WO2019230885A1 - Flight management server and flight management system for unmanned aerial vehicle - Google Patents

Flight management server and flight management system for unmanned aerial vehicle Download PDF

Info

Publication number
WO2019230885A1
WO2019230885A1 PCT/JP2019/021528 JP2019021528W WO2019230885A1 WO 2019230885 A1 WO2019230885 A1 WO 2019230885A1 JP 2019021528 W JP2019021528 W JP 2019021528W WO 2019230885 A1 WO2019230885 A1 WO 2019230885A1
Authority
WO
WIPO (PCT)
Prior art keywords
flight
management server
unmanned air
air vehicle
mission
Prior art date
Application number
PCT/JP2019/021528
Other languages
French (fr)
Japanese (ja)
Inventor
太郎 吉井
高橋 和也
Original Assignee
株式会社センシンロボティクス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社センシンロボティクス filed Critical 株式会社センシンロボティクス
Priority to JP2019563630A priority Critical patent/JP6713156B2/en
Publication of WO2019230885A1 publication Critical patent/WO2019230885A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/20Initiating means actuated automatically, e.g. responsive to gust detectors using radiated signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]

Definitions

  • the present invention relates to a flight management server and a flight management system for an unmanned air vehicle.
  • Patent Document 1 discloses a system that creates a flight route of an unmanned aircraft that acquires data for inspection from a windmill by reflecting the control state of the windmill.
  • drones have various needs such as security, collection of information at the time of disaster, surveying, etc. as well as the above-mentioned inspections, and the targets are diverse, such as solar power generation facilities, bridges, roads, etc.
  • An object of the present invention is to provide a technique capable of automatically setting an optimal flight route by simply selecting various work targets.
  • An unmanned air vehicle flight management server connected to a user terminal and an unmanned air vehicle via a network, A storage unit that stores flight route information including flight parameters, and a plurality of flight applications by purpose; A reception unit that accepts a flight request including at least a flight location and a flight purpose; A generating unit that generates a flight mission including a flight route generated by referring to the flight route information based on the flight request and a flight application selected from the purpose-specific flight application; A communication unit for transmitting the generated flight mission to the unmanned air vehicle; An unmanned air vehicle flight management server.
  • a flight management server and a flight management system have the following configuration.
  • An unmanned air vehicle flight management server connected to a user terminal and an unmanned air vehicle via a network, A storage unit that stores flight route information including flight parameters, and a plurality of flight applications by purpose; A reception unit that accepts a flight request including at least a flight location and a flight purpose; A generating unit that generates a flight mission including a flight route generated by referring to the flight route information based on the flight request and a flight application selected from the purpose-specific flight application; A communication unit for transmitting the generated flight mission to the unmanned air vehicle; An unmanned air vehicle flight management server.
  • a flight management system for an unmanned air vehicle including a user terminal, an unmanned air vehicle, and a flight management server connected via a network
  • the flight management server is: A storage unit for storing flight route information including flight parameters and a plurality of purpose-specific flight applications; Accepting a flight request including at least a flight location and a flight purpose from the user terminal; Generating a flight mission including a flight route generated by referring to the flight route information and a flight application selected from the purpose-specific flight application based on the flight request; Sending the generated flight mission to the unmanned air vehicle;
  • the unmanned air vehicle performs the flight mission and transmits a flight log to the flight management server.
  • Flight management system for unmanned air vehicles is: A storage unit for storing flight route information including flight parameters and a plurality of purpose-specific flight applications; Accepting a flight request including at least a flight location and a flight purpose from the user terminal; Generating a flight mission including a flight route generated by referring to the flight route information and a flight application selected from
  • the present system a flight management system
  • the present system a flight management system for an unmanned air vehicle according to an embodiment of the present invention.
  • the same or similar elements are denoted by the same or similar reference numerals and names, and redundant description of the same or similar elements may be omitted in the description of each embodiment.
  • the features shown in each embodiment can be applied to other embodiments as long as they do not contradict each other.
  • the present system includes a management server 1, a plurality of user terminals 2 and 3, and one or more flying bodies 4.
  • the management server 1, the user terminals 2 and 3, and the flying object 4 are connected to be communicable with each other via a network.
  • FIG. 2 is a diagram illustrating a hardware configuration of the management server 1.
  • the structure shown in figure is an example and may have a structure other than this.
  • the management server 1 is connected to a plurality of user terminals 2 and 3 and the flying vehicle 4 to constitute a part of the present system.
  • the management server 1 may be a general-purpose computer such as a workstation or a personal computer, or may be logically realized by cloud computing.
  • the management server 1 includes at least a processor 10, a memory 11, a storage 12, a transmission / reception unit 13, an input / output unit 14, and the like, which are electrically connected to each other through a bus 15.
  • the processor 10 is an arithmetic device that controls the overall operation of the management server 1 and performs data transmission / reception control between elements and information processing necessary for application execution and authentication processing.
  • the processor 10 is a CPU (Central Processing Unit) and executes each information process by executing a program for the system stored in the storage 12 and expanded in the memory 11.
  • CPU Central Processing Unit
  • the memory 11 includes a main memory composed of a volatile storage device such as a DRAM (Dynamic Random Access Memory) and an auxiliary memory composed of a nonvolatile storage device such as a flash memory or an HDD (Hard Disc Drive). .
  • the memory 11 is used as a work area of the processor 10 and stores BIOS (Basic Input / Output System) executed when the management server 1 is started up, various setting information, and the like.
  • BIOS Basic Input / Output System
  • the storage 12 stores various programs such as application programs.
  • a database storing data used for each process may be constructed in the storage 12.
  • the transmission / reception unit 13 connects the management server 1 to a network and a block chain network.
  • the transmission / reception unit 13 may include a Bluetooth (registered trademark) and a BLE (Bluetooth Low Energy) short-range communication interface.
  • the input / output unit 14 is an information input device such as a keyboard / mouse and an output device such as a display.
  • the bus 15 is commonly connected to each of the above elements, and transmits, for example, an address signal, a data signal, and various control signals.
  • the user terminals 2 and 3 shown in FIG. 3 also include a processor 20, a memory 21, a storage 22, a transmission / reception unit 23, an input / output unit 24, and the like, which are electrically connected to each other through a bus 25. Since the function of each element can be configured in the same manner as the management server 1 described above, detailed description of each element is omitted.
  • FIG. 4 is a block diagram showing a hardware configuration of the flying object 4.
  • the flight controller 41 may have one or more processors such as a programmable processor (eg, a central processing unit (CPU)).
  • a programmable processor eg, a central processing unit (CPU)
  • the flight controller 41 has a memory 411 and can access the memory.
  • Memory 411 stores logic, code, and / or program instructions that can be executed by the flight controller to perform one or more steps.
  • the flight controller 41 may include sensors 412 such as an inertial sensor (acceleration sensor, gyro sensor), a GPS sensor, and a proximity sensor (for example, a rider).
  • the memory 411 may include a separable medium such as an SD card or a random access memory (RAM) or an external storage device. Data obtained from the camera / sensors 42 may be transmitted directly to the memory and stored. For example, still image / moving image data shot by a camera or the like is recorded in a built-in memory or an external memory.
  • the camera 42 is installed on the flying object via the gimbal 43.
  • the flight controller 41 includes a control module (not shown) configured to control the state of the flying object.
  • the control module may adjust the spatial arrangement, velocity, and / or acceleration of an aircraft that has six degrees of freedom (translational motion x, y, and z, and rotational motion ⁇ x , ⁇ y, and ⁇ z ).
  • the propulsion mechanism (motor 45 and the like) of the flying object is controlled via an ESC 44 (Electric Speed Controller).
  • the propeller 46 is rotated by the motor 45 fed from the battery 48 to generate lift of the flying object.
  • the control module can control one or more of the states of the mounting unit and sensors.
  • the flight controller 41 is configured to send and / or receive data from one or more external devices (eg, a transceiver 49, a terminal, a display device, or other remote controller).
  • a transceiver 49 e.g., a transceiver 49, a terminal, a display device, or other remote controller.
  • the communication with the unit 47 is possible.
  • the transceiver 49 can use any appropriate communication means such as wired communication or wireless communication.
  • the transmission / reception unit 47 uses one or more of local area network (LAN), wide area network (WAN), infrared, wireless, WiFi, point-to-point (P2P) network, telecommunication network, cloud communication, and the like. can do.
  • LAN local area network
  • WAN wide area network
  • infrared wireless
  • WiFi point-to-point
  • P2P point-to-point
  • telecommunication network cloud communication, and the like. can do.
  • the transmission / reception unit 47 transmits and / or receives one or more of data acquired by the sensors 42, a processing result generated by the flight controller 41, predetermined control data, a user command from a terminal or a remote controller, and the like. be able to.
  • the sensors 42 may include an inertial sensor (acceleration sensor, gyro sensor), a GPS sensor, a proximity sensor (eg, a rider), or a vision / image sensor (eg, a camera).
  • an inertial sensor acceleration sensor, gyro sensor
  • GPS sensor GPS sensor
  • proximity sensor eg, a rider
  • vision / image sensor eg, a camera
  • FIG. 5 is a block diagram illustrating functions implemented in the management server 1.
  • the management server 1 includes a communication unit 110, a flight mission generation unit 130, a report generation unit 150, an application unit 170, and a storage unit 190.
  • the flight mission generation unit 130 includes a route generation unit 132, an application selection unit 134, an evaluation unit 136, and a correction unit 138.
  • the storage unit 190 includes various databases of flight route information 192, purpose-specific flight applications 194, flight logs 196, and interface information 198.
  • the communication unit 110 communicates with the user terminal 2 and the flying object 4.
  • the communication unit 110 also functions as a reception unit that receives a flight request including at least a flight location and a flight purpose from the user terminal 2.
  • the flight mission generation unit 130 generates a flight mission.
  • the flight mission is an application selected from the flight route and purpose-specific flight application 194.
  • the flight route is generated by the route generation unit 132 with reference to the flight route information 192.
  • the flight application is selected by the application selection unit 134 with reference to the purpose-specific flight application 194.
  • an evaluation unit 136 that evaluates whether the generated flight mission is appropriate may be provided.
  • the evaluation unit 136 may evaluate the suitability based on a score or the like by, for example, a user operation on a flight mission or machine learning based on a flight mission accumulated in the past. If the score is not within the predetermined range, the flight mission is corrected by the correction unit 138.
  • information (still images, moving images, audio and other information) acquired by the flying object 4 is accumulated in the flight log 196.
  • the report generation unit 150 generates report information to be transmitted to the user terminal 2 based on the flight log. Examples of the report according to the present embodiment include the inspection result of the inspection target facility and the security result of the security target facility, but may be various reports according to needs.
  • the interface information 198 stores various control information to be displayed on the display unit (display or the like) of the user terminal 2 together with the application unit 170 (see FIG. 10 for a screen example).
  • FIG. 6 is a functional block diagram implemented in the user terminal 2.
  • the user terminal 2 includes a communication unit 210, a storage unit 220, an input unit 240, an output unit 250, and an application unit 270, and interacts with each other.
  • the purpose-specific flight application 194 is prepared for each work purpose (use) of the flying object 4 working with the present system.
  • an application 1941 for security / monitoring, an application 1942 for equipment inspection, an application 1943 for surveying, and an application 1944 for disaster countermeasures are included, but are not limited thereto.
  • information on flight control (altitude, speed, range, etc.) suitable for the purpose, acquisition conditions (camera resolution, shooting angle, overlap rate, presence of filters, estimated flight time, battery required)
  • the user transmits a flight request from the user terminal 2 (SQ101).
  • the flight request includes at least information regarding the flight location and the flight purpose.
  • the management server 1 refers to the storage unit 190 (see FIG. 5) (SQ102) and generates a flight mission (SQ104).
  • the generated flight mission is transmitted to the flying object 4 directly (or indirectly via a terminal or a transmitter) (SQ106).
  • the flying object 4 transmits (reports) the information acquired during the flight mission to the management server 1 in real time (or after the fact) (SQ108).
  • the management server 1 generates a report based on information (flight log) acquired from the flying object (SQ110).
  • FIG. 9 is an example of generating a flight mission (flight route) of a photovoltaic power generation facility.
  • a route based on the inspection by a plurality of flying objects may be generated in consideration of the power supply (battery) of the flying object, the inspection time, and the like.
  • flight routes R1 and R2 by the flying bodies 4a and 4b are generated for the flight areas A1 and A2.
  • Information acquired by the flying objects 4a and 4b is merged based on position information and time information associated with the acquired information on the management server 1 side, and used for report generation.
  • a flight request may be transmitted for each flying body to generate a flying route, or a flight request of one flying body 4a as shown in FIG.
  • flight routes R4 and R5 for each aircraft may be assigned based on the flight route R3 generated for the aircraft.
  • a series of flight routes R ⁇ b> 6 by one flying body 4 may be generated for a plurality of flight routes in the flight areas A ⁇ b> 1 and A ⁇ b> 2 that are originally performed by two (a plurality).
  • the replacement battery 5 is replaced in the middle of the flight route R6.
  • a flight route R7 may be set.
  • FIG. 13 is a display example displayed on the display DP of the user terminal 2 when receiving an input (operation) of a flight request from the user.
  • the user selects the purpose of checking the solar facility (not shown), and designates a specific range S on the map, whereby the flight route R8 is automatically generated.
  • the flight mission including the automatically generated flight route can be customized by receiving additional detailed adjustments from the user.
  • FIG. 14 is a display example in which a report generated based on still image information acquired by the flying object is displayed on the display DP of the user terminal 2.
  • the still image information P1 acquired by the flying object is plotted on the map image M acquired in advance (for example, an ortho image based on separately acquired information or a map image acquired through the Internet) ( By superimposing), the latest information is superimposed and displayed so that it can be easily confirmed.
  • the information displayed on the display DP of the user terminal 2 as a report is not limited to the plotted still image information, and information useful for inspection (for example, date and time, information on the flying object, the number of abnormal parts, etc.) is displayed. Also good.
  • the flying object of the present invention can be used in airplane related industries such as a multicopter drone. Furthermore, the present invention can be suitably used as an aerial photography flying object equipped with a camera or the like. It can also be used in various industries such as security, agriculture, and infrastructure monitoring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

[Problem] To automatically set an optimal flight route with only the selection of various work subjects. [Solution] A flight management server (1) according to this invention is connected to a user terminal (2) and unmanned aerial vehicle (4) via a network. The flight management server (1) comprises: a storage unit (190) for storing a plurality of flight applications for different purposes and flight route information including flight parameters, a reception unit (110) for receiving a flight request at least including a flight location and a flight purpose, a generation unit (130) for using the flight request to generate a flight mission including a flight route generated using the flight route information as a reference and a flight application selected from the flight applications for different purposes, and a communication unit (110) for transmitting the generated flight mission to the unmanned aerial vehicle (4).

Description

無人飛行体のフライト管理サーバ及びフライト管理システムFlight management server and flight management system for unmanned air vehicles
 本発明は、無人飛行体のフライト管理サーバ及びフライト管理システムに関する。 The present invention relates to a flight management server and a flight management system for an unmanned air vehicle.
 近年、ドローン(Drone)や無人航空機(UAV:Unmanned Aerial Vehicle)などの飛行体(以下、「飛行体」と総称する)が産業に利用され始めている。こうした中で、特許文献1には、風車から点検用のデータを取得する無人機の飛行ルートを、風車の制御状態を反映して作成するシステムが開示されている。 In recent years, aircrafts such as drones and unmanned aerial vehicles (UAVs) (hereinafter collectively referred to as “aircrafts”) have begun to be used in the industry. Under these circumstances, Patent Document 1 discloses a system that creates a flight route of an unmanned aircraft that acquires data for inspection from a windmill by reflecting the control state of the windmill.
特開2018-21491号公報Japanese Patent Laid-Open No. 2018-21491
 一方、ドローンにおいては、上述した点検のみならず、警備、災害時情報収集、測量等、様々なニーズが生じており、その対象も太陽光発電施設、橋梁、道路等と多岐にわたる。 On the other hand, drones have various needs such as security, collection of information at the time of disaster, surveying, etc. as well as the above-mentioned inspections, and the targets are diverse, such as solar power generation facilities, bridges, roads, etc.
 本発明は、様々な作業対象を選択するだけで、最適な飛行ルートを自動で設定することのできる技術を提供することを一つの目的とする。 An object of the present invention is to provide a technique capable of automatically setting an optimal flight route by simply selecting various work targets.
 本発明によれば、
 ネットワークを介してユーザ端末と無人飛行体と接続された、無人飛行体のフライト管理サーバであって、
 飛行パラメータを含む飛行ルート情報と、複数の目的別飛行アプリケーションを記憶する記憶部と、
 少なくとも飛行場所及び飛行目的を含むフライト依頼を受け付ける受付部と、
 前記フライト依頼に基づいて、前記飛行ルート情報を参照して生成された飛行ルートと、前記目的別飛行アプリケーションから選択された飛行アプリケーションとを含むフライトミッションを生成する生成部と、
 生成した前記フライトミッションを前記無人飛行体に送信する通信部と、
を備える
無人飛行体のフライト管理サーバ。
According to the present invention,
An unmanned air vehicle flight management server connected to a user terminal and an unmanned air vehicle via a network,
A storage unit that stores flight route information including flight parameters, and a plurality of flight applications by purpose;
A reception unit that accepts a flight request including at least a flight location and a flight purpose;
A generating unit that generates a flight mission including a flight route generated by referring to the flight route information based on the flight request and a flight application selected from the purpose-specific flight application;
A communication unit for transmitting the generated flight mission to the unmanned air vehicle;
An unmanned air vehicle flight management server.
 本発明によれば、様々な作業対象を選択するだけで、最適な飛行ルートを自動で設定することができる。 According to the present invention, it is possible to automatically set an optimal flight route simply by selecting various work targets.
本発明の実施の形態による飛行管理システムの構成を示す図である。It is a figure which shows the structure of the flight management system by embodiment of this invention. 図1の管理サーバのハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of the management server of FIG. 図1のユーザ端末のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of the user terminal of FIG. 図1の飛行体のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of the flying body of FIG. 図1の管理サーバの機能を示すブロック図である。It is a block diagram which shows the function of the management server of FIG. 図1のユーザ端末の機能を示すブロック図である。It is a block diagram which shows the function of the user terminal of FIG. 目的別飛行アプリケーションの構成例である。It is a structural example of the flight application classified by purpose. 本発明の一実施の形態による飛行管理システムのフロー図である。It is a flowchart of the flight management system by one embodiment of this invention. 本発明の一実施の形態による飛行管理システムの利用イメージを示す図である。It is a figure which shows the utilization image of the flight management system by one embodiment of this invention. 本発明の一実施の形態による飛行管理システムの利用イメージを示す図である。It is a figure which shows the utilization image of the flight management system by one embodiment of this invention. 本発明の一実施の形態による飛行管理システムの利用イメージを示す図である。It is a figure which shows the utilization image of the flight management system by one embodiment of this invention. 本発明の一実施の形態による飛行管理システムの利用イメージを示す図である。It is a figure which shows the utilization image of the flight management system by one embodiment of this invention. 本発明の一実施の形態による飛行管理システムのユーザ端末側に表示される画面例である。It is an example of a screen displayed on the user terminal side of the flight management system according to an embodiment of the present invention. 本発明の一実施の形態による飛行管理システムのユーザ端末側に表示される画面例である。It is an example of a screen displayed on the user terminal side of the flight management system according to an embodiment of the present invention.
 本発明の実施形態の内容を列記して説明する。本発明の実施の形態によるフライト管理サーバ及びフライト管理システムは、以下のような構成を備える。
[項目1]
 ネットワークを介してユーザ端末と無人飛行体と接続された、無人飛行体のフライト管理サーバであって、
 飛行パラメータを含む飛行ルート情報と、複数の目的別飛行アプリケーションを記憶する記憶部と、
 少なくとも飛行場所及び飛行目的を含むフライト依頼を受け付ける受付部と、
 前記フライト依頼に基づいて、前記飛行ルート情報を参照して生成された飛行ルートと、前記目的別飛行アプリケーションから選択された飛行アプリケーションとを含むフライトミッションを生成する生成部と、
 生成した前記フライトミッションを前記無人飛行体に送信する通信部と、
を備える
無人飛行体のフライト管理サーバ。
[項目2]
 ネットワークを介して接続されたユーザ端末と無人飛行体とフライト管理サーバとを含む、無人飛行体のフライト管理システムであって、
 前記フライト管理サーバは:
 飛行パラメータを含む飛行ルート情報と、複数の目的別飛行アプリケーションを記憶する記憶部を備えており;
 前記ユーザ端末から、少なくとも飛行場所及び飛行目的を含むフライト依頼を受け付け;
 前記フライト依頼に基づいて、前記飛行ルート情報を参照して生成された飛行ルートと、前記目的別飛行アプリケーションから選択された飛行アプリケーションとを含むフライトミッションを生成し;
 生成した前記フライトミッションを前記無人飛行体に送信し;
 前記無人飛行体は、前記フライトミッションを遂行するとともに、フライトログを前記フライト管理サーバに送信する、
無人飛行体のフライト管理システム。
The contents of the embodiment of the present invention will be listed and described. A flight management server and a flight management system according to an embodiment of the present invention have the following configuration.
[Item 1]
An unmanned air vehicle flight management server connected to a user terminal and an unmanned air vehicle via a network,
A storage unit that stores flight route information including flight parameters, and a plurality of flight applications by purpose;
A reception unit that accepts a flight request including at least a flight location and a flight purpose;
A generating unit that generates a flight mission including a flight route generated by referring to the flight route information based on the flight request and a flight application selected from the purpose-specific flight application;
A communication unit for transmitting the generated flight mission to the unmanned air vehicle;
An unmanned air vehicle flight management server.
[Item 2]
A flight management system for an unmanned air vehicle including a user terminal, an unmanned air vehicle, and a flight management server connected via a network,
The flight management server is:
A storage unit for storing flight route information including flight parameters and a plurality of purpose-specific flight applications;
Accepting a flight request including at least a flight location and a flight purpose from the user terminal;
Generating a flight mission including a flight route generated by referring to the flight route information and a flight application selected from the purpose-specific flight application based on the flight request;
Sending the generated flight mission to the unmanned air vehicle;
The unmanned air vehicle performs the flight mission and transmits a flight log to the flight management server.
Flight management system for unmanned air vehicles.
<実施の形態の詳細>
 以下、本発明の実施の形態による無人飛行体のフライト管理装置及びフライト管理システムについて、特に、フライト管理システム(以下「本システム」という)の実施の形態を説明する。添付図面において、同一または類似の要素には同一または類似の参照符号及び名称が付され、各実施形態の説明において同一または類似の要素に関する重複する説明は省略することがある。また、各実施形態で示される特徴は、互いに矛盾しない限り他の実施形態にも適用可能である。
<Details of the embodiment>
Hereinafter, an embodiment of a flight management system (hereinafter referred to as “the present system”) will be described in particular, regarding a flight management apparatus and a flight management system for an unmanned air vehicle according to an embodiment of the present invention. In the accompanying drawings, the same or similar elements are denoted by the same or similar reference numerals and names, and redundant description of the same or similar elements may be omitted in the description of each embodiment. Further, the features shown in each embodiment can be applied to other embodiments as long as they do not contradict each other.
<構成>
 図1に示されるように、本システムは、管理サーバ1と、複数のユーザ端末2、3と、一以上の飛行体4とを有している。管理サーバ1と、ユーザ端末2、3と、飛行体4とは、ネットワークを介して互いに通信可能に接続されている。
<Configuration>
As shown in FIG. 1, the present system includes a management server 1, a plurality of user terminals 2 and 3, and one or more flying bodies 4. The management server 1, the user terminals 2 and 3, and the flying object 4 are connected to be communicable with each other via a network.
<管理サーバ1>
 図2は、管理サーバ1のハードウェア構成を示す図である。なお、図示された構成は一例であり、これ以外の構成を有していてもよい。
<Management server 1>
FIG. 2 is a diagram illustrating a hardware configuration of the management server 1. In addition, the structure shown in figure is an example and may have a structure other than this.
 図示されるように、管理サーバ1は、複数のユーザ端末2、3と、飛行体4と接続され本システムの一部を構成する。管理サーバ1は、例えばワークステーションやパーソナルコンピュータのような汎用コンピュータとしてもよいし、或いはクラウド・コンピューティングによって論理的に実現されてもよい。 As shown in the figure, the management server 1 is connected to a plurality of user terminals 2 and 3 and the flying vehicle 4 to constitute a part of the present system. The management server 1 may be a general-purpose computer such as a workstation or a personal computer, or may be logically realized by cloud computing.
 管理サーバ1は、少なくとも、プロセッサ10、メモリ11、ストレージ12、送受信部13、入出力部14等を備え、これらはバス15を通じて相互に電気的に接続される。 The management server 1 includes at least a processor 10, a memory 11, a storage 12, a transmission / reception unit 13, an input / output unit 14, and the like, which are electrically connected to each other through a bus 15.
 プロセッサ10は、管理サーバ1全体の動作を制御し、各要素間におけるデータの送受信の制御、及びアプリケーションの実行及び認証処理に必要な情報処理等を行う演算装置である。例えばプロセッサ10はCPU(Central Processing Unit)であり、ストレージ12に格納されメモリ11に展開された本システムのためのプログラム等を実行して各情報処理を実施する。 The processor 10 is an arithmetic device that controls the overall operation of the management server 1 and performs data transmission / reception control between elements and information processing necessary for application execution and authentication processing. For example, the processor 10 is a CPU (Central Processing Unit) and executes each information process by executing a program for the system stored in the storage 12 and expanded in the memory 11.
 メモリ11は、DRAM(Dynamic Random Access Memory)等の揮発性記憶装置で構成される主記憶と、フラッシュメモリやHDD(Hard Disc Drive)等の不揮発性記憶装置で構成される補助記憶と、を含む。メモリ11は、プロセッサ10のワークエリア等として使用され、また、管理サーバ1の起動時に実行されるBIOS(Basic Input / Output System)、及び各種設定情報等を格納する。 The memory 11 includes a main memory composed of a volatile storage device such as a DRAM (Dynamic Random Access Memory) and an auxiliary memory composed of a nonvolatile storage device such as a flash memory or an HDD (Hard Disc Drive). . The memory 11 is used as a work area of the processor 10 and stores BIOS (Basic Input / Output System) executed when the management server 1 is started up, various setting information, and the like.
 ストレージ12は、アプリケーション・プログラム等の各種プログラムを格納する。各処理に用いられるデータを格納したデータベースがストレージ12に構築されていてもよい。 The storage 12 stores various programs such as application programs. A database storing data used for each process may be constructed in the storage 12.
 送受信部13は、管理サーバ1をネットワークおよびブロックチェーンネットワークに接続する。なお、送受信部13は、Bluetooth(登録商標)及びBLE(Bluetooth Low Energy)の近距離通信インターフェースを備えていてもよい。 The transmission / reception unit 13 connects the management server 1 to a network and a block chain network. The transmission / reception unit 13 may include a Bluetooth (registered trademark) and a BLE (Bluetooth Low Energy) short-range communication interface.
 入出力部14は、キーボード・マウス類等の情報入力機器、及びディスプレイ等の出力機器である。 The input / output unit 14 is an information input device such as a keyboard / mouse and an output device such as a display.
 バス15は、上記各要素に共通に接続され、例えば、アドレス信号、データ信号及び各種制御信号を伝達する。 The bus 15 is commonly connected to each of the above elements, and transmits, for example, an address signal, a data signal, and various control signals.
<ユーザ端末2、3>
 図3に示されるユーザ端末2、3もまた、プロセッサ20、メモリ21、ストレージ22、送受信部23、入出力部24等を備え、これらはバス25を通じて相互に電気的に接続される。各要素の機能は、上述した管理サーバ1と同様に構成することが可能であることから、各要素の詳細な説明は省略する。
< User terminals 2 and 3>
The user terminals 2 and 3 shown in FIG. 3 also include a processor 20, a memory 21, a storage 22, a transmission / reception unit 23, an input / output unit 24, and the like, which are electrically connected to each other through a bus 25. Since the function of each element can be configured in the same manner as the management server 1 described above, detailed description of each element is omitted.
<飛行体4>
 図4は、飛行体4のハードウェア構成を示すブロック図である。フライトコントローラ41は、プログラマブルプロセッサ(例えば、中央演算処理装置(CPU))などの1つ以上のプロセッサを有することができる。
<Aircraft 4>
FIG. 4 is a block diagram showing a hardware configuration of the flying object 4. The flight controller 41 may have one or more processors such as a programmable processor (eg, a central processing unit (CPU)).
 また、フライトコントローラ41は、メモリ411を有しており、当該メモリにアクセス可能である。メモリ411は、1つ以上のステップを行うためにフライトコントローラが実行可能であるロジック、コード、および/またはプログラム命令を記憶している。また、フライトコントローラ41は、慣性センサ(加速度センサ、ジャイロセンサ)、GPSセンサ、近接センサ(例えば、ライダー)等のセンサ類412を含みうる。 The flight controller 41 has a memory 411 and can access the memory. Memory 411 stores logic, code, and / or program instructions that can be executed by the flight controller to perform one or more steps. The flight controller 41 may include sensors 412 such as an inertial sensor (acceleration sensor, gyro sensor), a GPS sensor, and a proximity sensor (for example, a rider).
 メモリ411は、例えば、SDカードやランダムアクセスメモリ(RAM)などの分離可能な媒体または外部の記憶装置を含んでいてもよい。カメラ/センサ類42から取得したデータは、メモリに直接に伝達されかつ記憶されてもよい。例えば、カメラ等で撮影した静止画・動画データが内蔵メモリ又は外部メモリに記録される。カメラ42は飛行体にジンバル43を介して設置される。 The memory 411 may include a separable medium such as an SD card or a random access memory (RAM) or an external storage device. Data obtained from the camera / sensors 42 may be transmitted directly to the memory and stored. For example, still image / moving image data shot by a camera or the like is recorded in a built-in memory or an external memory. The camera 42 is installed on the flying object via the gimbal 43.
 フライトコントローラ41は、飛行体の状態を制御するように構成された図示しない制御モジュールを含んでいる。例えば、制御モジュールは、6自由度(並進運動x、y及びz、並びに回転運動θ、θ及びθ)を有する飛行体の空間的配置、速度、および/または加速度を調整するために、ESC44(Electric Speed Controller)を経由して飛行体の推進機構(モータ45等)を制御する。バッテリー48から給電されるモータ45によりプロペラ46が回転することで飛行体の揚力を生じさせる。制御モジュールは、搭載部、センサ類の状態のうちの1つ以上を制御することができる。 The flight controller 41 includes a control module (not shown) configured to control the state of the flying object. For example, the control module may adjust the spatial arrangement, velocity, and / or acceleration of an aircraft that has six degrees of freedom (translational motion x, y, and z, and rotational motion θ x , θ y, and θ z ). The propulsion mechanism (motor 45 and the like) of the flying object is controlled via an ESC 44 (Electric Speed Controller). The propeller 46 is rotated by the motor 45 fed from the battery 48 to generate lift of the flying object. The control module can control one or more of the states of the mounting unit and sensors.
 フライトコントローラ41は、1つ以上の外部のデバイス(例えば、送受信機(プロポ)49、端末、表示装置、または他の遠隔の制御器)からのデータを送信および/または受け取るように構成された送受信部47と通信可能である。送受信機49は、有線通信または無線通信などの任意の適当な通信手段を使用することができる。 The flight controller 41 is configured to send and / or receive data from one or more external devices (eg, a transceiver 49, a terminal, a display device, or other remote controller). The communication with the unit 47 is possible. The transceiver 49 can use any appropriate communication means such as wired communication or wireless communication.
 例えば、送受信部47は、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)、赤外線、無線、WiFi、ポイントツーポイント(P2P)ネットワーク、電気通信ネットワーク、クラウド通信などのうちの1つ以上を利用することができる。 For example, the transmission / reception unit 47 uses one or more of local area network (LAN), wide area network (WAN), infrared, wireless, WiFi, point-to-point (P2P) network, telecommunication network, cloud communication, and the like. can do.
 送受信部47は、センサ類42で取得したデータ、フライトコントローラ41が生成した処理結果、所定の制御データ、端末または遠隔の制御器からのユーザコマンドなどのうちの1つ以上を送信および/または受け取ることができる。 The transmission / reception unit 47 transmits and / or receives one or more of data acquired by the sensors 42, a processing result generated by the flight controller 41, predetermined control data, a user command from a terminal or a remote controller, and the like. be able to.
 本実施の形態によるセンサ類42は、慣性センサ(加速度センサ、ジャイロセンサ)、GPSセンサ、近接センサ(例えば、ライダー)、またはビジョン/イメージセンサ(例えば、カメラ)を含み得る。 The sensors 42 according to the present embodiment may include an inertial sensor (acceleration sensor, gyro sensor), a GPS sensor, a proximity sensor (eg, a rider), or a vision / image sensor (eg, a camera).
<管理サーバの機能>
 図5は、管理サーバ1に実装される機能を例示したブロック図である。管理サーバ1は、通信部110、フライトミッション生成部130、レポート生成部150、アプリケーション部170、記憶部190を備えている。フライトミッション生成部130は、ルート生成部132、アプリケーション選定部134、評価部136、補正部138を含む。また、記憶部190は、飛行ルート情報192、目的別飛行アプリケーション194、フライトログ196、インターフェース情報198の各種データベースを含む。
<Management server functions>
FIG. 5 is a block diagram illustrating functions implemented in the management server 1. The management server 1 includes a communication unit 110, a flight mission generation unit 130, a report generation unit 150, an application unit 170, and a storage unit 190. The flight mission generation unit 130 includes a route generation unit 132, an application selection unit 134, an evaluation unit 136, and a correction unit 138. The storage unit 190 includes various databases of flight route information 192, purpose-specific flight applications 194, flight logs 196, and interface information 198.
 通信部110は、ユーザ端末2や、飛行体4と通信を行う。通信部110は、ユーザ端末2から、少なくとも飛行場所及び飛行目的を含むフライト依頼を受け付ける受付部としても機能する。フライトミッション生成部130は、フライトミッションを生成する。フライトミッションは、飛行ルート及び目的別飛行アプリケーション194から選択されたアプリケーションである。飛行ルートは、飛行ルート情報192を参照してルート生成部132により生成される。飛行アプリケーションは、目的別飛行アプリケーション194を参照して、アプリケーション選定部134により選択される。 The communication unit 110 communicates with the user terminal 2 and the flying object 4. The communication unit 110 also functions as a reception unit that receives a flight request including at least a flight location and a flight purpose from the user terminal 2. The flight mission generation unit 130 generates a flight mission. The flight mission is an application selected from the flight route and purpose-specific flight application 194. The flight route is generated by the route generation unit 132 with reference to the flight route information 192. The flight application is selected by the application selection unit 134 with reference to the purpose-specific flight application 194.
 本実施の形態においては、生成したフライトミッションが適切なものかどうかを評価する評価部136を設けることとしてもよい。評価部136は、例えば、フライトミッションに対するユーザからの操作や、過去に蓄積されたフライトミッションに基づく機械学習等によりその適切さをスコア等によって評価することとしてもよい。スコアが所定の範囲にない場合には、フライトミッションは補正部138により補正される。 In this embodiment, an evaluation unit 136 that evaluates whether the generated flight mission is appropriate may be provided. The evaluation unit 136 may evaluate the suitability based on a score or the like by, for example, a user operation on a flight mission or machine learning based on a flight mission accumulated in the past. If the score is not within the predetermined range, the flight mission is corrected by the correction unit 138.
 本実施の形態においては、飛行体4により取得された情報(静止画、動画、音声その他の情報)はフライトログ196に蓄積される。レポート生成部150はフライトログに基づいてユーザ端末2に送信するためのレポート情報を生成する。本実施の形態によるレポートは、例えば、点検対象施設の点検結果や、警備対象施設の警備結果等が例示できるが、ニーズに応じた各種レポートとしてよい。 In the present embodiment, information (still images, moving images, audio and other information) acquired by the flying object 4 is accumulated in the flight log 196. The report generation unit 150 generates report information to be transmitted to the user terminal 2 based on the flight log. Examples of the report according to the present embodiment include the inspection result of the inspection target facility and the security result of the security target facility, but may be various reports according to needs.
 インターフェース情報198は、アプリケーション部170と共にユーザ端末2の表示部(ディスプレイ等)に表示するための各種制御情報を格納している(画面例については、図10を参照)。 The interface information 198 stores various control information to be displayed on the display unit (display or the like) of the user terminal 2 together with the application unit 170 (see FIG. 10 for a screen example).
 図6は、ユーザ端末2に実装される機能ブロック図である。ユーザ端末2は、通信部210、記憶部220、入力部240、出力部250、およびアプリケーション部270を含み、相互に作用する。 FIG. 6 is a functional block diagram implemented in the user terminal 2. The user terminal 2 includes a communication unit 210, a storage unit 220, an input unit 240, an output unit 250, and an application unit 270, and interacts with each other.
<目的別飛行アプリケーション>
 図7に示されるように、目的別飛行アプリケーション194は、本システムによって作業を行う飛行体4の作業目的(用途)毎に用意される。例示すれば、警備・監視用のアプリケーション1941、設備点検用のアプリケーション1942、測量用のアプリケーション1943、災害対策用のアプリケーション1944が挙げられるがこれに限られない。各アプリケーションには、例えば、目的に適した飛行制御(高度、速度、範囲等)に関する情報や、取得条件(カメラの解像度、撮影角度、オーバーラップ率、フィルタの有無、飛行予定時間、バッテリーの必要量等)、その他目的を遂行するために必要な飛行体4の制御情報が含まれている。
<Flight application by purpose>
As shown in FIG. 7, the purpose-specific flight application 194 is prepared for each work purpose (use) of the flying object 4 working with the present system. For example, an application 1941 for security / monitoring, an application 1942 for equipment inspection, an application 1943 for surveying, and an application 1944 for disaster countermeasures are included, but are not limited thereto. For each application, for example, information on flight control (altitude, speed, range, etc.) suitable for the purpose, acquisition conditions (camera resolution, shooting angle, overlap rate, presence of filters, estimated flight time, battery required) Control information of the air vehicle 4 necessary for carrying out other purposes.
 図8を参照して、本システムの処理の流れを説明する。ユーザは、ユーザ端末2からフライト依頼を送信する(SQ101)。フライト依頼は、少なくとも飛行場所と、飛行目的に関する情報を含んでいる。管理サーバ1は、記憶部190(図5参照)を参照して(SQ102)、フライトミッションを生成する(SQ104)。生成されたフライトミッションは、飛行体4に対して、直接(又は端末やプロポを経由等して間接的に)送信される(SQ106)。飛行体4はフライトミッション中に取得した情報をリアルタイムで(又は事後に)管理サーバ1に送信(報告)する(SQ108)。管理サーバ1は、飛行体から取得した情報(フライトログ)に基づいてレポートを生成する(SQ110)。 Referring to FIG. 8, the process flow of this system will be described. The user transmits a flight request from the user terminal 2 (SQ101). The flight request includes at least information regarding the flight location and the flight purpose. The management server 1 refers to the storage unit 190 (see FIG. 5) (SQ102) and generates a flight mission (SQ104). The generated flight mission is transmitted to the flying object 4 directly (or indirectly via a terminal or a transmitter) (SQ106). The flying object 4 transmits (reports) the information acquired during the flight mission to the management server 1 in real time (or after the fact) (SQ108). The management server 1 generates a report based on information (flight log) acquired from the flying object (SQ110).
 図9は、太陽光発電施設のフライトミッション(飛行ルート)生成の例である。図示されるように、点検範囲が広い場合には、飛行体の電源(バッテリー)や、点検時間等を考慮して複数台の飛行体による点検を前提としたルートを生成してもよい。図示される例では、飛行区域A1およびA2について、飛行体4a、4bによる飛行ルートR1、R2が生成されている。飛行体4a、4bにより取得された情報は、管理サーバ1側においてそれぞれ取得した情報に紐づく位置情報及び時間情報などに基づいてマージされ、レポート生成に利用される。複数台の飛行体の飛行ルートは、例えば、飛行体ごとにフライト依頼が送信されて飛行ルートが生成されてもよいし、図10(a)で示すような1台の飛行体4aのフライト依頼に対して生成された飛行ルートR3を基に、図10(b)で示すように飛行体ごと(例えば飛行体4a、4bの2台)の飛行ルートR4、R5が割り当てられてもよい。さらに、図11に示されるように、本来は2台(複数台)で行う飛行区域A1、A2における複数の飛行ルートについて、1台の飛行体4による一連の飛行ルートR6を生成してもよい。また、図12に示されるように、1台の飛行体4による一連の飛行ルートR6は長距離となりバッテリー切れの可能性が高いため、上記飛行ルートR6の途中で、換装用バッテリー5を換装するための飛行ルートR7が設定されてもよい。 FIG. 9 is an example of generating a flight mission (flight route) of a photovoltaic power generation facility. As shown in the drawing, when the inspection range is wide, a route based on the inspection by a plurality of flying objects may be generated in consideration of the power supply (battery) of the flying object, the inspection time, and the like. In the illustrated example, flight routes R1 and R2 by the flying bodies 4a and 4b are generated for the flight areas A1 and A2. Information acquired by the flying objects 4a and 4b is merged based on position information and time information associated with the acquired information on the management server 1 side, and used for report generation. As for the flight routes of a plurality of flying bodies, for example, a flight request may be transmitted for each flying body to generate a flying route, or a flight request of one flying body 4a as shown in FIG. As shown in FIG. 10B, flight routes R4 and R5 for each aircraft (for example, two aircrafts 4a and 4b) may be assigned based on the flight route R3 generated for the aircraft. Furthermore, as shown in FIG. 11, a series of flight routes R <b> 6 by one flying body 4 may be generated for a plurality of flight routes in the flight areas A <b> 1 and A <b> 2 that are originally performed by two (a plurality). . In addition, as shown in FIG. 12, since a series of flight routes R6 by a single flying body 4 is long and the possibility of running out of the battery is high, the replacement battery 5 is replaced in the middle of the flight route R6. A flight route R7 may be set.
<使用例>
 図13は、ユーザからのフライト依頼の入力(操作)を受け付ける際のユーザ端末2のディスプレイDPに表示される表示例である。図示されるように、ユーザは、太陽光設備の点検という目的を選択し(図示せず)、地図上の特定の範囲Sを指定することにより、飛行ルートR8が自動で生成される。なお、自動で生成した飛行ルートを含むフライトミッションは、ユーザから追加で詳細な調整を受けることによりカスタマイズも可能である。
<Usage example>
FIG. 13 is a display example displayed on the display DP of the user terminal 2 when receiving an input (operation) of a flight request from the user. As shown in the figure, the user selects the purpose of checking the solar facility (not shown), and designates a specific range S on the map, whereby the flight route R8 is automatically generated. The flight mission including the automatically generated flight route can be customized by receiving additional detailed adjustments from the user.
 図14は、飛行体により取得された静止画情報に基づいて生成されたレポートをユーザ端末2のディスプレイDPに表示した表示例である。図示されるように、予め取得された地図画像M(例えば、別途取得した情報に基づくオルソ画像や、インターネットなどを通じて取得した地図画像)上に、飛行体により取得された静止画像情報P1をプロット(重畳)することで、最新の情報を確認しやすいように重畳して表示する。なお、レポートとしてユーザ端末2のディスプレイDPに表示される情報はプロットされた静止画像情報に限らず、点検に有用な情報(例えば、日時、飛行体に関する情報、異常個所数など)を表示してもよい。 FIG. 14 is a display example in which a report generated based on still image information acquired by the flying object is displayed on the display DP of the user terminal 2. As shown in the figure, the still image information P1 acquired by the flying object is plotted on the map image M acquired in advance (for example, an ortho image based on separately acquired information or a map image acquired through the Internet) ( By superimposing), the latest information is superimposed and displayed so that it can be easily confirmed. Note that the information displayed on the display DP of the user terminal 2 as a report is not limited to the plotted still image information, and information useful for inspection (for example, date and time, information on the flying object, the number of abnormal parts, etc.) is displayed. Also good.
 本発明の飛行体は、マルチコプター・ドローン等の飛行機関連産業において利用することができ、さらに、本発明は、カメラ等を搭載した空撮用の飛行体としても好適に使用することができる他、セキュリティ分野、農業、インフラ監視等の様々な産業にも利用することができる。 The flying object of the present invention can be used in airplane related industries such as a multicopter drone. Furthermore, the present invention can be suitably used as an aerial photography flying object equipped with a camera or the like. It can also be used in various industries such as security, agriculture, and infrastructure monitoring.
 上述した実施の形態は、本発明の理解を容易にするための例示に過ぎず、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良することができると共に、本発明にはその均等物が含まれることは言うまでもない。 The embodiment described above is merely an example for facilitating the understanding of the present invention, and is not intended to limit the present invention. The present invention can be changed and improved without departing from the gist thereof, and it is needless to say that the present invention includes equivalents thereof.
 1    管理サーバ
 2    ユーザ端末
 4    飛行体

 
1 management server 2 user terminal 4 flying object

Claims (2)

  1.  ネットワークを介してユーザ端末と無人飛行体と接続された、無人飛行体のフライト管理サーバであって、
     飛行パラメータを含む飛行ルート情報と、複数の目的別飛行アプリケーションを記憶する記憶部と、
     少なくとも飛行場所及び飛行目的を含むフライト依頼を受け付ける受付部と、
     前記フライト依頼に基づいて、前記飛行ルート情報を参照して生成された飛行ルートと、前記目的別飛行アプリケーションから選択された飛行アプリケーションとを含むフライトミッションを生成する生成部と、
     生成した前記フライトミッションを前記無人飛行体に送信する通信部と、
    を備える
    無人飛行体のフライト管理サーバ。
    An unmanned air vehicle flight management server connected to a user terminal and an unmanned air vehicle via a network,
    A storage unit that stores flight route information including flight parameters, and a plurality of flight applications by purpose;
    A reception unit that accepts a flight request including at least a flight location and a flight purpose;
    A generating unit that generates a flight mission including a flight route generated by referring to the flight route information based on the flight request and a flight application selected from the purpose-specific flight application;
    A communication unit for transmitting the generated flight mission to the unmanned air vehicle;
    An unmanned air vehicle flight management server.
  2.  ネットワークを介して接続されたユーザ端末と無人飛行体とフライト管理サーバとを含む、無人飛行体のフライト管理システムであって、
     前記フライト管理サーバは:
     飛行パラメータを含む飛行ルート情報と、複数の目的別飛行アプリケーションを記憶する記憶部を備えており;
     前記ユーザ端末から、少なくとも飛行場所及び飛行目的を含むフライト依頼を受け付け;
     前記フライト依頼に基づいて、前記飛行ルート情報を参照して生成された飛行ルートと、前記目的別飛行アプリケーションから選択された飛行アプリケーションとを含むフライトミッションを生成し;
     生成した前記フライトミッションを前記無人飛行体に送信し;
     前記無人飛行体は、前記フライトミッションを遂行するとともに、フライトログを前記フライト管理サーバに送信する、
    無人飛行体のフライト管理システム。

     
    A flight management system for an unmanned air vehicle including a user terminal, an unmanned air vehicle, and a flight management server connected via a network,
    The flight management server is:
    A storage unit for storing flight route information including flight parameters and a plurality of purpose-specific flight applications;
    Accepting a flight request including at least a flight location and a flight purpose from the user terminal;
    Generating a flight mission including a flight route generated by referring to the flight route information and a flight application selected from the purpose-specific flight application based on the flight request;
    Sending the generated flight mission to the unmanned air vehicle;
    The unmanned air vehicle performs the flight mission and transmits a flight log to the flight management server.
    Flight management system for unmanned air vehicles.

PCT/JP2019/021528 2018-05-30 2019-05-30 Flight management server and flight management system for unmanned aerial vehicle WO2019230885A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019563630A JP6713156B2 (en) 2018-05-30 2019-05-30 Flight management server and flight management system for unmanned air vehicles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-103334 2018-05-30
JP2018103334 2018-05-30

Publications (1)

Publication Number Publication Date
WO2019230885A1 true WO2019230885A1 (en) 2019-12-05

Family

ID=68697604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021528 WO2019230885A1 (en) 2018-05-30 2019-05-30 Flight management server and flight management system for unmanned aerial vehicle

Country Status (2)

Country Link
JP (2) JP6713156B2 (en)
WO (1) WO2019230885A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6765738B1 (en) * 2019-06-21 2020-10-07 株式会社センシンロボティクス Flight management server and flight management system for unmanned aerial vehicles
JP6810494B1 (en) * 2020-03-04 2021-01-06 株式会社センシンロボティクス Aircraft management server and management system
JP2021139874A (en) * 2020-03-04 2021-09-16 株式会社センシンロボティクス Management server and management system for flying object

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018034033A1 (en) * 2016-08-16 2018-02-22 本郷飛行機株式会社 Communication control device
WO2018078863A1 (en) * 2016-10-31 2018-05-03 株式会社オプティム Drone control system, method, and program

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8060270B2 (en) * 2008-02-29 2011-11-15 The Boeing Company System and method for inspection of structures and objects by swarm of remote unmanned vehicles
CN109002052A (en) * 2014-07-31 2018-12-14 深圳市大疆创新科技有限公司 The virtual tours system and method realized using unmanned vehicle
WO2017061589A1 (en) * 2015-10-07 2017-04-13 ブルーイノベーション株式会社 Flight management system for flying objects
JP6739972B2 (en) * 2016-04-11 2020-08-12 株式会社東芝 Multi-agent system, task allocation device, task allocation method and program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018034033A1 (en) * 2016-08-16 2018-02-22 本郷飛行機株式会社 Communication control device
WO2018078863A1 (en) * 2016-10-31 2018-05-03 株式会社オプティム Drone control system, method, and program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6765738B1 (en) * 2019-06-21 2020-10-07 株式会社センシンロボティクス Flight management server and flight management system for unmanned aerial vehicles
JP6810494B1 (en) * 2020-03-04 2021-01-06 株式会社センシンロボティクス Aircraft management server and management system
JP2021139874A (en) * 2020-03-04 2021-09-16 株式会社センシンロボティクス Management server and management system for flying object
JP2021139876A (en) * 2020-03-04 2021-09-16 株式会社センシンロボティクス Management server and management system for flying object

Also Published As

Publication number Publication date
JPWO2019230885A1 (en) 2020-06-11
JP2020140726A (en) 2020-09-03
JP6713156B2 (en) 2020-06-24

Similar Documents

Publication Publication Date Title
WO2019230885A1 (en) Flight management server and flight management system for unmanned aerial vehicle
US20170023939A1 (en) System and Method for Controlling an Unmanned Aerial Vehicle over a Cellular Network
WO2021199449A1 (en) Position calculation method and information processing system
WO2019212036A1 (en) Booking management device for unmanned aerial vehicles
JP2019028712A (en) Guidance method, guidance device, and guidance system of flying body
JP6807093B1 (en) Inspection system and management server, program, crack information provision method
JP6661187B1 (en) Aircraft management server and management system
JP7333129B2 (en) Shooting method
JP7149569B2 (en) Building measurement method
JP6800505B1 (en) Aircraft management server and management system
JP7360683B2 (en) Work plan generation system
JP6730764B1 (en) Flight route display method and information processing apparatus
JP6765738B1 (en) Flight management server and flight management system for unmanned aerial vehicles
WO2021124579A1 (en) Image capturing method of flight vehicle and information processing device
JP6749612B2 (en) Route management control server, method and system, and first and second air vehicles used therein
JP6715541B1 (en) Aircraft management server and management system
JP6960643B1 (en) Inspection system and management server, program, crack information provision method
JP2020201849A (en) Control method of flying body
JP2019123337A (en) Motion body
WO2021038622A1 (en) Control system for unmanned moving body and control method for unmanned moving body
WO2021049508A1 (en) Dimension display system, and dimension display method
JP7370045B2 (en) Dimension display system and method
JP6934646B1 (en) Flight restriction area setting method, waypoint setting method and management server, information processing system, program
JP2021015602A (en) Management server and management system for flying objects
KR102526202B1 (en) Indoor autonomous flying drone control system and method therefor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019563630

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19811494

Country of ref document: EP

Kind code of ref document: A1