h 에서 가장 빠르게 분포하여 윗 층과 바닥 층의 유속 분포에 차이가 있었고, 유량 0.05 mL/h 에서는 중간 정도의 분포를, 그리고 유량 0.015 mL/h 에서 가장 느린 유동으로 윗 층과 바닥 층의 유속 분포가 거의 동일함을 나타남을 알 수 있었다.As can be seen from Figures 4a to 4c, the velocity distribution was the fastest distribution at the flow rate 0.1 mL / h, there was a difference in the flow rate distribution of the upper and bottom layers, a medium distribution at the flow rate 0.05 mL / h, and a flow rate of 0.015 The slowest flow at mL / h shows that the flow rate distributions of the top and bottom layers are almost identical.
도 5a 내지 5c에서 확인할 수 있듯이, 세포가 배양되는 부분의 중간부분의 국지적 속도 분포를 벡터형식으로 나타낸 것으로 유동이 어떻게 흘러가는지를 알 수가 있다. 유량 0.1 mL/h 에서 가장 빠르게 분포하여 윗 층과 바닥 층의 유속 분포에 차이가 있었고, 유량 0.05 mL/h 에서는 중간 정도의 분포를, 그리고 유량 0.015 mL/h 에서 가장 느린 유동으로 윗 층과 바닥 층의 유속 분포가 거의 동일함을 나타남을 알 수 있었다.As can be seen in Figures 5a to 5c, it can be seen how the flow flows by showing the local velocity distribution in the form of a vector in the middle of the cell is cultured. The fastest distribution at the flow rate of 0.1 mL / h showed a difference in the flow rate distribution between the upper and the bottom layers, with a medium distribution at the flow rate of 0.05 mL / h and the slowest flow at the flow rate of 0.015 mL / h. It can be seen that the flow velocity distribution of the bed is almost the same.
도 6a 및 6b에서 확인할 수 있듯이, 입구부 및 출구부의 측면에서의 국지적 속도 분포는 유량 0.1 mL/h 에서 가장 빠르게 분포하여 윗 층과 바닥 층의 유속분포에 차이가 있었고, 유량 0.05 mL/h 에서는 중간 정도의 분포를, 그리고 유량 0.015 mL/h 에서 가장 느린 유동으로 윗 층과 바닥 층의 유속 분포가 거의 동일함을 나타남을 알 수 있었다. 이때, 세포 배양 구간이 없는 입구부와 출구부에서도 고른 유동 분포를 형성함을 확인하였다.As can be seen in Figures 6a and 6b, the local velocity distribution on the side of the inlet and outlet is the fastest distribution at the flow rate 0.1 mL / h, there was a difference in the flow rate distribution of the upper layer and the bottom layer, at a flow rate of 0.05 mL / h The median distribution and the slowest flow at a flow rate of 0.015 mL / h indicated that the flow rates of the top and bottom layers were nearly identical. At this time, it was confirmed that the even flow distribution was formed even at the inlet and the outlet without the cell culture section.
도 7a 및 7b에서 확인할 수 있듯이, 입구부 및 출구부의 전단 응력은 유동을 직접적으로 맞는 쪽의 세포 부분과 반대쪽 세포 부분의 차이가 거의 미비하여, 이런 유동이나 유속으로는 세포에 미치는 영향이 매우 적음을 알 수 있었다.As can be seen in Figures 7a and 7b, the shear stress of the inlet and outlet is almost insignificant difference between the cell portion on the side of the flow directly and the opposite cell portion, the effect on the cell at this flow or flow rate is very small And it was found.
상기 내용을 종합한 결과, 최적의 유동 조건은 유량 0.1 ~0.015 mL/h 에서 속도 22 mm/h ~ 3 mm/h 임을 확인하였다.As a result of the synthesis, it was confirmed that the optimum flow condition was a rate of 22 mm / h to 3 mm / h at a flow rate of 0.1 to 0.015 mL / h.
실시예. 세포 배양 지지체를 포함하는 미세유체칩의 제조Example. Preparation of microfluidic chip comprising cell culture support
상기 실험예 1의 모델링 형상 규격을 바탕으로, 세포 배양 지지체를 제조하고, 상기 세포 배양 지지체 5 개를 연결하여 미세유체칩을 제조하였다.Based on the modeling shape specification of Experimental Example 1, a cell culture support was prepared, and the five cell culture supports were connected to prepare a microfluidic chip.
실험예 2. 미세유체칩의 유효성 평가Experimental Example 2. Evaluation of the effectiveness of the microfluidic chip
3 차원 세포의 형성, 및 형성된 세포를 5 일간 유지하였을 때의 세포의 생존 여부를 확인하였다.The formation of three-dimensional cells and the survival of cells when the formed cells were maintained for 5 days were confirmed.
먼저, 인간 지방-유래중간엽줄기세포(human Adipose-derived Mesenchymal stem cell; human AD-MSC, LONZA, Swiss)에 1 μg/ml의 농도로 DiO(Lipophilic Tracers; DiO, THERMO FISHER, USA)를 첨가하여 4 시간 동안 인큐베이션(Incubation) 하였다.First, DiO (Lipophilic Tracers; DiO, THERMO FISHER, USA) was added to human Adipose-derived Mesenchymal stem cells (human AD-MSC, LONZA, Swiss) at a concentration of 1 μg / ml. Incubated for 4 hours.
인산염완충식염수(phosphate buffer saline; PBS, WELGENE, Republic of Korea)로 세척 후 70 % 에탄올(Ethanol, MERCK, USA)을 이용하여 버블(Bubble)을 제거하고, 다시 PBS로 3 회 세척 후 3 차원 세포 형성 시 필요한 배지로 교체하였다. 상기 배지는 둘베코수정이글배지(Dulbecco's Modified Eagle's medium; DMEM, SIGMA-ALDRICH; USA), 15 % 소 태아 혈청(Fetal bovine serum; FBS, GIBCO, USA), 1 % 비필수 아미노산(Non-essential amino acid; NEAA, GIBCO, USA), 1 % 페니실린-스트렙토마이신(Penicillin-streptomycin; PS, GIBCO, USA) 및 100 mM β-메르캅토에탄올(β-mercaptoethanol, GIBCO, USA)을 사용하여 제조하였으며, 이하 모든 실험에 동일한 배지를 사용하였다.After washing with phosphate buffer saline (PBS, WELGENE, Republic of Korea) and removing bubbles with 70% ethanol (Ethanol, MERCK, USA), washed three times with PBS and then three-dimensional cells The medium required for formation was replaced. The medium is Dulbecco's Modified Eagle's medium (DMEM, SIGMA-ALDRICH; USA), 15% Fetal bovine serum (FBS, GIBCO, USA), 1% Non-essential amino acid acid; NEAA, GIBCO, USA), 1% Penicillin-streptomycin (PS, GIBCO, USA) and 100 mM β-mercaptoethanol (β-mercaptoethanol, GIBCO, USA) The same medium was used for all experiments.
1 x 105의 세포를 입구부에 투입하여 출구부 쪽으로 배지가 나오도록 하였다. 세포 접종(Seeding) 후, 입구부에 배지만 투입하여 콘케이브 외부에 남아 있는 세포들을 출구부 쪽으로 씻어 내었다(wash out). 24 시간 주기로 입구부에 200 μL ~ 300 μL의 배지를 추가하여 배지를 교체하였다.1 x 10 5 cells were injected into the inlet to allow the medium to emerge toward the outlet. After cell seeding, only the inlet was introduced into the inlet to wash out the cells remaining outside the concave toward the outlet. Medium was replaced by adding 200 μL to 300 μL of medium at the inlet at 24 hour intervals.
도 9에서 확인할 수 있듯이, 세포 접종 후 1 일차에 3 차원 세포가 형성된 것을 확인 할 수 있었으며, 형성된 배상체는 5 일간 추가 배양하여도 세포 사멸과 같은 문제점은 발견되지 않았다.As can be seen in Figure 9, it was confirmed that the three-dimensional cells were formed on the first day after the cell inoculation, the formed embryoid body was not found a problem such as cell death even if further cultured for 5 days.
[부호의 설명][Description of the code]
1: 3 차원 세포 배양용 미세유체칩1: Microfluidic chip for three-dimensional cell culture
10: 세포 배양부10: cell culture unit
11: 세포 배양 지지체11: cell culture support
20: 입구부20: entrance
30: 컨트롤부30: control unit
40: 출구부40: exit section
본 발명은 3 차원 세포 배양용 미세유체칩 및 상기 미세유체칩을 이용한 세포의 3 차원 배양방법에 관한 것이다.The present invention relates to a three-dimensional cell culture microfluidic chip and a three-dimensional culture method of cells using the microfluidic chip.

Claims (13)

  1. 하나 이상의 세포 배양 지지체로 이루어진 세포 배양부;A cell culture unit comprising one or more cell culture supports;
    세포 배양액을 주입하기 위하여 상기 세포 배양 지지체의 일 측에 연결된 입구부;An inlet connected to one side of the cell culture support for injecting the cell culture solution;
    세포 배양액을 일정한 유량 및 유속으로 주입하기 위하여 상기 입구부에 연결된 컨드롤부; 및A control part connected to the inlet part for injecting the cell culture fluid at a constant flow rate and flow rate; And
    세포 배양액을 회수하기 위하여 상기 세포 배양 지지체의 다른 일 측에 연결된 출구부;를 구비하고,And an outlet connected to the other side of the cell culture support to recover the cell culture solution.
    상기 세포 배양 지지체는 콘케이브(concave)형 패턴을 포함하고,The cell culture support comprises a concave pattern,
    상기 하나 이상의 세포 배양 지지체에 연결된 출구부들 각각은 서로 연통되어 세포 배양액을 회수하는 것을 특징으로 하는 3 차원 세포 배양용 미세유체칩.Each of the outlet portions connected to the one or more cell culture supports is in communication with each other microfluidic chip for three-dimensional cell culture, characterized in that for recovering the cell culture.
  2. 제 1 항에 있어서, 상기 유량은 0.015 내지 0.1 mL/h 인 것인, 3 차원 세포 배양용 미세유체칩.According to claim 1, wherein the flow rate is 0.015 to 0.1 mL / h, three-dimensional cell culture microfluidic chip.
  3. 제 1 항에 있어서, 상기 유속은 3 내지 22 mm/h 인 것인, 3 차원 세포 배양용 미세유체칩.The microfluidic chip of claim 1, wherein the flow rate is 3 to 22 mm / h.
  4. 제 1 항에 있어서, 상기 콘케이브형 패턴은 일정 방향으로 배열된 복수개의 콘케이브를 포함하는 것인, 3 차원 세포 배양용 미세유체칩.The microfluidic chip of claim 1, wherein the concave-shaped pattern includes a plurality of concave arranged in a predetermined direction.
  5. 제 4 항에 있어서, 상기 콘케이브는 가로 세로 방향으로 다열(multiseriate) 배열된 것인, 3 차원 세포 배양용 미세유체칩.5. The microfluidic chip of claim 4, wherein the concave is arranged in a multiseriate in a horizontal and longitudinal direction.
  6. 제 4 항에 있어서, 상기 콘케이브는 직경이 0.3 내지 1.0 mm인 것인, 3 차원 세포 배양용 미세유체칩.The microfluidic chip of claim 4, wherein the concave has a diameter of 0.3 to 1.0 mm.
  7. 제 4 항에 있어서, 상기 콘케이브의 직경 및 간격은 그 길이비가 1: 1 내지 1.5인 것인, 3 차원 세포 배양용 미세유체칩.5. The microfluidic chip of claim 4, wherein the diameter and interval of the concave are 1: 1 to 1.5 in length ratio.
  8. 제 4 내지 7 항 중 어느 한 항에 있어서, 상기 콘케이브는 일 방향으로 1 내지 34 개, 다른 일 방향으로 1 내지 10 개인 것인, 3 차원 세포 배양용 미세유체칩.The microfluidic chip of any one of claims 4 to 7, wherein the concave is 1 to 34 in one direction and 1 to 10 in the other direction.
  9. 제 1 항에 있어서, 상기 세포 배양 지지체는 폴리다이메틸실록산(Polydimethylsiloxane; PDMS), 유리(Glass), 폴리스티렌(Polystyrene), 폴리카보네이트(Polycarbonate), 폴리에틸렌(Polyethylene) 및 폴리프로필렌(Polypropylene)으로 이루어진 군으로부터 선택된 어느 1 종 이상의 재질인 것인, 3 차원 세포 배양용 미세유체칩.The method of claim 1, wherein the cell culture support is made of polydimethylsiloxane (PDMS), glass, glass, polystyrene, polycarbonate, polyethylene, and polypropylene. It is any one or more materials selected from, 3D cell culture microfluidic chip.
  10. 하기의 단계를 포함하는 세포 3 차원 배양방법:Cell three-dimensional culture method comprising the following steps:
    세포 배양 지지체를 포함하는 세포 배양용 미세유체칩 준비 단계; 및Preparing a microfluidic chip for cell culture comprising a cell culture support; And
    미세유체칩에 세포 배양액을 주입하는 주입 단계.Injecting the cell culture solution to the microfluidic chip.
  11. 제 10 항에 있어서, 상기 주입 단계는 세포 배양액을 일정한 유량 및 유속으로 주입하는 것인, 세포 3 차원 배양방법.The method of claim 10, wherein the injecting step is injecting the cell culture at a constant flow rate and flow rate, cell three-dimensional culture method.
  12. 제 1 항에 있어서, 상기 유량은 0.015 내지 0.1 mL/h 인 것인, 세포 3 차원 배양방법.The method of claim 1, wherein the flow rate is 0.015 to 0.1 mL / h.
  13. 제 1 항에 있어서, 상기 유속은 3 내지 22 mm/h 인 것인, 세포 3 차원 배양방법.The method of claim 1, wherein the flow rate is 3 to 22 mm / h.
PCT/KR2019/006532 2018-06-01 2019-05-30 Microfluidic chip for three-dimensional cell culturing and three-dimensional cell culturing method using same WO2019231265A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180063732A KR102019602B1 (en) 2018-06-01 2018-06-01 Microfluidic Chip for 3-Dimensional Cell Culture and Method of 3-Dimensional Cell Culture Using the Same
KR10-2018-0063732 2018-06-01

Publications (1)

Publication Number Publication Date
WO2019231265A1 true WO2019231265A1 (en) 2019-12-05

Family

ID=67949889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/006532 WO2019231265A1 (en) 2018-06-01 2019-05-30 Microfluidic chip for three-dimensional cell culturing and three-dimensional cell culturing method using same

Country Status (2)

Country Link
KR (1) KR102019602B1 (en)
WO (1) WO2019231265A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112501020A (en) * 2020-12-04 2021-03-16 西北大学 Biological tissue culture system based on micro-fluidic chip and implementation operation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004101743A2 (en) * 2003-05-06 2004-11-25 Bellbrook Labs, Llc Three dimensional cell cultures in a microscale fluid handling system
KR101201939B1 (en) * 2010-07-29 2012-11-16 고려대학교 산학협력단 Microfluidic platform and preparation method of the same
KR20150035957A (en) * 2015-03-16 2015-04-07 (주) 마이크로핏 Preparation method of micro hemisphere array plate, microfluidics chip comprising micro hemisphere array plate and culture method of cell spheroid using the same
JP6333842B2 (en) * 2013-11-07 2018-05-30 株式会社日立ハイテクノロジーズ Cell culture equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9133499B2 (en) * 2010-09-14 2015-09-15 The Regents Of The University Of California Method and device for isolating cells from heterogeneous solution using microfluidic trapping vortices
KR101490671B1 (en) 2013-04-30 2015-02-06 (주)차바이오텍 A screening method for the optimal surface structure of embryonic stem cell culture using a cell culture plate comprising gradient nanopattern

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004101743A2 (en) * 2003-05-06 2004-11-25 Bellbrook Labs, Llc Three dimensional cell cultures in a microscale fluid handling system
KR101201939B1 (en) * 2010-07-29 2012-11-16 고려대학교 산학협력단 Microfluidic platform and preparation method of the same
JP6333842B2 (en) * 2013-11-07 2018-05-30 株式会社日立ハイテクノロジーズ Cell culture equipment
KR20150035957A (en) * 2015-03-16 2015-04-07 (주) 마이크로핏 Preparation method of micro hemisphere array plate, microfluidics chip comprising micro hemisphere array plate and culture method of cell spheroid using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE, S.-A. ET AL.: "Spheroid-based three-dimensional liver-on-a-chip to investigate hepatocyte-hepatic stellate cell interactions and flow effects", LAB ON A CHIP, vol. 13, 2013, pages 3529 - 3537, XP055205750 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112501020A (en) * 2020-12-04 2021-03-16 西北大学 Biological tissue culture system based on micro-fluidic chip and implementation operation method thereof

Also Published As

Publication number Publication date
KR102019602B1 (en) 2019-09-06

Similar Documents

Publication Publication Date Title
US6255106B1 (en) Process for simultaneous cultivation of different mammalian cells
CN106520676B (en) The method and its application of human amnion membrane are prepared from Human plactnta amnion
US7820430B2 (en) Micro device for cell culture
WO2021101313A1 (en) Cardiac perimysium-level biomimetic heart-on-a-chip and uses thereof
Gallego-Perez et al. High throughput assembly of spatially controlled 3D cell clusters on a micro/nanoplatform
US20240034976A1 (en) Rolled scaffold for large scale cell culture in monolayer
CN101285036A (en) Automatic cell culture microflow control chip device and method thereof
WO2022001631A1 (en) Device for preparing cell clusters, construction method therefor and application thereof
WO2014062022A1 (en) Cell culture container having dual structure, and circulation culture system using same
WO2015012582A1 (en) Preparation method for therapeutic agent of bead-type chondrocyte
WO2021132809A1 (en) Method for preparing spheroids having uniform size
CN112210536A (en) 2D and 3D cell co-culture system capable of being continuously harvested without enzyme digestion and construction method and application thereof
WO2019231265A1 (en) Microfluidic chip for three-dimensional cell culturing and three-dimensional cell culturing method using same
Jiang et al. Platelet-derived growth factors-BB and fibroblast growth factors-base induced proliferation of Schwann cells in a 3D environment
CN112195152A (en) Culture method and application of human colorectal cancer tissue organoid
WO2011105818A2 (en) Cell culture unit and cell culture device including the same
Bhatia et al. Introduction to animal tissue culture science
WO2016043489A1 (en) Three-dimensional cell culture system and cell culture method using same
CN111826285B (en) Single cell clone culture method
JP2014060991A (en) Method of culturing stem cells using inner lumen of porous hollow fiber
KR20210011975A (en) Systems for cell culture in bioreactors
Ostrovidov et al. Latest developments in engineered skeletal muscle tissues for drug discovery and development
WO2016064154A1 (en) Trypsin-free cell stamp system and use thereof
WO2019112391A1 (en) Insertable culture container and kit for three-dimensional cell culture, and three-dimensional cell co-culture method using same
CN104232486A (en) Culture plate for unicellular clone culture and application method of culture plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19811945

Country of ref document: EP

Kind code of ref document: A1