WO2019230825A1 - Valve device - Google Patents

Valve device Download PDF

Info

Publication number
WO2019230825A1
WO2019230825A1 PCT/JP2019/021355 JP2019021355W WO2019230825A1 WO 2019230825 A1 WO2019230825 A1 WO 2019230825A1 JP 2019021355 W JP2019021355 W JP 2019021355W WO 2019230825 A1 WO2019230825 A1 WO 2019230825A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
valve
valve body
shaft
hole
Prior art date
Application number
PCT/JP2019/021355
Other languages
French (fr)
Japanese (ja)
Inventor
忠 池本
勇人 佐藤
市川 正人
昭彦 後藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018233917A external-priority patent/JP6996484B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112019002720.4T priority Critical patent/DE112019002720B4/en
Priority to KR1020207034223A priority patent/KR20210005192A/en
Publication of WO2019230825A1 publication Critical patent/WO2019230825A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/072Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
    • F16K11/076Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with sealing faces shaped as surfaces of solids of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/06Construction of housing; Use of materials therefor of taps or cocks

Definitions

  • This disclosure relates to a valve device.
  • the end portion of the shaft provided on the rotating shaft of the valve body has a bearing portion that extends in a cylindrical shape from the inner wall of the housing body that forms the internal space to the opposite side of the valve body. It is supported by. Therefore, there is a possibility that air in the internal space is accumulated inside the bearing portion. Thereby, there exists a possibility that the edge part of a shaft and a bearing part may slide in the dry state. Therefore, the end of the shaft or the bearing may be worn.
  • An object of the present disclosure is to provide a valve device that can suppress wear of an end portion of a shaft.
  • the present disclosure is a valve device capable of controlling the cooling water of a vehicle heating element, and includes a housing, a valve, and a shaft bearing portion.
  • a shaft bearing portion extends in a cylindrical shape from an opposing inner wall that is an inner wall facing the end portion of the shaft of the inner wall of the housing main body forming an internal space, and is capable of bearing the end portion of the shaft on the inside, and a bearing It has a bearing part channel formed so as to connect the inner peripheral wall and the outer peripheral wall of the main part.
  • FIG. 1 is a schematic diagram showing a cooling system to which the valve device of the first embodiment is applied.
  • FIG. 2 is a schematic diagram showing an arrangement of the valve device of the first embodiment in a vehicle.
  • FIG. 3 is a cross-sectional view showing the valve device of the first embodiment
  • FIG. 4 is a cross-sectional view showing the vicinity of the seal unit of the valve device of the first embodiment
  • FIG. 5 is a cross-sectional perspective view showing the valve device of the first embodiment
  • 6 is a cross-sectional view taken along line VI-VI in FIG. FIG.
  • FIG. 7 is a diagram showing the relationship between the rotational position of the valve body of the valve device of the first embodiment and the open / closed state of the valve body opening
  • FIG. 8 is a view of FIG. 3 as viewed from the direction of arrow VIII.
  • FIG. 9 is a diagram of FIG. 3 viewed from the direction of the arrow IX.
  • FIG. 10 is a perspective view showing a part of the valve device of the first embodiment.
  • FIG. 11 is a cross-sectional view showing the vicinity of the drive unit of the valve device of the first embodiment.
  • FIG. 12 is a cross-sectional view showing the vicinity of the drive unit of the valve device of the first embodiment
  • FIG. 13 is a cross-sectional view showing the vicinity of the drive unit of the valve device of the first embodiment, FIG.
  • FIG. 14 is a cross-sectional view showing the vicinity of the drive unit of the valve device of the first embodiment
  • FIG. 15 is a plan view showing a drive unit of the valve device of the first embodiment
  • FIG. 16 is a cross-sectional view showing the vicinity of the drive unit of the valve device of the first embodiment
  • FIG. 17 is an exploded perspective view showing a part of the drive unit cover and the drive unit of the valve device of the first embodiment
  • FIG. 18 is an exploded perspective view showing a drive unit cover and a part of the drive unit of the valve device of the first embodiment.
  • FIG. 19 is a diagram illustrating a drive unit of the valve device according to the second embodiment.
  • FIG. 20 is a view showing a valve of the valve device of the third embodiment, FIG.
  • FIG. 21 is a diagram showing a part of a valve of the valve device of the third embodiment
  • FIG. 22 is a perspective view showing a valve of the valve device of the third embodiment
  • FIG. 23 is a perspective view showing a valve of the valve device of the third embodiment
  • FIG. 24 is a diagram showing a part of a valve of the valve device of the third embodiment
  • FIG. 25 is a cross-sectional view showing a part of a valve and a seal unit of the valve device of the third embodiment
  • FIG. 26 is a perspective view showing a valve and a seal unit of the valve device of the third embodiment
  • FIG. 27 is a perspective view showing a part of a valve of the valve device of the third embodiment
  • FIG. 22 is a perspective view showing a valve of the valve device of the third embodiment
  • FIG. 23 is a perspective view showing a valve of the valve device of the third embodiment
  • FIG. 24 is a diagram showing a part of a valve of the valve device of the third embodiment
  • FIG. 25 is
  • FIG. 28 is a cross-sectional view showing a part of a valve of the valve device of the third embodiment
  • FIG. 29 is a diagram for explaining a manufacturing process of the valve of the valve device according to the third embodiment
  • FIG. 30 is a view for explaining a manufacturing process of the valve of the valve device of the third embodiment
  • FIG. 31 is a diagram for explaining a manufacturing process of the valve of the valve device of the third embodiment
  • FIG. 32 is a diagram for explaining a manufacturing process of the valve of the valve device according to the third embodiment.
  • FIG. 33 is a cross-sectional view showing a part of a valve and a seal unit of the valve device of the fourth embodiment
  • FIG. 34 is a cross-sectional view showing a part of the valve of the valve device of the fifth embodiment
  • FIG. 35 is a perspective view showing a mold apparatus used in the valve manufacturing process of the valve apparatus of the fifth embodiment
  • FIG. 36 is a perspective view showing a part of a mold apparatus used in the valve manufacturing process of the valve apparatus of the fifth embodiment
  • FIG. 37 is a perspective view showing a part of a mold apparatus used in the valve manufacturing process of the valve apparatus of the fifth embodiment
  • FIG. 38 is a perspective view showing a part of a mold apparatus used in the valve manufacturing process of the valve apparatus of the fifth embodiment
  • FIG. 39 is a diagram for explaining a manufacturing process of the valve of the valve device according to the fifth embodiment.
  • FIG. 40 is a diagram for explaining a manufacturing process of the valve of the valve device according to the fifth embodiment.
  • FIG. 40 is a diagram for explaining a manufacturing process of the valve of the valve device according to the fifth embodiment.
  • FIG. 41 is a diagram for explaining a manufacturing process of the valve of the valve device according to the fifth embodiment.
  • FIG. 42 is a cross-sectional view showing the valve device of the sixth embodiment
  • FIG. 43 is a view showing the valve device of the sixth embodiment
  • FIG. 44 is a schematic diagram showing an arrangement of the valve device of the sixth embodiment in a vehicle.
  • FIG. 45 is a view showing a valve device of a sixth embodiment
  • FIG. 46 is a perspective view showing the valve device of the sixth embodiment
  • 47 is a diagram of FIG. 42 viewed from the direction of arrow XLVII.
  • FIG. 48 is a perspective view showing the valve device of the sixth embodiment
  • FIG. 49 is a diagram showing a part of the valve device of the sixth embodiment
  • FIG. 50 is a cross-sectional view showing a pipe member, a seal unit, and a gasket of the valve device of the sixth embodiment.
  • FIG. 51 is an exploded view showing a part of the valve device of the sixth embodiment
  • FIG. 52 is a cross-sectional view showing the vicinity of the partition wall through-hole of the valve device of the sixth embodiment
  • FIG. 53 is a cross-sectional view showing the vicinity of the partition wall through-hole of the valve device of the seventh embodiment
  • FIG. 54 is a cross-sectional view showing the vicinity of the partition wall through-hole of the valve device of the eighth embodiment
  • FIG. 55 is a cross-sectional view showing the vicinity of the partition wall through-hole of the valve device of the ninth embodiment, FIG.
  • FIG. 56 is a view showing a partition wall through hole of the valve device of the tenth embodiment
  • FIG. 57 is a view showing a partition wall through-hole of the valve device of the tenth embodiment
  • FIG. 58 is a diagram showing a partition through hole of the valve device of the eleventh embodiment
  • FIG. 59 is a cross-sectional view showing the vicinity of the partition wall through-hole of the valve device of the twelfth embodiment
  • FIG. 60 is a view showing a partition wall through-hole of the valve device according to the thirteenth embodiment.
  • FIG. 61 is a diagram showing a valve device according to a fourteenth embodiment
  • 62 is a diagram of FIG. 61 viewed from the direction of the arrow LXII
  • 63 is a diagram of FIG.
  • FIG. 61 viewed from the direction of the arrow LXIII
  • 64 is a diagram of FIG. 61 viewed from the direction of the arrow LXIV.
  • FIG. 65 is a view of FIG. 61 viewed from the direction of the arrow LXV.
  • 66 is a diagram of FIG. 62 viewed from the direction of the arrow LXVI.
  • 67 is a cross-sectional view taken along line LXVII-LXVII in FIG.
  • 68 is a cross-sectional view taken along line LXVIII-LXVIII of FIG.
  • 69 is a cross-sectional view taken along line LXIX-LXIX of FIG. 70 is a cross-sectional view taken along line LXX-LXX in FIG.
  • FIG. 71 is a cross-sectional view taken along line LXXI-LXXI of FIG. 72 is a cross-sectional view taken along line LXXII-LXXII of FIG.
  • FIG. 73 is a sectional view taken along line LXXIII-LXXIII in FIG.
  • FIG. 74 is a perspective view showing the valve device of the fourteenth embodiment
  • FIG. 75 is a perspective view showing a valve device according to a fourteenth embodiment
  • FIG. 76 is a perspective view showing a valve device according to a fourteenth embodiment
  • FIG. 77 is a perspective view showing a valve device according to a fourteenth embodiment
  • FIG. 78 is an exploded view showing a part of the valve device according to the fourteenth embodiment.
  • FIG. 80 is a diagram illustrating a drive unit cover and a part of the drive unit of the valve device according to the fourteenth embodiment.
  • FIG. 81 is a view showing a holding member of the valve device of the fourteenth embodiment
  • 82 is a view of FIG. 81 viewed from the direction of the arrow LXXXII
  • FIG. 83 is a plan view showing a drive unit of the valve device of the fourteenth embodiment
  • 84 is a cross-sectional view taken along line LXXIV-LXXXIV of FIG.
  • FIG. 85 is an exploded perspective view showing a drive unit cover and a part of the drive unit of the valve device of the fourteenth embodiment
  • FIG. 86 is an exploded perspective view showing a drive unit cover and a part of the drive unit of the valve device of the fourteenth embodiment
  • FIG. 87 is a diagram illustrating a drive unit cover and a part of the drive unit of the valve device according to the first embodiment.
  • FIG. 88 is a view showing a holding member of the valve device of the first embodiment
  • 89 is a diagram of FIG. 88 viewed from the direction of the arrow LXXXIX.
  • FIG. 90 is a view showing a valve of the valve device of the fourteenth embodiment
  • 91 is a diagram of FIG. 90 viewed from the direction of the arrow XCI.
  • FIG. 92 is a view of FIG. 90 as seen from the direction of arrow XCII.
  • FIG. 93 is a view of FIG. 90 viewed from the direction of arrow XCIII.
  • FIG. 94 is a view of FIG. 90 viewed from the direction of arrow XCIV.
  • FIG. 95 is a view of FIG. 93 viewed from the direction of the arrow XCV.
  • 96 is a cross-sectional view taken along line XCVI-XCVI of FIG.
  • FIG. 97 is a perspective view showing a valve of the valve device of the fourteenth embodiment
  • FIG. 98 is a perspective view showing a valve of the valve device of the fourteenth embodiment;
  • FIG. 99 is a perspective view showing a valve and a seal unit of the valve device of the fourteenth embodiment
  • FIG. 100 is a diagram illustrating a part of a valve of the valve device according to the fourteenth embodiment.
  • FIG. 101 is a perspective view showing a part of a valve of the valve device of the fourteenth embodiment;
  • FIG. 102 is an exploded perspective view showing a part of the valve of the valve device according to the fourteenth embodiment.
  • FIG. 103 is a cross-sectional view showing a partition wall portion of the valve device of the fourteenth embodiment;
  • FIG. 104 is a perspective view showing a part of the partition wall of the valve device according to the fourteenth embodiment.
  • FIG. 105 is a cross-sectional view showing the shaft bearing portion of the valve device according to the fourteenth embodiment and the vicinity thereof.
  • FIG. 106 is a cross-sectional view showing the shaft bearing portion of the valve device according to the fourteenth embodiment and the vicinity thereof.
  • FIG. 107 is a cross-sectional perspective view showing the shaft bearing portion of the valve device according to the fourteenth embodiment and the vicinity thereof.
  • 108 is a cross-sectional view taken along line CVIII-CVIII in FIG.
  • FIG. 109 is a cross-sectional view showing a gap between the valve body and the inner wall of the valve device of the fourteenth embodiment;
  • FIG. 110 is a diagram illustrating a housing of a valve device according to a fourteenth embodiment.
  • FIG. 111 is a perspective view showing a housing of the valve device of the fourteenth embodiment
  • 112 is a cross-sectional view taken along line CXII-CXII of FIG.
  • FIG. 113 is a diagram illustrating the relationship between the rotational position of the valve body of the valve device according to the fifteenth embodiment and the opening of the port
  • FIG. 114 is a diagram showing the relationship between the rotational position of the valve body of the valve device of the fifteenth embodiment and the polymerization ratio of the valve body opening and the port
  • FIG. 115 is a view showing a valve device according to a sixteenth embodiment.
  • FIG. 116 is a view showing a valve of the valve device of the seventeenth embodiment, FIG.
  • FIG. 117 is a view showing a valve of the valve device of the eighteenth embodiment
  • FIG. 118 is a cross-sectional view showing a part of the partition wall portion of the valve device of the nineteenth embodiment
  • FIG. 119 is a cross-sectional view showing a partition wall portion and its vicinity of the valve device of the twentieth embodiment
  • FIG. 120 is a view showing a housing of the valve device of the 21st embodiment
  • FIG. 121 is a perspective view showing a housing of the valve device of the twenty-first embodiment
  • FIG. 122 is a diagram showing the relationship between the rotational position of the valve body of the valve device of the 22nd embodiment and the polymerization rate of the valve body opening and the port;
  • FIG. 123 is a diagram showing the relationship between the rotational position of the valve body of the valve device of the 23rd embodiment and the polymerization ratio of the valve body opening and the port;
  • FIG. 124 is a diagram illustrating the relationship between the rotational position of the valve body of the valve device of the twenty-fourth embodiment and the opening of the port;
  • FIG. 125 is a diagram illustrating the relationship between the rotational position of the valve body of the valve device according to the twenty-fourth embodiment and the polymerization ratio between the valve body opening and the port;
  • FIG. 126 is a cross-sectional view showing a shaft seal portion and its vicinity of a valve device according to a 25th embodiment,
  • FIG. 127 is a schematic diagram showing a cooling system to which the valve device of the twenty-sixth embodiment is applied.
  • valve devices according to a plurality of embodiments will be described with reference to the drawings. Note that, in a plurality of embodiments, substantially the same components are denoted by the same reference numerals, and description thereof is omitted. In the plurality of embodiments, substantially the same constituent parts have the same or similar operational effects.
  • FIG. 1 A valve device and a cooling system according to the first embodiment are shown in FIG.
  • the valve device 10 is applied to the cooling system 9 of the vehicle 1.
  • the vehicle 1 is equipped with an internal combustion engine (hereinafter referred to as “engine”) 2 as a heating element, a cooling system 9, a heater 6, a device 7, and the like.
  • engine internal combustion engine
  • the cooling system 9 includes a valve device 10, a water pump 4, a radiator 5, an electronic control unit (hereinafter referred to as “ECU”) 8, and the like.
  • the water pump 4 pumps the cooling water toward the water jacket 3 of the engine 2.
  • the valve device 10 is provided at the outlet of the water jacket 3, for example, and adjusts the flow rate of the cooling water sent to the radiator 5, the heater 6, and the device 7.
  • the radiator 5 is a heat exchanger, and performs heat exchange between the cooling water and air to lower the temperature of the cooling water.
  • the heater 6 and the device 7 are provided between the valve device 10 and the water pump 4.
  • the device 7 includes, for example, an oil cooler, an EGR cooler, an ATF (automatic transmission oil) cooler, and the like.
  • the ECU 8 can control the operation of the valve device 10 and control the flow rate of the cooling water sent to the radiator 5, the heater 6, and the device 7.
  • the valve device 10 includes a housing 20, a valve 30, a seal unit 35, a pipe member 50, a partition wall 60, a driving unit 70, a driving unit cover 80, and the like.
  • the housing 20 has a housing body 21 and the like.
  • the housing body 21 is made of, for example, resin, and forms an internal space 200 inside.
  • a flat mounting surface 201 is formed on the outer wall of the housing body 21.
  • a flat pipe mounting surface 202 is formed on the outer wall of the housing body 21 opposite to the mounting surface 201.
  • the attachment surface 201 is formed so as to be substantially parallel to the pipe attachment surface 202.
  • the housing body 21 is a part of the housing 20 that forms the internal space 200. Therefore, fastening portions 231 to 233, housing side fixing portions 251 to 256, a housing connection portion 259, and housing side cover fixing portions 291 to 296, which will be described later, are portions constituting the housing 20, but are different from the housing main body 21. It is formed as.
  • the housing body 21 has a housing opening 210 that connects the internal space 200 and the outside of the housing body 21.
  • the housing body 21 has a cylindrical housing inner wall 211 having one end connected to the housing opening 210 to form the internal space 200.
  • the housing inner wall 211 is formed so that the shaft is substantially parallel to the attachment surface 201 and the pipe attachment surface 202.
  • a housing opening 210 is formed on one end side in the longitudinal direction of the housing body 21, and the other end side in the longitudinal direction is a closed surface.
  • the housing 20 has an inlet port 220 that opens to the mounting surface 201 and connects the internal space 200 and the outside of the housing body 21.
  • the opening of the inlet port 220 in the mounting surface 201 is circular.
  • the inlet port 220 corresponds to “port” and “first port”.
  • the housing 20 has outlet ports 221, 222, and 223 that open to the pipe mounting surface 202 and connect the internal space 200 and the outside of the housing body 21.
  • the exit ports 221, 222, and 223 correspond to “port” and “second port”.
  • the opening of the inlet port 220 is formed in a portion of the housing inner wall 211 that faces the portion where the openings of the outlet ports 221 to 223 are formed.
  • the housing 20 has a relief port 224 that opens in the pipe mounting surface 202 and connects the internal space 200 and the outside of the housing body 21.
  • the inlet port 220 and the relief port 224 partially overlap (see FIG. 9).
  • the outlet ports 221, 222, and 223 are formed so as to be arranged in this order from the end of the housing body 21 opposite to the housing opening 210 toward the housing opening 210.
  • the inner diameter of the outlet port 221 is larger than the inner diameter of the outlet ports 222 and 223.
  • the valve 30 has a valve body 31, a shaft 32, and the like.
  • the valve body 31 is made of, for example, resin.
  • the valve body 31 is provided in the internal space 200 so as to be rotatable around the rotation axis Axr1.
  • the rotation axis Axr1 is set to be substantially parallel to the axis of the housing inner wall 211.
  • the valve body 31 includes a first divided body 33 and a second divided body 34 that are divided into two by a virtual plane Vp1 including the rotation axis Axr1, and the first divided body 33 and the second divided body 34 are joined to each other. The surfaces are joined (see FIG. 6).
  • the valve element 31 has ball valves 41, 42, 43, a cylindrical connection part 44, and a cylindrical valve connection part 45.
  • the ball valves 41, 42, and 43 correspond to “first ball valve”, “second ball valve”, and “third ball valve”, respectively.
  • the cylindrical connecting portion 44 and the cylindrical valve connecting portion 45 correspond to “cylindrical portions”.
  • Each of the ball valves 41, 42, and 43 is formed in a substantially spherical shape, and forms a valve body passage 300 inside.
  • the outer peripheral walls of the ball valves 41, 42, and 43 are formed in a spherical shape that protrudes outward in the diameter direction of the rotation axis Axr1.
  • the inner peripheral walls of the ball valves 41, 42, 43 are formed in a spherical shape so as to be recessed outward of the diameter of the rotation axis Axr1.
  • the cylindrical connecting portion 44 is formed in a cylindrical shape so as to connect the ball valve 41 and the ball valve 42.
  • the cylindrical valve connecting portion 45 is formed in a cylindrical shape so as to connect the ball valve 42 and the ball valve 43.
  • the cylindrical valve connection part 45 forms the valve body flow path 300 inside.
  • the ball valve 41, the cylindrical connection portion 44, the ball valve 42, the cylindrical valve connection portion 45, and the ball valve 43 are integrally formed in this order.
  • valve body openings 410, 420, and 430 that connect the valve body flow path 300 and the outside of the valve body 31 are formed.
  • An inter-valve space 400 is formed between the ball valve 41 and the ball valve 42 on the radially outer side of the cylindrical connecting portion 44. The inter-valve space 400 communicates with the valve body flow paths 300 of the ball valves 41 and 42.
  • valve body opening 410 corresponds to the position of the outlet port 221
  • the inter-valve space 400 corresponds to the position of the inlet port 220
  • the valve body opening 420 corresponds to the outlet port 222
  • the valve body opening 430 is provided in the internal space 200 so as to correspond to the position of the outlet port 223.
  • the shaft 32 is formed in a rod shape with, for example, metal, and is provided on the rotation axis Axr1.
  • the shaft 32 is provided integrally with the valve body 31.
  • the shaft 32 can rotate around the rotation axis Axr1 together with the valve body 31.
  • the shaft 32 is made of stainless steel such as SUS430.
  • the rotation axis Axr1 is set to extend from the outside of the housing body 21 to the outside of the drive unit cover 80. That is, the rotation axis Axr1 is defined as a straight line that exists not only in the internal space 200 but also outside the housing body 21.
  • the shaft 32 is provided on the rotation axis Axr1 such that the axis is along the rotation axis Axr1.
  • the valve body 31 is provided in the internal space 200 so as to be rotatable around the rotation axis Axr1.
  • the shaft 32 is provided on a straight line along the rotation axis Axr1. That is, the shaft 32 is provided on at least a part of the rotation axis Axr1.
  • the shaft 32 flows from the outside of the first outermost end surface 301 that is one end surface of the valve body 31 in the direction of the rotation axis Axr1 to the inside of the valve body 31. It passes through the path 300 and extends to the outside of the second outermost end surface 302 that is the other end surface.
  • the shaft 32 may be provided so as to extend from the outside of the first outermost end surface 301 of the valve body 31 to the inner wall of the valve body 31 so as not to protrude into the valve body flow path 300. That is, the shaft 32 does not have to exist in the valve body flow path 300 or the internal space 200, and provided at any position with respect to the valve body 31 as long as the shaft 32 is provided on a straight line along the rotation axis Axr1. It may be done.
  • the pipe member 50 is made of, for example, resin. As shown in FIGS. 3 and 8, the pipe member 50 includes pipe portions 511 to 517, a pipe connecting portion 52, and the like. Each of the pipe portions 511 to 517 is formed in a cylindrical shape.
  • the pipe part 511 is provided so that one end is located inside the outlet port 221.
  • the pipe portion 512 is provided so that one end is located inside the outlet port 222.
  • the pipe portion 513 is provided so that one end is located inside the outlet port 223.
  • the pipe portion 514 is provided so that one end thereof corresponds to the position of the relief port 224.
  • the pipe part 515 is provided so that one end is connected to the pipe part 511 and the pipe part 514.
  • the pipe part 516 is provided so that one end is connected to the pipe part 511.
  • the pipe portion 517 is provided so that one end is connected to the pipe portion 512.
  • the pipe connecting part 52 is formed to connect one end side of the pipe parts 511 to 515.
  • the pipe member 50 is fixed to the housing main body 21 so that the pipe connecting portion 52 contacts the pipe mounting surface 202. Between the pipe connecting portion 52 and the pipe mounting surface 202, a gasket 509 is provided that can hold the pipe member 50 and the housing body 21 in a liquid-tight manner.
  • the other end of the pipe parts 511, 514, 515 is connected to the radiator 5 via a hose or the like.
  • the other end of the pipe part 512 is connected to the heater 6 via a hose or the like.
  • the other end of the pipe part 513 is connected to the device 7 via a hose or the like.
  • the other end of the pipe portion 516 is connected to a reservoir tank (not shown) via a hose or the like.
  • the other end of the pipe part 517 is connected to a throttle (not shown) via a hose or the like.
  • the seal unit 35 is provided in each of the outlet ports 221, 222, and 223. As shown in FIG. 4, the seal unit 35 includes a valve seal 36, a sleeve 371, a spring 372, and a seal member 373.
  • the valve seal 36 is formed in a substantially annular shape with, for example, resin, and has a seal opening 360 inside.
  • the valve seal 36 is provided so that one surface thereof is in contact with the outer peripheral wall of the valve body 31, and can be liquid-tightly maintained between the valve seal 36 and the outer peripheral wall of the valve body 31.
  • the valve seal 36 is made of, for example, a material in which PTFE (polytetrafluoroethylene) is mixed with 14% graphite and 1% CF (carbon fiber). Therefore, the valve seal 36 has a lower friction coefficient than the valve body 31 and the like, and has improved wear resistance, compressive strength, and creep resistance.
  • PTFE polytetrafluoroethylene
  • the sleeve 371 is formed in a cylindrical shape from, for example, metal, and holds the valve seal 36 at one end. The other end of the sleeve 371 is located inside one end of the pipe portion 511.
  • the spring 372 is provided between one end of the sleeve 371 and one end of the pipe portion 511, and urges the valve seal 36 together with the sleeve 371 toward the valve body 31.
  • the seal member 373 is formed in an annular shape by rubber, for example, is provided between one end of the pipe portion 511 and the outer peripheral wall of the sleeve 371, and can hold the space between the pipe portion 511 and the sleeve 371 in a liquid-tight manner.
  • the sleeve 371 is made of stainless steel such as SUS430. Therefore, the corrosion resistance of the sleeve 371 is relatively high. Also, since SUS430 has good pressability, the sleeve 371 can be easily pressed.
  • seal units 35 provided at the outlet ports 222 and 223 are configured in the same manner as the seal unit 35 provided at the outlet port 221, description thereof will be omitted.
  • the three seal units 35 are assembled to one ends of the pipe portions 511, 512, and 513, respectively.
  • the sleeve 371, the spring 372, and the valve seal 36 of the seal unit 35 provided in the outlet ports 222 and 223 are smaller in outer diameter than the sleeve 371, the spring 372, and the valve seal 36 of the seal unit 35 provided in the outlet port 221.
  • the spring load of the spring 372 of each seal unit 35 provided in the outlet ports 221 to 223 is set to a load that satisfies a necessary leakage amount for compressing and sealing the valve seal 36.
  • the leakage target is different depending on the size, and the physique is also different. Therefore, the spring constant is also different depending on the size.
  • the spring 372 is made of stainless steel such as SUS316. Therefore, the spring 372 has good spring properties and high corrosion resistance. Thereby, the stress corrosion cracking of the spring 372 can be suppressed.
  • the partition wall 60 is made of, for example, resin.
  • the partition wall 60 is formed separately from the housing body 21.
  • the partition wall 60 has a partition wall body 61 and the like.
  • the partition wall body 61 is formed in a substantially disk shape.
  • the partition wall 60 is provided in the housing body 21 so that the partition wall body 61 closes the housing opening 210.
  • the partition wall 60 has a shaft insertion hole 62 that penetrates the center of the partition wall body 61 in the thickness direction.
  • the valve 30 is provided such that one end of the shaft 32 is inserted through the shaft insertion hole 62.
  • One end of the shaft 32 is supported by the partition wall body 61 and the other end is supported by the housing body 21.
  • the drive unit cover 80 is provided on the side opposite to the internal space 200 with respect to the partition wall 60, and forms a drive space 800 between the partition wall 60.
  • the drive unit 70 is provided in the drive unit space 800 and can rotate the valve body 31 via one end of the shaft 32.
  • the drive unit 70 includes a motor 71, a gear unit 72, and the like.
  • the gear part 72 is connected to one end of the shaft 32.
  • the relief port 224 is provided with a relief valve 39.
  • the relief valve 39 is opened when a predetermined condition, for example, when the temperature of the cooling water is equal to or higher than a predetermined temperature, and is opened outside the internal space 200 and the housing body 21 via the relief port 224, that is, inside the pipe portion 515.
  • the communication with the space is allowed, and when the temperature of the cooling water becomes lower than a predetermined temperature, the communication is cut off.
  • the relief valve 39 is provided at a position facing the inlet port 220 with the inter-valve space 400 interposed therebetween. That is, the relief valve 39 is provided at a position where it can be seen from the inlet port 220. More specifically, the relief valve 39 is visible at least partially when viewed from the axial direction of the inlet port 220.
  • the cooling water flowing into the internal space 200 from the inlet port 220 can be directly applied to the relief valve 39, and the relief valve 39 can be quickly opened according to the temperature of the cooling water.
  • the partition wall 60 is formed with a C-shaped regulating recess 63 that is recessed from the surface of the partition wall body 61 on the inner space 200 side to the drive unit 70 side.
  • a regulating portion 631 is formed between the circumferential ends of the regulating recess 63.
  • the valve body 31 includes a first restriction convex portion 332 that extends from the end surface on the drive portion 70 side to the restriction concave portion 63 and has a tip portion located in the restriction concave portion 63.
  • a convex portion 342 is formed.
  • the rotation of the valve body 31 is restricted when the first restriction convex part 332 comes into contact with the restriction part 631 and when the second restriction convex part 342 comes into contact with the restriction part 631. That is, the valve body 31 is rotatable in a range from a position where the first restriction convex part 332 contacts the restriction part 631 to a position where the second restriction convex part 342 contacts the restriction part 631.
  • the valve device 10 is attached to the engine 2 so that the inlet port 220 is connected to the outlet of the water jacket 3. Therefore, the cooling water that has flowed into the internal space 200 from the inlet port 220 flows into the valve body flow path 300 via the inter-valve space 400. Further, when the valve body openings 430, 420, 410 and the respective seal openings 360 are overlapped by the rotation of the valve body 31, the cooling water flows from the valve body flow path 300 to the valve body opening according to the overlapping area. It flows to the device 7, the heater 6, and the radiator 5 through 430, 420, and 410.
  • the ECU 8 controls the operation of the motor 71 and controls the rotational position of the valve body 31 so that cooling water can flow through the device 7 and heat exchange can be performed in the device 7. Therefore, the engine oil and EGR gas are cooled to improve fuel efficiency. Can be improved. Moreover, since cooling water can be flowed through the heater 6 and heat can be exchanged between the air in the vehicle 1 and the cooling water, the inside of the vehicle 1 can be warmed.
  • valve body 7 shows the rotational position (horizontal axis) of the valve body 31 and the open / closed state (vertical axis) of the valve body openings 430, 420, 410, that is, the valve body openings 430, 420, 410 and the respective seal openings. It is a figure which shows the relationship with 360 and an overlapping area.
  • the overlapping area of the valve body openings 430, 420, 410 and the respective seal openings 360 corresponds to the flow path area of the cooling water to the device 7, the heater 6, and the radiator 5.
  • the ECU 8 selects a “normal mode” used when there is a request to flow cooling water through the heater 6 (heater request) and a “heater cut mode” used when there is no heater request, and the valve body 31. Rotate. In the “normal mode” and the “heater cut mode”, all the valve body openings 430, 420, and 410 are closed by the outer peripheral wall of the valve body 31 (fully closed state: see FIG. 3). A region (region d) where the flow rate of the cooling water to the radiator 5 is zero is separated. In the region d, the flow of cooling water to the device 7, the heater 6, and the radiator 5 is blocked.
  • the water flow to the heater 6 has the highest priority.
  • FIG. 7 when the valve body 31 is rotated in the direction proceeding to the right from the region d, the rotational position of the valve body 31 is shifted to a region (region c) adjacent to the region d. In the area c, the valve element opening 420 starts to open, and the cooling water starts to flow into the heater 6.
  • the valve body opening 420 is completely opened, and the rotational position of the valve body 31 is shifted to a region (region b) adjacent to the region c. In the region b, the valve body opening 430 starts to open, and the cooling water starts to flow into the device 7.
  • valve body opening 430 When the valve body 31 is further rotated, the valve body opening 430 is completely opened, and the rotational position of the valve body 31 shifts to a region (region a) adjacent to the region b. In the region a, the valve body opening 410 starts to open, and the cooling water starts to flow into the radiator 5. When the valve body 31 is further rotated, the valve body opening 410 is completely opened (fully opened state). Note that the rotational position of the valve body 31 at which the valve body opening 410 is completely opened corresponds to the rotation limit of the valve body 31, and at this time, the first restriction convex part 332 is in contact with the restriction part 631. (See FIG. 6).
  • the rotational position of the valve body 31 shifts to a region (region g) adjacent to the region f.
  • region g the valve body opening 410 starts to open, and the cooling water starts to flow into the radiator 5.
  • the valve body opening 410 is completely opened.
  • the ECU 8 can achieve both fuel efficiency and air conditioning performance by rotationally driving the valve body 31 based on the “normal mode” and the “heater cut mode” shown in FIG.
  • the engine 2 is assembled with an intake manifold 11, an alternator 12, a water pump 4, a compressor 13, a starter 14, a transmission 15, and the like.
  • the valve device 10 is attached to the engine 2 in a narrow space A1 between the alternator 12 and the intake manifold 11.
  • the valve device 10 is attached to the engine 2 such that the drive unit 70 side faces downward in the vertical direction. Therefore, air such as vapor generated in the internal space 200 or the like moves upward in the vertical direction and is discharged to the reservoir tank via the pipe portion 516.
  • the narrow space A1 in which the valve device 10 is arranged is formed between the alternator 12 and the intake manifold 11 that are attached to the engine 2 so as to be aligned in the horizontal direction.
  • a compressor 13 is disposed below the narrow space A1 in the vertical direction. Therefore, the valve device 10 provided in the narrow space A1 is surrounded by the alternator 12, the intake manifold 11, and the compressor 13.
  • the housing 20 has fastening portions 231, 232, and 233 formed integrally with the housing main body 21.
  • the fastening portions 231, 232, and 233 are formed so as to protrude in the surface direction of the mounting surface 201 from the end of the housing body 21 on the mounting surface 201 side.
  • the housing 20 has fastening holes 241, 242, 243 formed corresponding to the fastening portions 231, 232, 233, respectively.
  • the fastening holes 241, 242, and 243 correspond to a “first fastening hole”, a “second fastening hole”, and a “third fastening hole”, respectively.
  • the fastening member 240 is inserted into the fastening holes 241, 242, and 243 and fastened to the engine 2. Thereby, the valve device 10 is attached to the engine 2.
  • An annular rubber port seal member 209 is provided on the outer side in the radial direction of the inlet port 220 of the mounting surface 201.
  • the port seal member 209 is compressed by the axial force of the fastening member 240 when the valve device 10 is attached to the engine 2.
  • the port seal member 209 can keep the mounting surface 201 and the engine 2 in a liquid-tight state, and can prevent the coolant from leaking from the inlet port 220 through the mounting surface 201 and the engine 2. .
  • the port seal member 209 is made of rubber such as EPDM (ethylene propylene rubber). Therefore, cost can be reduced.
  • the port seal member 209 may be formed of H-NBR, for example. In this case, the oil resistance of the port seal member 209 can be improved. Further, the port seal member 209 may be formed by, for example, FKM. In this case, the water resistance and heat resistance of the port seal member 209 can be improved. Therefore, it is suitable for use as an engine component that is easily affected by heat.
  • the fastening hole 241 is formed on the radially outer side of the opening of the inlet port 220 in the mounting surface 201.
  • the fastening hole 242 is formed so as to sandwich the opening of the inlet port 220 between the fastening hole 241.
  • the fastening hole 243 is formed on the drive unit 70 side with respect to the fastening holes 241 and 242.
  • the present embodiment is a valve device 10 that can control the cooling water of the engine 2 of the vehicle 1, and includes the housing 20, the valve 30, the partition wall portion 60, and the drive portion 70.
  • the housing 20 has a housing main body 21 that forms an internal space 200 on the inner side, an attachment surface 201 that faces the engine 2 when formed on the outer wall of the housing main body 21 and is attached to the engine 2, and opens to the mounting surface 201. And the outside of the housing main body 21, the plurality of fastening portions (231, 232, 233) formed integrally with the housing main body 21, and the plurality of fastening portions, respectively. It has a plurality of fastening holes (241, 242, 243).
  • the valve 30 is provided in a valve body 31 that can rotate around the rotation axis Axr1 in the internal space 200, a valve body passage 300 that is formed inside the valve body 31 and that can communicate with the inlet port 220, and the rotation axis Axr1.
  • a shaft 32 is provided in a valve body 31 that can rotate around the rotation axis Axr1 in the internal space 200, a valve body passage 300 that is formed inside the valve body 31 and that can communicate with the inlet port 220, and the rotation axis Axr1.
  • the partition wall 60 separates the internal space 200 from the outside of the housing body 21.
  • the drive unit 70 is provided on the side opposite to the internal space 200 with respect to the partition wall unit 60, and can rotate the valve body 31 via the shaft 32.
  • the housing body 21 is fixed to the engine 2 by a fastening member 240 that is screwed into the engine 2 through the fastening holes (241, 242, 243).
  • the fastening holes are a first fastening hole (241) formed radially outside the opening of the inlet port 220, and a second fastening hole (242) formed so as to sandwich the opening of the inlet port 220 between the first fastening hole. ), And a third fastening hole (243) formed on the drive unit 70 side with respect to the first fastening hole and the second fastening hole.
  • the 1st fastening hole (241) is formed in the drive part 70 side rather than the center of the inlet port 220 similarly to the 3rd fastening hole (243).
  • the port seal member 209 made of an annular elastic member is provided around the inlet port 220, when the housing body 21 is fixed to the engine 2 by the fastening member 240 passing through the fastening hole 241 and the fastening hole 242, the port seal member 209 can be compressed in a balanced manner. Thereby, the sealing performance around the inlet port 220 can be effectively secured.
  • the fastening portion 233 is fixed to the engine 2 by the fastening member 240 passing through the fastening hole 243, so that the influence of the vibration of the engine 2 on the driving portion 70 can be suppressed.
  • the center Cp1 of the opening of the inlet port 220 is located on the first straight line Li1 that is a straight line connecting the fastening hole 241 and the fastening hole 242.
  • the port seal member 209 can be compressed in a more balanced manner.
  • the first straight line Li1 connects the center of the fastening hole 241 and the center of the fastening hole 242.
  • the first straight line Li1 may connect an arbitrary point other than the center of the fastening hole 241 and an arbitrary point other than the center of the fastening hole 242.
  • the fastening hole 241 and the fastening hole 242 are opposed to each other with the inlet port 220 interposed therebetween.
  • the port seal member 209 can be compressed in a more balanced manner.
  • the distance between the fastening hole 243 and the drive unit 70 is shorter than the distance between the fastening hole 243 and the center Cp1 of the opening of the inlet port 220.
  • the fastening hole 243 is formed so that its center is located on the drive unit 70 side with respect to a virtual plane Vp2 that passes through the center of the outlet port 223 and is orthogonal to the rotation axis Axr1 (see FIG. 8).
  • the motor 71 is provided such that the center of gravity Cg1 is located on the side of the fastening hole 243 with respect to the rotation axis Axr1 when viewed from the axial direction of the fastening hole 243 (see FIGS. 8 and 9).
  • the fastening hole 241 and the fastening hole 242 are formed so as to be point-symmetric with respect to the center Cp1 of the opening of the inlet port 220.
  • the fastening hole 241 and the fastening hole 242 are concentric.
  • the port seal member 209 can be compressed in a more balanced manner.
  • the fastening hole 241 and the fastening hole 242 that are point-symmetric with respect to the center Cp1 of the opening of the inlet port 220 are perpendicular to the opening surface of the inlet port 220, and a straight line passing through the center Cp1 of the opening of the inlet port 220 has a rotation axis Axr1. It is formed to pass through.
  • the fastening hole 241 and the fastening hole 242 that are point-symmetric with respect to the center Cp1 of the opening of the inlet port 220 are rotated by a “straight line perpendicular to the opening surface of the inlet port 220 and passing through the center Cp1 of the inlet port 220”. It is formed so as to pass through the axis Axr1.
  • the port seal member 209 can be compressed in a more balanced manner.
  • the housing 20 has positioning portions 205 and 206 formed on the mounting surface 201 and capable of positioning the housing main body 21 by engaging with other members.
  • the positioning portions 205 and 206 are formed so as to be recessed from the mounting surface 201 in a circular shape.
  • the positioning units 205 and 206 correspond to a “first positioning unit” and a “second positioning unit”, respectively.
  • the other member corresponds to, for example, a pallet used in the manufacturing process of the valve device 10 or the engine 2 as an attachment target of the valve device 10.
  • the housing main body 21 can be positioned with respect to the pallet or the engine 2 by engaging the positioning portions 205 and 206 with projections or the like formed on the pallet or the engine 2.
  • the positioning portion 205 is formed on the radially outer side of the opening of the inlet port 220.
  • the positioning unit 206 is formed so as to sandwich the opening of the inlet port 220 between the positioning unit 205 and the positioning unit 205.
  • the housing body 21 can be positioned with high accuracy when attached to the engine 2, and the cooling water can be controlled with high accuracy by the valve device 10.
  • the position of the housing body 21 with respect to the engine 2 is stabilized, and the sealing performance by the port seal member 209 can be improved.
  • the positioning part 205 and the positioning part 206 are formed so that a second straight line Li2 that is a straight line connecting the positioning part 205 and the positioning part 206 is orthogonal to a first straight line Li1 that connects the fastening hole 241 and the fastening hole 242. Yes.
  • the position of the housing body 21 relative to the engine 2 can be made more stable.
  • the position of the housing body 21 relative to the engine 2 can be made more stable.
  • the mounting surface 201 is formed on the surface of the housing main body 21 and the fastening portions 231 to 233 opposite to the pipe member 50, and extends in the width direction from the substantially rectangular portion.
  • the positioning portions 205 and 206 are formed in a substantially rectangular portion of the mounting surface 201.
  • the positioning units 205 and 206 become stable as the distance is increased. Therefore, the positioning portions 205 and 206 are provided on the outer peripheral portion of the substantially rectangular portion of the mounting surface 201.
  • the housing 20 has a mounting surface recess 207 that is recessed from the mounting surface 201 to the opposite side of the engine 2.
  • the heat of the engine 2 is insulated by the mounting surface recess 207, and the influence of the heat from the engine 2 on the drive unit 70 can be suppressed.
  • a plurality of attachment surface recesses 207 are formed, and inter-recess ribs 208 are formed between the plurality of attachment surface recesses 207.
  • the contact area of the mounting surface 201 with the engine 2 can be secured while the heat of the engine 2 is insulated by the mounting surface recess 207.
  • the mounting surface recess 207 has a rectangular recess 275 having a rectangular shape and a trapezoidal recess 276 having a substantially trapezoidal shape.
  • the inter-recess rib 208 includes a short-side rib 285 extending in the short-side direction of a substantially rectangular portion of the mounting surface 201 and a long-side rib 286 extending in the long-side direction.
  • Two trapezoidal recesses 276 are formed on the opposite side of the drive port 70 with respect to the inlet port 220 of the substantially rectangular portion of the mounting surface 201 so as to be aligned in the short direction.
  • Two rectangular recesses 275 are formed on the opposite side of the trapezoidal recess 276 from the inlet port 220 so as to be arranged in the short direction.
  • a lateral rib 285 is formed between the rectangular recess 275 and the trapezoidal recess 276.
  • a longitudinal rib 286 is formed between the two trapezoidal recesses 276 and between the two rectangular recesses 275.
  • the trapezoidal recess 276 is smaller than the rectangular recess 275.
  • Two rectangular recesses 275 are formed on the drive unit 70 side with respect to the inlet port 220 of the substantially rectangular portion of the mounting surface 201 so as to be aligned in the short direction.
  • Two rectangular recesses 275 are formed on the opposite side of the rectangular recess 275 from the inlet port 220 so as to be arranged in the short direction.
  • Short-side ribs 285 are formed between rectangular recesses 275 arranged in the longitudinal direction.
  • Longitudinal ribs 286 are formed between rectangular recesses 275 arranged in the short direction.
  • the distance between the short-side rib 285 formed on the opposite side of the drive unit 70 to the inlet port 220 of the substantially rectangular portion of the mounting surface 201 and the inlet port 220 is the inlet port of the substantially rectangular portion of the mounting surface 201. It is smaller than the distance between the short-side rib 285 formed on the drive unit 70 side and the inlet port 220 with respect to 220.
  • Two trapezoidal concave portions 276 are formed on the attachment surface 201 of the fastening portions 231 to 233.
  • a short-side rib 285 is formed between the two trapezoidal concave portions 276.
  • An outer peripheral rib 287 surrounding the mounting surface recess 207 is formed on the outer edge of the substantially rectangular portion of the mounting surface 201.
  • An outer peripheral rib 287 surrounding the attachment surface recess 207 is formed on the outer edge of the attachment surface 201 of the fastening portions 231 to 233.
  • the mounting surface recesses 207 are formed independently of each other, and the robustness against vibration of the engine 2 can be improved by the inter-recess ribs 208 and the outer peripheral ribs 287 between the mounting surface recesses 207.
  • the longitudinal rib 286 extends in the direction of the rotation axis Axr1. That is, when viewed from the axial direction of the inlet port 220, the longitudinal rib 286 and the rotation axis Axr1 overlap (see FIG. 9). Therefore, deformation in a direction perpendicular to the attachment surface 201 can be suppressed. If such deformation occurs, the components inside the valve device 10 may be displaced, causing cooling water leakage to the inside or outside, and the function of the valve device 10 may deteriorate. This embodiment can suppress such a problem.
  • the ratio of the size of the mounting surface recess 207 to the mounting surface 201 is 50 to 9.5%.
  • the wall surface without the space where the valve 30 is provided becomes uniform, and the spatial accuracy of the internal space 200 is improved.
  • the space accuracy of the internal space 200 is good, the wall resistance is reduced and the pressure loss can be reduced.
  • the housing body 21 is made of polyphenylene sulfide resin (PPS) containing a filler. More specifically, the housing body 21 is made of “PPS-GF50” (PPS: 50%, glass fiber: 50%). As the filler, carbon fiber, silica fiber, silica, talc, silicon or the like can be used in addition to glass fiber.
  • PPS polyphenylene sulfide resin
  • the heat resistance, water absorption resistance, strength, and dimensional accuracy of the housing body 21 can be improved.
  • the glass occupancy ratio relative to the resin of the housing body 21 may be in the range of 20 to 80%.
  • the valve body 31, the housing body 21, and the partition wall 60 are all formed of PPS.
  • valve body 31 By forming the valve body 31, the housing main body 21, and the partition wall portion 60 from the same resin material, it is possible to eliminate a difference in linear expansion and reduce galling. If there is a difference in linear expansion between the members, cooling water leakage may occur. This embodiment can suppress such a problem.
  • valve body 31, the housing body 21, and the partition wall portion 60 By forming the valve body 31, the housing body 21, and the partition wall portion 60 from PPS, the strength, heat resistance, and chemical resistance of the valve body 31, the housing body 21, and the partition wall portion 60 can be improved.
  • the pipe member 50 is made of, for example, PPA (polyphthalamide). Thereby, the pipe member 50 can be formed by forcibly removing.
  • PPA polyphthalamide
  • the linear expansion coefficient of the valve body 31, the housing body 21, and the partition wall portion 60 formed of PPS is smaller than the linear expansion coefficient of the pipe member 50 formed of PPA. Therefore, the influence on distortion and assembly when heat is applied can be reduced.
  • valve body 31, the housing body 21, and the partition wall portion 60 may be formed of PPA.
  • the fastening part 233 in which the fastening hole 243 as the third fastening hole is formed is formed at a position adjacent to the partition wall part 60.
  • the fastening portions 231, 232, and 233 have a mounting surface 201 on the engine 2 side and a mounting surface recess 207 that is recessed from the mounting surface 201 to the opposite side of the engine 2.
  • the thickness of the fastening portions 231, 232, 233 can be made uniform. As a result, the generation of voids can be prevented, and the resin strength around the collar provided in the fastening holes 241, 242, and 243 of the fastening portions 231, 232, and 233 can be suppressed from decreasing. Furthermore, even when the thin wall around the collar is cracked first by vibration from the engine 2, it is possible to prevent the crack from reaching the internal space 200 as a result of the mounting surface recess 207.
  • the housing 20 is formed between the positioning portions 205 and 206, which are formed on the mounting surface 201 and can be positioned by engaging with other members, and a plurality of mounting surface recesses 207.
  • An inter-recess rib 208 is formed.
  • the positioning portions 205 and 206 are formed at the lattice points 204 of the inter-recess ribs 208.
  • the housing body 21 can be positioned stably.
  • the housing 20 includes positioning portions 205 and 206 that are formed on the mounting surface 201 and that can position the housing main body 21 by engaging with other members.
  • One fastening portion (231) is formed on one side in the width direction of the housing body 21, and two fastening portions (232, 233) are formed on the other side in the width direction of the housing body 21.
  • the positioning portion 205 is formed on one side in the width direction of the housing body 21 in which one fastening portion (231) is formed.
  • the width direction of the housing body 21 is a direction corresponding to the short direction of the housing body 21 when the housing body 21 is viewed from a direction perpendicular to the mounting surface 201.
  • the positioning portion 205 is the fourth point on the side where only one of the three fastening portions is provided, the balance in the left and right directions (width direction) of the housing body 21 can be secured.
  • the inlet port 220 is formed between the fastening portion 233 farthest from the inlet port 220 and the positioning portion 205 among the plurality of fastening portions.
  • the balance of the left and right direction (width direction) of the housing body 21 can be further secured.
  • the partition wall 60 is provided in the housing opening 210 so as to separate the internal space 200 from the outside of the housing body 21, and can support the shaft 32.
  • the drive unit cover 80 is provided on the opposite side of the partition wall 60 from the internal space 200, and forms a drive unit space 800 between the drive unit cover 80 and the partition wall 60.
  • the drive unit 70 is provided in the drive unit space 800 and can rotate the valve body 31 via the shaft 32.
  • the present embodiment is a valve device 10 that can control the cooling water of the engine 2 of the vehicle 1, and includes the housing 20, the valve 30, the partition wall portion 60, the drive portion cover 80, and the drive portion 70. .
  • the housing 20 includes a housing main body 21 that forms an internal space 200 on the inside, ports (220, 221, 222, and 223) that connect the internal space 200 and the outside of the housing main body 21, and the internal space 200 and the housing main body 21. It has a housing opening 210 for connecting to the outside.
  • the valve 30 connects the valve body 31 that can rotate around the rotation axis Axr1 in the internal space 200, the valve body channel 300 formed inside the valve body 31, and the valve body channel 300 and the outside of the valve body 31.
  • Valve body openings (410, 420, 430) and a shaft 32 provided on the rotation axis Axr1, and the valve body flow path 300 and ports (via the valve body openings (410, 420, 430)) 220, 221, 222, 223) can be changed by the rotational position of the valve body 31.
  • the partition wall 60 is provided in the housing opening 210 so as to separate the internal space 200 from the outside of the housing body 21 and can receive the shaft 32.
  • the drive unit cover 80 is provided on the opposite side of the partition wall 60 from the internal space 200, and forms a drive unit space 800 between the partition wall 60.
  • the drive unit 70 is provided in the drive unit space 800 and can rotate the valve body 31 via the shaft 32.
  • a member such as a joint is not required between the drive unit 70 and the shaft 32. Therefore, the configuration around the drive unit 70 can be simplified.
  • the partition wall 60 as a member for bearing the shaft 32 and a member for housing the drive unit 70, the coaxial accuracy between the drive unit 70 and the valve body 31 can be improved. Moreover, the number of members can be reduced.
  • the inner portion of the restriction recess 63 in the inner space 200 side surface of the partition wall body 61 is located slightly closer to the inner space 200 than the outer portion of the restriction recess 63.
  • the inner peripheral portion of the housing body 21 facing the partition wall body 61 has a step shape.
  • the clearance gap between the partition part main body 61 and the housing opening part 210 in which the annular seal member 600 is provided is formed in a taper shape. Thereby, the annular seal member 600 can be easily provided in the gap. If engine oil enters the gap, the annular seal member 600 may swell, break, and coolant may leak. Further, when the annular seal member 600 is bitten, the annular seal member 600 is cut, the cooling water leaks, and the engine oil may enter from the outside to the inside. In this embodiment, this problem can be suppressed.
  • the valve device 10 further includes an annular seal member 600 that is provided between the housing opening 210 and the partition wall 60 and that can hold the space between the housing opening 210 and the partition wall 60 in a liquid-tight manner.
  • the annular seal member 600 is formed in an annular shape by an elastic member such as rubber.
  • the housing opening 210 has a cylindrical inner wall.
  • the partition wall 60 includes a partition wall body 61 that is located inside the housing opening 210 and has an outer wall formed in a cylindrical shape.
  • the annular seal member 600 is provided between the housing opening 210 and the partition wall body 61.
  • the difference between the inner diameter of the housing opening 210 and the outer diameter of the partition wall main body 61 is smaller than the difference between the inner diameter and the outer diameter of the annular seal member 600 in the free state. Therefore, the annular seal member 600 is compressed in the radial direction between the housing opening 210 and the partition wall body 61.
  • annular opening step surfaces 604, 605, and 606 are formed in the housing opening 210.
  • the opening step surfaces 604, 605, and 606 are formed in this order from the inner space 200 side in the direction of the rotation axis Axr1 toward the drive unit 70 side.
  • the opening step surfaces 604 and 606 are formed in an annular planar shape.
  • the opening step surface 605 is formed in a tapered shape so as to approach the rotation axis Axr1 from the drive unit 70 side toward the internal space 200 side.
  • Annular partition wall step surfaces 611 and 612 are formed on the outer edge of the partition wall body 61.
  • the partition wall step surface 611 is formed in an annular flat shape so as to face the opening step surface 604.
  • the partition step surface 612 is formed in an annular flat shape so as to face the opening step surfaces 605 and 606.
  • the annular seal member 600 is provided between the opening step surface 604 and the partition wall step surface 611.
  • the shaft 32 is aligned by the annular seal member 600, and the positional accuracy of the valve body 31 and the detection accuracy of the rotation angle sensor 86 described later can be improved.
  • the center of the inner peripheral wall of the annular seal member 600 is coincident with the center of the outer peripheral wall. Therefore, the shaft 32 can be effectively aligned by the annular seal member 600.
  • the force applied in the axial direction of the fixing member 830 described later can be reduced, and the number of the fixing members 830 can be reduced.
  • An axial gap SAx is formed between the annular seal member 600 and the housing body 21 in the axial direction.
  • annular seal member 600 can be effectively compressed in the radial direction between the housing opening 210 and the partition wall 60.
  • the cross-sectional area of the annular seal member 600 is set such that the cross-sectional area of the annular seal member 600 / the cross-sectional area of the axial clearance SAx ⁇ 1 in the plane including the axis.
  • the valve device 10 further includes a fixing member 830 capable of fixing the housing main body 21 and the driving unit cover 80 in a state where the partition wall 60 is sandwiched between the housing main body 21 and the driving unit cover 80.
  • the end of the shaft 32 opposite to the drive unit 70 is a sliding bearing (see FIG. 3). If the shaft accuracy deteriorates, the sliding resistance increases. On the other hand, the valve seal 36 is pressed against the valve body 31 by the spring 372. However, if the shaft accuracy is good, the force pressing the valve seal 36 by the spring 372 can be reduced. Furthermore, if the shaft is misaligned, cooling water leaks between the valve body 31 and the valve seal 36, and warming up may be delayed, resulting in a deterioration in fuel consumption. However, if the shaft accuracy is good, such a problem is prevented. be able to.
  • the partition wall 60 and the drive unit cover 80 can be assembled to the housing body 21 at a time, and the assembly can be simplified. Moreover, the number of fixing members can be reduced.
  • the fixing member 830 is, for example, a screw, passes through the cover fastening hole 831 formed in the drive unit cover 80, and is screwed into the fastening hole of the housing main body 21.
  • the drive unit cover 80 is fixed to the housing body 21 with the partition wall 60 sandwiched between the drive body cover 80 and the housing body 21.
  • a plurality of cover fastening holes are formed in the drive unit cover 80, and the fixing member 830 is inserted through each of them.
  • a rubber annular cover seal member 809 is provided between the outer edge portion of the drive unit cover 80 and the partition wall portion 60. Thereby, the drive part space 800 is kept airtight and liquid tight.
  • the partition wall 60 has a shaft insertion hole 62 through which one end of the shaft 32 can be inserted.
  • the valve device 10 includes a metal ring 601 that is insert-molded in the partition wall 60 in the shaft insertion hole 62.
  • the metal ring 601 is formed of a metal in an annular shape and is provided coaxially with the shaft insertion hole 62.
  • the valve device 10 is provided inside the metal ring 601 and includes a bearing portion 602 that supports one end of the shaft 32.
  • the bearing portion 602 is a ball bearing, for example, and is press-fitted inside the metal ring 601.
  • the partition wall 60 has a partition wall recess 64 that is recessed from the surface 609 on the drive unit cover 80 side to the opposite side of the drive unit cover 80 on the radially outer side of the metal ring 601.
  • the surface 609 is a planar part formed on the same plane as the end surface of the metal ring 601 on the drive unit cover 80 side on the drive unit cover 80 side of the partition wall 60.
  • FIG. 11 is a view showing a cross section by “a plane including the rotation axis Axr1”.
  • FIG. 12 is a view showing a cross section by “a plane that includes the rotation axis Axr1 and is perpendicular to the axis Axm1 of the motor 71”.
  • FIG. 13 is a view showing a cross section by a “plane including the axis Axm1 of the motor 71 and parallel to the rotation axis Axr1”.
  • FIG. 14 is a view showing a cross section by “a plane that includes the rotation axis Axr1 and is parallel to the axis Axm1 of the motor 71”.
  • the drive unit 70 includes a motor 71 that can rotationally drive the shaft 32.
  • the valve device 10 further includes an elastic member 74 provided in a compressed state between the motor 71 and the partition wall 60.
  • the elastic member 74 is made of, for example, rubber.
  • the vibration acting on the motor 71 can be attenuated, the contact failure can be suppressed, and the operating state of the motor 71 can be kept good.
  • the vibration of the motor 71 causes the partition wall portion 60 to move, causing sliding resistance, which may deteriorate fuel consumption. Further, the vibration of the motor 71 may cause the output of a rotation angle sensor 86 to be described later to shift, resulting in a deterioration in fuel consumption. In the present embodiment, the occurrence of the above-described problem can be suppressed by suppressing the vibration of the motor 71 by the elastic member 74.
  • the assembly of the motor 71 can be simplified and the number of parts can be reduced.
  • the elastic member 74 is provided between the partition wall body 61 and the motor 71, and urges the partition wall body 61 toward the internal space 200 side.
  • the elastic member 74 can prevent the partition wall body 61 from floating due to the water pressure of the cooling water on the internal space 200 side being applied. As a result, leakage of cooling water can be prevented, and overheating of the vehicle 1 due to the leakage can be prevented.
  • the motor 71 is provided such that the axis Axm ⁇ b> 1 is orthogonal to the axis Axs ⁇ b> 1 of the shaft 32. More precisely, the axis Axm1 and the axis Axs1 are perpendicular to each other in the torsional relationship.
  • the size of the housing body 21 in the width direction can be reduced, and the valve device 10 can be mounted in a narrow space.
  • the electrical components around the motor 71 can be kept away from the cooling water (internal space 200), and the possibility of short circuit due to water wetting can be reduced.
  • the heat damage to the motor 71 can be suppressed by keeping the motor 71 away from the cooling water (internal space 200).
  • the motor 71 includes a motor body 710, a motor shaft 711, a worm gear 712, a motor side terminal 713, and the like.
  • the motor body 710 is formed in a substantially cylindrical shape, and has a stator, a coil, and a rotor (not shown) inside.
  • the motor shaft 711 is provided integrally with the rotor on the rotation axis of the rotor, and one end protrudes from the end of the motor body 710 in the axial direction.
  • the driving force of the motor 71 is output from the motor shaft 711.
  • the axis Axm1 of the motor 71 coincides with the axis of the motor shaft 711.
  • the motor 71 is provided such that the axis Axm1 is parallel to the surface 808 of the drive unit cover 80 facing the partition wall 60 side (see FIG. 16).
  • the worm gear 712 is provided at one end of the motor shaft 711 and can rotate integrally with the motor shaft 711.
  • the motor-side terminal 713 is formed in a long plate shape from metal, for example.
  • Two motor side terminals 713 protrude from the end of the motor body 710 opposite to the worm gear 712, and are provided so as to sandwich the axis Axm1 of the motor 71 therebetween.
  • the two motor side terminals 713 are provided so that the surface directions thereof are parallel to each other.
  • the end of the motor side terminal 713 in the motor main body 710 is electrically connected to the coil.
  • the valve device 10 further includes a power supply terminal 85.
  • the power supply terminal 85 is formed into a U-shaped flat plate made of metal, for example, and is insert-molded in the drive unit cover 80 so that the end on the terminal opening 851 side faces the partition wall 60 side.
  • Two power supply terminals 85 are provided so as to sandwich the axis Axm1 of the motor 71 therebetween.
  • the two power supply terminals 85 are provided on the same plane.
  • the two motor-side terminals 713 of the motor 71 are fitted into the terminal openings 851 of the two power supply terminals 85 and are electrically connected to the power supply terminals 85.
  • the drive section cover 80 has a connector section 84.
  • the connector part 84 has a terminal 841 inside.
  • the terminal 841 is electrically connected to the power supply terminal 85.
  • a wire harness (not shown) is connected to the connector portion 84. Thereby, electric power is supplied from the battery of the vehicle 1 via the wire harness, the terminal 841, the power supply terminal 85, and the motor side terminal 713.
  • a rotation angle sensor 86 is provided on the rotation axis Axr1 of the drive unit cover 80.
  • the rotation angle sensor 86 is electrically connected to the ECU 8 via a terminal 841 and a wire harness.
  • the rotation angle sensor 86 outputs a signal corresponding to the rotation angle of the shaft 32 to the ECU 8.
  • the ECU 8 can detect the rotational position of the valve body 31 and can control the operation of the motor 71 in accordance with the rotational position of the valve body 31.
  • the valve device 10 is provided in the drive unit cover 80 so that the end on the opening (terminal opening 851) side faces the partition wall 60 side, and a U-shaped power supply terminal 85 through which current supplied to the motor 71 flows. It has.
  • the motor 71 has a motor-side terminal 713 connected to the opening (terminal opening 851) of the power supply terminal 85 at the end in the axial direction, and the axis Axm 1 is parallel to the surface 808 facing the partition wall 60 side of the drive unit cover 80. It is provided to become.
  • the motor 71 can be easily assembled to the drive unit cover 80 from one direction. Moreover, the number of parts can be reduced.
  • the gear unit 72 includes a first gear 721, a second gear 722, and a third gear 723.
  • the first gear 721 is provided to mesh with the worm gear 712 of the motor 71.
  • the second gear 722 has an outer diameter larger than that of the first gear 721 and is provided so as to mesh with the first gear 721.
  • the third gear 723 has an outer diameter larger than that of the second gear 722 and is provided at one end of the shaft 32 so as to mesh with the second gear 722.
  • the third gear 723 is provided coaxially with the shaft 32 and can rotate integrally with the shaft 32.
  • the first gear 721, the second gear 722, and the third gear 723 are provided so that their axes are parallel to the axis Axs1 of the shaft 32, that is, orthogonal to the axis Axm1 of the motor 71.
  • the driving force of the motor 71 is transmitted to the shaft 32 via the worm gear 712, the first gear 721, the second gear 722, and the third gear 723.
  • the valve device 10 further includes a holding member 73.
  • the holding member 73 has a snap fit portion 731 that can be snap-fit coupled to the drive portion cover 80.
  • the holding member 73 is snap-fit coupled to the drive unit cover 80 so as to hold the motor 71, the first gear 721 of the gear unit 72, and the second gear 722 between the drive unit cover 80.
  • the elastic member 74 is provided in a compressed state between the motor main body 710 and the holding member 73.
  • the driving unit 70 has the gear unit 72 that can transmit the driving force of the motor 71 to the shaft 32.
  • the valve device 10 further includes a holding member 73 that has a snap-fit portion 731 that can be snap-fit coupled to the drive portion cover 80 and holds the motor 71 and the gear portion 72 between the drive portion cover 80. .
  • the motor 71 and the gear part 72 can be assembled to the partition wall 60 side while being held by the drive part cover 80. Moreover, the number of parts can be reduced.
  • the partition wall portion 60 has a partition wall through hole 65 that extends outward from the shaft insertion hole 62 and opens to the outer wall of the partition wall body 61.
  • the housing 20 has a housing through hole 270 that extends outward from the inner wall of the housing opening 210 and opens in the outer wall of the housing body 21 and is formed so as to be able to communicate with the partition wall through hole 65.
  • the cooling water flowing from the internal space 200 through the shaft insertion hole 62 toward the drive unit 70 can flow into the partition wall through hole 65. Thereby, it can suppress that the cooling water of the internal space 200 flows into the drive part 70 side.
  • the cooling water that has flowed into the partition wall through hole 65 is discharged from the housing through hole 270 to the outside.
  • the housing through hole 270 opens in the mounting surface 201. That is, when the valve device 10 is attached to the engine 2, the housing through hole 270 is covered with the engine 2.
  • the housing through hole 270 opens to the mounting surface 201 side.
  • the metal member such as the power supply terminal 85 provided in the drive unit space 800 is post-plated at a portion obtained by punching the plated member with a press. Thereby, even when a cooling water penetrate
  • the valve device 10 used for controlling the cooling water of the engine 2 as in this embodiment is affected by the heat of the cooling water. Therefore, when the thickness of the valve body 31 is uneven, the expansion rate varies depending on the thickness, and thus the entire valve body 31 may be distorted. In particular, in this embodiment, since the inlet port 220 into which the cooling water flows and a part of the inner peripheral wall of the valve body 31 face each other, the inner peripheral wall of the valve body 31 is easily affected by heat.
  • the valve body 31 is formed such that at least a facing portion 310, which is a portion facing the inlet port 220 into which cooling water flows, of the inner peripheral wall is recessed outward. More specifically, the valve body 31 has a facing portion 310 that is a portion facing at least the inlet port 220 into which cooling water flows in the inner peripheral wall via the valve body opening 420 of the ball valve 42. It is formed to be recessed.
  • valve seal 36 contacts at least a portion corresponding to the facing portion 310 of the outer peripheral wall of the valve body 31. More specifically, the valve seal 36 contacts at least a portion of the outer peripheral wall of the valve body 31 opposite to the facing portion 310.
  • the sealing performance by the valve seal 36 is deteriorated and the warming performance and the like are deteriorated.
  • the portion corresponding to the opposed portion 310 of the valve body 31 is prevented from being distorted by the above configuration. Therefore, the sealing performance by the valve seal 36 can be secured, and the warming-up performance is improved.
  • the housing 20 has a plurality of ports (221 to 223).
  • the outlet port 222 which is a port connected to the heater 6 of the vehicle 1 is formed so as not to be positioned on the uppermost side in the vertical direction among the plurality of ports ( (See FIG. 8).
  • the motor 71 is provided in the drive unit space 800 such that the motor shaft 711 is perpendicular to the mounting surface 201 of the housing 20 and the worm gear 712 faces the side opposite to the mounting surface 201. ing.
  • the motor 71 has the motor shaft 711 that outputs the driving force, and the worm gear 712 provided at the tip of the motor shaft 711, so that the motor shaft 711 is perpendicular to the mounting surface 201, and The worm gear 712 is provided so as to face the side opposite to the mounting surface 201.
  • the gear height can be reduced and the physique of the drive unit 70 can be reduced.
  • the motor main body 710 of the motor 71 can be disposed near the engine 2 (mounting surface 201), the vibration resistance of the motor 71 can be improved, the vibration acting on the motor 71 can be reduced, and the robustness against disconnection can be improved. .
  • the width in the direction Dv1 perpendicular to the attachment surface 201 of the drive part 70 and the drive part cover 80 is set. Can be made smaller than the width in the direction Dp1 parallel to the direction Dp1.
  • the third gear 723 is disposed on the radially outer side of the motor body 710, and the first gear 721 and the second gear 722 are disposed on the radially outer side of the worm gear 712.
  • the third gear 723 having a large outer diameter is disposed near the mounting surface 201, and the first gear 721 and the second gear 722 are disposed in the empty space on the radially outer side of the worm gear 712, thereby driving the driving unit 70.
  • the physique of the drive part cover 80 can be made small.
  • the arrangement of the ball valves 41, 42, 43, the cylindrical connection part 44, and the cylindrical valve connection part 45 of the valve element 31 on the shaft 32 is the same as that of the first embodiment. Different. As shown in FIG. 20, the ball valve 41, the cylindrical connection portion 44, the ball valve 42, the cylindrical valve connection portion 45, and the ball valve 43 are on the side opposite to the drive portion 70 from the drive portion 70 side in the direction of the rotation axis Axr1. Are arranged in this order.
  • the outlet ports 221, 222, and 223 are formed in the housing main body 21 so as to be arranged in this order from the drive unit 70 side in the direction of the rotation axis Axr 1 to the side opposite to the drive unit 70.
  • the ball valves 41, 42, and 43 are provided so that the outlet ports 221, 222, and 223 can be opened and closed, respectively.
  • the ball valves 41, 42, and 43 of the valve body 31 are formed such that at least a part of the outer peripheral wall is formed in a spherical shape and at least a part of the inner peripheral wall is recessed outward.
  • the present embodiment is a valve device 10 that can control the cooling water of the engine 2 of the vehicle 1, and includes the housing 20, the valve 30, and the valve seal 36.
  • the housing 20 has ports (220, 221, 222, 223) for connecting the internal space 200 and the outside.
  • the valve 30 connects the valve body 31 that can rotate around the rotation axis Axr1 in the internal space 200, the valve body channel 300 formed inside the valve body 31, and the valve body channel 300 and the outside of the valve body 31.
  • Valve body openings (410, 420, 430) and a shaft 32 provided on the rotation axis Axr1, and the valve body flow path 300 and ports (via the valve body openings (410, 420, 430)) 220, 221, 222, 223) can be changed by the rotational position of the valve body 31.
  • the valve seal 36 is formed in an annular shape and is provided at a position corresponding to the ports (220, 221, 222, 223) so as to be able to contact the outer peripheral wall of the valve body 31.
  • the seal opening 360 that can communicate with the portions (410, 420, 430) is formed on the inner side, and the space between the outer peripheral wall of the valve body 31 can be maintained liquid-tight.
  • the valve body 31 is formed such that at least a part of the outer peripheral wall is formed in a spherical shape and at least a part of the inner peripheral wall is recessed outward.
  • the molding accuracy of the spherical surface of the outer peripheral wall of the valve body 31 can be improved. Thereby, the leakage of the cooling water in the outer peripheral wall of the valve body 31 can be suppressed.
  • valve body flow passage 300 can be increased, and the water flow resistance can be reduced.
  • the ball valves 41, 42, 43 of the valve body 31 have at least part of the inner peripheral wall formed in a spherical shape.
  • valve body 31 can be brought close to the meat thickness. Thereby, the precision of the spherical surface of the outer peripheral wall of the valve body 31 can be further improved, and the flow passage area of the flow passage 300 can be increased.
  • the ball valves 41, 42, and 43 of the valve body 31 have the same distance between the inner peripheral wall and the outer peripheral wall in at least a partial range in the direction of the rotation axis Axr1 and the circumferential direction. That is, the valve body 31 is formed so that the thickness is uniform (equal thickness) at least in the above range.
  • valve body 31 can be made uniform. Thereby, the precision of the spherical surface of the outer peripheral wall of the valve body 31 can be further improved, and the flow passage area of the flow passage 300 can be increased.
  • the ball valves 41, 42, and 43 of the valve body 31 have the same distance between the inner peripheral wall and the outer peripheral wall in a range corresponding to at least the seal opening 360 in the rotation axis Axr1 direction and the circumferential direction.
  • valve body 31 can be made uniform in the above range. Thereby, the precision of the spherical surface of the outer peripheral wall of the valve body 31 can be further improved, and the sealing performance of the valve seal 36 can be improved.
  • the ball valves 41, 42, 43 of the valve body 31 are at least sealed openings 360 in the direction of the rotation axis Axr1 and in the circumferential direction when all of the seal openings 360 are closed by the outer peripheral wall of the valve body 31. In the range corresponding to, the distance between the inner peripheral wall and the outer peripheral wall is the same.
  • the range corresponding to the seal opening 360 means a range overlapping the projection when the seal opening 360 is projected in the axial direction of the valve seal 36.
  • the shaft 32 is formed integrally with the valve body 31 by insert molding.
  • the assembly man-hour for the shaft 32 can be reduced.
  • the valve body 31 includes a first divided body 33 and a second divided body 34 that are divided into two on a virtual plane Vp1 including the rotation axis Axr1, and the first divided body 33 and the second divided body 34 are respectively Are joined at the joining surfaces 331 and 341.
  • valve body 31 can be accurately manufactured by die slide injection (DSI) described later.
  • the first divided body 33 has a first restricting convex portion 332 that extends from the surface on the partition wall portion 60 side to the restricting recessed portion 63 and has a tip portion located in the restricting recessed portion 63. (Refer to FIG. 3 and FIG. 6 for the restriction recess 63).
  • the second divided body 34 has a second restricting convex portion 342 that extends from the surface on the partition wall 60 side toward the restricting recess 63 and has a tip portion located in the restricting recess 63.
  • the rotation of the valve body 31 can be restricted by the first restriction convex part 332 and the second restriction convex part 342 coming into contact with the restriction part 631 of the restriction concave part 63.
  • the 1st control convex part 332 and the 2nd control convex part 342 are formed in the 1st division body 33 and the 2nd division body 34, respectively, the 1st control convex part 332 and the 2nd control convex part
  • the first divided body 33 and the second divided body 34 can be prevented from separating (peeling) at the joint surfaces 331 and 341.
  • the 1st control convex part 332 and the 2nd control convex part 342 are located in the diameter direction outside to the center of the radial direction of the 1st outermost end face 301. As shown in FIG. Thereby, since the magnitude
  • restriction surfaces 635 and 636 are formed on the circumferential end surface of the restriction recess 63 of the restriction portion 631.
  • a convex portion regulating surface 333 that can contact the regulating surface 635 is formed on the end surface of the first regulating convex portion 332 in the circumferential direction of the valve body 31.
  • a convex portion regulating surface 343 that can contact the regulating surface 636 is formed on the end surface of the second regulating convex portion 342 in the circumferential direction of the valve body 31.
  • the valve body 31 is restricted from rotating when the convex portion regulating surface 333 contacts the regulating surface 635 or when the convex portion regulating surface 343 contacts the regulating surface 636.
  • the corners of the first regulating convex part 332 and the second regulating convex part 342 opposite to the first outermost end face 301 are inclined with respect to the first outermost end face 301. It is chamfered. Therefore, even if there is a foreign substance such as sand in the vicinity of the first restriction convex part 332 and the second restriction convex part 342 of the restriction concave part 63, the corners and the restriction of the first restriction convex part 332 and the second restriction convex part 342 are restricted. It can suppress that a foreign material bites into between the recessed parts 63.
  • the first restriction convex part 332 extends toward the restriction concave part 63 along the joint surface 331.
  • the second restriction convex portion 342 extends toward the restriction concave portion 63 along the joint surface 331 while being in contact with the first restriction convex portion 332.
  • the valve body 31 has a valve body opening rib 411 that connects the inner edge of the valve body opening 410.
  • the valve body 31 has valve body opening ribs 421 and 422 that connect the inner edge of the valve body opening 420.
  • the valve body 31 has valve body opening ribs 431 and 432 that connect the inner edge ends of the valve body opening 430. Therefore, the strength of the valve body openings 410, 420, and 430 can be improved.
  • the valve body opening ribs 411, 421, 431 are formed on a virtual plane including the axis Axs1 (rotation axis Axr1) of the shaft 32, that is, a virtual plane Vp1 including the joint surfaces 331, 341. That is, the valve body opening ribs 411, 421, 431 are formed so as to sandwich the joint surfaces 331, 341.
  • the valve body opening ribs 422 and 432 are formed on a virtual plane that includes the axis Axs1 (rotation axis Axr1) of the shaft 32 and is orthogonal to the virtual plane Vp1.
  • valve body opening rib 411 is formed at a position away from the virtual spherical surface Vs1 along the outer peripheral wall of the ball valve 41 of the valve body 31 inward in the radial direction.
  • the virtual spherical surface Vs1 is a virtual spherical surface including the outer peripheral wall of the ball valve 41.
  • valve body 31 when the valve body 31 is rotated, it is possible to suppress the valve seal 36 from being caught by the valve body opening rib 411 and increasing the sliding resistance.
  • valve body opening rib 411 is formed in an arc shape with a predetermined distance from the phantom spherical surface Vs1.
  • the valve body opening ribs 421 and 422 and the valve body opening ribs 431 and 432 are also formed in an arc shape with a predetermined distance from a virtual spherical surface along the outer peripheral wall of the ball valves 42 and 43.
  • valve body 31 Therefore, an increase in sliding resistance during rotation of the valve body 31 can be suppressed, and the flow path area inside the valve body opening ribs 411, 421, 422, 431, and 432 can be increased.
  • the valve element opening rib 411 is formed in an arc-shaped flat plate shape.
  • the rib outer edge 401 which is the radially outer portion of the valve body opening rib 411, has a constant distance from the phantom spherical surface Vs1.
  • a rib end 403, which is one end of the valve body opening rib 411, is connected to a portion of the inner edge of the valve body opening 410 that is opposite to the cylindrical connection portion 44.
  • the rib end portion 404 which is the other end portion of the valve body opening rib 411 is connected to a portion of the inner edge end of the valve body opening portion 410 on the cylindrical connection portion 44 side.
  • the valve body 31 has a specific shape portion 441 that is formed on the joint surfaces 331 and 341 in the cylindrical connection portion 44 and has an outer wall having a curvature different from the curvature of the outer peripheral wall of the cylindrical connection portion 44. doing.
  • the valve body 31 has a specific shape portion 451 having an outer wall that is formed on the joint surfaces 331 and 341 in the tubular valve connection portion 45 and has a curvature different from the curvature of the outer peripheral wall of the tubular valve connection portion 45.
  • the specific shape portions 441 and 451 are formed so that the outer walls protrude outward from the outer peripheral walls of the tubular connection portion 44 and the tubular valve connection portion 45, respectively.
  • the specific shape portions 441 and 451 may be formed such that the outer walls are recessed inward from the outer peripheral walls of the tubular connection portion 44 and the tubular valve connection portion 45, respectively.
  • Each of the specific shape portions 441 and 451 may have a flat outer wall.
  • the length of the specific shape portion 441 in the axis Axs1 direction of the shaft 32 is about 1/10 of the length of the cylindrical connection portion 44.
  • the length of the specific shape portion 451 in the axis Axs1 direction of the shaft 32 is about 1/3 of the length of the tubular valve connection portion 45. Therefore, the enlargement of the valve body 31 can be suppressed.
  • the valve body 31 includes an inter-valve space 400 formed between the ball valve 41 and the ball valve 42 on the radially outer side of the cylindrical connection portion 44 and a valve body flow path 300 of the ball valve 41.
  • the ball valve 42 so as to connect the end surface opening 415 formed on the end surface of the ball valve 41 in the direction of the rotation axis Axr1 and the inter-valve space 400 and the valve body flow passage 300 of the ball valve 42. It has an end face opening 425 formed on the end face in the direction of the axis Axr1.
  • the end surface openings 415 and 425 correspond to a “first end surface opening” and a “second end surface opening”, respectively.
  • the inlet port 220 (see FIG. 3) communicates with the inter-valve space 400. Therefore, the cooling water flowing into the internal space 200 from the inlet port 220 can flow into the valve body flow path 300 via the inter-valve space 400 and the end surface openings 415 and 425.
  • the inter-valve space 400 is open over the entire circumferential direction. Therefore, the flow resistance of the cooling water flowing from the inlet port 220 into the internal space 200 and flowing toward the valve body flow path 300 can be reduced.
  • the inter-valve space 400 overlaps the inlet port 220 and the relief port 224 in the direction of the rotation axis Axr1. Therefore, the cooling water flowing from the inlet port 220 can easily flow to the relief port 224, and the reactivity of the relief valve 39 can be improved.
  • the inter-valve space 400 is a cylindrical connecting portion that is a portion having the smallest outer diameter among the portions from the first outermost end surface 301 to the second outermost end surface 302 in the axial direction of the valve body 31. 44 is formed radially outward.
  • the outer diameter of the inter-valve space 400 is smaller than the diameter of the end surface openings 415 and 425 on the outer side in the radial direction.
  • the shaft 32 is formed integrally with the valve body 31 by insert molding at the cylindrical connecting portion 44. That is, the shaft 32 is welded to the cylindrical connection portion 44, but is not welded to a portion other than the cylindrical connection portion 44 of the valve body 31.
  • the flow path area of the valve body flow path 300 may be reduced and the water flow resistance may be increased. Since the insert molding part with the shaft 32 is provided in the cylindrical connection part 44 outside 300, the water flow resistance can be reduced.
  • the shaft 32 has a detent portion 321 that can restrict relative rotation with the cylindrical connection portion 44.
  • the anti-rotation part 321 is formed so that the cross-sectional shape is a polygon.
  • the cross-sectional shape is a hexagon.
  • the rotation prevention part 321 is formed, for example, by cutting the outer peripheral wall of the columnar shaft 32 into a flat shape at six places in the circumferential direction. Therefore, the outer wall of the rotation preventing portion 321 is located on the radially inner side with respect to the outer peripheral wall of the shaft 32.
  • the inner wall of the cylindrical connection portion 44 is formed to have a hexagonal cross section so as to correspond to the shape of the rotation preventing portion 321.
  • valve body 31 is connected to the ball valve 42 on the side opposite to the cylindrical connecting portion 44 with respect to the ball valve 42, and the outer peripheral wall and the inner peripheral wall are formed in a cylindrical shape, and the valve body flow path is formed inside.
  • a cylindrical valve connecting portion 45 that forms 300, and a ball valve 43 that is connected to the cylindrical valve connecting portion 45 on the opposite side of the cylindrical valve connecting portion 45 from the ball valve 42 and whose outer peripheral wall is formed in a spherical shape. have.
  • the cylindrical valve connecting portion 45 has an outer peripheral wall and an inner peripheral wall formed in a cylindrical shape. Therefore, the flow path area of the inner valve body flow path 300 can be secured.
  • the outer diameter of the outer peripheral wall of the ball valve 41 is the same as the outer diameter of the outer peripheral wall of the ball valve 43.
  • the outer diameter of the outer peripheral wall of the ball valve 42 is also the same as the outer diameter of the outer peripheral wall of the ball valve 41 and the outer diameter of the outer peripheral wall of the ball valve 43.
  • the area of the first outermost end surface 301 that is the end surface of the ball valve 41 opposite to the ball valve 43 in the direction of the rotation axis Axr1 is the end surface of the ball valve 43 opposite to the ball valve 41 in the direction of the rotation axis Axr1. It is different from the area of the second outermost end surface 302. Here, the area of the second outermost end surface 302 is larger than the area of the first outermost end surface 301. Therefore, the length of the ball valve 43 in the direction of the rotation axis Axr1 is shorter than the length of the ball valve 41.
  • the size of the valve body 31 in the axial direction can be reduced, and the physique of the valve device 10 can be reduced.
  • the valve body 31 includes a valve body opening rib 422 connecting the inner edge of the valve body opening 420 of the ball valve 42 and an inner edge of the valve body opening 430 of the ball valve 43.
  • the valve body opening rib 432 is connected.
  • the valve body opening rib 422 and the valve body opening rib 432 correspond to a “second valve body opening rib” and a “third valve body opening rib”, respectively.
  • valve element opening rib 422 and the valve element opening rib 432 are formed at the same position in the circumferential direction of the valve element 31. That is, the valve body opening ribs 422 and 432 are formed to be aligned in a direction parallel to the rotation axis Axr1.
  • the valve body opening rib 411 and the valve body opening rib 421 are formed at the same position in the circumferential direction of the valve body 31.
  • the valve body 31 includes end surface opening ribs 416 and 417 that connect the cylindrical connection portion 44 and the ball valve 41 so as to straddle the end surface opening 415, and the end surface End face opening ribs 426 and 427 for connecting the cylindrical connecting portion 44 and the ball valve 42 so as to straddle the opening 425 are provided.
  • the end face opening ribs 416 and 417 correspond to “first end face opening ribs”
  • the end face opening ribs 426 and 427 correspond to “second end face opening ribs”.
  • Two end face opening ribs 416 and 426 are formed so that the cylindrical connecting portion 44 is sandwiched therebetween.
  • Two end face opening ribs 417 and 427 are formed so that the cylindrical connecting portion 44 is sandwiched therebetween.
  • the end face opening ribs 416 and 426 are formed on the virtual plane Vp1. That is, the end surface opening ribs 416 and 426 are formed so as to sandwich the bonding surfaces 331 and 341. Therefore, the valve body opening ribs 411 and 421 and the end surface opening ribs 416 and 426 are formed at the same position in the circumferential direction of the valve body 31.
  • the start positions of the end surface opening ribs 426 and 427 are the outer edge portions of the end surface of the ball valve 42 on the ball valve 41 side.
  • the end positions of the end surface opening ribs 426 and 427 are the outer peripheral walls of the end portion of the cylindrical connecting portion 44 on the ball valve 42 side.
  • valve body opening rib 421 As shown in FIG. 21, the portion of the valve body opening rib 421 that swells outward in the radial direction protrudes outside the outer peripheral wall outside of the ball valve 42 at the start position of the end surface opening rib 426.
  • the valve body opening rib 411 is provided on the outer side in the radial direction from the straight portion of the end surface opening rib 426.
  • the end face opening rib 426 has a side on the valve body flow path 300 side in the direction of the rotation axis Axr1 formed in a straight line.
  • the end face opening rib 426 has a side on the side of the inter-valve space 400 in the direction of the rotation axis Axr1 formed in a curved shape on the radially outer side of the ball valve 42 and formed in a linear shape on the radially inner side.
  • the end face opening rib 427 is formed such that the side on the valve body flow path 300 side in the direction of the rotation axis Axr1 is linear.
  • the end face opening rib 427 is formed such that the side on the inter-valve space 400 side in the direction of the rotation axis Axr1 is formed in a curved shape on the outer side in the radial direction of the ball valve 42 and linearly inclined on the inner side in the radial direction with respect to the rotation axis Axr1.
  • the end surface opening rib 417, the end surface opening rib 427, the valve body opening rib 422, and the valve body opening rib 432 are formed at the same position in the circumferential direction of the valve body 31. That is, the end surface opening ribs 417 and 427 and the valve body opening ribs 422 and 432 are formed so as to be aligned in a direction parallel to the rotation axis Axr1.
  • the end face opening ribs 417 and 427 and the valve body opening ribs 422 and 432 are formed on a virtual plane that includes the axis Axs1 (rotation axis Axr1) of the shaft 32 and is orthogonal to the virtual plane Vp1.
  • the end face opening ribs 416 and 417 form a rib end face gap 418 between the end face opening ribs 416 and 417 and the valve end face 419 that is the end face of the ball valve 41 in the rotation axis Axr1 direction.
  • the end face opening ribs 426 and 427 form a rib end face gap 428 between the end face opening ribs 426 and 427 and the valve end face 429 that is the end face of the ball valve 42 in the direction of the rotation axis Axr1.
  • the rib end face gap 418 corresponds to the “first rib end face gap”
  • the rib end face gap 428 corresponds to the “second rib end face gap”.
  • a rib end surface gap 428 is formed between the end surface opening ribs 426 and 427 and the end surface of the ball valve 42 in the rotation axis Axr1 direction. Visually visible.
  • the end surface opening rib 417 is formed so that the surface on the ball valve 42 side is inclined with respect to the rotation axis Axr1.
  • the end surface opening rib 427 is formed so that the surface on the ball valve 41 side is inclined with respect to the rotation axis Axr1.
  • valve 30 is manufactured using so-called die slide injection (DSI).
  • DSI die slide injection
  • the mold apparatus 100 includes a first mold 110, a second mold 120, and the like.
  • the first mold 110 has a first outer mold 111 and a first inner mold 112.
  • the second mold 120 has a second outer mold 121 and a second inner mold 122.
  • the first outer mold 111 has a first concave surface 113 that is recessed in a hemispherical shape from the end surface on the first inner mold 112 side.
  • the first concave surface 113 is formed to correspond to the shape of the outer peripheral wall of the ball valves 41, 42, 43 among the outer peripheral wall of the first divided body 33.
  • the first inner mold 112 has a first convex surface 114 projecting in a hemispherical shape from the end surface on the first outer mold 111 side.
  • the first convex surface 114 is formed so as to correspond to the shape of the inner peripheral wall of the ball valves 41, 42, 43 among the outer peripheral wall of the first divided body 33.
  • the first concave surface 113 and the first convex surface 114 are within at least a part of the rotation axis Axr1 direction and the circumferential direction of the valve body 31. And the distance is set to be the same.
  • the second outer mold 121 has a second concave surface 123 that is recessed in a hemispherical shape from the end surface on the second inner mold 122 side.
  • the second concave surface 123 is formed so as to correspond to the shape of the outer peripheral walls of the ball valves 41, 42, 43 among the outer peripheral walls of the second divided body 34.
  • the second inner mold 122 has a second convex surface 124 projecting in a hemispherical shape from the end surface on the second outer mold 121 side.
  • the second convex surface 124 is formed so as to correspond to the shape of the inner peripheral walls of the ball valves 41, 42, and 43 among the outer peripheral walls of the second divided body 34.
  • the second concave surface 123 and the second convex surface 124 in at least a part of the rotation axis Axr1 direction and the circumferential direction of the valve body 31. And the distance is set to be the same.
  • the manufacturing method of the valve 30 includes the following steps.
  • the first divided body 33 and the second divided body 34 are resin-molded by the first mold 110 and the second mold 120, respectively.
  • the first outer mold 111 and the first inner mold 112 are brought into contact with each other
  • the second outer mold 121 and the second inner mold 122 are brought into contact with each other
  • a molten resin is injected between the first concave surface 113 and the first convex surface 114 and between the second concave surface 123 and the second convex surface 171.
  • the resin injected from the injection unit 130 of the mold apparatus 100 flows to the first mold 110 and the second mold 120 via the spool 131, the runner 132, and the gates 133 and 134.
  • the primary molding process is completed.
  • the distance between the second concave surface 123 and the second convex surface 124 is the same.
  • valve body 31 can be made uniform. Thereby, the precision of the spherical surface of the outer peripheral wall of the valve body 31 can be further improved, and the flow passage area of the flow passage 300 can be increased.
  • the first divided body 33 or the second divided body 34 is moved to the first divided body 33 or the second divided body 34 so that the joint surfaces 331 and 341 of the first divided body 33 and the second divided body 34 face each other.
  • the valve 30 can be manufactured efficiently by the sliding process.
  • the shaft 32 is arranged on the rotation axis Axr1 of the valve body 31. Specifically, as illustrated in FIG. 29C, the shaft 32 is disposed on the rotation axis Axr1 between the first divided body 33 and the second divided body 34.
  • welded portions 311, 312, and 313 are formed on the joint surface 341 in the second divided body 34 after the primary molding step.
  • the welded portion 311 is formed in a groove shape so as to be recessed from the joint surface 341 at a portion corresponding to the ball valve 41 of the second divided body 34.
  • the welded portion 312 is formed in a groove shape so as to be recessed from the joint surface 341 corresponding to the cylindrical connecting portion 44 of the second divided body 34.
  • the welded portion 313 is formed in a groove shape so as to be recessed from the joint surface 341 of the portion corresponding to the ball valve 42, the cylindrical valve connecting portion 45, and the ball valve 43 of the second divided body 34.
  • welded parts 311, 312, and 313 are also formed in the first divided body 33.
  • a gate inlet 141 of the mold apparatus 100 is disposed at one end of the welding part 311, and a gate outlet 145 is disposed at the other end of the welding part 311.
  • a gate inlet 142 of the mold apparatus 100 is disposed at one end of the welding portion 312, and a gate outlet 146 is disposed at the other end of the welding portion 312.
  • a gate inlet 143 of the mold apparatus 100 is disposed at the center of the welded portion 313, and gate outlets 147 are disposed at both ends of the welded portion 313.
  • the gate inlet 142 and the gate outlet 146 are disposed in the center of the cylindrical connecting portion 44 in the axial direction.
  • the gate inlet 143 is disposed at the center in the axial direction of the tubular valve connecting portion 45.
  • the gate inlet 141 is disposed on the first outermost end surface 301 of the ball valve 41.
  • the gate outlet 145 is disposed on the end surface of the ball valve 41 opposite to the first outermost end surface 301.
  • the gate outlet 147 is disposed on the second outermost end surface 302 of the ball valve 43 and the end surface of the ball valve 42 on the ball valve 41 side.
  • molten resin is injected from the injection unit 140 of the mold apparatus 100 to the welding units 311, 312, 313 through the gate inlets 141, 142, 143.
  • Resin that has flowed into the welds 311, 312, and 313 from the gate inlets 141, 142, and 143 flows toward the gate outlets 145, 146, and 147, and flows out from the gate outlets 145, 146, and 147, respectively.
  • the resin in the welded parts 311, 312, and 313 is cooled and hardened, the first divided body 33, the second divided body 34, and the shaft 32 are welded, and the secondary molding process is completed.
  • the resin remaining at positions corresponding to the gate inlet 142 and the gate outlet 146 of the cylindrical connection portion 44 of the valve body 31 forms a specific shape portion 441. Further, the resin remaining at the position corresponding to the gate inlet 143 of the tubular valve connecting portion 45 of the valve body 31 forms a specific shape portion 451.
  • the present embodiment is a method for manufacturing the valve 30 having the valve body 31 rotatable around the rotation axis Axr1 and the valve body flow passage 300 formed inside the valve body 31.
  • a next forming step and a second forming step are included.
  • the valve body 31 has a first division in which at least a part of the outer peripheral wall is formed into a spherical shape, and at least a part of the inner peripheral wall is formed to be recessed outward, and is divided into two on a virtual plane Vp1 including the rotation axis Axr1. It has the body 33 and the 2nd division body 34, and the 1st division body 33 and the 2nd division body 34 are joined by each joint surface 331,341.
  • the first divided body 33 and the second divided body 34 are resin-molded by the first mold 110 and the second mold 120, respectively.
  • a resin is formed between the welded portions (311, 312, 313) on the joint surface 331 of the first divided body 33 and the welded portions (311, 312, 313) on the joint surface 341 of the second divided body 34.
  • the first divided body 33 and the second divided body 34 are welded.
  • valve 30 By manufacturing the valve 30 by the above manufacturing method, the molding accuracy of the spherical surface of the outer peripheral wall of the valve body 31 can be improved. Thereby, the leakage of the cooling water in the outer peripheral wall of the valve body 31 can be suppressed.
  • valve body flow passage 300 can be increased, and the water flow resistance can be reduced.
  • the valve 30 is manufactured by die slide injection (DSI).
  • DSI molding the valve body 31 is separated into two. Therefore, the numerical aperture of the valve body 31 can be changed without increasing the mold drawing direction, compared to the case of the normal manufacturing method in which the mold is cut in the axial direction of the valve body 31. As a result, complex flow diagrams can be handled.
  • the valve body 31 is integrally formed, the number of dies to be removed increases as the numerical aperture increases.
  • the direction in which the mold is pulled out is the radial direction of the valve body 31, compared with the case of the normal manufacturing method in which the mold is punched in the axial direction of the valve body 31, the mold is rubbed against the surface of the product. Can be prevented. In addition, since the deformation of the product surface can be prevented, the sealing performance is improved.
  • valve body opening rib 411 is formed in a straight line with a predetermined distance from the phantom spherical surface Vs1.
  • the valve body opening ribs 421 and 422 and the valve body opening ribs 431 and 432 are also formed in a straight line with a predetermined distance from a virtual spherical surface along the outer peripheral wall of the ball valves 42 and 43.
  • valve body 31 rotates, it is possible to more effectively suppress the valve seal 36 from being caught by the valve body opening rib 411 and increasing the sliding resistance.
  • the valve element opening rib 411 is formed in a linear flat plate shape.
  • the rib outer edge 401 which is the radially outer portion of the valve body opening rib 411, is formed in a straight line so as to be parallel to the rotation axis Axr1, and the distance from the phantom spherical surface Vs1 changes in the direction of the rotation axis Axr1.
  • the rib inner edge portion 402, which is the radially inner portion of the valve body opening rib 411, is formed in a straight line so as to be parallel to the rotation axis Axr1, and the distance from the phantom spherical surface Vs1 changes in the direction of the rotation axis Axr1.
  • the rib end portion 404 which is the other end portion of the valve body opening rib 411 is connected to a portion of the inner edge end of the valve body opening portion 410 on the cylindrical connection portion 44 side.
  • valve body opening rib 411 is located on the radially outer side of the ball valve 41 with respect to the second restricting convex portion 342. As shown in FIG.
  • the valve body 31 of the valve 30 has a ball valve 46.
  • the shaft 32 is provided on the rotation axis Axr1 of the valve body 31.
  • the ball valve 46 has an outer peripheral wall 461 and an inner peripheral wall 462.
  • the outer peripheral wall 461 is formed in a spherical shape so as to swell outward in the radial direction of the ball valve 46.
  • the inner peripheral wall 462 is formed in a spherical shape so as to be recessed outward in the radial direction of the ball valve 46.
  • the valve body 31 has the same distance between the outer peripheral wall 461 and the inner peripheral wall 462 in at least a partial range in the direction of the rotation axis Axr1 and the circumferential direction. That is, the valve body 31 is formed so that the thickness is uniform (equal thickness) at least in the above range.
  • valve 30 Next, a method for manufacturing the valve 30 will be described.
  • the mold apparatus 150 includes an upper base 151, a lower base 152, an upper support pillar 153, a lower support pillar 154, a mold driver 155, a first inner mold 160, a second inner mold 170, and an outer mold 180. Etc.
  • the upper base 151 is formed in a plate shape.
  • the lower base 152 is formed in a plate shape and is provided so as to be parallel to the upper base 151.
  • the upper support pillar 153 is formed in a rod shape, and one end thereof is connected to the side opposite to the lower base 152 of the upper base 151.
  • Eight upper support columns 153 are provided so that one end of the upper support column 153 has an annular shape around the central axis CAx1 of the mold apparatus 150 in the upper base 151 (see FIG. 36).
  • the upper support column 153 can swing toward the central axis CAx1 at the other end with one end as a fulcrum.
  • the lower support pillar 154 is formed in a rod shape, and one end thereof is connected to the upper base 151 side of the lower base 152.
  • the lower support column 154 is provided so that the other end passes through the hole of the upper base 151 and is located on the opposite side of the lower base 152 with respect to the upper base 151.
  • Eight lower support pillars 154 are provided so that one end forms a ring around the central axis CAx1 in the lower base 152 (see FIG. 37).
  • the lower support column 154 is swingable toward the central axis CAx1 at the other end with one end as a fulcrum.
  • the first inner mold 160 is provided at the other end of each of the eight upper support columns 153. That is, a total of eight first inner molds 160 are provided.
  • the second inner mold 170 is provided at the other end of each of the eight lower support columns 154. That is, a total of eight second inner molds 170 are provided.
  • the first inner mold 160 has a first convex surface 161 on a part of the outer wall.
  • the first convex surface 161 is formed in a spherical shape.
  • the second inner mold 170 has a second convex surface 171 on a part of the outer wall.
  • the second convex surface 171 is formed in a spherical shape.
  • the first inner mold 160 and the second inner mold 170 are alternately arranged in the circumferential direction so that the first convex surface 161 and the second convex surface 171 face the side opposite to the central axis CAx1. .
  • the 1st convex surface 161 and the 2nd convex surface 171 can form the spherical surface continuous in the circumferential direction.
  • the outer mold 180 has a concave surface 181 on the inner wall (see FIG. 39).
  • the concave surface 181 is formed in a spherical shape.
  • the outer mold 180 is disposed outside the first inner mold 160 and the second inner mold 170 so that the concave surface 181 faces the first convex surface 161 and the second convex surface 171.
  • the mold driver 155 is formed in a cylindrical shape.
  • the mold driver 155 is disposed inside the first inner mold 160 and the second inner mold 170 coaxially with the central axis CAx1.
  • An engagement groove 156 is formed on the outer peripheral wall of the mold driver 155.
  • the engaging groove 156 is formed so as to extend from one end to the other end of the mold driver 155.
  • Eight engaging groove portions 156 are formed at equal intervals in the circumferential direction of the mold driver 155.
  • the first inner mold 160 has an engaging convex portion 162 on the side opposite to the first convex surface 161.
  • the engaging convex portion 162 can be engaged with the engaging groove portion 156 of the mold driver 155.
  • the mold driver 155 is movable in the direction of the central axis CAx1 in a state in which the engagement protrusion 162 is engaged with the engagement groove 156.
  • the outer peripheral wall of the mold driver 155 is formed in a tapered shape. Therefore, when the mold driver 155 moves relative to the first inner mold 160 and the second inner mold 170 toward the upper base 151 in the direction of the central axis CAx1, the eight first inner molds 160 gather toward the central axis CAx1. In this way, it moves (see FIGS. 39 and 40).
  • the inner diameter of the spherical surface formed by the first convex surface 161 is reduced.
  • the eight second inner molds 170 can also move so as to gather toward the central axis CAx1. That is, when the first inner mold 160 and the second inner mold 170 move so as to gather toward the central axis CAx1, the inner diameter of the spherical surface formed by the first convex surface 161 and the second convex surface 171 is reduced.
  • the manufacturing method of the valve 30 includes the following steps.
  • the valve body 31 is resin-molded between the outer mold 180 and the first inner mold 160 and the second inner mold 170 disposed inside the outer mold 180. Specifically, as shown in FIGS. 35 and 39A, a space formed between the spherical surface formed by the first convex surface 161 and the second convex surface 171 and the concave surface 181 of the outer die 180. Then, the molten resin is injected. When the resin cools and hardens, the resin molding process is completed.
  • the distance between the concave surface 181 and the first convex surface 161 and the second convex surface 171 is the same in at least a part of the rotational axis Axr1 direction and the circumferential direction (FIG. 39). (See (A)).
  • valve body 31 can be made uniform. Thereby, the precision of the spherical surface of the outer peripheral wall of the valve body 31 can be further improved, and the flow passage area of the flow passage 300 can be increased.
  • the first inner mold 160 and the second inner mold 170 are moved to the inside of the valve body 31. Specifically, as shown in FIGS. 39A and 39B and FIGS. 40A to 40E, the mold driver 155 is centered with respect to the first inner mold 160 and the second inner mold 170. The first inner mold 160 and the second inner mold 170 are moved relative to each other in the direction of the axis CAx1, and the first inner mold 160 and the second inner mold 170 are moved toward the central axis CAx1, thereby reducing the diameter of the spherical surface formed by the first convex surface 161 and the second convex surface 171.
  • first inner mold 160 and the second inner mold 170 are extracted from the valve body 31 by moving the first inner mold 160 and the second inner mold 170 relative to the valve body 31 in the direction of the central axis CAx1.
  • the protrusion height H1 of the first convex surface 161 and the second convex surface 171 is such that the first inner die 160 and the second inner die 170 can move in the die moving step. It is set smaller than the distance Dm1.
  • the present embodiment is a method for manufacturing the valve 30 having the valve body 31 rotatable around the rotation axis Axr1 and the valve body flow passage 300 formed inside the valve body 31, and includes a resin.
  • a molding process and a mold moving process are included.
  • the valve body 31 is formed such that at least a part of the outer peripheral wall is formed in a spherical shape and at least a part of the inner peripheral wall is recessed outward.
  • valve body 31 is resin-molded between the outer mold 180 and the inner molds (160, 170) disposed inside the outer mold 180.
  • the inner mold (160, 170) is moved to the inside of the valve body 31 after the resin molding process.
  • valve 30 By manufacturing the valve 30 by the above manufacturing method, the molding accuracy of the spherical surface of the outer peripheral wall of the valve body 31 can be improved. Thereby, the leakage of the cooling water in the outer peripheral wall of the valve body 31 can be suppressed.
  • valve body flow passage 300 can be increased, and the water flow resistance can be reduced.
  • FIG. 42 shows a valve device according to the sixth embodiment.
  • the sixth embodiment differs from the first embodiment in the configuration of the valve 30 and the like.
  • the ball valves 41 and 42, the cylindrical valve connection portion 45, and the ball valve 43 of the valve body 31 are integrally arranged in this order from the drive portion 70 side in the direction of the rotation axis Axr1 toward the opposite side of the drive portion 70. Is formed.
  • the valve body 31 is formed in a cylindrical shape, and the inner peripheral walls of the ball valves 41 and 42, the cylindrical valve connecting portion 45, and the ball valve 43 are formed in a substantially cylindrical surface centered on the rotation axis Axr1.
  • the inner peripheral wall of the valve body 31 is formed in a tapered shape so that the inner diameter increases from the drive unit 70 side in the direction of the rotation axis Axr1 toward the opposite side of the drive unit 70.
  • the valve body 31 is formed so that the outer peripheral wall of the ball valves 41, 42, 43 is spherical.
  • the shaft 32 is provided integrally with the valve body 31 on the rotation axis Axr1.
  • the outlet ports 221, 222, 223 are formed at positions corresponding to the ball valves 41, 42, 43, respectively.
  • the end of the pipe portion 511 opposite to the outlet port 221 is connected to the radiator 5 via a hose or the like.
  • the end of the pipe portion 512 opposite to the outlet port 222 is connected to the heater 6 via a hose or the like.
  • the end of the pipe portion 513 opposite to the outlet port 223 is connected to the device 7 via a hose or the like.
  • the ball valves 41, 42, 43 are provided at positions corresponding to the outlet ports 221, 222, 223, respectively.
  • the “position corresponding to the outlet ports 221, 222, 223” means a range that overlaps the projection when the outlet ports 221, 222, 223 are projected in the axial direction of the outlet ports 221, 222, 223. .
  • the cylindrical valve connection portion 45 is provided between the outlet port 222 and the outlet port 223 in the direction of the rotation axis Axr1.
  • the mounting surface 201 is formed so as to be orthogonal to the pipe mounting surface 202 (see FIG. 43).
  • the inlet port 220 is formed to open to the mounting surface 201.
  • the opening of the inlet port 220 in the mounting surface 201 is circular.
  • valve device 10 is attached to the engine 2 in a narrow space A2 between the engine 2 and the inverter 16.
  • the valve device 10 is attached to the engine 2 such that the pipe member 50 is positioned above the valve 30 in the vertical direction.
  • the housing 20 has fastening portions 231, 232, and 233 formed integrally with the housing main body 21.
  • the fastening portions 231, 232, and 233 are formed so as to protrude in the surface direction of the mounting surface 201 from the end of the housing body 21 on the mounting surface 201 side.
  • the housing 20 has fastening holes 241, 242, 243 formed corresponding to the fastening portions 231, 232, 233, respectively.
  • the fastening member 240 is inserted into the fastening holes 241, 242, and 243 and fastened to the engine 2. Thereby, the valve device 10 is attached to the engine 2.
  • a rubber-made port seal member 209 is provided on the outer side in the radial direction of the inlet port 220 of the mounting surface 201.
  • the port seal member 209 is compressed by the axial force of the fastening member 240 when the valve device 10 is attached to the engine 2.
  • the port seal member 209 can keep the mounting surface 201 and the engine 2 in a liquid-tight state, and can prevent the coolant from leaking from the inlet port 220 through the mounting surface 201 and the engine 2. .
  • the opening of the inlet port 220 is formed inside a triangle Ti1 formed by connecting three fastening holes, that is, fastening holes 241, 242, and 243.
  • the present embodiment is a valve device 10 that can control the cooling water of the engine 2 of the vehicle 1, and includes the housing 20 and the valve 30.
  • the housing 20 has a housing main body 21 that forms an internal space 200 on the inside, a mounting surface 201 formed on the outer wall of the housing main body 21 so as to face the engine 2 when mounted on the engine 2,
  • An inlet port 220 that connects the space 200 and the outside of the housing body 21, a plurality of fastening portions (231, 232, 233) formed integrally with the housing body 21, and a plurality of fastening portions, respectively.
  • the valve 30 includes a valve body 31 that can rotate around the rotation axis Axr1 in the internal space 200, and a valve body flow path 300 that is formed inside the valve body 31 and communicates with the inlet port 220.
  • the housing body 21 is fixed to the engine 2 by a fastening member 240 that is screwed into the engine 2 through the fastening holes (241, 242, 243).
  • the opening of the inlet port 220 is formed inside a triangle Ti1 formed by connecting three fastening holes (241, 242, 243).
  • the port seal member 209 made of an annular elastic member is provided around the inlet port 220, the housing body 21 is fixed to the engine 2 by the fastening member 240 that passes through the three fastening holes (231, 232, 233).
  • the port seal member 209 can be compressed with a good balance. Thereby, the sealing performance around the inlet port 220 can be effectively secured.
  • the fastening portion 231 is formed to protrude from the housing body 21 in the longitudinal direction of the housing body 21.
  • the fastening portions 232 and 233 are formed so as to protrude from the housing main body 21 in the short direction of the housing main body 21.
  • the protrusion start position of the fastening portion 231 is a corner portion on the opposite side of the drive portion 70 of the rectangular mounting surface 201 where the inlet port 220 of the housing body 21 is formed.
  • the protruding start position of the fastening portion 232 is the position of the inlet port 220 on the side opposite to the fastening portion 233 among the two sides extending in the longitudinal direction of the rectangular mounting surface 201 on which the inlet port 220 of the housing body 21 is formed. It is a nearby part.
  • the protruding start position of the fastening portion 233 is a portion on the drive portion 70 side of the end portion of the housing body 21 in the short direction.
  • the distance between the side of the triangle Ti1 that connects the center of the fastening hole 241 and the center of the fastening hole 242 and the center Cp1 of the inlet port 220 is the distance between the center of the fastening hole 242 and the fastening hole 243. It is smaller than the distance between the side connecting the center and the center Cp1.
  • the distance between the side connecting the center of the fastening hole 242 and the center of the fastening hole 243 and the center Cp1 is smaller than the distance between the side connecting the center of the fastening hole 243 and the center of the fastening hole 241 and the center Cp1.
  • the drive part cover 80 is formed on the cover body 81 that forms the drive part space 800, and the outer edge part of the cover body 81. Cover fixing portions 821 to 826 to be fixed to 21.
  • Cover fastening holes 831 to 836 are formed with cover fastening holes 831 to 836, respectively.
  • a fixing member 830 is inserted into the cover fastening holes 831 to 836 and fastened to the housing body 21.
  • cover fixing portions 823 and 824 are formed so as not to protrude outward from at least one of both end portions in the direction Dv1 perpendicular to the mounting surface 201 of the housing main body 21.
  • the cover fixing portions 823 and 824 are outside the housing end 215 that is the end opposite to the mounting surface 201 in the direction Dv1 perpendicular to the mounting surface 201 of the housing body 21, that is, the mounting surface. It is formed so as not to protrude to the opposite side of 201.
  • the 45 is a virtual plane that passes through the housing end 215 and is parallel to the mounting surface 201.
  • the cover fixing portions 823 and 824 are located on the attachment surface 201 side with respect to the virtual plane Vp3.
  • cover fixing portions 821 and 826 do not protrude outside the housing end portion 216 that is the end portion on the mounting surface 201 side in the direction Dv1 perpendicular to the mounting surface 201 of the housing body 21, that is, the mounting surface 201 side. Is formed. That is, the cover fixing portions 821 and 826 are located on the virtual plane Vp3 side with respect to the attachment surface 201.
  • the cover main body 81 is a part of the driving unit cover 80 and means a part that forms the driving unit space 800. Therefore, the cover fixing portions 821 to 826 are portions constituting the drive portion cover 80, but are formed as portions different from the cover main body 81.
  • cover flat portions 811, 812, 813 and a cover curved surface portion 814 are formed on the outer wall of the cover body 81.
  • One cover flat portion 811 is formed in a flat shape so as to be orthogonal to the rotation axis Axr1.
  • a plurality of cover flat portions 812 are formed in a planar shape so as to be parallel to the rotation axis Axr1.
  • One flat cover portion 813 is formed in a flat shape so as to be inclined with respect to the rotation axis Axr1.
  • a plurality of cover curved surface portions 814 are formed in a curved shape so as to be parallel to the rotation axis Axr1.
  • the plurality of cover curved surface portions 814 are connected to each other.
  • the cover fastening holes 831 to 833 are formed on the pipe member 50 side with respect to the axis Axm1 of the motor 71.
  • Cover fastening holes 834 to 836 are formed on the connector portion 84 side with respect to the axis Axm1 of the motor 71.
  • the cover fastening hole 833 is formed at a position closer to the axis Axm1 of the motor 71 than the cover fastening holes 831 and 832.
  • the cover fastening hole 834 is formed at a position closer to the axis Axm1 of the motor 71 than the cover fastening holes 835 and 836.
  • the present embodiment is a valve device 10 that can control the cooling water of the engine 2 of the vehicle 1, and includes the housing 20, the valve 30, the partition wall portion 60, the drive portion cover 80, and the drive portion 70. .
  • the housing 20 includes a housing main body 21 that forms an internal space 200 inside, a mounting surface 201 that is formed on the outer wall of the housing main body 21 so as to face the engine 2 when mounted on the engine 2, and the internal space 200 and the housing. It has ports (220, 221, 222, 223) for connecting to the outside of the main body 21.
  • the valve 30 connects the valve body 31 that can rotate around the rotation axis Axr1 in the internal space 200, the valve body channel 300 formed inside the valve body 31, and the valve body channel 300 and the outside of the valve body 31.
  • Valve body openings (410, 420, 430) and a shaft 32 provided on the rotation axis Axr1, and the valve body flow path 300 and ports (via the valve body openings (410, 420, 430)) 220, 221, 222, 223) can be changed by the rotational position of the valve body 31.
  • the partition wall portion 60 is provided so as to separate the internal space 200 from the outside of the housing body 21 and has a shaft insertion hole 62 formed so that one end of the shaft 32 can be inserted.
  • the drive unit cover 80 is provided on the opposite side of the partition wall 60 from the internal space 200, and forms a drive unit space 800 between the partition wall 60.
  • the drive unit 70 is provided in the drive unit space 800 and can rotate the valve body 31 via one end of the shaft 32.
  • the drive unit cover 80 includes a cover main body 81 that forms the drive unit space 800, and cover fixing portions (821 to 826) that are formed on the outer edge of the cover main body 81 and are fixed to the housing main body 21.
  • the cover fixing portions (821 to 826) are formed so as not to protrude outwardly from at least one of both end portions (215, 216) in the direction Dv1 perpendicular to the mounting surface 201 of the housing body 21.
  • the size in the direction Dv1 perpendicular to the mounting surface 201 of the drive unit cover 80 can be reduced, and the size in the direction Dv1 perpendicular to the mounting surface 201 of the valve device 10 can be reduced.
  • the valve device 10 can be mounted in the narrow space A ⁇ b> 2 of the vehicle 1.
  • valve device 10 As shown in FIG. 44, various devices are mounted around the engine 2. Therefore, the space where the valve device 10 can be arranged is limited in the engine room. In the present embodiment, since the size of the valve device 10 can be reduced, the valve device 10 can be easily mounted in the narrow space A2 of the vehicle 1 (see FIG. 44).
  • the cover fixing portions 821 to 826 are located on a virtual plane Vp4 perpendicular to the attachment surface 201.
  • the virtual plane Vp4 is a plane that is also perpendicular to the rotation axis Axr1 and the axis Axs1 of the shaft 32.
  • the height of the drive unit cover 80 can be reduced.
  • the housing end 215 which is the end opposite to the mounting surface 201 of the housing main body 21 is more than the cover end 815 which is the end opposite to the mounting surface 201 of the cover main body 81. It is formed so as not to protrude outward.
  • the cover end 815 is formed along the virtual plane Vp3.
  • the physique in the direction Dv1 perpendicular to the mounting surface 201 of the housing body 21 can be reduced, and the physique in the direction Dv1 perpendicular to the mounting surface 201 of the valve device 10 can be further reduced.
  • the housing body 21 has a notch 212 that exposes the partition wall 60 at the housing end 215 that is the end opposite to the mounting surface 201.
  • the physique in the direction Dv1 perpendicular to the mounting surface 201 of the valve device 10 can be further reduced.
  • the notch portion 212 is formed between the cover fixing portion 823 and the cover fixing portion 824.
  • the connector portion 84 is formed so as not to protrude outward from at least one of both end portions in the direction Dv1 perpendicular to the mounting surface 201 of the cover body 81.
  • the connector portion 84 is outside the cover end 815 that is the end opposite to the mounting surface 201 in the direction Dv1 perpendicular to the mounting surface 201 of the cover body 81, that is, opposite to the mounting surface 201. It is formed so as not to protrude to the side. That is, the connector part 84 is located on the attachment surface 201 side with respect to the virtual plane Vp3.
  • the connector portion 84 is formed so as not to protrude outward from the cover end portion 816 that is an end portion on the mounting surface 201 side in the direction Dv1 perpendicular to the mounting surface 201 of the cover body 81, that is, to the mounting surface 201 side. . That is, the connector portion 84 is located on the virtual plane Vp3 side with respect to the attachment surface 201.
  • the connector portion 84 is formed so as to protrude in a direction other than the direction Dv ⁇ b> 1 perpendicular to the attachment surface 201 from the outer edge portion of the cover main body 81.
  • the connector portion 84 is formed so as to protrude from the outer edge portion of the cover main body 81 in a direction Dp1 parallel to the attachment surface 201.
  • the parallel direction Dp1 is a direction perpendicular to the rotation axis Axr1 and the axis Axs1 of the shaft 32.
  • the size in the direction Dv1 perpendicular to the mounting surface 201 of the drive unit cover 80 can be made smaller, and the size in the direction Dv1 perpendicular to the mounting surface 201 of the valve device 10 can be made smaller.
  • the connector portion 84 is formed so as to protrude in the direction Dp1 from a portion between the cover fixing portion 825 and the cover fixing portion 826 in the outer edge portion of the cover main body 81.
  • the present embodiment is a valve device 10 that can control the cooling water of the engine 2 of the vehicle 1, and includes the housing 20, the valve 30, the partition wall portion 60, the drive portion cover 80, and the drive portion 70. .
  • the housing 20 includes a housing main body 21 that forms an internal space 200 on the inner side, and a housing side cover fixing portion (291 that is formed as a portion different from the housing main body 21 so as to protrude from the outer wall of the housing main body 21. 296), a mounting surface 201 formed on the outer wall of the housing body 21 so as to face the engine 2 in a state of being mounted on the engine 2, and a port (220, connecting the inner space 200 and the outside of the housing body 21). 221, 222, 223).
  • the valve 30 connects the valve body 31 that can rotate around the rotation axis Axr1 in the internal space 200, the valve body channel 300 formed inside the valve body 31, and the valve body channel 300 and the outside of the valve body 31.
  • Valve body openings (410, 420, 430) and a shaft 32 provided on the rotation axis Axr1, and the valve body flow path 300 and ports (via the valve body openings (410, 420, 430)) 220, 221, 222, 223) can be changed by the rotational position of the valve body 31.
  • the partition wall portion 60 is provided so as to separate the internal space 200 from the outside of the housing body 21 and has a shaft insertion hole 62 formed so that one end of the shaft 32 can be inserted.
  • the drive unit cover 80 is provided on the opposite side of the partition wall 60 from the internal space 200, and forms a drive unit space 800 between the partition wall 60.
  • the drive unit 70 is provided in the drive unit space 800 and can rotate the valve body 31 via one end of the shaft 32.
  • the drive unit cover 80 is formed as a portion different from the cover main body 81 so as to protrude from the outer wall of the cover main body 81 and the cover main body 81 that forms the drive unit space 800.
  • Cover fixing portions (821 to 826) fixed to (291 to 296).
  • the cover fixing portions 821 to 826 are fixed to the housing side cover fixing portions 291 to 296 by the fixing member 830, respectively.
  • the cover fixing portions (821 to 826) are formed so as not to protrude outwardly from at least one of both end portions (215, 216) in the direction Dv1 perpendicular to the mounting surface 201 of the housing body 21.
  • the housing end portions 215 and 216 which are both ends in the direction Dv1 perpendicular to the mounting surface 201 of the housing main body 21 are formed in the housing main body 21 as portions different from the housing side cover fixing portions 291 to 296.
  • the size in the direction Dv1 perpendicular to the mounting surface 201 of the drive unit cover 80 can be reduced, and the size in the direction Dv1 perpendicular to the mounting surface 201 of the valve device 10 can be reduced.
  • the valve device 10 can be mounted in the narrow space A ⁇ b> 2 of the vehicle 1.
  • the cover fixing portions 821 to 826 are arranged in the direction Dv1 perpendicular to the attachment surface 201 of the housing main body 21 and both end portions (215, 216) ) So as not to protrude outwardly from at least one of them. That is, the cover fixing portions 821 to 826 are formed so as not to protrude from the housing end portion 215 in the direction Dv1 perpendicular to the mounting surface 201 which is the thinnest direction of the housing body 21.
  • the physique in the direction Dv1 and the horizontal direction perpendicular to the mounting surface 201 of the drive unit cover 80 can be reduced, and the physique in the direction Dv1 and the horizontal direction perpendicular to the mounting surface 201 of the valve device 10 can be reduced.
  • the valve device 10 can be mounted in the narrow space A2 that is perpendicular to the mounting surface 201 and narrow in the horizontal direction Dv1.
  • the housing 20 includes housing side fixing sections 251 to 256 formed integrally with the housing main body 21.
  • the housing-side fixing portions 251 to 253 are formed so as to be aligned in a direction parallel to the rotation axis Axr1 on the opposite side of the attachment surface 201 with respect to a virtual plane Vp5 including the rotation axis Axr1 and parallel to the attachment surface 201.
  • the housing side fixing portions 254 to 256 are formed so as to be aligned in a direction parallel to the rotation axis Axr1 on the mounting surface 201 side with respect to the virtual plane Vp5. That is, the housing side fixing portions 251 to 253 and the housing side fixing portions 254 to 256 are formed so as to sandwich the virtual plane Vp5 therebetween.
  • the distance between the housing side fixing portion 251 and the housing side fixing portion 252 is larger than the distance between the housing side fixing portion 252 and the housing side fixing portion 253.
  • the distance between the housing side fixing portion 254 and the housing side fixing portion 255 is the same as the distance between the housing side fixing portion 255 and the housing side fixing portion 256.
  • the distance between the housing side fixing portion 252 and the housing side fixing portion 253 is smaller than the distance between the housing side fixing portion 255 and the housing side fixing portion 256.
  • the housing side fixing portion 251 is formed on the drive portion 70 side with respect to the housing side fixing portion 254 in the direction of the rotation axis Axr1.
  • the housing side fixing portion 252 is formed on the housing side fixing portion 256 side with respect to the housing side fixing portion 255 in the direction of the rotation axis Axr1.
  • the housing side fixing portion 253 is formed on the opposite side to the driving portion 70 with respect to the housing side fixing portion 256 in the direction of the rotation axis Axr1.
  • Housing side fastening holes 261 to 266 are formed in the housing side fixing portions 251 to 256, respectively.
  • the housing side fastening holes 261 to 266 are formed in a substantially cylindrical shape, and are formed so that the axes are parallel to the mounting surface 201, the virtual plane Vp5, and the vertical direction. Further, no thread groove is formed in advance on the inner peripheral wall of the housing side fastening holes 261 to 266.
  • the pipe member 50 has pipe portions 511 to 514, a pipe connecting portion 52, pipe side fixing portions 531 to 536, and the like.
  • the pipe portions 511 to 513 are provided so that the inner spaces communicate with the outlet ports 221 to 223, respectively.
  • the pipe portion 514 is provided so that the inner space communicates with the relief port 224.
  • the pipe part 511 and the pipe part 514 are integrally formed, and the inner spaces communicate with each other.
  • the pipe part 512 and the pipe part 514 are integrally formed so that an outer wall may connect, the inner space is not mutually connected.
  • the pipe connecting portion 52 is formed integrally with the pipe portions 511 to 514 so as to connect the end portions of the pipe portions 511 to 514 on the housing body 21 side.
  • the pipe side fixing portions 531 to 536 are formed at positions corresponding to the housing side fixing portions 251 to 256 at the outer edge portion of the pipe connecting portion 52, respectively.
  • Pipe side fastening holes 541 to 546 are formed in the pipe side fixing portions 531 to 536, respectively.
  • the pipe side fastening holes 541 to 546 are formed in a substantially cylindrical shape, and are formed so that their respective axes substantially coincide with the axes of the housing side fastening holes 261 to 266.
  • the valve device 10 includes a pipe fastening member 540.
  • the pipe fastening member 540 passes through the pipe side fastening holes 541 to 546 and is screwed into the housing side fastening holes 261 to 266 to fix the pipe side fixing parts 531 to 536 and the housing side fixing parts 251 to 256.
  • the housing side fixing portions 251 to 256 are formed in a substantially cylindrical shape.
  • the housing-side fixing portions 251 to 256 are provided so that one end surface in the axial direction is located on the same plane as the pipe mounting surface 202.
  • the housing 20 has a housing connection portion 259 that connects the outer peripheral wall on the other end side in the axial direction of the housing side fixing portions 251 to 256 and the outer wall of the housing body 21.
  • the housing-side fixing portions 251 to 256 form an inter-housing gap Sh1 as a gap with the outer wall of the housing main body 21.
  • the inter-housing gap Sh1 is formed between the housing connecting portion 259 and the pipe-side fixing portions 531 to 536.
  • the inter-housing gap Sh1 is formed between the housing-side fixing portions 251 to 256, the outer wall of the housing main body 21, the housing connection portion 259, and the pipe-side fixing portions 531 to 536.
  • the housing side fastening holes 261 to 266 are formed to be coaxial with the housing side fixing portions 251 to 256, respectively. Further, the ends of the housing side fastening holes 261 to 266 opposite to the pipe member 50 are located closer to the pipe member 50 than the housing connecting portion 259.
  • the present embodiment is a valve device 10 that can control the cooling water of the engine 2 of the vehicle 1, and includes the housing 20, the valve 30, the pipe member 50, and the pipe fastening member 540.
  • the housing 20 includes a housing main body 21 that forms an internal space 200 on the inner side, a housing side fixing portion (251 to 256) that is formed integrally with the housing main body 21, and a housing side fastening hole (261 to that that is formed in the housing side fixing portion). 266) and ports (220, 221, 222, 223, 224) for connecting the internal space 200 and the outside of the housing body 21.
  • the valve 30 includes a valve body 31 that can rotate around the rotation axis Axr1 in the internal space 200, a valve body channel 300 formed inside the valve body 31, and a valve body channel 300 and the outside of the valve body 31.
  • the valve body opening portion (410, 420, 430) for connecting the valve body 31 and the communication state between the valve body flow path 300 and the port via the valve body opening portion can be changed by the rotational position of the valve body 31.
  • the pipe member 50 has a cylindrical pipe portion (511, 512, 513, 514) whose inner space communicates with the ports (221, 222, 223, 224), and is integrally formed with the pipe portion and fixed to the housing side fixing portion.
  • Pipe-side fixing portions (531 to 536) and pipe-side fastening holes (541 to 546) formed in the pipe-side fixing portion.
  • the pipe fastening member 540 passes through the pipe side fastening holes (541 to 546) and is screwed into the housing side fastening holes (261 to 266), whereby the pipe side fixing parts (531 to 536) and the housing side fixing parts (251 to 256). ) And fix.
  • the housing side fixing portion (251 to 256) forms a gap (Sh1) between the housing side fixing portion (251 to 256) and the outer wall of the housing main body 21.
  • the housing main body 21 since the outlet port 221 is connected to the radiator 5 and has a large flow rate, the housing main body 21 has cracks from the housing side fixing portions 251 and 254 in the vicinity of the outlet port 221 among the housing side fixing portions (251 to 256). The leakage of cooling water can be effectively suppressed by suppressing the amount of the water from reaching the above.
  • the housing side fixing portion 251 and the housing side fixing portion 254 are formed so as to sandwich the outlet port 221 therebetween.
  • the housing side fixing portions 251 and 254 are formed at a position closer to the outlet port 221 than the housing side fixing portions 252, 253, 255, and 256, that is, in the vicinity of the outlet port 221.
  • the center of the outlet port 221 is located between two parallel tangents that contact the outer edges of the housing side fastening holes 261 and 264.
  • the housing 20 has outlet ports 221 to 223.
  • the pipe member 50 has pipe portions 511 to 513 connected to each other.
  • the valve device 10 is provided in each of the pipe portions 511 to 513, and includes a plurality of seal units 35 that can be liquid-tightly held between the outer peripheral wall of the valve body 31.
  • the number of parts can be reduced for tapping. Moreover, the assembly man-hour of the pipe member 50 can be reduced.
  • the ends where the seal units 35 of the pipe portions 511 to 513 are provided are connected to each other by a pipe connecting portion 52.
  • the ends of the pipe portions 511 to 513 where the seal unit 35 is provided are formed so that their axes are parallel to each other.
  • the outlet ports 221 to 223 provided with the seal unit 35 are formed so that their axes are parallel and open to the pipe mounting surface 202. Yes.
  • the outlet ports 221 to 223 are formed so as to be coaxial with the end portions of the pipe portions 511 to 513 where the seal units 35 are provided.
  • the pipe member 50 assembled with the plurality of seal units 35 can be assembled to the housing body 21 from one direction.
  • the valve device 10 includes a gasket 509.
  • the gasket 509 is formed of, for example, an elastic member such as rubber, and is provided between the pipe member 50 and the pipe mounting surface 202 of the housing body 21 on the radially outer side of each of the pipe portions 511 to 513.
  • the space between the main body 21 can be kept liquid-tight.
  • the pipe member 50 can be assembled to the housing body 21 with the three seal units 35 held by the pipe portions 511 to 513.
  • the gasket 509 is assembled to the housing main body 21 together with the pipe member 50 in a state of being fitted into the gasket groove 521 formed in the pipe connecting portion 52. That is, the pipe member 50 assembled with the plurality of seal units 35 and the gaskets 509 can be assembled to the housing main body 21 from one direction at a time.
  • valve device 10 can be improved. This is important because the device mounted on the vehicle 1 is required to have high quality.
  • the outer diameters of the three seal units 35 provided in the pipe portions 511 to 513 are set according to the size of the inner diameter of the pipe portions 511 to 513, respectively.
  • the outer diameter of the seal unit 35 provided in the pipe part 511 is larger than the outer diameter of the seal unit 35 provided in the pipe parts 512 and 513.
  • the outer diameter of the seal unit 35 provided in the pipe part 512 is substantially the same as the outer diameter of the seal unit 35 provided in the pipe part 513.
  • the outlet ports 221 to 223 and the relief port 224 are arranged on a straight line connecting two housing side fastening holes among the plurality of housing side fastening holes (261 to 266) or three housing side fastening holes.
  • the center is formed inside the triangle formed by
  • the center of the outlet port 221 is located inside a triangle To1 formed by connecting the center of the housing side fastening hole 261, the center of the housing side fastening hole 262, and the center of the housing side fastening hole 264. Is formed.
  • the outlet port 222 is formed so that the center is located on a straight line Lo1 that connects the center of the housing side fastening hole 262 and the center of the housing side fastening hole 265.
  • the outlet port 223 is formed so that the center is located inside the triangle To2 formed by connecting the center of the housing side fastening hole 262, the center of the housing side fastening hole 263, and the center of the housing side fastening hole 266.
  • the relief port 224 is formed so that the center is located inside the triangle To1.
  • the seal load of the gasket 509 on the radially outer side of the outlet ports 221 to 223 and the relief port 224 can be dispersed and stabilized.
  • the housing 20 has a pipe attachment surface 202 formed on the outer wall of the housing body 21 so as to face the pipe member 50 in a state where the pipe member 50 is attached to the housing body 21.
  • the ports formed in the housing body 21 include three outlet ports (221 to 223) that open to the pipe mounting surface 202, and one relief port 224.
  • the valve device 10 includes a relief valve 39.
  • the relief valve 39 is provided in the relief port 224 and allows or blocks communication between the internal space 200 and the outside of the housing body 21 via the relief port 224 depending on conditions. Specifically, the relief valve 39 is opened when a predetermined condition, for example, the temperature of the cooling water becomes equal to or higher than a predetermined temperature, and the interior space 200 via the relief port 224 and the outside of the housing main body 21, that is, a pipe The communication with the space inside the portion 511 is allowed, and the communication is blocked when the temperature of the cooling water becomes lower than a predetermined temperature.
  • At least two of the three outlet ports (221 to 223) (221 to 223) have a port arrangement line Lp1 in which the center of each opening is one straight line on the pipe mounting surface 202. It is formed so as to be located above.
  • the port array straight line Lp1 is parallel to the attachment surface 201 and is located on the virtual plane Vp5.
  • At least two (221 to 223) of the three outlet ports (221 to 223) are formed so that the centers of the respective openings are arranged in a straight line in the direction of the rotation axis Axr1 on the pipe mounting surface 202. Yes.
  • the relief port 224 is formed such that the center of the opening is located at a position away from the port arrangement line Lp1 to the side opposite to the mounting surface 201.
  • the inlet port 220, the relief port 224, and the inter-valve space 400 overlap in the direction of the rotation axis Axr1. Therefore, when the cooling water flowing from the inlet port 220 is guided to the relief port 224, it is possible to suppress the ball valves 41 and 42 from becoming an obstacle, and the temperature of the cooling water from the inlet port 220 is smoothly transmitted to the relief valve 39. The reactivity of the relief valve 39 can be improved.
  • the relief port 224 can be formed in the housing body 21 while reducing the size of the housing body 21 by arranging the three outlet ports (221 to 223) in a straight line.
  • the relief port 224 is formed in the housing main body 21 so that a part thereof is located between the outlet port 221 and the outlet port 222.
  • a part of the relief port 224 is formed in a region where two tangent lines connecting the outer edge of the outlet port 221 and the outer edge of the outlet port 222 are formed.
  • the physique of the housing body 21 in which the relief port 224 is formed can be made smaller.
  • the relief port 224 is formed so that the center of the opening is located on a relief arrangement line Lr1 that is a straight line on the pipe mounting surface 202 parallel to the port arrangement line Lp1.
  • the relief arrangement line Lr1 is located on the opposite side of the mounting surface 201 with respect to the port arrangement line Lp1.
  • the distance from the mounting surface 201 to the center of the relief port 224 is larger than the distance from the mounting surface 201 to the respective centers of the outlet ports 221, 222, and 223.
  • the portion opposite to the mounting surface 201 with respect to the center of at least two (221 to 223) of the three outlet ports (221 to 223) is the center of the relief port 224. On the other hand, it overlaps with the part on the mounting surface 201 side.
  • the center of the three outlet ports forms a triangle on the pipe mounting surface 202
  • the center of the two outlet ports far from the mounting surface 201 is opposite to the mounting surface 201 when viewed from the direction of the rotation axis Axr1.
  • the part overlaps the part on the mounting surface 201 side with respect to the center of the relief port 224.
  • the physique of the housing body 21 in which the relief port 224 is formed can be made smaller.
  • At least two (261 to 263) of the plurality of housing side fastening holes (261 to 266) are fastening hole arrangement straight lines which are straight lines located on the relief port 224 side with respect to the port arrangement straight line Lp1. It is formed on Lh1.
  • the fastening hole arrangement line Lh1 is parallel to the port arrangement line Lp1 and the relief arrangement line Lr1, and is located on the opposite side of the port arrangement line Lp1 with respect to the relief arrangement line Lr1.
  • the relief port 224 is formed so as to overlap a part of the fastening hole array straight line Lh1.
  • the physique of the housing body 21 in which the relief port 224 is formed can be made smaller.
  • the pipe portions 511 to 513 are formed on the opposite side of the pipe portion main body 501 and the outlet ports 221 to 223 (pipe connecting portions 52) of the pipe portion main body 501, and have an inner diameter of the pipe portion main body 501.
  • the pipe portion end 502 has an outer diameter larger than the outer diameter of the pipe portion main body 501.
  • the mold when the pipe part end 502 is formed by, for example, forcibly removing, the mold can be pulled out while easily deforming the pipe part end 502 inward, and cracking of the pipe part end 502 can be suppressed. Thereby, the leakage of the cooling water from the pipe part edge part 502 can be suppressed.
  • the outer diameter of the pipe part end part 502 is larger than the outer diameter of the pipe part main body 501, disconnection of the hose etc. connected to the pipe part end part 502 can be suppressed.
  • the pipe portion 511 is formed so as to extend from the pipe mounting surface 202 to the side opposite to the outlet port 221.
  • the pipe portion 512 is formed so as to extend from the pipe mounting surface 202 to the side opposite to the outlet port 222.
  • the pipe portion 513 is formed so as to extend from the pipe mounting surface 202 to the side opposite to the outlet port 223 and then bend and extend to the side opposite to the pipe portion 512 in a direction parallel to the rotation axis Axr1.
  • the pipe part 513 is formed to bend at a position corresponding to the center of the pipe part 512 in the axial direction. Therefore, a gap Sp ⁇ b> 1 is formed between the pipe portion 512 side portion of the pipe portion 512 and the pipe portion 513.
  • the pipe portions 511 to 513 have pipe portion protrusions 503 that protrude outward from the outer wall of the pipe portion main body 501.
  • the pipe portion protrusion 503 can easily determine the fixing position of the hose with respect to the pipe portions 511 to 513, and can prevent the hose from being deeply stuck in the pipe portions 511 to 513.
  • the pipe protrusion 503 is formed on a virtual plane Vp5 parallel to the attachment surface 201.
  • the pipe protrusion 503 is formed so as to be linearly arranged in the direction of the rotation axis Axr1.
  • the size in the direction perpendicular to the mounting surface 201 of the pipe member 50 can be reduced, and the physique of the valve device 10 can be reduced.
  • one pipe protrusion 503 is formed with respect to the pipe part 511.
  • Two pipe part protrusions 503 are formed on the pipe part 512 so as to sandwich the pipe part 512 therebetween.
  • Two pipe part protrusions 503 are formed on the pipe part 513 so as to sandwich the pipe part 513 (see FIG. 50).
  • the pipe member 50 has a plurality of pipe portions (511 to 514) and a pipe connecting portion 52 for connecting the portions of the plurality of pipe portions (511 to 514) on the housing body 21 side. ing.
  • the number of members can be reduced, and the sealing performance between the pipe member 50 and the housing body 21 can be ensured by disposing the gasket 509 between the pipe connecting portion 52 and the housing body 21.
  • the pipe connecting part 52 is formed on the seal unit 35 side with respect to the pipe part protrusion 503 formed in the pipe parts 511 to 513. Further, the outer edge portion of the pipe connecting portion 52 is formed to extend outward in the radial direction of the end portion on the pipe mounting surface 202 side of the pipe portions 511 to 514 (see FIGS. 47 and 50).
  • the housing 20 includes a housing opening 210 that connects the internal space 200 and the outside of the housing body 21, and a cylindrical housing that has one end connected to the housing opening 210 and forms the internal space 200. It has an inner wall 211.
  • the valve 30 has a shaft 32 provided on the rotation axis Axr1.
  • the valve device 10 is formed in the partition wall body 61 provided in the housing opening 210 so as to separate the internal space 200 and the outside of the housing body 21 and the partition wall body 61 so that one end of the shaft 32 can be inserted.
  • a partition wall 60 having a shaft insertion hole 62 is provided.
  • the inner diameter of the housing opening 210 is larger than the inner diameter of the end of the housing inner wall 211 opposite to the housing opening 210.
  • the flow path area on the housing opening 210 side of the internal space 200 can be increased. Therefore, especially the flow volume of the cooling water sent to the outlet port 221 (radiator 5) side formed in the housing opening part 210 side can be increased.
  • annular seal member 600 provided between the housing opening 210 and the partition wall body 61 of the partition wall 60 and capable of holding the space between the housing opening 210 and the partition wall 60 in a liquid-tight manner is provided. I have.
  • the inner diameter of the housing opening 210 is formed to be constant, a standard-shaped annular seal member 600 having a constant inner diameter and outer diameter can be adopted, and the cost can be reduced.
  • the housing inner wall 211 is formed in a tapered shape so that the inner diameter becomes smaller from the housing opening 210 side toward the opposite side of the housing opening 210.
  • the flow area of the internal space 200 can be gradually increased toward the housing opening 210 side. Further, since no step is formed in the housing inner wall 211, the water flow resistance in the internal space 200 can be reduced.
  • At least two of the plurality of ports (exit ports 221 to 223) formed in the housing main body 21 are formed to be aligned in a direction parallel to the mounting surface 201.
  • the size in the direction perpendicular to the mounting surface 201 of the housing body 21 can be reduced, and the physique of the valve device 10 can be reduced.
  • the pipe fastening member 540 is a tapping screw that can be screwed into the housing side fastening holes 261 to 266 while being tapped.
  • the bulkhead portion 60 has a bulkhead through hole 65 that extends outward from the shaft insertion hole 62 and opens in the outer wall of the bulkhead body 61.
  • the present embodiment is a valve device 10 that can control the cooling water of the engine 2 of the vehicle 1, and includes the housing 20, the valve 30, the partition wall portion 60, and the drive portion 70.
  • the housing 20 includes a housing main body 21 that forms an internal space 200 on the inside, ports (220, 221, 222, and 223) that connect the internal space 200 and the outside of the housing main body 21, and the internal space 200 and the housing main body 21. It has a housing opening 210 for connecting to the outside.
  • the valve 30 connects the valve body 31 that can rotate around the rotation axis Axr1 in the internal space 200, the valve body channel 300 formed inside the valve body 31, and the valve body channel 300 and the outside of the valve body 31.
  • Valve body openings (410, 420, 430) and a shaft 32 provided on the rotation axis Axr1 indicates the communication state between the valve body passage 300 and the port via the valve body opening. It can be changed depending on the rotation position.
  • the partition wall 60 is formed in the partition wall body 61 provided in the housing opening 210 so as to separate the internal space 200 from the outside of the housing body 21 and the partition wall body 61 so that one end of the shaft 32 can be inserted.
  • a shaft insertion hole 62 is provided.
  • the drive unit 70 is provided on the side opposite to the internal space 200 with respect to the partition wall 60, and can rotate the valve body 31 via one end of the shaft 32.
  • the partition wall 60 has a partition wall through hole 65 that extends outward from the shaft insertion hole 62 and opens in the outer wall of the partition wall body 61.
  • the cooling water flowing from the internal space 200 through the shaft insertion hole 62 toward the drive unit 70 can flow into the partition wall through hole 65. Thereby, it can suppress that the cooling water of the internal space 200 flows into the drive part 70 side.
  • the partition wall through-hole 65 is formed so that a cross-sectional shape perpendicular to the axis is an oval or a rectangle.
  • the partition wall through-hole 65 is formed so that the short direction of the cross section is parallel to the axis Axh1 of the shaft insertion hole 62. Therefore, the size of the partition wall body 61 in the axis Axh1 direction can be reduced.
  • the housing 20 has a housing through hole 270 that extends outward from the inner wall of the housing opening 210 and opens in the outer wall of the housing body 21, and is formed so as to communicate with the partition wall through hole 65. Yes.
  • the housing through-hole 270 opens at the end surface of the housing body 21 opposite to the pipe mounting surface 202.
  • the cooling water that has flowed into the partition wall through hole 65 can be discharged from the housing through hole 270 to the outside. Further, the double structure of the partition wall through hole 65 and the housing through hole 270 can suppress the intrusion of water from the outside.
  • the cooling water can be discharged to the outside via the partition wall through hole 65 and the housing through hole 270, and the cooling water in the shaft insertion hole 62 can be discharged. Leaks can be noticed by the user. Thereby, it is possible to make the user deal with a leak that needs to be dealt with.
  • the cooling water can be retained in the partition wall through hole 65 and the housing through hole 270, and cooling water leaks in the shaft insertion hole 62. It is possible to prevent the user from noticing. Thereby, it can suppress making a user respond
  • the housing through hole 270 is formed so that the cross-sectional shape perpendicular to the axis is an oval or a rectangle.
  • the influence of the surface tension in the housing through hole 270 can be suppressed while the size of the housing main body 21 is reduced, and the cooling water can easily flow through the housing through hole 270.
  • the housing through hole 270 is formed so that the short direction of the cross section is parallel to the axis Axh1 of the shaft insertion hole 62. Therefore, the size of the housing body 21 in the direction of the axis Axh1 can be reduced.
  • the cooling water that has flowed into the partition wall through hole 65 can be easily discharged from the housing through hole 270 to the outside.
  • the valve device 10 includes a shaft seal member 603 and an annular seal member 600.
  • the shaft seal member 603 is formed in an annular shape mainly from an elastic member such as rubber, for example, and is provided between the shaft 32 and the shaft insertion hole 62 on the inner space 200 side with respect to the partition wall through hole 65.
  • the space between the holes 62 can be kept liquid-tight.
  • the annular seal member 600 is formed in an annular shape by an elastic member such as rubber, for example, and is provided between the partition wall body 61 and the inner wall of the housing opening 210 on the inner space 200 side with respect to the housing through hole 270. 61 and the inner wall of the housing opening 210 can be kept liquid-tight.
  • the shaft seal member 603 and the annular seal member 600 correspond to a “first seal member” and a “second seal member”, respectively.
  • the annular seal member 600 can suppress leakage of cooling water from the internal space 200 to the outside via the space between the partition wall body 61 and the housing opening 210.
  • the shaft seal member 603 is provided at a position that is a predetermined distance away from the partition wall through hole 65 toward the internal space 200, a space can be formed between the partition wall through hole 65 and the shaft seal member 603. Therefore, when there is little leakage of cooling water, it is possible to keep the cooling water in the space so as not to be noticed by the user.
  • annular seal member 600 is provided at a predetermined distance from the housing through hole 270 toward the internal space 200, a space can be formed between the housing through hole 270 and the annular seal member 600. Therefore, when there is little leakage of cooling water, it is possible to keep the cooling water in the space so as not to be noticed by the user.
  • the distance Ds1 between the shaft seal member 603 and the partition wall through hole 65 is shorter than the distance Ds2 between the annular seal member 600 and the housing through hole 270.
  • the space formed between the housing through hole 270 and the annular seal member 600 can be made larger than the space formed between the partition wall through hole 65 and the shaft seal member 603. As a result, more cooling water can be retained on the space side formed between the housing through hole 270 and the annular seal member 600.
  • the partition wall portion 60 has a partition inner side step surface 661 that forms a step between the partition wall through hole 65 of the shaft insertion hole 62 and the shaft seal member 603.
  • the partition inner step surface 661 is formed in an annular flat shape so as to face the inner space 200 side.
  • the shaft seal member 603 is provided so as to be in contact with the partition inner surface step surface 661.
  • the housing 20 has a housing step surface 281 that forms a step between the housing through hole 270 on the inner wall of the housing opening 210 and the annular seal member 600.
  • the housing step surface 281 is formed in an annular shape so as to face the drive unit 70 side.
  • the housing step surface 281 is formed in a tapered shape so that the inner diameter becomes larger from the inner space 200 side toward the drive unit 70 side.
  • the housing 20 has a housing step surface 282 that forms a step on the driving portion 70 side of the housing through hole 270 on the inner wall of the housing opening 210.
  • the housing step surface 282 is formed in an annular shape so as to face the drive unit 70 side.
  • the partition wall 60 has a partition outside step surface 671 that forms a step on the drive unit 70 side of the partition wall through-hole 65 on the outer wall of the partition wall body 61.
  • the partition outer side step surface 671 is formed in an annular shape so as to face the inner space 200 and the housing step surfaces 281 and 282.
  • a substantially cylindrical tubular space St1 is formed between the housing step surface 281 and the partition outer step surface 671 between the outer wall of the partition wall main body 61 and the inner wall of the housing opening 210.
  • the partition wall through hole 65 and the housing through hole 270 communicate with each other via the cylindrical space St1.
  • the cooling water can be kept in the cylindrical space St1.
  • a housing step surface 281, a housing through hole 270, and a housing step surface 282 are formed in this order in the housing opening 210 from the inner space 200 side toward the drive portion 70 side. .
  • the annular seal member 600 is directed toward the internal space 200 with respect to the housing step surface 281.
  • the inner edge of the end of the partition wall through hole 65 opposite to the shaft 32 is chamfered in a tapered shape. Thereby, the cooling water inside the partition through-hole 65 can be easily discharged.
  • the partition wall through hole 65 is located on the lower side in the vertical direction with respect to the shaft 32 in a state where the housing 20 is attached to the engine 2.
  • the cooling water can be quickly flowed into the partition wall through hole 65.
  • the housing through hole 270 is positioned on the lower side in the vertical direction with respect to the shaft 32 in a state where the housing 20 is attached to the engine 2.
  • the cooling water can be quickly discharged from the housing through hole 270 to the outside.
  • the partition wall through hole 65 and the housing through hole 270 have different cross-sectional areas in a cross section perpendicular to the axis.
  • the sectional area of the housing through hole 270 is larger than the sectional area of the partition wall through hole 65.
  • the communication between the partition wall through hole 65 and the housing through hole 270 can be secured. Further, since the cross-sectional area of the housing through-hole 270 is larger than the cross-sectional area of the partition wall through-hole 65, the cooling water can be quickly discharged from the housing through-hole 270 to the outside. Further, it is possible to prevent water and the like from entering the shaft insertion hole 62 side from the outside through the housing through hole 270 and the partition wall through hole 65.
  • the partition wall through hole 65 is located on the lower side of the shaft 32 in a state where the housing 20 is attached to the engine 2.
  • the cooling water can be quickly flowed into the partition wall through hole 65.
  • the housing through hole 270 is located below the shaft 32 in a state where the housing 20 is attached to the engine 2.
  • the cooling water can be quickly discharged from the housing through hole 270 to the outside.
  • the lower side of the shaft 32 is, for example, lower than the horizontal plane including the axis Axs1 of the shaft 32, and includes a predetermined range below the shaft 32 as well as directly below the shaft 32 in the vertical direction. Means.
  • the partition wall through hole 65 is formed in the range of 0 to 80 degrees in the circumferential direction of the shaft 32.
  • the partition wall through hole 65 is formed to extend in the direction of 0 degree from the shaft 32 side. Therefore, when there is much leakage of cooling water, cooling water can be discharged quickly.
  • the partition wall through hole 65 may be formed in a range of 30 to 80 degrees in the circumferential direction of the shaft 32. In this case, the angle of the partition wall through hole 65 becomes moderate to some extent, and the cooling water can be discharged so as to ooze. Therefore, even if the cooling water leaks carelessly and a problem arises, it is possible to avoid a situation in which the user reacts more abnormally and sensitively than necessary.
  • the housing through hole 270 is formed in a range of 0 to 80 degrees in the circumferential direction of the shaft 32.
  • the housing through hole 270 is formed to extend in the direction of 0 degree from the shaft 32 side. Therefore, when there is much leakage of cooling water, cooling water can be discharged quickly.
  • the housing through hole 270 may be formed in the range of 30 to 80 degrees in the circumferential direction of the shaft 32, similarly to the partition wall through hole 65. In this case, the angle of the housing through hole 270 becomes moderate to some extent, and the cooling water can be discharged so as to ooze. Therefore, even if the cooling water leaks carelessly and a problem arises, it is possible to avoid a situation in which the user reacts more abnormally and sensitively than necessary.
  • the partition wall 60 has a partition inner step surface 662 that forms a step between the partition through hole 65 of the shaft insertion hole 62 and the shaft seal member 603.
  • the partition inner surface step surface 662 is formed in an annular flat shape so as to face the inner space 200 side.
  • the partition inner step surface 662 is formed on the partition through hole 65 side with respect to the partition inner step surface 661.
  • the housing step surface 281 is formed in an annular shape so as to face the inner space 200 side.
  • the partition outer step surface 671 is formed in an annular shape so as to face the drive unit 70 and the housing step surface 281 side between the housing step surface 281 and the annular seal member 600.
  • the partition outer surface step surface 671 and the housing step surface 281 are separated from each other by a predetermined distance while facing each other. Therefore, a labyrinth-shaped passage P ⁇ b> 1 is formed between the annular seal member 600 and the housing through hole 270 between the outer wall of the partition wall body 61 and the inner wall of the housing opening 210.
  • the height Hp1 of the portion on the drive unit 70 side of the labyrinth-shaped passage P1 is smaller than the height Hp2 of the portion on the inner space 200 side of the passage P1. Therefore, when viewed from the housing through hole 270 side, the passage P1 changes from a narrow part to a wide part. Therefore, the narrow portion of the passage P1 makes it difficult for water to flow from the housing through hole 270 side to the annular seal member 600 side. Further, the narrow portion of the passage P1 makes it difficult for water to flow from the internal space 200 side to the housing through hole 270 side.
  • FIG. 8 A part of the valve device according to the eighth embodiment is shown in FIG.
  • the eighth embodiment differs from the sixth embodiment in the position of the housing through hole 270 and the like.
  • the partition wall through-hole 65 and the housing through-hole 270 are different from each other in the position of the shaft in the shaft (Axh1) direction of the shaft insertion hole 62.
  • the housing through hole 270 is formed on the drive unit 70 side with respect to the partition wall through hole 65.
  • the partition wall portion 60 has a partition outside step surface 671 that forms a step between the partition wall through hole 65 on the outer wall of the partition wall body 61 and the housing through hole 270.
  • the housing through hole 270 is formed on the drive unit 70 side with respect to the housing step surface 282 and the partition outer surface step surface 671.
  • the partition outer surface step surface 671 and the housing step surface 282 are separated from each other by a predetermined distance while facing each other. Therefore, a labyrinth-shaped passage P ⁇ b> 2 is formed between the housing through hole 270 and the partition wall through hole 65 between the outer wall of the partition wall body 61 and the inner wall of the housing opening 210.
  • the height Hp1 of the portion on the drive unit 70 side of the labyrinth-shaped passage P2 is smaller than the height Hp2 of the portion on the inner space 200 side of the passage P2. Therefore, when viewed from the housing through hole 270 side, the passage P2 changes from a narrow part to a wide part. Therefore, the narrow portion of the passage P2 makes it difficult for water to flow from the housing through hole 270 side to the partition wall through hole 65 side. Further, the narrow portion of the passage P2 makes it difficult for water to flow from the partition wall through hole 65 side to the housing through hole 270 side.
  • the height Hp1 of the portion on the drive unit 70 side of the labyrinth-shaped passage P2 is greater than the height Hp2 of the portion on the inner space 200 side of the passage P2. Good.
  • the passage P2 changes from a wide part to a narrow part. Therefore, the external water that has entered from the housing through hole 270 is trapped in a narrow portion of the passage P2 and hardly flows to the partition wall through hole 65 side. On the other hand, the water on the partition through hole 65 side easily flows to the housing through hole 270 side via the passage P2.
  • the valve device 10 includes a bearing portion 602.
  • the bearing portion 602 is provided on the drive portion 70 side with respect to the partition wall through hole 65 of the shaft insertion hole 62, and supports one end of the shaft 32.
  • the shaft insertion hole 62 includes a small-diameter portion 621 in which a bearing portion 602 is provided inside, a large-diameter portion 622 having a larger inner diameter than the small-diameter portion 621 and opening the partition wall through-hole 65, and a small-diameter portion 621 It has a step surface 623 in the insertion hole formed between the large diameter portion 622.
  • the step surface 623 in the insertion hole is formed in an annular shape so as to face the inner space 200 side.
  • a substantially cylindrical tubular space St ⁇ b> 2 is formed between the shaft seal member 603 and the bearing portion 602 on the radially outer side of the shaft 32.
  • the partition wall through hole 65 is connected to the cylindrical space St2.
  • FIGS. 10th Embodiment A part of the valve device according to the tenth embodiment is shown in FIGS.
  • the partition wall through hole 65 is formed with a partition wall through hole inner step surface 651 that forms a step between one end and the other end of the partition wall through hole 65.
  • the step surface 651 in the partition wall through hole is formed so as to face the lower side in the vertical direction when the valve device 10 is attached to the engine 2. Therefore, the sectional area on the lower side in the vertical direction of the partition wall through hole 65 is larger than the sectional area on the upper side in the vertical direction.
  • the partition through-hole inner step surface 651 is formed to face the upper side in the vertical direction when the valve device 10 is attached to the engine 2. Therefore, the sectional area on the upper side in the vertical direction of the partition wall through-hole 65 is larger than the sectional area on the lower side in the vertical direction.
  • the partition wall through-hole 65 and the housing through-hole 270 are formed so that their axes are not orthogonal to the axis Axh1 of the shaft insertion hole 62.
  • the partition wall through hole 65 and the housing through hole 270 are formed so that their axes intersect each other.
  • FIG. 13 A part of the valve device according to the thirteenth embodiment is shown in FIG.
  • the partition wall through hole 65 is formed so that its cross-sectional area gradually increases from the radially inner side to the radially outer side of the shaft insertion hole 62.
  • the cooling water can be quickly discharged from the housing through hole 270 to the outside via the partition wall through hole 65.
  • FIGS. 14th Embodiment A valve device according to a fourteenth embodiment is shown in FIGS.
  • This embodiment is different from the first embodiment in the shapes of the housing 20, the valve 30, the pipe member 50, the drive unit cover 80, and the like.
  • valve device 10 according to the present embodiment is provided in the narrow space A1 such that the drive unit cover 80 is vertically downward with respect to the housing body 21 and the mounting surface 201 faces the engine 2.
  • the base portion of one side h11 of the two sides (h11, h12) of the substantially triangular fastening portion 231 when viewed from the direction perpendicular to the mounting surface 201 is the longitudinal direction of the housing body 21. As seen, it is formed at a position overlapping the inlet port 220. Further, the base portion of one side h ⁇ b> 21 of the two sides (h ⁇ b> 21 and h ⁇ b> 22) of the fastening portion 232 is formed at a position overlapping the inlet port 220 when viewed in the longitudinal direction of the housing body 21.
  • one of the starting positions of the fastening portions (231, 232) of the two fastening holes (241, 242) closest to the inlet port 220 is formed at a position overlapping the inlet port 220 when viewed in the longitudinal direction of the housing body 21. Has been.
  • the housing body 21 can be stably fixed to the engine 2.
  • the base of one side h32 is formed at a position that does not overlap the inlet port 220 when viewed in the longitudinal direction of the housing body 21.
  • one of the start positions of the fastening portion (233) of the fastening hole (243) farthest from the inlet port 220 is formed at a position that does not overlap with the inlet port 220 when viewed in the longitudinal direction of the housing body 21.
  • Lth11 that is a straight line along the side h11 of the fastening part 231
  • a side straight line Lth21 that is a straight line along the side h21 of the fastening part 232
  • a side straight line that is a straight line along the side h32 of the fastening part 233.
  • Lth 32 intersects with the inlet port 220.
  • the side h32 on the inlet port 220 side of the fastening portion 233 of the fastening hole (243) farthest from the inlet port 220 is compared to the other sides (h11, h12, h21, h22, h31).
  • the inclination angle with respect to the longitudinal direction of the housing body 21 is the smallest.
  • the positioning portion 205 is formed on an extension line of the side h12 of the fastening portion 231. Further, the positioning portion 206 is formed on an extension line of the side h ⁇ b> 22 of the fastening portion 232.
  • the positioning portions (205, 206) capable of positioning the housing body 21 by engaging with other members are formed on the extension lines of the sides (h12, h22) of the fastening portions (231, 232).
  • the holding member 73 has one snap fit portion 731. As shown in FIGS. 79 and 80, the holding member 73 is formed such that the snap fit portion 731 is positioned on the radially outer side of the worm gear 712.
  • the direction perpendicular to the axis Axm1 of the motor 71 that is, the mounting
  • the size of the holding member 73 in the direction Dv1 perpendicular to the surface 201 can be reduced. Therefore, the physique of the drive part cover 80 and the valve apparatus 10 in the direction Dv1 perpendicular to the mounting surface 201 can be reduced.
  • the motor 71 can be brought closer to the mounting surface 201, that is, the engine 2, so that the motor The vibration concerning 71 becomes small and the robustness with respect to a disconnection can be improved.
  • the pipe part 512 of the pipe member 50 is formed to extend while inclining toward the drive part cover 80.
  • the holding member 73 is formed such that the snap fit portion 731 is positioned on the pipe member 50 side with respect to the rotation axis Axr1.
  • the size of the drive unit cover 80 in the direction Dv1 perpendicular to the attachment surface 201 can be reduced, and the drive unit cover 80 can be prevented from interfering with the pipe portion 512 of the pipe member 50 in particular.
  • the snap fit portion 731 may be formed to be positioned between the third gear 723 and the motor side terminal 713 (see FIGS. 80 and 83).
  • valve 30 of this embodiment shows the valve 30 of this embodiment and a part thereof.
  • the valve 30 of the present embodiment is similar to the valve 30 of the first and third embodiments in the shape of the valve body 31 and the like.
  • the valve 30 of the present embodiment differs from the third embodiment in the arrangement direction of the ball valve 41, the cylindrical connection portion 44, the ball valve 42, the cylindrical valve connection portion 45, and the ball valve 43, and is the same as the first embodiment. is there. That is, the valve 30 of the present embodiment is configured such that the ball valve 41, the cylindrical connecting portion 44, the ball valve 42, and the cylindrical valve connecting portion from the side opposite to the driving portion 70 in the direction of the rotation axis Axr1 toward the driving portion 70. 45 and the ball valve 43 are arranged in this order.
  • the ball valves 41, 42, and 43 are provided so that the outlet ports 221, 222, and 223 can be opened and closed, respectively (see FIG. 67).
  • the valve body opening 410 of the ball valve 41 has a large opening 412 and an extended opening 413.
  • the large opening 412 is formed to extend from one end in the circumferential direction of the first divided body 33 toward the other end.
  • the extending opening 413 is formed to extend from the other end of the large opening 412 to the vicinity of the other end in the circumferential direction of the first divided body 33.
  • the size of the extending opening 413 in the direction of the rotation axis Axr1 is smaller than the size of the large opening 412 in the direction of the rotation axis Axr1.
  • the opening area of the valve body opening 410 is the total of the opening area of the large opening 412 and the opening area of the extended opening 413.
  • valve body opening 410 Since the valve body opening 410 has the extended opening 413, the flow rate of the cooling water to the radiator 5 can be gradually increased at the initial opening of the outlet port 221. Thereby, the rapid temperature change of the cooling water by the heat exchange of the radiator 5 can be suppressed.
  • valve body opening 410 has the extended opening 413.
  • valve body openings 420 and 430 may be provided with openings similar to the extension openings 413. In this case, a rapid temperature change of the cooling water due to heat exchange between the heater 6 and the device 7 can be suppressed.
  • the size of the valve body opening 410 of the ball valve 41 as the first ball valve is the same as the size of the valve body opening 420 of the ball valve 42 as the second ball valve and the ball valve 43 as the third ball valve. It is larger than the size of the valve body opening 430.
  • valve body openings 420 and 430 of the ball valves 42 and 43 formed so that two ball valves are continuous are small, and the valve body opening 410 of the ball valve 41 formed as one ball valve is the largest.
  • the cooling water from the inlet port 220 flows into the inter-valve space 400 between the ball valves 42 and 43 and the ball valve 41. Thereafter, the cooling water is distributed to the ball valves 42 and 43 side and the ball valve 41 side.
  • the amount of cooling water required on the ball valves 42 and 43 side and the ball valve 41 side is biased, the distribution of the cooling water cannot be performed properly, so that the valve body opening portion 410 having the largest opening is formed.
  • the ball valve 41 requires a large amount of cooling water, it is not continuous with the ball valves 42 and 43 in which the valve body openings 420 and 430 having other small openings are formed. That is, if the ball valves are doubled, the cooling water for the openings of the two ball valves is required, so that the ball valves (42, 43) having small openings are made continuous as much as possible.
  • the housing 20 has housing-side cover fixing portions (291 to 296) formed as portions different from the housing main body 21 so as to protrude from the outer wall of the housing main body 21.
  • the drive unit cover 80 is formed as a portion different from the cover main body 81 so as to protrude from the outer wall of the cover main body 81 forming the drive unit space 800 and fixed to the housing side cover fixing portions (291 to 296). Cover fixing portions (821 to 826).
  • the cover fixing portions (821 to 826) are formed so as not to protrude outward from at least one of both end portions (215, 216) in the direction Dp1 parallel to the mounting surface 201 of the housing body 21.
  • the cover fixing portions (821 to 826) are formed so as not to protrude outward from both end portions (215, 216) in the direction Dp1 parallel to the mounting surface 201 of the housing body 21.
  • the housing end portions 215 and 216 which are both ends in the direction Dp1 parallel to the mounting surface 201 of the housing main body 21 are formed in the housing main body 21 as portions different from the housing side cover fixing portions 291 to 296.
  • the size in the direction Dp1 parallel to the mounting surface 201 of the drive unit cover 80 can be reduced, and the size in the direction Dp1 parallel to the mounting surface 201 of the valve device 10 can be reduced. Thereby, the valve device 10 can be mounted in the narrow space A1 of the vehicle 1.
  • the direction Dp1 parallel to the mounting surface 201 is a direction perpendicular to the vertical direction, that is, a direction parallel to the horizontal direction.
  • the direction Dp1 parallel to the attachment surface 201 is perpendicular to the direction Dv1 perpendicular to the attachment surface 201.
  • the cover fixing portions 821 to 826 are arranged in the direction Dp1 parallel to the mounting surface 201 of the housing main body 21 and both ends in the horizontal direction (215, 216 ) So as not to protrude outwardly from at least one of them.
  • the cover fixing portions 821 to 826 are formed so as not to protrude outward from both ends (215, 216) in the direction Dp1 parallel to the mounting surface 201 of the housing body 21 and in the horizontal direction. That is, the cover fixing portions 821 to 826 are formed so as not to protrude with respect to the direction Dp1 parallel to the attachment surface 201 which is the thinnest direction of the housing main body 21, rather than the housing end portions 215 and 216.
  • the size Dp1 parallel to the mounting surface 201 of the drive unit cover 80 and the horizontal size can be reduced, and the size Dp1 parallel to the mounting surface 201 of the valve device 10 and the horizontal size can be reduced.
  • the valve device 10 can be mounted in a narrow space A1 that is parallel to the mounting surface 201 and narrow in the horizontal direction Dp1.
  • valve device 10 since the valve device 10 is provided in the narrow space A1 (see FIGS. 2 and 62) between the alternator 12 and the intake manifold 11, the physique in the direction Dp1 parallel to the mounting surface 201 of the valve device 10 is reduced. Thus, the valve device 10 can be provided in the narrow space A1 without interfering with the alternator 12 and the intake manifold 11.
  • This embodiment is a valve device 10 capable of controlling the cooling water of the engine 2 of the vehicle 1, and includes a housing 20, a valve 30, a pipe member 50, a partition wall 60, and a driving unit.
  • the cover 80, the drive part 70, and the fixing member 830 are provided.
  • the housing 20 includes a housing main body 21 that forms an internal space 200 inside, and ports (220, 220) that connect the internal space 200 and the outside of the housing main body 21. 221, 222, 223, 224), formed on housing side cover fixing portions 291 to 296 formed as portions different from the housing main body 21 so as to protrude from the outer wall of the housing main body 21, and housing side cover fixing portions 291 to 296.
  • the housing side cover fastening hole 290 is formed.
  • the valve 30 includes a valve body 31 that can rotate around the rotation axis Axr1 in the internal space 200, and a shaft 32 that is provided on the rotation axis Axr1, and ports (221, 222, 223) depending on the rotational position of the valve body 31. ) Can be opened and closed.
  • the pipe member 50 has a cylindrical pipe portion (511, 512, 513, 514) whose inner space communicates with the ports (221, 222, 223, 224), and is attached to the housing body 21.
  • the partition wall portion 60 is provided so as to separate the internal space 200 from the outside of the housing body 21 and has a shaft insertion hole 62 formed so that one end of the shaft 32 can be inserted.
  • the drive unit cover 80 is provided on the opposite side of the partition wall 60 from the internal space 200, and covers the cover body 81 that forms the drive space 800 between the partition wall 60 and the outer wall of the cover body 81.
  • Cover fixing portions 821 to 826 formed as parts different from the main body 81 and cover fastening holes 831 to 836 formed in the cover fixing portions 821 to 826 are provided.
  • the drive unit 70 is provided in the drive unit space 800 and can rotate the valve body 31 via one end of the shaft 32.
  • the fixing member 830 passes through the cover fastening holes 831 to 836 and is screwed into the housing side cover fastening holes 290 to fix the cover fixing portions 821 to 826 and the housing side cover fixing portions 291 to 296.
  • the housing side cover fixing portions 291 to 296 are a cover fixing base portion 298 protruding from the outer wall of the housing main body 21, and a cover protruding from the cover fixing base portion 298 toward the cover fixing portions 821 to 826 and fixed to the cover fixing portions 821 to 826. It has a fixed protrusion 299.
  • At least a part of the pipe member 50 is located on the opposite side of the cover fixing projection 299 with respect to the cover fixing base 298.
  • the cover fixing projection 299 is formed so as to protrude from the cover fixing base 298 to the side opposite to the pipe member 50, interference between the housing side cover fixing portions 291 to 296 and the pipe member 50 can be suppressed.
  • the degree of freedom of mounting the pipe member 50 can be improved.
  • the size of the valve device 10 in the direction of the rotation axis Axr1 can be reduced. Therefore, the valve device 10 can be easily mounted in the narrow space A1 of the vehicle 1.
  • At least a part of the pipe member 50 is located on the opposite side of the cover fixing protrusion 299 with respect to the cover fixing base 298 of the housing side cover fixing parts 291 to 293 (see FIG. 64 and the like). ).
  • the cover fixing protrusion 299 forms an inter-cover gap Sc1 as a gap with the outer wall of the cover main body 81.
  • the drive unit cover 80 is fastened to the housing 20 by the fixing member 830, even if a crack occurs in the cover fixing projection 299 of the housing side cover fixing portions 291 to 296, the crack may reach the housing body 21. Can be suppressed. Thereby, the leakage of the cooling water which may arise by the fastening of the drive part cover 80 to the housing 20 can be suppressed effectively.
  • the axial length L5 of the fixing member 830 inside the housing side cover fastening hole 290 is shorter than the axial length L4 of the housing side cover fastening hole 290. That is, L5 ⁇ L4.
  • the housing-side cover fixing portions 291 to 296 can be prevented from cracking when the fixing member 830 is screwed into the housing-side cover fastening hole 290. Further, since the tip of the fixing member 830 does not jump out to the opposite side of the cover fixing protrusion 299 with respect to the cover fixing base 298, it is possible to suppress the tip of the fixing member 830 from interfering with the pipe member 50.
  • the fixing member 830 is a tapping screw that can be screwed into the housing side cover fastening hole 290 while being screwed up.
  • the axial length L5 of the fixing member 830 inside the housing side cover fastening hole 290 corresponds to the required tapping length of the fixing member 830.
  • the pipe part 512 is formed so as to extend to the drive part cover 80 side.
  • the pipe portion 512 is formed so as to extend to the side where one fastening portion (231) is provided on both sides of the housing body 21 in the short direction.
  • the pipe portion 512 forms an inner space 200 in the housing body 21, that is, an end portion far from the rotation axis Axr 1 in both end portions (215, 216) in the direction Dp 1 parallel to the mounting surface 201 of the housing body 21. It is formed so as to extend toward the housing end 215 which is an end protruding in the direction Dp1 from the outer wall of the portion to be performed.
  • the pipe portion 512 is formed to extend from an outlet port 222 which is a middle port among the outlet ports 221, 222, and 223 arranged in a straight line in the housing body 21.
  • the pipe portion 512 is formed to extend from an outlet port 222 that is a port near the drive portion cover 80 with respect to the longitudinal center of the housing body 21.
  • the tip of the pipe part 512 is located on the opposite side of the housing body 21 from the housing protrusion 219.
  • the distal end side of the pipe portion 512 is located on the opposite side of the cover fixing protruding portion 299 with respect to the cover fixing base portion 298 of the housing side cover fixing portion 293.
  • the housing side cover fixing portions 291 to 293 are formed on the pipe member 50 side with respect to a virtual plane Vp6 that includes the rotation axis Axr1 and is parallel to the mounting surface 201.
  • the housing side cover fixing portions 294 to 296 are formed on the mounting surface 201 side with respect to the virtual plane Vp6.
  • the housing side cover fixing portions 291 and 296 are formed on the side where the tip end portion of the pipe portion 516 is located with respect to a virtual plane Vp7 including the rotation axis Axr1 and perpendicular to the mounting surface 201.
  • the housing side cover fixing portions 292 to 295 are formed on the side where the tip end portion of the pipe portion 512 is located with respect to the virtual plane Vp7.
  • the inter-cover gap Sc1 is formed between the cover fixing protrusion 299 of the housing side cover fixing portions 291 to 296 formed as described above and the outer wall of the cover main body 81.
  • the present embodiment is a valve device 10 that can control the cooling water of the engine 2 of the vehicle 1, and includes a housing 20, a valve 30, a partition wall 60, and a drive unit 70.
  • the housing 20 includes a housing main body 21 that forms an internal space 200 on the inside, ports (220, 221, 222, and 223) that connect the internal space 200 and the outside of the housing main body 21, and the internal space 200 and the housing main body 21. It has a housing opening 210 for connecting to the outside.
  • the valve 30 includes a valve body 31 that can rotate around the rotation axis Axr1 in the internal space 200, and a shaft 32 that is provided on the rotation axis Axr1, and ports (221, 222, 223) depending on the rotational position of the valve body 31. ) Can be opened and closed.
  • the partition wall 60 is formed in the partition wall body 61 provided in the housing opening 210 so as to separate the internal space 200 from the outside of the housing body 21 and the partition wall body 61 so that one end of the shaft 32 can be inserted.
  • a shaft insertion hole 62 is provided.
  • the drive unit 70 is provided on the side opposite to the internal space 200 with respect to the partition wall 60, and can rotate the valve body 31 via one end of the shaft 32.
  • the valve 30 has a first restriction convex part 332 and a second restriction convex part 342 as the restricted parts formed in the valve body 31.
  • the partition wall 60 includes an annular regulation recess 63 that is recessed from the surface on the inner space 200 side of the partition wall body 61 toward the drive unit 70 on the radially outer side of the shaft insertion hole 62.
  • a restriction portion 631 that is formed in a part of the concave portion 63 in the circumferential direction and that is capable of restricting the rotation of the valve body 31 by contacting the first restriction convex portion 332 and the second restriction convex portion 342, and the bottom surface 630 of the restriction concave portion 63
  • a foreign matter depositing portion 68 that is recessed toward the driving portion 70 side.
  • the foreign matter existing in the restriction concave portion 63 and the foreign matter accumulated on the bottom surface 630 of the restriction concave portion 63 can be accumulated on the foreign matter accumulation portion 68. Accordingly, the foreign matter is moved away from the first restriction convex part 332, the second restriction convex part 342, and the restriction part 631 as the restricted parts, and the first restriction convex part 332, the second restriction convex part 342, and the restriction part 631 It is possible to suppress foreign matter from being caught between the two. Therefore, it is possible to suppress the deterioration of the driving accuracy of the valve element 31 due to the accumulation of foreign matter on the restricting portion 631. In addition, deterioration of the sensor accuracy of the rotation angle sensor 86 due to the accumulation of foreign matter on the restricting portion 631 can be suppressed.
  • the restriction recess 63 includes an inner cylindrical wall surface 632 that is a cylindrical wall surface formed on the radially inner side, and an outer cylindrical wall surface that is a cylindrical wall surface formed on the radially outer side. 633.
  • the foreign material accumulation portion 68 is formed on the outer cylinder wall surface 633 side with respect to at least a part of the bottom surface 630 of the restriction recess 63.
  • the foreign matter on the bottom surface 630 of the restriction recess 63 can be guided to the foreign matter accumulation portion 68 on the radially outer side of the restriction recess 63, and the foreign matter can be separated from the shaft insertion hole 62. Thereby, the sealing performance by the shaft seal member 603 can be ensured.
  • the inner cylinder wall surface 632 can guide the rotation of the valve body 31 by sliding with the first restriction convex part 332 and the second restriction convex part 342 as the restricted parts.
  • the rotation of the valve body 31 can be stabilized. Further, by depositing foreign matter on the foreign matter accumulation portion 68, foreign matter is prevented from being caught between the inner cylindrical wall surface 632 and the first restriction convex portion 332 and the second restriction convex portion 342. It can suppress that slidability with the 1 control convex part 332 and the 2nd control convex part 342 deteriorates.
  • the restricting portion 631 is formed to extend from the inner cylinder wall surface 632 to the outer cylinder wall surface 633.
  • the length L11 of the restricting portion 631 in the radial direction of the restricting recess 63 is larger than the length L12 of the foreign matter depositing portion 68 in the radial direction of the restricting recess 63.
  • the foreign material accumulation portion 68 is formed in a C shape in a cross section perpendicular to the axis of the shaft insertion hole 62.
  • the partition wall through-hole 65 can be formed between the circumferential ends of the foreign material accumulation portion 68.
  • the partition wall portion 60 has a partition wall through-hole 65 extending outward from the shaft insertion hole 62 and opening in the outer wall of the partition wall body 61.
  • the partition wall through-hole 65 is formed between the circumferential ends of the foreign material accumulation portion 68.
  • partition wall body 61 can be downsized.
  • the bottom surface 630 of the restricting recess 63 is formed between the circumferential ends of the foreign matter depositing portion 68 so that the circumferential length L21 increases toward the radially outer side.
  • the strength of the portion on the outer cylinder wall surface 633 side of the partition wall main body 61 can be ensured between the circumferential ends of the foreign matter accumulation portion 68.
  • the restricting portion 631 is formed to extend radially outward on the bottom surface 630 of the restricting recess 63.
  • the restricting portion 631 is formed so that the circumferential length L22 becomes larger toward the radially outer side of the restricting recess 63.
  • the foreign material accumulation portion 68 is located below the valve body 31 in a state where the housing 20 is attached to the engine 2.
  • the foreign matter depositing portion 68 is located on the lower side in the vertical direction with respect to the valve body 31.
  • the foreign matter accumulation portion 68 is positioned below the bottom surface 630 of the restriction recess 63. Thereby, the foreign substance in the regulation recessed part 63 can be effectively led to the foreign substance accumulation part 68.
  • the partition wall body 61 is formed of, for example, “PPS-GF50”, similarly to the housing body 21.
  • the heat resistance, water absorption resistance, strength, and dimensional accuracy of the partition wall body 61 can be improved.
  • the present embodiment is a valve device 10 that can control the cooling water of the engine 2 of the vehicle 1, and includes a housing 20, a valve 30, and a shaft bearing portion 90.
  • the housing 20 includes a housing main body 21 that forms an internal space 200 on the inside, and ports (220, 221, 222, and 223) that connect the internal space 200 and the outside of the housing main body 21.
  • the valve 30 includes a valve body 31 that can rotate around the rotation axis Axr1 in the internal space 200, and a shaft 32 that is provided on the rotation axis Axr1, and ports (221, 222, 223) depending on the rotational position of the valve body 31. ) Can be opened and closed.
  • the shaft bearing portion 90 extends in a cylindrical shape from an opposed inner wall 213 which is an inner wall facing the end portion of the shaft 32 of the inner wall of the housing main body 21 forming the inner space 200, and the shaft is formed on the inner side.
  • the bearing portion main body 91 capable of bearing the end portions of 32 and the bearing portion flow passage 92 formed so as to connect the inner peripheral wall and the outer peripheral wall of the bearing portion main body 91.
  • the bearing portion flow path 92 is formed to extend from a portion of the bearing portion main body 91 on the opposite inner wall 213 side to an end portion on the opposite side to the opposite inner wall 213.
  • valve body 31 has a valve body end hole 314 formed so that the end of the shaft 32 and the bearing body 91 are located inside.
  • the physique of the housing body 21 in the direction of the rotation axis Axr1 can be reduced by disposing the bearing body 91 inside the valve body end hole 314. Thereby, the valve device 10 can be reduced in size.
  • the shaft bearing portion 90 has a cylindrical inner bearing portion 93 provided inside the bearing portion main body 91 and capable of bearing the end portion of the shaft 32 inside.
  • the valve body 31 has a valve body end hole 314 formed so that the end of the shaft 32 and the bearing body 91 are located inside.
  • the shaft bearing portion 90 has a cylindrical inner bearing portion 93 provided inside the bearing portion main body 91 and capable of bearing the end portion of the shaft 32 inside.
  • the difference between the inner diameter of the valve body end hole 314 and the outer diameter of the bearing body 91 is smaller than the difference between the inner diameter of the bearing body 91 and the outer diameter of the end of the shaft 32.
  • the cylindrical gap S1 between the valve body end hole portion 314 and the bearing portion main body 91 is relatively small and is not formed to a size that allows the coolant to actively flow.
  • the shaft bearing portion 90 is located on the lower side in the vertical direction with respect to the opposed inner wall 213.
  • the shaft bearing portion 90 is positioned on the upper side in the vertical direction of the internal space 200, and the air in the cooling water in the internal space 200 tends to accumulate inside the bearing portion main body 91. However, even if air accumulates inside the bearing portion main body 91, the air can be discharged to the outside of the bearing portion main body 91 via the bearing portion flow path 92.
  • the bearing portion main body 91 is formed in a substantially cylindrical shape.
  • the bearing portion flow path 92 is formed so as to extend from an end portion on the opposite inner wall 213 side of the bearing portion main body 91 to an end portion on the opposite side to the opposite inner wall 213.
  • Two bearing part flow paths 92 are formed at equal intervals in the circumferential direction of the bearing part main body 91 so as to sandwich the shaft of the bearing part main body 91 (see FIG. 107).
  • the inner bearing portion 93 is formed with a bearing notch portion 931.
  • the inner bearing portion 93 is formed in a substantially cylindrical shape with a resin such as PPS, for example.
  • the bearing notch portion 931 is formed to extend from one end portion of the inner bearing portion 93 to the other end portion while connecting the inner peripheral wall and the outer peripheral wall of the inner bearing portion 93.
  • the bearing notch portion 931 is formed in the inner bearing portion 93, the inner bearing portion 93 can be easily disposed between the end portion of the shaft 32 and the bearing portion main body 91.
  • the bearing notch portion 931 is formed to extend from one end portion of the inner bearing portion 93 to the other end portion while being inclined with respect to the axis of the inner bearing portion 93.
  • the inner peripheral wall of the inner bearing portion 93 can be brought into contact with the outer peripheral wall of the end portion of the shaft 32 at any portion in the circumferential direction of the inner bearing portion 93 regardless of the position in the axial direction.
  • the shaft 32 can be bearing stably.
  • the bearing portion main body 91 is formed so as to extend to the lower side of the upper end portion of the outlet port 221 in the vertical direction. That is, the front end portion of the bearing portion main body 91 is located below the end portion on the upper side in the vertical direction of the outlet port 221.
  • the air inside the bearing body 91 can be easily discharged to the outside of the housing body 21 via the outlet port 221.
  • This embodiment is a valve device 10 that can control the cooling water of the engine 2 of the vehicle 1, and includes a housing 20 and a valve 30.
  • the housing 20 includes a housing main body 21 in which a cylindrical housing inner wall 211 forming an inner space 200 is formed inside, and ports (220, 221) that open in the housing inner wall 211 and connect the inner space 200 and the outside of the housing main body 21. , 222, 223).
  • the valve 30 includes a valve body 31 that can rotate around the rotation axis Axr1 along the axis Axn1 of the housing inner wall 211 in the internal space 200, and an outer peripheral wall and an inner peripheral wall of the valve body 31.
  • the valve body opening (410, 420, 430) formed so as to be connected to each other, and the port can be opened and closed depending on the rotational position of the valve body 31.
  • the axis Axn1 and the rotation axis Axr1 coincide.
  • the housing inner wall 211 is formed such that the distance Dna1 from the axis Axn1 is different in the circumferential direction.
  • the distance Dgn1 between the outer peripheral wall of the valve body 31 and the housing inner wall 211 is different in the circumferential direction. That is, the distance Dgn1 between the outer peripheral wall of the valve body 31 and the housing inner wall 211 is not constant in the circumferential direction, and the gap Sb10 between the outer peripheral wall of the valve body 31 and the housing inner wall 211 is a large portion (gap Sb01). ) And a small portion (gap Sb02) are formed (see FIG. 109).
  • the valve body 31 is formed such that the distance Dga1 from the rotation axis Axr1 to the outer peripheral wall is the same in the circumferential direction. That is, the outer peripheral wall of the valve body 31 is formed to be circular in a cross section perpendicular to the rotation axis Axr1.
  • the distance Dgn1 between the outer peripheral wall of the valve body 31 and the housing inner wall 211 is different in the circumferential direction.
  • a large part (gap Sb01) and a small part (gap Sb02) are formed in the circumferential direction. Therefore, it is possible to suppress the malfunction of the valve body 31 due to the foreign matter remaining in the gap Sb10 between the outer peripheral wall of the valve body 31 and the housing inner wall 211.
  • the housing inner wall 211 is formed to be a non-circular circle in a cross section perpendicular to the axis Axn1.
  • the gap Sb10 between the outer peripheral wall of the valve body 31 and the housing inner wall 211 is formed with a large part (gap Sb01) and a small part (gap Sb02) in the circumferential direction.
  • the housing inner wall 211 is formed in a polygonal shape in a cross section perpendicular to the axis Axn1.
  • the cross section of the housing inner wall 211 is made close to a circle, and the physique in the radial direction of the housing body 21 is made smaller, while a large portion in the circumferential direction (gap Sb01) is formed in the gap Sb10 between the outer peripheral wall of the valve body 31 and the housing inner wall 211. And a small portion (gap Sb02) can be formed.
  • the housing inner wall 211 is formed in an octagonal shape in a cross section perpendicular to the axis Axn1. Further, the corner portion 214 which is a connecting portion of each side of the housing inner wall 211 having an octagonal cross section has a smooth curved shape (see FIGS. 108 and 109).
  • the physique in the radial direction of the housing body 21 can be further reduced. Further, it is possible to suppress foreign matters from staying at the corners 214 of the housing inner wall 211.
  • the foreign matter can be discharged from the gap Sb10 between the outer peripheral wall of the valve body 31 and the housing inner wall 211 in the “part where the outer diameter of the valve body 31 is the largest” where the influence of the foreign matter is large.
  • the foreign matter can be discharged from the gap Sb10 in the “portion of the gap Sb10 closed over the entire circumferential direction of the valve body 31” where the influence of the foreign matter is large.
  • the housing 20 has a relief port 224 that opens in the housing inner wall 211 and connects the internal space 200 and the outside of the housing body 21.
  • the present embodiment further includes a relief valve 39.
  • the relief valve 39 is provided in the relief port 224, and opens and closes the relief port 224 according to conditions.
  • the distance Dgn1 between the outer peripheral wall of the valve body 31 and the housing inner wall 211 is made different in the circumferential direction by forming the housing inner wall 211 such that the distance Dna1 from the axis Axn1 is different in the circumferential direction.
  • foreign matter can be easily discharged from the gap Sb10 between the outer peripheral wall of the valve body 31 and the housing inner wall 211. Thereby, it can suppress that a foreign material is pinched
  • the present embodiment further includes a valve seal 36.
  • the valve seal 36 is formed in an annular shape, is provided at a position corresponding to the ports (221, 222, 223) so as to be slidable with the outer peripheral wall of the valve body 31, and is liquid-tight between the outer peripheral wall of the valve body 31. Can be retained.
  • the distance Dgn1 between the outer peripheral wall of the valve body 31 and the housing inner wall 211 is Different in the circumferential direction.
  • the housing 20 has a housing opening 210 whose inner peripheral surface is connected to the end of the housing inner wall 211 in the direction of the axis Axn1 and connects the internal space 200 and the outside of the housing main body 21. .
  • the valve 30 has a shaft 32 provided on the rotation axis Axr1.
  • the partition wall 60 is formed in the partition wall body 61 provided in the housing opening 210 so as to separate the internal space 200 from the outside of the housing body 21 and the partition wall body 61 so that one end of the shaft 32 can be inserted.
  • a shaft insertion hole 62 is provided.
  • the drive unit 70 is provided on the opposite side of the partition wall main body 61 from the internal space 200, and can rotate the valve body 31 via one end of the shaft 32.
  • the annular seal member 600 is provided between the housing opening 210 and the partition wall main body 61, and can hold the space between the housing opening 210 and the partition wall main body 61 in a liquid-tight manner.
  • the inner peripheral surface of the housing opening 210 is formed in a cylindrical shape.
  • the inner wall 211 of the housing 31 is formed in a cylindrical shape while the inner wall 211 of the housing is formed to have a non-circular cross section, thereby forming a space between the outer wall of the valve body 31 and the housing inner wall 211.
  • the sealing property between the housing opening 210 and the partition wall body 61 can be secured while facilitating the removal of foreign matter from the gap Sb10.
  • the valve body 31 includes ball valves 41, 42, and 43 whose inner peripheral wall and outer peripheral wall are spherical.
  • the valve body 31 may be formed in a cylindrical shape, for example. Even in this case, foreign matters can be easily removed from the gap Sb10 between the outer peripheral wall of the valve body 31 and the housing inner wall 211 by forming the housing inner wall 211 and the like as described above.
  • This embodiment is a valve device 10 that can control the cooling water of the engine 2 of the vehicle 1, and includes a housing 20, a valve 30, a relief valve 39, and a shielding section 95.
  • the housing 20 includes a housing main body 21 that forms an internal space 200 inside, an inlet port 220 that connects the internal space 200 and the outside of the housing main body 21 and into which cooling water flows, and an internal space 200 and the outside of the housing main body 21.
  • the valve 30 has a valve body 31 that can rotate around the rotation axis Axr1 in the internal space 200, and a shaft 32 provided on the rotation axis Axr1.
  • the relief valve 39 is provided in the relief port 224, and opens or closes depending on the conditions, and allows or blocks communication between the internal space 200 and the outside of the housing body 21 via the relief port 224.
  • the opening condition of the relief valve 39 is, for example, “when the ambient temperature becomes equal to or higher than a predetermined temperature”.
  • the relief valve 39 opens, for example, when the temperature of the cooling water becomes equal to or higher than a predetermined temperature, and communicates between the internal space 200 via the relief port 224 and the space outside the housing body 21, that is, the space inside the pipe portion 515. And the communication is cut off when the temperature of the cooling water is lower than a predetermined temperature. Thereby, when the temperature of the cooling water rises excessively, such as when the vehicle 1 is overheated, the cooling water can be flowed from the internal space 200 to the external radiator 5 to cool the cooling water.
  • the shielding portion 95 can shield the relief valve 39 so that the relief valve 39 cannot be seen from the inlet port 220. More specifically, when viewed from the axial direction of the inlet port 220, the relief valve 39 is shielded by the shielding portion 95 and cannot be visually observed as a whole.
  • the shielding portion 95 is provided in the housing body 21 so as to be positioned on the relief port 224 side with respect to the shaft 32.
  • the shielding part 95 can be disposed close to the relief valve 39, and the direct hit of the cooling water to the relief valve 39 can be more effectively suppressed.
  • the shielding portion 95 is formed by projecting the inlet port 220 when the inlet port 220, the relief valve 39 and the shielding portion 95 are projected in the axial direction of the inlet port 220 or the axial direction of the relief port 224.
  • the projection is formed so as to have an area that is equal to or larger than the area of the portion B1 (the portion indicated by the lattice in FIG. 110) where the projection of the relief valve 39 overlaps.
  • the surface 951 on the valve 30 side of the shielding part 95 is formed to have a shape that follows the shape of the housing inner wall 211 that is the inner wall of the housing body 21 that forms the inner space 200.
  • the shielding part 95 is formed in a plate shape, and the plate thickness is uniform.
  • the relief valve 39 opens “when the ambient temperature is equal to or higher than a predetermined temperature”.
  • the relief valve 39 may be opened “when the pressure becomes equal to or higher than a predetermined pressure”.
  • the relief valve 39 may be opened “when the ambient temperature becomes a predetermined temperature or higher” and “when the pressure becomes a predetermined pressure or higher”. Even in this case, the malfunction of the relief valve 39 can be suppressed by suppressing the direct hit of the cooling water to the relief valve 39 by the shielding portion 95.
  • a valve device according to a fifteenth embodiment will be described with reference to FIGS.
  • the fifteenth embodiment is different from the fourteenth embodiment in the configuration of the valve body 31 and the like.
  • the formation positions and sizes of the valve body openings 410, 420, and 430 in the circumferential direction of the valve body 31 are different from those in the 14th embodiment.
  • the arrangement direction and shape of the ball valve 41, the cylindrical connection portion 44, the ball valve 42, the cylindrical valve connection portion 45, and the ball valve 43 are the same as in the fourteenth embodiment (FIGS. 90 to 102). Etc.).
  • the valve body opening part 410 has the large opening part 412 and the extending
  • This embodiment is a valve device 10 that can control the cooling water of the engine 2 of the vehicle 1 and includes a housing 20, a valve 30, a drive unit 70, and an ECU 8 as a control unit.
  • the housing 20 is connected to the internal space 200, the outlet port 221 as a radiator port connected to the radiator 5 of the vehicle 1, and the heater port connected to the heater 6 of the vehicle 1 connected to the internal space 200. It has an exit port 222 and an exit port 223 as a device port connected to the internal space 200 and connected to the device 7 of the vehicle 1.
  • the outlet ports 221, 222, and 223 are appropriately replaced with the radiator port 221, the heater port 222, and the device port 223, respectively.
  • the valve 30 has a valve body 31 that can rotate around the rotation axis Axr1 in the internal space 200, and can open and close the radiator port 221, the heater port 222, or the device port 223 according to the rotational position of the valve body 31.
  • the driving unit 70 can drive the valve body 31 to rotate.
  • the ECU 8 controls the operation of the drive unit 70 to control the rotational drive of the valve body 31, so that between the radiator port 221 and the radiator 5, between the heater port 222 and the heater 6, and between the device port 223 and the device The flow of the cooling water between 7 can be controlled.
  • the ECU 8 determines that the opening degree of all of the radiator port 221, the heater port 222, and the device port 223 is greater than 0 as the valve element 31 is driven to rotate in one direction. After that, the heater port 222 and the device port 223 are closed, and the drive unit 70 and the valve body 31 can be controlled so that the opening degree of only the radiator port 221 becomes the predetermined opening degree.
  • the predetermined opening is set to an opening that can increase the cooling efficiency of the engine 2, and the drive unit 70 and the valve body 31 are controlled so that the opening of only the radiator port 221 becomes the predetermined opening. As a result, it is possible to maximize the cooling efficiency of the engine 2 when the load is high.
  • the ECU 8 As shown in FIGS. 113 and 114, as the valve body 31 is driven to rotate in one direction of rotation, the ECU 8 has all the opening degrees of the radiator port 221, the heater port 222, and the device port 223 at the predetermined opening degree. After that, the drive unit 70 and the valve body 31 can be controlled so that the heater port 222 and the device port 223 are closed in the order of the heater port 222 and the device port 223.
  • heat exchange from the heater 6 can be immediately interrupted, and the cooling efficiency of the engine 2 can be increased.
  • the predetermined opening is set to 60% or more.
  • the cooling efficiency at the time of high load of the engine 2 can be appropriately maximized.
  • the predetermined opening degree is set to 100% in order to maximize the cooling efficiency of the engine 2.
  • the cooling efficiency at the time of high load of the engine 2 can be maximized by controlling the drive unit 70 and the valve body 31 so that the opening degree of only the radiator port 221 becomes the predetermined opening degree.
  • the valve body 31 has an outer peripheral wall and an inner peripheral wall formed in a spherical shape (see FIG. 67 and the like).
  • the valve 30 is formed so as to connect the valve body flow path 300 formed inside the inner peripheral wall of the valve body 31, the outer peripheral wall and the inner peripheral wall of the valve body 31, and is connected to the radiator port 221 depending on the rotational position of the valve body 31.
  • the device port 223 is formed so as to connect the valve body opening 420 serving as the heater opening with the heater polymerization ratio, which is the polymerization ratio, and the outer peripheral wall and the inner peripheral wall of the valve body 31.
  • valve body opening part 430 As an opening part for devices from which the device superposition
  • the valve body openings 410, 420, and 430 will be appropriately replaced with the radiator opening 410, the heater opening 420, and the device opening 430, respectively.
  • this embodiment can be realized by a rotary valve in which the outer peripheral wall and the inner peripheral wall are the spherical valve elements 31.
  • the radiator polymerization rate is more specifically determined by the seal opening 360 with respect to the maximum overlap area between the seal opening 360 of the valve seal 36 and the radiator opening 410 of the seal unit 35 provided in the radiator port 221. And the opening area of the radiator port 410, and corresponds to the opening of the radiator port 221.
  • the heater polymerization rate is determined by the seal opening 360 and the heater for the maximum overlap area between the seal opening 360 and the heater opening 420 of the valve seal 36 of the seal unit 35 provided in the heater port 222. It is the ratio of the overlapping area with the opening 420 and corresponds to the opening of the heater port 222.
  • the device polymerization rate is determined by the seal opening 360 and the device for the device with respect to the maximum overlap area between the seal opening 360 and the device opening 430 of the valve seal 36 of the seal unit 35 provided in the device port 223. It is the ratio of the overlapping area with the opening 430 and corresponds to the opening of the device port 223.
  • the heater port 222 When the heater polymerization ratio is greater than 0, the heater port 222 is opened, and the valve body flow path 300 and the heater 6 communicate with each other via the heater opening 420 and the heater port 222. Thereby, at this time, cooling water flows from the valve body flow path 300 to the heater 6 side.
  • the device port 223 When the device polymerization ratio is greater than 0, the device port 223 is opened, and the valve body channel 300 and the device 7 communicate with each other via the device opening 430 and the device port 223. Thereby, at this time, cooling water flows from the valve body flow path 300 to the device 7 side.
  • the opening degree of the heater port 222 is between Pr2 and Pr3. It increases at a predetermined rate from 0 (%). Thereby, an amount of cooling water corresponding to the opening degree of the heater port 222 flows to the heater 6 side.
  • the opening degree of the heater port 222 reaches 100% at Pr3 (fully open: the predetermined opening degree).
  • the opening degree of the device port 223 increases from 0 (%) to a predetermined rate between Pr4 and Pr5. Thereby, an amount of cooling water corresponding to the opening degree of the device port 223 flows to the device 7 side.
  • the opening degree of the device port 223 reaches 100% (full open: the predetermined opening degree) at Pr5.
  • the increasing rate of the opening degree of the heater port 222 between Pr2 and Pr3 per unit rotation angle of the valve body 31 is the same as the increasing rate of the opening degree of the device port 223 between Pr4 and Pr5. (See FIGS. 113 and 114).
  • the opening degree of the radiator port 221 increases from 0 (%) at a predetermined rate between Pr6 and Pr7. Thereby, an amount of cooling water corresponding to the opening degree of the radiator port 221 flows to the radiator 5 side.
  • the opening degree of the radiator port 221 further increases at a predetermined rate between Pr7 and Pr8.
  • the opening degree of the radiator port 221 reaches 100% (full opening: the predetermined opening degree) at Pr8. Therefore, in Pr8, all the openings of the radiator port 221, the heater port 222, and the device port 223 become the predetermined opening, that is, 100%.
  • the increase rate of the opening of the radiator port 221 between Pr6 and Pr7 per unit rotation angle of the valve body 31 is smaller than the increase rate of the opening of the radiator port 221 between Pr7 and Pr8 (FIG. 113, 114).
  • the radiator opening 410 is formed of the extended opening 413 and the large opening 412 (see FIGS. 93 and 94). That is, the increasing rate of the opening of the radiator port 221 is small when the extending opening 413 and the seal opening 360 are overlapped, and is increased when the large opening 412 and the seal opening 360 are overlapped.
  • the flow rate of the cooling water to the radiator 5 can be gradually increased. Thereby, the rapid temperature change of the cooling water by the heat exchange of the radiator 5 can be suppressed.
  • the increase rate of the opening degree of the radiator port 221 between Pr6 and Pr7 per unit rotation angle of the valve body 31 and the increase rate of the opening degree of the radiator port 221 between Pr7 and Pr8 are Pr2 and Pr2.
  • the rate of increase in the opening degree of the heater port 222 with respect to Pr3 is smaller than the rate of increase in the opening degree of the device port 223 between Pr4 and Pr5 (see FIGS. 113 and 114).
  • the change in the flow rate of the cooling water to the radiator 5 at the initial stage of the valve opening can be made slower than the change in the flow rate of the cooling water to the heater 6 and the device 7. Thereby, the rapid temperature change of the cooling water by the heat exchange of the radiator 5 can be suppressed.
  • the opening degree of the heater port 222 is decreased from 100% to a predetermined ratio between Pr9 and Pr10. As a result, the amount of cooling water flowing to the heater 6 side decreases according to the opening degree of the heater port 222.
  • the opening degree of the heater port 222 is 0% (fully closed) at Pr10. Thereby, the heater port 222 is closed and the flow of the cooling water to the heater 6 side is interrupted.
  • the opening degree of the device port 223 decreases between 100% and Pr12 at a predetermined rate between Pr11 and Pr12. As a result, the amount of cooling water flowing to the device 7 side decreases according to the opening degree of the device port 223.
  • the opening degree of the device port 223 becomes 0% (fully closed) at Pr12. Thereby, the device port 223 is closed and the flow of the cooling water to the device 7 side is blocked.
  • the decreasing rate of the opening degree of the heater port 222 between Pr9 and Pr10 per unit rotation angle of the valve body 31 is the same as the decreasing rate of the opening degree of the device port 223 between Pr11 and Pr12. (See FIGS. 113 and 114).
  • the opening degree of the radiator port 221 remains 100%. That is, at this time, only the radiator port 221 has an opening degree of 100% (fully open: the predetermined opening degree).
  • the ECU 8 is configured such that all the opening degrees of the radiator port 221, the heater port 222, and the device port 223 are Pr8. After reaching the degree (100%), the heater port 222 and the device port 223 are closed by Pr10 and Pr12, and the opening of only the radiator port 221 is set to the predetermined opening (100%) at Pr13 and the valve body 70 31 can be controlled.
  • the ECU 8 is configured such that the opening degree of the radiator port 221, the heater port 222, and the device port 223 is Pr8 as the valve body 31 is rotationally driven to one side in the rotational direction. After reaching the predetermined opening (100%), the drive unit 70 and the valve body 31 can be controlled so that the heater port 222 and the device port 223 are closed in the order of the heater port 222 and the device port 223 (Pr10, Pr12).
  • FIG. 115 shows a valve device according to the sixteenth embodiment.
  • the sixteenth embodiment differs from the fourteenth embodiment in the shapes of the fastening portions 231 to 233.
  • the fastening portion 231 has two outer walls (234, 235) in which the shape in a section perpendicular to the fastening hole 241 is linear, and an angle ⁇ 1 formed by the two outer walls (234, 235) is an obtuse angle. It is formed as follows.
  • the fastening portion 232 has two outer walls (236, 237) that are linear in cross section by a plane perpendicular to the fastening hole 242, and an angle ⁇ 2 formed by the two outer walls (236, 237) is an obtuse angle. It is formed as follows.
  • the fastening portion 233 has two outer walls (238, 239) in which the shape in a section perpendicular to the fastening hole 243 is linear, and an angle ⁇ 3 formed by the two outer walls (238, 239) is an obtuse angle. It is formed as follows.
  • the strength of the fastening portions 231 to 233 can be improved, and the earthquake resistance of the valve device 10 can be improved.
  • the cooling water flows into the internal space 200 when the valve device 10 is used, the weight of the device including the cooling water becomes relatively large. Therefore, by improving the strength of the fastening portions 231 to 233, the valve device 10 can be reliably fixed in a limited mounting space (narrow space A1).
  • the range in which the fastening portion 231 is formed overlaps with the range in which the fastening portion 232 and the fastening portion 233 are formed.
  • the housing body 21 can be stably fixed to the engine 2.
  • the lengths of the fastening portions 231, 232, 233 in the direction of the rotation axis Axr 1 of the valve body 31 are larger than the diameter of the inlet port 220.
  • the housing body 21 can be stably fixed to the engine 2.
  • the length of the fastening portion 231 in the direction of the rotation axis Axr1 of the valve body 31 is larger than the length of the fastening portion 232 or the fastening portion 233 in the direction of the rotation axis Axr1 of the valve body 31.
  • the center of the fastening portion 231 in the direction of the rotational axis Axr1 of the valve body 31 and the center of the fastening portion 233 in the direction of the rotational axis Axr1 of the valve body 31 are closer to the drive portion 70 than the center of the inlet port 220.
  • vibrations by the drive unit 70 can be effectively suppressed.
  • the end of the outer wall 238 of the fastening portion 233 on the drive unit 70 side is located on the opposite side of the rotation axis Axr1 with respect to the end of the outer wall 239 on the inlet port 220 side.
  • vibrations by the drive unit 70 can be effectively suppressed.
  • the fastening portions 232 and 233 are formed from one end to the other end in the direction of the rotation axis Axr1 of the valve body 31 in a range in which the mounting surface recess 207 is formed in the mounting surface 201.
  • the housing body 21 can be stably fixed to the engine 2.
  • FIG. 17th Embodiment A part of the valve device according to the seventeenth embodiment is shown in FIG.
  • the seventeenth embodiment differs from the third embodiment in the configuration of the valve 30 and the like.
  • the partition wall 60 includes a partition wall body 61 that separates the internal space 200 from the outside of the housing 20, a shaft insertion hole 62 formed in the partition wall body 61 so that one end of the shaft 32 can be inserted, and the partition wall body 61.
  • a regulating recess 63 that is recessed from the surface on the inner space 200 side to the side opposite to the inner space 200 is provided.
  • the valve body 31 has a regulation convex part 344 that extends from the first outermost end surface 301 that is the surface of the second divided body 34 on the partition wall part 60 side to the regulation concave part 63 side and whose tip part is located in the regulation concave part 63. Yes.
  • 3rd Embodiment showed the example which forms a control convex part so that the 1st control convex part 332 and the 2nd control convex part 342 contact
  • one restriction convex portion 344 is formed so as to extend from the second divided body 34.
  • the force in the direction in which the first divided body 33 and the second divided body 34 are separated (separated) at the joint surfaces 331 and 341 is the valve body. It can suppress acting on 31. Therefore, when the restricting convex portion 344 comes into contact with the restricting portion 631 of the restricting concave portion 63, it is possible to suppress the first divided body 33 and the second divided body 34 from being separated by the joint surfaces 331 and 341.
  • the restricting convex portion 344 is formed on the “virtual plane Vp8 including the rotation axis Axr1 and perpendicular to the joint surfaces 331 and 341” (see FIG. 116).
  • FIG. 117 shows a part of the valve device according to the eighteenth embodiment.
  • the eighteenth embodiment differs from the third embodiment in the configuration of the valve 30 and the like.
  • the first restriction convex portion 332 extends toward the restriction concave portion 63 along the surface direction of the joint surface 331.
  • the second restriction convex part 342 extends toward the restriction concave part 63 along the surface direction of the joint surface 341 without contacting the first restriction convex part 332.
  • the first divided body 33 and the second divided body 34 are separated (separated) at the joint surfaces 331 and 341. )
  • Directional force does not work. Therefore, when the first restriction convex part 332 or the second restriction convex part 342 comes into contact with the restriction part 631 of the restriction concave part 63, the first divided body 33 and the second divided body 34 are separated by the joint surfaces 331 and 341. Can be suppressed.
  • the first restriction convex part 332 and the second restriction convex part 342 are It is formed on one side of the two regions (see FIG. 117).
  • the distance between the rotation axis Axr1 and the first restriction convex part 332 is smaller than the distance between the rotation axis Axr1 and the second restriction convex part 342 (see FIG. 117).
  • FIG. 1 A part of the valve device according to the nineteenth embodiment is shown in FIG.
  • the nineteenth embodiment differs from the fourteenth embodiment in the shape of the restriction recess 63.
  • the bottom surface 630 of the restricting recess 63 is formed in a tapered shape so as to approach the drive unit 70 from the inner cylinder wall surface 632 side toward the outer cylinder wall surface 633 side.
  • the foreign matter on the bottom surface 630 of the restricting concave portion 63 can be actively guided to the foreign matter depositing portion 68 on the radially outer side of the restricting concave portion 63, and the foreign matter can be moved away from the shaft insertion hole 62. Thereby, the sealing performance by the shaft seal member 603 can be effectively ensured.
  • FIG. 20 A part of the valve device according to the twentieth embodiment is shown in FIG.
  • the twentieth embodiment differs from the fourteenth embodiment in the configuration of the valve 30 and the restricting portion 631.
  • the valve 30 has a valve body cylinder portion 315 that extends in a cylindrical shape from the valve body 31 to the drive section 70 side.
  • the distal end portion of the valve body cylinder portion 315 is located on the radially outer side of the inner cylinder wall surface 632.
  • the valve 30 includes a labyrinth forming portion 316 that is formed in the valve body cylindrical portion 315 and can form a labyrinth-like space Sr1 between the inner cylindrical wall surface 632.
  • the labyrinth forming portion 316 is formed in an annular shape so as to protrude radially inward from the distal end portion of the valve body cylinder portion 315.
  • valve body cylinder portion 315 is formed so as to be positioned on the inner cylinder wall surface 632 side with respect to the restriction portion 631 in the radial direction of the restriction recess 63.
  • FIGS. 21st Embodiment A part of the valve device according to the twenty-first embodiment is shown in FIGS.
  • the twenty-first embodiment differs from the fourteenth embodiment in the arrangement of the shielding portion 95 and the like.
  • the shielding part 95 is provided in the housing main body 21 so as to be positioned on the inlet port 220 side with respect to the shaft 32.
  • the shielding portion 95 can be disposed at a suitable distance from the relief valve 39, and the reactivity of the relief valve 39 can be ensured while suppressing direct hit of the cooling water to the relief valve 39.
  • the shielding part 95 projects the inlet port 220 and the relief valve 39 when the inlet port 220, the relief valve 39 and the shielding part 95 are projected in the axial direction of the inlet port 220 or the axial direction of the relief port 224.
  • the projection is formed so as to have an area larger than the area of the portion B2 where the projection overlaps.
  • the shielding part 95 is formed in a plate shape, and the plate thickness is uniform.
  • the formation positions and sizes of the valve body openings 410, 420, and 430 in the circumferential direction of the valve body 31 are different from those in the fifteenth embodiment.
  • the ECU 8 As shown in FIG. 122, as the valve body 31 is rotationally driven to one side in the rotational direction, the ECU 8 is configured so that all the openings of the radiator port 221, the heater port 222, and the device port 223 become the predetermined opening.
  • the drive unit 70 and the valve body 31 can be controlled so that the heater port 222 and the device port 223 are closed in the order of the device port 223 and the heater port 222.
  • the cooling efficiency of the engine 2 can be increased while maintaining the heating performance in winter.
  • the way of changing the opening degree of the radiator port 221, the heater port 222, and the device port 223 according to the rotation of the valve body 31 is the same as that of the fifteenth embodiment when the rotational position of the valve body 31 is Pr0 to Pr8. Is omitted.
  • the opening degree of the device port 223 decreases at a predetermined rate from 100% between Pr9 and Pr10.
  • the amount of cooling water flowing to the device 7 side decreases according to the opening degree of the device port 223.
  • the opening degree of the device port 223 becomes 0% (fully closed) at Pr10. Thereby, the device port 223 is closed and the flow of the cooling water to the device 7 side is blocked.
  • the opening degree of the heater port 222 decreases at a predetermined rate from 100% between Pr11 and Pr12. As a result, the amount of cooling water flowing to the heater 6 side decreases according to the opening degree of the heater port 222.
  • the opening degree of the heater port 222 is 0% (fully closed) at Pr12. Thereby, the heater port 222 is closed and the flow of the cooling water to the heater 6 side is interrupted.
  • the decreasing rate of the opening degree of the device port 223 between Pr9 and Pr10 per unit rotation angle of the valve body 31 is the same as the decreasing rate of the opening degree of the heater port 222 between Pr11 and Pr12. .
  • the opening degree of the radiator port 221 remains 100%. That is, at this time, only the radiator port 221 has an opening degree of 100% (fully open: the predetermined opening degree).
  • the ECU 8 is configured such that all the opening degrees of the radiator port 221, the heater port 222, and the device port 223 are Pr8. After reaching the degree (100%), the device port 223 and the heater port 222 are closed by Pr10 and Pr12, and the opening of only the radiator port 221 is set to the predetermined opening (100%) at Pr13 and the valve body 70 31 can be controlled.
  • the ECU 8 is configured such that the opening degree of the radiator port 221, the heater port 222, and the device port 223 is Pr8 as the valve body 31 is rotationally driven to one side in the rotational direction. After reaching the predetermined opening (100%), the drive unit 70 and the valve body 31 can be controlled so that the heater port 222 and the device port 223 are closed in the order of the device port 223 and the heater port 222 (Pr10, Pr12).
  • a valve device according to a twenty-third embodiment will be described with reference to FIG.
  • the twenty-third embodiment is different from the fifteenth embodiment in the configuration of the valve body 31, the manner of controlling the drive unit 70 and the valve body 31, and the like.
  • the formation positions and sizes of the valve body openings 410, 420, and 430 in the circumferential direction of the valve body 31 are different from those in the fifteenth embodiment.
  • the ECU 8 As shown in FIG. 123, as the valve body 31 is rotationally driven to one side in the rotational direction, the ECU 8 is configured so that all the opening degrees of the radiator port 221, the heater port 222, and the device port 223 become the predetermined opening degree.
  • the drive unit 70 and the valve body 31 can be controlled so that the heater port 222 and the device port 223 are simultaneously closed.
  • the heat exchange from the heater 6 and the device 7 can be immediately interrupted, and the cooling rate and cooling efficiency of the engine 2 can be increased.
  • the way of changing the opening degree of the radiator port 221, the heater port 222, and the device port 223 according to the rotation of the valve body 31 is the same as that of the fifteenth embodiment when the rotational position of the valve body 31 is Pr0 to Pr8. Is omitted.
  • the opening degree of the heater port 222 and the opening degree of the device port 223 are decreased from 100% at a predetermined rate between Pr9 and Pr10. Thereby, the amount of cooling water flowing to the heater 6 side and the device 7 side decreases according to the opening degree of the heater port 222 and the opening degree of the device port 223.
  • the opening degree of the heater port 222 and the opening degree of the device port 223 become 0% (fully closed) at Pr10. Thereby, the heater port 222 and the device port 223 are closed, and the flow of the cooling water to the heater 6 side and the device 7 side is blocked.
  • the decreasing rate of the opening degree of the heater port 222 between Pr9 and Pr10 per unit rotation angle of the valve body 31 is the same as the decreasing rate of the opening degree of the device port 223 between Pr9 and Pr10. .
  • the opening degree of the radiator port 221 remains 100%. That is, at this time, only the radiator port 221 has an opening degree of 100% (fully open: the predetermined opening degree).
  • the ECU 8 is configured such that all the opening degrees of the radiator port 221, the heater port 222, and the device port 223 are Pr8. After that, the heater port 222 and the device port 223 are closed with Pr10, and the drive unit 70 and the valve body 31 are set so that the opening degree of only the radiator port 221 becomes the predetermined opening degree (100%) with Pr11. It can be controlled.
  • the ECU 8 is configured such that the opening degree of the radiator port 221, the heater port 222, and the device port 223 is Pr8 as the valve body 31 is rotationally driven to one side in the rotational direction. After reaching the predetermined opening (100%), the drive unit 70 and the valve body 31 can be controlled so that the heater port 222 and the device port 223 are simultaneously closed (Pr10).
  • a valve device according to a twenty-fourth embodiment will be described with reference to FIGS.
  • the twenty-fourth embodiment differs from the fifteenth embodiment in the configuration of the valve body 31, the way of controlling the drive unit 70 and the valve body 31, and the like.
  • the formation positions and sizes of the valve body openings 410, 420, and 430 in the circumferential direction of the valve body 31 are different from those in the fifteenth embodiment.
  • the present embodiment is a valve device 10 that can control the cooling water of the engine 2 of the vehicle 1, and includes a housing 20, a valve 30, a drive unit 70, and an ECU 8 as a control unit.
  • the ECU 8 causes the valve body 31 to rotate on one side with respect to 0 (degrees) which is the reference position in the rotation direction, for example, in winter when the environmental temperature is equal to or lower than a predetermined temperature.
  • the valve body 31 is rotationally driven, for example, in summer when the environmental temperature is higher than a predetermined temperature, the valve body 31 is rotationally driven in a cooling priority mode in which the valve body 31 is rotated on the other side with respect to the reference position in the rotational direction.
  • the ECU 8 may be configured according to the operating state of the air conditioner as a vehicle state, such as rotating the valve body 31 in a normal mode when the air conditioner is off, and in a cooling priority mode when the air conditioner is on.
  • the normal mode and the cooling priority mode may be switched.
  • the ECU 8 may switch between the normal mode and the cooling priority mode according to both the vehicle environment and the vehicle state.
  • the ECU 8 determines that “the vehicle environment such as the outside air temperature, the temperature inside the vehicle interior, or the temperature difference between the outside air temperature and the vehicle interior temperature” and / or “the load state of the engine 2, the vehicle speed, or the acceleration of the vehicle 1.
  • the normal mode and the cooling priority mode may be switched according to the vehicle state other than the air conditioner operating state such as the state.
  • the ECU 8 can control the drive unit 70 and the valve body 31 so that only the radiator port 221 has a predetermined opening larger than 0 at a specific rotational position of the valve body 31 in the normal mode.
  • the predetermined opening is set to such an extent that the cooling efficiency of the engine 2 can be increased, and only the radiator port 221 has the predetermined opening so that the opening becomes the predetermined opening.
  • the ECU 8 can control the drive unit 70 and the valve body 31 so that the radiator port 221 has the predetermined opening degree on both sides of the normal mode and the cooling priority mode.
  • the cooling efficiency at the time of high load of the engine 2 can be enhanced in either the normal mode or the cooling priority mode.
  • the ECU 8 can control the drive unit 70 and the valve body 31 so that the opening degree of the radiator port 221, the heater port 222, or the device port 223 becomes the predetermined opening degree.
  • the ECU 8 can control the drive unit 70 and the valve body 31 so that all the opening degrees of the radiator port 221, the heater port 222, and the device port 223 become the predetermined opening degrees in the normal mode. It is.
  • the predetermined opening is set to 60% or more.
  • the drive unit 70 and the valve body 31 are controlled so that the radiator port 221 has the predetermined opening degree in both the normal mode and the cooling priority mode. Cooling efficiency at high load can be increased appropriately.
  • the drive unit 70 and the valve body 31 controls the drive unit 70 and the valve body 31 so that the opening degree of the radiator port 221, the heater port 222 or the device port 223 becomes the predetermined opening degree alone, the surroundings of the cooling water are concentrated on the necessary portions. Therefore, the efficiency of heat exchange can be increased appropriately.
  • the radiator 5 by controlling the drive unit 70 and the valve body 31 so that all the openings of the radiator port 221, the heater port 222, and the device port 223 become the predetermined opening, in the normal mode, the radiator 5, Heat can be exchanged in all of the heater 6 and the device 7, and the engine 2 can be appropriately cooled while ensuring the heating performance.
  • the predetermined opening degree is set to 100% in order to maximize the cooling efficiency of the engine 2.
  • Pr-5 to 10 means the rotational positions Pr-5 to 10 in FIG.
  • the ECU 8 performs the normal mode in which the valve body 31 is rotated on one side (Pr0 to 10) with respect to 0 (degrees) that is the reference position in the rotation direction, depending on the vehicle environment and / or the vehicle state, or The valve element 31 is rotationally driven in a cooling priority mode in which the rotation is performed on the other side (Pr0 to ⁇ 5) with respect to the reference position in the rotation direction.
  • the heater port 222 is connected between Pr1 and Pr2.
  • the opening degree increases from 0 (%) at a predetermined rate. Thereby, an amount of cooling water corresponding to the opening degree of the heater port 222 flows to the heater 6 side.
  • the opening degree of the heater port 222 reaches 100% (full open: the predetermined opening degree) at Pr2.
  • the opening degree of the device port 223 increases from 0 (%) to a predetermined ratio between Pr3 and Pr4. Thereby, an amount of cooling water corresponding to the opening degree of the device port 223 flows to the device 7 side.
  • the opening degree of the device port 223 reaches 100% at Pr4 (fully open: the predetermined opening degree).
  • the increasing rate of the opening degree of the heater port 222 between Pr1 and Pr2 per unit rotation angle of the valve body 31 is the same as the increasing rate of the opening degree of the device port 223 between Pr3 and Pr4. (See FIGS. 124 and 125).
  • the opening degree of the radiator port 221 increases from 0 (%) at a predetermined rate between Pr5 and Pr6. Thereby, an amount of cooling water corresponding to the opening degree of the radiator port 221 flows to the radiator 5 side.
  • the opening degree of the radiator port 221 further increases at a predetermined rate between Pr6 and Pr7.
  • the opening degree of the radiator port 221 reaches 100% (full opening: the predetermined opening degree) at Pr7. Therefore, in Pr7, all the openings of the radiator port 221, the heater port 222, and the device port 223 become the predetermined opening, that is, 100%.
  • the increasing rate of the opening of the radiator port 221 between Pr5 and Pr6 per unit rotation angle of the valve body 31 is smaller than the increasing rate of the opening of the radiator port 221 between Pr6 and Pr7 (FIG. 124, 125). This is because the radiator opening 410 is formed of the extended opening 413 and the large opening 412 (see FIGS. 93 and 94).
  • the flow rate of the cooling water to the radiator 5 can be gradually increased. Thereby, the rapid temperature change of the cooling water by heat exchange of the radiator 5 can be suppressed in the normal mode.
  • the rate of increase of the opening of the radiator port 221 between Pr5 and Pr6 per unit rotation angle of the valve body 31, and the rate of increase of the opening of the radiator port 221 between Pr6 and Pr7 are Pr1 and Pr6.
  • the rate of increase in the opening degree of the heater port 222 with respect to Pr2 is smaller than the rate of increase in the opening degree of the device port 223 between Pr3 and Pr4 (see FIGS. 124 and 125).
  • the change in the flow rate of the cooling water to the radiator 5 at the initial stage of the valve opening can be made slower than the change in the flow rate of the cooling water to the heater 6 and the device 7. Thereby, the rapid temperature change of the cooling water by heat exchange of the radiator 5 can be suppressed in the normal mode.
  • the opening degree of the heater port 222 and the opening degree of the device port 223 are decreased from 100% at a predetermined rate between Pr8 and Pr9. Thereby, the amount of cooling water flowing to the heater 6 side and the device 7 side decreases according to the opening degree of the heater port 222 and the opening degree of the device port 223.
  • the opening degree of the heater port 222 and the opening degree of the device port 223 become 0% (fully closed) at Pr9. Thereby, the heater port 222 and the device port 223 are closed, and the flow of the cooling water to the heater 6 side and the device 7 side is blocked.
  • the decreasing rate of the opening degree of the heater port 222 between Pr8 and Pr9 per unit rotation angle of the valve body 31 is the same as the decreasing rate of the opening degree of the device port 223 between Pr8 and Pr9. (See FIGS. 124 and 125).
  • the opening degree of the device port 223 increases from 0 (%) at a predetermined rate. Thereby, an amount of cooling water corresponding to the opening degree of the device port 223 flows to the device 7 side. The opening degree of the device port 223 reaches 100% (full opening: the predetermined opening degree) at Pr-2.
  • the increasing rate of the opening degree of the device port 223 between Pr-1 and Pr-2 per unit rotation angle of the valve body 31 is the increasing rate of the opening degree of the device port 223 between Pr3 and Pr4. (See FIGS. 124 and 125).
  • the opening degree of the radiator port 221 increases from 0 (%) at a predetermined rate between Pr-3 and Pr-4. Thereby, an amount of cooling water corresponding to the opening degree of the radiator port 221 flows to the radiator 5 side.
  • the opening degree of the radiator port 221 reaches 100% at Pr-4 (fully open: the predetermined opening degree). Therefore, at Pr-4, the opening degree of the radiator port 221 and the device port 223 becomes the predetermined opening degree, that is, 100%.
  • the increase rate of the opening of the radiator port 221 between Pr-3 and Pr-4 per unit rotation angle of the valve body 31 is the increase rate of the opening of the radiator port 221 between Pr6 and Pr7. (See FIGS. 124 and 125).
  • the valve body 31 When the valve body 31 is further rotationally driven to the other side in the rotational direction, at Pr-5, the other of the first restriction convex part 332 or the second restriction convex part 342 comes into contact with the restriction part 631, and the valve body 31 is rotationally driven. Stop. At this time, the opening degree of the radiator port 221 and the opening degree of the device port 223 remain 100%. That is, at this time, the opening degree of the radiator port 221 and the opening degree of the device port 223 are 100% (fully open: the predetermined opening degree).
  • the ECU 8 controls the drive unit 70 so that only the radiator port 221 has a predetermined opening larger than 0 at Pr9 to 10 which are specific rotational positions of the valve body 31 in the normal mode. And the valve body 31 can be controlled.
  • the ECU 8 can control the drive unit 70 and the valve body 31 so that the radiator port 221 is at the predetermined opening degree in the normal mode Pr7 to 10 and the cooling priority mode Pr-4 to -5.
  • the ECU 8 drives the driving unit 70 so that the opening degree of the radiator port 221, the heater port 222 or the device port 223 becomes the predetermined opening degree independently at Pr9 to 10, Pr2 to 3, and Pr-2 to -3, respectively.
  • the valve body 31 can be controlled.
  • the ECU 8 can control the drive unit 70 and the valve body 31 so that all the opening degrees of the radiator port 221, the heater port 222, and the device port 223 become the predetermined opening degree in Pr7-8.
  • FIG. 25th Embodiment A part of the valve device according to the twenty-fifth embodiment is shown in FIG.
  • the twenty-fifth embodiment differs from the first embodiment in the configuration near the bearing portion 602.
  • this embodiment includes a shaft seal portion 96 instead of the shaft seal member 603.
  • the shaft seal portion 96 is provided in the shaft insertion hole 62, and an annular seal portion annular member 97 whose inner edge portion can abut against the outer peripheral wall of the shaft 32, and the inner edge portion of the shaft 32 is softer than the seal portion annular member 97.
  • An annular shaft seal member 98 that abuts on the outer peripheral wall and can hold fluid tightly between the shaft 32 is provided.
  • the inlet port 220 is formed on the radially outer side of the shaft 32. Therefore, the cooling water flowing into the internal space 200 from the inlet port 220 collides with the outer peripheral wall of the shaft 32, and the shaft 32 is likely to be shaken. When shaft blurring occurs in the shaft 32, the load on the shaft seal member 98 may increase.
  • the shaft seal portion 96 having the above-described configuration is provided, and the shaft portion of the shaft 32 is suppressed by the seal portion annular member 97 to reduce the load on the shaft seal member 98 due to the shaft shake. Thereby, the deterioration of the sealing performance due to deterioration, wear, deformation or the like of the shaft seal member 98 can be suppressed.
  • the shaft seal portion 96 further includes a seal portion holding member 99 that is harder than the seal portion annular member 97 and can hold the seal portion annular member 97 and the shaft seal member 98 in the shaft insertion hole 62.
  • the seal portion annular member 97 is made of resin.
  • the shaft seal member 98 is made of rubber.
  • the seal portion holding member 99 is made of metal.
  • the shaft portion of the shaft 32 is effectively suppressed by the seal portion annular member 97, the sealing performance of the shaft seal member 98 is secured, and the seal portion annular member 97 and the shaft seal member 98 are stabilized by the seal portion holding member 99. Can be held.
  • the shaft seal member 98 includes a first shaft seal member 981 that abuts the outer peripheral wall of the shaft 32 on the valve body 31 side with respect to a contact portion between the seal portion annular member 97 and the outer peripheral wall of the shaft 32, and the seal portion annular member
  • the second shaft seal member 982 is in contact with the outer peripheral wall of the shaft 32 on the drive unit 70 side with respect to the contact portion between 97 and the outer peripheral wall of the shaft 32.
  • the shaft seal of the shaft 32 can be suppressed by the single seal portion annular member 97, and the load on the first shaft seal member 981 and the second shaft seal member 982 due to the shaft shake can be reduced. Further, the first shaft seal member 981 and the second shaft seal member 982 that contact the outer peripheral wall of the shaft 32 on the valve body 31 side and the drive unit 70 side of the seal portion annular member 97 further improve the sealing performance of the outer periphery of the shaft 32. Can be increased.
  • the seal portion annular member 97 is formed in an annular shape from a resin such as PTFE (polytetrafluoroethylene).
  • the seal portion annular member 97 is provided such that an inner edge portion thereof can contact and slide on the outer peripheral wall of the shaft 32.
  • the shaft 32 can be smoothly rotated inside the seal portion annular member 97 by forming the seal portion annular member 97 with PTFE having a small friction coefficient.
  • the seal portion annular member 97 is provided on the valve body 31 side with respect to the partition wall through hole 65 (see FIG. 126).
  • the first shaft seal member 981 is formed in an annular shape so as to be elastically deformable by rubber such as EPDM (ethylene propylene rubber).
  • the first shaft seal member 981 is in contact with the contact portion between the seal portion annular member 97 and the outer peripheral wall of the shaft 32 so that the inner edge portion is in close contact with the outer peripheral wall of the shaft 32 on the valve body 31 side.
  • the inner edge portion of the first shaft seal member 981 is slidable with the outer peripheral wall of the shaft 32.
  • the seal annular member 97 is located inside the first shaft seal member 981 (see FIG. 126).
  • the second shaft seal member 982 is formed in an annular shape so as to be elastically deformable by rubber such as NBR (nitrile rubber).
  • the second shaft seal member 982 is in contact with the contact portion between the seal portion annular member 97 and the outer peripheral wall of the shaft 32 so that the inner edge portion is in close contact with the outer peripheral wall of the shaft 32 on the drive unit 70 side.
  • the inner edge portion of the second shaft seal member 982 is slidable with the outer peripheral wall of the shaft 32.
  • the second shaft seal member 982 is provided between the partition wall through hole 65 and the bearing portion 602 in the axial direction of the shaft 32 (see FIG. 126).
  • the seal part holding member 99 has an outer seal part holding member 990 and inner seal part holding members 991, 992, and 993.
  • the outer seal portion holding member 990 and the inner seal portion holding members 991, 992, and 993 are made of, for example, metal.
  • the outer seal portion holding member 990 is formed in a cylindrical shape, and is provided so that the outer peripheral wall is fitted in the shaft insertion hole 62.
  • the outer seal portion holding member 990 holds the first shaft seal member 981 so that the inner peripheral wall comes into contact with the outer peripheral wall of the first shaft seal member 981.
  • the inner seal portion holding member 991 is formed in an annular shape, and the end portion on the valve body 31 side of the first shaft seal member 981 and the outer seal portion holding member so that the outer edge portion is fitted to the inner peripheral wall of the outer seal portion holding member 990. 990.
  • the inner seal portion holding member 991 holds the end portion of the first shaft seal member 981 on the valve body 31 side.
  • the inner seal portion holding member 992 is formed in a cylindrical shape, and the outer seal portion holding member 990 and the first shaft seal are arranged such that the outer peripheral wall comes into contact with the inner peripheral wall of the end portion of the first shaft seal member 981 on the drive portion 70 side.
  • the member 981 is provided inside the end on the drive unit 70 side.
  • the inner seal portion holding member 992 holds the seal portion annular member 97 such that the inner peripheral wall comes into contact with the outer edge portion of the seal portion annular member 97.
  • the inner seal portion holding member 993 is formed in an annular shape, and is provided inside the end portion of the inner seal portion holding member 992 on the drive unit 70 side so that the outer edge portion is fitted to the inner peripheral wall of the inner seal portion holding member 992. ing.
  • the inner seal portion holding member 993 holds the seal portion annular member 97 such that the end portion on the valve body 31 side comes into contact with the surface on the drive portion 70 side of the seal portion annular member 97.
  • the seal portion annular member 97 and the inner seal portion holding members 992, 993 are provided on the inner side of the elastically deformable first shaft seal member 981, so that the radial direction is formed inside the shaft insertion hole 62. It can move together. Therefore, the shaft portion of the shaft 32 can be more effectively suppressed by the seal portion annular member 97.
  • first shaft seal member 981 is formed of EPDM and the second shaft seal member 982 is formed of NBR is shown.
  • the first shaft seal member 981 may be formed of NBR
  • the second shaft seal member 982 may be formed of EPDM.
  • both the first shaft seal member 981 and the second shaft seal member 982 may be formed of NBR.
  • both the first shaft seal member 981 and the second shaft seal member 982 may be formed of EPDM.
  • valve apparatus 10 may follow a perpendicular direction.
  • the valve device 10 may be attached to the engine 2 such that the shaft 32 is perpendicular to the vertical direction or is inclined. In this case, although the shaft 32 may be biased due to gravity, the seal portion annular member 97 can suppress the shaft 32 bias due to gravity.
  • FIG. 127 shows a valve device and a cooling system according to the twenty-sixth embodiment.
  • the twenty-sixth embodiment differs from the first embodiment in the arrangement of the water pump 4, the direction in which the cooling water flows, and the like.
  • the suction port and the discharge port of the water pump 4 are provided to be opposite to those in the first embodiment.
  • the water pump 4 is provided on the outlet side of the water jacket 3, sucks the cooling water flowing through the water jacket 3, and pumps the sucked cooling water toward the radiator 5, the heater 6, and the device 7.
  • the outlet of the radiator 5 is connected to the outlet port 221 of the valve device 10.
  • the outlet of the heater 6 is connected to the outlet port 222 of the valve device 10.
  • the outlet of the device 7 is connected to the outlet port 223 of the valve device 10.
  • the valve device 10 is attached to the engine 2 so that the inlet port 220 is connected to the inlet of the water jacket 3.
  • the cooling water that has flowed through the radiator 5, the heater 6, and the device 7 flows into the valve device 10 from the outlet ports 221, 222, and 223, and flows into the water jacket 3 from the inlet port 220.
  • the valve device 10 adjusts the flow rate of the cooling water flowing from the radiator 5, the heater 6, and the device 7 to the water jacket 3.
  • valve device 10 can be used in such a way that cooling water flows in from the three outlet ports (221 to 223) and cooling water flows out of the one inlet port (220).
  • valve device 10 is attached to the engine 2 so that the inlet port 220 is connected to the inlet of the water jacket 3 is shown.
  • the inlet port 220 and the water jacket 3 may be connected via a member such as a pipe, and the housing 20 of the valve device 10 may be provided away from the engine 2.
  • the first restriction convex part 332 may be formed at a position away from the second restriction convex part 342.
  • the distance between the first restriction convex part 332 and the rotation axis Axr1 may be the same as or different from the distance between the second restriction convex part 342 and the rotation axis Axr1.
  • the first restriction convex part 332 and the rotation axis Axr1 When the distance between the first restriction convex part 332 and the rotation axis Axr1 is the same as the distance between the second restriction convex part 342 and the rotation axis Axr1, the first restriction convex part 332 and the second restriction convex part 342 are restricted.
  • the contact load when contacting the part 631 and the rotation of the valve body 31 is restricted can be made the same.
  • the partition wall through hole 65 may be formed so that its cross-sectional area gradually increases from the radially outer side to the radially inner side of the shaft insertion hole 62.
  • the housing main body 21 and the partition wall 60 are formed separately.
  • the housing body 21 and the partition wall 60 may be integrally formed.
  • the inlet port 220, the outlet ports 221 to 223, and the relief port 224 are formed in a direction orthogonal to the axis of the shaft 32 .
  • the inlet port 220, the outlet ports 221 to 223, and the relief port 224 may be formed in the axial direction of the shaft 32.
  • the valve device 10 may be used so that the cooling water flows in from the outlet ports 221 to 223 and the cooling water flows out from the inlet port 220.
  • any number of inlet ports, outlet ports, and relief ports may be formed in the housing body 21.
  • valve device 10 In the above-described embodiment, the example in which the valve device 10 is applied to the engine 2 as a heating element is shown. On the other hand, in other embodiments, it may be adopted as a valve device for controlling cooling water of a battery as a heating element mounted on a hybrid vehicle, an electric vehicle or the like.
  • valve device 10 may be attached to the heating element in any posture.
  • the number of cover fixing portions is not limited to six, but may be any number, such as five, with respect to the cover main body 81.
  • the valve body 31 may have an outer peripheral wall and an inner peripheral wall formed in a cylindrical shape. Further, the valve body 31 may have at least a part of the outer peripheral wall formed in a spherical shape or a cylindrical shape. Even with such a rotary valve, the same effects as those of the fifteenth embodiment can be obtained.
  • control unit and the method described in the present disclosure are realized by a dedicated computer provided by configuring a processor and a memory programmed to execute one or more functions embodied by a computer program. May be.
  • control unit and the method thereof described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits.
  • control unit and the method thereof described in the present disclosure are based on a combination of a processor and a memory programmed to execute one or more functions and a processor configured by one or more hardware logic circuits. It may be realized by one or more configured dedicated computers.
  • the computer program may be stored in a computer-readable non-transition tangible recording medium as instructions executed by the computer.
  • the present disclosure is not limited to the above embodiment, and can be implemented in various forms without departing from the gist thereof.
  • the inlet port or the outlet port is connected to the internal combustion engine of the vehicle via a hose or the like.
  • the seal between the inlet port or the outlet port and the internal combustion engine depends on the arrangement of the fastening portion between the valve device and the internal combustion engine. The cooling performance may be reduced and the cooling water may leak outside.
  • An object of the present disclosure is to provide a valve device that can suppress leakage of cooling water from a vehicle heating element.
  • a first aspect of the present disclosure is a valve device that can control cooling water of a heating element of a vehicle, and includes a housing and a valve.
  • the housing body is fixed to the heating element by a fastening member that passes through the fastening hole and is screwed to the heating element.
  • At least three fastening holes are formed.
  • the port opening is formed inside a triangle formed by connecting three fastening holes.
  • the seal member when a seal member made of an annular elastic member is provided around the port, the seal member can be compressed with a good balance when the housing body is fixed to the heating element by the fastening member passing through the three fastening holes. Thereby, the sealing performance around the port can be effectively secured.
  • a 2nd mode of this indication is a valve device which can control cooling water of a heating element of vehicles, and is provided with a housing, a valve, a partition part, and a drive part.
  • the housing body is fixed to the heating element by a fastening member that passes through the fastening hole and is screwed to the heating element.
  • the fastening hole includes a first fastening hole formed radially outside the opening of the port, a second fastening hole formed so as to sandwich the opening of the port between the first fastening hole, and the first fastening hole and the first fastening hole. 3rd fastening hole formed in the drive part side with respect to 2 fastening holes is included.
  • the seal member when a seal member made of an annular elastic member is provided around the port, the seal member can be compressed in a balanced manner when the housing body is fixed to the heating element by the fastening member passing through the first fastening hole and the second fastening hole. . Thereby, the sealing performance around the port can be effectively secured.
  • the fastening part is fixed to the heating element by the fastening member passing through the third fastening hole, so that the influence of the vibration of the heating element on the driving part can be suppressed.
  • a valve device in which the center of the opening of the port is located on a straight line connecting the first fastening hole and the second fastening hole.
  • a valve device in which a distance between the third fastening hole and the drive unit is shorter than a distance between the third fastening hole and the center of the opening of the port.
  • the valve device is formed such that the third fastening hole is positioned on the drive unit 70 side with respect to a virtual plane passing through the center of the outlet port 223 and orthogonal to the rotation axis Axr1.
  • the first fastening hole and the second fastening hole that are point-symmetric with respect to the center of the port opening are perpendicular to the port opening surface, and a straight line passing through the center of the port opening serves as the rotation axis.
  • a valve device configured to pass through.
  • the first positioning part and the second positioning part are a second straight line connecting the first positioning part and the second positioning part with respect to a first straight line connecting the first fastening hole and the second fastening hole.
  • a valve device in which a plurality of the mounting surface recesses are formed and an inter-recess rib is formed between the plurality of mounting surface recesses.
  • the housing body is a valve device formed of polyphenylene sulfide resin containing a filler.
  • An annular seal member provided between the housing opening and the partition, and capable of maintaining a liquid-tight relationship between the housing opening and the partition;
  • the housing opening has an inner wall formed in a cylindrical shape
  • the partition wall has a partition wall body that is located inside the housing opening and has an outer wall formed in a cylindrical shape.
  • the annular seal member is provided between the housing opening and the partition wall body, A valve device in which a difference between an inner diameter of the housing opening and an outer diameter of the partition wall body is smaller than a difference between an inner diameter and an outer diameter of the annular seal member in a free state.
  • a valve device in which an axial clearance is formed in at least one of the housing main body and the partition wall in the axial direction of the annular seal member.
  • the valve body has an inner peripheral wall in a range corresponding to at least the seal opening in the rotation axis direction and the circumferential direction when all the seal openings are closed by the outer peripheral wall of the valve body. Valve device with the same distance from the outer peripheral wall.
  • the first restriction convex portion is a valve device formed at a position away from the second restriction convex portion.
  • a valve device in which a distance between the first restricting convex portion and the rotating shaft is the same as a distance between the second restricting convex portion and the rotating shaft.
  • the valve body opening rib is a valve device formed in an arc shape with a predetermined distance from the virtual spherical surface.
  • the specific shape portion is a valve device formed so that an outer wall protrudes outward from an outer peripheral wall of the tubular portion.
  • the specific shape portion is a valve device in which an outer wall is formed to be recessed inward from an outer peripheral wall of the cylindrical portion.
  • the specific shape portion is a valve device in which an outer wall is formed in a flat shape.
  • a drive unit capable of rotationally driving the valve body via one end of the shaft;
  • the valve is provided so that the second outermost end surface faces the drive unit side,
  • the valve device has an area of the second outermost end surface larger than an area of the first outermost end surface.
  • the first mold has a first outer mold formed with a first concave surface corresponding to the shape of the outer peripheral wall of the first divided body, and a first convex surface corresponding to the shape of the inner peripheral wall of the first divided body. Having a first inner mold formed;
  • the second mold has a second outer mold formed with a second concave surface corresponding to the shape of the outer peripheral wall of the second divided body, and a second convex surface corresponding to the shape of the inner peripheral wall of the second divided body.
  • the outer mold has a concave surface corresponding to the shape of the outer peripheral wall of the valve body
  • the inner mold has a convex surface corresponding to the shape of the inner peripheral wall of the valve body
  • a plurality of the cover fixing portions are formed,
  • the plurality of cover fixing portions are valve devices positioned on a virtual plane perpendicular to the mounting surface.
  • the partition wall is formed separately from the housing body,
  • the housing body has a notch portion that exposes the partition wall at an end opposite to the mounting surface.
  • the said connector part is a valve apparatus currently formed so that it may protrude in directions other than the direction perpendicular
  • the said connector part is a valve apparatus currently formed so that it may protrude in the direction parallel to the said attachment surface from the outer edge part of the said cover main body.
  • a valve device comprising an annular seal member provided between the housing opening and the partition wall and capable of maintaining a liquid-tight space between the housing opening and the partition wall.
  • the partition wall through-hole is a valve device formed so that a cross-sectional shape is an oval or a rectangle.
  • the housing through-hole is a valve device formed so that a cross-sectional shape is an oval or a rectangle.
  • the partition wall through-hole and the housing through-hole are valve devices formed coaxially.
  • the partition wall through hole is formed such that a cross-sectional area thereof gradually increases from the radially outer side to the radially inner side of the shaft insertion hole.
  • a valve device (10) capable of controlling cooling water of a heating element (2) of a vehicle (1), An inner space (200) formed inside, a housing (20) having ports (220, 221, 222, 223) connecting the inner space and the outside; A valve body (31) provided in the internal space so as to be rotatable around a rotation axis (Axr1), and a valve (30) capable of opening and closing the port according to a rotational position of the valve body;
  • a valve device comprising:
  • constituent elements other than the constituent elements shown in the minimum basic configuration are not essential elements of each embodiment.

Abstract

A valve (30) has a valve body capable of rotating around a rotational axis inside an internal space (200), and a shaft (32) provided on the rotational axis, and is able to open and close a port on the basis of the rotational position of the valve body. A shaft bearing (90) has: a bearing main body (91) the inside of which is capable of bearing an end portion of the shaft (32), and which extends in a tubular shape from an opposing inner wall (213), which is a portion of the inner wall of a housing main body (21) forming the internal space (200), said portion opposing the end portion of the shaft (32); and a bearing flow passage (92) formed so as to connect an inner circumferential wall and outer circumferential wall of the bearing main body (91).

Description

バルブ装置Valve device 関連出願の相互参照Cross-reference of related applications
 本出願は、2018年5月31日に出願された特許出願番号2018-105458号、2018年12月13日に出願された特許出願番号2018-233917号に基づくものであり、ここにその記載内容を援用する。 This application is based on patent application No. 2018-105458 filed on May 31, 2018, and patent application No. 2018-233917 filed on December 13, 2018, the contents of which are described herein. Is used.
 本開示は、バルブ装置に関する。 This disclosure relates to a valve device.
 従来、回転する弁体を有するバルブ装置が知られている。 Conventionally, a valve device having a rotating valve element is known.
独国特許出願公開第102017004458号明細書German Patent Application Publication No. 102017004458
 例えば特許文献1に記載されたバルブ装置では、弁体の回転軸に設けられたシャフトの端部は、内部空間を形成するハウジング本体の内壁から弁体とは反対側へ筒状に延びる軸受部により軸受けされている。
 そのため、内部空間内の空気が軸受部の内側に溜まるおそれがある。これにより、シャフトの端部と軸受部とが乾燥した状態で摺動するおそれがある。したがって、シャフトの端部または軸受部が摩耗するおそれがある。
For example, in the valve device described in Patent Document 1, the end portion of the shaft provided on the rotating shaft of the valve body has a bearing portion that extends in a cylindrical shape from the inner wall of the housing body that forms the internal space to the opposite side of the valve body. It is supported by.
Therefore, there is a possibility that air in the internal space is accumulated inside the bearing portion. Thereby, there exists a possibility that the edge part of a shaft and a bearing part may slide in the dry state. Therefore, the end of the shaft or the bearing may be worn.
 本開示の目的は、シャフトの端部の摩耗を抑制可能なバルブ装置を提供することにある。 An object of the present disclosure is to provide a valve device that can suppress wear of an end portion of a shaft.
<9-1>シャフト軸受部流路
 本開示は、車両の発熱体の冷却水を制御可能なバルブ装置であって、ハウジングとバルブとシャフト軸受部とを備えている。
 シャフト軸受部は、内部空間を形成するハウジング本体の内壁のうちシャフトの端部に対向する内壁である対向内壁から筒状に延び内側でシャフトの端部を軸受け可能な軸受部本体、および、軸受部本体の内周壁と外周壁とを接続するよう形成された軸受部流路を有している。
<9-1> Shaft Bearing Portion The present disclosure is a valve device capable of controlling the cooling water of a vehicle heating element, and includes a housing, a valve, and a shaft bearing portion.
A shaft bearing portion extends in a cylindrical shape from an opposing inner wall that is an inner wall facing the end portion of the shaft of the inner wall of the housing main body forming an internal space, and is capable of bearing the end portion of the shaft on the inside, and a bearing It has a bearing part channel formed so as to connect the inner peripheral wall and the outer peripheral wall of the main part.
 そのため、軸受部本体の内側に空気が溜まったとしても、軸受部流路を経由して当該空気を軸受部本体の外側へ排出することができる。これにより、シャフトの端部とシャフト軸受部とが乾燥した状態で摺動するのを抑制することができる。したがって、シャフトの端部またはシャフト軸受部が摩耗するのを抑制することができる。 Therefore, even if air accumulates inside the bearing unit body, the air can be discharged to the outside of the bearing unit body via the bearing unit flow path. Thereby, it can suppress that the edge part of a shaft and a shaft bearing part slide in the dry state. Therefore, it is possible to suppress wear of the end portion of the shaft or the shaft bearing portion.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態のバルブ装置を適用した冷却システムを示す模式図であり、 図2は、第1実施形態のバルブ装置の車両における配置を示す模式図であり、 図3は、第1実施形態のバルブ装置を示す断面図であり、 図4は、第1実施形態のバルブ装置のシールユニットの近傍を示す断面図であり、 図5は、第1実施形態のバルブ装置を示す断面斜視図であり、 図6は、図3のVI-VI線断面図であり、 図7は、第1実施形態のバルブ装置の弁体の回転位置と弁体開口部の開閉状態との関係を示す図であり、 図8は、図3を矢印VIIIの方向から見た図であり、 図9は、図3を矢印IXの方向から見た図であり、 図10は、第1実施形態のバルブ装置の一部を示す斜視図であり、 図11は、第1実施形態のバルブ装置の駆動部の近傍を示す断面図であり、 図12は、第1実施形態のバルブ装置の駆動部の近傍を示す断面図であり、 図13は、第1実施形態のバルブ装置の駆動部の近傍を示す断面図であり、 図14は、第1実施形態のバルブ装置の駆動部の近傍を示す断面図であり、 図15は、第1実施形態のバルブ装置の駆動部を示す平面図であり、 図16は、第1実施形態のバルブ装置の駆動部の近傍を示す断面図であり、 図17は、第1実施形態のバルブ装置の駆動部カバーおよび駆動部の一部を示す分解斜視図であり、 図18は、第1実施形態のバルブ装置の駆動部カバーおよび駆動部の一部を示す分解斜視図であり、 図19は、第2実施形態のバルブ装置の駆動部を示す図であり、 図20は、第3実施形態のバルブ装置のバルブを示す図であり、 図21は、第3実施形態のバルブ装置のバルブの一部を示す図であり、 図22は、第3実施形態のバルブ装置のバルブを示す斜視図であり、 図23は、第3実施形態のバルブ装置のバルブを示す斜視図であり、 図24は、第3実施形態のバルブ装置のバルブの一部を示す図であり、 図25は、第3実施形態のバルブ装置のバルブの一部およびシールユニットを示す断面図であり、 図26は、第3実施形態のバルブ装置のバルブおよびシールユニットを示す斜視図であり、 図27は、第3実施形態のバルブ装置のバルブの一部を示す斜視図であり、 図28は、第3実施形態のバルブ装置のバルブの一部を示す断面図であり、 図29は、第3実施形態のバルブ装置のバルブの製造工程を説明するための図であり、 図30は、第3実施形態のバルブ装置のバルブの製造工程を説明するための図であり、 図31は、第3実施形態のバルブ装置のバルブの製造工程を説明するための図であり、 図32は、第3実施形態のバルブ装置のバルブの製造工程を説明するための図であり、 図33は、第4実施形態のバルブ装置のバルブの一部およびシールユニットを示す断面図であり、 図34は、第5実施形態のバルブ装置のバルブの一部を示す断面図であり、 図35は、第5実施形態のバルブ装置のバルブの製造工程で用いる型装置を示す斜視図であり、 図36は、第5実施形態のバルブ装置のバルブの製造工程で用いる型装置の一部を示す斜視図であり、 図37は、第5実施形態のバルブ装置のバルブの製造工程で用いる型装置の一部を示す斜視図であり、 図38は、第5実施形態のバルブ装置のバルブの製造工程で用いる型装置の一部を示す斜視図であり、 図39は、第5実施形態のバルブ装置のバルブの製造工程を説明するための図であり、 図40は、第5実施形態のバルブ装置のバルブの製造工程を説明するための図であり、 図41は、第5実施形態のバルブ装置のバルブの製造工程を説明するための図であり、 図42は、第6実施形態のバルブ装置を示す断面図であり、 図43は、第6実施形態のバルブ装置を示す図であり、 図44は、第6実施形態のバルブ装置の車両における配置を示す模式図であり、 図45は、第6実施形態のバルブ装置を示す図であり、 図46は、第6実施形態のバルブ装置を示す斜視図であり、 図47は、図42を矢印XLVII方向から見た図であり、 図48は、第6実施形態のバルブ装置を示す斜視図であり、 図49は、第6実施形態のバルブ装置の一部を示す図であり、 図50は、第6実施形態のバルブ装置のパイプ部材、シールユニット、ガスケットを示す断面図であり、 図51は、第6実施形態のバルブ装置の一部を示す分解図であり、 図52は、第6実施形態のバルブ装置の隔壁貫通穴の近傍を示す断面図であり、 図53は、第7実施形態のバルブ装置の隔壁貫通穴の近傍を示す断面図であり、 図54は、第8実施形態のバルブ装置の隔壁貫通穴の近傍を示す断面図であり、 図55は、第9実施形態のバルブ装置の隔壁貫通穴の近傍を示す断面図であり、 図56は、第10実施形態のバルブ装置の隔壁貫通穴を示す図であり、 図57は、第10実施形態のバルブ装置の隔壁貫通穴を示す図であり、 図58は、第11実施形態のバルブ装置の隔壁貫通穴を示す図であり、 図59は、第12実施形態のバルブ装置の隔壁貫通穴の近傍を示す断面図であり、 図60は、第13実施形態のバルブ装置の隔壁貫通穴を示す図であり、 図61は、第14実施形態のバルブ装置を示す図であり、 図62は、図61を矢印LXII方向から見た図であり、 図63は、図61を矢印LXIII方向から見た図であり、 図64は、図61を矢印LXIV方向から見た図であり、 図65は、図61を矢印LXV方向から見た図であり、 図66は、図62を矢印LXVI方向から見た図であり、 図67は、図62のLXVII-LXVII線断面図であり、 図68は、図64のLXVIII-LXVIII線断面図であり、 図69は、図67のLXIX-LXIX線断面図であり、 図70は、図62のLXX-LXX線断面図であり、 図71は、図62のLXXI-LXXI線断面図であり、 図72は、図62のLXXII-LXXII線断面図であり、 図73は、図62のLXXIII-LXXIII線断面図であり、 図74は、第14実施形態のバルブ装置を示す斜視図であり、 図75は、第14実施形態のバルブ装置を示す斜視図であり、 図76は、第14実施形態のバルブ装置を示す斜視図であり、 図77は、第14実施形態のバルブ装置を示す斜視図であり、 図78は、第14実施形態のバルブ装置の一部を示す分解図であり、 図79は、図62のLXXIX-LXXIX線断面図であり、 図80は、第14実施形態のバルブ装置の駆動部カバーおよび駆動部の一部を示す図であり、 図81は、第14実施形態のバルブ装置の保持部材を示す図であり、 図82は、図81を矢印LXXXII方向から見た図であり、 図83は、第14実施形態のバルブ装置の駆動部を示す平面図であり、 図84は、図62のLXXXIV-LXXXIV線断面図であり、 図85は、第14実施形態のバルブ装置の駆動部カバーおよび駆動部の一部を示す分解斜視図であり、 図86は、第14実施形態のバルブ装置の駆動部カバーおよび駆動部の一部を示す分解斜視図であり、 図87は、第1実施形態のバルブ装置の駆動部カバーおよび駆動部の一部を示す図であり、 図88は、第1実施形態のバルブ装置の保持部材を示す図であり、 図89は、図88を矢印LXXXIX方向から見た図であり、 図90は、第14実施形態のバルブ装置のバルブを示す図であり、 図91は、図90を矢印XCI方向から見た図であり、 図92は、図90を矢印XCII方向から見た図であり、 図93は、図90を矢印XCIII方向から見た図であり、 図94は、図90を矢印XCIV方向から見た図であり、 図95は、図93を矢印XCV方向から見た図であり、 図96は、図91のXCVI-XCVI線断面図であり、 図97は、第14実施形態のバルブ装置のバルブを示す斜視図であり、 図98は、第14実施形態のバルブ装置のバルブを示す斜視図であり、 図99は、第14実施形態のバルブ装置のバルブおよびシールユニットを示す斜視図であり、 図100は、第14実施形態のバルブ装置のバルブの一部を示す図であり、 図101は、第14実施形態のバルブ装置のバルブの一部を示す斜視図であり、 図102は、第14実施形態のバルブ装置のバルブの一部を示す分解斜視図であり、 図103は、第14実施形態のバルブ装置の隔壁部を示す断面図であり、 図104は、第14実施形態のバルブ装置の隔壁部の一部を示す斜視図であり、 図105は、第14実施形態のバルブ装置のシャフト軸受部およびその近傍を示す断面図であり、 図106は、第14実施形態のバルブ装置のシャフト軸受部およびその近傍を示す断面図であり、 図107は、第14実施形態のバルブ装置のシャフト軸受部およびその近傍を示す断面斜視図であり、 図108は、図67のCVIII-CVIII線断面図であり、 図109は、第14実施形態のバルブ装置の弁体とハウジング内壁との間の隙間を示す断面図であり、 図110は、第14実施形態のバルブ装置のハウジングを示す図であり、 図111は、第14実施形態のバルブ装置のハウジングを示す斜視図であり、 図112は、図64のCXII-CXII線断面図であり、 図113は、第15実施形態のバルブ装置の弁体の回転位置とポートの開度との関係を示す図であり、 図114は、第15実施形態のバルブ装置の弁体の回転位置と、弁体開口部とポートとの重合割合との関係を示す図であり、 図115は、第16実施形態のバルブ装置を示す図であり、 図116は、第17実施形態のバルブ装置のバルブを示す図であり、 図117は、第18実施形態のバルブ装置のバルブを示す図であり、 図118は、第19実施形態のバルブ装置の隔壁部の一部を示す断面図であり、 図119は、第20実施形態のバルブ装置の隔壁部およびその近傍を示す断面図であり、 図120は、第21実施形態のバルブ装置のハウジングを示す図であり、 図121は、第21実施形態のバルブ装置のハウジングを示す斜視図であり、 図122は、第22実施形態のバルブ装置の弁体の回転位置と、弁体開口部とポートとの重合割合との関係を示す図であり、 図123は、第23実施形態のバルブ装置の弁体の回転位置と、弁体開口部とポートとの重合割合との関係を示す図であり、 図124は、第24実施形態のバルブ装置の弁体の回転位置とポートの開度との関係を示す図であり、 図125は、第24実施形態のバルブ装置の弁体の回転位置と、弁体開口部とポートとの重合割合との関係を示す図であり、 図126は、第25実施形態のバルブ装置のシャフトシール部およびその近傍を示す断面図であり、 図127は、第26実施形態のバルブ装置を適用した冷却システムを示す模式図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a schematic diagram showing a cooling system to which the valve device of the first embodiment is applied. FIG. 2 is a schematic diagram showing an arrangement of the valve device of the first embodiment in a vehicle. FIG. 3 is a cross-sectional view showing the valve device of the first embodiment, FIG. 4 is a cross-sectional view showing the vicinity of the seal unit of the valve device of the first embodiment, FIG. 5 is a cross-sectional perspective view showing the valve device of the first embodiment, 6 is a cross-sectional view taken along line VI-VI in FIG. FIG. 7 is a diagram showing the relationship between the rotational position of the valve body of the valve device of the first embodiment and the open / closed state of the valve body opening, FIG. 8 is a view of FIG. 3 as viewed from the direction of arrow VIII. FIG. 9 is a diagram of FIG. 3 viewed from the direction of the arrow IX. FIG. 10 is a perspective view showing a part of the valve device of the first embodiment. FIG. 11 is a cross-sectional view showing the vicinity of the drive unit of the valve device of the first embodiment. FIG. 12 is a cross-sectional view showing the vicinity of the drive unit of the valve device of the first embodiment, FIG. 13 is a cross-sectional view showing the vicinity of the drive unit of the valve device of the first embodiment, FIG. 14 is a cross-sectional view showing the vicinity of the drive unit of the valve device of the first embodiment, FIG. 15 is a plan view showing a drive unit of the valve device of the first embodiment, FIG. 16 is a cross-sectional view showing the vicinity of the drive unit of the valve device of the first embodiment; FIG. 17 is an exploded perspective view showing a part of the drive unit cover and the drive unit of the valve device of the first embodiment, FIG. 18 is an exploded perspective view showing a drive unit cover and a part of the drive unit of the valve device of the first embodiment. FIG. 19 is a diagram illustrating a drive unit of the valve device according to the second embodiment. FIG. 20 is a view showing a valve of the valve device of the third embodiment, FIG. 21 is a diagram showing a part of a valve of the valve device of the third embodiment, FIG. 22 is a perspective view showing a valve of the valve device of the third embodiment, FIG. 23 is a perspective view showing a valve of the valve device of the third embodiment, FIG. 24 is a diagram showing a part of a valve of the valve device of the third embodiment, FIG. 25 is a cross-sectional view showing a part of a valve and a seal unit of the valve device of the third embodiment, FIG. 26 is a perspective view showing a valve and a seal unit of the valve device of the third embodiment, FIG. 27 is a perspective view showing a part of a valve of the valve device of the third embodiment, FIG. 28 is a cross-sectional view showing a part of a valve of the valve device of the third embodiment, FIG. 29 is a diagram for explaining a manufacturing process of the valve of the valve device according to the third embodiment. FIG. 30 is a view for explaining a manufacturing process of the valve of the valve device of the third embodiment. FIG. 31 is a diagram for explaining a manufacturing process of the valve of the valve device of the third embodiment. FIG. 32 is a diagram for explaining a manufacturing process of the valve of the valve device according to the third embodiment. FIG. 33 is a cross-sectional view showing a part of a valve and a seal unit of the valve device of the fourth embodiment, FIG. 34 is a cross-sectional view showing a part of the valve of the valve device of the fifth embodiment, FIG. 35 is a perspective view showing a mold apparatus used in the valve manufacturing process of the valve apparatus of the fifth embodiment, FIG. 36 is a perspective view showing a part of a mold apparatus used in the valve manufacturing process of the valve apparatus of the fifth embodiment; FIG. 37 is a perspective view showing a part of a mold apparatus used in the valve manufacturing process of the valve apparatus of the fifth embodiment; FIG. 38 is a perspective view showing a part of a mold apparatus used in the valve manufacturing process of the valve apparatus of the fifth embodiment; FIG. 39 is a diagram for explaining a manufacturing process of the valve of the valve device according to the fifth embodiment. FIG. 40 is a diagram for explaining a manufacturing process of the valve of the valve device according to the fifth embodiment. FIG. 41 is a diagram for explaining a manufacturing process of the valve of the valve device according to the fifth embodiment. FIG. 42 is a cross-sectional view showing the valve device of the sixth embodiment, FIG. 43 is a view showing the valve device of the sixth embodiment, FIG. 44 is a schematic diagram showing an arrangement of the valve device of the sixth embodiment in a vehicle. FIG. 45 is a view showing a valve device of a sixth embodiment, FIG. 46 is a perspective view showing the valve device of the sixth embodiment, 47 is a diagram of FIG. 42 viewed from the direction of arrow XLVII. FIG. 48 is a perspective view showing the valve device of the sixth embodiment, FIG. 49 is a diagram showing a part of the valve device of the sixth embodiment, FIG. 50 is a cross-sectional view showing a pipe member, a seal unit, and a gasket of the valve device of the sixth embodiment. FIG. 51 is an exploded view showing a part of the valve device of the sixth embodiment, FIG. 52 is a cross-sectional view showing the vicinity of the partition wall through-hole of the valve device of the sixth embodiment, FIG. 53 is a cross-sectional view showing the vicinity of the partition wall through-hole of the valve device of the seventh embodiment; FIG. 54 is a cross-sectional view showing the vicinity of the partition wall through-hole of the valve device of the eighth embodiment, FIG. 55 is a cross-sectional view showing the vicinity of the partition wall through-hole of the valve device of the ninth embodiment, FIG. 56 is a view showing a partition wall through hole of the valve device of the tenth embodiment; FIG. 57 is a view showing a partition wall through-hole of the valve device of the tenth embodiment, FIG. 58 is a diagram showing a partition through hole of the valve device of the eleventh embodiment, FIG. 59 is a cross-sectional view showing the vicinity of the partition wall through-hole of the valve device of the twelfth embodiment, FIG. 60 is a view showing a partition wall through-hole of the valve device according to the thirteenth embodiment. FIG. 61 is a diagram showing a valve device according to a fourteenth embodiment, 62 is a diagram of FIG. 61 viewed from the direction of the arrow LXII, 63 is a diagram of FIG. 61 viewed from the direction of the arrow LXIII, 64 is a diagram of FIG. 61 viewed from the direction of the arrow LXIV. FIG. 65 is a view of FIG. 61 viewed from the direction of the arrow LXV. 66 is a diagram of FIG. 62 viewed from the direction of the arrow LXVI. 67 is a cross-sectional view taken along line LXVII-LXVII in FIG. 68 is a cross-sectional view taken along line LXVIII-LXVIII of FIG. 69 is a cross-sectional view taken along line LXIX-LXIX of FIG. 70 is a cross-sectional view taken along line LXX-LXX in FIG. 71 is a cross-sectional view taken along line LXXI-LXXI of FIG. 72 is a cross-sectional view taken along line LXXII-LXXII of FIG. FIG. 73 is a sectional view taken along line LXXIII-LXXIII in FIG. FIG. 74 is a perspective view showing the valve device of the fourteenth embodiment, FIG. 75 is a perspective view showing a valve device according to a fourteenth embodiment, FIG. 76 is a perspective view showing a valve device according to a fourteenth embodiment, FIG. 77 is a perspective view showing a valve device according to a fourteenth embodiment, FIG. 78 is an exploded view showing a part of the valve device according to the fourteenth embodiment. 79 is a cross-sectional view taken along line LXXIX-LXXIX of FIG. FIG. 80 is a diagram illustrating a drive unit cover and a part of the drive unit of the valve device according to the fourteenth embodiment. FIG. 81 is a view showing a holding member of the valve device of the fourteenth embodiment, 82 is a view of FIG. 81 viewed from the direction of the arrow LXXXII, FIG. 83 is a plan view showing a drive unit of the valve device of the fourteenth embodiment, 84 is a cross-sectional view taken along line LXXXIV-LXXXIV of FIG. FIG. 85 is an exploded perspective view showing a drive unit cover and a part of the drive unit of the valve device of the fourteenth embodiment; FIG. 86 is an exploded perspective view showing a drive unit cover and a part of the drive unit of the valve device of the fourteenth embodiment; FIG. 87 is a diagram illustrating a drive unit cover and a part of the drive unit of the valve device according to the first embodiment. FIG. 88 is a view showing a holding member of the valve device of the first embodiment, 89 is a diagram of FIG. 88 viewed from the direction of the arrow LXXXIX. FIG. 90 is a view showing a valve of the valve device of the fourteenth embodiment, 91 is a diagram of FIG. 90 viewed from the direction of the arrow XCI. FIG. 92 is a view of FIG. 90 as seen from the direction of arrow XCII. FIG. 93 is a view of FIG. 90 viewed from the direction of arrow XCIII. FIG. 94 is a view of FIG. 90 viewed from the direction of arrow XCIV. FIG. 95 is a view of FIG. 93 viewed from the direction of the arrow XCV. 96 is a cross-sectional view taken along line XCVI-XCVI of FIG. FIG. 97 is a perspective view showing a valve of the valve device of the fourteenth embodiment, FIG. 98 is a perspective view showing a valve of the valve device of the fourteenth embodiment; FIG. 99 is a perspective view showing a valve and a seal unit of the valve device of the fourteenth embodiment, FIG. 100 is a diagram illustrating a part of a valve of the valve device according to the fourteenth embodiment. FIG. 101 is a perspective view showing a part of a valve of the valve device of the fourteenth embodiment; FIG. 102 is an exploded perspective view showing a part of the valve of the valve device according to the fourteenth embodiment. FIG. 103 is a cross-sectional view showing a partition wall portion of the valve device of the fourteenth embodiment; FIG. 104 is a perspective view showing a part of the partition wall of the valve device according to the fourteenth embodiment. FIG. 105 is a cross-sectional view showing the shaft bearing portion of the valve device according to the fourteenth embodiment and the vicinity thereof. FIG. 106 is a cross-sectional view showing the shaft bearing portion of the valve device according to the fourteenth embodiment and the vicinity thereof. FIG. 107 is a cross-sectional perspective view showing the shaft bearing portion of the valve device according to the fourteenth embodiment and the vicinity thereof. 108 is a cross-sectional view taken along line CVIII-CVIII in FIG. FIG. 109 is a cross-sectional view showing a gap between the valve body and the inner wall of the valve device of the fourteenth embodiment; FIG. 110 is a diagram illustrating a housing of a valve device according to a fourteenth embodiment. FIG. 111 is a perspective view showing a housing of the valve device of the fourteenth embodiment, 112 is a cross-sectional view taken along line CXII-CXII of FIG. FIG. 113 is a diagram illustrating the relationship between the rotational position of the valve body of the valve device according to the fifteenth embodiment and the opening of the port; FIG. 114 is a diagram showing the relationship between the rotational position of the valve body of the valve device of the fifteenth embodiment and the polymerization ratio of the valve body opening and the port; FIG. 115 is a view showing a valve device according to a sixteenth embodiment. FIG. 116 is a view showing a valve of the valve device of the seventeenth embodiment, FIG. 117 is a view showing a valve of the valve device of the eighteenth embodiment, FIG. 118 is a cross-sectional view showing a part of the partition wall portion of the valve device of the nineteenth embodiment; FIG. 119 is a cross-sectional view showing a partition wall portion and its vicinity of the valve device of the twentieth embodiment, FIG. 120 is a view showing a housing of the valve device of the 21st embodiment, FIG. 121 is a perspective view showing a housing of the valve device of the twenty-first embodiment, FIG. 122 is a diagram showing the relationship between the rotational position of the valve body of the valve device of the 22nd embodiment and the polymerization rate of the valve body opening and the port; FIG. 123 is a diagram showing the relationship between the rotational position of the valve body of the valve device of the 23rd embodiment and the polymerization ratio of the valve body opening and the port; FIG. 124 is a diagram illustrating the relationship between the rotational position of the valve body of the valve device of the twenty-fourth embodiment and the opening of the port; FIG. 125 is a diagram illustrating the relationship between the rotational position of the valve body of the valve device according to the twenty-fourth embodiment and the polymerization ratio between the valve body opening and the port; FIG. 126 is a cross-sectional view showing a shaft seal portion and its vicinity of a valve device according to a 25th embodiment, FIG. 127 is a schematic diagram showing a cooling system to which the valve device of the twenty-sixth embodiment is applied.
 以下、複数の実施形態によるバルブ装置を図面に基づき説明する。なお、複数の実施形態において実質的に同一の構成部位には同一の符号を付し、説明を省略する。また、複数の実施形態において実質的に同一の構成部位は、同一または同様の作用効果を奏する。
  (第1実施形態)
 第1実施形態によるバルブ装置および冷却システムを図1に示す。バルブ装置10は、車両1の冷却システム9に適用される。車両1は、発熱体としての内燃機関(以下、「エンジン」という。)2、冷却システム9、ヒータ6、デバイス7等を搭載している。
Hereinafter, valve devices according to a plurality of embodiments will be described with reference to the drawings. Note that, in a plurality of embodiments, substantially the same components are denoted by the same reference numerals, and description thereof is omitted. In the plurality of embodiments, substantially the same constituent parts have the same or similar operational effects.
(First embodiment)
A valve device and a cooling system according to the first embodiment are shown in FIG. The valve device 10 is applied to the cooling system 9 of the vehicle 1. The vehicle 1 is equipped with an internal combustion engine (hereinafter referred to as “engine”) 2 as a heating element, a cooling system 9, a heater 6, a device 7, and the like.
<冷却システム>
 冷却システム9は、バルブ装置10、ウォーターポンプ4、ラジエータ5、電子制御ユニット(以下、「ECU」という)8等を備えている。ウォーターポンプ4は、冷却水をエンジン2のウォータージャケット3に向けて圧送する。バルブ装置10は、例えばウォータージャケット3の出口に設けられ、ラジエータ5、ヒータ6、デバイス7へ送る冷却水の流量を調整する。
<Cooling system>
The cooling system 9 includes a valve device 10, a water pump 4, a radiator 5, an electronic control unit (hereinafter referred to as “ECU”) 8, and the like. The water pump 4 pumps the cooling water toward the water jacket 3 of the engine 2. The valve device 10 is provided at the outlet of the water jacket 3, for example, and adjusts the flow rate of the cooling water sent to the radiator 5, the heater 6, and the device 7.
 ラジエータ5は、熱交換器であり、冷却水と空気との間で熱交換を行い冷却水の温度を下げる。ヒータ6およびデバイス7は、バルブ装置10とウォーターポンプ4との間に設けられている。ここで、デバイス7は、例えばオイルクーラ、EGRクーラ、ATF(自動変速機油)クーラ等を含む。 The radiator 5 is a heat exchanger, and performs heat exchange between the cooling water and air to lower the temperature of the cooling water. The heater 6 and the device 7 are provided between the valve device 10 and the water pump 4. Here, the device 7 includes, for example, an oil cooler, an EGR cooler, an ATF (automatic transmission oil) cooler, and the like.
 ヒータ6に冷却水を流すと車両1内の空気と冷却水との間で熱交換が行われる。デバイス7に冷却水を流すと、デバイス7を流れる流体(オイル、EGRガス等)と冷却水との間で熱交換が行われる。ECU8は、バルブ装置10の作動を制御し、ラジエータ5、ヒータ6、デバイス7へ送る冷却水の流量を制御可能である。 When cooling water is passed through the heater 6, heat exchange is performed between the air in the vehicle 1 and the cooling water. When cooling water flows through the device 7, heat exchange is performed between the fluid (oil, EGR gas, etc.) flowing through the device 7 and the cooling water. The ECU 8 can control the operation of the valve device 10 and control the flow rate of the cooling water sent to the radiator 5, the heater 6, and the device 7.
<バルブ装置>
 図3に示すように、バルブ装置10は、ハウジング20、バルブ30、シールユニット35、パイプ部材50、隔壁部60、駆動部70、駆動部カバー80等を備えている。
 ハウジング20は、ハウジング本体21等を有している。ハウジング本体21は、例えば樹脂により形成され、内側に内部空間200を形成している。ハウジング本体21の外壁には、平面状の取付面201が形成されている。ハウジング本体21の取付面201とは反対側の外壁には、平面状のパイプ取付面202が形成されている。ここで、取付面201は、パイプ取付面202に対し概ね平行となるよう形成されている。
<Valve device>
As shown in FIG. 3, the valve device 10 includes a housing 20, a valve 30, a seal unit 35, a pipe member 50, a partition wall 60, a driving unit 70, a driving unit cover 80, and the like.
The housing 20 has a housing body 21 and the like. The housing body 21 is made of, for example, resin, and forms an internal space 200 inside. A flat mounting surface 201 is formed on the outer wall of the housing body 21. A flat pipe mounting surface 202 is formed on the outer wall of the housing body 21 opposite to the mounting surface 201. Here, the attachment surface 201 is formed so as to be substantially parallel to the pipe attachment surface 202.
 ここで、ハウジング本体21は、ハウジング20の一部であって、内部空間200を形成する部位を意味する。そのため、後述する締結部231~233、ハウジング側固定部251~256、ハウジング接続部259、ハウジング側カバー固定部291~296は、ハウジング20を構成する部位ではあるものの、ハウジング本体21とは異なる部位として形成されている。 Here, the housing body 21 is a part of the housing 20 that forms the internal space 200. Therefore, fastening portions 231 to 233, housing side fixing portions 251 to 256, a housing connection portion 259, and housing side cover fixing portions 291 to 296, which will be described later, are portions constituting the housing 20, but are different from the housing main body 21. It is formed as.
 ハウジング本体21には、内部空間200とハウジング本体21の外部とを接続するハウジング開口部210が形成されている。また、ハウジング本体21は、一端がハウジング開口部210に接続し内部空間200を形成する筒状のハウジング内壁211を有している。ここで、ハウジング内壁211は、軸が取付面201およびパイプ取付面202に対し概ね平行となるよう形成されている。 The housing body 21 has a housing opening 210 that connects the internal space 200 and the outside of the housing body 21. The housing body 21 has a cylindrical housing inner wall 211 having one end connected to the housing opening 210 to form the internal space 200. Here, the housing inner wall 211 is formed so that the shaft is substantially parallel to the attachment surface 201 and the pipe attachment surface 202.
 ハウジング本体21の長手方向の一端側にはハウジング開口部210が形成され、長手方向の他端側は閉塞面となっている。 A housing opening 210 is formed on one end side in the longitudinal direction of the housing body 21, and the other end side in the longitudinal direction is a closed surface.
 ハウジング20は、取付面201に開口し内部空間200とハウジング本体21の外部とを接続する入口ポート220を有している。取付面201における入口ポート220の開口は、円形である。ここで、入口ポート220は、「ポート」、「第1ポート」に対応している。ハウジング20は、パイプ取付面202に開口し内部空間200とハウジング本体21の外部とを接続する出口ポート221、222、223を有している。ここで、出口ポート221、222、223は、「ポート」、「第2ポート」に対応している。 The housing 20 has an inlet port 220 that opens to the mounting surface 201 and connects the internal space 200 and the outside of the housing body 21. The opening of the inlet port 220 in the mounting surface 201 is circular. Here, the inlet port 220 corresponds to “port” and “first port”. The housing 20 has outlet ports 221, 222, and 223 that open to the pipe mounting surface 202 and connect the internal space 200 and the outside of the housing body 21. Here, the exit ports 221, 222, and 223 correspond to “port” and “second port”.
 入口ポート220の開口は、ハウジング内壁211のうち出口ポート221~223の開口が形成された部位に対向する部位に形成されている。 The opening of the inlet port 220 is formed in a portion of the housing inner wall 211 that faces the portion where the openings of the outlet ports 221 to 223 are formed.
 図8に示すように、ハウジング20は、パイプ取付面202に開口し内部空間200とハウジング本体21の外部とを接続するリリーフポート224を有している。 As shown in FIG. 8, the housing 20 has a relief port 224 that opens in the pipe mounting surface 202 and connects the internal space 200 and the outside of the housing body 21.
 入口ポート220の軸方向から見て、入口ポート220とリリーフポート224とは一部が重なり合っている(図9参照)。 As seen from the axial direction of the inlet port 220, the inlet port 220 and the relief port 224 partially overlap (see FIG. 9).
 出口ポート221、222、223は、ハウジング本体21のハウジング開口部210とは反対側の端部からハウジング開口部210側へ向かって、この順で並ぶよう形成されている。出口ポート221の内径は、出口ポート222、223の内径より大きい。 The outlet ports 221, 222, and 223 are formed so as to be arranged in this order from the end of the housing body 21 opposite to the housing opening 210 toward the housing opening 210. The inner diameter of the outlet port 221 is larger than the inner diameter of the outlet ports 222 and 223.
 バルブ30は、弁体31、シャフト32等を有している。弁体31は、例えば樹脂により形成されている。弁体31は、内部空間200において回転軸Axr1周りに回転可能に設けられている。ここで、回転軸Axr1は、ハウジング内壁211の軸と概ね平行になるよう設定されている。弁体31は、回転軸Axr1を含む仮想平面Vp1で2つに分割された第1分割体33と第2分割体34からなり、第1分割体33と第2分割体34とがそれぞれの接合面で接合されている(図6参照)。 The valve 30 has a valve body 31, a shaft 32, and the like. The valve body 31 is made of, for example, resin. The valve body 31 is provided in the internal space 200 so as to be rotatable around the rotation axis Axr1. Here, the rotation axis Axr1 is set to be substantially parallel to the axis of the housing inner wall 211. The valve body 31 includes a first divided body 33 and a second divided body 34 that are divided into two by a virtual plane Vp1 including the rotation axis Axr1, and the first divided body 33 and the second divided body 34 are joined to each other. The surfaces are joined (see FIG. 6).
 弁体31は、ボールバルブ41、42、43、筒状接続部44、筒状バルブ接続部45を有している。ここで、ボールバルブ41、42、43は、それぞれ、「第1ボールバルブ」、「第2ボールバルブ」、「第3ボールバルブ」に対応している。また、筒状接続部44、筒状バルブ接続部45は、「筒状部」に対応している。ボールバルブ41、42、43は、それぞれ略球体状に形成され、内側に弁体内流路300を形成している。ボールバルブ41、42、43の外周壁は、回転軸Axr1の径外側へ凸となる球面状に形成されている。ボールバルブ41、42、43の内周壁は、回転軸Axr1の径外側へ凹むよう球面状に形成されている。 The valve element 31 has ball valves 41, 42, 43, a cylindrical connection part 44, and a cylindrical valve connection part 45. Here, the ball valves 41, 42, and 43 correspond to “first ball valve”, “second ball valve”, and “third ball valve”, respectively. Further, the cylindrical connecting portion 44 and the cylindrical valve connecting portion 45 correspond to “cylindrical portions”. Each of the ball valves 41, 42, and 43 is formed in a substantially spherical shape, and forms a valve body passage 300 inside. The outer peripheral walls of the ball valves 41, 42, and 43 are formed in a spherical shape that protrudes outward in the diameter direction of the rotation axis Axr1. The inner peripheral walls of the ball valves 41, 42, 43 are formed in a spherical shape so as to be recessed outward of the diameter of the rotation axis Axr1.
 筒状接続部44は、ボールバルブ41とボールバルブ42とを接続するよう筒状に形成されている。筒状バルブ接続部45は、ボールバルブ42とボールバルブ43とを接続するよう筒状に形成されている。ここで、筒状バルブ接続部45は、内側に弁体内流路300を形成している。ボールバルブ41、筒状接続部44、ボールバルブ42、筒状バルブ接続部45、ボールバルブ43は、この順で一体に形成されている。 The cylindrical connecting portion 44 is formed in a cylindrical shape so as to connect the ball valve 41 and the ball valve 42. The cylindrical valve connecting portion 45 is formed in a cylindrical shape so as to connect the ball valve 42 and the ball valve 43. Here, the cylindrical valve connection part 45 forms the valve body flow path 300 inside. The ball valve 41, the cylindrical connection portion 44, the ball valve 42, the cylindrical valve connection portion 45, and the ball valve 43 are integrally formed in this order.
 ボールバルブ41、42、43のそれぞれには、弁体内流路300と弁体31の外側とを接続する弁体開口部410、420、430が形成されている。筒状接続部44の径方向外側においてボールバルブ41とボールバルブ42との間には、バルブ間空間400が形成されている。バルブ間空間400は、ボールバルブ41、42のそれぞれの弁体内流路300に連通している。 In each of the ball valves 41, 42, and 43, valve body openings 410, 420, and 430 that connect the valve body flow path 300 and the outside of the valve body 31 are formed. An inter-valve space 400 is formed between the ball valve 41 and the ball valve 42 on the radially outer side of the cylindrical connecting portion 44. The inter-valve space 400 communicates with the valve body flow paths 300 of the ball valves 41 and 42.
 弁体31は、回転軸Axr1方向において、弁体開口部410が出口ポート221の位置に対応し、バルブ間空間400が入口ポート220の位置に対応し、弁体開口部420が出口ポート222および入口ポート220の位置に対応し、弁体開口部430が出口ポート223の位置に対応するよう内部空間200に設けられる。 In the valve body 31, the valve body opening 410 corresponds to the position of the outlet port 221, the inter-valve space 400 corresponds to the position of the inlet port 220, and the valve body opening 420 corresponds to the outlet port 222 and Corresponding to the position of the inlet port 220, the valve body opening 430 is provided in the internal space 200 so as to correspond to the position of the outlet port 223.
 シャフト32は、例えば金属により棒状に形成され、回転軸Axr1に設けられている。ここで、シャフト32は、弁体31と一体に設けられている。シャフト32は、弁体31とともに回転軸Axr1周りに回転可能である。 The shaft 32 is formed in a rod shape with, for example, metal, and is provided on the rotation axis Axr1. Here, the shaft 32 is provided integrally with the valve body 31. The shaft 32 can rotate around the rotation axis Axr1 together with the valve body 31.
 シャフト32は、例えばSUS430系等のステンレスにより形成されている。 The shaft 32 is made of stainless steel such as SUS430.
 図3に示すように、回転軸Axr1は、ハウジング本体21の外部から駆動部カバー80の外部まで延びるよう設定されている。つまり、回転軸Axr1は、内部空間200のみならず、ハウジング本体21の外部においても存在する直線として定義される。シャフト32は、軸が回転軸Axr1に沿うようにして回転軸Axr1上に設けられている。 As shown in FIG. 3, the rotation axis Axr1 is set to extend from the outside of the housing body 21 to the outside of the drive unit cover 80. That is, the rotation axis Axr1 is defined as a straight line that exists not only in the internal space 200 but also outside the housing body 21. The shaft 32 is provided on the rotation axis Axr1 such that the axis is along the rotation axis Axr1.
 弁体31は、回転軸Axr1周りに回転可能なよう内部空間200に設けられている。シャフト32は、回転軸Axr1に沿う直線上に設けられている。つまり、シャフト32は、回転軸Axr1の少なくとも一部に設けられている。 The valve body 31 is provided in the internal space 200 so as to be rotatable around the rotation axis Axr1. The shaft 32 is provided on a straight line along the rotation axis Axr1. That is, the shaft 32 is provided on at least a part of the rotation axis Axr1.
 図3に示すように、本実施形態では、シャフト32は、弁体31の回転軸Axr1方向の一方の端面である第1最外端面301の外側から、弁体31の内部である弁体内流路300を通り、他方の端面である第2最外端面302の外側まで延びるよう設けられている。 As shown in FIG. 3, in the present embodiment, the shaft 32 flows from the outside of the first outermost end surface 301 that is one end surface of the valve body 31 in the direction of the rotation axis Axr1 to the inside of the valve body 31. It passes through the path 300 and extends to the outside of the second outermost end surface 302 that is the other end surface.
 これに対し、他の実施形態では、シャフト32は、弁体31の第1最外端面301の外側から弁体31の内壁まで延び、弁体内流路300には突出しないよう設けてもよい。つまり、シャフト32は、弁体内流路300内または内部空間200内に存在していなくてもよく、回転軸Axr1に沿う直線上に設けられるのであれば、弁体31に対し、どの位置に設けられていてもよい。 On the other hand, in another embodiment, the shaft 32 may be provided so as to extend from the outside of the first outermost end surface 301 of the valve body 31 to the inner wall of the valve body 31 so as not to protrude into the valve body flow path 300. That is, the shaft 32 does not have to exist in the valve body flow path 300 or the internal space 200, and provided at any position with respect to the valve body 31 as long as the shaft 32 is provided on a straight line along the rotation axis Axr1. It may be done.
 パイプ部材50は、例えば樹脂により形成されている。図3、図8に示すように、パイプ部材50は、パイプ部511~517、パイプ連結部52等を有している。パイプ部511~517は、それぞれ筒状に形成されている。パイプ部511は、一端が出口ポート221の内側に位置するよう設けられている。パイプ部512は、一端が出口ポート222の内側に位置するよう設けられている。パイプ部513は、一端が出口ポート223の内側に位置するよう設けられている。パイプ部514は、一端がリリーフポート224の位置に対応するよう設けられている。 The pipe member 50 is made of, for example, resin. As shown in FIGS. 3 and 8, the pipe member 50 includes pipe portions 511 to 517, a pipe connecting portion 52, and the like. Each of the pipe portions 511 to 517 is formed in a cylindrical shape. The pipe part 511 is provided so that one end is located inside the outlet port 221. The pipe portion 512 is provided so that one end is located inside the outlet port 222. The pipe portion 513 is provided so that one end is located inside the outlet port 223. The pipe portion 514 is provided so that one end thereof corresponds to the position of the relief port 224.
 パイプ部515は、一端がパイプ部511とパイプ部514とに接続するよう設けられている。パイプ部516は、一端がパイプ部511に接続するよう設けられている。パイプ部517は、一端がパイプ部512に接続するよう設けられている。 The pipe part 515 is provided so that one end is connected to the pipe part 511 and the pipe part 514. The pipe part 516 is provided so that one end is connected to the pipe part 511. The pipe portion 517 is provided so that one end is connected to the pipe portion 512.
 パイプ連結部52は、パイプ部511~515の一端側を連結するよう形成されている。パイプ部材50は、パイプ連結部52がパイプ取付面202に当接するようハウジング本体21に固定されている。パイプ連結部52とパイプ取付面202との間には、パイプ部材50とハウジング本体21との間を液密に保持可能なガスケット509が設けられている。 The pipe connecting part 52 is formed to connect one end side of the pipe parts 511 to 515. The pipe member 50 is fixed to the housing main body 21 so that the pipe connecting portion 52 contacts the pipe mounting surface 202. Between the pipe connecting portion 52 and the pipe mounting surface 202, a gasket 509 is provided that can hold the pipe member 50 and the housing body 21 in a liquid-tight manner.
 パイプ部511、514、515の他端は、ホース等を介してラジエータ5に接続される。パイプ部512の他端は、ホース等を介してヒータ6に接続される。パイプ部513の他端は、ホース等を介してデバイス7に接続される。パイプ部516の他端は、ホース等を介して、図示しないリザーバタンクに接続される。パイプ部517の他端は、ホース等を介して、図示しないスロットルに接続される。 The other end of the pipe parts 511, 514, 515 is connected to the radiator 5 via a hose or the like. The other end of the pipe part 512 is connected to the heater 6 via a hose or the like. The other end of the pipe part 513 is connected to the device 7 via a hose or the like. The other end of the pipe portion 516 is connected to a reservoir tank (not shown) via a hose or the like. The other end of the pipe part 517 is connected to a throttle (not shown) via a hose or the like.
 シールユニット35は、出口ポート221、222、223のそれぞれに設けられている。図4に示すように、シールユニット35は、バルブシール36、スリーブ371、スプリング372、シール部材373を有している。バルブシール36は、例えば樹脂により略円環状に形成され、内側にシール開口部360を有している。バルブシール36は、一方の面が弁体31の外周壁に当接するよう設けられ、弁体31の外周壁との間を液密に保持可能である。 The seal unit 35 is provided in each of the outlet ports 221, 222, and 223. As shown in FIG. 4, the seal unit 35 includes a valve seal 36, a sleeve 371, a spring 372, and a seal member 373. The valve seal 36 is formed in a substantially annular shape with, for example, resin, and has a seal opening 360 inside. The valve seal 36 is provided so that one surface thereof is in contact with the outer peripheral wall of the valve body 31, and can be liquid-tightly maintained between the valve seal 36 and the outer peripheral wall of the valve body 31.
 バルブシール36は、例えばPTFE(ポリテトラフルオロエチレン)に14%のグラファイトおよび1%のCF(カーボンファイバー)を混ぜた材料により形成されている。そのため、バルブシール36は、弁体31等と比べ、摩擦係数が低く、耐摩耗性、圧縮強度、耐クリープ性が向上している。 The valve seal 36 is made of, for example, a material in which PTFE (polytetrafluoroethylene) is mixed with 14% graphite and 1% CF (carbon fiber). Therefore, the valve seal 36 has a lower friction coefficient than the valve body 31 and the like, and has improved wear resistance, compressive strength, and creep resistance.
 スリーブ371は、例えば金属により筒状に形成され、一端でバルブシール36を保持している。スリーブ371の他端は、パイプ部511の一端の内側に位置している。スプリング372は、スリーブ371の一端とパイプ部511の一端との間に設けられ、スリーブ371とともにバルブシール36を弁体31側へ付勢している。シール部材373は、例えばゴムにより環状に形成され、パイプ部511の一端とスリーブ371の外周壁との間に設けられ、パイプ部511とスリーブ371との間を液密に保持可能である。 The sleeve 371 is formed in a cylindrical shape from, for example, metal, and holds the valve seal 36 at one end. The other end of the sleeve 371 is located inside one end of the pipe portion 511. The spring 372 is provided between one end of the sleeve 371 and one end of the pipe portion 511, and urges the valve seal 36 together with the sleeve 371 toward the valve body 31. The seal member 373 is formed in an annular shape by rubber, for example, is provided between one end of the pipe portion 511 and the outer peripheral wall of the sleeve 371, and can hold the space between the pipe portion 511 and the sleeve 371 in a liquid-tight manner.
 スリーブ371は、例えばSUS430等のステンレスにより形成されている。そのため、スリーブ371の耐食性は、比較的高い。また、SUS430はプレス性が良いため、スリーブ371を容易にプレス加工できる。 The sleeve 371 is made of stainless steel such as SUS430. Therefore, the corrosion resistance of the sleeve 371 is relatively high. Also, since SUS430 has good pressability, the sleeve 371 can be easily pressed.
 出口ポート222、223に設けられたシールユニット35も、出口ポート221に設けられたシールユニット35と同様の構成のため、説明を省略する。3つのシールユニット35は、それぞれ、パイプ部511、512、513の一端に組み付けられている。 Since the seal units 35 provided at the outlet ports 222 and 223 are configured in the same manner as the seal unit 35 provided at the outlet port 221, description thereof will be omitted. The three seal units 35 are assembled to one ends of the pipe portions 511, 512, and 513, respectively.
 出口ポート222、223に設けられたシールユニット35のスリーブ371、スプリング372、バルブシール36は、出口ポート221に設けられたシールユニット35のスリーブ371、スプリング372、バルブシール36よりも外径が小さい。ここで、出口ポート221~223に設けられた各シールユニット35のスプリング372のスプリング荷重は、バルブシール36を圧縮してシールする必要漏れ量を満足する荷重に設定されている。出口ポート221~223に設けられた各シールユニット35のスプリング372については、大小で漏れ目標が異なり、体格も異なるため、ばね定数も大小で異なる。 The sleeve 371, the spring 372, and the valve seal 36 of the seal unit 35 provided in the outlet ports 222 and 223 are smaller in outer diameter than the sleeve 371, the spring 372, and the valve seal 36 of the seal unit 35 provided in the outlet port 221. . Here, the spring load of the spring 372 of each seal unit 35 provided in the outlet ports 221 to 223 is set to a load that satisfies a necessary leakage amount for compressing and sealing the valve seal 36. About the spring 372 of each seal unit 35 provided in the exit ports 221 to 223, the leakage target is different depending on the size, and the physique is also different. Therefore, the spring constant is also different depending on the size.
 スプリング372は、例えばSUS316等のステンレスにより形成されている。そのため、スプリング372は、ばね性が良く、耐食性が高い。これにより、スプリング372の応力腐食割れを抑制できる。 The spring 372 is made of stainless steel such as SUS316. Therefore, the spring 372 has good spring properties and high corrosion resistance. Thereby, the stress corrosion cracking of the spring 372 can be suppressed.
 隔壁部60は、例えば樹脂により形成されている。隔壁部60は、ハウジング本体21とは別体に形成されている。隔壁部60は、隔壁部本体61等を有している。隔壁部本体61は、略円板状に形成されている。隔壁部60は、隔壁部本体61がハウジング開口部210を塞ぐようハウジング本体21に設けられている。隔壁部60は、隔壁部本体61の中央を板厚方向に貫くシャフト挿通穴62を有している。バルブ30は、シャフト32の一端がシャフト挿通穴62を挿通するようにして設けられている。シャフト32は、一端が隔壁部本体61により軸受けされ、他端がハウジング本体21により軸受けされている。 The partition wall 60 is made of, for example, resin. The partition wall 60 is formed separately from the housing body 21. The partition wall 60 has a partition wall body 61 and the like. The partition wall body 61 is formed in a substantially disk shape. The partition wall 60 is provided in the housing body 21 so that the partition wall body 61 closes the housing opening 210. The partition wall 60 has a shaft insertion hole 62 that penetrates the center of the partition wall body 61 in the thickness direction. The valve 30 is provided such that one end of the shaft 32 is inserted through the shaft insertion hole 62. One end of the shaft 32 is supported by the partition wall body 61 and the other end is supported by the housing body 21.
 駆動部カバー80は、隔壁部60に対し内部空間200とは反対側に設けられ、隔壁部60との間に駆動部空間800を形成している。 The drive unit cover 80 is provided on the side opposite to the internal space 200 with respect to the partition wall 60, and forms a drive space 800 between the partition wall 60.
 駆動部70は、駆動部空間800に設けられ、シャフト32の一端を経由して弁体31を回転駆動可能である。駆動部70は、モータ71、ギア部72等を有している。ギア部72は、シャフト32の一端に接続している。ECU8がモータ71への供給電力を制御すると、モータ71の駆動力は、ギア部72を経由してシャフト32に伝達する。これにより、弁体31が回転駆動する。 The drive unit 70 is provided in the drive unit space 800 and can rotate the valve body 31 via one end of the shaft 32. The drive unit 70 includes a motor 71, a gear unit 72, and the like. The gear part 72 is connected to one end of the shaft 32. When the ECU 8 controls the power supplied to the motor 71, the driving force of the motor 71 is transmitted to the shaft 32 via the gear portion 72. Thereby, the valve body 31 is rotationally driven.
 図5に示すように、リリーフポート224には、リリーフ弁39が設けられている。リリーフ弁39は、所定の条件、例えば冷却水の温度が所定の温度以上となったとき、開弁し、リリーフポート224を経由した内部空間200とハウジング本体21の外部すなわちパイプ部515の内側の空間との連通を許容し、冷却水の温度が所定の温度より低くなったとき、上記連通を遮断する。 As shown in FIG. 5, the relief port 224 is provided with a relief valve 39. The relief valve 39 is opened when a predetermined condition, for example, when the temperature of the cooling water is equal to or higher than a predetermined temperature, and is opened outside the internal space 200 and the housing body 21 via the relief port 224, that is, inside the pipe portion 515. The communication with the space is allowed, and when the temperature of the cooling water becomes lower than a predetermined temperature, the communication is cut off.
 図5に示すように、リリーフ弁39は、バルブ間空間400を間に挟んで入口ポート220と対向する位置に設けられている。すなわち、リリーフ弁39は、入口ポート220から目視可能な位置に設けられている。より具体的には、リリーフ弁39は、入口ポート220の軸方向から見たとき、少なくとも一部を目視可能である。 As shown in FIG. 5, the relief valve 39 is provided at a position facing the inlet port 220 with the inter-valve space 400 interposed therebetween. That is, the relief valve 39 is provided at a position where it can be seen from the inlet port 220. More specifically, the relief valve 39 is visible at least partially when viewed from the axial direction of the inlet port 220.
 そのため、入口ポート220から内部空間200に流入した冷却水をリリーフ弁39に直接当てることができ、冷却水の温度に応じてリリーフ弁39を速やかに開弁させることができる。 Therefore, the cooling water flowing into the internal space 200 from the inlet port 220 can be directly applied to the relief valve 39, and the relief valve 39 can be quickly opened according to the temperature of the cooling water.
 図3、図6に示すように、隔壁部60は、隔壁部本体61の内部空間200側の面から駆動部70側へ凹むC字状の規制凹部63が形成されている。規制凹部63の周方向の端部間には、規制部631が形成されている。図3、図6に示すように、弁体31には、駆動部70側の端面から規制凹部63側へ延びて先端部が規制凹部63内に位置する第1規制凸部332、第2規制凸部342が形成されている。そのため、弁体31は、第1規制凸部332が規制部631に当接したとき、および、第2規制凸部342が規制部631に当接したとき、その回転が規制される。つまり、弁体31は、第1規制凸部332が規制部631に当接する位置から第2規制凸部342が規制部631に当接する位置までの範囲で回転可能である。 3 and 6, the partition wall 60 is formed with a C-shaped regulating recess 63 that is recessed from the surface of the partition wall body 61 on the inner space 200 side to the drive unit 70 side. A regulating portion 631 is formed between the circumferential ends of the regulating recess 63. As shown in FIGS. 3 and 6, the valve body 31 includes a first restriction convex portion 332 that extends from the end surface on the drive portion 70 side to the restriction concave portion 63 and has a tip portion located in the restriction concave portion 63. A convex portion 342 is formed. Therefore, the rotation of the valve body 31 is restricted when the first restriction convex part 332 comes into contact with the restriction part 631 and when the second restriction convex part 342 comes into contact with the restriction part 631. That is, the valve body 31 is rotatable in a range from a position where the first restriction convex part 332 contacts the restriction part 631 to a position where the second restriction convex part 342 contacts the restriction part 631.
 バルブ装置10は、入口ポート220がウォータージャケット3の出口に接続するようエンジン2に取り付けられる。そのため、入口ポート220から内部空間200に流入した冷却水は、バルブ間空間400を経由して弁体内流路300に流入する。また、弁体31の回転により、弁体開口部430、420、410とそれぞれのシール開口部360とが重なったとき、その重なり面積に応じて冷却水が弁体内流路300から弁体開口部430、420、410を経由してデバイス7、ヒータ6、ラジエータ5へ流れる。 The valve device 10 is attached to the engine 2 so that the inlet port 220 is connected to the outlet of the water jacket 3. Therefore, the cooling water that has flowed into the internal space 200 from the inlet port 220 flows into the valve body flow path 300 via the inter-valve space 400. Further, when the valve body openings 430, 420, 410 and the respective seal openings 360 are overlapped by the rotation of the valve body 31, the cooling water flows from the valve body flow path 300 to the valve body opening according to the overlapping area. It flows to the device 7, the heater 6, and the radiator 5 through 430, 420, and 410.
 ECU8は、モータ71の作動を制御し、弁体31の回転位置を制御することにより、デバイス7に冷却水を流し、デバイス7において熱交換できるため、エンジンオイルやEGRガスを冷却して燃費を向上できる。また、ヒータ6に冷却水を流し、車両1内の空気と冷却水との間で熱交換できるため、車両1内を暖めることができる。 The ECU 8 controls the operation of the motor 71 and controls the rotational position of the valve body 31 so that cooling water can flow through the device 7 and heat exchange can be performed in the device 7. Therefore, the engine oil and EGR gas are cooled to improve fuel efficiency. Can be improved. Moreover, since cooling water can be flowed through the heater 6 and heat can be exchanged between the air in the vehicle 1 and the cooling water, the inside of the vehicle 1 can be warmed.
 図7は、弁体31の回転位置(横軸)と、弁体開口部430、420、410の開閉状態(縦軸)、すなわち、弁体開口部430、420、410とそれぞれのシール開口部360との重なり面積との関係を示す図である。ここで、弁体開口部430、420、410とそれぞれのシール開口部360との重なり面積は、デバイス7、ヒータ6、ラジエータ5への冷却水の流路面積に対応している。 7 shows the rotational position (horizontal axis) of the valve body 31 and the open / closed state (vertical axis) of the valve body openings 430, 420, 410, that is, the valve body openings 430, 420, 410 and the respective seal openings. It is a figure which shows the relationship with 360 and an overlapping area. Here, the overlapping area of the valve body openings 430, 420, 410 and the respective seal openings 360 corresponds to the flow path area of the cooling water to the device 7, the heater 6, and the radiator 5.
 ECU8は、ヒータ6に冷却水を流す要求(ヒータ要求)がある場合に使用される「通常モード」と、ヒータ要求がない場合に使用される「ヒータカットモード」とを選択し、弁体31を回転させる。「通常モード」と「ヒータカットモード」とは、全ての弁体開口部430、420、410が弁体31の外周壁により閉じられて(全閉状態:図3参照)、デバイス7、ヒータ6、ラジエータ5への冷却水の流量がゼロとなる領域(領域d)を隔てている。領域dでは、デバイス7、ヒータ6、ラジエータ5への冷却水の流れは遮断されている。 The ECU 8 selects a “normal mode” used when there is a request to flow cooling water through the heater 6 (heater request) and a “heater cut mode” used when there is no heater request, and the valve body 31. Rotate. In the “normal mode” and the “heater cut mode”, all the valve body openings 430, 420, and 410 are closed by the outer peripheral wall of the valve body 31 (fully closed state: see FIG. 3). A region (region d) where the flow rate of the cooling water to the radiator 5 is zero is separated. In the region d, the flow of cooling water to the device 7, the heater 6, and the radiator 5 is blocked.
 「通常モード」では、ヒータ6への通水が最優先される。図7において、領域dから右に進む方向に弁体31を回転させると、弁体31の回転位置が領域dの隣の領域(領域c)に移行する。領域cでは弁体開口部420が開き始め、ヒータ6に冷却水が流れ始める。さらに弁体31を回転させると、弁体開口部420が完全に開き、弁体31の回転位置が領域cの隣の領域(領域b)に移行する。領域bでは弁体開口部430が開き始め、デバイス7に冷却水が流れ始める。さらに弁体31を回転させると、弁体開口部430が完全に開き、弁体31の回転位置が領域bの隣の領域(領域a)に移行する。領域aでは弁体開口部410が開き始め、ラジエータ5に冷却水が流れ始める。さらに弁体31を回転させると、弁体開口部410が完全に開く(全開状態)。なお、弁体開口部410が完全に開かれる弁体31の回転位置が弁体31の回転限界(Rotation limit)に相当し、このとき、第1規制凸部332は規制部631に当接している(図6参照)。 In the “normal mode”, the water flow to the heater 6 has the highest priority. In FIG. 7, when the valve body 31 is rotated in the direction proceeding to the right from the region d, the rotational position of the valve body 31 is shifted to a region (region c) adjacent to the region d. In the area c, the valve element opening 420 starts to open, and the cooling water starts to flow into the heater 6. When the valve body 31 is further rotated, the valve body opening 420 is completely opened, and the rotational position of the valve body 31 is shifted to a region (region b) adjacent to the region c. In the region b, the valve body opening 430 starts to open, and the cooling water starts to flow into the device 7. When the valve body 31 is further rotated, the valve body opening 430 is completely opened, and the rotational position of the valve body 31 shifts to a region (region a) adjacent to the region b. In the region a, the valve body opening 410 starts to open, and the cooling water starts to flow into the radiator 5. When the valve body 31 is further rotated, the valve body opening 410 is completely opened (fully opened state). Note that the rotational position of the valve body 31 at which the valve body opening 410 is completely opened corresponds to the rotation limit of the valve body 31, and at this time, the first restriction convex part 332 is in contact with the restriction part 631. (See FIG. 6).
 「ヒータカットモード」では、ヒータ6への通水は行われず、ラジエータ5よりもデバイス7への通水が優先される。図7において、領域dから左に進む方向に弁体31を回転させると、領域dの隣の領域(領域e)に移行する。領域eでは弁体開口部430が開き始め、デバイス7に冷却水が流れ始める。さらに弁体31を回転させると、弁体開口部430が完全に開き、弁体31の回転位置が領域eの隣の領域(領域f)に移行する。領域fでは弁体開口部430のみが開き、デバイス7にのみ冷却水が流れる。さらに弁体31を回転させると、弁体31の回転位置が領域fの隣の領域(領域g)に移行する。領域gでは弁体開口部410が開き始め、ラジエータ5に冷却水が流れ始める。さらに弁体31を回転させると、弁体開口部410が完全に開く。ECU8は、図7に示す「通常モード」と「ヒータカットモード」とに基づき弁体31を回転駆動することにより、燃費と空調性能の両立を図ることが可能である。 In the “heater cut mode”, water is not passed to the heater 6, but water is given priority to the device 7 over the radiator 5. In FIG. 7, when the valve body 31 is rotated in a direction that proceeds to the left from the region d, the region shifts to a region adjacent to the region d (region e). In the region e, the valve body opening 430 starts to open, and the cooling water starts to flow into the device 7. When the valve body 31 is further rotated, the valve body opening 430 is completely opened, and the rotational position of the valve body 31 is shifted to a region (region f) adjacent to the region e. In the region f, only the valve body opening 430 is opened, and cooling water flows only to the device 7. When the valve body 31 is further rotated, the rotational position of the valve body 31 shifts to a region (region g) adjacent to the region f. In the region g, the valve body opening 410 starts to open, and the cooling water starts to flow into the radiator 5. When the valve body 31 is further rotated, the valve body opening 410 is completely opened. The ECU 8 can achieve both fuel efficiency and air conditioning performance by rotationally driving the valve body 31 based on the “normal mode” and the “heater cut mode” shown in FIG.
 図2に示すように、エンジン2には、インテークマニホールド11、オルタネータ12、ウォーターポンプ4、コンプレッサ13、スタータ14、トランスミッション15等が組付けられている。バルブ装置10は、オルタネータ12とインテークマニホールド11との間の狭小空間A1においてエンジン2に取り付けられる。ここで、バルブ装置10は、駆動部70側が鉛直方向下側を向くようにしてエンジン2に取り付けられる。そのため、内部空間200等で発生したベーパ等の空気は、鉛直方向上側へ移動し、パイプ部516を経由してリザーバタンクに排出される。 As shown in FIG. 2, the engine 2 is assembled with an intake manifold 11, an alternator 12, a water pump 4, a compressor 13, a starter 14, a transmission 15, and the like. The valve device 10 is attached to the engine 2 in a narrow space A1 between the alternator 12 and the intake manifold 11. Here, the valve device 10 is attached to the engine 2 such that the drive unit 70 side faces downward in the vertical direction. Therefore, air such as vapor generated in the internal space 200 or the like moves upward in the vertical direction and is discharged to the reservoir tank via the pipe portion 516.
 図2に示すように、バルブ装置10が配置される狭小空間A1は、水平方向に並ぶようにしてエンジン2に取り付けられるオルタネータ12とインテークマニホールド11との間に形成される。また、狭小空間A1の鉛直方向下側には、コンプレッサ13が配置される。そのため、狭小空間A1に設けられたバルブ装置10は、オルタネータ12、インテークマニホールド11およびコンプレッサ13により囲まれた状態となる。 As shown in FIG. 2, the narrow space A1 in which the valve device 10 is arranged is formed between the alternator 12 and the intake manifold 11 that are attached to the engine 2 so as to be aligned in the horizontal direction. In addition, a compressor 13 is disposed below the narrow space A1 in the vertical direction. Therefore, the valve device 10 provided in the narrow space A1 is surrounded by the alternator 12, the intake manifold 11, and the compressor 13.
<1-2>ハウジング締結穴
 図8、図9、図10に示すように、ハウジング20は、ハウジング本体21と一体に形成された締結部231、232、233を有している。締結部231、232、233は、ハウジング本体21の取付面201側の端部から取付面201の面方向に突出するよう形成されている。また、ハウジング20は、締結部231、232、233のそれぞれに対応して形成された締結穴241、242、243を有している。ここで、締結穴241、242、243は、それぞれ、「第1締結穴」、「第2締結穴」、「第3締結穴」に対応している。
<1-2> Housing Fastening Hole As shown in FIGS. 8, 9, and 10, the housing 20 has fastening portions 231, 232, and 233 formed integrally with the housing main body 21. The fastening portions 231, 232, and 233 are formed so as to protrude in the surface direction of the mounting surface 201 from the end of the housing body 21 on the mounting surface 201 side. The housing 20 has fastening holes 241, 242, 243 formed corresponding to the fastening portions 231, 232, 233, respectively. Here, the fastening holes 241, 242, and 243 correspond to a “first fastening hole”, a “second fastening hole”, and a “third fastening hole”, respectively.
 締結穴241、242、243には、締結部材240が挿通され、エンジン2に締結される。これにより、バルブ装置10がエンジン2に取り付けられる。取付面201の入口ポート220の径方向外側には、環状ゴム製のポートシール部材209が設けられる。ポートシール部材209は、バルブ装置10がエンジン2に取り付けられた状態において、締結部材240の軸力により圧縮された状態となる。これにより、ポートシール部材209は、取付面201とエンジン2との間を液密に保持し、入口ポート220から取付面201とエンジン2との間を経由して冷却水が漏れるのを抑制できる。 The fastening member 240 is inserted into the fastening holes 241, 242, and 243 and fastened to the engine 2. Thereby, the valve device 10 is attached to the engine 2. An annular rubber port seal member 209 is provided on the outer side in the radial direction of the inlet port 220 of the mounting surface 201. The port seal member 209 is compressed by the axial force of the fastening member 240 when the valve device 10 is attached to the engine 2. As a result, the port seal member 209 can keep the mounting surface 201 and the engine 2 in a liquid-tight state, and can prevent the coolant from leaking from the inlet port 220 through the mounting surface 201 and the engine 2. .
 ポートシール部材209は、例えばEPDM(エチレンプロピレンゴム)等のゴムにより形成されている。そのため、コストを低減できる。なお、ポートシール部材209は、例えばH-NBRにより形成してもよい。この場合、ポートシール部材209の耐油性を向上できる。また、ポートシール部材209は、例えばFKMにより形成してもよい。この場合、ポートシール部材209の耐水性および耐熱性を向上できる。そのため、熱の影響を受けやすいエンジン部品として採用するのに好適である。 The port seal member 209 is made of rubber such as EPDM (ethylene propylene rubber). Therefore, cost can be reduced. The port seal member 209 may be formed of H-NBR, for example. In this case, the oil resistance of the port seal member 209 can be improved. Further, the port seal member 209 may be formed by, for example, FKM. In this case, the water resistance and heat resistance of the port seal member 209 can be improved. Therefore, it is suitable for use as an engine component that is easily affected by heat.
 図9、図10に示すように、締結穴241は、取付面201における入口ポート220の開口の径方向外側に形成されている。締結穴242は、締結穴241との間に入口ポート220の開口を挟むようにして形成されている。締結穴243は、締結穴241、242に対し駆動部70側に形成されている。 As shown in FIGS. 9 and 10, the fastening hole 241 is formed on the radially outer side of the opening of the inlet port 220 in the mounting surface 201. The fastening hole 242 is formed so as to sandwich the opening of the inlet port 220 between the fastening hole 241. The fastening hole 243 is formed on the drive unit 70 side with respect to the fastening holes 241 and 242.
<1-2>
 上述のように、本実施形態は、車両1のエンジン2の冷却水を制御可能なバルブ装置10であって、ハウジング20とバルブ30と隔壁部60と駆動部70とを備える。
<1-2>
As described above, the present embodiment is a valve device 10 that can control the cooling water of the engine 2 of the vehicle 1, and includes the housing 20, the valve 30, the partition wall portion 60, and the drive portion 70.
 ハウジング20は、内側に内部空間200を形成するハウジング本体21、ハウジング本体21の外壁に形成されエンジン2に取り付けられた状態においてエンジン2に対向する取付面201、取付面201に開口し内部空間200とハウジング本体21の外部とを接続する入口ポート220、ハウジング本体21と一体に形成された複数の締結部(231、232、233)、および、複数の締結部のそれぞれに対応して形成された複数の締結穴(241、242、243)を有する。 The housing 20 has a housing main body 21 that forms an internal space 200 on the inner side, an attachment surface 201 that faces the engine 2 when formed on the outer wall of the housing main body 21 and is attached to the engine 2, and opens to the mounting surface 201. And the outside of the housing main body 21, the plurality of fastening portions (231, 232, 233) formed integrally with the housing main body 21, and the plurality of fastening portions, respectively. It has a plurality of fastening holes (241, 242, 243).
 バルブ30は、内部空間200内において回転軸Axr1周りに回転可能な弁体31、弁体31の内側に形成され入口ポート220に連通可能な弁体内流路300、および、回転軸Axr1に設けられたシャフト32を有する。 The valve 30 is provided in a valve body 31 that can rotate around the rotation axis Axr1 in the internal space 200, a valve body passage 300 that is formed inside the valve body 31 and that can communicate with the inlet port 220, and the rotation axis Axr1. A shaft 32.
 隔壁部60は、内部空間200とハウジング本体21の外部とを隔てる。 The partition wall 60 separates the internal space 200 from the outside of the housing body 21.
 駆動部70は、隔壁部60に対し内部空間200とは反対側に設けられ、シャフト32を経由して弁体31を回転駆動可能である。 The drive unit 70 is provided on the side opposite to the internal space 200 with respect to the partition wall unit 60, and can rotate the valve body 31 via the shaft 32.
 ハウジング本体21は、締結穴(241、242、243)を通りエンジン2に螺合する締結部材240によりエンジン2に固定される。 The housing body 21 is fixed to the engine 2 by a fastening member 240 that is screwed into the engine 2 through the fastening holes (241, 242, 243).
 締結穴は、入口ポート220の開口の径方向外側に形成された第1締結穴(241)、第1締結穴との間に入口ポート220の開口を挟むよう形成された第2締結穴(242)、および、第1締結穴および第2締結穴に対し駆動部70側に形成された第3締結穴(243)を含む。 The fastening holes are a first fastening hole (241) formed radially outside the opening of the inlet port 220, and a second fastening hole (242) formed so as to sandwich the opening of the inlet port 220 between the first fastening hole. ), And a third fastening hole (243) formed on the drive unit 70 side with respect to the first fastening hole and the second fastening hole.
 第1締結穴(241)は、第3締結穴(243)と同様、入口ポート220の中心よりも駆動部70側に形成されている。 The 1st fastening hole (241) is formed in the drive part 70 side rather than the center of the inlet port 220 similarly to the 3rd fastening hole (243).
 そのため、入口ポート220の周りに環状の弾性部材からなるポートシール部材209を設けた場合、締結穴241および締結穴242を通る締結部材240によりハウジング本体21をエンジン2に固定したとき、ポートシール部材209をバランスよく圧縮できる。これにより、入口ポート220周りのシール性を効果的に確保できる。 Therefore, when the port seal member 209 made of an annular elastic member is provided around the inlet port 220, when the housing body 21 is fixed to the engine 2 by the fastening member 240 passing through the fastening hole 241 and the fastening hole 242, the port seal member 209 can be compressed in a balanced manner. Thereby, the sealing performance around the inlet port 220 can be effectively secured.
 また、締結穴243を通る締結部材240により締結部233がエンジン2に固定されることにより、エンジン2の振動の駆動部70への影響を抑制することができる。 Further, the fastening portion 233 is fixed to the engine 2 by the fastening member 240 passing through the fastening hole 243, so that the influence of the vibration of the engine 2 on the driving portion 70 can be suppressed.
<1-2-1>
 入口ポート220の開口の中心Cp1は、締結穴241と締結穴242とを結ぶ直線である第1直線Li1上に位置している。
<1-2-1>
The center Cp1 of the opening of the inlet port 220 is located on the first straight line Li1 that is a straight line connecting the fastening hole 241 and the fastening hole 242.
 そのため、ポートシール部材209をよりバランスよく圧縮できる。 Therefore, the port seal member 209 can be compressed in a more balanced manner.
 本実施形態では、第1直線Li1は、締結穴241の中心と締結穴242の中心とを結ぶ。他の実施形態では、第1直線Li1は、締結穴241の中心以外の任意の点と締結穴242の中心以外の任意の点とを結ぶこととしてもよい。 In the present embodiment, the first straight line Li1 connects the center of the fastening hole 241 and the center of the fastening hole 242. In another embodiment, the first straight line Li1 may connect an arbitrary point other than the center of the fastening hole 241 and an arbitrary point other than the center of the fastening hole 242.
<1-2-2>
 入口ポート220の開口の中心Cp1と締結穴241との距離は、入口ポート220の開口の中心Cp1と締結穴242との距離と同じである。
<1-2-2>
The distance between the center Cp1 of the opening of the inlet port 220 and the fastening hole 241 is the same as the distance between the center Cp1 of the opening of the inlet port 220 and the fastening hole 242.
 締結穴241と締結穴242とは、入口ポート220を挟んで対向している。 The fastening hole 241 and the fastening hole 242 are opposed to each other with the inlet port 220 interposed therebetween.
 そのため、ポートシール部材209をよりバランスよく圧縮できる。 Therefore, the port seal member 209 can be compressed in a more balanced manner.
<1-2-3>
 締結穴243と駆動部70との距離は、締結穴243と入口ポート220の開口の中心Cp1との距離より短い。
<1-2-3>
The distance between the fastening hole 243 and the drive unit 70 is shorter than the distance between the fastening hole 243 and the center Cp1 of the opening of the inlet port 220.
 そのため、エンジン2の振動の駆動部70への影響をより抑制することができる。 Therefore, the influence of the vibration of the engine 2 on the drive unit 70 can be further suppressed.
<1-2-4>
 締結穴243は、中心が、出口ポート223の中心を通り回転軸Axr1に直交する仮想平面Vp2に対し駆動部70側に位置するよう形成されている(図8参照)。なお、モータ71は、締結穴243の軸方向から見たとき、重心Cg1が回転軸Axr1に対し締結穴243側に位置するよう設けられている(図8、図9参照)。
<1-2-4>
The fastening hole 243 is formed so that its center is located on the drive unit 70 side with respect to a virtual plane Vp2 that passes through the center of the outlet port 223 and is orthogonal to the rotation axis Axr1 (see FIG. 8). The motor 71 is provided such that the center of gravity Cg1 is located on the side of the fastening hole 243 with respect to the rotation axis Axr1 when viewed from the axial direction of the fastening hole 243 (see FIGS. 8 and 9).
 そのため、エンジン2の振動の駆動部70への影響をより抑制することができる。 Therefore, the influence of the vibration of the engine 2 on the drive unit 70 can be further suppressed.
<1-3>
 締結穴241と締結穴242とは、入口ポート220の開口の中心Cp1に対し点対称となるよう形成されている。
<1-3>
The fastening hole 241 and the fastening hole 242 are formed so as to be point-symmetric with respect to the center Cp1 of the opening of the inlet port 220.
 締結穴241と締結穴242とは、同心円上にある。 The fastening hole 241 and the fastening hole 242 are concentric.
 そのため、ポートシール部材209をよりバランスよく圧縮できる。 Therefore, the port seal member 209 can be compressed in a more balanced manner.
<1-3-1>
 入口ポート220の開口の中心Cp1に対し点対称となる締結穴241および締結穴242は、入口ポート220の開口面に垂直で、かつ、入口ポート220の開口の中心Cp1を通る直線が回転軸Axr1を通るよう形成されている。
<1-3-1>
The fastening hole 241 and the fastening hole 242 that are point-symmetric with respect to the center Cp1 of the opening of the inlet port 220 are perpendicular to the opening surface of the inlet port 220, and a straight line passing through the center Cp1 of the opening of the inlet port 220 has a rotation axis Axr1. It is formed to pass through.
 入口ポート220の開口の中心Cp1に対し点対称となる締結穴241および締結穴242は、「入口ポート220の開口面に垂直で、かつ、入口ポート220の開口の中心Cp1を通る直線」が回転軸Axr1を通るよう形成されている。 The fastening hole 241 and the fastening hole 242 that are point-symmetric with respect to the center Cp1 of the opening of the inlet port 220 are rotated by a “straight line perpendicular to the opening surface of the inlet port 220 and passing through the center Cp1 of the inlet port 220”. It is formed so as to pass through the axis Axr1.
 そのため、ポートシール部材209をよりバランスよく圧縮できる。 Therefore, the port seal member 209 can be compressed in a more balanced manner.
<1-4>
 ハウジング20は、取付面201に形成され他部材と係合することでハウジング本体21の位置決めが可能な位置決め部205、206を有している。位置決め部205、206は、取付面201から円形に凹むよう形成されている。ここで、位置決め部205、206は、それぞれ、「第1位置決め部」、「第2位置決め部」に対応している。また、前記他部材は、例えばバルブ装置10の製造工程において用いられるパレットや、バルブ装置10の取り付け対象としてのエンジン2等が対応する。パレットやエンジン2に形成された突起等に位置決め部205、206を係合させることで、パレットやエンジン2に対するハウジング本体21の位置決めが可能である。
<1-4>
The housing 20 has positioning portions 205 and 206 formed on the mounting surface 201 and capable of positioning the housing main body 21 by engaging with other members. The positioning portions 205 and 206 are formed so as to be recessed from the mounting surface 201 in a circular shape. Here, the positioning units 205 and 206 correspond to a “first positioning unit” and a “second positioning unit”, respectively. The other member corresponds to, for example, a pallet used in the manufacturing process of the valve device 10 or the engine 2 as an attachment target of the valve device 10. The housing main body 21 can be positioned with respect to the pallet or the engine 2 by engaging the positioning portions 205 and 206 with projections or the like formed on the pallet or the engine 2.
 位置決め部205は、入口ポート220の開口の径方向外側に形成されている。位置決め部206は、位置決め部205との間に入口ポート220の開口を挟むよう形成されている。 The positioning portion 205 is formed on the radially outer side of the opening of the inlet port 220. The positioning unit 206 is formed so as to sandwich the opening of the inlet port 220 between the positioning unit 205 and the positioning unit 205.
 そのため、製造工程においてハウジング本体21を精度よく位置決めし、加工精度を向上できる。また、エンジン2への取り付け時、ハウジング本体21を精度よく位置決めし、バルブ装置10による冷却水の制御を高精度に行うことができる。また、エンジン2への取り付け後は、エンジン2に対するハウジング本体21の位置が安定し、ポートシール部材209によるシール性を向上できる。 Therefore, it is possible to accurately position the housing body 21 in the manufacturing process and improve the processing accuracy. Further, the housing body 21 can be positioned with high accuracy when attached to the engine 2, and the cooling water can be controlled with high accuracy by the valve device 10. In addition, after the attachment to the engine 2, the position of the housing body 21 with respect to the engine 2 is stabilized, and the sealing performance by the port seal member 209 can be improved.
<1-4-1>
 位置決め部205および位置決め部206は、締結穴241と締結穴242とを結ぶ第1直線Li1に対し、位置決め部205と位置決め部206とを結ぶ直線である第2直線Li2が直交するよう形成されている。
<1-4-1>
The positioning part 205 and the positioning part 206 are formed so that a second straight line Li2 that is a straight line connecting the positioning part 205 and the positioning part 206 is orthogonal to a first straight line Li1 that connects the fastening hole 241 and the fastening hole 242. Yes.
 そのため、エンジン2に対するハウジング本体21の位置をより安定にすることができる。 Therefore, the position of the housing body 21 relative to the engine 2 can be made more stable.
<1-4-2>
 第1直線Li1の中心と第2直線Li2の中心とは一致する。
<1-4-2>
The center of the first straight line Li1 coincides with the center of the second straight line Li2.
 そのため、エンジン2に対するハウジング本体21の位置をより安定にすることができる。 Therefore, the position of the housing body 21 relative to the engine 2 can be made more stable.
 図9に示すように、取付面201は、ハウジング本体21、締結部231~233のパイプ部材50とは反対側の面に形成され、略長方形の部分、当該長方形の部分から幅方向に延びる3つの部分、および、入口ポート220の外周に沿った曲線状の部分からなる。位置決め部205、206は、取付面201の略長方形の部分に形成されている。位置決め部205、206は、距離を稼ぐと安定する。そのため、位置決め部205、206は、取付面201の略長方形の部分の外周部分に設けている。 As shown in FIG. 9, the mounting surface 201 is formed on the surface of the housing main body 21 and the fastening portions 231 to 233 opposite to the pipe member 50, and extends in the width direction from the substantially rectangular portion. One part and a curved part along the outer periphery of the inlet port 220. The positioning portions 205 and 206 are formed in a substantially rectangular portion of the mounting surface 201. The positioning units 205 and 206 become stable as the distance is increased. Therefore, the positioning portions 205 and 206 are provided on the outer peripheral portion of the substantially rectangular portion of the mounting surface 201.
<1-5>
 ハウジング20は、取付面201からエンジン2とは反対側へ凹む取付面凹部207を有している。
<1-5>
The housing 20 has a mounting surface recess 207 that is recessed from the mounting surface 201 to the opposite side of the engine 2.
 そのため、エンジン2の熱を取付面凹部207により断熱し、エンジン2からの熱の駆動部70への影響を抑制できる。 Therefore, the heat of the engine 2 is insulated by the mounting surface recess 207, and the influence of the heat from the engine 2 on the drive unit 70 can be suppressed.
<1-5-1>
 取付面凹部207は、複数形成され、複数の取付面凹部207の間には凹部間リブ208が形成されている。
<1-5-1>
A plurality of attachment surface recesses 207 are formed, and inter-recess ribs 208 are formed between the plurality of attachment surface recesses 207.
 そのため、エンジン2の熱を取付面凹部207により断熱しつつ、取付面201のエンジン2との接触面積を確保できる。 Therefore, the contact area of the mounting surface 201 with the engine 2 can be secured while the heat of the engine 2 is insulated by the mounting surface recess 207.
 図9に示すように、取付面凹部207は、矩形状の矩形凹部275、略台形状の台形凹部276を有している。凹部間リブ208は、取付面201の略長方形の部分の短手方向に延びる短手方向リブ285、長手方向に延びる長手方向リブ286を有している。 As shown in FIG. 9, the mounting surface recess 207 has a rectangular recess 275 having a rectangular shape and a trapezoidal recess 276 having a substantially trapezoidal shape. The inter-recess rib 208 includes a short-side rib 285 extending in the short-side direction of a substantially rectangular portion of the mounting surface 201 and a long-side rib 286 extending in the long-side direction.
 取付面201の略長方形の部分の入口ポート220に対し駆動部70とは反対側には、台形凹部276が短手方向に並ぶようにして2つ形成されている。当該台形凹部276に対し入口ポート220とは反対側には、矩形凹部275が短手方向に並ぶようにして2つ形成されている。当該矩形凹部275と台形凹部276との間に短手方向リブ285が形成されている。2つの台形凹部276との間、2つの矩形凹部275との間に長手方向リブ286が形成されている。台形凹部276は、矩形凹部275よりも小さい。 Two trapezoidal recesses 276 are formed on the opposite side of the drive port 70 with respect to the inlet port 220 of the substantially rectangular portion of the mounting surface 201 so as to be aligned in the short direction. Two rectangular recesses 275 are formed on the opposite side of the trapezoidal recess 276 from the inlet port 220 so as to be arranged in the short direction. A lateral rib 285 is formed between the rectangular recess 275 and the trapezoidal recess 276. A longitudinal rib 286 is formed between the two trapezoidal recesses 276 and between the two rectangular recesses 275. The trapezoidal recess 276 is smaller than the rectangular recess 275.
 取付面201の略長方形の部分の入口ポート220に対し駆動部70側には、矩形凹部275が短手方向に並ぶようにして2つ形成されている。当該矩形凹部275に対し入口ポート220とは反対側には、矩形凹部275が短手方向に並ぶようにして2つ形成されている。長手方向に並ぶ矩形凹部275の間に短手方向リブ285が形成されている。短手方向に並ぶ矩形凹部275の間に長手方向リブ286が形成されている。 Two rectangular recesses 275 are formed on the drive unit 70 side with respect to the inlet port 220 of the substantially rectangular portion of the mounting surface 201 so as to be aligned in the short direction. Two rectangular recesses 275 are formed on the opposite side of the rectangular recess 275 from the inlet port 220 so as to be arranged in the short direction. Short-side ribs 285 are formed between rectangular recesses 275 arranged in the longitudinal direction. Longitudinal ribs 286 are formed between rectangular recesses 275 arranged in the short direction.
 取付面201の略長方形の部分の入口ポート220に対し駆動部70とは反対側に形成された短手方向リブ285と入口ポート220との距離は、取付面201の略長方形の部分の入口ポート220に対し駆動部70側に形成された短手方向リブ285と入口ポート220との距離より小さい。 The distance between the short-side rib 285 formed on the opposite side of the drive unit 70 to the inlet port 220 of the substantially rectangular portion of the mounting surface 201 and the inlet port 220 is the inlet port of the substantially rectangular portion of the mounting surface 201. It is smaller than the distance between the short-side rib 285 formed on the drive unit 70 side and the inlet port 220 with respect to 220.
 締結部231~233の取付面201には、台形凹部276が2つずつ形成されている。締結部231~233において、2つの台形凹部276の間に短手方向リブ285が形成されている。 Two trapezoidal concave portions 276 are formed on the attachment surface 201 of the fastening portions 231 to 233. In the fastening portions 231 to 233, a short-side rib 285 is formed between the two trapezoidal concave portions 276.
 取付面201の略長方形の部分の外縁部には、取付面凹部207を囲む外周リブ287が形成されている。 An outer peripheral rib 287 surrounding the mounting surface recess 207 is formed on the outer edge of the substantially rectangular portion of the mounting surface 201.
 締結部231~233の取付面201の外縁部には、取付面凹部207を囲む外周リブ287が形成されている。 An outer peripheral rib 287 surrounding the attachment surface recess 207 is formed on the outer edge of the attachment surface 201 of the fastening portions 231 to 233.
 取付面凹部207が互いに独立して形成され、取付面凹部207間の凹部間リブ208、外周リブ287により、エンジン2の振動に対するロバスト性を向上できる。 The mounting surface recesses 207 are formed independently of each other, and the robustness against vibration of the engine 2 can be improved by the inter-recess ribs 208 and the outer peripheral ribs 287 between the mounting surface recesses 207.
 長手方向リブ286は、回転軸Axr1方向に延びている。つまり、入口ポート220の軸方向から見た場合、長手方向リブ286と回転軸Axr1とは重なっている(図9参照)。そのため、取付面201に垂直な方向の変形を抑制できる。仮に、このような変形が生じた場合、バルブ装置10内部の部品がずれて、内部や外部への冷却水漏れを引き起こし、バルブ装置10の機能が悪化するおそれがある。本実施形態は、このような問題を抑制できる。 The longitudinal rib 286 extends in the direction of the rotation axis Axr1. That is, when viewed from the axial direction of the inlet port 220, the longitudinal rib 286 and the rotation axis Axr1 overlap (see FIG. 9). Therefore, deformation in a direction perpendicular to the attachment surface 201 can be suppressed. If such deformation occurs, the components inside the valve device 10 may be displaced, causing cooling water leakage to the inside or outside, and the function of the valve device 10 may deteriorate. This embodiment can suppress such a problem.
 本実施形態では、取付面凹部207の取付面201に対する大きさの割合は、5~9.5割である。 In this embodiment, the ratio of the size of the mounting surface recess 207 to the mounting surface 201 is 50 to 9.5%.
 取付面凹部207をバルブ30が設けられる内部空間200とは反対側に設けることにより、バルブ30が設けられる空間のない壁面が均肉になり、内部空間200の空間精度が向上する。内部空間200の空間精度が良いと壁面抵抗が減り、圧力損失を低減できる。 By providing the mounting surface recess 207 on the side opposite to the internal space 200 where the valve 30 is provided, the wall surface without the space where the valve 30 is provided becomes uniform, and the spatial accuracy of the internal space 200 is improved. When the space accuracy of the internal space 200 is good, the wall resistance is reduced and the pressure loss can be reduced.
<1-1-5-1>
 ハウジング本体21は、フィラーを含むポリフェニレンスルファイド樹脂(PPS)により形成されている。より具体的には、ハウジング本体21は、「PPS-GF50」(PPS:50%、ガラス繊維:50%)により形成されている。フィラーとしては、ガラス繊維の他、炭素繊維、シリカ、タルク、珪素等を採用することができる。
<1-1-5-1>
The housing body 21 is made of polyphenylene sulfide resin (PPS) containing a filler. More specifically, the housing body 21 is made of “PPS-GF50” (PPS: 50%, glass fiber: 50%). As the filler, carbon fiber, silica fiber, silica, talc, silicon or the like can be used in addition to glass fiber.
 そのため、ハウジング本体21の耐熱性、耐吸水性、強度、寸法精度を向上できる。 Therefore, the heat resistance, water absorption resistance, strength, and dimensional accuracy of the housing body 21 can be improved.
 ハウジング本体21の樹脂に対するガラスの占有率は、20~80%の範囲でもよい。 The glass occupancy ratio relative to the resin of the housing body 21 may be in the range of 20 to 80%.
 弁体31、ハウジング本体21、隔壁部60は、いずれもPPSにより形成されている。 The valve body 31, the housing body 21, and the partition wall 60 are all formed of PPS.
 弁体31、ハウジング本体21、隔壁部60を同じ樹脂材料で形成することにより、線膨張差をなくすことができ、かじりを少なくすることができる。仮に、各部材間に線膨張差があると、冷却水漏れが生じるおそれがある。本実施形態は、このような問題を抑制できる。 By forming the valve body 31, the housing main body 21, and the partition wall portion 60 from the same resin material, it is possible to eliminate a difference in linear expansion and reduce galling. If there is a difference in linear expansion between the members, cooling water leakage may occur. This embodiment can suppress such a problem.
 弁体31、ハウジング本体21、隔壁部60をPPSにより形成することで、弁体31、ハウジング本体21、隔壁部60の強度、耐熱性、耐薬品性を向上できる。 By forming the valve body 31, the housing body 21, and the partition wall portion 60 from PPS, the strength, heat resistance, and chemical resistance of the valve body 31, the housing body 21, and the partition wall portion 60 can be improved.
 パイプ部材50は、例えばPPA(ポリフタルアミド)により形成されている。これにより、パイプ部材50を無理抜きにより形成できる。 The pipe member 50 is made of, for example, PPA (polyphthalamide). Thereby, the pipe member 50 can be formed by forcibly removing.
 PPSで形成された弁体31、ハウジング本体21、隔壁部60の線膨張係数は、PPAで形成されたパイプ部材50の線膨張係数より小さい。そのため、熱がかかったときの歪みやアッシーへの影響を低減できる。 The linear expansion coefficient of the valve body 31, the housing body 21, and the partition wall portion 60 formed of PPS is smaller than the linear expansion coefficient of the pipe member 50 formed of PPA. Therefore, the influence on distortion and assembly when heat is applied can be reduced.
 他の実施形態では、弁体31、ハウジング本体21、隔壁部60は、PPAにより形成してもよい。 In other embodiments, the valve body 31, the housing body 21, and the partition wall portion 60 may be formed of PPA.
<1-6>
 図9に示すように、第3締結穴としての締結穴243が形成された締結部233は、隔壁部60に隣接した位置に形成されている。
<1-6>
As shown in FIG. 9, the fastening part 233 in which the fastening hole 243 as the third fastening hole is formed is formed at a position adjacent to the partition wall part 60.
 そのため、駆動部70の振動を低減できる。 Therefore, the vibration of the drive unit 70 can be reduced.
<1-7>
 図9に示すように、締結部231、232、233は、エンジン2側に取付面201を有し、取付面201からエンジン2とは反対側へ凹む取付面凹部207を有している。
<1-7>
As shown in FIG. 9, the fastening portions 231, 232, and 233 have a mounting surface 201 on the engine 2 side and a mounting surface recess 207 that is recessed from the mounting surface 201 to the opposite side of the engine 2.
 そのため、締結部231、232、233の肉厚を均肉にすることができる。その結果、ボイドの発生を防ぐことができ、締結部231、232、233の締結穴241、242、243に設けられるカラー周りの樹脂強度が低下することを抑制できる。さらに、エンジン2からの振動でカラー周りの薄肉が先に割れた場合にも、取付面凹部207がある結果、割れが内部空間200まで至ることを抑制できる。 Therefore, the thickness of the fastening portions 231, 232, 233 can be made uniform. As a result, the generation of voids can be prevented, and the resin strength around the collar provided in the fastening holes 241, 242, and 243 of the fastening portions 231, 232, and 233 can be suppressed from decreasing. Furthermore, even when the thin wall around the collar is cracked first by vibration from the engine 2, it is possible to prevent the crack from reaching the internal space 200 as a result of the mounting surface recess 207.
<1-8>
 図9に示すように、ハウジング20は、取付面201に形成され他部材と係合することでハウジング本体21の位置決めが可能な位置決め部205、206、および、複数の取付面凹部207の間に形成される凹部間リブ208を有している。位置決め部205、206は、凹部間リブ208の格子点204に形成されている。
<1-8>
As shown in FIG. 9, the housing 20 is formed between the positioning portions 205 and 206, which are formed on the mounting surface 201 and can be positioned by engaging with other members, and a plurality of mounting surface recesses 207. An inter-recess rib 208 is formed. The positioning portions 205 and 206 are formed at the lattice points 204 of the inter-recess ribs 208.
 そのため、ハウジング本体21を安定して位置決めできる。 Therefore, the housing body 21 can be positioned stably.
<1-9>
 図9に示すように、ハウジング20は、取付面201に形成され他部材と係合することでハウジング本体21の位置決めが可能な位置決め部205、206を有している。締結部は、ハウジング本体21の幅方向の一方の側に1つ(231)、ハウジング本体21の幅方向の他方の側に2つ(232、233)形成されている。位置決め部205は、締結部が1つ(231)形成されたハウジング本体21の幅方向の一方の側に形成されている。ここで、ハウジング本体21の幅方向とは、ハウジング本体21を取付面201に垂直な方向から見たとき、ハウジング本体21の短手方向に対応する方向である。
<1-9>
As shown in FIG. 9, the housing 20 includes positioning portions 205 and 206 that are formed on the mounting surface 201 and that can position the housing main body 21 by engaging with other members. One fastening portion (231) is formed on one side in the width direction of the housing body 21, and two fastening portions (232, 233) are formed on the other side in the width direction of the housing body 21. The positioning portion 205 is formed on one side in the width direction of the housing body 21 in which one fastening portion (231) is formed. Here, the width direction of the housing body 21 is a direction corresponding to the short direction of the housing body 21 when the housing body 21 is viewed from a direction perpendicular to the mounting surface 201.
 そのため、3つの締結部のうち1つしかない側について、位置決め部205が4点目としてあることで、ハウジング本体21の左右両方向(幅方向)のバランスを確保できる。 Therefore, since the positioning portion 205 is the fourth point on the side where only one of the three fastening portions is provided, the balance in the left and right directions (width direction) of the housing body 21 can be secured.
<1-10>
 図9に示すように、入口ポート220は、複数の締結部のうち入口ポート220から最も離れた締結部233と位置決め部205との間に形成されている。
<1-10>
As shown in FIG. 9, the inlet port 220 is formed between the fastening portion 233 farthest from the inlet port 220 and the positioning portion 205 among the plurality of fastening portions.
 そのため、ハウジング本体21の左右両方向(幅方向)のバランスをさらに確保できる。 Therefore, the balance of the left and right direction (width direction) of the housing body 21 can be further secured.
<2-1>駆動部S/A
 図11に示すように、隔壁部60は、内部空間200とハウジング本体21の外部とを隔てるようハウジング開口部210に設けられ、シャフト32を軸受け可能である。駆動部カバー80は、隔壁部60に対し内部空間200とは反対側に設けられ、隔壁部60との間に駆動部空間800を形成する。駆動部70は、駆動部空間800に設けられ、シャフト32を経由して弁体31を回転駆動可能である。
<2-1> Drive unit S / A
As shown in FIG. 11, the partition wall 60 is provided in the housing opening 210 so as to separate the internal space 200 from the outside of the housing body 21, and can support the shaft 32. The drive unit cover 80 is provided on the opposite side of the partition wall 60 from the internal space 200, and forms a drive unit space 800 between the drive unit cover 80 and the partition wall 60. The drive unit 70 is provided in the drive unit space 800 and can rotate the valve body 31 via the shaft 32.
<2-1>
 上述のように、本実施形態は、車両1のエンジン2の冷却水を制御可能なバルブ装置10であって、ハウジング20とバルブ30と隔壁部60と駆動部カバー80と駆動部70とを備える。
<2-1>
As described above, the present embodiment is a valve device 10 that can control the cooling water of the engine 2 of the vehicle 1, and includes the housing 20, the valve 30, the partition wall portion 60, the drive portion cover 80, and the drive portion 70. .
 ハウジング20は、内側に内部空間200を形成するハウジング本体21、内部空間200とハウジング本体21の外部とを接続するポート(220、221、222、223)、および、内部空間200とハウジング本体21の外部とを接続するハウジング開口部210を有する。 The housing 20 includes a housing main body 21 that forms an internal space 200 on the inside, ports (220, 221, 222, and 223) that connect the internal space 200 and the outside of the housing main body 21, and the internal space 200 and the housing main body 21. It has a housing opening 210 for connecting to the outside.
 バルブ30は、内部空間200内において回転軸Axr1周りに回転可能な弁体31、弁体31の内側に形成された弁体内流路300、弁体内流路300と弁体31の外側とを接続する弁体開口部(410、420、430)、および、回転軸Axr1に設けられたシャフト32を有し、弁体開口部(410、420、430)を経由した弁体内流路300とポート(220、221、222、223)との連通状態を弁体31の回転位置により変更可能である。 The valve 30 connects the valve body 31 that can rotate around the rotation axis Axr1 in the internal space 200, the valve body channel 300 formed inside the valve body 31, and the valve body channel 300 and the outside of the valve body 31. Valve body openings (410, 420, 430) and a shaft 32 provided on the rotation axis Axr1, and the valve body flow path 300 and ports (via the valve body openings (410, 420, 430)) 220, 221, 222, 223) can be changed by the rotational position of the valve body 31.
 隔壁部60は、内部空間200とハウジング本体21の外部とを隔てるようハウジング開口部210に設けられ、シャフト32を軸受け可能である。 The partition wall 60 is provided in the housing opening 210 so as to separate the internal space 200 from the outside of the housing body 21 and can receive the shaft 32.
 駆動部カバー80は、隔壁部60に対し内部空間200とは反対側に設けられ、隔壁部60との間に駆動部空間800を形成する。 The drive unit cover 80 is provided on the opposite side of the partition wall 60 from the internal space 200, and forms a drive unit space 800 between the partition wall 60.
 駆動部70は、駆動部空間800に設けられ、シャフト32を経由して弁体31を回転駆動可能である。 The drive unit 70 is provided in the drive unit space 800 and can rotate the valve body 31 via the shaft 32.
 本実施形態では、駆動部70とシャフト32との間に、接手等の部材は不要である。そのため、駆動部70周りの構成を簡単にできる。 In the present embodiment, a member such as a joint is not required between the drive unit 70 and the shaft 32. Therefore, the configuration around the drive unit 70 can be simplified.
 また、シャフト32を軸受けする部材、および、駆動部70を収容する部材として隔壁部60を共用することにより、駆動部70と弁体31との同軸精度を向上できる。また、部材点数を削減できる。 Further, by using the partition wall 60 as a member for bearing the shaft 32 and a member for housing the drive unit 70, the coaxial accuracy between the drive unit 70 and the valve body 31 can be improved. Moreover, the number of members can be reduced.
 図11に示すように、隔壁部本体61の内部空間200側の面のうち規制凹部63の内側の部分は、規制凹部63の外側の部分よりもやや内部空間200側に位置している。 As shown in FIG. 11, the inner portion of the restriction recess 63 in the inner space 200 side surface of the partition wall body 61 is located slightly closer to the inner space 200 than the outer portion of the restriction recess 63.
 隔壁部本体61と対向するハウジング本体21の内周部分は、段差形状になっている。 The inner peripheral portion of the housing body 21 facing the partition wall body 61 has a step shape.
 環状シール部材600が設けられる隔壁部本体61とハウジング開口部210との間の隙間は、テーパ状に形成されている。これにより、環状シール部材600を当該隙間に容易に設けることができる。当該隙間にエンジンオイルが侵入すると、環状シール部材600が膨潤し、切れ、冷却水が漏れるおそれがある。また、環状シール部材600が噛み込むと、環状シール部材600が切れ、冷却水が漏れ、外部から内部にエンジンオイルが侵入するおそれがある。本実施形態では、この問題を抑制できる。 The clearance gap between the partition part main body 61 and the housing opening part 210 in which the annular seal member 600 is provided is formed in a taper shape. Thereby, the annular seal member 600 can be easily provided in the gap. If engine oil enters the gap, the annular seal member 600 may swell, break, and coolant may leak. Further, when the annular seal member 600 is bitten, the annular seal member 600 is cut, the cooling water leaks, and the engine oil may enter from the outside to the inside. In this embodiment, this problem can be suppressed.
<2-1-1>
 バルブ装置10は、ハウジング開口部210と隔壁部60との間に設けられ、ハウジング開口部210と隔壁部60との間を液密に保持可能な環状シール部材600をさらに備えている。環状シール部材600は、例えばゴム等の弾性部材により環状に形成されている。
<2-1-1>
The valve device 10 further includes an annular seal member 600 that is provided between the housing opening 210 and the partition wall 60 and that can hold the space between the housing opening 210 and the partition wall 60 in a liquid-tight manner. The annular seal member 600 is formed in an annular shape by an elastic member such as rubber.
 ハウジング開口部210は、内壁が筒状に形成されている。隔壁部60は、ハウジング開口部210の内側に位置し外壁が筒状に形成された隔壁部本体61を有している。環状シール部材600は、ハウジング開口部210と隔壁部本体61との間に設けられている。ハウジング開口部210の内径と隔壁部本体61の外径との差は、自由状態の環状シール部材600の内径と外径との差より小さい。よって、環状シール部材600は、ハウジング開口部210と隔壁部本体61との間において径方向に圧縮されている。 The housing opening 210 has a cylindrical inner wall. The partition wall 60 includes a partition wall body 61 that is located inside the housing opening 210 and has an outer wall formed in a cylindrical shape. The annular seal member 600 is provided between the housing opening 210 and the partition wall body 61. The difference between the inner diameter of the housing opening 210 and the outer diameter of the partition wall main body 61 is smaller than the difference between the inner diameter and the outer diameter of the annular seal member 600 in the free state. Therefore, the annular seal member 600 is compressed in the radial direction between the housing opening 210 and the partition wall body 61.
 図11に示すように、ハウジング開口部210には、環状の開口段差面604、605、606が形成されている。開口段差面604、605、606は、回転軸Axr1方向の内部空間200側から駆動部70側へ向かって、この順で形成されている。開口段差面604、606は、環状の平面状に形成されている。開口段差面605は、駆動部70側から内部空間200側に向かうに従い回転軸Axr1に近付くようテーパ状に形成されている。 As shown in FIG. 11, annular opening step surfaces 604, 605, and 606 are formed in the housing opening 210. The opening step surfaces 604, 605, and 606 are formed in this order from the inner space 200 side in the direction of the rotation axis Axr1 toward the drive unit 70 side. The opening step surfaces 604 and 606 are formed in an annular planar shape. The opening step surface 605 is formed in a tapered shape so as to approach the rotation axis Axr1 from the drive unit 70 side toward the internal space 200 side.
 隔壁部本体61の外縁部には、環状の隔壁段差面611、612が形成されている。隔壁段差面611は、開口段差面604に対向するよう環状の平面状に形成されている。隔壁段差面612は、開口段差面605、606に対向するよう環状の平面状に形成されている。 Annular partition wall step surfaces 611 and 612 are formed on the outer edge of the partition wall body 61. The partition wall step surface 611 is formed in an annular flat shape so as to face the opening step surface 604. The partition step surface 612 is formed in an annular flat shape so as to face the opening step surfaces 605 and 606.
 環状シール部材600は、開口段差面604と隔壁段差面611との間に設けられている。 The annular seal member 600 is provided between the opening step surface 604 and the partition wall step surface 611.
<2-2>
 環状シール部材600は、ハウジング開口部210と隔壁部60との間において径方向に圧縮されている。
<2-2>
The annular seal member 600 is compressed in the radial direction between the housing opening 210 and the partition wall 60.
 そのため、環状シール部材600によりシャフト32が調芯され、弁体31の位置精度、および、後述する回転角センサ86の検出精度を向上できる。 Therefore, the shaft 32 is aligned by the annular seal member 600, and the positional accuracy of the valve body 31 and the detection accuracy of the rotation angle sensor 86 described later can be improved.
 環状シール部材600の内周壁の中心と外周壁の中心は一致する。そのため、環状シール部材600によりシャフト32を効果的に調芯できる。 The center of the inner peripheral wall of the annular seal member 600 is coincident with the center of the outer peripheral wall. Therefore, the shaft 32 can be effectively aligned by the annular seal member 600.
 また、後述する固定部材830の軸方向にかかる力を小さくでき、固定部材830の本数を低減できる。 Further, the force applied in the axial direction of the fixing member 830 described later can be reduced, and the number of the fixing members 830 can be reduced.
 水圧がかかると隔壁部本体61が押し上がる方向に力がかかり、駆動部70が押し上げられる。この結果、固定部材830が押し上がることになる。しかし、本実施形態では、環状シールによって、環状シール部材600がつっぱっている状態になり、隔壁部本体61は、摺動抵抗で動きにくくなっている。そのため、固定部材830の軸方向にかかる力を小さくできる。 When water pressure is applied, a force is applied in the direction in which the partition wall body 61 is pushed up, and the drive unit 70 is pushed up. As a result, the fixing member 830 is pushed up. However, in the present embodiment, the annular seal member 600 is stuck by the annular seal, and the partition wall body 61 is difficult to move due to sliding resistance. Therefore, the force applied to the fixing member 830 in the axial direction can be reduced.
<2-2-1>
 環状シール部材600の軸方向においてハウジング本体21との間に軸方向隙間SAxが形成されている。
<2-2-1>
An axial gap SAx is formed between the annular seal member 600 and the housing body 21 in the axial direction.
 そのため、環状シール部材600を、ハウジング開口部210と隔壁部60との間において径方向により効果的に圧縮できる。 Therefore, the annular seal member 600 can be effectively compressed in the radial direction between the housing opening 210 and the partition wall 60.
 軸方向隙間SAxが小さいと、環状シール部材600が縦長になる。この場合、環状シール部材600の軸方向に力が発生する。これを防ぐため、環状シール部材600の径方向のみに力が発生するようにする必要がある。その関係として、本実施形態では、環状シール部材600の軸を含む平面による断面において、環状シール部材600の断面積/軸方向隙間SAxの断面積<1となるよう設定されている。 When the axial gap SAx is small, the annular seal member 600 becomes vertically long. In this case, a force is generated in the axial direction of the annular seal member 600. In order to prevent this, it is necessary to generate a force only in the radial direction of the annular seal member 600. In relation to this, in the present embodiment, the cross-sectional area of the annular seal member 600 is set such that the cross-sectional area of the annular seal member 600 / the cross-sectional area of the axial clearance SAx <1 in the plane including the axis.
<2-3>
 バルブ装置10は、隔壁部60がハウジング本体21と駆動部カバー80との間に挟み込まれた状態でハウジング本体21と駆動部カバー80とを固定可能な固定部材830をさらに備えている。
<2-3>
The valve device 10 further includes a fixing member 830 capable of fixing the housing main body 21 and the driving unit cover 80 in a state where the partition wall 60 is sandwiched between the housing main body 21 and the driving unit cover 80.
 そのため、隔壁部60の位置が安定し、弁体31の軸精度を向上できる。 Therefore, the position of the partition wall 60 is stabilized, and the axial accuracy of the valve body 31 can be improved.
 本実施形態では、シャフト32の駆動部70とは反対側の端部が摺動軸受けとなっている(図3参照)。軸精度が悪くなると摺動抵抗があがる。一方、スプリング372によりバルブシール36を弁体31に押し付けているが、軸精度が良いと、スプリング372によりバルブシール36を押し付ける力を小さくできる。さらに、軸がずれると、冷却水が弁体31とバルブシール36との間で漏れ、暖機が遅くなり、燃費が悪化するおそれがあるが、軸精度が良いと、このような問題を防ぐことができる。 In the present embodiment, the end of the shaft 32 opposite to the drive unit 70 is a sliding bearing (see FIG. 3). If the shaft accuracy deteriorates, the sliding resistance increases. On the other hand, the valve seal 36 is pressed against the valve body 31 by the spring 372. However, if the shaft accuracy is good, the force pressing the valve seal 36 by the spring 372 can be reduced. Furthermore, if the shaft is misaligned, cooling water leaks between the valve body 31 and the valve seal 36, and warming up may be delayed, resulting in a deterioration in fuel consumption. However, if the shaft accuracy is good, such a problem is prevented. be able to.
 また、隔壁部60および駆動部カバー80をハウジング本体21に一度に組み付けでき、組付けを簡素化できる。また、固定部材の数を低減できる。 Also, the partition wall 60 and the drive unit cover 80 can be assembled to the housing body 21 at a time, and the assembly can be simplified. Moreover, the number of fixing members can be reduced.
 固定部材830は、例えばねじであり、駆動部カバー80に形成されたカバー締結穴831を通り、ハウジング本体21の締結穴に螺合する。これにより、駆動部カバー80は、ハウジング本体21との間に隔壁部60を挟んだ状態でハウジング本体21に固定される。なお、カバー締結穴は、駆動部カバー80に複数形成され、それぞれに固定部材830が挿通されている。なお、駆動部カバー80の外縁部と隔壁部60との間には、ゴム製環状のカバーシール部材809が設けられている。これにより、駆動部空間800は気密液密に保持されている。 The fixing member 830 is, for example, a screw, passes through the cover fastening hole 831 formed in the drive unit cover 80, and is screwed into the fastening hole of the housing main body 21. Thus, the drive unit cover 80 is fixed to the housing body 21 with the partition wall 60 sandwiched between the drive body cover 80 and the housing body 21. A plurality of cover fastening holes are formed in the drive unit cover 80, and the fixing member 830 is inserted through each of them. A rubber annular cover seal member 809 is provided between the outer edge portion of the drive unit cover 80 and the partition wall portion 60. Thereby, the drive part space 800 is kept airtight and liquid tight.
<2-4>
 図11に示すように、隔壁部60は、シャフト32の一端を挿通可能なシャフト挿通穴62を有している。バルブ装置10は、シャフト挿通穴62において隔壁部60にインサート成型された金属環601を備えている。金属環601は、金属により環状に形成されており、シャフト挿通穴62と同軸に設けられている。バルブ装置10は、金属環601の内側に設けられ、シャフト32の一端を軸受けする軸受部602を備えている。軸受部602は、例えばボールベアリングであり、金属環601の内側に圧入されている。
<2-4>
As shown in FIG. 11, the partition wall 60 has a shaft insertion hole 62 through which one end of the shaft 32 can be inserted. The valve device 10 includes a metal ring 601 that is insert-molded in the partition wall 60 in the shaft insertion hole 62. The metal ring 601 is formed of a metal in an annular shape and is provided coaxially with the shaft insertion hole 62. The valve device 10 is provided inside the metal ring 601 and includes a bearing portion 602 that supports one end of the shaft 32. The bearing portion 602 is a ball bearing, for example, and is press-fitted inside the metal ring 601.
 そのため、樹脂(隔壁部60)と金属(軸受部602)との線膨張差や樹脂劣化により、軸受部602が保持できなくなるのを抑制でき、シャフト32の軸受け精度を維持できる。 Therefore, it is possible to prevent the bearing portion 602 from being held due to a difference in linear expansion between the resin (partition wall portion 60) and the metal (bearing portion 602) or the resin deterioration, and the bearing accuracy of the shaft 32 can be maintained.
<2-5>
 図12に示すように、隔壁部60は、金属環601の径方向外側において駆動部カバー80側の面609から駆動部カバー80とは反対側へ凹む隔壁凹部64を有している。ここで、面609は、隔壁部60の駆動部カバー80側において金属環601の駆動部カバー80側の端面と同一平面上に形成されている平面状の部位である。
<2-5>
As shown in FIG. 12, the partition wall 60 has a partition wall recess 64 that is recessed from the surface 609 on the drive unit cover 80 side to the opposite side of the drive unit cover 80 on the radially outer side of the metal ring 601. Here, the surface 609 is a planar part formed on the same plane as the end surface of the metal ring 601 on the drive unit cover 80 side on the drive unit cover 80 side of the partition wall 60.
 図11は、「回転軸Axr1を含む面」による断面を示す図である。図12は、「回転軸Axr1を含みモータ71の軸Axm1に垂直な面」による断面を示す図である。図13は、「モータ71の軸Axm1を含み回転軸Axr1に平行な面」による断面を示す図である。図14は、「回転軸Axr1を含みモータ71の軸Axm1に平行な面」による断面を示す図である。 FIG. 11 is a view showing a cross section by “a plane including the rotation axis Axr1”. FIG. 12 is a view showing a cross section by “a plane that includes the rotation axis Axr1 and is perpendicular to the axis Axm1 of the motor 71”. FIG. 13 is a view showing a cross section by a “plane including the axis Axm1 of the motor 71 and parallel to the rotation axis Axr1”. FIG. 14 is a view showing a cross section by “a plane that includes the rotation axis Axr1 and is parallel to the axis Axm1 of the motor 71”.
 そのため、隔壁部60の一体成型時のヒケや反り、軸受部602の圧入による変形を抑制できる。これにより、隔壁部60の外周部分の寸法精度を向上でき、弁体31の軸精度を向上できる。 Therefore, sink marks and warpage during integral molding of the partition wall portion 60 and deformation due to press-fitting of the bearing portion 602 can be suppressed. Thereby, the dimensional accuracy of the outer peripheral part of the partition part 60 can be improved, and the axial precision of the valve body 31 can be improved.
<2-6>
 図12に示すように、駆動部70は、シャフト32を回転駆動可能なモータ71を有している。
<2-6>
As illustrated in FIG. 12, the drive unit 70 includes a motor 71 that can rotationally drive the shaft 32.
<2-7>
 図12、図13に示すように、バルブ装置10は、モータ71と隔壁部60との間において圧縮された状態で設けられた弾性部材74をさらに備えている。弾性部材74は、例えばゴム等により形成されている。
<2-7>
As shown in FIGS. 12 and 13, the valve device 10 further includes an elastic member 74 provided in a compressed state between the motor 71 and the partition wall 60. The elastic member 74 is made of, for example, rubber.
 そのため、弾性部材74のダンパ効果により、モータ71に作用する振動を減衰させることができ、接触不良を抑制するとともに、モータ71の作動状態を良好に保つことができる。 Therefore, due to the damper effect of the elastic member 74, the vibration acting on the motor 71 can be attenuated, the contact failure can be suppressed, and the operating state of the motor 71 can be kept good.
 モータ71の振動により、隔壁部60が動き、摺動抵抗が発生し、燃費が悪化するおそれがある。また、モータ71の振動で、後述する回転角センサ86の出力がずれ、燃費が悪化するおそれがある。本実施形態では、弾性部材74によりモータ71の振動を抑制することで、上述の問題の発生を抑制できる。 The vibration of the motor 71 causes the partition wall portion 60 to move, causing sliding resistance, which may deteriorate fuel consumption. Further, the vibration of the motor 71 may cause the output of a rotation angle sensor 86 to be described later to shift, resulting in a deterioration in fuel consumption. In the present embodiment, the occurrence of the above-described problem can be suppressed by suppressing the vibration of the motor 71 by the elastic member 74.
 また、モータ71の組付けを簡素化でき、部品点数を低減できる。 Also, the assembly of the motor 71 can be simplified and the number of parts can be reduced.
 図12に示すように、弾性部材74は、隔壁部本体61とモータ71との間に設けられ、隔壁部本体61を内部空間200側へ付勢している。 As shown in FIG. 12, the elastic member 74 is provided between the partition wall body 61 and the motor 71, and urges the partition wall body 61 toward the internal space 200 side.
 そのため、弾性部材74によって、内部空間200側の冷却水の水圧が加わって隔壁部本体61が浮いてくるのを抑制できる。この結果、冷却水の漏れを防ぎ、当該漏れによる車両1のオーバーヒートを防ぐことができる。 Therefore, the elastic member 74 can prevent the partition wall body 61 from floating due to the water pressure of the cooling water on the internal space 200 side being applied. As a result, leakage of cooling water can be prevented, and overheating of the vehicle 1 due to the leakage can be prevented.
<2-8>
 図14、図15に示すように、モータ71は、軸Axm1がシャフト32の軸Axs1と直交するよう設けられている。より正確には、軸Axm1と軸Axs1とは捩れの関係において直交している。
<2-8>
As shown in FIGS. 14 and 15, the motor 71 is provided such that the axis Axm <b> 1 is orthogonal to the axis Axs <b> 1 of the shaft 32. More precisely, the axis Axm1 and the axis Axs1 are perpendicular to each other in the torsional relationship.
 そのため、パイプ部材50の搭載自由度を向上できる。 Therefore, the degree of freedom for mounting the pipe member 50 can be improved.
 また、ハウジング本体21の幅方向の体格を小さくでき、バルブ装置10を狭いスペースに搭載できる。 Further, the size of the housing body 21 in the width direction can be reduced, and the valve device 10 can be mounted in a narrow space.
 また、モータ71周りの電気部品を冷却水(内部空間200)から遠ざけ、水濡れによるショートの懸念を減らすことができる。 Also, the electrical components around the motor 71 can be kept away from the cooling water (internal space 200), and the possibility of short circuit due to water wetting can be reduced.
 また、モータ71を冷却水(内部空間200)から遠ざけることで、モータ71への熱害を抑制できる。 Moreover, the heat damage to the motor 71 can be suppressed by keeping the motor 71 away from the cooling water (internal space 200).
<2-9>
 図15、図16に示すように、モータ71は、モータ本体710、モータシャフト711、ウォームギア712、モータ側端子713等を有している。モータ本体710は、略円筒状に形成され、図示しないステータ、コイル、ロータを内部に有している。モータシャフト711は、ロータの回転軸においてロータと一体に設けられ、一端がモータ本体710の軸方向の端部から突出している。モータ71の駆動力は、モータシャフト711から出力される。ここで、モータ71の軸Axm1は、モータシャフト711の軸と一致している。モータ71は、軸Axm1が駆動部カバー80の隔壁部60側を向く面808に対し平行となるよう設けられている(図16参照)。
<2-9>
As shown in FIGS. 15 and 16, the motor 71 includes a motor body 710, a motor shaft 711, a worm gear 712, a motor side terminal 713, and the like. The motor body 710 is formed in a substantially cylindrical shape, and has a stator, a coil, and a rotor (not shown) inside. The motor shaft 711 is provided integrally with the rotor on the rotation axis of the rotor, and one end protrudes from the end of the motor body 710 in the axial direction. The driving force of the motor 71 is output from the motor shaft 711. Here, the axis Axm1 of the motor 71 coincides with the axis of the motor shaft 711. The motor 71 is provided such that the axis Axm1 is parallel to the surface 808 of the drive unit cover 80 facing the partition wall 60 side (see FIG. 16).
 ウォームギア712は、モータシャフト711の一端に設けられ、モータシャフト711と一体に回転可能である。モータ側端子713は、例えば金属により長尺の板状に形成されている。モータ側端子713は、モータ本体710のウォームギア712とは反対側の端部から突出し、間にモータ71の軸Axm1を挟むようにして2つ設けられている。ここで、2つのモータ側端子713は、面方向が互いに平行となるよう設けられている。モータ側端子713のモータ本体710内の端部は、コイルに電気的に接続している。 The worm gear 712 is provided at one end of the motor shaft 711 and can rotate integrally with the motor shaft 711. The motor-side terminal 713 is formed in a long plate shape from metal, for example. Two motor side terminals 713 protrude from the end of the motor body 710 opposite to the worm gear 712, and are provided so as to sandwich the axis Axm1 of the motor 71 therebetween. Here, the two motor side terminals 713 are provided so that the surface directions thereof are parallel to each other. The end of the motor side terminal 713 in the motor main body 710 is electrically connected to the coil.
 図16、図17に示すように、バルブ装置10は、給電端子85をさらに備えている。給電端子85は、例えば金属によりU字の平板状に形成され、端子開口851側の端部が隔壁部60側を向くよう駆動部カバー80にインサート成型されている。給電端子85は、間にモータ71の軸Axm1を挟むようにして2つ設けられている。ここで、2つの給電端子85は、同一平面上に設けられている。モータ71の2つのモータ側端子713は、2つの給電端子85の端子開口851のそれぞれに嵌合し、給電端子85と電気的に接続している。 16 and 17, the valve device 10 further includes a power supply terminal 85. The power supply terminal 85 is formed into a U-shaped flat plate made of metal, for example, and is insert-molded in the drive unit cover 80 so that the end on the terminal opening 851 side faces the partition wall 60 side. Two power supply terminals 85 are provided so as to sandwich the axis Axm1 of the motor 71 therebetween. Here, the two power supply terminals 85 are provided on the same plane. The two motor-side terminals 713 of the motor 71 are fitted into the terminal openings 851 of the two power supply terminals 85 and are electrically connected to the power supply terminals 85.
 図12に示すように、駆動部カバー80は、コネクタ部84を有している。コネクタ部84は、内側に端子841を有している。端子841は、給電端子85に電気的に接続している。コネクタ部84には、図示しないワイヤーハーネスが接続される。これにより、車両1のバッテリからワイヤーハーネス、端子841、給電端子85、モータ側端子713を経由して電力が供給される。 As shown in FIG. 12, the drive section cover 80 has a connector section 84. The connector part 84 has a terminal 841 inside. The terminal 841 is electrically connected to the power supply terminal 85. A wire harness (not shown) is connected to the connector portion 84. Thereby, electric power is supplied from the battery of the vehicle 1 via the wire harness, the terminal 841, the power supply terminal 85, and the motor side terminal 713.
 なお、駆動部カバー80の回転軸Axr1上には、回転角センサ86が設けられている。回転角センサ86は、端子841、ワイヤーハーネスを経由してECU8に電気的に接続される。回転角センサ86は、シャフト32の回転角に応じた信号をECU8に出力する。これにより、ECU8は、弁体31の回転位置を検出可能であり、弁体31の回転位置に応じてモータ71の作動を制御することができる。 A rotation angle sensor 86 is provided on the rotation axis Axr1 of the drive unit cover 80. The rotation angle sensor 86 is electrically connected to the ECU 8 via a terminal 841 and a wire harness. The rotation angle sensor 86 outputs a signal corresponding to the rotation angle of the shaft 32 to the ECU 8. Thereby, the ECU 8 can detect the rotational position of the valve body 31 and can control the operation of the motor 71 in accordance with the rotational position of the valve body 31.
 上述したように、バルブ装置10は、開口(端子開口851)側の端部が隔壁部60側を向くよう駆動部カバー80に設けられモータ71へ供給する電流が流れるU字状の給電端子85を備えている。モータ71は、軸方向の端部において給電端子85の開口(端子開口851)に接続するモータ側端子713を有し、軸Axm1が駆動部カバー80の隔壁部60側を向く面808に対し平行となるよう設けられている。 As described above, the valve device 10 is provided in the drive unit cover 80 so that the end on the opening (terminal opening 851) side faces the partition wall 60 side, and a U-shaped power supply terminal 85 through which current supplied to the motor 71 flows. It has. The motor 71 has a motor-side terminal 713 connected to the opening (terminal opening 851) of the power supply terminal 85 at the end in the axial direction, and the axis Axm 1 is parallel to the surface 808 facing the partition wall 60 side of the drive unit cover 80. It is provided to become.
 そのため、モータ71を一方向から駆動部カバー80に容易に組み付けできる。また、部品点数を低減できる。 Therefore, the motor 71 can be easily assembled to the drive unit cover 80 from one direction. Moreover, the number of parts can be reduced.
<2-10>
 図15に示すように、ギア部72は、第1ギア721、第2ギア722、第3ギア723を有している。第1ギア721は、モータ71のウォームギア712に噛み合うよう設けられている。第2ギア722は、外径が第1ギア721より大きく、第1ギア721に噛み合うようよう設けられている。第3ギア723は、外径が第2ギア722より大きく、第2ギア722に噛み合うようようシャフト32の一端に設けられている。第3ギア723は、シャフト32と同軸に設けられ、シャフト32と一体に回転可能である。
<2-10>
As shown in FIG. 15, the gear unit 72 includes a first gear 721, a second gear 722, and a third gear 723. The first gear 721 is provided to mesh with the worm gear 712 of the motor 71. The second gear 722 has an outer diameter larger than that of the first gear 721 and is provided so as to mesh with the first gear 721. The third gear 723 has an outer diameter larger than that of the second gear 722 and is provided at one end of the shaft 32 so as to mesh with the second gear 722. The third gear 723 is provided coaxially with the shaft 32 and can rotate integrally with the shaft 32.
 第1ギア721、第2ギア722、第3ギア723は、軸がシャフト32の軸Axs1に対し平行となるよう、すなわち、モータ71の軸Axm1に対し直交するよう設けられている。モータ71の駆動力は、ウォームギア712、第1ギア721、第2ギア722、第3ギア723を経由してシャフト32に伝達される。 The first gear 721, the second gear 722, and the third gear 723 are provided so that their axes are parallel to the axis Axs1 of the shaft 32, that is, orthogonal to the axis Axm1 of the motor 71. The driving force of the motor 71 is transmitted to the shaft 32 via the worm gear 712, the first gear 721, the second gear 722, and the third gear 723.
 図12、図18に示すように、バルブ装置10は、保持部材73をさらに備えている。保持部材73は、駆動部カバー80に対しスナップフィット結合可能なスナップフィット部731を有している。保持部材73は、駆動部カバー80との間に、モータ71、ギア部72の第1ギア721および第2ギア722を保持するよう駆動部カバー80にスナップフィット結合されている。ここで、弾性部材74は、モータ本体710と保持部材73との間において、圧縮された状態で設けられている。 As shown in FIGS. 12 and 18, the valve device 10 further includes a holding member 73. The holding member 73 has a snap fit portion 731 that can be snap-fit coupled to the drive portion cover 80. The holding member 73 is snap-fit coupled to the drive unit cover 80 so as to hold the motor 71, the first gear 721 of the gear unit 72, and the second gear 722 between the drive unit cover 80. Here, the elastic member 74 is provided in a compressed state between the motor main body 710 and the holding member 73.
 上述したように、駆動部70は、モータ71の駆動力をシャフト32に伝達可能なギア部72を有している。また、バルブ装置10は、駆動部カバー80に対しスナップフィット結合可能なスナップフィット部731を有し駆動部カバー80との間にモータ71およびギア部72を保持する保持部材73をさらに備えている。 As described above, the driving unit 70 has the gear unit 72 that can transmit the driving force of the motor 71 to the shaft 32. The valve device 10 further includes a holding member 73 that has a snap-fit portion 731 that can be snap-fit coupled to the drive portion cover 80 and holds the motor 71 and the gear portion 72 between the drive portion cover 80. .
 そのため、モータ71およびギア部72を駆動部カバー80に保持したまま、隔壁部60側へ組み付けることができる。また、部品点数を低減できる。 Therefore, the motor 71 and the gear part 72 can be assembled to the partition wall 60 side while being held by the drive part cover 80. Moreover, the number of parts can be reduced.
<6-7>
 図3に示すように、隔壁部60には、シャフト挿通穴62から外側へ延びて隔壁部本体61の外壁に開口する隔壁貫通穴65を有している。また、ハウジング20は、ハウジング開口部210の内壁から外側へ延びてハウジング本体21の外壁に開口し、隔壁貫通穴65と連通可能に形成されたハウジング貫通穴270を有している。
<6-7>
As shown in FIG. 3, the partition wall portion 60 has a partition wall through hole 65 that extends outward from the shaft insertion hole 62 and opens to the outer wall of the partition wall body 61. Further, the housing 20 has a housing through hole 270 that extends outward from the inner wall of the housing opening 210 and opens in the outer wall of the housing body 21 and is formed so as to be able to communicate with the partition wall through hole 65.
 そのため、内部空間200からシャフト挿通穴62を通り駆動部70側へ向かって流れる冷却水を隔壁貫通穴65へ流すことができる。これにより、内部空間200の冷却水が駆動部70側へ流れるのを抑制可能である。なお、隔壁貫通穴65へ流れた冷却水は、ハウジング貫通穴270から外部へ排出される。 Therefore, the cooling water flowing from the internal space 200 through the shaft insertion hole 62 toward the drive unit 70 can flow into the partition wall through hole 65. Thereby, it can suppress that the cooling water of the internal space 200 flows into the drive part 70 side. The cooling water that has flowed into the partition wall through hole 65 is discharged from the housing through hole 270 to the outside.
 本実施形態では、ハウジング貫通穴270は、取付面201に開口している。つまり、バルブ装置10がエンジン2に取り付けられると、ハウジング貫通穴270は、エンジン2により覆われた状態となる。 In the present embodiment, the housing through hole 270 opens in the mounting surface 201. That is, when the valve device 10 is attached to the engine 2, the housing through hole 270 is covered with the engine 2.
 そのため、ハウジング貫通穴270を経由してバルブ装置10の内部から外部に漏れる冷却水を取付面201部分でトラップできる。その結果、冷却水漏れが目立つのを抑制できる。 Therefore, the cooling water leaking from the inside of the valve device 10 to the outside via the housing through hole 270 can be trapped at the mounting surface 201 portion. As a result, it is possible to suppress the conspicuous leakage of cooling water.
<6-22>
 ハウジング貫通穴270は、取付面201側に開口している。
<6-22>
The housing through hole 270 opens to the mounting surface 201 side.
 そのため、外部の水がハウジング貫通穴270、隔壁貫通穴65を経由してバルブ装置10の内部に侵入するのを抑制できる。 Therefore, it is possible to suppress external water from entering the inside of the valve device 10 via the housing through hole 270 and the partition wall through hole 65.
 駆動部空間800に設ける給電端子85等の金属部材は、メッキがされた部材をプレスで打ち抜いた部分を後メッキする。これにより、冷却水が駆動部空間800に侵入した場合でも、金属部材の腐食を抑制でき、導通不良を抑制できる。 The metal member such as the power supply terminal 85 provided in the drive unit space 800 is post-plated at a portion obtained by punching the plated member with a press. Thereby, even when a cooling water penetrate | invades into the drive part space 800, corrosion of a metal member can be suppressed and conduction | electrical_connection defect can be suppressed.
 本実施形態のようにエンジン2の冷却水を制御するのに用いられるバルブ装置10では、冷却水の熱の影響を受ける。したがって、弁体31の厚さが不均一な肉厚である場合、膨張率が肉厚によって異なるため、弁体31の全体がゆがむおそれがある。特に本実施形態では、冷却水が流入する入口ポート220と弁体31の内周壁の一部とが対向しているため、弁体31の内周壁が熱の影響を受けやすい構造にある。 The valve device 10 used for controlling the cooling water of the engine 2 as in this embodiment is affected by the heat of the cooling water. Therefore, when the thickness of the valve body 31 is uneven, the expansion rate varies depending on the thickness, and thus the entire valve body 31 may be distorted. In particular, in this embodiment, since the inlet port 220 into which the cooling water flows and a part of the inner peripheral wall of the valve body 31 face each other, the inner peripheral wall of the valve body 31 is easily affected by heat.
<3-27>
 そこで、図3に示すように、弁体31は、内周壁のうち少なくとも、冷却水が流入する入口ポート220に対向する部分である対向部分310が外側へ凹むよう形成されている。より具体的には、弁体31は、内周壁のうち少なくとも、冷却水が流入する入口ポート220に、ボールバルブ42の弁体開口部420を経由して対向する部分である対向部分310が外側へ凹むよう形成されている。
<3-27>
Therefore, as shown in FIG. 3, the valve body 31 is formed such that at least a facing portion 310, which is a portion facing the inlet port 220 into which cooling water flows, of the inner peripheral wall is recessed outward. More specifically, the valve body 31 has a facing portion 310 that is a portion facing at least the inlet port 220 into which cooling water flows in the inner peripheral wall via the valve body opening 420 of the ball valve 42. It is formed to be recessed.
 このように、弁体31の内周壁のうち少なくとも対向部分310を凹ませて均肉に近付ければ、弁体31全体の膨張率が弁体31の均一に近付くことになるため、弁体31がゆがむのを防ぐことができる。 In this way, if at least the facing portion 310 of the inner peripheral wall of the valve body 31 is recessed to bring it closer to the uniform thickness, the expansion rate of the entire valve body 31 approaches the valve body 31 uniformly. It can prevent distortion.
<3-28>
 図3に示すように、バルブシール36は、弁体31の外周壁のうち少なくとも対向部分310に対応する部分に当接する。より具体的には、バルブシール36は、弁体31の外周壁のうち、少なくとも対向部分310の反対側の部分に当接する。
<3-28>
As shown in FIG. 3, the valve seal 36 contacts at least a portion corresponding to the facing portion 310 of the outer peripheral wall of the valve body 31. More specifically, the valve seal 36 contacts at least a portion of the outer peripheral wall of the valve body 31 opposite to the facing portion 310.
 弁体31が変形するとバルブシール36によるシール性が悪化し、暖気性能等が低下するが、本実施形態では、上記構成により、弁体31の特に対向部分310に対応する部分がゆがむのを防ぐことができるため、バルブシール36によるシール性を確保でき、暖気性能が向上する。 When the valve body 31 is deformed, the sealing performance by the valve seal 36 is deteriorated and the warming performance and the like are deteriorated. However, in the present embodiment, the portion corresponding to the opposed portion 310 of the valve body 31 is prevented from being distorted by the above configuration. Therefore, the sealing performance by the valve seal 36 can be secured, and the warming-up performance is improved.
<4-6>
 ハウジング20は、複数のポート(221~223)を有している。ハウジング本体21がエンジン2に取り付けられた状態において、車両1のヒータ6に接続されるポートである出口ポート222は、複数のポートの中で鉛直方向の最も上側に位置しないよう形成されている(図8参照)。
<4-6>
The housing 20 has a plurality of ports (221 to 223). In a state where the housing main body 21 is attached to the engine 2, the outlet port 222 which is a port connected to the heater 6 of the vehicle 1 is formed so as not to be positioned on the uppermost side in the vertical direction among the plurality of ports ( (See FIG. 8).
 そのため、冷却水中の空気がヒータ6に流れるのを抑制でき、車両1の車室内に異音が発生するのを抑制できる。 Therefore, it is possible to suppress the air in the cooling water from flowing to the heater 6 and to suppress the generation of abnormal noise in the vehicle interior of the vehicle 1.
  (第2実施形態)
 第2実施形態によるバルブ装置の一部を図19に示す。
(Second Embodiment)
A part of the valve device according to the second embodiment is shown in FIG.
<2-11>
 図19に示すように、モータ71は、モータシャフト711がハウジング20の取付面201に対し垂直となるよう、かつ、ウォームギア712が取付面201とは反対側を向くよう駆動部空間800に設けられている。
<2-11>
As shown in FIG. 19, the motor 71 is provided in the drive unit space 800 such that the motor shaft 711 is perpendicular to the mounting surface 201 of the housing 20 and the worm gear 712 faces the side opposite to the mounting surface 201. ing.
 上述したように、モータ71は、駆動力を出力するモータシャフト711、および、モータシャフト711の先端に設けられたウォームギア712を有し、モータシャフト711が取付面201に対し垂直となるよう、かつ、ウォームギア712が取付面201とは反対側を向くよう設けられている。 As described above, the motor 71 has the motor shaft 711 that outputs the driving force, and the worm gear 712 provided at the tip of the motor shaft 711, so that the motor shaft 711 is perpendicular to the mounting surface 201, and The worm gear 712 is provided so as to face the side opposite to the mounting surface 201.
 そのため、ギア高さを小さくでき、駆動部70の体格を小さくできる。 Therefore, the gear height can be reduced and the physique of the drive unit 70 can be reduced.
 また、モータ71のモータ本体710をエンジン2(取付面201)の近くに配置できるため、モータ71の耐振性を向上できるとともに、モータ71に作用する振動が小さくなり、断線に対するロバスト性を向上できる。 Further, since the motor main body 710 of the motor 71 can be disposed near the engine 2 (mounting surface 201), the vibration resistance of the motor 71 can be improved, the vibration acting on the motor 71 can be reduced, and the robustness against disconnection can be improved. .
 また、モータ71、ギア部72を図19に示すように駆動部空間800に配置することで、駆動部70および駆動部カバー80の取付面201に対し垂直な方向Dv1の幅を、取付面201に対し平行な方向Dp1の幅より小さくできる。 Further, by arranging the motor 71 and the gear part 72 in the drive part space 800 as shown in FIG. 19, the width in the direction Dv1 perpendicular to the attachment surface 201 of the drive part 70 and the drive part cover 80 is set. Can be made smaller than the width in the direction Dp1 parallel to the direction Dp1.
 より具体的には、図19に示すように、第3ギア723をモータ本体710の径方向外側に配置し、第1ギア721および第2ギア722を、ウォームギア712の径方向外側に配置する。このように、外径の大きな第3ギア723を取付面201の近くに配置し、第1ギア721および第2ギア722をウォームギア712の径方向外側の空きスペースに配置することにより、駆動部70および駆動部カバー80の体格を小さくできる。 More specifically, as shown in FIG. 19, the third gear 723 is disposed on the radially outer side of the motor body 710, and the first gear 721 and the second gear 722 are disposed on the radially outer side of the worm gear 712. As described above, the third gear 723 having a large outer diameter is disposed near the mounting surface 201, and the first gear 721 and the second gear 722 are disposed in the empty space on the radially outer side of the worm gear 712, thereby driving the driving unit 70. And the physique of the drive part cover 80 can be made small.
  (第3実施形態)
 第3実施形態によるバルブ装置の一部を図20に示す。
(Third embodiment)
A part of the valve device according to the third embodiment is shown in FIG.
<3-1>球面状弁体
 第3実施形態では、シャフト32における弁体31のボールバルブ41、42、43、筒状接続部44、筒状バルブ接続部45の配置が第1実施形態と異なる。図20に示すように、ボールバルブ41、筒状接続部44、ボールバルブ42、筒状バルブ接続部45、ボールバルブ43が、回転軸Axr1方向の駆動部70側から駆動部70とは反対側へ、この順で並ぶよう配置されている。
<3-1> Spherical Valve Element In the third embodiment, the arrangement of the ball valves 41, 42, 43, the cylindrical connection part 44, and the cylindrical valve connection part 45 of the valve element 31 on the shaft 32 is the same as that of the first embodiment. Different. As shown in FIG. 20, the ball valve 41, the cylindrical connection portion 44, the ball valve 42, the cylindrical valve connection portion 45, and the ball valve 43 are on the side opposite to the drive portion 70 from the drive portion 70 side in the direction of the rotation axis Axr1. Are arranged in this order.
 本実施形態では、出口ポート221、222、223は、回転軸Axr1方向の駆動部70側から駆動部70とは反対側へ、この順で並ぶようハウジング本体21に形成されている。ボールバルブ41、42、43は、それぞれ、出口ポート221、222、223を開閉可能に設けられている。 In this embodiment, the outlet ports 221, 222, and 223 are formed in the housing main body 21 so as to be arranged in this order from the drive unit 70 side in the direction of the rotation axis Axr 1 to the side opposite to the drive unit 70. The ball valves 41, 42, and 43 are provided so that the outlet ports 221, 222, and 223 can be opened and closed, respectively.
 弁体31のボールバルブ41、42、43は、外周壁の少なくとも一部が球面状に形成され、内周壁の少なくとも一部が外側へ凹むよう形成されている。 The ball valves 41, 42, and 43 of the valve body 31 are formed such that at least a part of the outer peripheral wall is formed in a spherical shape and at least a part of the inner peripheral wall is recessed outward.
<3-1>
 上述のように、本実施形態は、車両1のエンジン2の冷却水を制御可能なバルブ装置10であって、ハウジング20とバルブ30とバルブシール36とを備えている。
<3-1>
As described above, the present embodiment is a valve device 10 that can control the cooling water of the engine 2 of the vehicle 1, and includes the housing 20, the valve 30, and the valve seal 36.
 ハウジング20は、内部空間200と外部とを接続するポート(220、221、222、223)を有する。 The housing 20 has ports (220, 221, 222, 223) for connecting the internal space 200 and the outside.
 バルブ30は、内部空間200内において回転軸Axr1周りに回転可能な弁体31、弁体31の内側に形成された弁体内流路300、弁体内流路300と弁体31の外側とを接続する弁体開口部(410、420、430)、および、回転軸Axr1に設けられたシャフト32を有し、弁体開口部(410、420、430)を経由した弁体内流路300とポート(220、221、222、223)との連通状態を弁体31の回転位置により変更可能である。 The valve 30 connects the valve body 31 that can rotate around the rotation axis Axr1 in the internal space 200, the valve body channel 300 formed inside the valve body 31, and the valve body channel 300 and the outside of the valve body 31. Valve body openings (410, 420, 430) and a shaft 32 provided on the rotation axis Axr1, and the valve body flow path 300 and ports (via the valve body openings (410, 420, 430)) 220, 221, 222, 223) can be changed by the rotational position of the valve body 31.
 バルブシール36は、環状に形成され、弁体31の外周壁に当接可能なようポート(220、221、222、223)に対応する位置に設けられ、弁体31の回転位置により弁体開口部(410、420、430)に連通可能なシール開口部360を内側に形成し、弁体31の外周壁との間を液密に保持可能である。 The valve seal 36 is formed in an annular shape and is provided at a position corresponding to the ports (220, 221, 222, 223) so as to be able to contact the outer peripheral wall of the valve body 31. The seal opening 360 that can communicate with the portions (410, 420, 430) is formed on the inner side, and the space between the outer peripheral wall of the valve body 31 can be maintained liquid-tight.
 弁体31は、外周壁の少なくとも一部が球面状に形成され、内周壁の少なくとも一部が外側へ凹むよう形成されている。 The valve body 31 is formed such that at least a part of the outer peripheral wall is formed in a spherical shape and at least a part of the inner peripheral wall is recessed outward.
 そのため、弁体31の外周壁の球面の成形精度を向上できる。これにより、弁体31の外周壁における冷却水の漏れを抑制可能である。 Therefore, the molding accuracy of the spherical surface of the outer peripheral wall of the valve body 31 can be improved. Thereby, the leakage of the cooling water in the outer peripheral wall of the valve body 31 can be suppressed.
 また、弁体内流路300の流路面積を大きくでき、通水抵抗を小さくできる。 Moreover, the flow passage area of the valve body flow passage 300 can be increased, and the water flow resistance can be reduced.
<3-2>
 弁体31のボールバルブ41、42、43は、内周壁の少なくとも一部が球面状に形成されている。
<3-2>
The ball valves 41, 42, 43 of the valve body 31 have at least part of the inner peripheral wall formed in a spherical shape.
 そのため、弁体31の少なくとも一部を均肉に近付けることができる。これにより、弁体31の外周壁の球面の精度をより向上でき、弁体内流路300の流路面積をより大きくできる。 Therefore, at least a part of the valve body 31 can be brought close to the meat thickness. Thereby, the precision of the spherical surface of the outer peripheral wall of the valve body 31 can be further improved, and the flow passage area of the flow passage 300 can be increased.
<3-3>
 弁体31のボールバルブ41、42、43は、回転軸Axr1方向および周方向の少なくとも一部の範囲において、内周壁と外周壁との距離が同じである。すなわち、弁体31は、少なくとも前記範囲において肉厚が均一(均肉)となるよう形成されている。
<3-3>
The ball valves 41, 42, and 43 of the valve body 31 have the same distance between the inner peripheral wall and the outer peripheral wall in at least a partial range in the direction of the rotation axis Axr1 and the circumferential direction. That is, the valve body 31 is formed so that the thickness is uniform (equal thickness) at least in the above range.
 そのため、弁体31の少なくとも一部を均肉にすることができる。これにより、弁体31の外周壁の球面の精度をより向上でき、弁体内流路300の流路面積をより大きくできる。 Therefore, at least a part of the valve body 31 can be made uniform. Thereby, the precision of the spherical surface of the outer peripheral wall of the valve body 31 can be further improved, and the flow passage area of the flow passage 300 can be increased.
<3-4>
 弁体31のボールバルブ41、42、43は、回転軸Axr1方向および周方向の少なくともシール開口部360に対応する範囲において、内周壁と外周壁との距離が同じである。
<3-4>
The ball valves 41, 42, and 43 of the valve body 31 have the same distance between the inner peripheral wall and the outer peripheral wall in a range corresponding to at least the seal opening 360 in the rotation axis Axr1 direction and the circumferential direction.
 そのため、前記範囲において弁体31を均肉にすることができる。これにより、弁体31の外周壁の球面の精度をより向上でき、バルブシール36のシール性を向上できる。 Therefore, the valve body 31 can be made uniform in the above range. Thereby, the precision of the spherical surface of the outer peripheral wall of the valve body 31 can be further improved, and the sealing performance of the valve seal 36 can be improved.
<3-4-1>
 弁体31のボールバルブ41、42、43は、シール開口部360の全てが弁体31の外周壁で塞がれた全閉状態のとき、回転軸Axr1方向および周方向の少なくともシール開口部360に対応する範囲において、内周壁と外周壁との距離が同じである。
<3-4-1>
The ball valves 41, 42, 43 of the valve body 31 are at least sealed openings 360 in the direction of the rotation axis Axr1 and in the circumferential direction when all of the seal openings 360 are closed by the outer peripheral wall of the valve body 31. In the range corresponding to, the distance between the inner peripheral wall and the outer peripheral wall is the same.
 「シール開口部360に対応する範囲」とは、バルブシール36の軸方向にシール開口部360を投影したとき、この投影と重なる範囲を意味する。 “The range corresponding to the seal opening 360” means a range overlapping the projection when the seal opening 360 is projected in the axial direction of the valve seal 36.
 そのため、全閉状態のときのバルブシール36のシール性をより向上できる。 Therefore, the sealing performance of the valve seal 36 when fully closed can be further improved.
<3-5>
 シャフト32は、インサート成型により弁体31と一体に形成されている。
<3-5>
The shaft 32 is formed integrally with the valve body 31 by insert molding.
 そのため、弁体31の制御性を向上できる。 Therefore, the controllability of the valve body 31 can be improved.
 また、シャフト32の組付け工数を低減できる。 Also, the assembly man-hour for the shaft 32 can be reduced.
<3-6>
 弁体31は、回転軸Axr1を含む仮想平面Vp1で2つに分割された第1分割体33と第2分割体34とを有し、第1分割体33と第2分割体34とがそれぞれの接合面331、341で接合されている。
<3-6>
The valve body 31 includes a first divided body 33 and a second divided body 34 that are divided into two on a virtual plane Vp1 including the rotation axis Axr1, and the first divided body 33 and the second divided body 34 are respectively Are joined at the joining surfaces 331 and 341.
 そのため、後述するダイスライドインジェクション(DSI)により、弁体31を精度よく製造できる。 Therefore, the valve body 31 can be accurately manufactured by die slide injection (DSI) described later.
<3-7>
 図20、図23に示すように、第1分割体33は、隔壁部60側の面から規制凹部63側へ延びて先端部が規制凹部63に位置する第1規制凸部332を有している(規制凹部63については、図3、図6参照)。第2分割体34は、隔壁部60側の面から規制凹部63側へ延びて先端部が規制凹部63に位置する第2規制凸部342を有している。
<3-7>
As shown in FIGS. 20 and 23, the first divided body 33 has a first restricting convex portion 332 that extends from the surface on the partition wall portion 60 side to the restricting recessed portion 63 and has a tip portion located in the restricting recessed portion 63. (Refer to FIG. 3 and FIG. 6 for the restriction recess 63). The second divided body 34 has a second restricting convex portion 342 that extends from the surface on the partition wall 60 side toward the restricting recess 63 and has a tip portion located in the restricting recess 63.
 そのため、第1規制凸部332、第2規制凸部342が規制凹部63の規制部631に当接することにより、弁体31の回転を規制できる。ここで、第1規制凸部332、第2規制凸部342は、それぞれ、第1分割体33、第2分割体34に形成されているため、第1規制凸部332、第2規制凸部342が規制凹部63の規制部631に当接したとき、第1分割体33と第2分割体34とが接合面331、341で離れる(剥離する)のを抑制できる。 Therefore, the rotation of the valve body 31 can be restricted by the first restriction convex part 332 and the second restriction convex part 342 coming into contact with the restriction part 631 of the restriction concave part 63. Here, since the 1st control convex part 332 and the 2nd control convex part 342 are formed in the 1st division body 33 and the 2nd division body 34, respectively, the 1st control convex part 332 and the 2nd control convex part When the 342 comes into contact with the restricting portion 631 of the restricting recess 63, the first divided body 33 and the second divided body 34 can be prevented from separating (peeling) at the joint surfaces 331 and 341.
 図23、25等に示すように、第1規制凸部332、第2規制凸部342は、第1最外端面301の半径方向の中心に対し径方向外側に位置している。これにより、第1規制凸部332、第2規制凸部342の周方向の大きさを大きくできるため、第1規制凸部332、第2規制凸部342の強度を大きくすることができる。 23, 25 etc., the 1st control convex part 332 and the 2nd control convex part 342 are located in the diameter direction outside to the center of the radial direction of the 1st outermost end face 301. As shown in FIG. Thereby, since the magnitude | size of the circumferential direction of the 1st control convex part 332 and the 2nd control convex part 342 can be enlarged, the intensity | strength of the 1st control convex part 332 and the 2nd control convex part 342 can be enlarged.
 図6に示すように、規制部631の規制凹部63の周方向の端面には、規制面635、636が形成されている。第1規制凸部332の弁体31の周方向の端面には、規制面635に当接可能な凸部規制面333が形成されている。第2規制凸部342の弁体31の周方向の端面には、規制面636に当接可能な凸部規制面343が形成されている。弁体31は、凸部規制面333が規制面635に当接したとき、または、凸部規制面343が規制面636に当接したとき、回転が規制される。 As shown in FIG. 6, restriction surfaces 635 and 636 are formed on the circumferential end surface of the restriction recess 63 of the restriction portion 631. A convex portion regulating surface 333 that can contact the regulating surface 635 is formed on the end surface of the first regulating convex portion 332 in the circumferential direction of the valve body 31. A convex portion regulating surface 343 that can contact the regulating surface 636 is formed on the end surface of the second regulating convex portion 342 in the circumferential direction of the valve body 31. The valve body 31 is restricted from rotating when the convex portion regulating surface 333 contacts the regulating surface 635 or when the convex portion regulating surface 343 contacts the regulating surface 636.
 図23、25等に示すように、第1規制凸部332および第2規制凸部342の第1最外端面301とは反対側の角部は、第1最外端面301に対し傾斜するよう面取りされている。そのため、規制凹部63の第1規制凸部332および第2規制凸部342の近傍に砂等の異物があった場合でも、第1規制凸部332および第2規制凸部342の角部と規制凹部63との間に異物が噛み込むのを抑制できる。 As shown in FIGS. 23, 25, etc., the corners of the first regulating convex part 332 and the second regulating convex part 342 opposite to the first outermost end face 301 are inclined with respect to the first outermost end face 301. It is chamfered. Therefore, even if there is a foreign substance such as sand in the vicinity of the first restriction convex part 332 and the second restriction convex part 342 of the restriction concave part 63, the corners and the restriction of the first restriction convex part 332 and the second restriction convex part 342 are restricted. It can suppress that a foreign material bites into between the recessed parts 63.
<3-8>
 第1規制凸部332は、接合面331に沿って規制凹部63側へ延びている。第2規制凸部342は、第1規制凸部332に当接しつつ、接合面331に沿って規制凹部63側へ延びている。
<3-8>
The first restriction convex part 332 extends toward the restriction concave part 63 along the joint surface 331. The second restriction convex portion 342 extends toward the restriction concave portion 63 along the joint surface 331 while being in contact with the first restriction convex portion 332.
 そのため、第1規制凸部332、第2規制凸部342が規制凹部63の規制部631に当接したとき、第1分割体33と第2分割体34とが接合面331、341で離れるのをより効果的に抑制できる。 Therefore, when the first restriction convex part 332 and the second restriction convex part 342 come into contact with the restriction part 631 of the restriction concave part 63, the first divided body 33 and the second divided body 34 are separated by the joint surfaces 331 and 341. Can be suppressed more effectively.
<3-9>
 図20、図21、図22に示すように、弁体31は、弁体開口部410の内縁端を接続する弁体開口リブ411を有している。弁体31は、弁体開口部420の内縁端を接続する弁体開口リブ421、422を有している。弁体31は、弁体開口部430の内縁端を接続する弁体開口リブ431、432を有している。そのため、弁体開口部410、420、430の強度を向上できる。
<3-9>
As shown in FIGS. 20, 21, and 22, the valve body 31 has a valve body opening rib 411 that connects the inner edge of the valve body opening 410. The valve body 31 has valve body opening ribs 421 and 422 that connect the inner edge of the valve body opening 420. The valve body 31 has valve body opening ribs 431 and 432 that connect the inner edge ends of the valve body opening 430. Therefore, the strength of the valve body openings 410, 420, and 430 can be improved.
 弁体開口リブ411、421、431は、シャフト32の軸Axs1(回転軸Axr1)を含む仮想平面、すなわち、接合面331、341を含む仮想平面Vp1上に形成されている。つまり、弁体開口リブ411、421、431は、接合面331、341を挟むようにして形成されている。弁体開口リブ422、432は、シャフト32の軸Axs1(回転軸Axr1)を含み仮想平面Vp1に直交する仮想平面上に形成されている。 The valve body opening ribs 411, 421, 431 are formed on a virtual plane including the axis Axs1 (rotation axis Axr1) of the shaft 32, that is, a virtual plane Vp1 including the joint surfaces 331, 341. That is, the valve body opening ribs 411, 421, 431 are formed so as to sandwich the joint surfaces 331, 341. The valve body opening ribs 422 and 432 are formed on a virtual plane that includes the axis Axs1 (rotation axis Axr1) of the shaft 32 and is orthogonal to the virtual plane Vp1.
 図24、図25に示すように、弁体開口リブ411は、弁体31のボールバルブ41の外周壁に沿う仮想球面Vs1から径方向内側へ離れた位置に形成されている。 24 and 25, the valve body opening rib 411 is formed at a position away from the virtual spherical surface Vs1 along the outer peripheral wall of the ball valve 41 of the valve body 31 inward in the radial direction.
 仮想球面Vs1は、ボールバルブ41の外周壁を含む仮想的な球面である。 The virtual spherical surface Vs1 is a virtual spherical surface including the outer peripheral wall of the ball valve 41.
 そのため、弁体31の回転時、バルブシール36が弁体開口リブ411に引っ掛かり摺動抵抗が増大するのを抑制できる。 Therefore, when the valve body 31 is rotated, it is possible to suppress the valve seal 36 from being caught by the valve body opening rib 411 and increasing the sliding resistance.
<3-9-1>
 図24、図25に示すように、弁体開口リブ411は、仮想球面Vs1から所定の距離を空けて円弧状に形成されている。なお、弁体開口リブ421、422、および、弁体開口リブ431、432についても、ボールバルブ42、43の外周壁に沿う仮想球面から所定の距離を空けて円弧状に形成されている。
<3-9-1>
As shown in FIGS. 24 and 25, the valve body opening rib 411 is formed in an arc shape with a predetermined distance from the phantom spherical surface Vs1. The valve body opening ribs 421 and 422 and the valve body opening ribs 431 and 432 are also formed in an arc shape with a predetermined distance from a virtual spherical surface along the outer peripheral wall of the ball valves 42 and 43.
 そのため、弁体31の回転時の摺動抵抗の増大を抑制できるとともに、弁体開口リブ411、421、422、431、432の内側の流路面積を大きくできる。 Therefore, an increase in sliding resistance during rotation of the valve body 31 can be suppressed, and the flow path area inside the valve body opening ribs 411, 421, 422, 431, and 432 can be increased.
 図24に示すように、弁体開口リブ411は、円弧状の平板状に形成されている。弁体開口リブ411の径方向外側の部位であるリブ外縁部401は、仮想球面Vs1からの距離が一定である。弁体開口リブ411の径方向内側の部位であるリブ内縁部402は、仮想球面Vs1からの距離が一定である。弁体開口リブ411の一方の端部であるリブ端部403は、弁体開口部410の内縁端のうち筒状接続部44とは反対側の部位に接続している。弁体開口リブ411の他方の端部であるリブ端部404は、弁体開口部410の内縁端のうち筒状接続部44側の部位に接続している。 As shown in FIG. 24, the valve element opening rib 411 is formed in an arc-shaped flat plate shape. The rib outer edge 401, which is the radially outer portion of the valve body opening rib 411, has a constant distance from the phantom spherical surface Vs1. The rib inner edge 402, which is the radially inner portion of the valve body opening rib 411, has a constant distance from the phantom spherical surface Vs1. A rib end 403, which is one end of the valve body opening rib 411, is connected to a portion of the inner edge of the valve body opening 410 that is opposite to the cylindrical connection portion 44. The rib end portion 404 which is the other end portion of the valve body opening rib 411 is connected to a portion of the inner edge end of the valve body opening portion 410 on the cylindrical connection portion 44 side.
<3-11>
 図26に示すように、接合面331、341は、全てのバルブシール36のシール開口部360の全てが弁体31の外周壁で塞がれた全閉状態のとき、バルブシール36から離れた位置にある。
<3-11>
As shown in FIG. 26, the joint surfaces 331 and 341 are separated from the valve seal 36 when all the seal openings 360 of all the valve seals 36 are closed by the outer peripheral wall of the valve body 31. In position.
 そのため、弁体31の接合面331、341において外周壁に形成され得る段差により、弁体31が全閉状態のとき、バルブシール36と弁体31の外周壁との間から冷却水が漏れるのを抑制できる。 Therefore, cooling water leaks between the valve seal 36 and the outer peripheral wall of the valve body 31 when the valve body 31 is in the fully closed state due to the steps that can be formed on the outer peripheral wall at the joint surfaces 331 and 341 of the valve body 31. Can be suppressed.
<3-12>
 図20に示すように、弁体31は、筒状接続部44において接合面331、341上に形成され筒状接続部44の外周壁の曲率と曲率が異なる外壁を有する特定形状部441を有している。弁体31は、筒状バルブ接続部45において接合面331、341上に形成され筒状バルブ接続部45の外周壁の曲率と曲率が異なる外壁を有する特定形状部451を有している。
<3-12>
As shown in FIG. 20, the valve body 31 has a specific shape portion 441 that is formed on the joint surfaces 331 and 341 in the cylindrical connection portion 44 and has an outer wall having a curvature different from the curvature of the outer peripheral wall of the cylindrical connection portion 44. doing. The valve body 31 has a specific shape portion 451 having an outer wall that is formed on the joint surfaces 331 and 341 in the tubular valve connection portion 45 and has a curvature different from the curvature of the outer peripheral wall of the tubular valve connection portion 45.
 そのため、弁体31の回転時、特定形状部441、451とバルブシール36とが摺動することはなく、弁体31の作動不良を抑制できるとともに、バルブシール36の摩耗を抑制できる。 Therefore, when the valve body 31 rotates, the specific shape portions 441 and 451 and the valve seal 36 do not slide, so that the malfunction of the valve body 31 can be suppressed and the wear of the valve seal 36 can be suppressed.
<3-12-1>
 特定形状部441、451は、それぞれ、外壁が筒状接続部44、筒状バルブ接続部45の外周壁から外側へ突出するよう形成されている。
<3-12-1>
The specific shape portions 441 and 451 are formed so that the outer walls protrude outward from the outer peripheral walls of the tubular connection portion 44 and the tubular valve connection portion 45, respectively.
<3-12-2>
 特定形状部441、451は、それぞれ、外壁が筒状接続部44、筒状バルブ接続部45の外周壁から内側へ凹むよう形成されていてもよい。
<3-12-2>
The specific shape portions 441 and 451 may be formed such that the outer walls are recessed inward from the outer peripheral walls of the tubular connection portion 44 and the tubular valve connection portion 45, respectively.
<3-12-3>
 特定形状部441、451は、それぞれ、外壁が平面状に形成されていてもよい。
<3-12-3>
Each of the specific shape portions 441 and 451 may have a flat outer wall.
 図20に示すように、シャフト32の軸Axs1方向における特定形状部441の長さは、筒状接続部44の長さの1/10程度である。シャフト32の軸Axs1方向における特定形状部451の長さは、筒状バルブ接続部45の長さの1/3程度である。そのため、弁体31の大型化を抑制できる。 20, the length of the specific shape portion 441 in the axis Axs1 direction of the shaft 32 is about 1/10 of the length of the cylindrical connection portion 44. The length of the specific shape portion 451 in the axis Axs1 direction of the shaft 32 is about 1/3 of the length of the tubular valve connection portion 45. Therefore, the enlargement of the valve body 31 can be suppressed.
<3-13>
 図22に示すように、弁体31は、筒状接続部44の径方向外側においてボールバルブ41とボールバルブ42との間に形成されるバルブ間空間400とボールバルブ41の弁体内流路300とを接続するようボールバルブ41の回転軸Axr1方向の端面に形成された端面開口部415、および、バルブ間空間400とボールバルブ42の弁体内流路300とを接続するようボールバルブ42の回転軸Axr1方向の端面に形成された端面開口部425を有している。ここで、端面開口部415、425は、それぞれ、「第1端面開口部」、「第2端面開口部」に対応している。
<3-13>
As shown in FIG. 22, the valve body 31 includes an inter-valve space 400 formed between the ball valve 41 and the ball valve 42 on the radially outer side of the cylindrical connection portion 44 and a valve body flow path 300 of the ball valve 41. Of the ball valve 42 so as to connect the end surface opening 415 formed on the end surface of the ball valve 41 in the direction of the rotation axis Axr1 and the inter-valve space 400 and the valve body flow passage 300 of the ball valve 42. It has an end face opening 425 formed on the end face in the direction of the axis Axr1. Here, the end surface openings 415 and 425 correspond to a “first end surface opening” and a “second end surface opening”, respectively.
 入口ポート220は(図3参照)、バルブ間空間400に連通している。そのため、入口ポート220から内部空間200に流入した冷却水は、バルブ間空間400、端面開口部415、425を経由して弁体内流路300に流入可能である。 The inlet port 220 (see FIG. 3) communicates with the inter-valve space 400. Therefore, the cooling water flowing into the internal space 200 from the inlet port 220 can flow into the valve body flow path 300 via the inter-valve space 400 and the end surface openings 415 and 425.
 バルブ間空間400は、周方向の全域にわたって開口している。そのため、入口ポート220から内部空間200に流入し弁体内流路300に向かう冷却水の通水抵抗を小さくできる。 The inter-valve space 400 is open over the entire circumferential direction. Therefore, the flow resistance of the cooling water flowing from the inlet port 220 into the internal space 200 and flowing toward the valve body flow path 300 can be reduced.
 図9に示すように、バルブ間空間400は、回転軸Axr1方向において、入口ポート220およびリリーフポート224と重なっている。そのため、入口ポート220から流入した冷却水がリリーフポート224へ流れやすくなり、リリーフ弁39の反応性を向上できる。 As shown in FIG. 9, the inter-valve space 400 overlaps the inlet port 220 and the relief port 224 in the direction of the rotation axis Axr1. Therefore, the cooling water flowing from the inlet port 220 can easily flow to the relief port 224, and the reactivity of the relief valve 39 can be improved.
 図20に示すように、バルブ間空間400は、弁体31の軸方向の第1最外端面301から第2最外端面302までの部位のうち最も外径が小さい部分である筒状接続部44の径方向外側に形成されている。また、バルブ間空間400の外径は、端面開口部415、425の径方向外側の径よりも小さい。 As shown in FIG. 20, the inter-valve space 400 is a cylindrical connecting portion that is a portion having the smallest outer diameter among the portions from the first outermost end surface 301 to the second outermost end surface 302 in the axial direction of the valve body 31. 44 is formed radially outward. The outer diameter of the inter-valve space 400 is smaller than the diameter of the end surface openings 415 and 425 on the outer side in the radial direction.
<3-14>
 図27に示すように、シャフト32は、筒状接続部44においてインサート成型により弁体31と一体に形成されている。つまり、シャフト32は、筒状接続部44には溶着されているが、弁体31の筒状接続部44以外の部位には溶着されていない。
<3-14>
As shown in FIG. 27, the shaft 32 is formed integrally with the valve body 31 by insert molding at the cylindrical connecting portion 44. That is, the shaft 32 is welded to the cylindrical connection portion 44, but is not welded to a portion other than the cylindrical connection portion 44 of the valve body 31.
 弁体内流路300にシャフト32とのインサート成型部を設けた場合、弁体内流路300の流路面積が小さくなり通水抵抗が大きくなるおそれがあるが、本実施形態では、弁体内流路300の外の筒状接続部44にシャフト32とのインサート成型部が設けられているため、通水抵抗を小さくできる。 When an insert molding portion with the shaft 32 is provided in the valve body flow path 300, the flow path area of the valve body flow path 300 may be reduced and the water flow resistance may be increased. Since the insert molding part with the shaft 32 is provided in the cylindrical connection part 44 outside 300, the water flow resistance can be reduced.
<3-15>
 図27に示すように、シャフト32は、筒状接続部44との相対回転を規制可能な回り止め部321を有している。回り止め部321は、断面形状が多角形となるよう形成されている。本実施形態では、断面形状が六角形となるよう形成されている。ここで、回り止め部321は、例えば円柱状のシャフト32の外周壁を周方向に6箇所、平面状に切削等することにより形成されている。そのため、回り止め部321の外壁は、シャフト32の外周壁に対し径方向内側に位置している。なお、筒状接続部44の内壁は、回り止め部321の形状に対応するよう断面形状が六角形となるよう形成されている。
<3-15>
As shown in FIG. 27, the shaft 32 has a detent portion 321 that can restrict relative rotation with the cylindrical connection portion 44. The anti-rotation part 321 is formed so that the cross-sectional shape is a polygon. In this embodiment, the cross-sectional shape is a hexagon. Here, the rotation prevention part 321 is formed, for example, by cutting the outer peripheral wall of the columnar shaft 32 into a flat shape at six places in the circumferential direction. Therefore, the outer wall of the rotation preventing portion 321 is located on the radially inner side with respect to the outer peripheral wall of the shaft 32. Note that the inner wall of the cylindrical connection portion 44 is formed to have a hexagonal cross section so as to correspond to the shape of the rotation preventing portion 321.
 そのため、簡単な構成で、弁体31とシャフト32との相対回転を規制できる。 Therefore, the relative rotation between the valve body 31 and the shaft 32 can be restricted with a simple configuration.
<3-16>
 図28に示すように、弁体31は、ボールバルブ42に対し筒状接続部44とは反対側においてボールバルブ42に接続し外周壁および内周壁が筒状に形成され内側に弁体内流路300を形成する筒状バルブ接続部45、および、筒状バルブ接続部45に対しボールバルブ42とは反対側において筒状バルブ接続部45に接続し外周壁が球面状に形成されたボールバルブ43を有している。
<3-16>
As shown in FIG. 28, the valve body 31 is connected to the ball valve 42 on the side opposite to the cylindrical connecting portion 44 with respect to the ball valve 42, and the outer peripheral wall and the inner peripheral wall are formed in a cylindrical shape, and the valve body flow path is formed inside. A cylindrical valve connecting portion 45 that forms 300, and a ball valve 43 that is connected to the cylindrical valve connecting portion 45 on the opposite side of the cylindrical valve connecting portion 45 from the ball valve 42 and whose outer peripheral wall is formed in a spherical shape. have.
 筒状バルブ接続部45は、外周壁および内周壁が筒状に形成されている。そのため、内側の弁体内流路300の流路面積を確保できる。 The cylindrical valve connecting portion 45 has an outer peripheral wall and an inner peripheral wall formed in a cylindrical shape. Therefore, the flow path area of the inner valve body flow path 300 can be secured.
<3-17>
 図20に示すように、ボールバルブ41の外周壁の外径は、ボールバルブ43の外周壁の外径と同じである。なお、ボールバルブ42の外周壁の外径も、ボールバルブ41の外周壁の外径、ボールバルブ43の外周壁の外径と同じである。
<3-17>
As shown in FIG. 20, the outer diameter of the outer peripheral wall of the ball valve 41 is the same as the outer diameter of the outer peripheral wall of the ball valve 43. The outer diameter of the outer peripheral wall of the ball valve 42 is also the same as the outer diameter of the outer peripheral wall of the ball valve 41 and the outer diameter of the outer peripheral wall of the ball valve 43.
 ボールバルブ41の回転軸Axr1方向のボールバルブ43とは反対側の端面である第1最外端面301の面積は、ボールバルブ43の回転軸Axr1方向のボールバルブ41とは反対側の端面である第2最外端面302の面積と異なる。ここで、第2最外端面302の面積は、第1最外端面301の面積より大きい。よって、回転軸Axr1方向におけるボールバルブ43の長さは、ボールバルブ41の長さより短い。 The area of the first outermost end surface 301 that is the end surface of the ball valve 41 opposite to the ball valve 43 in the direction of the rotation axis Axr1 is the end surface of the ball valve 43 opposite to the ball valve 41 in the direction of the rotation axis Axr1. It is different from the area of the second outermost end surface 302. Here, the area of the second outermost end surface 302 is larger than the area of the first outermost end surface 301. Therefore, the length of the ball valve 43 in the direction of the rotation axis Axr1 is shorter than the length of the ball valve 41.
 そのため、弁体31の軸方向の大きさを小さくでき、バルブ装置10の体格を小さくできる。 Therefore, the size of the valve body 31 in the axial direction can be reduced, and the physique of the valve device 10 can be reduced.
<3-18>
 図20、図22に示すように、弁体31は、ボールバルブ42の弁体開口部420の内縁端を接続する弁体開口リブ422、および、ボールバルブ43の弁体開口部430の内縁端を接続する弁体開口リブ432を有している。ここで、弁体開口リブ422、弁体開口リブ432は、それぞれ「第2弁体開口リブ」、「第3弁体開口リブ」に対応している。
<3-18>
As shown in FIGS. 20 and 22, the valve body 31 includes a valve body opening rib 422 connecting the inner edge of the valve body opening 420 of the ball valve 42 and an inner edge of the valve body opening 430 of the ball valve 43. The valve body opening rib 432 is connected. Here, the valve body opening rib 422 and the valve body opening rib 432 correspond to a “second valve body opening rib” and a “third valve body opening rib”, respectively.
 弁体開口リブ422と弁体開口リブ432とは、弁体31の周方向において同じ位置に形成されている。つまり、弁体開口リブ422、432は、回転軸Axr1と平行な方向に並ぶよう形成されている。なお、弁体開口リブ411と弁体開口リブ421とは、弁体31の周方向において同じ位置に形成されている。 The valve element opening rib 422 and the valve element opening rib 432 are formed at the same position in the circumferential direction of the valve element 31. That is, the valve body opening ribs 422 and 432 are formed to be aligned in a direction parallel to the rotation axis Axr1. The valve body opening rib 411 and the valve body opening rib 421 are formed at the same position in the circumferential direction of the valve body 31.
 そのため、弁体開口リブ422、432の周囲を流れる冷却水の乱れを抑制でき、通水抵抗を低減できる。 Therefore, the disturbance of the cooling water flowing around the valve body opening ribs 422 and 432 can be suppressed, and the water flow resistance can be reduced.
<3-19>
 図20、図21、図22に示すように、弁体31は、端面開口部415を跨ぐようにして筒状接続部44とボールバルブ41とを接続する端面開口リブ416、417、および、端面開口部425を跨ぐようにして筒状接続部44とボールバルブ42とを接続する端面開口リブ426、427を有している。ここで、端面開口リブ416、417は「第1端面開口リブ」に対応し、端面開口リブ426、427は「第2端面開口リブ」に対応している。
<3-19>
As shown in FIGS. 20, 21, and 22, the valve body 31 includes end surface opening ribs 416 and 417 that connect the cylindrical connection portion 44 and the ball valve 41 so as to straddle the end surface opening 415, and the end surface End face opening ribs 426 and 427 for connecting the cylindrical connecting portion 44 and the ball valve 42 so as to straddle the opening 425 are provided. Here, the end face opening ribs 416 and 417 correspond to “first end face opening ribs”, and the end face opening ribs 426 and 427 correspond to “second end face opening ribs”.
 端面開口リブ416、426は、それぞれ、間に筒状接続部44を挟むようにして2つずつ形成されている。端面開口リブ417、427は、それぞれ、間に筒状接続部44を挟むようにして2つずつ形成されている。 Two end face opening ribs 416 and 426 are formed so that the cylindrical connecting portion 44 is sandwiched therebetween. Two end face opening ribs 417 and 427 are formed so that the cylindrical connecting portion 44 is sandwiched therebetween.
 なお、端面開口リブ416、426は、仮想平面Vp1上に形成されている。つまり、端面開口リブ416、426は、接合面331、341を挟むようにして形成されている。よって、弁体開口リブ411、421、および、端面開口リブ416、426は、弁体31の周方向において同じ位置に形成されている。 Note that the end face opening ribs 416 and 426 are formed on the virtual plane Vp1. That is, the end surface opening ribs 416 and 426 are formed so as to sandwich the bonding surfaces 331 and 341. Therefore, the valve body opening ribs 411 and 421 and the end surface opening ribs 416 and 426 are formed at the same position in the circumferential direction of the valve body 31.
 図21に示すように、端面開口リブ426、427の開始位置は、ボールバルブ42のボールバルブ41側の端面の外縁部である。端面開口リブ426、427の終端位置は、筒状接続部44のボールバルブ42側の端部の外周壁である。 21, the start positions of the end surface opening ribs 426 and 427 are the outer edge portions of the end surface of the ball valve 42 on the ball valve 41 side. The end positions of the end surface opening ribs 426 and 427 are the outer peripheral walls of the end portion of the cylindrical connecting portion 44 on the ball valve 42 side.
 図21に示すように、弁体開口リブ421の最も径方向外側に膨らんだ部分は、端面開口リブ426の開始位置のボールバルブ42の外周壁外側よりも外側に出ている。弁体開口リブ411は、端面開口リブ426の直線部よりも径方向外側に設けられている。 As shown in FIG. 21, the portion of the valve body opening rib 421 that swells outward in the radial direction protrudes outside the outer peripheral wall outside of the ball valve 42 at the start position of the end surface opening rib 426. The valve body opening rib 411 is provided on the outer side in the radial direction from the straight portion of the end surface opening rib 426.
 図21に示すように、端面開口リブ426は、回転軸Axr1方向の弁体内流路300側の辺が直線状に形成されている。端面開口リブ426は、回転軸Axr1方向のバルブ間空間400側の辺が、ボールバルブ42の径方向外側において曲線状に形成され、径方向内側において直線状に形成されている。 As shown in FIG. 21, the end face opening rib 426 has a side on the valve body flow path 300 side in the direction of the rotation axis Axr1 formed in a straight line. The end face opening rib 426 has a side on the side of the inter-valve space 400 in the direction of the rotation axis Axr1 formed in a curved shape on the radially outer side of the ball valve 42 and formed in a linear shape on the radially inner side.
 図28に示すように、端面開口リブ427は、回転軸Axr1方向の弁体内流路300側の辺が直線状に形成されている。端面開口リブ427は、回転軸Axr1方向のバルブ間空間400側の辺が、ボールバルブ42の径方向外側において曲線状に形成され、径方向内側において回転軸Axr1に対し傾斜するよう直線状に形成されている。 As shown in FIG. 28, the end face opening rib 427 is formed such that the side on the valve body flow path 300 side in the direction of the rotation axis Axr1 is linear. The end face opening rib 427 is formed such that the side on the inter-valve space 400 side in the direction of the rotation axis Axr1 is formed in a curved shape on the outer side in the radial direction of the ball valve 42 and linearly inclined on the inner side in the radial direction with respect to the rotation axis Axr1. Has been.
<3-19-1>
 図20、図22に示すように、端面開口リブ417と端面開口リブ427と弁体開口リブ422と弁体開口リブ432とは、弁体31の周方向において同じ位置に形成されている。つまり、端面開口リブ417、427、弁体開口リブ422、432は、回転軸Axr1と平行な方向に並ぶよう形成されている。なお、端面開口リブ417、427、弁体開口リブ422、432は、シャフト32の軸Axs1(回転軸Axr1)を含み仮想平面Vp1に直交する仮想平面上に形成されている。
<3-19-1>
As shown in FIGS. 20 and 22, the end surface opening rib 417, the end surface opening rib 427, the valve body opening rib 422, and the valve body opening rib 432 are formed at the same position in the circumferential direction of the valve body 31. That is, the end surface opening ribs 417 and 427 and the valve body opening ribs 422 and 432 are formed so as to be aligned in a direction parallel to the rotation axis Axr1. The end face opening ribs 417 and 427 and the valve body opening ribs 422 and 432 are formed on a virtual plane that includes the axis Axs1 (rotation axis Axr1) of the shaft 32 and is orthogonal to the virtual plane Vp1.
 そのため、端面開口リブ417、427、弁体開口リブ422、432の周囲を流れる冷却水の乱れを抑制でき、通水抵抗を低減できる。 Therefore, disturbance of the cooling water flowing around the end face opening ribs 417 and 427 and the valve body opening ribs 422 and 432 can be suppressed, and the water flow resistance can be reduced.
<3-20>
 図20、図21、図22に示すように、端面開口リブ416、417は、ボールバルブ41の回転軸Axr1方向の端面であるバルブ端面419との間にリブ端面隙間418を形成している。端面開口リブ426、427は、ボールバルブ42の回転軸Axr1方向の端面であるバルブ端面429との間にリブ端面隙間428を形成している。ここで、リブ端面隙間418は「第1リブ端面隙間」に対応し、リブ端面隙間428は「第2リブ端面隙間」に対応している。
<3-20>
As shown in FIGS. 20, 21, and 22, the end face opening ribs 416 and 417 form a rib end face gap 418 between the end face opening ribs 416 and 417 and the valve end face 419 that is the end face of the ball valve 41 in the rotation axis Axr1 direction. The end face opening ribs 426 and 427 form a rib end face gap 428 between the end face opening ribs 426 and 427 and the valve end face 429 that is the end face of the ball valve 42 in the direction of the rotation axis Axr1. Here, the rib end face gap 418 corresponds to the “first rib end face gap”, and the rib end face gap 428 corresponds to the “second rib end face gap”.
 図20、図21に示すように、回転軸Axr1に対し垂直な方向から見た場合、端面開口リブ426、427と、ボールバルブ42の回転軸Axr1方向の端面との間にリブ端面隙間428を目視することができる。 As shown in FIGS. 20 and 21, when viewed from a direction perpendicular to the rotation axis Axr1, a rib end surface gap 428 is formed between the end surface opening ribs 426 and 427 and the end surface of the ball valve 42 in the rotation axis Axr1 direction. Visually visible.
 そのため、端面開口部415、425における通水抵抗を低減できる。 Therefore, it is possible to reduce the water flow resistance in the end surface openings 415 and 425.
<3-21>
 図20、図22に示すように、端面開口リブ417は、ボールバルブ42側の面が回転軸Axr1に対し傾斜するよう形成されている。端面開口リブ427は、ボールバルブ41側の面が回転軸Axr1に対し傾斜するよう形成されている。
<3-21>
As shown in FIGS. 20 and 22, the end surface opening rib 417 is formed so that the surface on the ball valve 42 side is inclined with respect to the rotation axis Axr1. The end surface opening rib 427 is formed so that the surface on the ball valve 41 side is inclined with respect to the rotation axis Axr1.
 そのため、端面開口リブ417、427の周囲における通水抵抗を低減できる。 Therefore, water resistance around the end face opening ribs 417 and 427 can be reduced.
 次に、バルブ30の製造方法について説明する。本実施形態では、所謂ダイスライドインジェクション(DSI)を用いてバルブ30を製造する。 Next, a method for manufacturing the valve 30 will be described. In the present embodiment, the valve 30 is manufactured using so-called die slide injection (DSI).
 図29に示すように、型装置100は、第1型110、第2型120等を備えている。第1型110は、第1外型111、第1内型112を有している。第2型120は、第2外型121、第2内型122を有している。 As shown in FIG. 29, the mold apparatus 100 includes a first mold 110, a second mold 120, and the like. The first mold 110 has a first outer mold 111 and a first inner mold 112. The second mold 120 has a second outer mold 121 and a second inner mold 122.
 第1外型111は、第1内型112側の端面から半球面状に凹む第1凹面113を有している。第1凹面113は、第1分割体33の外周壁のうちボールバルブ41、42、43の外周壁の形状に対応するよう形成されている。 The first outer mold 111 has a first concave surface 113 that is recessed in a hemispherical shape from the end surface on the first inner mold 112 side. The first concave surface 113 is formed to correspond to the shape of the outer peripheral wall of the ball valves 41, 42, 43 among the outer peripheral wall of the first divided body 33.
 第1内型112は、第1外型111側の端面から半球面状に突出する第1凸面114を有している。第1凸面114は、第1分割体33の外周壁のうちボールバルブ41、42、43の内周壁の形状に対応するよう形成されている。ここで、第1外型111と第1内型112とが当接しているとき、弁体31の回転軸Axr1方向および周方向の少なくとも一部の範囲において、第1凹面113と第1凸面114との距離が同じになるよう設定されている。 The first inner mold 112 has a first convex surface 114 projecting in a hemispherical shape from the end surface on the first outer mold 111 side. The first convex surface 114 is formed so as to correspond to the shape of the inner peripheral wall of the ball valves 41, 42, 43 among the outer peripheral wall of the first divided body 33. Here, when the first outer mold 111 and the first inner mold 112 are in contact with each other, the first concave surface 113 and the first convex surface 114 are within at least a part of the rotation axis Axr1 direction and the circumferential direction of the valve body 31. And the distance is set to be the same.
 第2外型121は、第2内型122側の端面から半球面状に凹む第2凹面123を有している。第2凹面123は、第2分割体34の外周壁のうちボールバルブ41、42、43の外周壁の形状に対応するよう形成されている。 The second outer mold 121 has a second concave surface 123 that is recessed in a hemispherical shape from the end surface on the second inner mold 122 side. The second concave surface 123 is formed so as to correspond to the shape of the outer peripheral walls of the ball valves 41, 42, 43 among the outer peripheral walls of the second divided body 34.
 第2内型122は、第2外型121側の端面から半球面状に突出する第2凸面124を有している。第2凸面124は、第2分割体34の外周壁のうちボールバルブ41、42、43の内周壁の形状に対応するよう形成されている。ここで、第2外型121と第2内型122とが当接しているとき、弁体31の回転軸Axr1方向および周方向の少なくとも一部の範囲において、第2凹面123と第2凸面124との距離が同じになるよう設定されている。 The second inner mold 122 has a second convex surface 124 projecting in a hemispherical shape from the end surface on the second outer mold 121 side. The second convex surface 124 is formed so as to correspond to the shape of the inner peripheral walls of the ball valves 41, 42, and 43 among the outer peripheral walls of the second divided body 34. Here, when the second outer mold 121 and the second inner mold 122 are in contact with each other, the second concave surface 123 and the second convex surface 124 in at least a part of the rotation axis Axr1 direction and the circumferential direction of the valve body 31. And the distance is set to be the same.
 バルブ30の製造方法は、以下の工程を含む。 The manufacturing method of the valve 30 includes the following steps.
<3-22>球面状弁体製造方法
 (1次成形工程)
 1次成形工程では、第1分割体33と第2分割体34とをそれぞれ第1型110と第2型120とにより樹脂成形する。具体的には、図29の(A)に示すように、第1外型111と第1内型112とを当接させ、第2外型121と第2内型122とを当接させ、第1凹面113と第1凸面114との間、および、第2凹面123と第2凸面171との間に溶融した樹脂を射出する。
<3-22> Spherical valve body manufacturing method (primary molding process)
In the primary molding step, the first divided body 33 and the second divided body 34 are resin-molded by the first mold 110 and the second mold 120, respectively. Specifically, as shown in FIG. 29A, the first outer mold 111 and the first inner mold 112 are brought into contact with each other, the second outer mold 121 and the second inner mold 122 are brought into contact with each other, A molten resin is injected between the first concave surface 113 and the first convex surface 114 and between the second concave surface 123 and the second convex surface 171.
 図30に示すように、型装置100の射出部130から射出された樹脂は、スプール131、ランナー132、ゲート133、134を経由して第1型110、第2型120に流れる。第1分割体33、第2分割体34が冷え固まると、1次成形工程が完了する。 30, the resin injected from the injection unit 130 of the mold apparatus 100 flows to the first mold 110 and the second mold 120 via the spool 131, the runner 132, and the gates 133 and 134. When the first divided body 33 and the second divided body 34 are cooled and hardened, the primary molding process is completed.
<3-22-1>
 1次成形工程において第1分割体33と第2分割体34とを樹脂成形するとき、回転軸Axr1方向および周方向の少なくとも一部の範囲において、第1凹面113と第1凸面114との距離、ならびに、第2凹面123と第2凸面124との距離は同じである。
<3-22-1>
When the first divided body 33 and the second divided body 34 are resin-molded in the primary molding step, the distance between the first concave surface 113 and the first convex surface 114 in at least a part of the rotational axis Axr1 direction and the circumferential direction. The distance between the second concave surface 123 and the second convex surface 124 is the same.
 そのため、弁体31の少なくとも一部を均肉にすることができる。これにより、弁体31の外周壁の球面の精度をより向上でき、弁体内流路300の流路面積をより大きくできる。 Therefore, at least a part of the valve body 31 can be made uniform. Thereby, the precision of the spherical surface of the outer peripheral wall of the valve body 31 can be further improved, and the flow passage area of the flow passage 300 can be increased.
<3-23>
 (スライド工程)
 1次成形工程の後のスライド工程では、第1分割体33と第2分割体34とのそれぞれの接合面331、341が対向するよう、第1分割体33または第2分割体34を第1型110または第2型120ごとスライドさせる。具体的には、図29の(B)に示すように、第1内型112を第1外型111から外し、第2内型122を第2外型121から外し、第1分割体33と第2分割体34とのそれぞれの接合面331、341が対向するよう、第1分割体33を第1外型111ごとスライドさせる。
<3-23>
(Slide process)
In the slide process after the primary forming process, the first divided body 33 or the second divided body 34 is moved to the first divided body 33 or the second divided body 34 so that the joint surfaces 331 and 341 of the first divided body 33 and the second divided body 34 face each other. Slide the mold 110 or the second mold 120 together. Specifically, as shown in FIG. 29B, the first inner mold 112 is removed from the first outer mold 111, the second inner mold 122 is removed from the second outer mold 121, and the first divided body 33 and The first divided body 33 is slid together with the first outer mold 111 so that the respective joint surfaces 331 and 341 with the second divided body 34 face each other.
 スライド工程により、バルブ30を効率よく製造できる。 The valve 30 can be manufactured efficiently by the sliding process.
<3-24>
 (シャフト配置工程)
 スライド工程の後のシャフト配置工程では、シャフト32を弁体31の回転軸Axr1に配置する。具体的には、図29の(C)に示すように、第1分割体33と第2分割体34との間の回転軸Axr1にシャフト32を配置する。
<3-24>
(Shaft placement process)
In the shaft arrangement step after the sliding step, the shaft 32 is arranged on the rotation axis Axr1 of the valve body 31. Specifically, as illustrated in FIG. 29C, the shaft 32 is disposed on the rotation axis Axr1 between the first divided body 33 and the second divided body 34.
 そのため、弁体31成型後にシャフト32を組み付ける場合と比べ、シャフト32の組付け工数等を低減できる。 Therefore, compared with the case where the shaft 32 is assembled after the valve body 31 is molded, the number of steps for assembling the shaft 32 can be reduced.
<3-22>
 (2次成形工程)
 シャフト配置工程の後の2次成形工程では、第1分割体33の接合面における溶着部と第2分割体34の接合面における溶着部との間に樹脂を射出し、第1分割体33と第2分割体34とを溶着する。
<3-22>
(Secondary molding process)
In the secondary molding step after the shaft arrangement step, a resin is injected between the welded portion on the joint surface of the first divided body 33 and the welded portion on the joint surface of the second divided body 34, and the first divided body 33 and The second divided body 34 is welded.
 図31に示すように、1次成形工程後の第2分割体34には、接合面341において溶着部311、312、313が形成されている。溶着部311は、第2分割体34のボールバルブ41に対応する部位の接合面341から凹むよう溝状に形成されている。溶着部312は、第2分割体34の筒状接続部44に対応する部位の接合面341から凹むよう溝状に形成されている。溶着部313は、第2分割体34のボールバルブ42、筒状バルブ接続部45、ボールバルブ43に対応する部位の接合面341から凹むよう溝状に形成されている。第1分割体33にも、第2分割体34と同様に、溶着部311、312、313が形成されている。 As shown in FIG. 31, welded portions 311, 312, and 313 are formed on the joint surface 341 in the second divided body 34 after the primary molding step. The welded portion 311 is formed in a groove shape so as to be recessed from the joint surface 341 at a portion corresponding to the ball valve 41 of the second divided body 34. The welded portion 312 is formed in a groove shape so as to be recessed from the joint surface 341 corresponding to the cylindrical connecting portion 44 of the second divided body 34. The welded portion 313 is formed in a groove shape so as to be recessed from the joint surface 341 of the portion corresponding to the ball valve 42, the cylindrical valve connecting portion 45, and the ball valve 43 of the second divided body 34. Similarly to the second divided body 34, welded parts 311, 312, and 313 are also formed in the first divided body 33.
 溶着部311の一端には型装置100のゲート入口141が配置され、溶着部311の他端にはゲート出口145が配置される。溶着部312の一端には型装置100のゲート入口142が配置され、溶着部312の他端にはゲート出口146が配置される。溶着部313の中央には型装置100のゲート入口143が配置され、溶着部313の両端にはゲート出口147が配置される。ここで、ゲート入口142、ゲート出口146は、筒状接続部44の軸方向の中央に配置される。また、ゲート入口143は、筒状バルブ接続部45の軸方向の中央に配置される。なお、ゲート入口141は、ボールバルブ41の第1最外端面301に配置される。ゲート出口145は、ボールバルブ41の第1最外端面301とは反対側の端面に配置される。ゲート出口147は、ボールバルブ43の第2最外端面302、および、ボールバルブ42のボールバルブ41側の端面に配置される。 A gate inlet 141 of the mold apparatus 100 is disposed at one end of the welding part 311, and a gate outlet 145 is disposed at the other end of the welding part 311. A gate inlet 142 of the mold apparatus 100 is disposed at one end of the welding portion 312, and a gate outlet 146 is disposed at the other end of the welding portion 312. A gate inlet 143 of the mold apparatus 100 is disposed at the center of the welded portion 313, and gate outlets 147 are disposed at both ends of the welded portion 313. Here, the gate inlet 142 and the gate outlet 146 are disposed in the center of the cylindrical connecting portion 44 in the axial direction. Further, the gate inlet 143 is disposed at the center in the axial direction of the tubular valve connecting portion 45. The gate inlet 141 is disposed on the first outermost end surface 301 of the ball valve 41. The gate outlet 145 is disposed on the end surface of the ball valve 41 opposite to the first outermost end surface 301. The gate outlet 147 is disposed on the second outermost end surface 302 of the ball valve 43 and the end surface of the ball valve 42 on the ball valve 41 side.
 図32に示すように、2次成形工程では、型装置100の射出部140からゲート入口141、142、143を経由して溶着部311、312、313に、溶融した樹脂を射出する。ゲート入口141、142、143から溶着部311、312、313に流入した樹脂は、それぞれ、ゲート出口145、146、147へ向かって流れ、ゲート出口145、146、147から流出する。溶着部311、312、313内の樹脂が冷え固まると、第1分割体33と第2分割体34とシャフト32とが溶着され、2次成形工程が完了する。ここで、弁体31の筒状接続部44のゲート入口142、ゲート出口146に対応する位置に残存した樹脂は、特定形状部441を形成する。また、弁体31の筒状バルブ接続部45のゲート入口143に対応する位置に残存した樹脂は、特定形状部451を形成する。 32, in the secondary molding step, molten resin is injected from the injection unit 140 of the mold apparatus 100 to the welding units 311, 312, 313 through the gate inlets 141, 142, 143. Resin that has flowed into the welds 311, 312, and 313 from the gate inlets 141, 142, and 143 flows toward the gate outlets 145, 146, and 147, and flows out from the gate outlets 145, 146, and 147, respectively. When the resin in the welded parts 311, 312, and 313 is cooled and hardened, the first divided body 33, the second divided body 34, and the shaft 32 are welded, and the secondary molding process is completed. Here, the resin remaining at positions corresponding to the gate inlet 142 and the gate outlet 146 of the cylindrical connection portion 44 of the valve body 31 forms a specific shape portion 441. Further, the resin remaining at the position corresponding to the gate inlet 143 of the tubular valve connecting portion 45 of the valve body 31 forms a specific shape portion 451.
<3-22>
 上述のように、本実施形態は、回転軸Axr1周りに回転可能な弁体31、および、弁体31の内側に形成された弁体内流路300を有するバルブ30の製造方法であって、1次成形工程と第2成形工程とを含む。
<3-22>
As described above, the present embodiment is a method for manufacturing the valve 30 having the valve body 31 rotatable around the rotation axis Axr1 and the valve body flow passage 300 formed inside the valve body 31. A next forming step and a second forming step are included.
 弁体31は、外周壁の少なくとも一部が球面状に形成され、内周壁の少なくとも一部が外側へ凹むよう形成され、回転軸Axr1を含む仮想平面Vp1で2つに分割された第1分割体33と第2分割体34とを有し、第1分割体33と第2分割体34とがそれぞれの接合面331、341で接合される。 The valve body 31 has a first division in which at least a part of the outer peripheral wall is formed into a spherical shape, and at least a part of the inner peripheral wall is formed to be recessed outward, and is divided into two on a virtual plane Vp1 including the rotation axis Axr1. It has the body 33 and the 2nd division body 34, and the 1st division body 33 and the 2nd division body 34 are joined by each joint surface 331,341.
 1次成形工程では、第1分割体33と第2分割体34とをそれぞれ第1型110と第2型120とにより樹脂成形する。 In the primary molding step, the first divided body 33 and the second divided body 34 are resin-molded by the first mold 110 and the second mold 120, respectively.
 第2成形工程では、第1分割体33の接合面331における溶着部(311、312、313)と第2分割体34の接合面341における溶着部(311、312、313)との間に樹脂を射出し、第1分割体33と第2分割体34とを溶着する。 In the second molding step, a resin is formed between the welded portions (311, 312, 313) on the joint surface 331 of the first divided body 33 and the welded portions (311, 312, 313) on the joint surface 341 of the second divided body 34. The first divided body 33 and the second divided body 34 are welded.
 上記製造方法でバルブ30を製造することにより、弁体31の外周壁の球面の成形精度を向上できる。これにより、弁体31の外周壁における冷却水の漏れを抑制可能である。 By manufacturing the valve 30 by the above manufacturing method, the molding accuracy of the spherical surface of the outer peripheral wall of the valve body 31 can be improved. Thereby, the leakage of the cooling water in the outer peripheral wall of the valve body 31 can be suppressed.
 また、弁体内流路300の流路面積を大きくでき、通水抵抗を小さくできる。 Moreover, the flow passage area of the valve body flow passage 300 can be increased, and the water flow resistance can be reduced.
 上述のように、本実施形態では、ダイスライドインジェクション(DSI)によりバルブ30を製造する。DSI成型では、弁体31が2つに分離している。そのため、弁体31の軸方向で型抜きする通常の製造方法の場合と比べ、型の抜き方向を増やすことなく弁体31の開口数等を変更できる。この結果、複雑なフローダイアグラムに対応できる。なお、弁体31が一体に形成される場合、開口数が増えると、抜く型の数が増える。 As described above, in this embodiment, the valve 30 is manufactured by die slide injection (DSI). In DSI molding, the valve body 31 is separated into two. Therefore, the numerical aperture of the valve body 31 can be changed without increasing the mold drawing direction, compared to the case of the normal manufacturing method in which the mold is cut in the axial direction of the valve body 31. As a result, complex flow diagrams can be handled. In addition, when the valve body 31 is integrally formed, the number of dies to be removed increases as the numerical aperture increases.
 DSI成型では、型を抜く方向が弁体31の径方向であるため、弁体31の軸方向で型抜きする通常の製造方法の場合と比べ、型が製品の表面に擦れることにより変改してしまうのを防ぐことができる。加えて、製品の表面の変形を防ぐことができるため、シール性の向上にもつながる。 In the DSI molding, since the direction in which the mold is pulled out is the radial direction of the valve body 31, compared with the case of the normal manufacturing method in which the mold is punched in the axial direction of the valve body 31, the mold is rubbed against the surface of the product. Can be prevented. In addition, since the deformation of the product surface can be prevented, the sealing performance is improved.
  (第4実施形態)
 第4実施形態によるバルブ装置の一部を図33に示す。
(Fourth embodiment)
A part of the valve device according to the fourth embodiment is shown in FIG.
<3-10>
 図33に示すように、弁体開口リブ411は、仮想球面Vs1から所定の距離を空けて直線状に形成されている。なお、弁体開口リブ421、422、および、弁体開口リブ431、432についても、ボールバルブ42、43の外周壁に沿う仮想球面から所定の距離を空けて直線状に形成されている。
<3-10>
As shown in FIG. 33, the valve body opening rib 411 is formed in a straight line with a predetermined distance from the phantom spherical surface Vs1. The valve body opening ribs 421 and 422 and the valve body opening ribs 431 and 432 are also formed in a straight line with a predetermined distance from a virtual spherical surface along the outer peripheral wall of the ball valves 42 and 43.
 そのため、弁体31の回転時、バルブシール36が弁体開口リブ411に引っ掛かり摺動抵抗が増大するのをより効果的に抑制できる。 Therefore, when the valve body 31 rotates, it is possible to more effectively suppress the valve seal 36 from being caught by the valve body opening rib 411 and increasing the sliding resistance.
 図33に示すように、弁体開口リブ411は、直線状の平板状に形成されている。弁体開口リブ411の径方向外側の部位であるリブ外縁部401は、回転軸Axr1に対し平行となるよう直線状に形成され、仮想球面Vs1からの距離が回転軸Axr1方向において変化する。弁体開口リブ411の径方向内側の部位であるリブ内縁部402は、回転軸Axr1に対し平行となるよう直線状に形成され、仮想球面Vs1からの距離が回転軸Axr1方向において変化する。弁体開口リブ411の一方の端部であるリブ端部403は、弁体開口部410の内縁端のうち筒状接続部44とは反対側の部位に接続している。弁体開口リブ411の他方の端部であるリブ端部404は、弁体開口部410の内縁端のうち筒状接続部44側の部位に接続している。 33, the valve element opening rib 411 is formed in a linear flat plate shape. The rib outer edge 401, which is the radially outer portion of the valve body opening rib 411, is formed in a straight line so as to be parallel to the rotation axis Axr1, and the distance from the phantom spherical surface Vs1 changes in the direction of the rotation axis Axr1. The rib inner edge portion 402, which is the radially inner portion of the valve body opening rib 411, is formed in a straight line so as to be parallel to the rotation axis Axr1, and the distance from the phantom spherical surface Vs1 changes in the direction of the rotation axis Axr1. A rib end 403, which is one end of the valve body opening rib 411, is connected to a portion of the inner edge of the valve body opening 410 that is opposite to the cylindrical connection portion 44. The rib end portion 404 which is the other end portion of the valve body opening rib 411 is connected to a portion of the inner edge end of the valve body opening portion 410 on the cylindrical connection portion 44 side.
 図33に示すように、弁体開口リブ411は、第2規制凸部342に対しボールバルブ41の径方向外側に位置している。 33, the valve body opening rib 411 is located on the radially outer side of the ball valve 41 with respect to the second restricting convex portion 342. As shown in FIG.
  (第5実施形態)
 第5実施形態によるバルブ装置の一部を図34に示す。
(Fifth embodiment)
A part of the valve device according to the fifth embodiment is shown in FIG.
 バルブ30の弁体31は、ボールバルブ46を有している。シャフト32は、弁体31の回転軸Axr1に設けられている。ボールバルブ46は、外周壁461、内周壁462を有している。外周壁461は、ボールバルブ46の径方向外側へ膨らむよう球面状に形成されている。内周壁462は、ボールバルブ46の径方向外側へ凹むよう球面状に形成されている。ここで、弁体31は、回転軸Axr1方向および周方向の少なくとも一部の範囲において外周壁461と内周壁462との距離が同じである。すなわち、弁体31は、少なくとも前記範囲において肉厚が均一(均肉)となるよう形成されている。 The valve body 31 of the valve 30 has a ball valve 46. The shaft 32 is provided on the rotation axis Axr1 of the valve body 31. The ball valve 46 has an outer peripheral wall 461 and an inner peripheral wall 462. The outer peripheral wall 461 is formed in a spherical shape so as to swell outward in the radial direction of the ball valve 46. The inner peripheral wall 462 is formed in a spherical shape so as to be recessed outward in the radial direction of the ball valve 46. Here, the valve body 31 has the same distance between the outer peripheral wall 461 and the inner peripheral wall 462 in at least a partial range in the direction of the rotation axis Axr1 and the circumferential direction. That is, the valve body 31 is formed so that the thickness is uniform (equal thickness) at least in the above range.
 次に、バルブ30の製造方法について説明する。 Next, a method for manufacturing the valve 30 will be described.
 図35に示すように、型装置150は、上ベース151、下ベース152、上支持柱153、下支持柱154、型駆動体155、第1内側型160、第2内側型170、外側型180等を備えている。 As shown in FIG. 35, the mold apparatus 150 includes an upper base 151, a lower base 152, an upper support pillar 153, a lower support pillar 154, a mold driver 155, a first inner mold 160, a second inner mold 170, and an outer mold 180. Etc.
 上ベース151は、板状に形成されている。下ベース152は、板状に形成され、上ベース151に対し平行となるよう設けられている。上支持柱153は、棒状に形成され、一端が上ベース151の下ベース152とは反対側に接続している。上支持柱153は、一端が上ベース151において型装置150の中心軸CAx1周りに環状をなすよう8本設けられている(図36参照)。上支持柱153は、一端を支点として他端側が中心軸CAx1側へ揺動可能である。 The upper base 151 is formed in a plate shape. The lower base 152 is formed in a plate shape and is provided so as to be parallel to the upper base 151. The upper support pillar 153 is formed in a rod shape, and one end thereof is connected to the side opposite to the lower base 152 of the upper base 151. Eight upper support columns 153 are provided so that one end of the upper support column 153 has an annular shape around the central axis CAx1 of the mold apparatus 150 in the upper base 151 (see FIG. 36). The upper support column 153 can swing toward the central axis CAx1 at the other end with one end as a fulcrum.
 下支持柱154は、棒状に形成され、一端が下ベース152の上ベース151側に接続している。下支持柱154は、他端が上ベース151の穴を通り上ベース151に対し下ベース152とは反対側に位置するよう設けられている。下支持柱154は、一端が下ベース152において中心軸CAx1周りに環状をなすよう8本設けられている(図37参照)。下支持柱154は、一端を支点として他端側が中心軸CAx1側へ揺動可能である。 The lower support pillar 154 is formed in a rod shape, and one end thereof is connected to the upper base 151 side of the lower base 152. The lower support column 154 is provided so that the other end passes through the hole of the upper base 151 and is located on the opposite side of the lower base 152 with respect to the upper base 151. Eight lower support pillars 154 are provided so that one end forms a ring around the central axis CAx1 in the lower base 152 (see FIG. 37). The lower support column 154 is swingable toward the central axis CAx1 at the other end with one end as a fulcrum.
 第1内側型160は、8本の上支持柱153のそれぞれの他端に設けられている。すなわち、第1内側型160は、合計8個設けられている。第2内側型170は、8本の下支持柱154のそれぞれの他端に設けられている。すなわち、第2内側型170は、合計8個設けられている。 The first inner mold 160 is provided at the other end of each of the eight upper support columns 153. That is, a total of eight first inner molds 160 are provided. The second inner mold 170 is provided at the other end of each of the eight lower support columns 154. That is, a total of eight second inner molds 170 are provided.
 図38に示すように、第1内側型160は、外壁の一部に第1凸面161を有している。第1凸面161は、球面状に形成されている。第2内側型170は、外壁の一部に第2凸面171を有している。第2凸面171は、球面状に形成されている。 38, the first inner mold 160 has a first convex surface 161 on a part of the outer wall. The first convex surface 161 is formed in a spherical shape. The second inner mold 170 has a second convex surface 171 on a part of the outer wall. The second convex surface 171 is formed in a spherical shape.
 図35に示すように、第1内側型160と第2内側型170とは、第1凸面161、第2凸面171が中心軸CAx1とは反対側を向くよう周方向に交互に配置されている。これにより、第1凸面161と第2凸面171とは、周方向に連続する球面を形成可能である。 As shown in FIG. 35, the first inner mold 160 and the second inner mold 170 are alternately arranged in the circumferential direction so that the first convex surface 161 and the second convex surface 171 face the side opposite to the central axis CAx1. . Thereby, the 1st convex surface 161 and the 2nd convex surface 171 can form the spherical surface continuous in the circumferential direction.
 外側型180は、内壁に凹面181を有している(図39参照)。凹面181は、球面状に形成されている。外側型180は、凹面181が第1凸面161および第2凸面171に対向するよう第1内側型160および第2内側型170の外側に配置される。 The outer mold 180 has a concave surface 181 on the inner wall (see FIG. 39). The concave surface 181 is formed in a spherical shape. The outer mold 180 is disposed outside the first inner mold 160 and the second inner mold 170 so that the concave surface 181 faces the first convex surface 161 and the second convex surface 171.
 型駆動体155は、筒状に形成されている。型駆動体155は、中心軸CAx1と同軸に第1内側型160および第2内側型170の内側に配置される。型駆動体155の外周壁には、係合溝部156が形成されている。係合溝部156は、型駆動体155の一端から他端へ延びるよう形成されている。係合溝部156は、型駆動体155の周方向に等間隔で8つ形成されている。 The mold driver 155 is formed in a cylindrical shape. The mold driver 155 is disposed inside the first inner mold 160 and the second inner mold 170 coaxially with the central axis CAx1. An engagement groove 156 is formed on the outer peripheral wall of the mold driver 155. The engaging groove 156 is formed so as to extend from one end to the other end of the mold driver 155. Eight engaging groove portions 156 are formed at equal intervals in the circumferential direction of the mold driver 155.
 第1内側型160は、第1凸面161とは反対側に係合凸部162を有している。係合凸部162は、型駆動体155の係合溝部156に係合可能である。また、型駆動体155は、係合溝部156に係合凸部162が係合した状態で、中心軸CAx1方向に移動可能である。型駆動体155の外周壁は、テーパ状に形成されている。そのため、型駆動体155が第1内側型160および第2内側型170に対し中心軸CAx1方向の上ベース151側へ相対移動すると、8個の第1内側型160は、中心軸CAx1側へ集まるようにして移動する(図39、図40参照)。これにより、第1凸面161で形成される球状の面の内径が縮小する。なお、第1内側型160が中心軸CAx1側へ集まるようにして移動すると、8個の第2内側型170も中心軸CAx1側へ集まるようにして移動可能である。すなわち、第1内側型160と第2内側型170とが中心軸CAx1側へ集まるようにして移動すると、第1凸面161および第2凸面171で形成される球状の面の内径が縮小する。 The first inner mold 160 has an engaging convex portion 162 on the side opposite to the first convex surface 161. The engaging convex portion 162 can be engaged with the engaging groove portion 156 of the mold driver 155. The mold driver 155 is movable in the direction of the central axis CAx1 in a state in which the engagement protrusion 162 is engaged with the engagement groove 156. The outer peripheral wall of the mold driver 155 is formed in a tapered shape. Therefore, when the mold driver 155 moves relative to the first inner mold 160 and the second inner mold 170 toward the upper base 151 in the direction of the central axis CAx1, the eight first inner molds 160 gather toward the central axis CAx1. In this way, it moves (see FIGS. 39 and 40). As a result, the inner diameter of the spherical surface formed by the first convex surface 161 is reduced. When the first inner mold 160 moves so as to gather toward the central axis CAx1, the eight second inner molds 170 can also move so as to gather toward the central axis CAx1. That is, when the first inner mold 160 and the second inner mold 170 move so as to gather toward the central axis CAx1, the inner diameter of the spherical surface formed by the first convex surface 161 and the second convex surface 171 is reduced.
 バルブ30の製造方法は、以下の工程を含む。 The manufacturing method of the valve 30 includes the following steps.
<3-25>球面状弁体製造方法
 (樹脂成形工程)
 樹脂成形工程では、外側型180と外側型180の内側に配置される第1内側型160および第2内側型170との間において弁体31を樹脂成形する。具体的には、図35、図39の(A)に示すように、第1凸面161および第2凸面171で形成される球状の面と外側型180の凹面181との間に形成される空間に、溶融した樹脂を射出する。当該樹脂が冷え固まると、樹脂成形工程が完了する。
<3-25> Spherical valve body manufacturing method (resin molding process)
In the resin molding step, the valve body 31 is resin-molded between the outer mold 180 and the first inner mold 160 and the second inner mold 170 disposed inside the outer mold 180. Specifically, as shown in FIGS. 35 and 39A, a space formed between the spherical surface formed by the first convex surface 161 and the second convex surface 171 and the concave surface 181 of the outer die 180. Then, the molten resin is injected. When the resin cools and hardens, the resin molding process is completed.
<3-25-1>
 樹脂成形工程において弁体31を樹脂成形するとき、回転軸Axr1方向および周方向の少なくとも一部の範囲において、凹面181と第1凸面161および第2凸面171との距離が同じである(図39の(A)参照)。
<3-25-1>
When the valve body 31 is resin-molded in the resin molding step, the distance between the concave surface 181 and the first convex surface 161 and the second convex surface 171 is the same in at least a part of the rotational axis Axr1 direction and the circumferential direction (FIG. 39). (See (A)).
 そのため、弁体31の少なくとも一部を均肉にすることができる。これにより、弁体31の外周壁の球面の精度をより向上でき、弁体内流路300の流路面積をより大きくできる。 Therefore, at least a part of the valve body 31 can be made uniform. Thereby, the precision of the spherical surface of the outer peripheral wall of the valve body 31 can be further improved, and the flow passage area of the flow passage 300 can be increased.
 (型移動工程)
 樹脂成形工程の後の型移動工程では、第1内側型160および第2内側型170を弁体31の内側へ移動させる。具体的には、図39の(A)、(B)、図40の(A)~(E)に示すように、第1内側型160および第2内側型170に対し型駆動体155を中心軸CAx1方向へ相対移動させ、第1内側型160および第2内側型170を中心軸CAx1側へ移動させ、第1凸面161および第2凸面171により形成される球状の面を縮径させる。これにより、弁体31の内周壁462と第1凸面161および第2凸面171との間に隙間が形成される。そして、弁体31に対し第1内側型160および第2内側型170を中心軸CAx1方向に相対移動させることで、第1内側型160および第2内側型170を弁体31内から抜き出す。
(Mold transfer process)
In the mold moving process after the resin molding process, the first inner mold 160 and the second inner mold 170 are moved to the inside of the valve body 31. Specifically, as shown in FIGS. 39A and 39B and FIGS. 40A to 40E, the mold driver 155 is centered with respect to the first inner mold 160 and the second inner mold 170. The first inner mold 160 and the second inner mold 170 are moved relative to each other in the direction of the axis CAx1, and the first inner mold 160 and the second inner mold 170 are moved toward the central axis CAx1, thereby reducing the diameter of the spherical surface formed by the first convex surface 161 and the second convex surface 171. Thereby, a gap is formed between the inner peripheral wall 462 of the valve body 31 and the first and second convex surfaces 161 and 171. Then, the first inner mold 160 and the second inner mold 170 are extracted from the valve body 31 by moving the first inner mold 160 and the second inner mold 170 relative to the valve body 31 in the direction of the central axis CAx1.
<3-26>
 図41の(A)、(B)に示すように、第1凸面161および第2凸面171の突出高さH1は、型移動工程において第1内側型160および第2内側型170が移動可能な距離Dm1より小さく設定されている。
<3-26>
As shown in FIGS. 41A and 41B, the protrusion height H1 of the first convex surface 161 and the second convex surface 171 is such that the first inner die 160 and the second inner die 170 can move in the die moving step. It is set smaller than the distance Dm1.
 そのため、第1内側型160および第2内側型170を弁体31内から抜き出すとき、第1凸面161および第2凸面171が弁体31の内周壁462に干渉することなく、第1内側型160および第2内側型170を弁体31から容易に抜き出すことができる。 Therefore, when the first inner mold 160 and the second inner mold 170 are extracted from the valve body 31, the first convex surface 161 and the second convex surface 171 do not interfere with the inner peripheral wall 462 of the valve body 31, and the first inner mold 160 And the 2nd inner side type | mold 170 can be easily extracted from the valve body 31. FIG.
<3-25>
 上述のように、本実施形態は、回転軸Axr1周りに回転可能な弁体31、および、弁体31の内側に形成された弁体内流路300を有するバルブ30の製造方法であって、樹脂成形工程と型移動工程とを含む。
<3-25>
As described above, the present embodiment is a method for manufacturing the valve 30 having the valve body 31 rotatable around the rotation axis Axr1 and the valve body flow passage 300 formed inside the valve body 31, and includes a resin. A molding process and a mold moving process are included.
 弁体31は、外周壁の少なくとも一部が球面状に形成され、内周壁の少なくとも一部が外側へ凹むよう形成される。 The valve body 31 is formed such that at least a part of the outer peripheral wall is formed in a spherical shape and at least a part of the inner peripheral wall is recessed outward.
 樹脂成形工程では、外側型180と外側型180の内側に配置される内側型(160、170)との間において弁体31を樹脂成形する。 In the resin molding step, the valve body 31 is resin-molded between the outer mold 180 and the inner molds (160, 170) disposed inside the outer mold 180.
 型移動工程では、樹脂成形工程の後、内側型(160、170)を弁体31の内側へ移動させる。 In the mold moving process, the inner mold (160, 170) is moved to the inside of the valve body 31 after the resin molding process.
 上記製造方法でバルブ30を製造することにより、弁体31の外周壁の球面の成形精度を向上できる。これにより、弁体31の外周壁における冷却水の漏れを抑制可能である。 By manufacturing the valve 30 by the above manufacturing method, the molding accuracy of the spherical surface of the outer peripheral wall of the valve body 31 can be improved. Thereby, the leakage of the cooling water in the outer peripheral wall of the valve body 31 can be suppressed.
 また、弁体内流路300の流路面積を大きくでき、通水抵抗を小さくできる。 Moreover, the flow passage area of the valve body flow passage 300 can be increased, and the water flow resistance can be reduced.
  (第6実施形態)
 第6実施形態によるバルブ装置を図42に示す。第6実施形態は、バルブ30の構成等が第1実施形態と異なる。
(Sixth embodiment)
FIG. 42 shows a valve device according to the sixth embodiment. The sixth embodiment differs from the first embodiment in the configuration of the valve 30 and the like.
 弁体31のボールバルブ41、42、筒状バルブ接続部45、ボールバルブ43は、回転軸Axr1方向の駆動部70側から駆動部70とは反対側へ向かって、この順で並ぶよう一体に形成されている。弁体31は、筒状に形成され、ボールバルブ41、42、筒状バルブ接続部45、ボールバルブ43の内周壁が、回転軸Axr1を中心とする略円筒面状に形成されている。なお、弁体31の内周壁は、回転軸Axr1方向の駆動部70側から駆動部70とは反対側へ向かうに従い内径が大きくなるようテーパ状に形成されている。弁体31は、ボールバルブ41、42、43において外周壁が球面状となるよう形成されている。シャフト32は、回転軸Axr1において弁体31と一体に設けられている。 The ball valves 41 and 42, the cylindrical valve connection portion 45, and the ball valve 43 of the valve body 31 are integrally arranged in this order from the drive portion 70 side in the direction of the rotation axis Axr1 toward the opposite side of the drive portion 70. Is formed. The valve body 31 is formed in a cylindrical shape, and the inner peripheral walls of the ball valves 41 and 42, the cylindrical valve connecting portion 45, and the ball valve 43 are formed in a substantially cylindrical surface centered on the rotation axis Axr1. The inner peripheral wall of the valve body 31 is formed in a tapered shape so that the inner diameter increases from the drive unit 70 side in the direction of the rotation axis Axr1 toward the opposite side of the drive unit 70. The valve body 31 is formed so that the outer peripheral wall of the ball valves 41, 42, 43 is spherical. The shaft 32 is provided integrally with the valve body 31 on the rotation axis Axr1.
 出口ポート221、222、223は、それぞれ、ボールバルブ41、42、43に対応する位置に形成されている。パイプ部511の出口ポート221とは反対側の端部は、ホース等を経由してラジエータ5に接続される。パイプ部512の出口ポート222とは反対側の端部は、ホース等を経由してヒータ6に接続される。パイプ部513の出口ポート223とは反対側の端部は、ホース等を経由してデバイス7に接続される。 The outlet ports 221, 222, 223 are formed at positions corresponding to the ball valves 41, 42, 43, respectively. The end of the pipe portion 511 opposite to the outlet port 221 is connected to the radiator 5 via a hose or the like. The end of the pipe portion 512 opposite to the outlet port 222 is connected to the heater 6 via a hose or the like. The end of the pipe portion 513 opposite to the outlet port 223 is connected to the device 7 via a hose or the like.
 図42に示すように、ボールバルブ41、42、43は、それぞれ、出口ポート221、222、223に対応する位置に設けられている。ここで、「出口ポート221、222、223に対応する位置」とは、出口ポート221、222、223の軸方向に出口ポート221、222、223を投影したとき、この投影と重なる範囲を意味する。 42, the ball valves 41, 42, 43 are provided at positions corresponding to the outlet ports 221, 222, 223, respectively. Here, the “position corresponding to the outlet ports 221, 222, 223” means a range that overlaps the projection when the outlet ports 221, 222, 223 are projected in the axial direction of the outlet ports 221, 222, 223. .
 図42に示すように、筒状バルブ接続部45は、回転軸Axr1方向において、出口ポート222と出口ポート223との間に設けられている。 42, the cylindrical valve connection portion 45 is provided between the outlet port 222 and the outlet port 223 in the direction of the rotation axis Axr1.
 取付面201は、パイプ取付面202に対し直交するよう形成されている(図43参照)。入口ポート220は、取付面201に開口するよう形成されている。取付面201における入口ポート220の開口は、円形である。 The mounting surface 201 is formed so as to be orthogonal to the pipe mounting surface 202 (see FIG. 43). The inlet port 220 is formed to open to the mounting surface 201. The opening of the inlet port 220 in the mounting surface 201 is circular.
 図44に示すように、バルブ装置10は、エンジン2とインバータ16との間の狭小空間A2においてエンジン2に取り付けられる。ここで、バルブ装置10は、パイプ部材50がバルブ30に対し鉛直方向上側に位置するようにしてエンジン2に取り付けられる。 44, the valve device 10 is attached to the engine 2 in a narrow space A2 between the engine 2 and the inverter 16. Here, the valve device 10 is attached to the engine 2 such that the pipe member 50 is positioned above the valve 30 in the vertical direction.
<1-1>ハウジング締結穴
 図42、図43に示すように、ハウジング20は、ハウジング本体21と一体に形成された締結部231、232、233を有している。締結部231、232、233は、ハウジング本体21の取付面201側の端部から取付面201の面方向に突出するよう形成されている。また、ハウジング20は、締結部231、232、233のそれぞれに対応して形成された締結穴241、242、243を有している。
<1-1> Housing Fastening Hole As shown in FIGS. 42 and 43, the housing 20 has fastening portions 231, 232, and 233 formed integrally with the housing main body 21. The fastening portions 231, 232, and 233 are formed so as to protrude in the surface direction of the mounting surface 201 from the end of the housing body 21 on the mounting surface 201 side. The housing 20 has fastening holes 241, 242, 243 formed corresponding to the fastening portions 231, 232, 233, respectively.
 締結穴241、242、243には、締結部材240が挿通され、エンジン2に締結される。これにより、バルブ装置10がエンジン2に取り付けられる。取付面201の入口ポート220の径方向外側には、ゴム製のポートシール部材209が設けられる。ポートシール部材209は、バルブ装置10がエンジン2に取り付けられた状態において、締結部材240の軸力により圧縮された状態となる。これにより、ポートシール部材209は、取付面201とエンジン2との間を液密に保持し、入口ポート220から取付面201とエンジン2との間を経由して冷却水が漏れるのを抑制できる。 The fastening member 240 is inserted into the fastening holes 241, 242, and 243 and fastened to the engine 2. Thereby, the valve device 10 is attached to the engine 2. A rubber-made port seal member 209 is provided on the outer side in the radial direction of the inlet port 220 of the mounting surface 201. The port seal member 209 is compressed by the axial force of the fastening member 240 when the valve device 10 is attached to the engine 2. As a result, the port seal member 209 can keep the mounting surface 201 and the engine 2 in a liquid-tight state, and can prevent the coolant from leaking from the inlet port 220 through the mounting surface 201 and the engine 2. .
 図43に示すように、入口ポート220の開口は、3つの締結穴、すなわち、締結穴241、242、243を結んで形成される三角形Ti1の内側に形成されている。 43, the opening of the inlet port 220 is formed inside a triangle Ti1 formed by connecting three fastening holes, that is, fastening holes 241, 242, and 243.
<1-1>
 上述のように、本実施形態は、車両1のエンジン2の冷却水を制御可能なバルブ装置10であって、ハウジング20とバルブ30とを備える。
<1-1>
As described above, the present embodiment is a valve device 10 that can control the cooling water of the engine 2 of the vehicle 1, and includes the housing 20 and the valve 30.
 ハウジング20は、内側に内部空間200を形成するハウジング本体21、エンジン2に取り付けられた状態においてエンジン2に対向するようハウジング本体21の外壁に形成された取付面201、取付面201に開口し内部空間200とハウジング本体21の外部とを接続する入口ポート220、ハウジング本体21と一体に形成された複数の締結部(231、232、233)、および、複数の締結部のそれぞれに対応して形成された複数の締結穴(241、242、243)を有する。 The housing 20 has a housing main body 21 that forms an internal space 200 on the inside, a mounting surface 201 formed on the outer wall of the housing main body 21 so as to face the engine 2 when mounted on the engine 2, An inlet port 220 that connects the space 200 and the outside of the housing body 21, a plurality of fastening portions (231, 232, 233) formed integrally with the housing body 21, and a plurality of fastening portions, respectively. A plurality of fastening holes (241, 242, 243).
 バルブ30は、内部空間200内において回転軸Axr1周りに回転可能な弁体31、および、弁体31の内側に形成され入口ポート220に連通可能な弁体内流路300を有する。 The valve 30 includes a valve body 31 that can rotate around the rotation axis Axr1 in the internal space 200, and a valve body flow path 300 that is formed inside the valve body 31 and communicates with the inlet port 220.
 ハウジング本体21は、締結穴(241、242、243)を通りエンジン2に螺合する締結部材240によりエンジン2に固定される。 The housing body 21 is fixed to the engine 2 by a fastening member 240 that is screwed into the engine 2 through the fastening holes (241, 242, 243).
 締結穴は、少なくとも3つ形成されている。 】 At least three fastening holes are formed.
 入口ポート220の開口は、3つの締結穴(241、242、243)を結んで形成される三角形Ti1の内側に形成されている。 The opening of the inlet port 220 is formed inside a triangle Ti1 formed by connecting three fastening holes (241, 242, 243).
 そのため、入口ポート220の周りに環状の弾性部材からなるポートシール部材209を設けた場合、3つの締結穴(231、232、233)を通る締結部材240によりハウジング本体21をエンジン2に固定したとき、ポートシール部材209をバランスよく圧縮できる。これにより、入口ポート220周りのシール性を効果的に確保できる。 Therefore, when the port seal member 209 made of an annular elastic member is provided around the inlet port 220, the housing body 21 is fixed to the engine 2 by the fastening member 240 that passes through the three fastening holes (231, 232, 233). The port seal member 209 can be compressed with a good balance. Thereby, the sealing performance around the inlet port 220 can be effectively secured.
 図43に示すように、締結部231は、ハウジング本体21からハウジング本体21の長手方向に突出するよう形成されている。締結部232、233は、ハウジング本体21からハウジング本体21の短手方向に突出するよう形成されている。 43, the fastening portion 231 is formed to protrude from the housing body 21 in the longitudinal direction of the housing body 21. The fastening portions 232 and 233 are formed so as to protrude from the housing main body 21 in the short direction of the housing main body 21.
 図43に示すように、締結部231の突出開始位置は、ハウジング本体21の入口ポート220が形成された矩形状の取付面201の駆動部70とは反対側の角部である。締結部232の突出開始位置は、ハウジング本体21の入口ポート220が形成された矩形状の取付面201の長手方向に延びる2つの辺のうち締結部233とは反対側の辺の入口ポート220の近傍の部分である。締結部233の突出開始位置は、ハウジング本体21の短手方向の端部の駆動部70側の部分である。 43, the protrusion start position of the fastening portion 231 is a corner portion on the opposite side of the drive portion 70 of the rectangular mounting surface 201 where the inlet port 220 of the housing body 21 is formed. The protruding start position of the fastening portion 232 is the position of the inlet port 220 on the side opposite to the fastening portion 233 among the two sides extending in the longitudinal direction of the rectangular mounting surface 201 on which the inlet port 220 of the housing body 21 is formed. It is a nearby part. The protruding start position of the fastening portion 233 is a portion on the drive portion 70 side of the end portion of the housing body 21 in the short direction.
 図43に示すように、三角形Ti1の辺のうち締結穴241の中心と締結穴242の中心とを結ぶ辺と入口ポート220の中心Cp1との距離は、締結穴242の中心と締結穴243の中心とを結ぶ辺と中心Cp1との距離より小さい。締結穴242の中心と締結穴243の中心とを結ぶ辺と中心Cp1との距離は、締結穴243の中心と締結穴241の中心とを結ぶ辺と中心Cp1との距離より小さい。 As shown in FIG. 43, the distance between the side of the triangle Ti1 that connects the center of the fastening hole 241 and the center of the fastening hole 242 and the center Cp1 of the inlet port 220 is the distance between the center of the fastening hole 242 and the fastening hole 243. It is smaller than the distance between the side connecting the center and the center Cp1. The distance between the side connecting the center of the fastening hole 242 and the center of the fastening hole 243 and the center Cp1 is smaller than the distance between the side connecting the center of the fastening hole 243 and the center of the fastening hole 241 and the center Cp1.
<4-1>カバー固定部突出抑制
 図45、図46に示すように、駆動部カバー80は、駆動部空間800を形成するカバー本体81、および、カバー本体81の外縁部に形成されハウジング本体21に固定されるカバー固定部821~826を有している。
<4-1> Cover Fixing Part Protrusion Suppression As shown in FIGS. 45 and 46, the drive part cover 80 is formed on the cover body 81 that forms the drive part space 800, and the outer edge part of the cover body 81. Cover fixing portions 821 to 826 to be fixed to 21.
 カバー固定部821~826のそれぞれには、カバー締結穴831~836が形成されている。カバー締結穴831~836には、固定部材830が挿通され、ハウジング本体21に締結される。 Cover fastening holes 831 to 836 are formed with cover fastening holes 831 to 836, respectively. A fixing member 830 is inserted into the cover fastening holes 831 to 836 and fastened to the housing body 21.
 ここで、カバー固定部823、824は、ハウジング本体21の取付面201に対し垂直な方向Dv1の両端部のうち少なくとも一方より外側へ突出しないよう形成されている。 Here, the cover fixing portions 823 and 824 are formed so as not to protrude outward from at least one of both end portions in the direction Dv1 perpendicular to the mounting surface 201 of the housing main body 21.
 具体的には、カバー固定部823、824は、ハウジング本体21の取付面201に対し垂直な方向Dv1の取付面201とは反対側の端部であるハウジング端部215より外側、すなわち、取付面201とは反対側へ突出しないよう形成されている。 Specifically, the cover fixing portions 823 and 824 are outside the housing end 215 that is the end opposite to the mounting surface 201 in the direction Dv1 perpendicular to the mounting surface 201 of the housing body 21, that is, the mounting surface. It is formed so as not to protrude to the opposite side of 201.
 図45に示す仮想平面Vp3は、ハウジング端部215を通り取付面201に対し平行な仮想平面である。カバー固定部823、824は、当該仮想平面Vp3に対し取付面201側に位置している。 45 is a virtual plane that passes through the housing end 215 and is parallel to the mounting surface 201. The virtual plane Vp3 illustrated in FIG. The cover fixing portions 823 and 824 are located on the attachment surface 201 side with respect to the virtual plane Vp3.
 また、カバー固定部821、826は、ハウジング本体21の取付面201に対し垂直な方向Dv1の取付面201側の端部であるハウジング端部216より外側、すなわち、取付面201側へ突出しないよう形成されている。つまり、カバー固定部821、826は、取付面201に対し仮想平面Vp3側に位置している。 Further, the cover fixing portions 821 and 826 do not protrude outside the housing end portion 216 that is the end portion on the mounting surface 201 side in the direction Dv1 perpendicular to the mounting surface 201 of the housing body 21, that is, the mounting surface 201 side. Is formed. That is, the cover fixing portions 821 and 826 are located on the virtual plane Vp3 side with respect to the attachment surface 201.
 ここで、カバー本体81は、駆動部カバー80の一部であって、駆動部空間800を形成する部位を意味する。そのため、カバー固定部821~826は、駆動部カバー80を構成する部位ではあるものの、カバー本体81とは異なる部位として形成されている。 Here, the cover main body 81 is a part of the driving unit cover 80 and means a part that forms the driving unit space 800. Therefore, the cover fixing portions 821 to 826 are portions constituting the drive portion cover 80, but are formed as portions different from the cover main body 81.
 図45に示すように、カバー本体81の外壁には、カバー平面部811、812、813、カバー曲面部814が形成されている。カバー平面部811は、回転軸Axr1に直交するよう平面状に1つ形成されている。カバー平面部812は、回転軸Axr1に対し平行となるよう平面状に複数形成されている。カバー平面部813は、回転軸Axr1に対し傾斜するよう平面状に1つ形成されている。カバー曲面部814は、回転軸Axr1に対し平行となるよう曲面状に複数形成されている。ここで、複数のカバー曲面部814は、互いに接続している。 45, cover flat portions 811, 812, 813 and a cover curved surface portion 814 are formed on the outer wall of the cover body 81. As shown in FIG. One cover flat portion 811 is formed in a flat shape so as to be orthogonal to the rotation axis Axr1. A plurality of cover flat portions 812 are formed in a planar shape so as to be parallel to the rotation axis Axr1. One flat cover portion 813 is formed in a flat shape so as to be inclined with respect to the rotation axis Axr1. A plurality of cover curved surface portions 814 are formed in a curved shape so as to be parallel to the rotation axis Axr1. Here, the plurality of cover curved surface portions 814 are connected to each other.
 図45に示すように、カバー締結穴831~833は、モータ71の軸Axm1に対しパイプ部材50側に形成されている。カバー締結穴834~836は、モータ71の軸Axm1に対しコネクタ部84側に形成されている。カバー締結穴833は、カバー締結穴831、832よりもモータ71の軸Axm1に近い位置に形成されている。カバー締結穴834は、カバー締結穴835、836よりもモータ71の軸Axm1に近い位置に形成されている。 45, the cover fastening holes 831 to 833 are formed on the pipe member 50 side with respect to the axis Axm1 of the motor 71. Cover fastening holes 834 to 836 are formed on the connector portion 84 side with respect to the axis Axm1 of the motor 71. The cover fastening hole 833 is formed at a position closer to the axis Axm1 of the motor 71 than the cover fastening holes 831 and 832. The cover fastening hole 834 is formed at a position closer to the axis Axm1 of the motor 71 than the cover fastening holes 835 and 836.
<4-1>
 上述のように、本実施形態は、車両1のエンジン2の冷却水を制御可能なバルブ装置10であって、ハウジング20とバルブ30と隔壁部60と駆動部カバー80と駆動部70とを備える。
<4-1>
As described above, the present embodiment is a valve device 10 that can control the cooling water of the engine 2 of the vehicle 1, and includes the housing 20, the valve 30, the partition wall portion 60, the drive portion cover 80, and the drive portion 70. .
 ハウジング20は、内側に内部空間200を形成するハウジング本体21、エンジン2に取り付けられた状態においてエンジン2に対向するようハウジング本体21の外壁に形成された取付面201、および、内部空間200とハウジング本体21の外部とを接続するポート(220、221、222、223)を有する。 The housing 20 includes a housing main body 21 that forms an internal space 200 inside, a mounting surface 201 that is formed on the outer wall of the housing main body 21 so as to face the engine 2 when mounted on the engine 2, and the internal space 200 and the housing. It has ports (220, 221, 222, 223) for connecting to the outside of the main body 21.
 バルブ30は、内部空間200内において回転軸Axr1周りに回転可能な弁体31、弁体31の内側に形成された弁体内流路300、弁体内流路300と弁体31の外側とを接続する弁体開口部(410、420、430)、および、回転軸Axr1に設けられたシャフト32を有し、弁体開口部(410、420、430)を経由した弁体内流路300とポート(220、221、222、223)との連通状態を弁体31の回転位置により変更可能である。 The valve 30 connects the valve body 31 that can rotate around the rotation axis Axr1 in the internal space 200, the valve body channel 300 formed inside the valve body 31, and the valve body channel 300 and the outside of the valve body 31. Valve body openings (410, 420, 430) and a shaft 32 provided on the rotation axis Axr1, and the valve body flow path 300 and ports (via the valve body openings (410, 420, 430)) 220, 221, 222, 223) can be changed by the rotational position of the valve body 31.
 隔壁部60は、内部空間200とハウジング本体21の外部とを隔てるよう設けられ、シャフト32の一端を挿通可能なよう形成されたシャフト挿通穴62を有する。 The partition wall portion 60 is provided so as to separate the internal space 200 from the outside of the housing body 21 and has a shaft insertion hole 62 formed so that one end of the shaft 32 can be inserted.
 駆動部カバー80は、隔壁部60に対し内部空間200とは反対側に設けられ、隔壁部60との間に駆動部空間800を形成する。 The drive unit cover 80 is provided on the opposite side of the partition wall 60 from the internal space 200, and forms a drive unit space 800 between the partition wall 60.
 駆動部70は、駆動部空間800に設けられ、シャフト32の一端を経由して弁体31を回転駆動可能である。 The drive unit 70 is provided in the drive unit space 800 and can rotate the valve body 31 via one end of the shaft 32.
 駆動部カバー80は、駆動部空間800を形成するカバー本体81、および、カバー本体81の外縁部に形成されハウジング本体21に固定されるカバー固定部(821~826)を有する。 The drive unit cover 80 includes a cover main body 81 that forms the drive unit space 800, and cover fixing portions (821 to 826) that are formed on the outer edge of the cover main body 81 and are fixed to the housing main body 21.
 カバー固定部(821~826)は、ハウジング本体21の取付面201に垂直な方向Dv1の両端部(215、216)のうち少なくとも一方より外側へ突出しないよう形成されている。 The cover fixing portions (821 to 826) are formed so as not to protrude outwardly from at least one of both end portions (215, 216) in the direction Dv1 perpendicular to the mounting surface 201 of the housing body 21.
 そのため、駆動部カバー80の取付面201に垂直な方向Dv1の体格を小さくでき、バルブ装置10の取付面201に垂直な方向Dv1の体格を小さくできる。これにより、バルブ装置10を車両1の狭小空間A2に搭載できる。 Therefore, the size in the direction Dv1 perpendicular to the mounting surface 201 of the drive unit cover 80 can be reduced, and the size in the direction Dv1 perpendicular to the mounting surface 201 of the valve device 10 can be reduced. Thereby, the valve device 10 can be mounted in the narrow space A <b> 2 of the vehicle 1.
 図44に示すように、エンジン2の周りには、様々な装置等が搭載される。そのため、バルブ装置10を配置できるスペースはエンジンルーム内において限られている。本実施形態では、バルブ装置10の体格を小さくできるため、バルブ装置10を車両1の狭小空間A2に容易に搭載できる(図44参照)。 As shown in FIG. 44, various devices are mounted around the engine 2. Therefore, the space where the valve device 10 can be arranged is limited in the engine room. In the present embodiment, since the size of the valve device 10 can be reduced, the valve device 10 can be easily mounted in the narrow space A2 of the vehicle 1 (see FIG. 44).
<4-1-1>
 図45に示すように、カバー固定部821~826は、取付面201に対し垂直な仮想平面Vp4上に位置している。なお、仮想平面Vp4は、回転軸Axr1、シャフト32の軸Axs1に対しても垂直な平面である。
<4-1-1>
As shown in FIG. 45, the cover fixing portions 821 to 826 are located on a virtual plane Vp4 perpendicular to the attachment surface 201. The virtual plane Vp4 is a plane that is also perpendicular to the rotation axis Axr1 and the axis Axs1 of the shaft 32.
 そのため、駆動部カバー80の高さを小さくできる。 Therefore, the height of the drive unit cover 80 can be reduced.
<4-2>
 図45に示すように、ハウジング本体21の取付面201とは反対側の端部であるハウジング端部215は、カバー本体81の取付面201とは反対側の端部であるカバー端部815より外側へ突出しないよう形成されている。なお、カバー端部815は、仮想平面Vp3に沿うよう形成されている。
<4-2>
As shown in FIG. 45, the housing end 215 which is the end opposite to the mounting surface 201 of the housing main body 21 is more than the cover end 815 which is the end opposite to the mounting surface 201 of the cover main body 81. It is formed so as not to protrude outward. The cover end 815 is formed along the virtual plane Vp3.
 そのため、ハウジング本体21の取付面201に垂直な方向Dv1の体格を小さくでき、バルブ装置10の取付面201に垂直な方向Dv1の体格をより小さくできる。 Therefore, the physique in the direction Dv1 perpendicular to the mounting surface 201 of the housing body 21 can be reduced, and the physique in the direction Dv1 perpendicular to the mounting surface 201 of the valve device 10 can be further reduced.
<4-2-1>
 図46に示すように、ハウジング本体21は、取付面201とは反対側の端部であるハウジング端部215において隔壁部60が露出する程度の切欠き部212を有している。
<4-2-1>
As shown in FIG. 46, the housing body 21 has a notch 212 that exposes the partition wall 60 at the housing end 215 that is the end opposite to the mounting surface 201.
 そのため、バルブ装置10の取付面201に垂直な方向Dv1の体格をより小さくできる。 Therefore, the physique in the direction Dv1 perpendicular to the mounting surface 201 of the valve device 10 can be further reduced.
 図45に示すように、切欠き部212は、カバー固定部823とカバー固定部824との間に形成されている。 As shown in FIG. 45, the notch portion 212 is formed between the cover fixing portion 823 and the cover fixing portion 824.
<4-3>
 図45に示すように、コネクタ部84は、カバー本体81の取付面201に垂直な方向Dv1の両端部のうち少なくとも一方より外側へ突出しないよう形成されている。
<4-3>
As shown in FIG. 45, the connector portion 84 is formed so as not to protrude outward from at least one of both end portions in the direction Dv1 perpendicular to the mounting surface 201 of the cover body 81.
 具体的には、コネクタ部84は、カバー本体81の取付面201に垂直な方向Dv1の取付面201とは反対側の端部であるカバー端部815より外側、すなわち、取付面201とは反対側へ突出しないよう形成されている。つまり、コネクタ部84は、仮想平面Vp3に対し取付面201側に位置している。 Specifically, the connector portion 84 is outside the cover end 815 that is the end opposite to the mounting surface 201 in the direction Dv1 perpendicular to the mounting surface 201 of the cover body 81, that is, opposite to the mounting surface 201. It is formed so as not to protrude to the side. That is, the connector part 84 is located on the attachment surface 201 side with respect to the virtual plane Vp3.
 また、コネクタ部84は、カバー本体81の取付面201に垂直な方向Dv1の取付面201側の端部であるカバー端部816より外側、すなわち、取付面201側へ突出しないよう形成されている。つまり、コネクタ部84は、取付面201に対し仮想平面Vp3側に位置している。 Further, the connector portion 84 is formed so as not to protrude outward from the cover end portion 816 that is an end portion on the mounting surface 201 side in the direction Dv1 perpendicular to the mounting surface 201 of the cover body 81, that is, to the mounting surface 201 side. . That is, the connector portion 84 is located on the virtual plane Vp3 side with respect to the attachment surface 201.
<4-3-1>
 図45に示すように、コネクタ部84は、カバー本体81の外縁部から取付面201に対し垂直な方向Dv1以外の方向へ突出するよう形成されている。
<4-3-1>
As shown in FIG. 45, the connector portion 84 is formed so as to protrude in a direction other than the direction Dv <b> 1 perpendicular to the attachment surface 201 from the outer edge portion of the cover main body 81.
<4-3-2>
 具体的には、コネクタ部84は、カバー本体81の外縁部から取付面201に対し平行な方向Dp1へ突出するよう形成されている。なお、平行な方向Dp1は、回転軸Axr1、シャフト32の軸Axs1に対して垂直な方向である。
<4-3-2>
Specifically, the connector portion 84 is formed so as to protrude from the outer edge portion of the cover main body 81 in a direction Dp1 parallel to the attachment surface 201. The parallel direction Dp1 is a direction perpendicular to the rotation axis Axr1 and the axis Axs1 of the shaft 32.
 そのため、駆動部カバー80の取付面201に垂直な方向Dv1の体格をより小さくでき、バルブ装置10の取付面201に垂直な方向Dv1の体格をより小さくできる。 Therefore, the size in the direction Dv1 perpendicular to the mounting surface 201 of the drive unit cover 80 can be made smaller, and the size in the direction Dv1 perpendicular to the mounting surface 201 of the valve device 10 can be made smaller.
 図45に示すように、コネクタ部84は、カバー本体81の外縁部のうちカバー固定部825とカバー固定部826との間の部分から方向Dp1へ突出するよう形成されている。 45, the connector portion 84 is formed so as to protrude in the direction Dp1 from a portion between the cover fixing portion 825 and the cover fixing portion 826 in the outer edge portion of the cover main body 81.
<4-4>
 上述のように、本実施形態は、車両1のエンジン2の冷却水を制御可能なバルブ装置10であって、ハウジング20とバルブ30と隔壁部60と駆動部カバー80と駆動部70とを備える。
<4-4>
As described above, the present embodiment is a valve device 10 that can control the cooling water of the engine 2 of the vehicle 1, and includes the housing 20, the valve 30, the partition wall portion 60, the drive portion cover 80, and the drive portion 70. .
 図45に示すように、ハウジング20は、内側に内部空間200を形成するハウジング本体21、ハウジング本体21の外壁から突出するようハウジング本体21とは異なる部位として形成されたハウジング側カバー固定部(291~296)、エンジン2に取り付けられた状態においてエンジン2に対向するようハウジング本体21の外壁に形成された取付面201、および、内部空間200とハウジング本体21の外部とを接続するポート(220、221、222、223)を有する。 As shown in FIG. 45, the housing 20 includes a housing main body 21 that forms an internal space 200 on the inner side, and a housing side cover fixing portion (291 that is formed as a portion different from the housing main body 21 so as to protrude from the outer wall of the housing main body 21. 296), a mounting surface 201 formed on the outer wall of the housing body 21 so as to face the engine 2 in a state of being mounted on the engine 2, and a port (220, connecting the inner space 200 and the outside of the housing body 21). 221, 222, 223).
 バルブ30は、内部空間200内において回転軸Axr1周りに回転可能な弁体31、弁体31の内側に形成された弁体内流路300、弁体内流路300と弁体31の外側とを接続する弁体開口部(410、420、430)、および、回転軸Axr1に設けられたシャフト32を有し、弁体開口部(410、420、430)を経由した弁体内流路300とポート(220、221、222、223)との連通状態を弁体31の回転位置により変更可能である。 The valve 30 connects the valve body 31 that can rotate around the rotation axis Axr1 in the internal space 200, the valve body channel 300 formed inside the valve body 31, and the valve body channel 300 and the outside of the valve body 31. Valve body openings (410, 420, 430) and a shaft 32 provided on the rotation axis Axr1, and the valve body flow path 300 and ports (via the valve body openings (410, 420, 430)) 220, 221, 222, 223) can be changed by the rotational position of the valve body 31.
 隔壁部60は、内部空間200とハウジング本体21の外部とを隔てるよう設けられ、シャフト32の一端を挿通可能なよう形成されたシャフト挿通穴62を有する。 The partition wall portion 60 is provided so as to separate the internal space 200 from the outside of the housing body 21 and has a shaft insertion hole 62 formed so that one end of the shaft 32 can be inserted.
 駆動部カバー80は、隔壁部60に対し内部空間200とは反対側に設けられ、隔壁部60との間に駆動部空間800を形成する。 The drive unit cover 80 is provided on the opposite side of the partition wall 60 from the internal space 200, and forms a drive unit space 800 between the partition wall 60.
 駆動部70は、駆動部空間800に設けられ、シャフト32の一端を経由して弁体31を回転駆動可能である。 The drive unit 70 is provided in the drive unit space 800 and can rotate the valve body 31 via one end of the shaft 32.
 図45に示すように、駆動部カバー80は、駆動部空間800を形成するカバー本体81、および、カバー本体81の外壁から突出するようカバー本体81とは異なる部位として形成されハウジング側カバー固定部(291~296)に固定されるカバー固定部(821~826)を有する。ここで、カバー固定部821~826は、固定部材830により、それぞれ、ハウジング側カバー固定部291~296に固定される。 As shown in FIG. 45, the drive unit cover 80 is formed as a portion different from the cover main body 81 so as to protrude from the outer wall of the cover main body 81 and the cover main body 81 that forms the drive unit space 800. Cover fixing portions (821 to 826) fixed to (291 to 296). Here, the cover fixing portions 821 to 826 are fixed to the housing side cover fixing portions 291 to 296 by the fixing member 830, respectively.
 カバー固定部(821~826)は、ハウジング本体21の取付面201に垂直な方向Dv1の両端部(215、216)のうち少なくとも一方より外側へ突出しないよう形成されている。ここで、ハウジング本体21の取付面201に垂直な方向Dv1の両端部であるハウジング端部215、216は、ハウジング側カバー固定部291~296とは異なる部位としてハウジング本体21に形成されている。 The cover fixing portions (821 to 826) are formed so as not to protrude outwardly from at least one of both end portions (215, 216) in the direction Dv1 perpendicular to the mounting surface 201 of the housing body 21. Here, the housing end portions 215 and 216 which are both ends in the direction Dv1 perpendicular to the mounting surface 201 of the housing main body 21 are formed in the housing main body 21 as portions different from the housing side cover fixing portions 291 to 296.
 そのため、駆動部カバー80の取付面201に垂直な方向Dv1の体格を小さくでき、バルブ装置10の取付面201に垂直な方向Dv1の体格を小さくできる。これにより、バルブ装置10を車両1の狭小空間A2に搭載できる。 Therefore, the size in the direction Dv1 perpendicular to the mounting surface 201 of the drive unit cover 80 can be reduced, and the size in the direction Dv1 perpendicular to the mounting surface 201 of the valve device 10 can be reduced. Thereby, the valve device 10 can be mounted in the narrow space A <b> 2 of the vehicle 1.
<4-5>
 図45に示すように、ハウジング本体21がエンジン2に取り付けられた状態において、カバー固定部821~826は、ハウジング本体21の取付面201に垂直な方向Dv1かつ水平方向の両端部(215、216)のうち少なくとも一方より外側へ突出しないよう形成されている。つまり、カバー固定部821~826は、ハウジング端部215よりも、ハウジング本体21の最薄方向である取付面201に垂直な方向Dv1に関して突出しないよう形成されている。
<4-5>
As shown in FIG. 45, in a state where the housing main body 21 is attached to the engine 2, the cover fixing portions 821 to 826 are arranged in the direction Dv1 perpendicular to the attachment surface 201 of the housing main body 21 and both end portions (215, 216) ) So as not to protrude outwardly from at least one of them. That is, the cover fixing portions 821 to 826 are formed so as not to protrude from the housing end portion 215 in the direction Dv1 perpendicular to the mounting surface 201 which is the thinnest direction of the housing body 21.
 そのため、駆動部カバー80の取付面201に垂直な方向Dv1かつ水平方向の体格を小さくでき、バルブ装置10の取付面201に垂直な方向Dv1かつ水平方向の体格を小さくできる。これにより、取付面201に垂直な方向Dv1かつ水平方向に狭い狭小空間A2にバルブ装置10を搭載できる。 Therefore, the physique in the direction Dv1 and the horizontal direction perpendicular to the mounting surface 201 of the drive unit cover 80 can be reduced, and the physique in the direction Dv1 and the horizontal direction perpendicular to the mounting surface 201 of the valve device 10 can be reduced. As a result, the valve device 10 can be mounted in the narrow space A2 that is perpendicular to the mounting surface 201 and narrow in the horizontal direction Dv1.
<5-1>ハウジング側固定部隙間
 図47に示すように、ハウジング20は、ハウジング本体21と一体に形成されたハウジング側固定部251~256を有している。ここで、ハウジング側固定部251~253は、回転軸Axr1を含み取付面201に対し平行な仮想平面Vp5に対し取付面201とは反対側において回転軸Axr1と平行な方向に並ぶよう形成されている。また、ハウジング側固定部254~256は、仮想平面Vp5に対し取付面201側において回転軸Axr1と平行な方向に並ぶよう形成されている。つまり、ハウジング側固定部251~253とハウジング側固定部254~256とは、間に仮想平面Vp5を挟むようにして形成されている。
<5-1> Housing Side Fixing Section Gap As shown in FIG. 47, the housing 20 includes housing side fixing sections 251 to 256 formed integrally with the housing main body 21. Here, the housing-side fixing portions 251 to 253 are formed so as to be aligned in a direction parallel to the rotation axis Axr1 on the opposite side of the attachment surface 201 with respect to a virtual plane Vp5 including the rotation axis Axr1 and parallel to the attachment surface 201. Yes. The housing side fixing portions 254 to 256 are formed so as to be aligned in a direction parallel to the rotation axis Axr1 on the mounting surface 201 side with respect to the virtual plane Vp5. That is, the housing side fixing portions 251 to 253 and the housing side fixing portions 254 to 256 are formed so as to sandwich the virtual plane Vp5 therebetween.
 なお、ハウジング側固定部251とハウジング側固定部252との距離は、ハウジング側固定部252とハウジング側固定部253との距離より大きい。ハウジング側固定部254とハウジング側固定部255との距離は、ハウジング側固定部255とハウジング側固定部256との距離と同じである。また、ハウジング側固定部252とハウジング側固定部253との距離は、ハウジング側固定部255とハウジング側固定部256との距離より小さい。 Note that the distance between the housing side fixing portion 251 and the housing side fixing portion 252 is larger than the distance between the housing side fixing portion 252 and the housing side fixing portion 253. The distance between the housing side fixing portion 254 and the housing side fixing portion 255 is the same as the distance between the housing side fixing portion 255 and the housing side fixing portion 256. Further, the distance between the housing side fixing portion 252 and the housing side fixing portion 253 is smaller than the distance between the housing side fixing portion 255 and the housing side fixing portion 256.
 また、ハウジング側固定部251は、回転軸Axr1方向においてハウジング側固定部254に対し駆動部70側に形成されている。ハウジング側固定部252は、回転軸Axr1方向においてハウジング側固定部255に対しハウジング側固定部256側に形成されている。ハウジング側固定部253は、回転軸Axr1方向においてハウジング側固定部256に対しやや駆動部70とは反対側に形成されている。 Further, the housing side fixing portion 251 is formed on the drive portion 70 side with respect to the housing side fixing portion 254 in the direction of the rotation axis Axr1. The housing side fixing portion 252 is formed on the housing side fixing portion 256 side with respect to the housing side fixing portion 255 in the direction of the rotation axis Axr1. The housing side fixing portion 253 is formed on the opposite side to the driving portion 70 with respect to the housing side fixing portion 256 in the direction of the rotation axis Axr1.
 ハウジング側固定部251~256のそれぞれには、ハウジング側締結穴261~266が形成されている。なお、ハウジング側締結穴261~266は、略円筒状に形成され、軸が取付面201、仮想平面Vp5、鉛直方向に対し平行となるよう形成されている。また、ハウジング側締結穴261~266の内周壁には、ねじ溝は予め形成されていない。 Housing side fastening holes 261 to 266 are formed in the housing side fixing portions 251 to 256, respectively. The housing side fastening holes 261 to 266 are formed in a substantially cylindrical shape, and are formed so that the axes are parallel to the mounting surface 201, the virtual plane Vp5, and the vertical direction. Further, no thread groove is formed in advance on the inner peripheral wall of the housing side fastening holes 261 to 266.
 図47に示すように、パイプ部材50は、パイプ部511~514、パイプ連結部52、パイプ側固定部531~536等を有している。パイプ部511~513は、それぞれ、内側の空間が出口ポート221~223に連通するよう設けられている。パイプ部514は、内側の空間がリリーフポート224に連通するよう設けられている。パイプ部511とパイプ部514とは、一体に形成され、内側の空間が互いに連通している。なお、パイプ部512とパイプ部514とは、外壁が接続するよう一体に形成されているものの、内側の空間は互いに連通していない。パイプ連結部52は、パイプ部511~514のハウジング本体21側の端部を互いに連結するようパイプ部511~514と一体に形成されている。 47, the pipe member 50 has pipe portions 511 to 514, a pipe connecting portion 52, pipe side fixing portions 531 to 536, and the like. The pipe portions 511 to 513 are provided so that the inner spaces communicate with the outlet ports 221 to 223, respectively. The pipe portion 514 is provided so that the inner space communicates with the relief port 224. The pipe part 511 and the pipe part 514 are integrally formed, and the inner spaces communicate with each other. In addition, although the pipe part 512 and the pipe part 514 are integrally formed so that an outer wall may connect, the inner space is not mutually connected. The pipe connecting portion 52 is formed integrally with the pipe portions 511 to 514 so as to connect the end portions of the pipe portions 511 to 514 on the housing body 21 side.
 パイプ側固定部531~536は、それぞれ、パイプ連結部52の外縁部においてハウジング側固定部251~256に対応する位置に形成されている。パイプ側固定部531~536のそれぞれには、パイプ側締結穴541~546が形成されている。なお、パイプ側締結穴541~546は、略円筒状に形成され、それぞれの軸がハウジング側締結穴261~266の軸と概ね一致するよう形成されている。 The pipe side fixing portions 531 to 536 are formed at positions corresponding to the housing side fixing portions 251 to 256 at the outer edge portion of the pipe connecting portion 52, respectively. Pipe side fastening holes 541 to 546 are formed in the pipe side fixing portions 531 to 536, respectively. The pipe side fastening holes 541 to 546 are formed in a substantially cylindrical shape, and are formed so that their respective axes substantially coincide with the axes of the housing side fastening holes 261 to 266.
 バルブ装置10は、パイプ締結部材540を備えている。パイプ締結部材540は、パイプ側締結穴541~546を通りハウジング側締結穴261~266に螺合することでパイプ側固定部531~536とハウジング側固定部251~256とを固定する。 The valve device 10 includes a pipe fastening member 540. The pipe fastening member 540 passes through the pipe side fastening holes 541 to 546 and is screwed into the housing side fastening holes 261 to 266 to fix the pipe side fixing parts 531 to 536 and the housing side fixing parts 251 to 256.
 図48、図49に示すように、ハウジング側固定部251~256は、略円柱状に形成されている。ハウジング側固定部251~256は、軸方向の一方の端面がパイプ取付面202と同一平面上に位置するよう設けられている。ハウジング20は、ハウジング側固定部251~256の軸方向の他方の端部側の外周壁とハウジング本体21の外壁とを接続するハウジング接続部259を有している。これにより、ハウジング側固定部251~256は、ハウジング本体21の外壁との間に隙間としてのハウジング間隙間Sh1を形成している。ハウジング間隙間Sh1は、ハウジング接続部259とパイプ側固定部531~536との間に形成されている。 48 and 49, the housing side fixing portions 251 to 256 are formed in a substantially cylindrical shape. The housing-side fixing portions 251 to 256 are provided so that one end surface in the axial direction is located on the same plane as the pipe mounting surface 202. The housing 20 has a housing connection portion 259 that connects the outer peripheral wall on the other end side in the axial direction of the housing side fixing portions 251 to 256 and the outer wall of the housing body 21. As a result, the housing-side fixing portions 251 to 256 form an inter-housing gap Sh1 as a gap with the outer wall of the housing main body 21. The inter-housing gap Sh1 is formed between the housing connecting portion 259 and the pipe-side fixing portions 531 to 536.
 より詳細には、ハウジング間隙間Sh1は、ハウジング側固定部251~256とハウジング本体21の外壁とハウジング接続部259とパイプ側固定部531~536との間に形成されている。 More specifically, the inter-housing gap Sh1 is formed between the housing-side fixing portions 251 to 256, the outer wall of the housing main body 21, the housing connection portion 259, and the pipe-side fixing portions 531 to 536.
 なお、ハウジング側締結穴261~266は、それぞれ、ハウジング側固定部251~256と同軸となるよう形成されている。また、ハウジング側締結穴261~266のパイプ部材50とは反対側の端部は、ハウジング接続部259よりパイプ部材50側に位置している。 The housing side fastening holes 261 to 266 are formed to be coaxial with the housing side fixing portions 251 to 256, respectively. Further, the ends of the housing side fastening holes 261 to 266 opposite to the pipe member 50 are located closer to the pipe member 50 than the housing connecting portion 259.
<5-1>
 上述のように、本実施形態は、車両1のエンジン2の冷却水を制御可能なバルブ装置10であって、ハウジング20とバルブ30とパイプ部材50とパイプ締結部材540とを備える。
<5-1>
As described above, the present embodiment is a valve device 10 that can control the cooling water of the engine 2 of the vehicle 1, and includes the housing 20, the valve 30, the pipe member 50, and the pipe fastening member 540.
 ハウジング20は、内側に内部空間200を形成するハウジング本体21、ハウジング本体21と一体に形成されたハウジング側固定部(251~256)、ハウジング側固定部に形成されたハウジング側締結穴(261~266)、および、内部空間200とハウジング本体21の外部とを接続するポート(220、221、222、223、224)を有する。 The housing 20 includes a housing main body 21 that forms an internal space 200 on the inner side, a housing side fixing portion (251 to 256) that is formed integrally with the housing main body 21, and a housing side fastening hole (261 to that that is formed in the housing side fixing portion). 266) and ports (220, 221, 222, 223, 224) for connecting the internal space 200 and the outside of the housing body 21.
 バルブ30は、内部空間200内において回転軸Axr1周りに回転可能な弁体31、弁体31の内側に形成された弁体内流路300、および、弁体内流路300と弁体31の外側とを接続する弁体開口部(410、420、430)を有し、弁体開口部を経由した弁体内流路300とポートとの連通状態を弁体31の回転位置により変更可能である。 The valve 30 includes a valve body 31 that can rotate around the rotation axis Axr1 in the internal space 200, a valve body channel 300 formed inside the valve body 31, and a valve body channel 300 and the outside of the valve body 31. The valve body opening portion (410, 420, 430) for connecting the valve body 31 and the communication state between the valve body flow path 300 and the port via the valve body opening portion can be changed by the rotational position of the valve body 31.
 パイプ部材50は、内側の空間がポート(221、222、223、224)に連通する筒状のパイプ部(511、512、513、514)、パイプ部と一体に形成されハウジング側固定部に固定されるパイプ側固定部(531~536)、および、パイプ側固定部に形成されたパイプ側締結穴(541~546)を有する。 The pipe member 50 has a cylindrical pipe portion (511, 512, 513, 514) whose inner space communicates with the ports (221, 222, 223, 224), and is integrally formed with the pipe portion and fixed to the housing side fixing portion. Pipe-side fixing portions (531 to 536) and pipe-side fastening holes (541 to 546) formed in the pipe-side fixing portion.
 パイプ締結部材540は、パイプ側締結穴(541~546)を通りハウジング側締結穴(261~266)に螺合することでパイプ側固定部(531~536)とハウジング側固定部(251~256)とを固定する。 The pipe fastening member 540 passes through the pipe side fastening holes (541 to 546) and is screwed into the housing side fastening holes (261 to 266), whereby the pipe side fixing parts (531 to 536) and the housing side fixing parts (251 to 256). ) And fix.
 ハウジング側固定部(251~256)は、ハウジング本体21の外壁との間に隙間(Sh1)を形成している。 The housing side fixing portion (251 to 256) forms a gap (Sh1) between the housing side fixing portion (251 to 256) and the outer wall of the housing main body 21.
 そのため、パイプ部材50をパイプ締結部材540によりハウジング20に締結したとき、ハウジング側固定部(251~256)に割れが生じても、この割れがハウジング本体21にまで及ぶことを抑制できる。これにより、ハウジング20へのパイプ部材50の締結によって生じ得る冷却水の漏れを抑制できる。 Therefore, when the pipe member 50 is fastened to the housing 20 by the pipe fastening member 540, even if a crack occurs in the housing-side fixing portion (251 to 256), the crack can be prevented from reaching the housing body 21. Thereby, the leakage of the cooling water which can arise by the fastening of the pipe member 50 to the housing 20 can be suppressed.
 本実施形態では、出口ポート221がラジエータ5と接続され流量が多いため、ハウジング側固定部(251~256)のうち特に出口ポート221近傍のハウジング側固定部251、254からの割れがハウジング本体21に及ぶのを抑制することで、冷却水の漏れを効果的に抑制できる。 In the present embodiment, since the outlet port 221 is connected to the radiator 5 and has a large flow rate, the housing main body 21 has cracks from the housing side fixing portions 251 and 254 in the vicinity of the outlet port 221 among the housing side fixing portions (251 to 256). The leakage of cooling water can be effectively suppressed by suppressing the amount of the water from reaching the above.
 図47に示すように、ハウジング側固定部251とハウジング側固定部254とは、間に出口ポート221を挟むようにして形成されている。ここで、ハウジング側固定部251、254は、ハウジング側固定部252、253、255、256と比べ、出口ポート221に近い位置、すなわち、出口ポート221近傍に形成されている。なお、出口ポート221の中心は、ハウジング側締結穴261、264の外縁に接する平行な2つの接線の間に位置している。 47, the housing side fixing portion 251 and the housing side fixing portion 254 are formed so as to sandwich the outlet port 221 therebetween. Here, the housing side fixing portions 251 and 254 are formed at a position closer to the outlet port 221 than the housing side fixing portions 252, 253, 255, and 256, that is, in the vicinity of the outlet port 221. The center of the outlet port 221 is located between two parallel tangents that contact the outer edges of the housing side fastening holes 261 and 264.
<5-2>
 図42に示すように、ハウジング20は、出口ポート221~223を有している。図42、図50、図51に示すように、パイプ部材50は、互いに連結するパイプ部511~513を有している。バルブ装置10は、パイプ部511~513のそれぞれに設けられ、弁体31の外周壁との間を液密に保持可能な複数のシールユニット35を備えている。
<5-2>
As shown in FIG. 42, the housing 20 has outlet ports 221 to 223. As shown in FIGS. 42, 50, and 51, the pipe member 50 has pipe portions 511 to 513 connected to each other. The valve device 10 is provided in each of the pipe portions 511 to 513, and includes a plurality of seal units 35 that can be liquid-tightly held between the outer peripheral wall of the valve body 31.
 そのため、タッピング等について部品点数を低減できる。また、パイプ部材50の組付け工数を低減できる。 Therefore, the number of parts can be reduced for tapping. Moreover, the assembly man-hour of the pipe member 50 can be reduced.
 パイプ部511~513のシールユニット35が設けられる端部は、パイプ連結部52により互いに連結されている。パイプ部511~513のシールユニット35が設けられる端部は、それぞれの軸が互いに平行となるよう形成されている。 The ends where the seal units 35 of the pipe portions 511 to 513 are provided are connected to each other by a pipe connecting portion 52. The ends of the pipe portions 511 to 513 where the seal unit 35 is provided are formed so that their axes are parallel to each other.
<5-2-1>
 図42に示すように、入口ポート220、出口ポート221~223のうちシールユニット35が設けられた出口ポート221~223は、互いの軸が平行となり、パイプ取付面202に開口するよう形成されている。出口ポート221~223は、パイプ部511~513のシールユニット35が設けられる端部と同軸となるよう形成されている。
<5-2-1>
As shown in FIG. 42, among the inlet port 220 and the outlet ports 221 to 223, the outlet ports 221 to 223 provided with the seal unit 35 are formed so that their axes are parallel and open to the pipe mounting surface 202. Yes. The outlet ports 221 to 223 are formed so as to be coaxial with the end portions of the pipe portions 511 to 513 where the seal units 35 are provided.
 そのため、複数のシールユニット35を組み付けたパイプ部材50を一方向からハウジング本体21に組み付けることができる。 Therefore, the pipe member 50 assembled with the plurality of seal units 35 can be assembled to the housing body 21 from one direction.
<5-3>
 図42、図50、図51に示すように、バルブ装置10は、ガスケット509を備えている。ガスケット509は、例えばゴム等の弾性部材により形成され、パイプ部511~513のそれぞれの径方向外側においてパイプ部材50とハウジング本体21のパイプ取付面202との間に設けられ、パイプ部材50とハウジング本体21との間を液密に保持可能である。
<5-3>
As shown in FIGS. 42, 50, and 51, the valve device 10 includes a gasket 509. The gasket 509 is formed of, for example, an elastic member such as rubber, and is provided between the pipe member 50 and the pipe mounting surface 202 of the housing body 21 on the radially outer side of each of the pipe portions 511 to 513. The space between the main body 21 can be kept liquid-tight.
 図51に示すように、パイプ部材50は、3つのシールユニット35をパイプ部511~513に保持した状態で、ハウジング本体21に組み付けることが可能である。ここで、ガスケット509は、パイプ連結部52に形成されたガスケット溝521に嵌め込まれた状態でパイプ部材50とともにハウジング本体21に組み付けられる。すなわち、複数のシールユニット35およびガスケット509を組み付けたパイプ部材50を一方向からハウジング本体21に対し一度に組み付けることができる。 51, the pipe member 50 can be assembled to the housing body 21 with the three seal units 35 held by the pipe portions 511 to 513. Here, the gasket 509 is assembled to the housing main body 21 together with the pipe member 50 in a state of being fitted into the gasket groove 521 formed in the pipe connecting portion 52. That is, the pipe member 50 assembled with the plurality of seal units 35 and the gaskets 509 can be assembled to the housing main body 21 from one direction at a time.
 また、複数の部材を一度に組み付けることで組付け工数を低減することにより、複数の部材の組付け時に発生し得る複数の不具合を1つにでき、バルブ装置10の品質を向上できる。このことは、車両1に搭載される装置には高い品質が求められるため、重要である。 Also, by reducing the number of assembling steps by assembling a plurality of members at a time, a plurality of problems that may occur when the plurality of members are assembled can be integrated into one, and the quality of the valve device 10 can be improved. This is important because the device mounted on the vehicle 1 is required to have high quality.
 図50に示すように、パイプ部511~513のそれぞれに設けられた3つのシールユニット35は、パイプ部511~513の内径の大きさに応じて、外径が設定されている。パイプ部511に設けられたシールユニット35の外径は、パイプ部512、513に設けられたシールユニット35の外径より大きい。パイプ部512に設けられたシールユニット35の外径は、パイプ部513に設けられたシールユニット35の外径と略同じである。 50, the outer diameters of the three seal units 35 provided in the pipe portions 511 to 513 are set according to the size of the inner diameter of the pipe portions 511 to 513, respectively. The outer diameter of the seal unit 35 provided in the pipe part 511 is larger than the outer diameter of the seal unit 35 provided in the pipe parts 512 and 513. The outer diameter of the seal unit 35 provided in the pipe part 512 is substantially the same as the outer diameter of the seal unit 35 provided in the pipe part 513.
<5-4>
 図47に示すように、出口ポート221~223、リリーフポート224は、複数のハウジング側締結穴(261~266)のうち2つのハウジング側締結穴を結ぶ直線上、または、3つのハウジング側締結穴で形成される三角形の内側に中心が位置するよう形成されている。
<5-4>
As shown in FIG. 47, the outlet ports 221 to 223 and the relief port 224 are arranged on a straight line connecting two housing side fastening holes among the plurality of housing side fastening holes (261 to 266) or three housing side fastening holes. The center is formed inside the triangle formed by
 具体的には、出口ポート221は、ハウジング側締結穴261の中心とハウジング側締結穴262の中心とハウジング側締結穴264の中心とを結んで形成される三角形To1の内側に中心が位置するよう形成されている。出口ポート222は、ハウジング側締結穴262の中心とハウジング側締結穴265の中心とを結ぶ直線Lo1上に中心が位置するよう形成されている。出口ポート223は、ハウジング側締結穴262の中心とハウジング側締結穴263の中心とハウジング側締結穴266の中心とを結んで形成される三角形To2の内側に中心が位置するよう形成されている。リリーフポート224は、三角形To1の内側に中心が位置するよう形成されている。 Specifically, the center of the outlet port 221 is located inside a triangle To1 formed by connecting the center of the housing side fastening hole 261, the center of the housing side fastening hole 262, and the center of the housing side fastening hole 264. Is formed. The outlet port 222 is formed so that the center is located on a straight line Lo1 that connects the center of the housing side fastening hole 262 and the center of the housing side fastening hole 265. The outlet port 223 is formed so that the center is located inside the triangle To2 formed by connecting the center of the housing side fastening hole 262, the center of the housing side fastening hole 263, and the center of the housing side fastening hole 266. The relief port 224 is formed so that the center is located inside the triangle To1.
 そのため、出口ポート221~223、リリーフポート224の径方向外側におけるガスケット509のシール荷重を分散および安定化できる。 Therefore, the seal load of the gasket 509 on the radially outer side of the outlet ports 221 to 223 and the relief port 224 can be dispersed and stabilized.
<5-5>
 図42に示すように、ハウジング20は、ハウジング本体21にパイプ部材50が取り付けられた状態においてパイプ部材50に対向するようハウジング本体21の外壁に形成されたパイプ取付面202を有している。ハウジング本体21に形成されるポートは、パイプ取付面202に開口する3つの出口ポート(221~223)、および、1つのリリーフポート224を含む。
<5-5>
As shown in FIG. 42, the housing 20 has a pipe attachment surface 202 formed on the outer wall of the housing body 21 so as to face the pipe member 50 in a state where the pipe member 50 is attached to the housing body 21. The ports formed in the housing body 21 include three outlet ports (221 to 223) that open to the pipe mounting surface 202, and one relief port 224.
 図47に示すように、バルブ装置10は、リリーフ弁39を備える。リリーフ弁39は、リリーフポート224に設けられ、条件に応じてリリーフポート224を経由した内部空間200とハウジング本体21の外部との連通を許容または遮断する。具体的には、リリーフ弁39は、所定の条件、例えば冷却水の温度が所定の温度以上となったとき、開弁し、リリーフポート224を経由した内部空間200とハウジング本体21の外部すなわちパイプ部511の内側の空間との連通を許容し、冷却水の温度が所定の温度より低くなったとき、上記連通を遮断する。 47, the valve device 10 includes a relief valve 39. The relief valve 39 is provided in the relief port 224 and allows or blocks communication between the internal space 200 and the outside of the housing body 21 via the relief port 224 depending on conditions. Specifically, the relief valve 39 is opened when a predetermined condition, for example, the temperature of the cooling water becomes equal to or higher than a predetermined temperature, and the interior space 200 via the relief port 224 and the outside of the housing main body 21, that is, a pipe The communication with the space inside the portion 511 is allowed, and the communication is blocked when the temperature of the cooling water becomes lower than a predetermined temperature.
 図47に示すように、3つの出口ポート(221~223)のうち少なくとも2つ(221~223)は、それぞれの開口の中心が、パイプ取付面202上の1つの直線であるポート配列直線Lp1上に位置するよう形成されている。ここで、ポート配列直線Lp1は、取付面201に対し平行であって、仮想平面Vp5上に位置している。 As shown in FIG. 47, at least two of the three outlet ports (221 to 223) (221 to 223) have a port arrangement line Lp1 in which the center of each opening is one straight line on the pipe mounting surface 202. It is formed so as to be located above. Here, the port array straight line Lp1 is parallel to the attachment surface 201 and is located on the virtual plane Vp5.
 つまり、3つの出口ポート(221~223)のうち少なくとも2つ(221~223)は、それぞれの開口の中心が、パイプ取付面202上において、回転軸Axr1方向に直線状に並ぶよう形成されている。 That is, at least two (221 to 223) of the three outlet ports (221 to 223) are formed so that the centers of the respective openings are arranged in a straight line in the direction of the rotation axis Axr1 on the pipe mounting surface 202. Yes.
 リリーフポート224は、開口の中心が、ポート配列直線Lp1から取付面201とは反対側へ離れた位置に位置するよう形成されている。 The relief port 224 is formed such that the center of the opening is located at a position away from the port arrangement line Lp1 to the side opposite to the mounting surface 201.
 図42に示すように、回転軸Axr1方向において、入口ポート220とリリーフポート224とバルブ間空間400とは重なっている。そのため、入口ポート220から流入した冷却水をリリーフポート224に導く際、ボールバルブ41、42が障害となることを抑制でき、入口ポート220からの冷却水の温度をリリーフ弁39にスムーズに伝達し、リリーフ弁39の反応性を向上できる。 42, the inlet port 220, the relief port 224, and the inter-valve space 400 overlap in the direction of the rotation axis Axr1. Therefore, when the cooling water flowing from the inlet port 220 is guided to the relief port 224, it is possible to suppress the ball valves 41 and 42 from becoming an obstacle, and the temperature of the cooling water from the inlet port 220 is smoothly transmitted to the relief valve 39. The reactivity of the relief valve 39 can be improved.
 そのため、3つの出口ポート(221~223)を直線状に並べて配置することでハウジング本体21の体格を小さくしつつ、ハウジング本体21にリリーフポート224を形成できる。 Therefore, the relief port 224 can be formed in the housing body 21 while reducing the size of the housing body 21 by arranging the three outlet ports (221 to 223) in a straight line.
 なお、リリーフポート224は、出口ポート221と出口ポート222との間に一部が位置するようハウジング本体21に形成されている。 The relief port 224 is formed in the housing main body 21 so that a part thereof is located between the outlet port 221 and the outlet port 222.
 図47に示すように、出口ポート221の外縁と出口ポート222の外縁とを結ぶ2つの接線が形成する領域にリリーフポート224の一部が形成されている。 47, a part of the relief port 224 is formed in a region where two tangent lines connecting the outer edge of the outlet port 221 and the outer edge of the outlet port 222 are formed.
<5-6>
 図47に示すように、ポート配列直線Lp1の方向から見たとき、3つの出口ポート(221~223)のうち少なくとも2つ(221~223)と、リリーフポート224とは、一部が重なるよう形成されている。
<5-6>
As shown in FIG. 47, when viewed from the direction of the port array straight line Lp1, at least two (221 to 223) of the three outlet ports (221 to 223) and the relief port 224 partially overlap each other. Is formed.
 そのため、リリーフポート224を形成したハウジング本体21の体格をより小さくできる。 Therefore, the physique of the housing body 21 in which the relief port 224 is formed can be made smaller.
<5-7>
 図47に示すように、リリーフポート224は、開口の中心が、ポート配列直線Lp1に平行なパイプ取付面202上の直線であるリリーフ配置直線Lr1上に位置するよう形成されている。ここで、リリーフ配置直線Lr1は、ポート配列直線Lp1に対し取付面201とは反対側に位置している。
<5-7>
As shown in FIG. 47, the relief port 224 is formed so that the center of the opening is located on a relief arrangement line Lr1 that is a straight line on the pipe mounting surface 202 parallel to the port arrangement line Lp1. Here, the relief arrangement line Lr1 is located on the opposite side of the mounting surface 201 with respect to the port arrangement line Lp1.
 つまり、取付面201からリリーフポート224の中心までの距離は、取付面201から出口ポート221、222、223それぞれの中心までの距離より大きい。 That is, the distance from the mounting surface 201 to the center of the relief port 224 is larger than the distance from the mounting surface 201 to the respective centers of the outlet ports 221, 222, and 223.
 ポート配列直線Lp1の方向から見たとき、3つの出口ポート(221~223)のうち少なくとも2つ(221~223)のポート配列直線Lp1に対しリリーフ配置直線Lr1側の部位と、リリーフポート224のリリーフ配置直線Lr1に対しポート配列直線Lp1側の部位とは、一部が重なるようにして形成されている。 When viewed from the direction of the port arrangement straight line Lp1, at least two (221 to 223) of the three outlet ports (221 to 223) (221 to 223) on the relief arrangement straight line Lr1 side with respect to the port arrangement straight line Lp1, and the relief port 224 The portion on the port array straight line Lp1 side is formed so as to partially overlap the relief arrangement straight line Lr1.
 つまり、回転軸Axr1方向から見たとき、3つの出口ポート(221~223)のうち少なくとも2つ(221~223)の中心に対し取付面201とは反対側の部位は、リリーフポート224の中心に対し取付面201側の部位と重なる。 That is, when viewed from the direction of the rotation axis Axr1, the portion opposite to the mounting surface 201 with respect to the center of at least two (221 to 223) of the three outlet ports (221 to 223) is the center of the relief port 224. On the other hand, it overlaps with the part on the mounting surface 201 side.
 なお、3つの出口ポートの中心がパイプ取付面202において三角形を形成する場合は、回転軸Axr1方向から見て、取付面201から遠い2つの出口ポートの中心に対し取付面201とは反対側の部位が、リリーフポート224の中心に対し取付面201側の部位と重なる。 When the center of the three outlet ports forms a triangle on the pipe mounting surface 202, the center of the two outlet ports far from the mounting surface 201 is opposite to the mounting surface 201 when viewed from the direction of the rotation axis Axr1. The part overlaps the part on the mounting surface 201 side with respect to the center of the relief port 224.
 そのため、リリーフポート224を形成したハウジング本体21の体格をより小さくできる。 Therefore, the physique of the housing body 21 in which the relief port 224 is formed can be made smaller.
<5-8>
 図47に示すように、複数のハウジング側締結穴(261~266)のうち少なくとも2つ(261~263)は、ポート配列直線Lp1に対しリリーフポート224側に位置する直線である締結穴配列直線Lh1上に形成されている。ここで、締結穴配列直線Lh1は、ポート配列直線Lp1およびリリーフ配置直線Lr1に対し平行で、リリーフ配置直線Lr1に対しポート配列直線Lp1とは反対側に位置している。
<5-8>
As shown in FIG. 47, at least two (261 to 263) of the plurality of housing side fastening holes (261 to 266) are fastening hole arrangement straight lines which are straight lines located on the relief port 224 side with respect to the port arrangement straight line Lp1. It is formed on Lh1. Here, the fastening hole arrangement line Lh1 is parallel to the port arrangement line Lp1 and the relief arrangement line Lr1, and is located on the opposite side of the port arrangement line Lp1 with respect to the relief arrangement line Lr1.
 図47に示すように、リリーフポート224は、締結穴配列直線Lh1の一部と重なるよう形成されている。 47, the relief port 224 is formed so as to overlap a part of the fastening hole array straight line Lh1.
 そのため、リリーフポート224を形成したハウジング本体21の体格をより小さくできる。 Therefore, the physique of the housing body 21 in which the relief port 224 is formed can be made smaller.
<5-9>
 図50に示すように、パイプ部511~513は、パイプ部本体501、および、パイプ部本体501の出口ポート221~223(パイプ連結部52)とは反対側に形成され内径がパイプ部本体501の内径より大きく外径がパイプ部本体501の外径より大きいパイプ部端部502を有している。
<5-9>
As shown in FIG. 50, the pipe portions 511 to 513 are formed on the opposite side of the pipe portion main body 501 and the outlet ports 221 to 223 (pipe connecting portions 52) of the pipe portion main body 501, and have an inner diameter of the pipe portion main body 501. The pipe portion end 502 has an outer diameter larger than the outer diameter of the pipe portion main body 501.
 そのため、パイプ部端部502を例えば無理抜きにより形成する場合、パイプ部端部502を内側へ容易に変形させつつ型を抜くことができ、パイプ部端部502の割れを抑制できる。これにより、パイプ部端部502からの冷却水の漏れを抑制できる。 Therefore, when the pipe part end 502 is formed by, for example, forcibly removing, the mold can be pulled out while easily deforming the pipe part end 502 inward, and cracking of the pipe part end 502 can be suppressed. Thereby, the leakage of the cooling water from the pipe part edge part 502 can be suppressed.
 なお、パイプ部端部502の外径がパイプ部本体501の外径より大きいため、パイプ部端部502に接続したホース等の抜けを抑制できる。 In addition, since the outer diameter of the pipe part end part 502 is larger than the outer diameter of the pipe part main body 501, disconnection of the hose etc. connected to the pipe part end part 502 can be suppressed.
 図42に示すように、パイプ部511は、パイプ取付面202から出口ポート221とは反対側へ延びるようにして形成されている。パイプ部512は、パイプ取付面202から出口ポート222とは反対側へ延びるようにして形成されている。パイプ部513は、パイプ取付面202から出口ポート223とは反対側へ延びた後、折れ曲がり、回転軸Axr1に平行な方向のパイプ部512とは反対側へ延びるようにして形成されている。 42, the pipe portion 511 is formed so as to extend from the pipe mounting surface 202 to the side opposite to the outlet port 221. As shown in FIG. The pipe portion 512 is formed so as to extend from the pipe mounting surface 202 to the side opposite to the outlet port 222. The pipe portion 513 is formed so as to extend from the pipe mounting surface 202 to the side opposite to the outlet port 223 and then bend and extend to the side opposite to the pipe portion 512 in a direction parallel to the rotation axis Axr1.
 パイプ部513は、パイプ部512の軸方向の中央に対応する位置で曲がるよう形成されている。そのため、パイプ部512のパイプ取付面202側の部位とパイプ部513との間には隙間Sp1が形成されている。 The pipe part 513 is formed to bend at a position corresponding to the center of the pipe part 512 in the axial direction. Therefore, a gap Sp <b> 1 is formed between the pipe portion 512 side portion of the pipe portion 512 and the pipe portion 513.
<5-10>
 図50に示すように、パイプ部511~513は、パイプ部本体501の外壁から外側へ突出するパイプ部突起503を有している。
<5-10>
As shown in FIG. 50, the pipe portions 511 to 513 have pipe portion protrusions 503 that protrude outward from the outer wall of the pipe portion main body 501.
 パイプ部突起503により、パイプ部511~513に対するホースの固定位置を容易に決定でき、かつ、パイプ部511~513にホースが深く刺さり過ぎるのを抑制できる。 The pipe portion protrusion 503 can easily determine the fixing position of the hose with respect to the pipe portions 511 to 513, and can prevent the hose from being deeply stuck in the pipe portions 511 to 513.
<5-11>
 図47に示すように、パイプ部突起503は、取付面201に対し平行な仮想平面Vp5上に形成されている。
<5-11>
As shown in FIG. 47, the pipe protrusion 503 is formed on a virtual plane Vp5 parallel to the attachment surface 201.
 つまり、図47に示すように、出口ポート221~223の軸方向から見て、パイプ部突起503は、回転軸Axr1方向に直線状に並ぶよう形成されている。 That is, as shown in FIG. 47, when viewed from the axial direction of the outlet ports 221 to 223, the pipe protrusion 503 is formed so as to be linearly arranged in the direction of the rotation axis Axr1.
 そのため、パイプ部材50の取付面201に対し垂直な方向の大きさを小さくでき、バルブ装置10の体格を小さくできる。 Therefore, the size in the direction perpendicular to the mounting surface 201 of the pipe member 50 can be reduced, and the physique of the valve device 10 can be reduced.
 なお、パイプ部突起503は、パイプ部511に対し1つ形成されている。パイプ部突起503は、パイプ部512を間に挟むようにしてパイプ部512に対し2つ形成されている。パイプ部突起503は、パイプ部513を間に挟むようにしてパイプ部513に対し2つ形成されている(図50参照)。 Note that one pipe protrusion 503 is formed with respect to the pipe part 511. Two pipe part protrusions 503 are formed on the pipe part 512 so as to sandwich the pipe part 512 therebetween. Two pipe part protrusions 503 are formed on the pipe part 513 so as to sandwich the pipe part 513 (see FIG. 50).
 パイプ部511におけるホースの端部の位置を制限できさえすればよいため、パイプ部突起503は、パイプ部511には1つのみ形成されている。パイプ部511にパイプ部突起503を1つのみ形成することで、材料費を削減できる。なお、他の実施形態では、パイプ部511にパイプ部突起503を2つ形成してもよい。 Since it is only necessary to limit the position of the end of the hose in the pipe part 511, only one pipe part protrusion 503 is formed in the pipe part 511. By forming only one pipe protrusion 503 on the pipe 511, the material cost can be reduced. In other embodiments, two pipe protrusions 503 may be formed on the pipe part 511.
<5-12>
 図50に示すように、パイプ部材50は、複数のパイプ部(511~514)、および、複数のパイプ部(511~514)のハウジング本体21側の部位を連結するパイプ連結部52を有している。
<5-12>
As shown in FIG. 50, the pipe member 50 has a plurality of pipe portions (511 to 514) and a pipe connecting portion 52 for connecting the portions of the plurality of pipe portions (511 to 514) on the housing body 21 side. ing.
 そのため、部材点数を低減できるとともに、パイプ連結部52とハウジング本体21との間にガスケット509を配置することでパイプ部材50とハウジング本体21との間のシール性を確保できる。 Therefore, the number of members can be reduced, and the sealing performance between the pipe member 50 and the housing body 21 can be ensured by disposing the gasket 509 between the pipe connecting portion 52 and the housing body 21.
 図50に示すように、パイプ連結部52は、パイプ部511~513に形成されたパイプ部突起503に対しシールユニット35側に形成されている。また、パイプ連結部52の外縁部は、パイプ部511~514のパイプ取付面202側の端部の径方向外側へ延びるよう形成されている(図47、50参照)。 50, the pipe connecting part 52 is formed on the seal unit 35 side with respect to the pipe part protrusion 503 formed in the pipe parts 511 to 513. Further, the outer edge portion of the pipe connecting portion 52 is formed to extend outward in the radial direction of the end portion on the pipe mounting surface 202 side of the pipe portions 511 to 514 (see FIGS. 47 and 50).
<5-13>
 図42に示すように、ハウジング20は、内部空間200とハウジング本体21の外部とを接続するハウジング開口部210、および、一端がハウジング開口部210に接続し内部空間200を形成する筒状のハウジング内壁211を有している。バルブ30は、回転軸Axr1に設けられたシャフト32を有している。
<5-13>
As shown in FIG. 42, the housing 20 includes a housing opening 210 that connects the internal space 200 and the outside of the housing body 21, and a cylindrical housing that has one end connected to the housing opening 210 and forms the internal space 200. It has an inner wall 211. The valve 30 has a shaft 32 provided on the rotation axis Axr1.
 バルブ装置10は、内部空間200とハウジング本体21の外部とを隔てるようハウジング開口部210に設けられた隔壁部本体61、および、シャフト32の一端を挿通可能なよう隔壁部本体61に形成されたシャフト挿通穴62を有する隔壁部60を備えている。 The valve device 10 is formed in the partition wall body 61 provided in the housing opening 210 so as to separate the internal space 200 and the outside of the housing body 21 and the partition wall body 61 so that one end of the shaft 32 can be inserted. A partition wall 60 having a shaft insertion hole 62 is provided.
 ハウジング開口部210の内径は、ハウジング内壁211のハウジング開口部210とは反対側の端部の内径より大きい。 The inner diameter of the housing opening 210 is larger than the inner diameter of the end of the housing inner wall 211 opposite to the housing opening 210.
 そのため、内部空間200のハウジング開口部210側の流路面積を大きくできる。これにより、特にハウジング開口部210側に形成された出口ポート221(ラジエータ5)側へ流す冷却水の流量を増大できる。 Therefore, the flow path area on the housing opening 210 side of the internal space 200 can be increased. Thereby, especially the flow volume of the cooling water sent to the outlet port 221 (radiator 5) side formed in the housing opening part 210 side can be increased.
<5-13-1>
 図42に示すように、ハウジング開口部210と隔壁部60の隔壁部本体61との間に設けられ、ハウジング開口部210と隔壁部60との間を液密に保持可能な環状シール部材600を備えている。
<5-13-1>
As shown in FIG. 42, an annular seal member 600 provided between the housing opening 210 and the partition wall body 61 of the partition wall 60 and capable of holding the space between the housing opening 210 and the partition wall 60 in a liquid-tight manner is provided. I have.
 そのため、ハウジング開口部210の内径を一定に形成すれば、内径および外径が一定の標準的な形状の環状シール部材600を採用でき、コストを低減できる。 Therefore, if the inner diameter of the housing opening 210 is formed to be constant, a standard-shaped annular seal member 600 having a constant inner diameter and outer diameter can be adopted, and the cost can be reduced.
<5-14>
 図42に示すように、ハウジング内壁211は、ハウジング開口部210側からハウジング開口部210とは反対側へ向かうに従い内径が小さくなるようテーパ状に形成されている。
<5-14>
As shown in FIG. 42, the housing inner wall 211 is formed in a tapered shape so that the inner diameter becomes smaller from the housing opening 210 side toward the opposite side of the housing opening 210.
 そのため、内部空間200の流路面積を、ハウジング開口部210側へ向かって徐々に大きくすることができる。また、ハウジング内壁211に段差が形成されないことにより、内部空間200における通水抵抗を低減できる。 Therefore, the flow area of the internal space 200 can be gradually increased toward the housing opening 210 side. Further, since no step is formed in the housing inner wall 211, the water flow resistance in the internal space 200 can be reduced.
<5-15>
 図47に示すように、ハウジング本体21に形成された複数のポートのうち少なくとも2つ(出口ポート221~223)は、取付面201に対し平行な方向へ並ぶよう形成されている。
<5-15>
As shown in FIG. 47, at least two of the plurality of ports (exit ports 221 to 223) formed in the housing main body 21 are formed to be aligned in a direction parallel to the mounting surface 201.
 そのため、ハウジング本体21の取付面201に対し垂直な方向の大きさを小さくでき、バルブ装置10の体格を小さくできる。 Therefore, the size in the direction perpendicular to the mounting surface 201 of the housing body 21 can be reduced, and the physique of the valve device 10 can be reduced.
<5-16>
 図49に示すように、パイプ締結部材540は、ハウジング側締結穴261~266に対しねじ立てしながら螺合可能なタッピングスクリューである。
<5-16>
As shown in FIG. 49, the pipe fastening member 540 is a tapping screw that can be screwed into the housing side fastening holes 261 to 266 while being tapped.
 そのため、ねじ溝を有する金属部材等をハウジング側固定部251~256にインサート成型する必要がない。また、ハウジング側固定部251~256とハウジング本体21の外壁との間にはハウジング間隙間Sh1が形成されているため、パイプ締結部材540のハウジング側締結穴261~266への螺合時にハウジング側固定部251~256が割れたとしても、この割れがハウジング本体21に及ぶのを抑制できる。 Therefore, it is not necessary to insert-mold a metal member or the like having a thread groove into the housing side fixing portions 251 to 256. Further, since an inter-housing gap Sh1 is formed between the housing-side fixing portions 251 to 256 and the outer wall of the housing main body 21, the housing-side fixing holes 261 to 266 are screwed into the housing-side fastening holes 261 to 266. Even if the fixing portions 251 to 256 are cracked, the cracks can be prevented from reaching the housing body 21.
<6-1>隔壁貫通穴
 図52に示すように、隔壁部60は、シャフト挿通穴62から外側へ延びて隔壁部本体61の外壁に開口する隔壁貫通穴65を有している。
<6-1> Bulkhead Through Hole As shown in FIG. 52, the bulkhead portion 60 has a bulkhead through hole 65 that extends outward from the shaft insertion hole 62 and opens in the outer wall of the bulkhead body 61.
<6-1>
 上述のように、本実施形態は、車両1のエンジン2の冷却水を制御可能なバルブ装置10であって、ハウジング20とバルブ30と隔壁部60と駆動部70とを備える。
<6-1>
As described above, the present embodiment is a valve device 10 that can control the cooling water of the engine 2 of the vehicle 1, and includes the housing 20, the valve 30, the partition wall portion 60, and the drive portion 70.
 ハウジング20は、内側に内部空間200を形成するハウジング本体21、内部空間200とハウジング本体21の外部とを接続するポート(220、221、222、223)、および、内部空間200とハウジング本体21の外部とを接続するハウジング開口部210を有する。 The housing 20 includes a housing main body 21 that forms an internal space 200 on the inside, ports (220, 221, 222, and 223) that connect the internal space 200 and the outside of the housing main body 21, and the internal space 200 and the housing main body 21. It has a housing opening 210 for connecting to the outside.
 バルブ30は、内部空間200内において回転軸Axr1周りに回転可能な弁体31、弁体31の内側に形成された弁体内流路300、弁体内流路300と弁体31の外側とを接続する弁体開口部(410、420、430)、および、回転軸Axr1に設けられたシャフト32を有し、弁体開口部を経由した弁体内流路300とポートとの連通状態を弁体31の回転位置により変更可能である。 The valve 30 connects the valve body 31 that can rotate around the rotation axis Axr1 in the internal space 200, the valve body channel 300 formed inside the valve body 31, and the valve body channel 300 and the outside of the valve body 31. Valve body openings (410, 420, 430) and a shaft 32 provided on the rotation axis Axr1, and the valve body 31 indicates the communication state between the valve body passage 300 and the port via the valve body opening. It can be changed depending on the rotation position.
 隔壁部60は、内部空間200とハウジング本体21の外部とを隔てるようハウジング開口部210に設けられた隔壁部本体61、および、シャフト32の一端を挿通可能なよう隔壁部本体61に形成されたシャフト挿通穴62を有する。 The partition wall 60 is formed in the partition wall body 61 provided in the housing opening 210 so as to separate the internal space 200 from the outside of the housing body 21 and the partition wall body 61 so that one end of the shaft 32 can be inserted. A shaft insertion hole 62 is provided.
 駆動部70は、隔壁部60に対し内部空間200とは反対側に設けられ、シャフト32の一端を経由して弁体31を回転駆動可能である。 The drive unit 70 is provided on the side opposite to the internal space 200 with respect to the partition wall 60, and can rotate the valve body 31 via one end of the shaft 32.
 隔壁部60は、シャフト挿通穴62から外側へ延びて隔壁部本体61の外壁に開口する隔壁貫通穴65を有している。 The partition wall 60 has a partition wall through hole 65 that extends outward from the shaft insertion hole 62 and opens in the outer wall of the partition wall body 61.
 そのため、内部空間200からシャフト挿通穴62を通り駆動部70側へ向かって流れる冷却水を隔壁貫通穴65へ流すことができる。これにより、内部空間200の冷却水が駆動部70側へ流れるのを抑制可能である。 Therefore, the cooling water flowing from the internal space 200 through the shaft insertion hole 62 toward the drive unit 70 can flow into the partition wall through hole 65. Thereby, it can suppress that the cooling water of the internal space 200 flows into the drive part 70 side.
<6-1-1>
 隔壁貫通穴65は、軸に垂直な断面形状が長円形または長方形となるよう形成されている。
<6-1-1>
The partition wall through-hole 65 is formed so that a cross-sectional shape perpendicular to the axis is an oval or a rectangle.
 そのため、隔壁部本体61の体格を小さくしつつ、隔壁貫通穴65における表面張力の影響を抑制し、隔壁貫通穴65において冷却水が流れ易くすることができる。 Therefore, while reducing the size of the partition wall body 61, the influence of the surface tension in the partition wall through hole 65 can be suppressed, and the cooling water can easily flow through the partition wall through hole 65.
 なお、隔壁貫通穴65は、断面の短手方向がシャフト挿通穴62の軸Axh1に対し平行となるよう形成されている。そのため、隔壁部本体61の軸Axh1方向の体格を小さくできる。 The partition wall through-hole 65 is formed so that the short direction of the cross section is parallel to the axis Axh1 of the shaft insertion hole 62. Therefore, the size of the partition wall body 61 in the axis Axh1 direction can be reduced.
<6-2>
 図52に示すように、ハウジング20は、ハウジング開口部210の内壁から外側へ延びてハウジング本体21の外壁に開口し、隔壁貫通穴65と連通可能に形成されたハウジング貫通穴270を有している。なお、ハウジング貫通穴270は、ハウジング本体21のパイプ取付面202とは反対側の端面に開口している。
<6-2>
As shown in FIG. 52, the housing 20 has a housing through hole 270 that extends outward from the inner wall of the housing opening 210 and opens in the outer wall of the housing body 21, and is formed so as to communicate with the partition wall through hole 65. Yes. The housing through-hole 270 opens at the end surface of the housing body 21 opposite to the pipe mounting surface 202.
 そのため、隔壁貫通穴65へ流れた冷却水を、ハウジング貫通穴270から外部へ排出できる。また、隔壁貫通穴65とハウジング貫通穴270との二重構造により、外部からの水の侵入を抑制できる。 Therefore, the cooling water that has flowed into the partition wall through hole 65 can be discharged from the housing through hole 270 to the outside. Further, the double structure of the partition wall through hole 65 and the housing through hole 270 can suppress the intrusion of water from the outside.
 ここで、内部空間200から駆動部70側へ流れる冷却水の量が多い場合、隔壁貫通穴65、ハウジング貫通穴270を経由して冷却水を外部に排出でき、シャフト挿通穴62における冷却水の漏れをユーザに気付かせることができる。これにより、対応の必要がある漏れについて、ユーザに対応させることができる。 Here, when the amount of cooling water flowing from the internal space 200 to the drive unit 70 side is large, the cooling water can be discharged to the outside via the partition wall through hole 65 and the housing through hole 270, and the cooling water in the shaft insertion hole 62 can be discharged. Leaks can be noticed by the user. Thereby, it is possible to make the user deal with a leak that needs to be dealt with.
 一方、内部空間200から駆動部70側へ流れる冷却水の量が少ない場合、隔壁貫通穴65、ハウジング貫通穴270に冷却水を留めておくことができ、シャフト挿通穴62における冷却水の漏れをユーザに気付かせないようにすることができる。これにより、対応の必要がない漏れについてまで、ユーザに対応させることを抑制できる。 On the other hand, when the amount of cooling water flowing from the internal space 200 to the drive unit 70 side is small, the cooling water can be retained in the partition wall through hole 65 and the housing through hole 270, and cooling water leaks in the shaft insertion hole 62. It is possible to prevent the user from noticing. Thereby, it can suppress making a user respond | correspond to about the leak which does not need a response | compatibility.
<6-2-1>
 ハウジング貫通穴270は、軸に垂直な断面形状が長円形または長方形となるよう形成されている。
<6-2-1>
The housing through hole 270 is formed so that the cross-sectional shape perpendicular to the axis is an oval or a rectangle.
 そのため、ハウジング本体21の体格を小さくしつつ、ハウジング貫通穴270における表面張力の影響を抑制し、ハウジング貫通穴270において冷却水が流れ易くすることができる。 Therefore, the influence of the surface tension in the housing through hole 270 can be suppressed while the size of the housing main body 21 is reduced, and the cooling water can easily flow through the housing through hole 270.
 なお、ハウジング貫通穴270は、断面の短手方向がシャフト挿通穴62の軸Axh1に対し平行となるよう形成されている。そのため、ハウジング本体21の軸Axh1方向の体格を小さくできる。 The housing through hole 270 is formed so that the short direction of the cross section is parallel to the axis Axh1 of the shaft insertion hole 62. Therefore, the size of the housing body 21 in the direction of the axis Axh1 can be reduced.
<6-2-2>
 図52に示すように、隔壁貫通穴65とハウジング貫通穴270とは、同軸に形成されている。
<6-2-2>
As shown in FIG. 52, the partition wall through hole 65 and the housing through hole 270 are formed coaxially.
 そのため、隔壁貫通穴65へ流れた冷却水を、ハウジング貫通穴270から外部へ容易に排出できる。 Therefore, the cooling water that has flowed into the partition wall through hole 65 can be easily discharged from the housing through hole 270 to the outside.
<6-3>
 図52に示すように、バルブ装置10は、軸シール部材603、環状シール部材600を備えている。軸シール部材603は、例えば主にゴム等の弾性部材から環状に形成され、隔壁貫通穴65に対し内部空間200側においてシャフト32とシャフト挿通穴62との間に設けられ、シャフト32とシャフト挿通穴62との間を液密に保持可能である。
<6-3>
As shown in FIG. 52, the valve device 10 includes a shaft seal member 603 and an annular seal member 600. The shaft seal member 603 is formed in an annular shape mainly from an elastic member such as rubber, for example, and is provided between the shaft 32 and the shaft insertion hole 62 on the inner space 200 side with respect to the partition wall through hole 65. The space between the holes 62 can be kept liquid-tight.
 環状シール部材600は、例えばゴム等の弾性部材により環状に形成され、ハウジング貫通穴270に対し内部空間200側において隔壁部本体61とハウジング開口部210の内壁との間に設けられ、隔壁部本体61とハウジング開口部210の内壁との間を液密に保持可能である。ここで、軸シール部材603、環状シール部材600は、それぞれ、「第1シール部材」、「第2シール部材」に対応している。 The annular seal member 600 is formed in an annular shape by an elastic member such as rubber, for example, and is provided between the partition wall body 61 and the inner wall of the housing opening 210 on the inner space 200 side with respect to the housing through hole 270. 61 and the inner wall of the housing opening 210 can be kept liquid-tight. Here, the shaft seal member 603 and the annular seal member 600 correspond to a “first seal member” and a “second seal member”, respectively.
 そのため、軸シール部材603により、シャフト挿通穴62を経由した内部空間200から駆動部70側への冷却水の漏れを抑制できる。また、環状シール部材600により、隔壁部本体61とハウジング開口部210との間を経由した内部空間200から外部への冷却水の漏れを抑制できる。 Therefore, leakage of the cooling water from the internal space 200 via the shaft insertion hole 62 to the drive unit 70 side can be suppressed by the shaft seal member 603. Further, the annular seal member 600 can suppress leakage of cooling water from the internal space 200 to the outside via the space between the partition wall body 61 and the housing opening 210.
 また、軸シール部材603は、隔壁貫通穴65に対し内部空間200側へ所定距離離れた位置に設けられているため、隔壁貫通穴65と軸シール部材603との間に空間を形成できる。そのため、冷却水の漏れが少ない場合、当該空間に冷却水を留めておき、ユーザに気付かせないようにすることができる。 Further, since the shaft seal member 603 is provided at a position that is a predetermined distance away from the partition wall through hole 65 toward the internal space 200, a space can be formed between the partition wall through hole 65 and the shaft seal member 603. Therefore, when there is little leakage of cooling water, it is possible to keep the cooling water in the space so as not to be noticed by the user.
 また、環状シール部材600は、ハウジング貫通穴270に対し内部空間200側へ所定距離離れた位置に設けられているため、ハウジング貫通穴270と環状シール部材600との間に空間を形成できる。そのため、冷却水の漏れが少ない場合、当該空間に冷却水を留めておき、ユーザに気付かせないようにすることができる。 Further, since the annular seal member 600 is provided at a predetermined distance from the housing through hole 270 toward the internal space 200, a space can be formed between the housing through hole 270 and the annular seal member 600. Therefore, when there is little leakage of cooling water, it is possible to keep the cooling water in the space so as not to be noticed by the user.
<6-4>
 図52に示すように、軸シール部材603と隔壁貫通穴65との距離Ds1は、環状シール部材600とハウジング貫通穴270との距離Ds2より短い。
<6-4>
As shown in FIG. 52, the distance Ds1 between the shaft seal member 603 and the partition wall through hole 65 is shorter than the distance Ds2 between the annular seal member 600 and the housing through hole 270.
 そのため、ハウジング貫通穴270と環状シール部材600との間に形成される空間を、隔壁貫通穴65と軸シール部材603との間に形成される空間より大きくすることができる。これにより、ハウジング貫通穴270と環状シール部材600との間に形成される空間側に、より多くの冷却水を留めておくことができる。 Therefore, the space formed between the housing through hole 270 and the annular seal member 600 can be made larger than the space formed between the partition wall through hole 65 and the shaft seal member 603. As a result, more cooling water can be retained on the space side formed between the housing through hole 270 and the annular seal member 600.
<6-5>
 図52に示すように、隔壁部60は、シャフト挿通穴62の隔壁貫通穴65と軸シール部材603との間において段差を形成する隔壁内側段差面661を有している。ここで、隔壁内側段差面661は、内部空間200側を向くよう環状の平面状に形成されている。軸シール部材603は、隔壁内側段差面661に当接可能に設けられている。
<6-5>
As shown in FIG. 52, the partition wall portion 60 has a partition inner side step surface 661 that forms a step between the partition wall through hole 65 of the shaft insertion hole 62 and the shaft seal member 603. Here, the partition inner step surface 661 is formed in an annular flat shape so as to face the inner space 200 side. The shaft seal member 603 is provided so as to be in contact with the partition inner surface step surface 661.
 ハウジング20は、ハウジング開口部210の内壁のハウジング貫通穴270と環状シール部材600との間において段差を形成するハウジング段差面281を有している。ここで、ハウジング段差面281は、駆動部70側を向くよう環状に形成されている。 The housing 20 has a housing step surface 281 that forms a step between the housing through hole 270 on the inner wall of the housing opening 210 and the annular seal member 600. Here, the housing step surface 281 is formed in an annular shape so as to face the drive unit 70 side.
 そのため、冷却水の漏れが少ない場合、隔壁内側段差面661、ハウジング段差面281に冷却水を留めておくことで、少量の漏れについてユーザに気付かせないようにすることができる。 Therefore, when there is little leakage of cooling water, it is possible to prevent the user from noticing a small amount of leakage by keeping cooling water on the partition inner surface 661 and the housing step 281.
 また、ハウジング貫通穴270を経由して外部から水等が侵入したとしても、隔壁内側段差面661、ハウジング段差面281に水等を留めておくことで、水等が軸シール部材603、環状シール部材600まで流れるのを抑制できる。 Even if water or the like enters from the outside through the housing through hole 270, the water or the like is retained on the partition inner step surface 661 and the housing step surface 281, so that the water or the like can be removed from the shaft seal member 603 and the annular seal. The flow up to the member 600 can be suppressed.
<6-6>
 図52に示すように、ハウジング段差面281は、内部空間200側から駆動部70側へ向かうに従い内径が大きくなるようテーパ状に形成されている。
<6-6>
As shown in FIG. 52, the housing step surface 281 is formed in a tapered shape so that the inner diameter becomes larger from the inner space 200 side toward the drive unit 70 side.
 そのため、ハウジング貫通穴270と環状シール部材600との間に形成される空間を大きくでき、当該空間に多くの冷却水を留めておくことができる。 Therefore, a space formed between the housing through hole 270 and the annular seal member 600 can be enlarged, and a large amount of cooling water can be retained in the space.
 なお、ハウジング20は、ハウジング開口部210の内壁のハウジング貫通穴270の駆動部70側において段差を形成するハウジング段差面282を有している。ハウジング段差面282は、駆動部70側を向くよう環状に形成されている。 The housing 20 has a housing step surface 282 that forms a step on the driving portion 70 side of the housing through hole 270 on the inner wall of the housing opening 210. The housing step surface 282 is formed in an annular shape so as to face the drive unit 70 side.
 また、隔壁部60は、隔壁部本体61の外壁の隔壁貫通穴65の駆動部70側において段差を形成する隔壁外側段差面671を有している。隔壁外側段差面671は、内部空間200およびハウジング段差面281、282側を向くよう環状に形成されている。 Further, the partition wall 60 has a partition outside step surface 671 that forms a step on the drive unit 70 side of the partition wall through-hole 65 on the outer wall of the partition wall body 61. The partition outer side step surface 671 is formed in an annular shape so as to face the inner space 200 and the housing step surfaces 281 and 282.
 図52に示すように、隔壁部本体61の外壁とハウジング開口部210の内壁との間においてハウジング段差面281と隔壁外側段差面671との間には、略円筒状の筒状空間St1が形成されている。隔壁貫通穴65とハウジング貫通穴270とは、筒状空間St1を経由して連通している。 As shown in FIG. 52, a substantially cylindrical tubular space St1 is formed between the housing step surface 281 and the partition outer step surface 671 between the outer wall of the partition wall main body 61 and the inner wall of the housing opening 210. Has been. The partition wall through hole 65 and the housing through hole 270 communicate with each other via the cylindrical space St1.
 冷却水の漏れが少ない場合、筒状空間St1に冷却水を留めておくことができる。 When there is little leakage of cooling water, the cooling water can be kept in the cylindrical space St1.
 図52に示すように、ハウジング開口部210には、ハウジング段差面281、ハウジング貫通穴270、ハウジング段差面282が、内部空間200側から駆動部70側に向かって、この順で形成されている。環状シール部材600は、ハウジング段差面281に対し内部空間200側に向けられている。 As shown in FIG. 52, a housing step surface 281, a housing through hole 270, and a housing step surface 282 are formed in this order in the housing opening 210 from the inner space 200 side toward the drive portion 70 side. . The annular seal member 600 is directed toward the internal space 200 with respect to the housing step surface 281.
 図52に示すように、隔壁貫通穴65のシャフト32とは反対側の端部は、内縁部がテーパ状に面取りされている。これにより、隔壁貫通穴65の内側の冷却水を容易に排出できる。 52, the inner edge of the end of the partition wall through hole 65 opposite to the shaft 32 is chamfered in a tapered shape. Thereby, the cooling water inside the partition through-hole 65 can be easily discharged.
<6-8>
 図52に示すように、ハウジング20がエンジン2に取り付けられた状態において、隔壁貫通穴65は、シャフト32に対し鉛直方向下側に位置する。
<6-8>
As shown in FIG. 52, the partition wall through hole 65 is located on the lower side in the vertical direction with respect to the shaft 32 in a state where the housing 20 is attached to the engine 2.
 そのため、冷却水の漏れが多い場合、冷却水を隔壁貫通穴65へ速やかに流すことができる。 Therefore, when there is a lot of cooling water leakage, the cooling water can be quickly flowed into the partition wall through hole 65.
<6-9>
 図52に示すように、ハウジング20がエンジン2に取り付けられた状態において、ハウジング貫通穴270は、シャフト32に対し鉛直方向下側に位置する。
<6-9>
As shown in FIG. 52, the housing through hole 270 is positioned on the lower side in the vertical direction with respect to the shaft 32 in a state where the housing 20 is attached to the engine 2.
 そのため、冷却水の漏れが多い場合、冷却水をハウジング貫通穴270から外部へ速やかに排出できる。 Therefore, when there is much leakage of cooling water, the cooling water can be quickly discharged from the housing through hole 270 to the outside.
<6-10>
 図52に示すように、隔壁貫通穴65とハウジング貫通穴270とは、軸に垂直な断面において互いに断面積が異なる。ここで、ハウジング貫通穴270の断面積は、隔壁貫通穴65の断面積より大きい。
<6-10>
As shown in FIG. 52, the partition wall through hole 65 and the housing through hole 270 have different cross-sectional areas in a cross section perpendicular to the axis. Here, the sectional area of the housing through hole 270 is larger than the sectional area of the partition wall through hole 65.
 そのため、ハウジング本体21と隔壁部60とが位置ずれしても、隔壁貫通穴65とハウジング貫通穴270との連通を確保できる。また、ハウジング貫通穴270の断面積が隔壁貫通穴65の断面積より大きいため、冷却水をハウジング貫通穴270から外部へ速やかに排出できる。また、外部からハウジング貫通穴270、隔壁貫通穴65を経由してシャフト挿通穴62側に水等が侵入するのを抑制できる。 Therefore, even if the housing main body 21 and the partition wall portion 60 are misaligned, the communication between the partition wall through hole 65 and the housing through hole 270 can be secured. Further, since the cross-sectional area of the housing through-hole 270 is larger than the cross-sectional area of the partition wall through-hole 65, the cooling water can be quickly discharged from the housing through-hole 270 to the outside. Further, it is possible to prevent water and the like from entering the shaft insertion hole 62 side from the outside through the housing through hole 270 and the partition wall through hole 65.
<6-18>
 図52に示すように、ハウジング20がエンジン2に取り付けられた状態において、隔壁貫通穴65は、シャフト32の下側に位置する。
<6-18>
As shown in FIG. 52, the partition wall through hole 65 is located on the lower side of the shaft 32 in a state where the housing 20 is attached to the engine 2.
 そのため、冷却水の漏れが多い場合、冷却水を隔壁貫通穴65へ速やかに流すことができる。 Therefore, when there is a lot of cooling water leakage, the cooling water can be quickly flowed into the partition wall through hole 65.
<6-19>
 図52に示すように、ハウジング20がエンジン2に取り付けられた状態において、ハウジング貫通穴270は、シャフト32の下側に位置する。
<6-19>
As shown in FIG. 52, the housing through hole 270 is located below the shaft 32 in a state where the housing 20 is attached to the engine 2.
 そのため、冷却水の漏れが多い場合、冷却水をハウジング貫通穴270から外部へ速やかに排出できる。 Therefore, when there is much leakage of cooling water, the cooling water can be quickly discharged from the housing through hole 270 to the outside.
 ここで、シャフト32の下側とは、例えばシャフト32の軸Axs1を含む水平面より下側であって、シャフト32の鉛直方向の真下のみならず、シャフト32の下側の所定の範囲を含むことを意味する。 Here, the lower side of the shaft 32 is, for example, lower than the horizontal plane including the axis Axs1 of the shaft 32, and includes a predetermined range below the shaft 32 as well as directly below the shaft 32 in the vertical direction. Means.
<6-20>
 シャフト32の軸Axs1の真下方向を0度とすると、隔壁貫通穴65は、シャフト32の周方向の0~80度の範囲に形成されている。本実施形態では、隔壁貫通穴65は、シャフト32側から0度の方向へ延びるよう形成されている。そのため、冷却水の漏れが多い場合、冷却水を速やかに排出できる。
<6-20>
When the direction directly below the axis Axs1 of the shaft 32 is 0 degree, the partition wall through hole 65 is formed in the range of 0 to 80 degrees in the circumferential direction of the shaft 32. In the present embodiment, the partition wall through hole 65 is formed to extend in the direction of 0 degree from the shaft 32 side. Therefore, when there is much leakage of cooling water, cooling water can be discharged quickly.
 なお、隔壁貫通穴65は、シャフト32の周方向の30~80度の範囲に形成されていてもよい。この場合、隔壁貫通穴65の角度がある程度緩やかになり、冷却水がにじむように排出できる。そのため、不用意に冷却水が漏れて、問題が生じた場合であっても、ユーザが必要以上に異常と敏感に反応する事態を回避できる。 Note that the partition wall through hole 65 may be formed in a range of 30 to 80 degrees in the circumferential direction of the shaft 32. In this case, the angle of the partition wall through hole 65 becomes moderate to some extent, and the cooling water can be discharged so as to ooze. Therefore, even if the cooling water leaks carelessly and a problem arises, it is possible to avoid a situation in which the user reacts more abnormally and sensitively than necessary.
<6-21>
 シャフト32の軸Axs1の真下方向を0度とすると、ハウジング貫通穴270は、シャフト32の周方向の0~80度の範囲に形成されている。本実施形態では、ハウジング貫通穴270は、シャフト32側から0度の方向へ延びるよう形成されている。そのため、冷却水の漏れが多い場合、冷却水を速やかに排出できる。
<6-21>
When the direction directly below the axis Axs1 of the shaft 32 is 0 degree, the housing through hole 270 is formed in a range of 0 to 80 degrees in the circumferential direction of the shaft 32. In the present embodiment, the housing through hole 270 is formed to extend in the direction of 0 degree from the shaft 32 side. Therefore, when there is much leakage of cooling water, cooling water can be discharged quickly.
 なお、ハウジング貫通穴270は、隔壁貫通穴65と同様に、シャフト32の周方向の30~80度の範囲に形成されていてもよい。この場合、ハウジング貫通穴270の角度がある程度緩やかになり、冷却水がにじむように排出できる。そのため、不用意に冷却水が漏れて、問題が生じた場合であっても、ユーザが必要以上に異常と敏感に反応する事態を回避できる。 The housing through hole 270 may be formed in the range of 30 to 80 degrees in the circumferential direction of the shaft 32, similarly to the partition wall through hole 65. In this case, the angle of the housing through hole 270 becomes moderate to some extent, and the cooling water can be discharged so as to ooze. Therefore, even if the cooling water leaks carelessly and a problem arises, it is possible to avoid a situation in which the user reacts more abnormally and sensitively than necessary.
  (第7実施形態)
 第7実施形態によるバルブ装置の一部を図53に示す。
(Seventh embodiment)
A part of the valve device according to the seventh embodiment is shown in FIG.
<6-5>
 図53に示すように、隔壁部60は、シャフト挿通穴62の隔壁貫通穴65と軸シール部材603との間において段差を形成する隔壁内側段差面662を有している。ここで、隔壁内側段差面662は、内部空間200側を向くよう環状の平面状に形成されている。隔壁内側段差面662は、隔壁内側段差面661に対し隔壁貫通穴65側に形成されている。
<6-5>
As shown in FIG. 53, the partition wall 60 has a partition inner step surface 662 that forms a step between the partition through hole 65 of the shaft insertion hole 62 and the shaft seal member 603. Here, the partition inner surface step surface 662 is formed in an annular flat shape so as to face the inner space 200 side. The partition inner step surface 662 is formed on the partition through hole 65 side with respect to the partition inner step surface 661.
 そのため、隔壁内側段差面662と軸シール部材603との間に空間を形成できる。これにより、冷却水の漏れが少ない場合、当該空間に冷却水を留めておくことで、少量の漏れについてユーザに気付かせないようにすることができる。 Therefore, a space can be formed between the partition inner step surface 662 and the shaft seal member 603. Thereby, when there is little leakage of cooling water, it is possible to prevent the user from noticing a small amount of leakage by keeping the cooling water in the space.
 また、ハウジング貫通穴270を経由して外部から水等が侵入したとしても、当該空間に水等を留めておくことで、水等が軸シール部材603まで流れるのを抑制できる。 Further, even if water or the like enters from the outside through the housing through hole 270, it is possible to suppress the water or the like from flowing to the shaft seal member 603 by keeping the water or the like in the space.
 ハウジング段差面281は、内部空間200側を向くよう環状に形成されている。隔壁外側段差面671は、ハウジング段差面281と環状シール部材600との間において駆動部70およびハウジング段差面281側を向くよう環状に形成されている。ここで、隔壁外側段差面671とハウジング段差面281とは、対向しながら所定距離離れている。そのため、隔壁部本体61の外壁とハウジング開口部210の内壁との間において環状シール部材600とハウジング貫通穴270との間にラビリンス状の通路P1が形成されている。 The housing step surface 281 is formed in an annular shape so as to face the inner space 200 side. The partition outer step surface 671 is formed in an annular shape so as to face the drive unit 70 and the housing step surface 281 side between the housing step surface 281 and the annular seal member 600. Here, the partition outer surface step surface 671 and the housing step surface 281 are separated from each other by a predetermined distance while facing each other. Therefore, a labyrinth-shaped passage P <b> 1 is formed between the annular seal member 600 and the housing through hole 270 between the outer wall of the partition wall body 61 and the inner wall of the housing opening 210.
 そのため、ハウジング貫通穴270を経由して外部から水等が侵入したとしても、通路P1に水等を留めておくことで、水等が環状シール部材600まで流れるのを抑制できる。 Therefore, even if water or the like enters from the outside via the housing through hole 270, the water or the like can be suppressed from flowing to the annular seal member 600 by retaining the water or the like in the passage P <b> 1.
 図53に示すように、ハウジング開口部210の径方向において、ラビリンス状の通路P1の駆動部70側の部位の高さHp1は、通路P1の内部空間200側の部位の高さHp2より小さい。そのため、ハウジング貫通穴270側から見ると、通路P1は、狭い部位から広い部位となるよう変化している。そのため、通路P1の狭い部位により、ハウジング貫通穴270側から環状シール部材600側へ水が流れにくくなる。また、通路P1の狭い部位により、内部空間200側からハウジング貫通穴270側へ水が流れにくくなる。 53, in the radial direction of the housing opening 210, the height Hp1 of the portion on the drive unit 70 side of the labyrinth-shaped passage P1 is smaller than the height Hp2 of the portion on the inner space 200 side of the passage P1. Therefore, when viewed from the housing through hole 270 side, the passage P1 changes from a narrow part to a wide part. Therefore, the narrow portion of the passage P1 makes it difficult for water to flow from the housing through hole 270 side to the annular seal member 600 side. Further, the narrow portion of the passage P1 makes it difficult for water to flow from the internal space 200 side to the housing through hole 270 side.
  (第8実施形態)
 第8実施形態によるバルブ装置の一部を図54に示す。第8実施形態は、ハウジング貫通穴270の位置等が第6実施形態と異なる。
(Eighth embodiment)
A part of the valve device according to the eighth embodiment is shown in FIG. The eighth embodiment differs from the sixth embodiment in the position of the housing through hole 270 and the like.
<6-11>
 図54に示すように、隔壁貫通穴65とハウジング貫通穴270とは、シャフト挿通穴62の軸(Axh1)方向において互いの軸の位置が異なる。ここで、ハウジング貫通穴270は、隔壁貫通穴65に対し駆動部70側に形成されている。
<6-11>
As shown in FIG. 54, the partition wall through-hole 65 and the housing through-hole 270 are different from each other in the position of the shaft in the shaft (Axh1) direction of the shaft insertion hole 62. Here, the housing through hole 270 is formed on the drive unit 70 side with respect to the partition wall through hole 65.
 そのため、ハウジング貫通穴270を経由して外部から水等が侵入したとしても、隔壁貫通穴65を経由してシャフト挿通穴62側へ水等が流れるのを抑制できる。 Therefore, even if water or the like enters from the outside via the housing through hole 270, it is possible to suppress the water or the like from flowing to the shaft insertion hole 62 side via the partition wall through hole 65.
<6-11-1>
 図54に示すように、隔壁貫通穴65の軸とハウジング貫通穴270の軸との距離をL、シャフト挿通穴62の軸(Axh1)方向におけるハウジング貫通穴270の大きさをDとすると、隔壁貫通穴65およびハウジング貫通穴270は、D≦L≦10Dの関係を満たすよう形成されている。
<6-11-1>
As shown in FIG. 54, when the distance between the axis of the partition wall through hole 65 and the shaft of the housing through hole 270 is L, and the size of the housing through hole 270 in the axis (Axh1) direction of the shaft insertion hole 62 is D, the partition wall The through hole 65 and the housing through hole 270 are formed to satisfy the relationship of D ≦ L ≦ 10D.
 そのため、ハウジング貫通穴270を経由して外部から水等が侵入したとしても、隔壁貫通穴65を経由してシャフト挿通穴62側へ水等が流れるのをより効果的に抑制できる。 Therefore, even if water or the like enters from the outside via the housing through hole 270, it is possible to more effectively suppress the water or the like from flowing to the shaft insertion hole 62 side via the partition wall through hole 65.
<6-12>
 図54に示すように、隔壁部60は、隔壁部本体61の外壁の隔壁貫通穴65とハウジング貫通穴270との間において段差を形成する隔壁外側段差面671を有している。
<6-12>
As shown in FIG. 54, the partition wall portion 60 has a partition outside step surface 671 that forms a step between the partition wall through hole 65 on the outer wall of the partition wall body 61 and the housing through hole 270.
 そのため、ハウジング貫通穴270を経由して外部から水等が侵入したとしても、隔壁外側段差面671に水等を留めておくことで、隔壁貫通穴65を経由してシャフト挿通穴62側へ水等が流れるのを抑制できる。 Therefore, even if water or the like enters from the outside via the housing through hole 270, the water is retained on the partition outer stepped surface 671, so that the water is passed to the shaft insertion hole 62 side via the partition through hole 65. Etc. can be suppressed.
 図54に示すように、ハウジング貫通穴270は、ハウジング段差面282、隔壁外側段差面671に対し駆動部70側に形成されている。ここで、隔壁外側段差面671とハウジング段差面282とは、対向しながら所定距離離れている。そのため、隔壁部本体61の外壁とハウジング開口部210の内壁との間においてハウジング貫通穴270と隔壁貫通穴65との間にラビリンス状の通路P2が形成されている。 As shown in FIG. 54, the housing through hole 270 is formed on the drive unit 70 side with respect to the housing step surface 282 and the partition outer surface step surface 671. Here, the partition outer surface step surface 671 and the housing step surface 282 are separated from each other by a predetermined distance while facing each other. Therefore, a labyrinth-shaped passage P <b> 2 is formed between the housing through hole 270 and the partition wall through hole 65 between the outer wall of the partition wall body 61 and the inner wall of the housing opening 210.
 そのため、ハウジング貫通穴270を経由して外部から水等が侵入したとしても、通路P2に水等を留めておくことで、隔壁貫通穴65を経由してシャフト挿通穴62側へ水等が流れるのを抑制できる。 Therefore, even if water or the like enters from the outside via the housing through hole 270, the water or the like flows to the shaft insertion hole 62 side via the partition wall through hole 65 by keeping the water or the like in the passage P <b> 2. Can be suppressed.
 図54に示すように、ハウジング開口部210の径方向において、ラビリンス状の通路P2の駆動部70側の部位の高さHp1は、通路P2の内部空間200側の部位の高さHp2より小さい。そのため、ハウジング貫通穴270側から見ると、通路P2は、狭い部位から広い部位となるよう変化している。そのため、通路P2の狭い部位により、ハウジング貫通穴270側から隔壁貫通穴65側へ水が流れにくくなる。また、通路P2の狭い部位により、隔壁貫通穴65側からハウジング貫通穴270側へ水が流れにくくなる。 54, in the radial direction of the housing opening 210, the height Hp1 of the portion on the drive unit 70 side of the labyrinth-shaped passage P2 is smaller than the height Hp2 of the portion on the inner space 200 side of the passage P2. Therefore, when viewed from the housing through hole 270 side, the passage P2 changes from a narrow part to a wide part. Therefore, the narrow portion of the passage P2 makes it difficult for water to flow from the housing through hole 270 side to the partition wall through hole 65 side. Further, the narrow portion of the passage P2 makes it difficult for water to flow from the partition wall through hole 65 side to the housing through hole 270 side.
 他の実施形態では、ハウジング開口部210の径方向において、ラビリンス状の通路P2の駆動部70側の部位の高さHp1は、通路P2の内部空間200側の部位の高さHp2より大きくてもよい。この場合、ハウジング貫通穴270側から見ると、通路P2は、広い部位から狭い部位となるよう変化することになる。そのため、ハウジング貫通穴270から侵入した外部の水は、通路P2の狭い部位でトラップされ、隔壁貫通穴65側へ流れにくくなる。一方、隔壁貫通穴65側の水は、通路P2を経由してハウジング貫通穴270側へ流れやすくなる。 In another embodiment, in the radial direction of the housing opening 210, the height Hp1 of the portion on the drive unit 70 side of the labyrinth-shaped passage P2 is greater than the height Hp2 of the portion on the inner space 200 side of the passage P2. Good. In this case, when viewed from the housing through hole 270 side, the passage P2 changes from a wide part to a narrow part. Therefore, the external water that has entered from the housing through hole 270 is trapped in a narrow portion of the passage P2 and hardly flows to the partition wall through hole 65 side. On the other hand, the water on the partition through hole 65 side easily flows to the housing through hole 270 side via the passage P2.
  (第9実施形態)
 第9実施形態によるバルブ装置の一部を図55に示す。
(Ninth embodiment)
A part of the valve device according to the ninth embodiment is shown in FIG.
<6-13>
 図55に示すように、バルブ装置10は、軸受部602を備えている。軸受部602は、シャフト挿通穴62の隔壁貫通穴65に対し駆動部70側に設けられ、シャフト32の一端を軸受けする。
<6-13>
As shown in FIG. 55, the valve device 10 includes a bearing portion 602. The bearing portion 602 is provided on the drive portion 70 side with respect to the partition wall through hole 65 of the shaft insertion hole 62, and supports one end of the shaft 32.
 そのため、内部空間200から駆動部70側へ流れる冷却水を隔壁貫通穴65へ流すことで、冷却水が軸受部602まで流れるのを抑制できる。 Therefore, it is possible to suppress the cooling water from flowing to the bearing portion 602 by flowing the cooling water flowing from the internal space 200 toward the drive unit 70 to the partition wall through hole 65.
<6-14>
 図55に示すように、シャフト挿通穴62は、内側に軸受部602が設けられる小径部621、小径部621より内径が大きく隔壁貫通穴65が開口する大径部622、および、小径部621と大径部622との間に形成された挿通穴内段差面623を有している。
<6-14>
As shown in FIG. 55, the shaft insertion hole 62 includes a small-diameter portion 621 in which a bearing portion 602 is provided inside, a large-diameter portion 622 having a larger inner diameter than the small-diameter portion 621 and opening the partition wall through-hole 65, and a small-diameter portion 621 It has a step surface 623 in the insertion hole formed between the large diameter portion 622.
 挿通穴内段差面623は、内部空間200側を向くよう環状に形成されている。図55に示すように、シャフト32の径方向外側において軸シール部材603と軸受部602との間には、略円筒状の筒状空間St2が形成されている。隔壁貫通穴65は、筒状空間St2に接続している。 The step surface 623 in the insertion hole is formed in an annular shape so as to face the inner space 200 side. As shown in FIG. 55, a substantially cylindrical tubular space St <b> 2 is formed between the shaft seal member 603 and the bearing portion 602 on the radially outer side of the shaft 32. The partition wall through hole 65 is connected to the cylindrical space St2.
 そのため、内部空間200から駆動部70側へ流れる冷却水を筒状空間St2に留めておくことで、冷却水が軸受部602まで流れるのを抑制できる。また、ハウジング貫通穴270を経由して外部から水等が侵入したとしても、当該水等を筒状空間St2に留めておくことで、水等が軸受部602まで流れるのを抑制できる。 Therefore, it is possible to suppress the cooling water from flowing to the bearing portion 602 by keeping the cooling water flowing from the internal space 200 toward the drive unit 70 in the cylindrical space St2. Even if water or the like enters from the outside through the housing through hole 270, it is possible to suppress the water or the like from flowing to the bearing portion 602 by keeping the water or the like in the cylindrical space St <b> 2.
  (第10実施形態)
 第10実施形態によるバルブ装置の一部を図56、図57に示す。
(10th Embodiment)
A part of the valve device according to the tenth embodiment is shown in FIGS.
<6-15>
 図56、図57に示すように、隔壁貫通穴65には、隔壁貫通穴65の一端と他端との間において段差を形成する隔壁貫通穴内段差面651が形成されている。
<6-15>
As shown in FIGS. 56 and 57, the partition wall through hole 65 is formed with a partition wall through hole inner step surface 651 that forms a step between one end and the other end of the partition wall through hole 65.
 隔壁貫通穴内段差面651は、バルブ装置10がエンジン2に取り付けられた状態において、鉛直方向下側を向くよう形成されている。よって、隔壁貫通穴65の鉛直方向下側の断面積は、鉛直方向上側の断面積より大きい。 The step surface 651 in the partition wall through hole is formed so as to face the lower side in the vertical direction when the valve device 10 is attached to the engine 2. Therefore, the sectional area on the lower side in the vertical direction of the partition wall through hole 65 is larger than the sectional area on the upper side in the vertical direction.
 そのため、ハウジング貫通穴270を経由して外部から水等が侵入したとしても、当該水等を隔壁貫通穴内段差面651に留めておくことで、水等がシャフト挿通穴62まで流れるのを抑制できる。 Therefore, even if water or the like enters from the outside via the housing through hole 270, it is possible to suppress the water or the like from flowing to the shaft insertion hole 62 by retaining the water or the like on the step surface 651 in the partition wall through hole. .
  (第11実施形態)
 第11実施形態によるバルブ装置の一部を図58に示す。
(Eleventh embodiment)
A part of the valve device according to the eleventh embodiment is shown in FIG.
<6-15>
 図58に示すように、隔壁貫通穴内段差面651は、バルブ装置10がエンジン2に取り付けられた状態において、鉛直方向上側を向くよう形成されている。よって、隔壁貫通穴65の鉛直方向上側の断面積は、鉛直方向下側の断面積より大きい。
<6-15>
As shown in FIG. 58, the partition through-hole inner step surface 651 is formed to face the upper side in the vertical direction when the valve device 10 is attached to the engine 2. Therefore, the sectional area on the upper side in the vertical direction of the partition wall through-hole 65 is larger than the sectional area on the lower side in the vertical direction.
 そのため、冷却水の漏れが少ない場合、隔壁貫通穴内段差面651に冷却水を留めておくことで、少量の漏れについてユーザに気付かせないようにすることができる。 Therefore, when there is little leakage of cooling water, it is possible to prevent the user from noticing a small amount of leakage by keeping cooling water on the step surface 651 in the partition wall through hole.
  (第12実施形態)
 第12実施形態によるバルブ装置の一部を図59に示す。
(Twelfth embodiment)
A part of the valve device according to the twelfth embodiment is shown in FIG.
<6-16>
 図59に示すように、隔壁貫通穴65およびハウジング貫通穴270は、それぞれの軸が、シャフト挿通穴62の軸Axh1に対し直交しないよう形成されている。
<6-16>
As shown in FIG. 59, the partition wall through-hole 65 and the housing through-hole 270 are formed so that their axes are not orthogonal to the axis Axh1 of the shaft insertion hole 62.
 そのため、ハウジング貫通穴270を経由して外部から水等が侵入したとしても、当該水等が隔壁貫通穴65を経由してシャフト挿通穴62まで流れるのを抑制できる。 Therefore, even if water or the like enters from the outside via the housing through hole 270, the water or the like can be prevented from flowing to the shaft insertion hole 62 via the partition wall through hole 65.
 なお、隔壁貫通穴65とハウジング貫通穴270とは、互いの軸が交差するよう形成されている。 The partition wall through hole 65 and the housing through hole 270 are formed so that their axes intersect each other.
  (第13実施形態)
 第13実施形態によるバルブ装置の一部を図60に示す。
(13th Embodiment)
A part of the valve device according to the thirteenth embodiment is shown in FIG.
<6-17>
 図60に示すように、隔壁貫通穴65は、シャフト挿通穴62の径方向内側から径方向外側へ向かうに従い、その断面積が徐々に大きくなるよう形成されている。
<6-17>
As shown in FIG. 60, the partition wall through hole 65 is formed so that its cross-sectional area gradually increases from the radially inner side to the radially outer side of the shaft insertion hole 62.
 そのため、冷却水の漏れが多い場合、隔壁貫通穴65を経由して冷却水をハウジング貫通穴270から外部へ速やかに排出できる。 Therefore, when there is much leakage of cooling water, the cooling water can be quickly discharged from the housing through hole 270 to the outside via the partition wall through hole 65.
  (第14実施形態)
 第14実施形態によるバルブ装置を図61~77に示す。
(14th Embodiment)
A valve device according to a fourteenth embodiment is shown in FIGS.
 本実施形態は、ハウジング20、バルブ30、パイプ部材50、駆動部カバー80等の形状等が第1実施形態と異なる。 This embodiment is different from the first embodiment in the shapes of the housing 20, the valve 30, the pipe member 50, the drive unit cover 80, and the like.
 図61に示すように、本実施形態のバルブ装置10は、駆動部カバー80がハウジング本体21に対し鉛直方向下側となり、取付面201がエンジン2に対向するよう狭小空間A1に設けられる。 61, the valve device 10 according to the present embodiment is provided in the narrow space A1 such that the drive unit cover 80 is vertically downward with respect to the housing body 21 and the mounting surface 201 faces the engine 2.
 図65に示すように、取付面201に垂直な方向から見て略三角形形状の締結部231の2つの辺(h11、h12)のうち一方の辺h11の基部は、ハウジング本体21の長手方向で見て、入口ポート220と重なる位置に形成されている。また、締結部232の2つの辺(h21、h22)のうち一方の辺h21の基部は、ハウジング本体21の長手方向で見て、入口ポート220と重なる位置に形成されている。 As shown in FIG. 65, the base portion of one side h11 of the two sides (h11, h12) of the substantially triangular fastening portion 231 when viewed from the direction perpendicular to the mounting surface 201 is the longitudinal direction of the housing body 21. As seen, it is formed at a position overlapping the inlet port 220. Further, the base portion of one side h <b> 21 of the two sides (h <b> 21 and h <b> 22) of the fastening portion 232 is formed at a position overlapping the inlet port 220 when viewed in the longitudinal direction of the housing body 21.
 すなわち、入口ポート220に最も近い2つの締結穴(241、242)の締結部(231、232)の開始位置の一方は、ハウジング本体21の長手方向で見て、入口ポート220と重なる位置に形成されている。 That is, one of the starting positions of the fastening portions (231, 232) of the two fastening holes (241, 242) closest to the inlet port 220 is formed at a position overlapping the inlet port 220 when viewed in the longitudinal direction of the housing body 21. Has been.
 そのため、ハウジング本体21をエンジン2に安定して固定できる。 Therefore, the housing body 21 can be stably fixed to the engine 2.
 締結部233の2つの辺(h31、h32)のうち一方の辺h32の基部は、ハウジング本体21の長手方向で見て、入口ポート220と重ならない位置に形成されている。 Of the two sides (h31, h32) of the fastening portion 233, the base of one side h32 is formed at a position that does not overlap the inlet port 220 when viewed in the longitudinal direction of the housing body 21.
 すなわち、入口ポート220から最も遠い締結穴(243)の締結部(233)の開始位置の一方は、ハウジング本体21の長手方向で見て、入口ポート220と重ならない位置に形成されている。 That is, one of the start positions of the fastening portion (233) of the fastening hole (243) farthest from the inlet port 220 is formed at a position that does not overlap with the inlet port 220 when viewed in the longitudinal direction of the housing body 21.
 図65に示すように、締結部231の2つの辺(h11、h12)に沿う直線である辺直線Lth11、Lth12で囲まれた領域R1内に、他の2つの締結部(232、233)の締結穴(242、243)が存在している。 As shown in FIG. 65, in the region R1 surrounded by the side straight lines Lth11 and Lth12 which are straight lines along the two sides (h11, h12) of the fastening portion 231, the other two fastening portions (232, 233) Fastening holes (242, 243) are present.
 図65に示すように、締結部231の辺h11に沿う直線である辺直線Lth11、締結部232の辺h21に沿う直線である辺直線Lth21、締結部233の辺h32に沿う直線である辺直線Lth32は、入口ポート220と交わる。 As shown in FIG. 65, a side straight line Lth11 that is a straight line along the side h11 of the fastening part 231, a side straight line Lth21 that is a straight line along the side h21 of the fastening part 232, and a side straight line that is a straight line along the side h32 of the fastening part 233. Lth 32 intersects with the inlet port 220.
 すなわち、締結穴241~243のそれぞれにおいて、締結部231~233の辺h11、辺h21、辺h32を延長すると、入口ポート220と交わる。 That is, in each of the fastening holes 241 to 243, when the sides h11, h21, and h32 of the fastening portions 231 to 233 are extended, they intersect with the inlet port 220.
 図65に示すように、入口ポート220から最も離れた締結穴(243)の締結部233の入口ポート220側の辺h32は、他の辺(h11、h12、h21、h22、h31)と比べ、ハウジング本体21の長手方向に対する傾斜角が最も小さい。 As shown in FIG. 65, the side h32 on the inlet port 220 side of the fastening portion 233 of the fastening hole (243) farthest from the inlet port 220 is compared to the other sides (h11, h12, h21, h22, h31). The inclination angle with respect to the longitudinal direction of the housing body 21 is the smallest.
 図65に示すように、位置決め部205は、締結部231の辺h12の延長線上に形成されている。また、位置決め部206は、締結部232の辺h22の延長線上に形成されている。 As shown in FIG. 65, the positioning portion 205 is formed on an extension line of the side h12 of the fastening portion 231. Further, the positioning portion 206 is formed on an extension line of the side h <b> 22 of the fastening portion 232.
 すなわち、他部材と係合することでハウジング本体21の位置決めが可能な位置決め部(205、206)は、締結部(231、232)の辺(h12、h22)の延長線上に形成されている。 That is, the positioning portions (205, 206) capable of positioning the housing body 21 by engaging with other members are formed on the extension lines of the sides (h12, h22) of the fastening portions (231, 232).
<2-12>
 図79~82に示すように、保持部材73は、スナップフィット部731を1つ有している。図79、80に示すように、保持部材73は、スナップフィット部731がウォームギア712の径方向外側に位置するよう形成されている。
<2-12>
As shown in FIGS. 79 to 82, the holding member 73 has one snap fit portion 731. As shown in FIGS. 79 and 80, the holding member 73 is formed such that the snap fit portion 731 is positioned on the radially outer side of the worm gear 712.
 そのため、モータ本体710の両側にスナップフィット部731が2つずつ形成される第1実施形態の保持部材73(図87~89参照)と比べ、モータ71の軸Axm1に垂直な方向、すなわち、取付面201に対し垂直な方向Dv1における保持部材73の体格を小さくすることができる。そのため、取付面201に対し垂直な方向Dv1における駆動部カバー80およびバルブ装置10の体格を小さくできる。 Therefore, compared to the holding member 73 (see FIGS. 87 to 89) of the first embodiment in which two snap fit portions 731 are formed on both sides of the motor body 710, the direction perpendicular to the axis Axm1 of the motor 71, that is, the mounting The size of the holding member 73 in the direction Dv1 perpendicular to the surface 201 can be reduced. Therefore, the physique of the drive part cover 80 and the valve apparatus 10 in the direction Dv1 perpendicular to the mounting surface 201 can be reduced.
 また、モータ本体710の両側にスナップフィット部731が2つずつ形成される第1実施形態(図87参照)と比べ、モータ71を取付面201、すなわち、エンジン2に近付けることができるため、モータ71にかかる振動が小さくなり、断線に対するロバスト性を向上できる。 Further, compared to the first embodiment (see FIG. 87) in which two snap fit portions 731 are formed on both sides of the motor body 710, the motor 71 can be brought closer to the mounting surface 201, that is, the engine 2, so that the motor The vibration concerning 71 becomes small and the robustness with respect to a disconnection can be improved.
 図61~65に示すように、パイプ部材50のパイプ部512は、駆動部カバー80に向かって傾斜しながら延びるよう形成されている。 61 to 65, the pipe part 512 of the pipe member 50 is formed to extend while inclining toward the drive part cover 80.
<2-13>
 図67に示すように、保持部材73は、スナップフィット部731が回転軸Axr1に対しパイプ部材50側に位置するよう形成されている。
<2-13>
As shown in FIG. 67, the holding member 73 is formed such that the snap fit portion 731 is positioned on the pipe member 50 side with respect to the rotation axis Axr1.
 そのため、取付面201に対し垂直な方向Dv1における駆動部カバー80の体格を小さくでき、駆動部カバー80がパイプ部材50の特にパイプ部512に干渉するのを抑制できる。 Therefore, the size of the drive unit cover 80 in the direction Dv1 perpendicular to the attachment surface 201 can be reduced, and the drive unit cover 80 can be prevented from interfering with the pipe portion 512 of the pipe member 50 in particular.
 他の実施形態では、スナップフィット部731は、第3ギア723とモータ側端子713との間に位置するよう形成されていてもよい(図80、83参照)。 In other embodiments, the snap fit portion 731 may be formed to be positioned between the third gear 723 and the motor side terminal 713 (see FIGS. 80 and 83).
 この場合でも、モータ本体710の両側にスナップフィット部731が2つずつ形成される第1実施形態の保持部材73(図87~89参照)と比べ、モータ71の軸Axm1に垂直な方向、すなわち、取付面201に対し垂直な方向Dv1における保持部材73の体格を小さくすることができる。 Even in this case, compared to the holding member 73 (see FIGS. 87 to 89) of the first embodiment in which two snap fit portions 731 are formed on both sides of the motor main body 710, the direction perpendicular to the axis Axm1 of the motor 71, that is, The physique of the holding member 73 in the direction Dv1 perpendicular to the mounting surface 201 can be reduced.
 図90~102に、本実施形態のバルブ30およびその一部を示す。 90 to 102 show the valve 30 of this embodiment and a part thereof.
 本実施形態のバルブ30は、弁体31の形状等が第1、3実施形態のバルブ30と類似する。本実施形態のバルブ30は、ボールバルブ41、筒状接続部44、ボールバルブ42、筒状バルブ接続部45、ボールバルブ43の並び方向が第3実施形態と異なり、第1実施形態と同様である。すなわち、本実施形態のバルブ30は、回転軸Axr1方向の駆動部70とは反対側から駆動部70側に向かって、ボールバルブ41、筒状接続部44、ボールバルブ42、筒状バルブ接続部45、ボールバルブ43の順で並ぶようにして形成されている。ボールバルブ41、42、43は、それぞれ、出口ポート221、222、223を開閉可能に設けられている(図67参照)。 The valve 30 of the present embodiment is similar to the valve 30 of the first and third embodiments in the shape of the valve body 31 and the like. The valve 30 of the present embodiment differs from the third embodiment in the arrangement direction of the ball valve 41, the cylindrical connection portion 44, the ball valve 42, the cylindrical valve connection portion 45, and the ball valve 43, and is the same as the first embodiment. is there. That is, the valve 30 of the present embodiment is configured such that the ball valve 41, the cylindrical connecting portion 44, the ball valve 42, and the cylindrical valve connecting portion from the side opposite to the driving portion 70 in the direction of the rotation axis Axr1 toward the driving portion 70. 45 and the ball valve 43 are arranged in this order. The ball valves 41, 42, and 43 are provided so that the outlet ports 221, 222, and 223 can be opened and closed, respectively (see FIG. 67).
 図93、94等に示すように、ボールバルブ41の弁体開口部410は、大開口部412、延伸開口部413を有している。大開口部412は、第1分割体33の周方向の一端から他端側へ向かって延びるよう形成されている。延伸開口部413は、大開口部412の他端から第1分割体33の周方向の他端近傍まで延びるよう形成されている。延伸開口部413の回転軸Axr1方向の大きさは、大開口部412の回転軸Axr1方向の大きさより小さい。弁体開口部410の開口面積は、大開口部412の開口面積と延伸開口部413の開口面積とを合わせた面積である。 93, 94, etc., the valve body opening 410 of the ball valve 41 has a large opening 412 and an extended opening 413. The large opening 412 is formed to extend from one end in the circumferential direction of the first divided body 33 toward the other end. The extending opening 413 is formed to extend from the other end of the large opening 412 to the vicinity of the other end in the circumferential direction of the first divided body 33. The size of the extending opening 413 in the direction of the rotation axis Axr1 is smaller than the size of the large opening 412 in the direction of the rotation axis Axr1. The opening area of the valve body opening 410 is the total of the opening area of the large opening 412 and the opening area of the extended opening 413.
 弁体開口部410が延伸開口部413を有していることにより、出口ポート221の開弁初期において、ラジエータ5への冷却水の流量を徐々に大きくすることができる。これにより、ラジエータ5の熱交換による冷却水の急激な温度変化を抑制することができる。 Since the valve body opening 410 has the extended opening 413, the flow rate of the cooling water to the radiator 5 can be gradually increased at the initial opening of the outlet port 221. Thereby, the rapid temperature change of the cooling water by the heat exchange of the radiator 5 can be suppressed.
 本実施形態では、弁体開口部410のみ、延伸開口部413を有している。これに対し、他の実施形態では、弁体開口部420、430にも延伸開口部413と同様の開口部を設けてもよい。この場合、ヒータ6、デバイス7の熱交換による冷却水の急激な温度変化を抑制することができる。 In the present embodiment, only the valve body opening 410 has the extended opening 413. On the other hand, in other embodiments, the valve body openings 420 and 430 may be provided with openings similar to the extension openings 413. In this case, a rapid temperature change of the cooling water due to heat exchange between the heater 6 and the device 7 can be suppressed.
<3-29>
 第1ボールバルブとしてのボールバルブ41の弁体開口部410の大きさは、第2ボールバルブとしてのボールバルブ42の弁体開口部420の大きさ、および、第3ボールバルブとしてのボールバルブ43の弁体開口部430の大きさより大きい。
<3-29>
The size of the valve body opening 410 of the ball valve 41 as the first ball valve is the same as the size of the valve body opening 420 of the ball valve 42 as the second ball valve and the ball valve 43 as the third ball valve. It is larger than the size of the valve body opening 430.
 すなわち、2つのボールバルブが連続するよう形成されたボールバルブ42、43の弁体開口部420、430は小さく、1つのボールバルブとして形成されたボールバルブ41の弁体開口部410は最も大きい。 That is, the valve body openings 420 and 430 of the ball valves 42 and 43 formed so that two ball valves are continuous are small, and the valve body opening 410 of the ball valve 41 formed as one ball valve is the largest.
 ボールバルブ42、43とボールバルブ41との間のバルブ間空間400には、入口ポート220からの冷却水が流入する。その後、冷却水は、ボールバルブ42、43側とボールバルブ41側とに分配される。ここで、ボールバルブ42、43側とボールバルブ41側とで必要とされる冷却水の量が偏ると、冷却水の分配が適切にできないため、最も開口の大きい弁体開口部410が形成されたボールバルブ41は、必要とされる冷却水が多いため、他の開口の小さい弁体開口部420、430が形成されたボールバルブ42、43とは連続させていない。つまり、ボールバルブを2連とすると、2つのボールバルブの開口分の冷却水が必要となるため、極力、開口の小さいボールバルブ(42、43)同士を連続させたものである。 The cooling water from the inlet port 220 flows into the inter-valve space 400 between the ball valves 42 and 43 and the ball valve 41. Thereafter, the cooling water is distributed to the ball valves 42 and 43 side and the ball valve 41 side. Here, if the amount of cooling water required on the ball valves 42 and 43 side and the ball valve 41 side is biased, the distribution of the cooling water cannot be performed properly, so that the valve body opening portion 410 having the largest opening is formed. Since the ball valve 41 requires a large amount of cooling water, it is not continuous with the ball valves 42 and 43 in which the valve body openings 420 and 430 having other small openings are formed. That is, if the ball valves are doubled, the cooling water for the openings of the two ball valves is required, so that the ball valves (42, 43) having small openings are made continuous as much as possible.
<4-4>
 図62に示すように、ハウジング20は、ハウジング本体21の外壁から突出するようハウジング本体21とは異なる部位として形成されたハウジング側カバー固定部(291~296)を有する。
<4-4>
As shown in FIG. 62, the housing 20 has housing-side cover fixing portions (291 to 296) formed as portions different from the housing main body 21 so as to protrude from the outer wall of the housing main body 21.
 駆動部カバー80は、駆動部空間800を形成するカバー本体81、および、カバー本体81の外壁から突出するようカバー本体81とは異なる部位として形成されハウジング側カバー固定部(291~296)に固定されるカバー固定部(821~826)を有する。 The drive unit cover 80 is formed as a portion different from the cover main body 81 so as to protrude from the outer wall of the cover main body 81 forming the drive unit space 800 and fixed to the housing side cover fixing portions (291 to 296). Cover fixing portions (821 to 826).
 カバー固定部(821~826)は、ハウジング本体21の取付面201に平行な方向Dp1の両端部(215、216)のうち少なくとも一方より外側へ突出しないよう形成されている。本実施形態では、カバー固定部(821~826)は、ハウジング本体21の取付面201に平行な方向Dp1の両端部(215、216)より外側へ突出しないよう形成されている。ここで、ハウジング本体21の取付面201に平行な方向Dp1の両端部であるハウジング端部215、216は、ハウジング側カバー固定部291~296とは異なる部位としてハウジング本体21に形成されている。 The cover fixing portions (821 to 826) are formed so as not to protrude outward from at least one of both end portions (215, 216) in the direction Dp1 parallel to the mounting surface 201 of the housing body 21. In the present embodiment, the cover fixing portions (821 to 826) are formed so as not to protrude outward from both end portions (215, 216) in the direction Dp1 parallel to the mounting surface 201 of the housing body 21. Here, the housing end portions 215 and 216 which are both ends in the direction Dp1 parallel to the mounting surface 201 of the housing main body 21 are formed in the housing main body 21 as portions different from the housing side cover fixing portions 291 to 296.
 そのため、駆動部カバー80の取付面201に平行な方向Dp1の体格を小さくでき、バルブ装置10の取付面201に平行な方向Dp1の体格を小さくできる。これにより、バルブ装置10を車両1の狭小空間A1に搭載できる。 Therefore, the size in the direction Dp1 parallel to the mounting surface 201 of the drive unit cover 80 can be reduced, and the size in the direction Dp1 parallel to the mounting surface 201 of the valve device 10 can be reduced. Thereby, the valve device 10 can be mounted in the narrow space A1 of the vehicle 1.
 本実施形態では、取付面201に平行な方向Dp1は、鉛直方向に対し垂直な方向、すなわち、水平方向に平行な方向である。また、取付面201に平行な方向Dp1は、取付面201に対し垂直な方向Dv1に対し垂直である。 In this embodiment, the direction Dp1 parallel to the mounting surface 201 is a direction perpendicular to the vertical direction, that is, a direction parallel to the horizontal direction. The direction Dp1 parallel to the attachment surface 201 is perpendicular to the direction Dv1 perpendicular to the attachment surface 201.
<4-5>
 図62に示すように、ハウジング本体21がエンジン2に取り付けられた状態において、カバー固定部821~826は、ハウジング本体21の取付面201に平行な方向Dp1かつ水平方向の両端部(215、216)のうち少なくとも一方より外側へ突出しないよう形成されている。本実施形態では、カバー固定部821~826は、ハウジング本体21の取付面201に平行な方向Dp1かつ水平方向の両端部(215、216)より外側へ突出しないよう形成されている。つまり、カバー固定部821~826は、ハウジング端部215、216よりも、ハウジング本体21の最薄方向である取付面201に平行な方向Dp1に関して突出しないよう形成されている。
<4-5>
As shown in FIG. 62, in a state where the housing main body 21 is attached to the engine 2, the cover fixing portions 821 to 826 are arranged in the direction Dp1 parallel to the mounting surface 201 of the housing main body 21 and both ends in the horizontal direction (215, 216 ) So as not to protrude outwardly from at least one of them. In the present embodiment, the cover fixing portions 821 to 826 are formed so as not to protrude outward from both ends (215, 216) in the direction Dp1 parallel to the mounting surface 201 of the housing body 21 and in the horizontal direction. That is, the cover fixing portions 821 to 826 are formed so as not to protrude with respect to the direction Dp1 parallel to the attachment surface 201 which is the thinnest direction of the housing main body 21, rather than the housing end portions 215 and 216.
 そのため、駆動部カバー80の取付面201に平行な方向Dp1かつ水平方向の体格を小さくでき、バルブ装置10の取付面201に平行な方向Dp1かつ水平方向の体格を小さくできる。これにより、取付面201に平行な方向Dp1かつ水平方向に狭い狭小空間A1にバルブ装置10を搭載できる。 Therefore, the size Dp1 parallel to the mounting surface 201 of the drive unit cover 80 and the horizontal size can be reduced, and the size Dp1 parallel to the mounting surface 201 of the valve device 10 and the horizontal size can be reduced. Thereby, the valve device 10 can be mounted in a narrow space A1 that is parallel to the mounting surface 201 and narrow in the horizontal direction Dp1.
 本実施形態では、オルタネータ12とインテークマニホールド11との間の狭小空間A1(図2、62参照)にバルブ装置10が設けられるため、バルブ装置10の取付面201に平行な方向Dp1の体格を小さくすることで、バルブ装置10をオルタネータ12とインテークマニホールド11とに干渉することなく狭小空間A1に設けることができる。 In this embodiment, since the valve device 10 is provided in the narrow space A1 (see FIGS. 2 and 62) between the alternator 12 and the intake manifold 11, the physique in the direction Dp1 parallel to the mounting surface 201 of the valve device 10 is reduced. Thus, the valve device 10 can be provided in the narrow space A1 without interfering with the alternator 12 and the intake manifold 11.
<7-1>ハウジング側カバー固定部
 本実施形態は、車両1のエンジン2の冷却水を制御可能なバルブ装置10であって、ハウジング20とバルブ30とパイプ部材50と隔壁部60と駆動部カバー80と駆動部70と固定部材830とを備える。
<7-1> Housing-side Cover Fixing Section This embodiment is a valve device 10 capable of controlling the cooling water of the engine 2 of the vehicle 1, and includes a housing 20, a valve 30, a pipe member 50, a partition wall 60, and a driving unit. The cover 80, the drive part 70, and the fixing member 830 are provided.
 図61、62、64~68、73~78に示すように、ハウジング20は、内側に内部空間200を形成するハウジング本体21、内部空間200とハウジング本体21の外部とを接続するポート(220、221、222、223、224)、ハウジング本体21の外壁から突出するようハウジング本体21とは異なる部位として形成されたハウジング側カバー固定部291~296、および、ハウジング側カバー固定部291~296に形成されたハウジング側カバー締結穴290を有する。 As shown in FIGS. 61, 62, 64 to 68, and 73 to 78, the housing 20 includes a housing main body 21 that forms an internal space 200 inside, and ports (220, 220) that connect the internal space 200 and the outside of the housing main body 21. 221, 222, 223, 224), formed on housing side cover fixing portions 291 to 296 formed as portions different from the housing main body 21 so as to protrude from the outer wall of the housing main body 21, and housing side cover fixing portions 291 to 296. The housing side cover fastening hole 290 is formed.
 バルブ30は、内部空間200内において回転軸Axr1周りに回転可能な弁体31、および、回転軸Axr1に設けられたシャフト32を有し、弁体31の回転位置によりポート(221、222、223)を開閉可能である。 The valve 30 includes a valve body 31 that can rotate around the rotation axis Axr1 in the internal space 200, and a shaft 32 that is provided on the rotation axis Axr1, and ports (221, 222, 223) depending on the rotational position of the valve body 31. ) Can be opened and closed.
 パイプ部材50は、内側の空間がポート(221、222、223、224)に連通する筒状のパイプ部(511、512、513、514)を有し、ハウジング本体21に取り付けられている。 The pipe member 50 has a cylindrical pipe portion (511, 512, 513, 514) whose inner space communicates with the ports (221, 222, 223, 224), and is attached to the housing body 21.
 隔壁部60は、内部空間200とハウジング本体21の外部とを隔てるよう設けられ、シャフト32の一端を挿通可能なよう形成されたシャフト挿通穴62を有する。 The partition wall portion 60 is provided so as to separate the internal space 200 from the outside of the housing body 21 and has a shaft insertion hole 62 formed so that one end of the shaft 32 can be inserted.
 駆動部カバー80は、隔壁部60に対し内部空間200とは反対側に設けられ、隔壁部60との間に駆動部空間800を形成するカバー本体81、カバー本体81の外壁から突出するようカバー本体81とは異なる部位として形成されたカバー固定部821~826、および、カバー固定部821~826に形成されたカバー締結穴831~836を有する。 The drive unit cover 80 is provided on the opposite side of the partition wall 60 from the internal space 200, and covers the cover body 81 that forms the drive space 800 between the partition wall 60 and the outer wall of the cover body 81. Cover fixing portions 821 to 826 formed as parts different from the main body 81 and cover fastening holes 831 to 836 formed in the cover fixing portions 821 to 826 are provided.
 駆動部70は、駆動部空間800に設けられ、シャフト32の一端を経由して弁体31を回転駆動可能である。 The drive unit 70 is provided in the drive unit space 800 and can rotate the valve body 31 via one end of the shaft 32.
 固定部材830は、カバー締結穴831~836を通りハウジング側カバー締結穴290に螺合することでカバー固定部821~826とハウジング側カバー固定部291~296とを固定する。 The fixing member 830 passes through the cover fastening holes 831 to 836 and is screwed into the housing side cover fastening holes 290 to fix the cover fixing portions 821 to 826 and the housing side cover fixing portions 291 to 296.
 ハウジング側カバー固定部291~296は、ハウジング本体21の外壁から突出するカバー固定基部298、および、カバー固定基部298からカバー固定部821~826側へ突出しカバー固定部821~826に固定されるカバー固定突出部299を有している。 The housing side cover fixing portions 291 to 296 are a cover fixing base portion 298 protruding from the outer wall of the housing main body 21, and a cover protruding from the cover fixing base portion 298 toward the cover fixing portions 821 to 826 and fixed to the cover fixing portions 821 to 826. It has a fixed protrusion 299.
 図64等に示すように、パイプ部材50の少なくとも一部は、カバー固定基部298に対しカバー固定突出部299とは反対側に位置している。 As shown in FIG. 64 and the like, at least a part of the pipe member 50 is located on the opposite side of the cover fixing projection 299 with respect to the cover fixing base 298.
 このように、カバー固定突出部299がカバー固定基部298からパイプ部材50とは反対側へ突出するよう形成されているため、ハウジング側カバー固定部291~296とパイプ部材50との干渉を抑制でき、パイプ部材50の搭載自由度を向上できる。また、バルブ装置10の回転軸Axr1方向の体格を小さくできる。したがって、車両1の狭小空間A1にバルブ装置10を容易に搭載することができる。 Thus, since the cover fixing projection 299 is formed so as to protrude from the cover fixing base 298 to the side opposite to the pipe member 50, interference between the housing side cover fixing portions 291 to 296 and the pipe member 50 can be suppressed. The degree of freedom of mounting the pipe member 50 can be improved. Further, the size of the valve device 10 in the direction of the rotation axis Axr1 can be reduced. Therefore, the valve device 10 can be easily mounted in the narrow space A1 of the vehicle 1.
 なお、本実施形態では、パイプ部材50の少なくとも一部は、ハウジング側カバー固定部291~293のカバー固定基部298に対しカバー固定突出部299とは反対側に位置している(図64等参照)。 In this embodiment, at least a part of the pipe member 50 is located on the opposite side of the cover fixing protrusion 299 with respect to the cover fixing base 298 of the housing side cover fixing parts 291 to 293 (see FIG. 64 and the like). ).
<7-2>
 図73等に示すように、カバー固定突出部299は、カバー本体81の外壁との間に隙間としてのカバー間隙間Sc1を形成している。
<7-2>
As shown in FIG. 73 and the like, the cover fixing protrusion 299 forms an inter-cover gap Sc1 as a gap with the outer wall of the cover main body 81.
 そのため、駆動部カバー80を固定部材830によりハウジング20に締結したとき、ハウジング側カバー固定部291~296のカバー固定突出部299に割れが生じても、この割れがハウジング本体21にまで及ぶことを抑制できる。これにより、ハウジング20への駆動部カバー80の締結によって生じ得る冷却水の漏れを効果的に抑制できる。 Therefore, when the drive unit cover 80 is fastened to the housing 20 by the fixing member 830, even if a crack occurs in the cover fixing projection 299 of the housing side cover fixing portions 291 to 296, the crack may reach the housing body 21. Can be suppressed. Thereby, the leakage of the cooling water which may arise by the fastening of the drive part cover 80 to the housing 20 can be suppressed effectively.
<7-3>
 図73に示すように、ハウジング側カバー締結穴290の軸方向の長さL4は、ハウジング側カバー締結穴290の軸方向におけるカバー固定基部298の長さL1とカバー固定突出部299の長さL2とを合わせた長さL3より短い。すなわち、L4<L3=L1+L2である。
<7-3>
As shown in FIG. 73, the axial length L4 of the housing side cover fastening hole 290 is equal to the length L1 of the cover fixing base 298 and the length L2 of the cover fixing protrusion 299 in the axial direction of the housing side cover fastening hole 290. Is shorter than the combined length L3. That is, L4 <L3 = L1 + L2.
 そのため、ハウジング側カバー固定部291~296の強度を確保できる。 Therefore, the strength of the housing side cover fixing portions 291 to 296 can be secured.
<7-4>
 図73に示すように、ハウジング側カバー締結穴290の内側における固定部材830の軸方向の長さL5は、ハウジング側カバー締結穴290の軸方向の長さL4より短い。すなわち、L5<L4である。
<7-4>
As shown in FIG. 73, the axial length L5 of the fixing member 830 inside the housing side cover fastening hole 290 is shorter than the axial length L4 of the housing side cover fastening hole 290. That is, L5 <L4.
 そのため、ハウジング側カバー締結穴290への固定部材830の螺合時にハウジング側カバー固定部291~296が割れるのを抑制できる。また、固定部材830の先端がカバー固定基部298に対しカバー固定突出部299とは反対側へ飛び出すことがないため、固定部材830の先端がパイプ部材50に干渉するのを抑制できる。 Therefore, the housing-side cover fixing portions 291 to 296 can be prevented from cracking when the fixing member 830 is screwed into the housing-side cover fastening hole 290. Further, since the tip of the fixing member 830 does not jump out to the opposite side of the cover fixing protrusion 299 with respect to the cover fixing base 298, it is possible to suppress the tip of the fixing member 830 from interfering with the pipe member 50.
<7-5>
 図73に示すように、固定部材830は、ハウジング側カバー締結穴290に対しねじ立てしながら螺合可能なタッピングスクリューである。
<7-5>
As shown in FIG. 73, the fixing member 830 is a tapping screw that can be screwed into the housing side cover fastening hole 290 while being screwed up.
 そのため、ねじ溝を有する金属部材等をハウジング側カバー固定部291~296にインサート成型する必要がない。また、ハウジング側カバー固定部291~296のカバー固定突出部299とカバー本体81の外壁との間にはカバー間隙間Sc1が形成されているため、ハウジング側カバー締結穴290への固定部材830の螺合時にハウジング側カバー固定部291~296が割れたとしても、この割れがハウジング本体21に及ぶのを抑制できる。 Therefore, it is not necessary to insert-mold a metal member or the like having a thread groove into the housing side cover fixing portions 291 to 296. Further, since a cover-to-cover gap Sc1 is formed between the cover fixing protrusion 299 of the housing side cover fixing portions 291 to 296 and the outer wall of the cover main body 81, the fixing member 830 to the housing side cover fastening hole 290 is provided. Even if the housing side cover fixing portions 291 to 296 are cracked at the time of screwing, the crack can be prevented from reaching the housing main body 21.
 なお、ハウジング側カバー締結穴290の内側における固定部材830の軸方向の長さL5は、固定部材830のタッピング必要掛け長さに対応する。 The axial length L5 of the fixing member 830 inside the housing side cover fastening hole 290 corresponds to the required tapping length of the fixing member 830.
 図64に示すように、パイプ部512は、駆動部カバー80側へ延びるよう形成されている。パイプ部512は、ハウジング本体21の短手方向の両側のうち締結部が1つ(231)設けられている側へ延びるよう形成されている。パイプ部512は、ハウジング本体21の取付面201に対し平行な方向Dp1の両端部(215、216)のうち回転軸Axr1から遠い方の端部、すなわち、ハウジング本体21のうち内部空間200を形成する部分の外壁よりも方向Dp1へ突出する端部であるハウジング端部215側へ延びるよう形成されている。 As shown in FIG. 64, the pipe part 512 is formed so as to extend to the drive part cover 80 side. The pipe portion 512 is formed so as to extend to the side where one fastening portion (231) is provided on both sides of the housing body 21 in the short direction. The pipe portion 512 forms an inner space 200 in the housing body 21, that is, an end portion far from the rotation axis Axr 1 in both end portions (215, 216) in the direction Dp 1 parallel to the mounting surface 201 of the housing body 21. It is formed so as to extend toward the housing end 215 which is an end protruding in the direction Dp1 from the outer wall of the portion to be performed.
 パイプ部512は、ハウジング本体21において直線上に並ぶ出口ポート221、222、223のうち真ん中のポートである出口ポート222から延びるよう形成されている。パイプ部512は、ハウジング本体21の長手方向の中心に対し駆動部カバー80寄りのポートである出口ポート222から延びるよう形成されている。 The pipe portion 512 is formed to extend from an outlet port 222 which is a middle port among the outlet ports 221, 222, and 223 arranged in a straight line in the housing body 21. The pipe portion 512 is formed to extend from an outlet port 222 that is a port near the drive portion cover 80 with respect to the longitudinal center of the housing body 21.
 パイプ部512の先端部は、ハウジング突出部219よりもハウジング本体21の反対側に位置している。パイプ部512の先端部側は、ハウジング側カバー固定部293のカバー固定基部298に対しカバー固定突出部299とは反対側に位置している。 The tip of the pipe part 512 is located on the opposite side of the housing body 21 from the housing protrusion 219. The distal end side of the pipe portion 512 is located on the opposite side of the cover fixing protruding portion 299 with respect to the cover fixing base portion 298 of the housing side cover fixing portion 293.
 図62に示すように、ハウジング側カバー固定部291~293は、回転軸Axr1を含み取付面201に対し平行な仮想平面Vp6に対しパイプ部材50側に形成されている。ハウジング側カバー固定部294~296は、仮想平面Vp6に対し取付面201側に形成されている。 62, the housing side cover fixing portions 291 to 293 are formed on the pipe member 50 side with respect to a virtual plane Vp6 that includes the rotation axis Axr1 and is parallel to the mounting surface 201. The housing side cover fixing portions 294 to 296 are formed on the mounting surface 201 side with respect to the virtual plane Vp6.
 ハウジング側カバー固定部291、296は、回転軸Axr1を含み取付面201に垂直な仮想平面Vp7に対しパイプ部516の先端部が位置する側に形成されている。ハウジング側カバー固定部292~295は、仮想平面Vp7に対しパイプ部512の先端部が位置する側に形成されている。 The housing side cover fixing portions 291 and 296 are formed on the side where the tip end portion of the pipe portion 516 is located with respect to a virtual plane Vp7 including the rotation axis Axr1 and perpendicular to the mounting surface 201. The housing side cover fixing portions 292 to 295 are formed on the side where the tip end portion of the pipe portion 512 is located with respect to the virtual plane Vp7.
 カバー間隙間Sc1は、上述のように形成されたハウジング側カバー固定部291~296のカバー固定突出部299とカバー本体81の外壁との間に形成されている。 The inter-cover gap Sc1 is formed between the cover fixing protrusion 299 of the housing side cover fixing portions 291 to 296 formed as described above and the outer wall of the cover main body 81.
<8-1>異物堆積部
 本実施形態は、車両1のエンジン2の冷却水を制御可能なバルブ装置10であって、ハウジング20とバルブ30と隔壁部60と駆動部70とを備える。
<8-1> Foreign Object Accumulation Unit The present embodiment is a valve device 10 that can control the cooling water of the engine 2 of the vehicle 1, and includes a housing 20, a valve 30, a partition wall 60, and a drive unit 70.
 ハウジング20は、内側に内部空間200を形成するハウジング本体21、内部空間200とハウジング本体21の外部とを接続するポート(220、221、222、223)、および、内部空間200とハウジング本体21の外部とを接続するハウジング開口部210を有する。 The housing 20 includes a housing main body 21 that forms an internal space 200 on the inside, ports (220, 221, 222, and 223) that connect the internal space 200 and the outside of the housing main body 21, and the internal space 200 and the housing main body 21. It has a housing opening 210 for connecting to the outside.
 バルブ30は、内部空間200内において回転軸Axr1周りに回転可能な弁体31、および、回転軸Axr1に設けられたシャフト32を有し、弁体31の回転位置によりポート(221、222、223)を開閉可能である。 The valve 30 includes a valve body 31 that can rotate around the rotation axis Axr1 in the internal space 200, and a shaft 32 that is provided on the rotation axis Axr1, and ports (221, 222, 223) depending on the rotational position of the valve body 31. ) Can be opened and closed.
 隔壁部60は、内部空間200とハウジング本体21の外部とを隔てるようハウジング開口部210に設けられた隔壁部本体61、および、シャフト32の一端を挿通可能なよう隔壁部本体61に形成されたシャフト挿通穴62を有する。 The partition wall 60 is formed in the partition wall body 61 provided in the housing opening 210 so as to separate the internal space 200 from the outside of the housing body 21 and the partition wall body 61 so that one end of the shaft 32 can be inserted. A shaft insertion hole 62 is provided.
 駆動部70は、隔壁部60に対し内部空間200とは反対側に設けられ、シャフト32の一端を経由して弁体31を回転駆動可能である。 The drive unit 70 is provided on the side opposite to the internal space 200 with respect to the partition wall 60, and can rotate the valve body 31 via one end of the shaft 32.
 図69に示すように、バルブ30は、弁体31に形成された被規制部としての第1規制凸部332、第2規制凸部342を有している。 As shown in FIG. 69, the valve 30 has a first restriction convex part 332 and a second restriction convex part 342 as the restricted parts formed in the valve body 31.
 図69、103、104に示すように、隔壁部60は、シャフト挿通穴62の径方向外側において隔壁部本体61の内部空間200側の面から駆動部70側へ凹む環状の規制凹部63、規制凹部63の周方向の一部に形成され第1規制凸部332、第2規制凸部342に当接することで弁体31の回転を規制可能な規制部631、および、規制凹部63の底面630から駆動部70側へ凹む異物堆積部68を有している。 As shown in FIGS. 69, 103, and 104, the partition wall 60 includes an annular regulation recess 63 that is recessed from the surface on the inner space 200 side of the partition wall body 61 toward the drive unit 70 on the radially outer side of the shaft insertion hole 62. A restriction portion 631 that is formed in a part of the concave portion 63 in the circumferential direction and that is capable of restricting the rotation of the valve body 31 by contacting the first restriction convex portion 332 and the second restriction convex portion 342, and the bottom surface 630 of the restriction concave portion 63 A foreign matter depositing portion 68 that is recessed toward the driving portion 70 side.
 そのため、規制凹部63内に存在する異物や規制凹部63の底面630に溜まった異物を異物堆積部68に堆積させることができる。これにより、被規制部としての第1規制凸部332、第2規制凸部342、および、規制部631から異物を遠ざけ、第1規制凸部332、第2規制凸部342と規制部631との間に異物が挟まるのを抑制することができる。したがって、規制部631への異物の堆積による弁体31の駆動精度の悪化を抑制することができる。また、規制部631への異物の堆積による回転角センサ86のセンサ精度の悪化を抑制することができる。 Therefore, the foreign matter existing in the restriction concave portion 63 and the foreign matter accumulated on the bottom surface 630 of the restriction concave portion 63 can be accumulated on the foreign matter accumulation portion 68. Accordingly, the foreign matter is moved away from the first restriction convex part 332, the second restriction convex part 342, and the restriction part 631 as the restricted parts, and the first restriction convex part 332, the second restriction convex part 342, and the restriction part 631 It is possible to suppress foreign matter from being caught between the two. Therefore, it is possible to suppress the deterioration of the driving accuracy of the valve element 31 due to the accumulation of foreign matter on the restricting portion 631. In addition, deterioration of the sensor accuracy of the rotation angle sensor 86 due to the accumulation of foreign matter on the restricting portion 631 can be suppressed.
<8-2>
 図103、104に示すように、規制凹部63は、径方向内側に形成された筒状の壁面である内筒壁面632、および、径方向外側に形成された筒状の壁面である外筒壁面633を有している。
<8-2>
As shown in FIGS. 103 and 104, the restriction recess 63 includes an inner cylindrical wall surface 632 that is a cylindrical wall surface formed on the radially inner side, and an outer cylindrical wall surface that is a cylindrical wall surface formed on the radially outer side. 633.
 そのため、規制凹部63内の異物がシャフト挿通穴62へ侵入するのを抑制できる。これにより、軸シール部材603によるシール性を確保できる。 Therefore, it is possible to suppress the foreign matter in the restriction recess 63 from entering the shaft insertion hole 62. Thereby, the sealing performance by the shaft seal member 603 can be ensured.
<8-3>
 図103、104に示すように、異物堆積部68は、規制凹部63の底面630の少なくとも一部に対し外筒壁面633側に形成されている。
<8-3>
As shown in FIGS. 103 and 104, the foreign material accumulation portion 68 is formed on the outer cylinder wall surface 633 side with respect to at least a part of the bottom surface 630 of the restriction recess 63.
 そのため、規制凹部63の底面630上の異物を規制凹部63の径方向外側の異物堆積部68に導き、異物をシャフト挿通穴62から遠ざけることができる。これにより、軸シール部材603によるシール性を確保できる。 Therefore, the foreign matter on the bottom surface 630 of the restriction recess 63 can be guided to the foreign matter accumulation portion 68 on the radially outer side of the restriction recess 63, and the foreign matter can be separated from the shaft insertion hole 62. Thereby, the sealing performance by the shaft seal member 603 can be ensured.
<8-5>
 図69に示すように、内筒壁面632は、被規制部としての第1規制凸部332、第2規制凸部342と摺動することで弁体31の回転を案内可能である。
<8-5>
As shown in FIG. 69, the inner cylinder wall surface 632 can guide the rotation of the valve body 31 by sliding with the first restriction convex part 332 and the second restriction convex part 342 as the restricted parts.
 そのため、弁体31の回転を安定させることができる。また、異物堆積部68に異物を堆積させることにより、内筒壁面632と第1規制凸部332、第2規制凸部342との間に異物が挟まるのを抑制し、内筒壁面632と第1規制凸部332、第2規制凸部342との摺動性が悪化するのを抑制できる。 Therefore, the rotation of the valve body 31 can be stabilized. Further, by depositing foreign matter on the foreign matter accumulation portion 68, foreign matter is prevented from being caught between the inner cylindrical wall surface 632 and the first restriction convex portion 332 and the second restriction convex portion 342. It can suppress that slidability with the 1 control convex part 332 and the 2nd control convex part 342 deteriorates.
<8-6>
 図103、104に示すように、規制部631は、内筒壁面632から外筒壁面633まで延びるよう形成されている。
<8-6>
As shown in FIGS. 103 and 104, the restricting portion 631 is formed to extend from the inner cylinder wall surface 632 to the outer cylinder wall surface 633.
 そのため、規制部631の強度を確保できる。 Therefore, the strength of the restricting portion 631 can be ensured.
<8-7>
 図103、104に示すように、規制凹部63の径方向における規制部631の長さL11は、規制凹部63の径方向における異物堆積部68の長さL12より大きい。
<8-7>
As shown in FIGS. 103 and 104, the length L11 of the restricting portion 631 in the radial direction of the restricting recess 63 is larger than the length L12 of the foreign matter depositing portion 68 in the radial direction of the restricting recess 63.
 そのため、規制部631の強度を確保できる。 Therefore, the strength of the restricting portion 631 can be ensured.
<8-12>
 図104に示すように、異物堆積部68は、シャフト挿通穴62の軸に垂直な断面においてC字状に形成されている。
<8-12>
As shown in FIG. 104, the foreign material accumulation portion 68 is formed in a C shape in a cross section perpendicular to the axis of the shaft insertion hole 62.
 そのため、異物堆積部68の周方向の端部間に隔壁貫通穴65を形成できる。 Therefore, the partition wall through-hole 65 can be formed between the circumferential ends of the foreign material accumulation portion 68.
<8-13>
 図103、104に示すように、隔壁部60は、シャフト挿通穴62から外側へ延びて隔壁部本体61の外壁に開口する隔壁貫通穴65を有している。隔壁貫通穴65は、異物堆積部68の周方向の端部間に形成されている。
<8-13>
As shown in FIGS. 103 and 104, the partition wall portion 60 has a partition wall through-hole 65 extending outward from the shaft insertion hole 62 and opening in the outer wall of the partition wall body 61. The partition wall through-hole 65 is formed between the circumferential ends of the foreign material accumulation portion 68.
 そのため、スペースを有効活用でき、隔壁部本体61を小型化できる。 Therefore, space can be used effectively and the partition wall body 61 can be downsized.
<8-14>
 図104に示すように、規制凹部63の底面630は、異物堆積部68の周方向の端部間において、径方向外側へ向かうに従い周方向の長さL21が大きくなるよう形成されている。
<8-14>
As shown in FIG. 104, the bottom surface 630 of the restricting recess 63 is formed between the circumferential ends of the foreign matter depositing portion 68 so that the circumferential length L21 increases toward the radially outer side.
 そのため、異物堆積部68の周方向の端部間において、隔壁部本体61の外筒壁面633側の部分の強度を確保できる。 Therefore, the strength of the portion on the outer cylinder wall surface 633 side of the partition wall main body 61 can be ensured between the circumferential ends of the foreign matter accumulation portion 68.
<8-15>
 図103、104に示すように、規制部631は、規制凹部63の底面630上を径方向外側へ向かって延びるよう形成されている。
<8-15>
As shown in FIGS. 103 and 104, the restricting portion 631 is formed to extend radially outward on the bottom surface 630 of the restricting recess 63.
<8-16>
 図104に示すように、規制部631は、規制凹部63の径方向外側へ向かうに従い周方向の長さL22が大きくなるよう形成されている。
<8-16>
As shown in FIG. 104, the restricting portion 631 is formed so that the circumferential length L22 becomes larger toward the radially outer side of the restricting recess 63.
 そのため、規制部631の外筒壁面633側の部分の強度を確保できる。 Therefore, the strength of the portion on the outer cylinder wall surface 633 side of the restricting portion 631 can be secured.
<8-17>
 図67、103に示すように、ハウジング20がエンジン2に取り付けられた状態において、異物堆積部68は、弁体31の下側に位置する。
<8-17>
As shown in FIGS. 67 and 103, the foreign material accumulation portion 68 is located below the valve body 31 in a state where the housing 20 is attached to the engine 2.
 より具体的には、異物堆積部68は、弁体31に対し鉛直方向下側に位置する。 More specifically, the foreign matter depositing portion 68 is located on the lower side in the vertical direction with respect to the valve body 31.
 そのため、異物堆積部68は、規制凹部63の底面630に対し下側に位置することになる。これにより、規制凹部63内の異物を異物堆積部68に効果的に導くことができる。 Therefore, the foreign matter accumulation portion 68 is positioned below the bottom surface 630 of the restriction recess 63. Thereby, the foreign substance in the regulation recessed part 63 can be effectively led to the foreign substance accumulation part 68.
 隔壁部本体61は、ハウジング本体21と同様、例えば「PPS-GF50」により形成されている。 The partition wall body 61 is formed of, for example, “PPS-GF50”, similarly to the housing body 21.
そのため、隔壁部本体61の耐熱性、耐吸水性、強度、寸法精度を向上できる。 Therefore, the heat resistance, water absorption resistance, strength, and dimensional accuracy of the partition wall body 61 can be improved.
<9-1>シャフト軸受部流路
 本実施形態は、車両1のエンジン2の冷却水を制御可能なバルブ装置10であって、ハウジング20とバルブ30とシャフト軸受部90とを備えている。
<9-1> Shaft Bearing Portion The present embodiment is a valve device 10 that can control the cooling water of the engine 2 of the vehicle 1, and includes a housing 20, a valve 30, and a shaft bearing portion 90.
 ハウジング20は、内側に内部空間200を形成するハウジング本体21、および、内部空間200とハウジング本体21の外部とを接続するポート(220、221、222、223)を有する。 The housing 20 includes a housing main body 21 that forms an internal space 200 on the inside, and ports (220, 221, 222, and 223) that connect the internal space 200 and the outside of the housing main body 21.
 バルブ30は、内部空間200内において回転軸Axr1周りに回転可能な弁体31、および、回転軸Axr1に設けられたシャフト32を有し、弁体31の回転位置によりポート(221、222、223)を開閉可能である。 The valve 30 includes a valve body 31 that can rotate around the rotation axis Axr1 in the internal space 200, and a shaft 32 that is provided on the rotation axis Axr1, and ports (221, 222, 223) depending on the rotational position of the valve body 31. ) Can be opened and closed.
 図105~107に示すように、シャフト軸受部90は、内部空間200を形成するハウジング本体21の内壁のうちシャフト32の端部に対向する内壁である対向内壁213から筒状に延び内側でシャフト32の端部を軸受け可能な軸受部本体91、および、軸受部本体91の内周壁と外周壁とを接続するよう形成された軸受部流路92を有する。 As shown in FIGS. 105 to 107, the shaft bearing portion 90 extends in a cylindrical shape from an opposed inner wall 213 which is an inner wall facing the end portion of the shaft 32 of the inner wall of the housing main body 21 forming the inner space 200, and the shaft is formed on the inner side. The bearing portion main body 91 capable of bearing the end portions of 32 and the bearing portion flow passage 92 formed so as to connect the inner peripheral wall and the outer peripheral wall of the bearing portion main body 91.
 そのため、軸受部本体91の内側に空気が溜まったとしても、軸受部流路92を経由して当該空気を軸受部本体91の外側へ排出することができる。これにより、シャフト32の端部とシャフト軸受部90とが乾燥した状態で摺動するのを抑制することができる。したがって、シャフト32の端部またはシャフト軸受部90が摩耗するのを抑制することができる。 Therefore, even if air accumulates inside the bearing portion main body 91, the air can be discharged to the outside of the bearing portion main body 91 via the bearing portion flow path 92. Thereby, it can suppress that the edge part of the shaft 32 and the shaft bearing part 90 slide in the dry state. Therefore, it is possible to prevent the end portion of the shaft 32 or the shaft bearing portion 90 from being worn.
<9-2>
 図107に示すように、軸受部流路92は、軸受部本体91の対向内壁213側の部位から対向内壁213とは反対側の端部まで延びるよう形成されている。
<9-2>
As shown in FIG. 107, the bearing portion flow path 92 is formed to extend from a portion of the bearing portion main body 91 on the opposite inner wall 213 side to an end portion on the opposite side to the opposite inner wall 213.
 そのため、軸受部本体91の内側に空気が溜まったとしても、軸受部流路92を経由して当該空気を軸受部本体91の外側へ速やかに排出することができる。 Therefore, even if air accumulates inside the bearing portion main body 91, the air can be quickly discharged to the outside of the bearing portion main body 91 via the bearing portion flow path 92.
<9-3>
 図105、106に示すように、弁体31は、内側にシャフト32の端部および軸受部本体91が位置するよう形成された弁体端部穴部314を有している。
<9-3>
As shown in FIGS. 105 and 106, the valve body 31 has a valve body end hole 314 formed so that the end of the shaft 32 and the bearing body 91 are located inside.
 そのため、弁体端部穴部314の内側に軸受部本体91を配置することにより、ハウジング本体21の回転軸Axr1方向の体格を小さくできる。これにより、バルブ装置10を小型化できる。 Therefore, the physique of the housing body 21 in the direction of the rotation axis Axr1 can be reduced by disposing the bearing body 91 inside the valve body end hole 314. Thereby, the valve device 10 can be reduced in size.
<9-4>
 図105、106に示すように、シャフト軸受部90は、軸受部本体91の内側に設けられ内側でシャフト32の端部を軸受け可能な筒状の内側軸受部93を有している。
<9-4>
As shown in FIGS. 105 and 106, the shaft bearing portion 90 has a cylindrical inner bearing portion 93 provided inside the bearing portion main body 91 and capable of bearing the end portion of the shaft 32 inside.
 そのため、軸受部本体91の摩耗を抑制できる。 Therefore, wear of the bearing body 91 can be suppressed.
<9-5>
 図105、106に示すように、弁体31は、内側にシャフト32の端部および軸受部本体91が位置するよう形成された弁体端部穴部314を有している。シャフト軸受部90は、軸受部本体91の内側に設けられ内側でシャフト32の端部を軸受け可能な筒状の内側軸受部93を有している。弁体端部穴部314の内径と軸受部本体91の外径との差は、軸受部本体91の内径とシャフト32の端部の外径との差より小さい。
<9-5>
As shown in FIGS. 105 and 106, the valve body 31 has a valve body end hole 314 formed so that the end of the shaft 32 and the bearing body 91 are located inside. The shaft bearing portion 90 has a cylindrical inner bearing portion 93 provided inside the bearing portion main body 91 and capable of bearing the end portion of the shaft 32 inside. The difference between the inner diameter of the valve body end hole 314 and the outer diameter of the bearing body 91 is smaller than the difference between the inner diameter of the bearing body 91 and the outer diameter of the end of the shaft 32.
 つまり、弁体端部穴部314と軸受部本体91との間の筒状の隙間S1は、比較的小さく、冷却水を積極的に流通させる程度の大きさには形成されていない。 That is, the cylindrical gap S1 between the valve body end hole portion 314 and the bearing portion main body 91 is relatively small and is not formed to a size that allows the coolant to actively flow.
<9-6>
 図105、106に示すように、ハウジング20がエンジン2に取り付けられた状態において、シャフト軸受部90は、対向内壁213の下側に位置する。
<9-6>
As shown in FIGS. 105 and 106, in a state where the housing 20 is attached to the engine 2, the shaft bearing portion 90 is located below the opposed inner wall 213.
 より具体的には、シャフト軸受部90は、対向内壁213に対し鉛直方向下側に位置する。 More specifically, the shaft bearing portion 90 is located on the lower side in the vertical direction with respect to the opposed inner wall 213.
 そのため、シャフト軸受部90は内部空間200の鉛直方向上側に位置し、内部空間200内の冷却水中の空気は、軸受部本体91の内側に溜まりやすい。しかしながら、軸受部本体91の内側に空気が溜まったとしても、軸受部流路92を経由して当該空気を軸受部本体91の外側へ排出することができる。 Therefore, the shaft bearing portion 90 is positioned on the upper side in the vertical direction of the internal space 200, and the air in the cooling water in the internal space 200 tends to accumulate inside the bearing portion main body 91. However, even if air accumulates inside the bearing portion main body 91, the air can be discharged to the outside of the bearing portion main body 91 via the bearing portion flow path 92.
 本実施形態では、軸受部本体91は、略円筒状に形成されている。軸受部流路92は、軸受部本体91の対向内壁213側の端部から対向内壁213とは反対側の端部まで延びるよう形成されている。軸受部流路92は、軸受部本体91の軸を挟むようにして軸受部本体91の周方向に等間隔で2つ形成されている(図107参照)。 In the present embodiment, the bearing portion main body 91 is formed in a substantially cylindrical shape. The bearing portion flow path 92 is formed so as to extend from an end portion on the opposite inner wall 213 side of the bearing portion main body 91 to an end portion on the opposite side to the opposite inner wall 213. Two bearing part flow paths 92 are formed at equal intervals in the circumferential direction of the bearing part main body 91 so as to sandwich the shaft of the bearing part main body 91 (see FIG. 107).
 図107に示すように、内側軸受部93には、軸受切欠き部931が形成されている。内側軸受部93は、例えばPPS等の樹脂により、略円筒状に形成されている。軸受切欠き部931は、内側軸受部93の内周壁と外周壁とを接続しつつ、内側軸受部93の一方の端部から他方の端部まで延びるよう形成されている。 As shown in FIG. 107, the inner bearing portion 93 is formed with a bearing notch portion 931. The inner bearing portion 93 is formed in a substantially cylindrical shape with a resin such as PPS, for example. The bearing notch portion 931 is formed to extend from one end portion of the inner bearing portion 93 to the other end portion while connecting the inner peripheral wall and the outer peripheral wall of the inner bearing portion 93.
 そのため、内側軸受部93の内側に空気が溜まったとしても、軸受切欠き部931を経由して当該空気を内側軸受部93の外側へ排出することができる。また、内側軸受部93に軸受切欠き部931が形成されていることにより、内側軸受部93をシャフト32の端部と軸受部本体91との間に容易に配置できる。 Therefore, even if air accumulates inside the inner bearing portion 93, the air can be discharged to the outside of the inner bearing portion 93 via the bearing notch portion 931. Further, since the bearing notch portion 931 is formed in the inner bearing portion 93, the inner bearing portion 93 can be easily disposed between the end portion of the shaft 32 and the bearing portion main body 91.
 軸受切欠き部931は、内側軸受部93の一方の端部から他方の端部まで、内側軸受部93の軸に対し傾斜しながら延びるよう形成されている。 The bearing notch portion 931 is formed to extend from one end portion of the inner bearing portion 93 to the other end portion while being inclined with respect to the axis of the inner bearing portion 93.
 そのため、内側軸受部93の周方向の任意の部位において、軸方向の位置に関係なく、内側軸受部93の内周壁をシャフト32の端部の外周壁に当接させることができる。これにより、内側軸受部93に軸受切欠き部931を形成した構成において、シャフト32を安定して軸受けできる。 Therefore, the inner peripheral wall of the inner bearing portion 93 can be brought into contact with the outer peripheral wall of the end portion of the shaft 32 at any portion in the circumferential direction of the inner bearing portion 93 regardless of the position in the axial direction. Thereby, in the structure which formed the bearing notch part 931 in the inner side bearing part 93, the shaft 32 can be bearing stably.
 図105、106に示すように、軸受部本体91は、出口ポート221の鉛直方向上側の端部の下側まで延びるよう形成されている。つまり、軸受部本体91の先端部は、出口ポート221の鉛直方向上側の端部よりも下側に位置している。 105 and 106, the bearing portion main body 91 is formed so as to extend to the lower side of the upper end portion of the outlet port 221 in the vertical direction. That is, the front end portion of the bearing portion main body 91 is located below the end portion on the upper side in the vertical direction of the outlet port 221.
 そのため、軸受部本体91の内側の空気を、出口ポート221を経由してハウジング本体21の外部へ容易に排出できる。 Therefore, the air inside the bearing body 91 can be easily discharged to the outside of the housing body 21 via the outlet port 221.
<10-1>非真円ハウジング内壁
 本実施形態は、車両1のエンジン2の冷却水を制御可能なバルブ装置10であって、ハウジング20とバルブ30とを備えている。
<10-1> Inner Wall of Non-Perfect Housing This embodiment is a valve device 10 that can control the cooling water of the engine 2 of the vehicle 1, and includes a housing 20 and a valve 30.
 ハウジング20は、内側に内部空間200を形成する筒状のハウジング内壁211が形成されたハウジング本体21、ハウジング内壁211に開口し内部空間200とハウジング本体21の外部とを接続するポート(220、221、222、223)を有する。 The housing 20 includes a housing main body 21 in which a cylindrical housing inner wall 211 forming an inner space 200 is formed inside, and ports (220, 221) that open in the housing inner wall 211 and connect the inner space 200 and the outside of the housing main body 21. , 222, 223).
 図67、108に示すように、バルブ30は、内部空間200内においてハウジング内壁211の軸Axn1に沿う回転軸Axr1周りに回転可能な弁体31、および、弁体31の外周壁と内周壁とを接続するよう形成された弁体開口部(410、420、430)を有し、弁体31の回転位置によりポートを開閉可能である。本実施形態では、軸Axn1と回転軸Axr1とは一致する。 As shown in FIGS. 67 and 108, the valve 30 includes a valve body 31 that can rotate around the rotation axis Axr1 along the axis Axn1 of the housing inner wall 211 in the internal space 200, and an outer peripheral wall and an inner peripheral wall of the valve body 31. The valve body opening (410, 420, 430) formed so as to be connected to each other, and the port can be opened and closed depending on the rotational position of the valve body 31. In the present embodiment, the axis Axn1 and the rotation axis Axr1 coincide.
 図108、109に示すように、ハウジング内壁211は、軸Axn1からの距離Dna1が周方向で異なるよう形成されている。 108 and 109, the housing inner wall 211 is formed such that the distance Dna1 from the axis Axn1 is different in the circumferential direction.
 そのため、弁体31の回転軸Axr1に垂直な断面における弁体31の外周壁の形状が円形の場合、弁体31の外周壁とハウジング内壁211との距離Dgn1は、周方向で異なる。すなわち、弁体31の外周壁とハウジング内壁211との距離Dgn1は周方向で一定ではなく、弁体31の外周壁とハウジング内壁211との間の隙間Sb10は、周方向で大きな部分(隙間Sb01)と小さな部分(隙間Sb02)とが形成される(図109参照)。これにより、内部空間200の冷却水中の異物が弁体31の外周壁とハウジング内壁211との間の隙間Sb10に入り込んだ場合でも、弁体31が回転することにより異物は大きな隙間Sb01に移動し、当該隙間Sb01から異物を容易に排出することができる。したがって、弁体31の外周壁とハウジング内壁211との間の隙間Sb10に異物が留まり続けることによる弁体31の作動不良を抑制することができる。また、弁体31の駆動に関する負荷トルクの増大、および、圧損抵抗の増大を抑制することができる。 Therefore, when the shape of the outer peripheral wall of the valve body 31 in a cross section perpendicular to the rotation axis Axr1 of the valve body 31 is circular, the distance Dgn1 between the outer peripheral wall of the valve body 31 and the housing inner wall 211 is different in the circumferential direction. That is, the distance Dgn1 between the outer peripheral wall of the valve body 31 and the housing inner wall 211 is not constant in the circumferential direction, and the gap Sb10 between the outer peripheral wall of the valve body 31 and the housing inner wall 211 is a large portion (gap Sb01). ) And a small portion (gap Sb02) are formed (see FIG. 109). Thus, even when foreign matter in the cooling water in the internal space 200 enters the gap Sb10 between the outer peripheral wall of the valve body 31 and the housing inner wall 211, the foreign matter moves to the large gap Sb01 by the rotation of the valve body 31. The foreign matter can be easily discharged from the gap Sb01. Therefore, it is possible to suppress the malfunction of the valve body 31 due to the foreign matter remaining in the gap Sb10 between the outer peripheral wall of the valve body 31 and the housing inner wall 211. Further, an increase in load torque related to driving of the valve body 31 and an increase in pressure loss resistance can be suppressed.
<10-2>
 図108、109に示すように、弁体31は、回転軸Axr1から外周壁までの距離Dga1が周方向で同じになるよう形成されている。つまり、弁体31の外周壁は、回転軸Axr1に垂直な断面において円形となるよう形成されている。
<10-2>
As shown in FIGS. 108 and 109, the valve body 31 is formed such that the distance Dga1 from the rotation axis Axr1 to the outer peripheral wall is the same in the circumferential direction. That is, the outer peripheral wall of the valve body 31 is formed to be circular in a cross section perpendicular to the rotation axis Axr1.
 そのため、上述のように、弁体31の外周壁とハウジング内壁211との距離Dgn1は、周方向で異なる。弁体31の外周壁とハウジング内壁211との間の隙間Sb10は、周方向で大きな部分(隙間Sb01)と小さな部分(隙間Sb02)とが形成される。したがって、弁体31の外周壁とハウジング内壁211との間の隙間Sb10に異物が留まり続けることによる弁体31の作動不良を抑制することができる。 Therefore, as described above, the distance Dgn1 between the outer peripheral wall of the valve body 31 and the housing inner wall 211 is different in the circumferential direction. In the gap Sb10 between the outer peripheral wall of the valve body 31 and the housing inner wall 211, a large part (gap Sb01) and a small part (gap Sb02) are formed in the circumferential direction. Therefore, it is possible to suppress the malfunction of the valve body 31 due to the foreign matter remaining in the gap Sb10 between the outer peripheral wall of the valve body 31 and the housing inner wall 211.
<10-3>
 図108に示すように、ハウジング内壁211は、軸Axn1に垂直な断面において非真円となるよう形成されている。
<10-3>
As shown in FIG. 108, the housing inner wall 211 is formed to be a non-circular circle in a cross section perpendicular to the axis Axn1.
 そのため、弁体31の外周壁とハウジング内壁211との間の隙間Sb10は、周方向で大きな部分(隙間Sb01)と小さな部分(隙間Sb02)とが形成される。 Therefore, the gap Sb10 between the outer peripheral wall of the valve body 31 and the housing inner wall 211 is formed with a large part (gap Sb01) and a small part (gap Sb02) in the circumferential direction.
<10-4>
 図108に示すように、ハウジング内壁211は、軸Axn1に垂直な断面において多角形となるよう形成されている。
<10-4>
As shown in FIG. 108, the housing inner wall 211 is formed in a polygonal shape in a cross section perpendicular to the axis Axn1.
 そのため、ハウジング内壁211の断面を円形に近付けハウジング本体21の径方向の体格を小さくしつつ、弁体31の外周壁とハウジング内壁211との間の隙間Sb10に周方向で大きな部分(隙間Sb01)と小さな部分(隙間Sb02)とを形成できる。 Therefore, the cross section of the housing inner wall 211 is made close to a circle, and the physique in the radial direction of the housing body 21 is made smaller, while a large portion in the circumferential direction (gap Sb01) is formed in the gap Sb10 between the outer peripheral wall of the valve body 31 and the housing inner wall 211. And a small portion (gap Sb02) can be formed.
 なお、本実施形態では、ハウジング内壁211は、軸Axn1に垂直な断面において八角形となるよう形成されている。また、断面八角形のハウジング内壁211の各辺の接続部分である角部214は、滑らかな曲線状になっている(図108、109参照)。 In the present embodiment, the housing inner wall 211 is formed in an octagonal shape in a cross section perpendicular to the axis Axn1. Further, the corner portion 214 which is a connecting portion of each side of the housing inner wall 211 having an octagonal cross section has a smooth curved shape (see FIGS. 108 and 109).
 そのため、ハウジング本体21の径方向の体格をより小さくすることができる。また、ハウジング内壁211の角部214に異物が留まるのを抑制できる。 Therefore, the physique in the radial direction of the housing body 21 can be further reduced. Further, it is possible to suppress foreign matters from staying at the corners 214 of the housing inner wall 211.
<10-5>
 図67に示すように、「弁体31の外径が最も大きい部分を含み、かつ、ハウジング内壁211の軸Axn1に垂直な断面(例えば図67においてPd1で示す面による断面)」において、弁体31の外周壁とハウジング内壁211との距離Dgn1は、周方向で異なる。
<10-5>
As shown in FIG. 67, in the “cross section including the portion having the largest outer diameter of the valve body 31 and perpendicular to the axis Axn1 of the housing inner wall 211 (for example, a cross section taken along the surface indicated by Pd1 in FIG. 67)” A distance Dgn1 between the outer peripheral wall 31 and the housing inner wall 211 differs in the circumferential direction.
 そのため、異物の影響が大きい「弁体31の外径が最も大きい部分」において、弁体31の外周壁とハウジング内壁211との間の隙間Sb10から異物を排出できる。 Therefore, the foreign matter can be discharged from the gap Sb10 between the outer peripheral wall of the valve body 31 and the housing inner wall 211 in the “part where the outer diameter of the valve body 31 is the largest” where the influence of the foreign matter is large.
<10-6>
 図67に示すように、「ハウジング内壁211のうちポート(220、221、222、223)が開口している部分以外の部分、および、弁体31のうち弁体開口部(410、420、430)が形成されている部分以外の部分を含み、かつ、ハウジング内壁211の軸Axn1に垂直な断面(例えば図67においてPd2で示す面による断面)」において、弁体31の外周壁とハウジング内壁211との距離Dgn1は、周方向で異なる。
<10-6>
As shown in FIG. 67, “a portion of the housing inner wall 211 other than the portion where the ports (220, 221, 222, 223) are open, and a valve body opening portion (410, 420, 430) of the valve body 31. ) And a section perpendicular to the axis Axn1 of the housing inner wall 211 (for example, a section taken along a plane indicated by Pd2 in FIG. 67) ”, the outer peripheral wall of the valve body 31 and the housing inner wall 211 Is different in the circumferential direction.
 そのため、異物の影響が大きい「弁体31の周方向の全域にわたり閉塞された隙間Sb10の部分」において、隙間Sb10から異物を排出できる。 Therefore, the foreign matter can be discharged from the gap Sb10 in the “portion of the gap Sb10 closed over the entire circumferential direction of the valve body 31” where the influence of the foreign matter is large.
<10-7>
 図68に示すように、ハウジング20は、ハウジング内壁211に開口し内部空間200とハウジング本体21の外部とを接続するリリーフポート224を有している。
<10-7>
As shown in FIG. 68, the housing 20 has a relief port 224 that opens in the housing inner wall 211 and connects the internal space 200 and the outside of the housing body 21.
 本実施形態は、リリーフ弁39をさらに備える。リリーフ弁39は、リリーフポート224に設けられ、条件に応じてリリーフポート224を開閉する。 The present embodiment further includes a relief valve 39. The relief valve 39 is provided in the relief port 224, and opens and closes the relief port 224 according to conditions.
 冷却水の流れに沿って異物を除去できない状況では、内部空間200に異物が溜まり、リリーフ弁39が開いたときに、異物が挟まることでリリーフ弁39が開いたままの状態になるおそれがある。 In a situation where foreign matter cannot be removed along the flow of cooling water, foreign matter may accumulate in the internal space 200, and when the relief valve 39 is opened, the relief valve 39 may remain open due to the foreign matter being caught. .
 そこで、本実施形態では、ハウジング内壁211を、軸Axn1からの距離Dna1が周方向で異なるよう形成すること等により、弁体31の外周壁とハウジング内壁211との距離Dgn1を周方向で異なるようにし、弁体31の外周壁とハウジング内壁211との間の隙間Sb10から異物を容易に排出できるようにしている。これにより、リリーフ弁39に異物が挟まりリリーフ弁39が開いたままの状態になるのを抑制できる。 Thus, in the present embodiment, the distance Dgn1 between the outer peripheral wall of the valve body 31 and the housing inner wall 211 is made different in the circumferential direction by forming the housing inner wall 211 such that the distance Dna1 from the axis Axn1 is different in the circumferential direction. In addition, foreign matter can be easily discharged from the gap Sb10 between the outer peripheral wall of the valve body 31 and the housing inner wall 211. Thereby, it can suppress that a foreign material is pinched | interposed into the relief valve 39, and the relief valve 39 will be in the open state.
<10-8>
 図67に示すように、本実施形態は、バルブシール36をさらに備えている。バルブシール36は、環状に形成され、弁体31の外周壁と摺動可能なようポート(221、222、223)に対応する位置に設けられ、弁体31の外周壁との間を液密に保持可能である。
<10-8>
As shown in FIG. 67, the present embodiment further includes a valve seal 36. The valve seal 36 is formed in an annular shape, is provided at a position corresponding to the ports (221, 222, 223) so as to be slidable with the outer peripheral wall of the valve body 31, and is liquid-tight between the outer peripheral wall of the valve body 31. Can be retained.
 「バルブシール36を含み、かつ、ハウジング内壁211の軸Axn1に垂直な断面(例えば図67においてPd1で示す面による断面)」において、弁体31の外周壁とハウジング内壁211との距離Dgn1は、周方向で異なる。 In a “cross section including the valve seal 36 and perpendicular to the axis Axn1 of the housing inner wall 211 (for example, a section taken along the surface indicated by Pd1 in FIG. 67)”, the distance Dgn1 between the outer peripheral wall of the valve body 31 and the housing inner wall 211 is Different in the circumferential direction.
 そのため、弁体31の外周壁とハウジング内壁211との間の隙間Sb10におけるバルブシール36の周囲から異物を除去することができる。これにより、弁体31の外周壁とバルブシール36との間に異物が挟み込まれることによる弁体31の外周壁の損傷を抑制できる。 Therefore, foreign matter can be removed from the periphery of the valve seal 36 in the gap Sb10 between the outer peripheral wall of the valve body 31 and the housing inner wall 211. Thereby, damage to the outer peripheral wall of the valve body 31 due to foreign matter being sandwiched between the outer peripheral wall of the valve body 31 and the valve seal 36 can be suppressed.
<10-9>
 図67に示すように、ハウジング20は、内周面がハウジング内壁211の軸Axn1方向の端部に接続し内部空間200とハウジング本体21の外部とを接続するハウジング開口部210を有している。
<10-9>
As shown in FIG. 67, the housing 20 has a housing opening 210 whose inner peripheral surface is connected to the end of the housing inner wall 211 in the direction of the axis Axn1 and connects the internal space 200 and the outside of the housing main body 21. .
 バルブ30は、回転軸Axr1に設けられたシャフト32を有している。 The valve 30 has a shaft 32 provided on the rotation axis Axr1.
 隔壁部60は、内部空間200とハウジング本体21の外部とを隔てるようハウジング開口部210に設けられた隔壁部本体61、および、シャフト32の一端を挿通可能なよう隔壁部本体61に形成されたシャフト挿通穴62を有する。 The partition wall 60 is formed in the partition wall body 61 provided in the housing opening 210 so as to separate the internal space 200 from the outside of the housing body 21 and the partition wall body 61 so that one end of the shaft 32 can be inserted. A shaft insertion hole 62 is provided.
 駆動部70は、隔壁部本体61に対し内部空間200とは反対側に設けられ、シャフト32の一端を経由して弁体31を回転駆動可能である。 The drive unit 70 is provided on the opposite side of the partition wall main body 61 from the internal space 200, and can rotate the valve body 31 via one end of the shaft 32.
 環状シール部材600は、ハウジング開口部210と隔壁部本体61との間に設けられ、ハウジング開口部210と隔壁部本体61との間を液密に保持可能である。 The annular seal member 600 is provided between the housing opening 210 and the partition wall main body 61, and can hold the space between the housing opening 210 and the partition wall main body 61 in a liquid-tight manner.
 ハウジング開口部210の内周面は、円筒状に形成されている。 The inner peripheral surface of the housing opening 210 is formed in a cylindrical shape.
 このように、ハウジング内壁211を断面が非真円となるよう形成しつつ、ハウジング開口部210の内周面を円筒状に形成することにより、弁体31の外周壁とハウジング内壁211との間の隙間Sb10からの異物の除去を容易にしつつ、ハウジング開口部210と隔壁部本体61とのシール性を確保することができる。 As described above, the inner wall 211 of the housing 31 is formed in a cylindrical shape while the inner wall 211 of the housing is formed to have a non-circular cross section, thereby forming a space between the outer wall of the valve body 31 and the housing inner wall 211. The sealing property between the housing opening 210 and the partition wall body 61 can be secured while facilitating the removal of foreign matter from the gap Sb10.
 本実施形態では、弁体31は内周壁および外周壁が球面状のボールバルブ41、42、43を含む。これに対し、他の実施形態では、弁体31は、例えば円筒状に形成されていてもよい。この場合でも、ハウジング内壁211等を上述のように形成することにより、弁体31の外周壁とハウジング内壁211との間の隙間Sb10から異物を容易に除去することができる。 In the present embodiment, the valve body 31 includes ball valves 41, 42, and 43 whose inner peripheral wall and outer peripheral wall are spherical. On the other hand, in other embodiments, the valve body 31 may be formed in a cylindrical shape, for example. Even in this case, foreign matters can be easily removed from the gap Sb10 between the outer peripheral wall of the valve body 31 and the housing inner wall 211 by forming the housing inner wall 211 and the like as described above.
<11-1>リリーフ弁遮蔽部
 本実施形態は、車両1のエンジン2の冷却水を制御可能なバルブ装置10であって、ハウジング20とバルブ30とリリーフ弁39と遮蔽部95とを備える。
<11-1> Relief Valve Shielding Section This embodiment is a valve device 10 that can control the cooling water of the engine 2 of the vehicle 1, and includes a housing 20, a valve 30, a relief valve 39, and a shielding section 95.
 ハウジング20は、内側に内部空間200を形成するハウジング本体21、内部空間200とハウジング本体21の外部とを接続し冷却水が流入する入口ポート220、および、内部空間200とハウジング本体21の外部とを接続するリリーフポート224を有する。 The housing 20 includes a housing main body 21 that forms an internal space 200 inside, an inlet port 220 that connects the internal space 200 and the outside of the housing main body 21 and into which cooling water flows, and an internal space 200 and the outside of the housing main body 21. Has a relief port 224 for connecting the two.
 バルブ30は、内部空間200内において回転軸Axr1周りに回転可能な弁体31、および、回転軸Axr1に設けられたシャフト32を有する。 The valve 30 has a valve body 31 that can rotate around the rotation axis Axr1 in the internal space 200, and a shaft 32 provided on the rotation axis Axr1.
 リリーフ弁39は、リリーフポート224に設けられ、条件に応じて開弁または閉弁し、リリーフポート224を経由した内部空間200とハウジング本体21の外部との連通を許容または遮断する。 The relief valve 39 is provided in the relief port 224, and opens or closes depending on the conditions, and allows or blocks communication between the internal space 200 and the outside of the housing body 21 via the relief port 224.
 ここで、リリーフ弁39の開弁条件は、例えば「周囲の温度が所定の温度以上になったとき」である。リリーフ弁39は、例えば冷却水の温度が所定の温度以上となったとき、開弁し、リリーフポート224を経由した内部空間200とハウジング本体21の外部すなわちパイプ部515の内側の空間との連通を許容し、冷却水の温度が所定の温度より低くなったとき、上記連通を遮断する。これにより、車両1のオーバーヒート時等、冷却水の温度が過度に上昇した場合、冷却水を内部空間200から外部のラジエータ5へ流し、冷却水を冷却することができる。 Here, the opening condition of the relief valve 39 is, for example, “when the ambient temperature becomes equal to or higher than a predetermined temperature”. The relief valve 39 opens, for example, when the temperature of the cooling water becomes equal to or higher than a predetermined temperature, and communicates between the internal space 200 via the relief port 224 and the space outside the housing body 21, that is, the space inside the pipe portion 515. And the communication is cut off when the temperature of the cooling water is lower than a predetermined temperature. Thereby, when the temperature of the cooling water rises excessively, such as when the vehicle 1 is overheated, the cooling water can be flowed from the internal space 200 to the external radiator 5 to cool the cooling water.
 図112に示すように、遮蔽部95は、入口ポート220からリリーフ弁39が目視できないようリリーフ弁39を遮蔽可能である。より具体的には、リリーフ弁39は、入口ポート220の軸方向から見たとき、遮蔽部95によって遮蔽され、全体が目視不能である。 112, the shielding portion 95 can shield the relief valve 39 so that the relief valve 39 cannot be seen from the inlet port 220. More specifically, when viewed from the axial direction of the inlet port 220, the relief valve 39 is shielded by the shielding portion 95 and cannot be visually observed as a whole.
 そのため、入口ポート220から内部空間200に流入した冷却水がリリーフ弁39に直撃するのを抑制することができる。これにより、瞬間的に温度の高い冷却水が流入したとき、または、局所的に温度の高い冷却水が流入したときでも、リリーフ弁39がオーバーヒートと誤認し誤作動により開弁するのを抑制することができる。したがって、リリーフ弁39により、車両1のオーバーヒートを適切に抑制可能である。 Therefore, it is possible to suppress the cooling water flowing into the internal space 200 from the inlet port 220 from hitting the relief valve 39 directly. This prevents the relief valve 39 from being erroneously recognized as overheating and being opened due to a malfunction even when high-temperature cooling water flows in instantaneously or even when high-temperature cooling water flows locally. be able to. Therefore, the relief valve 39 can appropriately suppress overheating of the vehicle 1.
<11-2>
 図112に示すように、遮蔽部95は、シャフト32に対しリリーフポート224側に位置するようハウジング本体21に設けられている。
<11-2>
As shown in FIG. 112, the shielding portion 95 is provided in the housing body 21 so as to be positioned on the relief port 224 side with respect to the shaft 32.
 そのため、遮蔽部95をリリーフ弁39に近付けて配置でき、リリーフ弁39への冷却水の直撃をより効果的に抑制できる。 Therefore, the shielding part 95 can be disposed close to the relief valve 39, and the direct hit of the cooling water to the relief valve 39 can be more effectively suppressed.
<11-4>
 図110、112に示すように、遮蔽部95は、入口ポート220の軸方向またはリリーフポート224の軸方向に入口ポート220、リリーフ弁39および遮蔽部95を投影したとき、入口ポート220の投影とリリーフ弁39の投影とが重なる部分B1(図110において格子で示す部分)の面積以上の面積の投影となるよう形成されている。
<11-4>
As shown in FIGS. 110 and 112, the shielding portion 95 is formed by projecting the inlet port 220 when the inlet port 220, the relief valve 39 and the shielding portion 95 are projected in the axial direction of the inlet port 220 or the axial direction of the relief port 224. The projection is formed so as to have an area that is equal to or larger than the area of the portion B1 (the portion indicated by the lattice in FIG. 110) where the projection of the relief valve 39 overlaps.
 そのため、リリーフ弁39への冷却水の直撃を確実に防ぎつつ、必要以上に流路面積を絞らないことで通水性を確保できる。 Therefore, it is possible to ensure water permeability by preventing the cooling water from directly hitting the relief valve 39 and not reducing the flow area more than necessary.
<11-5>
 図112に示すように、遮蔽部95のバルブ30側の面951は、内部空間200を形成するハウジング本体21の内壁であるハウジング内壁211の形状にならう形状となるよう形成されている。
<11-5>
As shown in FIG. 112, the surface 951 on the valve 30 side of the shielding part 95 is formed to have a shape that follows the shape of the housing inner wall 211 that is the inner wall of the housing body 21 that forms the inner space 200.
 そのため、遮蔽部95による内部空間200内の流体流れの乱れの発生を抑制できる。また、遮蔽部95への応力集中を防ぎ、ハウジング本体21の耐久性を高めることができる。 Therefore, it is possible to suppress the occurrence of fluid flow turbulence in the internal space 200 due to the shield 95. Further, stress concentration on the shielding part 95 can be prevented, and the durability of the housing body 21 can be enhanced.
<11-6>
 図112に示すように、遮蔽部95は、板状に形成され、板厚が均一である。
<11-6>
As shown in FIG. 112, the shielding part 95 is formed in a plate shape, and the plate thickness is uniform.
 そのため、遮蔽部95への応力集中を防ぎ、ハウジング本体21の耐久性を高めることができる。 Therefore, stress concentration on the shielding part 95 can be prevented, and the durability of the housing body 21 can be improved.
 本実施形態では、リリーフ弁39は、「周囲の温度が所定の温度以上になったとき」開弁する。これに対し、他の実施形態では、リリーフ弁39は、「圧力が所定の圧力以上になったとき」開弁することとしてもよい。あるいは、リリーフ弁39は、「周囲の温度が所定の温度以上になったとき」、かつ、「圧力が所定の圧力以上になったとき」開弁することとしてもよい。この場合でも、遮蔽部95によりリリーフ弁39への冷却水の直撃を抑制することで、リリーフ弁39の誤作動を抑制できる。 In the present embodiment, the relief valve 39 opens “when the ambient temperature is equal to or higher than a predetermined temperature”. On the other hand, in another embodiment, the relief valve 39 may be opened “when the pressure becomes equal to or higher than a predetermined pressure”. Alternatively, the relief valve 39 may be opened “when the ambient temperature becomes a predetermined temperature or higher” and “when the pressure becomes a predetermined pressure or higher”. Even in this case, the malfunction of the relief valve 39 can be suppressed by suppressing the direct hit of the cooling water to the relief valve 39 by the shielding portion 95.
  (第15実施形態)
 第15実施形態によるバルブ装置について図113、114に基づき説明する。第15実施形態は、弁体31の構成等が第14実施形態と異なる。
(Fifteenth embodiment)
A valve device according to a fifteenth embodiment will be described with reference to FIGS. The fifteenth embodiment is different from the fourteenth embodiment in the configuration of the valve body 31 and the like.
 本実施形態では、弁体31の周方向における弁体開口部410、420、430の形成位置および大きさが第14実施形態と異なる。 In this embodiment, the formation positions and sizes of the valve body openings 410, 420, and 430 in the circumferential direction of the valve body 31 are different from those in the 14th embodiment.
 本実施形態では、ボールバルブ41、筒状接続部44、ボールバルブ42、筒状バルブ接続部45、ボールバルブ43の並び方向および形状等は、第14実施形態と同様である(図90~102等参照)。また、本実施形態では、弁体開口部410は、第14実施形態と同様、大開口部412および延伸開口部413を有している(図93、94等参照)。 In this embodiment, the arrangement direction and shape of the ball valve 41, the cylindrical connection portion 44, the ball valve 42, the cylindrical valve connection portion 45, and the ball valve 43 are the same as in the fourteenth embodiment (FIGS. 90 to 102). Etc.). Moreover, in this embodiment, the valve body opening part 410 has the large opening part 412 and the extending | stretching opening part 413 similarly to 14th Embodiment (refer FIG. 93, 94 grade | etc.,).
<12-1>フローダイアグラム
 本実施形態は、車両1のエンジン2の冷却水を制御可能なバルブ装置10であって、ハウジング20とバルブ30と駆動部70と制御部としてのECU8とを備える。
<12-1> Flow Diagram This embodiment is a valve device 10 that can control the cooling water of the engine 2 of the vehicle 1 and includes a housing 20, a valve 30, a drive unit 70, and an ECU 8 as a control unit.
 ハウジング20は、内部空間200、内部空間200に接続し車両1のラジエータ5に接続されるラジエータポートとしての出口ポート221、内部空間200に接続し車両1のヒータ6に接続されるヒータポートとしての出口ポート222、および、内部空間200に接続し車両1のデバイス7に接続されるデバイスポートとしての出口ポート223を有する。以下、簡単のため、適宜、出口ポート221、222、223を、それぞれ、ラジエータポート221、ヒータポート222、デバイスポート223と読み替える。 The housing 20 is connected to the internal space 200, the outlet port 221 as a radiator port connected to the radiator 5 of the vehicle 1, and the heater port connected to the heater 6 of the vehicle 1 connected to the internal space 200. It has an exit port 222 and an exit port 223 as a device port connected to the internal space 200 and connected to the device 7 of the vehicle 1. Hereinafter, for the sake of simplicity, the outlet ports 221, 222, and 223 are appropriately replaced with the radiator port 221, the heater port 222, and the device port 223, respectively.
 バルブ30は、内部空間200内において回転軸Axr1周りに回転可能な弁体31を有し、弁体31の回転位置によりラジエータポート221、ヒータポート222またはデバイスポート223を開閉可能である。 The valve 30 has a valve body 31 that can rotate around the rotation axis Axr1 in the internal space 200, and can open and close the radiator port 221, the heater port 222, or the device port 223 according to the rotational position of the valve body 31.
 駆動部70は、弁体31を回転駆動可能である。 The driving unit 70 can drive the valve body 31 to rotate.
 ECU8は、駆動部70の作動を制御し弁体31の回転駆動を制御することで、ラジエータポート221とラジエータ5との間、ヒータポート222とヒータ6との間、および、デバイスポート223とデバイス7との間の冷却水の流れを制御可能である。 The ECU 8 controls the operation of the drive unit 70 to control the rotational drive of the valve body 31, so that between the radiator port 221 and the radiator 5, between the heater port 222 and the heater 6, and between the device port 223 and the device The flow of the cooling water between 7 can be controlled.
 図113、114に示すように、ECU8は、弁体31が回転方向の一方側に回転駆動するに従い、ラジエータポート221、ヒータポート222およびデバイスポート223の全ての開度が0より大きい所定開度になった後、ヒータポート222およびデバイスポート223が閉じ、ラジエータポート221のみ開度が前記所定開度になるよう駆動部70および弁体31を制御可能である。 As shown in FIGS. 113 and 114, the ECU 8 determines that the opening degree of all of the radiator port 221, the heater port 222, and the device port 223 is greater than 0 as the valve element 31 is driven to rotate in one direction. After that, the heater port 222 and the device port 223 are closed, and the drive unit 70 and the valve body 31 can be controlled so that the opening degree of only the radiator port 221 becomes the predetermined opening degree.
 そのため、エンジン2の冷却効率を高めることが可能な程度の開度に前記所定開度を設定し、ラジエータポート221のみ開度が前記所定開度になるよう駆動部70および弁体31を制御することで、エンジン2の高負荷時の冷却効率の最大化を図ることができる。 Therefore, the predetermined opening is set to an opening that can increase the cooling efficiency of the engine 2, and the drive unit 70 and the valve body 31 are controlled so that the opening of only the radiator port 221 becomes the predetermined opening. As a result, it is possible to maximize the cooling efficiency of the engine 2 when the load is high.
<12-2>
 図113、114に示すように、ECU8は、弁体31が回転方向の一方側に回転駆動するに従い、ラジエータポート221、ヒータポート222およびデバイスポート223の全ての開度が前記所定開度になった後、ヒータポート222およびデバイスポート223がヒータポート222、デバイスポート223の順で閉じるよう駆動部70および弁体31を制御可能である。
<12-2>
As shown in FIGS. 113 and 114, as the valve body 31 is driven to rotate in one direction of rotation, the ECU 8 has all the opening degrees of the radiator port 221, the heater port 222, and the device port 223 at the predetermined opening degree. After that, the drive unit 70 and the valve body 31 can be controlled so that the heater port 222 and the device port 223 are closed in the order of the heater port 222 and the device port 223.
 そのため、ヒータ6からの熱交換を即座に遮断し、エンジン2の冷却効率を高めることができる。 Therefore, heat exchange from the heater 6 can be immediately interrupted, and the cooling efficiency of the engine 2 can be increased.
<12-9>
 前記所定開度は、60%以上に設定されている。
<12-9>
The predetermined opening is set to 60% or more.
 そのため、ラジエータポート221のみ開度が前記所定開度になるよう駆動部70および弁体31を制御することで、エンジン2の高負荷時の冷却効率の最大化を適切に図ることができる。 Therefore, by controlling the drive unit 70 and the valve body 31 so that the opening degree of only the radiator port 221 becomes the predetermined opening degree, the cooling efficiency at the time of high load of the engine 2 can be appropriately maximized.
 なお、本実施形態では、エンジン2の冷却効率を最大限に高めるため、前記所定開度は100%に設定されている。 In the present embodiment, the predetermined opening degree is set to 100% in order to maximize the cooling efficiency of the engine 2.
 そのため、ラジエータポート221のみ開度が前記所定開度になるよう駆動部70および弁体31を制御することで、エンジン2の高負荷時の冷却効率を最大限に高めることができる。 Therefore, the cooling efficiency at the time of high load of the engine 2 can be maximized by controlling the drive unit 70 and the valve body 31 so that the opening degree of only the radiator port 221 becomes the predetermined opening degree.
<12-10>
 弁体31は、外周壁および内周壁が球面状に形成されている(図67等参照)。
<12-10>
The valve body 31 has an outer peripheral wall and an inner peripheral wall formed in a spherical shape (see FIG. 67 and the like).
 バルブ30は、弁体31の内周壁の内側に形成された弁体内流路300、弁体31の外周壁と内周壁とを接続するよう形成され弁体31の回転位置によりラジエータポート221との重合割合であるラジエータ重合割合が変化するラジエータ用開口部としての弁体開口部410、弁体31の外周壁と内周壁とを接続するよう形成され弁体31の回転位置によりヒータポート222との重合割合であるヒータ重合割合が変化するヒータ用開口部としての弁体開口部420、および、弁体31の外周壁と内周壁とを接続するよう形成され弁体31の回転位置によりデバイスポート223との重合割合であるデバイス重合割合が変化するデバイス用開口部としての弁体開口部430を有している。以下、簡単のため、適宜、弁体開口部410、420、430を、それぞれ、ラジエータ用開口部410、ヒータ用開口部420、デバイス用開口部430と読み替える。 The valve 30 is formed so as to connect the valve body flow path 300 formed inside the inner peripheral wall of the valve body 31, the outer peripheral wall and the inner peripheral wall of the valve body 31, and is connected to the radiator port 221 depending on the rotational position of the valve body 31. A valve body opening 410 serving as a radiator opening, where the polymerization ratio of the radiator, which is a polymerization ratio, is formed so as to connect the outer peripheral wall and the inner peripheral wall of the valve body 31. The device port 223 is formed so as to connect the valve body opening 420 serving as the heater opening with the heater polymerization ratio, which is the polymerization ratio, and the outer peripheral wall and the inner peripheral wall of the valve body 31. It has the valve body opening part 430 as an opening part for devices from which the device superposition | polymerization rate which is a superposition | polymerization rate changes. Hereinafter, for the sake of simplicity, the valve body openings 410, 420, and 430 will be appropriately replaced with the radiator opening 410, the heater opening 420, and the device opening 430, respectively.
 このように、本実施形態は、外周壁および内周壁が球面状の弁体31であるロータリーバルブにより実現可能である。 As described above, this embodiment can be realized by a rotary valve in which the outer peripheral wall and the inner peripheral wall are the spherical valve elements 31.
 ここで、ラジエータ重合割合は、より詳細には、ラジエータポート221に設けられたシールユニット35のバルブシール36のシール開口部360とラジエータ用開口部410との重なり面積の最大値に対するシール開口部360とラジエータ用開口部410との重なり面積の割合であり、ラジエータポート221の開度に対応している。 Here, the radiator polymerization rate is more specifically determined by the seal opening 360 with respect to the maximum overlap area between the seal opening 360 of the valve seal 36 and the radiator opening 410 of the seal unit 35 provided in the radiator port 221. And the opening area of the radiator port 410, and corresponds to the opening of the radiator port 221.
 ヒータ重合割合は、より詳細には、ヒータポート222に設けられたシールユニット35のバルブシール36のシール開口部360とヒータ用開口部420との重なり面積の最大値に対するシール開口部360とヒータ用開口部420との重なり面積の割合であり、ヒータポート222の開度に対応している。 More specifically, the heater polymerization rate is determined by the seal opening 360 and the heater for the maximum overlap area between the seal opening 360 and the heater opening 420 of the valve seal 36 of the seal unit 35 provided in the heater port 222. It is the ratio of the overlapping area with the opening 420 and corresponds to the opening of the heater port 222.
 デバイス重合割合は、より詳細には、デバイスポート223に設けられたシールユニット35のバルブシール36のシール開口部360とデバイス用開口部430との重なり面積の最大値に対するシール開口部360とデバイス用開口部430との重なり面積の割合であり、デバイスポート223の開度に対応している。 More specifically, the device polymerization rate is determined by the seal opening 360 and the device for the device with respect to the maximum overlap area between the seal opening 360 and the device opening 430 of the valve seal 36 of the seal unit 35 provided in the device port 223. It is the ratio of the overlapping area with the opening 430 and corresponds to the opening of the device port 223.
<12-11>
 ラジエータ重合割合が0より大きいとき、ラジエータポート221が開き、ラジエータ用開口部410およびラジエータポート221を経由して弁体内流路300とラジエータ5とが連通する。これにより、このとき、弁体内流路300からラジエータ5側へ冷却水が流れる。
<12-11>
When the radiator polymerization rate is greater than 0, the radiator port 221 is opened, and the valve body flow path 300 and the radiator 5 communicate with each other via the radiator opening 410 and the radiator port 221. Thereby, at this time, the cooling water flows from the valve body flow path 300 to the radiator 5 side.
 ヒータ重合割合が0より大きいとき、ヒータポート222が開き、ヒータ用開口部420およびヒータポート222を経由して弁体内流路300とヒータ6とが連通する。これにより、このとき、弁体内流路300からヒータ6側へ冷却水が流れる。 When the heater polymerization ratio is greater than 0, the heater port 222 is opened, and the valve body flow path 300 and the heater 6 communicate with each other via the heater opening 420 and the heater port 222. Thereby, at this time, cooling water flows from the valve body flow path 300 to the heater 6 side.
 デバイス重合割合が0より大きいとき、デバイスポート223が開き、デバイス用開口部430およびデバイスポート223を経由して弁体内流路300とデバイス7とが連通する。これにより、このとき、弁体内流路300からデバイス7側へ冷却水が流れる。 When the device polymerization ratio is greater than 0, the device port 223 is opened, and the valve body channel 300 and the device 7 communicate with each other via the device opening 430 and the device port 223. Thereby, at this time, cooling water flows from the valve body flow path 300 to the device 7 side.
 次に、本実施形態のバルブ装置10における冷却水のフローダイアグラムについて、図113、114に基づき詳細に説明する。 Next, a flow diagram of the cooling water in the valve device 10 of the present embodiment will be described in detail based on FIGS.
 図113、114に示すように、弁体31の回転位置が基準位置である0(度)のとき(図114における回転位置Pr0のとき)、すなわち、第1規制凸部332または第2規制凸部342の一方が規制部631に当接し弁体31の回転が規制されているとき、ラジエータポート221、ヒータポート222、デバイスポート223の開度は、いずれも、0%(全閉)である。以下、Pr0~13と記載した場合、図114における回転位置Pr0~13を意味する。 As shown in FIGS. 113 and 114, when the rotational position of the valve body 31 is 0 (degrees), which is the reference position (in the rotational position Pr0 in FIG. 114), that is, the first restricting protrusion 332 or the second restricting protrusion. When one of the portions 342 contacts the restricting portion 631 and the rotation of the valve body 31 is restricted, the opening degrees of the radiator port 221, the heater port 222, and the device port 223 are all 0% (fully closed). . Hereinafter, Pr0 to 13 mean the rotational positions Pr0 to Pr13 in FIG.
 ECU8による駆動部70の制御によって、弁体31が回転方向の一方側に回転駆動し、弁体31の回転位置が0から大きくなると、Pr2とPr3との間で、ヒータポート222の開度が0(%)から所定の割合で増大する。これにより、ヒータポート222の開度に応じた量の冷却水がヒータ6側に流れる。ヒータポート222の開度は、Pr3で100%(全開:前記所定開度)に達する。 When the valve body 31 is rotationally driven to one side in the rotational direction by the control of the drive unit 70 by the ECU 8, and the rotational position of the valve body 31 increases from 0, the opening degree of the heater port 222 is between Pr2 and Pr3. It increases at a predetermined rate from 0 (%). Thereby, an amount of cooling water corresponding to the opening degree of the heater port 222 flows to the heater 6 side. The opening degree of the heater port 222 reaches 100% at Pr3 (fully open: the predetermined opening degree).
 弁体31が回転方向の一方側にさらに回転駆動すると、Pr4とPr5との間で、デバイスポート223の開度が0(%)から所定の割合で増大する。これにより、デバイスポート223の開度に応じた量の冷却水がデバイス7側に流れる。デバイスポート223の開度は、Pr5で100%(全開:前記所定開度)に達する。 When the valve body 31 is further rotated to one side in the rotation direction, the opening degree of the device port 223 increases from 0 (%) to a predetermined rate between Pr4 and Pr5. Thereby, an amount of cooling water corresponding to the opening degree of the device port 223 flows to the device 7 side. The opening degree of the device port 223 reaches 100% (full open: the predetermined opening degree) at Pr5.
 ここで、弁体31の単位回転角度当りのPr2とPr3との間におけるヒータポート222の開度の増大割合は、Pr4とPr5との間におけるデバイスポート223の開度の増大割合と同じである(図113、114参照)。 Here, the increasing rate of the opening degree of the heater port 222 between Pr2 and Pr3 per unit rotation angle of the valve body 31 is the same as the increasing rate of the opening degree of the device port 223 between Pr4 and Pr5. (See FIGS. 113 and 114).
 弁体31が回転方向の一方側にさらに回転駆動すると、Pr6とPr7との間で、ラジエータポート221の開度が0(%)から所定の割合で増大する。これにより、ラジエータポート221の開度に応じた量の冷却水がラジエータ5側に流れる。 When the valve body 31 is further rotated to one side in the rotational direction, the opening degree of the radiator port 221 increases from 0 (%) at a predetermined rate between Pr6 and Pr7. Thereby, an amount of cooling water corresponding to the opening degree of the radiator port 221 flows to the radiator 5 side.
 弁体31が回転方向の一方側にさらに回転駆動すると、Pr7とPr8との間で、ラジエータポート221の開度が所定の割合でさらに増大する。ラジエータポート221の開度は、Pr8で100%(全開:前記所定開度)に達する。そのため、Pr8において、ラジエータポート221、ヒータポート222およびデバイスポート223の全ての開度が前記所定開度すなわち100%になる。 When the valve body 31 is further rotationally driven to one side in the rotational direction, the opening degree of the radiator port 221 further increases at a predetermined rate between Pr7 and Pr8. The opening degree of the radiator port 221 reaches 100% (full opening: the predetermined opening degree) at Pr8. Therefore, in Pr8, all the openings of the radiator port 221, the heater port 222, and the device port 223 become the predetermined opening, that is, 100%.
 ここで、弁体31の単位回転角度当りのPr6とPr7との間におけるラジエータポート221の開度の増大割合は、Pr7とPr8との間におけるラジエータポート221の開度の増大割合より小さい(図113、114参照)。これは、ラジエータ用開口部410が延伸開口部413と大開口部412とから形成されていることによる(図93、94等参照)。つまり、ラジエータポート221の開度の増大割合は、延伸開口部413とシール開口部360とが重なるとき小さく、大開口部412とシール開口部360とが重なるとき大きくなる。 Here, the increase rate of the opening of the radiator port 221 between Pr6 and Pr7 per unit rotation angle of the valve body 31 is smaller than the increase rate of the opening of the radiator port 221 between Pr7 and Pr8 (FIG. 113, 114). This is because the radiator opening 410 is formed of the extended opening 413 and the large opening 412 (see FIGS. 93 and 94). That is, the increasing rate of the opening of the radiator port 221 is small when the extending opening 413 and the seal opening 360 are overlapped, and is increased when the large opening 412 and the seal opening 360 are overlapped.
 そのため、ラジエータポート221の開弁初期において、ラジエータ5への冷却水の流量を徐々に大きくすることができる。これにより、ラジエータ5の熱交換による冷却水の急激な温度変化を抑制することができる。 Therefore, at the initial opening of the radiator port 221, the flow rate of the cooling water to the radiator 5 can be gradually increased. Thereby, the rapid temperature change of the cooling water by the heat exchange of the radiator 5 can be suppressed.
 また、弁体31の単位回転角度当りのPr6とPr7との間におけるラジエータポート221の開度の増大割合、および、Pr7とPr8との間におけるラジエータポート221の開度の増大割合は、Pr2とPr3との間におけるヒータポート222の開度の増大割合、Pr4とPr5との間におけるデバイスポート223の開度の増大割合より小さい(図113、114参照)。 Further, the increase rate of the opening degree of the radiator port 221 between Pr6 and Pr7 per unit rotation angle of the valve body 31 and the increase rate of the opening degree of the radiator port 221 between Pr7 and Pr8 are Pr2 and Pr2. The rate of increase in the opening degree of the heater port 222 with respect to Pr3 is smaller than the rate of increase in the opening degree of the device port 223 between Pr4 and Pr5 (see FIGS. 113 and 114).
 そのため、開弁初期におけるラジエータ5への冷却水の流量変化を、ヒータ6、デバイス7への冷却水の流量変化と比べ、緩やかにすることができる。これにより、ラジエータ5の熱交換による冷却水の急激な温度変化を抑制することができる。 Therefore, the change in the flow rate of the cooling water to the radiator 5 at the initial stage of the valve opening can be made slower than the change in the flow rate of the cooling water to the heater 6 and the device 7. Thereby, the rapid temperature change of the cooling water by the heat exchange of the radiator 5 can be suppressed.
 弁体31が回転方向の一方側にさらに回転駆動すると、Pr9とPr10との間で、ヒータポート222の開度が100%から所定の割合で減少する。これにより、ヒータ6側に流れる冷却水の量がヒータポート222の開度に応じて減少する。ヒータポート222の開度は、Pr10で0%(全閉)になる。これにより、ヒータポート222が閉じ、ヒータ6側への冷却水の流れが遮断される。 When the valve body 31 is further rotationally driven to one side in the rotational direction, the opening degree of the heater port 222 is decreased from 100% to a predetermined ratio between Pr9 and Pr10. As a result, the amount of cooling water flowing to the heater 6 side decreases according to the opening degree of the heater port 222. The opening degree of the heater port 222 is 0% (fully closed) at Pr10. Thereby, the heater port 222 is closed and the flow of the cooling water to the heater 6 side is interrupted.
 弁体31が回転方向の一方側にさらに回転駆動すると、Pr11とPr12との間で、デバイスポート223の開度が100%から所定の割合で減少する。これにより、デバイス7側に流れる冷却水の量がデバイスポート223の開度に応じて減少する。デバイスポート223の開度は、Pr12で0%(全閉)になる。これにより、デバイスポート223が閉じ、デバイス7側への冷却水の流れが遮断される。 When the valve body 31 is further rotationally driven to one side in the rotational direction, the opening degree of the device port 223 decreases between 100% and Pr12 at a predetermined rate between Pr11 and Pr12. As a result, the amount of cooling water flowing to the device 7 side decreases according to the opening degree of the device port 223. The opening degree of the device port 223 becomes 0% (fully closed) at Pr12. Thereby, the device port 223 is closed and the flow of the cooling water to the device 7 side is blocked.
 ここで、弁体31の単位回転角度当りのPr9とPr10との間におけるヒータポート222の開度の減少割合は、Pr11とPr12との間におけるデバイスポート223の開度の減少割合と同じである(図113、114参照)。 Here, the decreasing rate of the opening degree of the heater port 222 between Pr9 and Pr10 per unit rotation angle of the valve body 31 is the same as the decreasing rate of the opening degree of the device port 223 between Pr11 and Pr12. (See FIGS. 113 and 114).
 弁体31が回転方向の一方側にさらに回転駆動すると、Pr13で、第1規制凸部332または第2規制凸部342の他方が規制部631に当接し、弁体31の回転駆動が停止する。このとき、ラジエータポート221の開度は、100%のままである。すなわち、このとき、ラジエータポート221のみ開度が100%(全開:前記所定開度)になっている。 When the valve body 31 is further rotationally driven to one side in the rotation direction, at Pr13, the other of the first restriction convex part 332 or the second restriction convex part 342 contacts the restriction part 631, and the rotational drive of the valve body 31 stops. . At this time, the opening degree of the radiator port 221 remains 100%. That is, at this time, only the radiator port 221 has an opening degree of 100% (fully open: the predetermined opening degree).
 本実施形態では、上述のように、ECU8は、弁体31が回転方向の一方側に回転駆動するに従い、ラジエータポート221、ヒータポート222およびデバイスポート223の全ての開度がPr8で前記所定開度(100%)になった後、Pr10、Pr12でヒータポート222およびデバイスポート223が閉じ、Pr13でラジエータポート221のみ開度が前記所定開度(100%)になるよう駆動部70および弁体31を制御可能である。 In the present embodiment, as described above, as the valve body 31 is rotationally driven to one side in the rotational direction, the ECU 8 is configured such that all the opening degrees of the radiator port 221, the heater port 222, and the device port 223 are Pr8. After reaching the degree (100%), the heater port 222 and the device port 223 are closed by Pr10 and Pr12, and the opening of only the radiator port 221 is set to the predetermined opening (100%) at Pr13 and the valve body 70 31 can be controlled.
 また、本実施形態では、上述のように、ECU8は、弁体31が回転方向の一方側に回転駆動するに従い、ラジエータポート221、ヒータポート222およびデバイスポート223の全ての開度がPr8で前記所定開度(100%)になった後、ヒータポート222およびデバイスポート223がヒータポート222、デバイスポート223の順(Pr10、Pr12)で閉じるよう駆動部70および弁体31を制御可能である。 In the present embodiment, as described above, the ECU 8 is configured such that the opening degree of the radiator port 221, the heater port 222, and the device port 223 is Pr8 as the valve body 31 is rotationally driven to one side in the rotational direction. After reaching the predetermined opening (100%), the drive unit 70 and the valve body 31 can be controlled so that the heater port 222 and the device port 223 are closed in the order of the heater port 222 and the device port 223 (Pr10, Pr12).
  (第16実施形態)
 第16実施形態によるバルブ装置を図115に示す。第16実施形態は、締結部231~233の形状等が第14実施形態と異なる。
(Sixteenth embodiment)
FIG. 115 shows a valve device according to the sixteenth embodiment. The sixteenth embodiment differs from the fourteenth embodiment in the shapes of the fastening portions 231 to 233.
<1-11>
 締結部231は、締結穴241に垂直な面による断面における形状が直線状となる2つの外壁(234、235)を有し、当該2つの外壁(234、235)の成す角θ1が鈍角となるよう形成されている。
<1-11>
The fastening portion 231 has two outer walls (234, 235) in which the shape in a section perpendicular to the fastening hole 241 is linear, and an angle θ1 formed by the two outer walls (234, 235) is an obtuse angle. It is formed as follows.
 締結部232は、締結穴242に垂直な面による断面における形状が直線状となる2つの外壁(236、237)を有し、当該2つの外壁(236、237)の成す角θ2が鈍角となるよう形成されている。 The fastening portion 232 has two outer walls (236, 237) that are linear in cross section by a plane perpendicular to the fastening hole 242, and an angle θ2 formed by the two outer walls (236, 237) is an obtuse angle. It is formed as follows.
 締結部233は、締結穴243に垂直な面による断面における形状が直線状となる2つの外壁(238、239)を有し、当該2つの外壁(238、239)の成す角θ3が鈍角となるよう形成されている。 The fastening portion 233 has two outer walls (238, 239) in which the shape in a section perpendicular to the fastening hole 243 is linear, and an angle θ3 formed by the two outer walls (238, 239) is an obtuse angle. It is formed as follows.
 そのため、締結部231~233の強度を向上でき、バルブ装置10の耐震性を向上できる。なお、バルブ装置10は、使用時、内部空間200に冷却水が流入するため、冷却水を含む装置の重量が比較的大きくなる。そのため、締結部231~233の強度を向上することにより、限られた搭載スペース(狭小空間A1)においてバルブ装置10を確実に固定できる。 Therefore, the strength of the fastening portions 231 to 233 can be improved, and the earthquake resistance of the valve device 10 can be improved. In addition, since the cooling water flows into the internal space 200 when the valve device 10 is used, the weight of the device including the cooling water becomes relatively large. Therefore, by improving the strength of the fastening portions 231 to 233, the valve device 10 can be reliably fixed in a limited mounting space (narrow space A1).
 図115に示すように、弁体31の回転軸Axr1方向において、締結部231が形成されている範囲は、締結部232と締結部233が形成されている範囲と重複している。 115, in the direction of the rotation axis Axr1 of the valve body 31, the range in which the fastening portion 231 is formed overlaps with the range in which the fastening portion 232 and the fastening portion 233 are formed.
 そのため、ハウジング本体21をエンジン2に安定して固定できる。 Therefore, the housing body 21 can be stably fixed to the engine 2.
 弁体31の回転軸Axr1方向における締結部231、232、233の長さは、入口ポート220の直径より大きい。 The lengths of the fastening portions 231, 232, 233 in the direction of the rotation axis Axr 1 of the valve body 31 are larger than the diameter of the inlet port 220.
 そのため、ハウジング本体21をエンジン2に安定して固定できる。 Therefore, the housing body 21 can be stably fixed to the engine 2.
 弁体31の回転軸Axr1方向における締結部231の長さは、弁体31の回転軸Axr1方向における締結部232または締結部233の長さより大きい。 The length of the fastening portion 231 in the direction of the rotation axis Axr1 of the valve body 31 is larger than the length of the fastening portion 232 or the fastening portion 233 in the direction of the rotation axis Axr1 of the valve body 31.
 そのため、3つの締結部のうち1つしかない側について、ハウジング本体21をエンジン2に固定したときのハウジング本体21の左右両方向(幅方向)のバランスを確保できる。 Therefore, it is possible to secure a balance in the left and right directions (width direction) of the housing body 21 when the housing body 21 is fixed to the engine 2 on the side where only one of the three fastening portions is provided.
 弁体31の回転軸Axr1方向における締結部231の中心、および、弁体31の回転軸Axr1方向における締結部233の中心は、入口ポート220の中心より駆動部70側にある。 The center of the fastening portion 231 in the direction of the rotational axis Axr1 of the valve body 31 and the center of the fastening portion 233 in the direction of the rotational axis Axr1 of the valve body 31 are closer to the drive portion 70 than the center of the inlet port 220.
 そのため、駆動部70による振動を効果的に抑制できる。 Therefore, vibrations by the drive unit 70 can be effectively suppressed.
 締結部233の外壁238の駆動部70側の端部は、外壁239の入口ポート220側の端部に対し回転軸Axr1とは反対側に位置している。 The end of the outer wall 238 of the fastening portion 233 on the drive unit 70 side is located on the opposite side of the rotation axis Axr1 with respect to the end of the outer wall 239 on the inlet port 220 side.
 そのため、駆動部70による振動を効果的に抑制できる。 Therefore, vibrations by the drive unit 70 can be effectively suppressed.
 締結部232、233は、取付面201のうち取付面凹部207が形成された範囲の弁体31の回転軸Axr1方向の一端から他端にわたり形成されている。 The fastening portions 232 and 233 are formed from one end to the other end in the direction of the rotation axis Axr1 of the valve body 31 in a range in which the mounting surface recess 207 is formed in the mounting surface 201.
 そのため、ハウジング本体21をエンジン2に安定して固定できる。 Therefore, the housing body 21 can be stably fixed to the engine 2.
  (第17実施形態)
 第17実施形態によるバルブ装置の一部を図116に示す。第17実施形態は、バルブ30の構成等が第3実施形態と異なる。
(17th Embodiment)
A part of the valve device according to the seventeenth embodiment is shown in FIG. The seventeenth embodiment differs from the third embodiment in the configuration of the valve 30 and the like.
<3-30>
 隔壁部60は、内部空間200とハウジング20の外部とを隔てる隔壁部本体61、シャフト32の一端を挿通可能なよう隔壁部本体61に形成されたシャフト挿通穴62、および、隔壁部本体61の内部空間200側の面から内部空間200とは反対側へ凹む規制凹部63を有する。
<3-30>
The partition wall 60 includes a partition wall body 61 that separates the internal space 200 from the outside of the housing 20, a shaft insertion hole 62 formed in the partition wall body 61 so that one end of the shaft 32 can be inserted, and the partition wall body 61. A regulating recess 63 that is recessed from the surface on the inner space 200 side to the side opposite to the inner space 200 is provided.
 弁体31は、第2分割体34の隔壁部60側の面である第1最外端面301から規制凹部63側へ延びて先端部が規制凹部63に位置する規制凸部344を有している。 The valve body 31 has a regulation convex part 344 that extends from the first outermost end surface 301 that is the surface of the second divided body 34 on the partition wall part 60 side to the regulation concave part 63 side and whose tip part is located in the regulation concave part 63. Yes.
 第3実施形態では、第1規制凸部332と第2規制凸部342とが当接するようにして規制凸部を形成する例を示した(図23参照)。これに対し、本実施形態では、上述のように、規制凸部344は、第2分割体34から延びるよう1つ形成されている。 3rd Embodiment showed the example which forms a control convex part so that the 1st control convex part 332 and the 2nd control convex part 342 contact | abut (refer FIG. 23). On the other hand, in the present embodiment, as described above, one restriction convex portion 344 is formed so as to extend from the second divided body 34.
 本実施形態においても、規制部631により弁体31の回転を規制するとき、第1分割体33と第2分割体34とが接合面331、341で離れる(剥離する)方向の力が弁体31に作用するのを抑制できる。そのため、規制凸部344が規制凹部63の規制部631に当接したとき、第1分割体33と第2分割体34とが接合面331、341で離れるのを抑制できる。 Also in the present embodiment, when the rotation of the valve body 31 is restricted by the restriction portion 631, the force in the direction in which the first divided body 33 and the second divided body 34 are separated (separated) at the joint surfaces 331 and 341 is the valve body. It can suppress acting on 31. Therefore, when the restricting convex portion 344 comes into contact with the restricting portion 631 of the restricting concave portion 63, it is possible to suppress the first divided body 33 and the second divided body 34 from being separated by the joint surfaces 331 and 341.
 本実施形態では、規制凸部344は、「回転軸Axr1を含み接合面331、341に垂直な仮想平面Vp8」上に形成されている(図116参照)。 In the present embodiment, the restricting convex portion 344 is formed on the “virtual plane Vp8 including the rotation axis Axr1 and perpendicular to the joint surfaces 331 and 341” (see FIG. 116).
 そのため、規制部631により弁体31の回転を規制するとき、第1分割体33と第2分割体34とが接合面331、341で離れる(剥離する)方向の力が弁体31に作用するのを確実に抑制できる。 Therefore, when the rotation of the valve body 31 is restricted by the restriction portion 631, a force in a direction in which the first divided body 33 and the second divided body 34 are separated (separated) at the joint surfaces 331 and 341 acts on the valve body 31. Can be reliably suppressed.
  (第18実施形態)
 第18実施形態によるバルブ装置の一部を図117に示す。第18実施形態は、バルブ30の構成等が第3実施形態と異なる。
(Eighteenth embodiment)
FIG. 117 shows a part of the valve device according to the eighteenth embodiment. The eighteenth embodiment differs from the third embodiment in the configuration of the valve 30 and the like.
<3-31>
 第1規制凸部332は、接合面331の面方向に沿って規制凹部63側へ延びている。第2規制凸部342は、第1規制凸部332に当接することなく、接合面341の面方向に沿って規制凹部63側へ延びている。
<3-31>
The first restriction convex portion 332 extends toward the restriction concave portion 63 along the surface direction of the joint surface 331. The second restriction convex part 342 extends toward the restriction concave part 63 along the surface direction of the joint surface 341 without contacting the first restriction convex part 332.
 本実施形態においても、第3実施形態と同様、規制部631により弁体31の回転を規制するとき、第1分割体33と第2分割体34とが接合面331、341で離れる(剥離する)方向の力は作用しない。そのため、第1規制凸部332または第2規制凸部342が規制凹部63の規制部631に当接したとき、第1分割体33と第2分割体34とが接合面331、341で離れるのを抑制できる。 Also in the present embodiment, as in the third embodiment, when the rotation of the valve body 31 is restricted by the restricting portion 631, the first divided body 33 and the second divided body 34 are separated (separated) at the joint surfaces 331 and 341. ) Directional force does not work. Therefore, when the first restriction convex part 332 or the second restriction convex part 342 comes into contact with the restriction part 631 of the restriction concave part 63, the first divided body 33 and the second divided body 34 are separated by the joint surfaces 331 and 341. Can be suppressed.
 本実施形態では、「回転軸Axr1を含み接合面331、341に垂直な仮想平面Vp8」で弁体31を2つの領域に分けたとき、第1規制凸部332および第2規制凸部342は、2つの領域の一方側に形成されている(図117参照)。 In the present embodiment, when the valve body 31 is divided into two regions on the “virtual plane Vp8 including the rotation axis Axr1 and perpendicular to the joint surfaces 331 and 341”, the first restriction convex part 332 and the second restriction convex part 342 are It is formed on one side of the two regions (see FIG. 117).
 そのため、規制部631により弁体31の回転を規制するとき、第1分割体33と第2分割体34とが接合面331、341で離れる(剥離する)方向の力が弁体31に作用するのを確実に抑制できる。 Therefore, when the rotation of the valve body 31 is restricted by the restriction portion 631, a force in a direction in which the first divided body 33 and the second divided body 34 are separated (separated) at the joint surfaces 331 and 341 acts on the valve body 31. Can be reliably suppressed.
 また、回転軸Axr1と第1規制凸部332との距離は、回転軸Axr1と第2規制凸部342との距離より小さい(図117参照)。 Further, the distance between the rotation axis Axr1 and the first restriction convex part 332 is smaller than the distance between the rotation axis Axr1 and the second restriction convex part 342 (see FIG. 117).
  (第19実施形態)
 第19実施形態によるバルブ装置の一部を図118に示す。第19実施形態は、規制凹部63の形状が第14実施形態と異なる。
(Nineteenth embodiment)
A part of the valve device according to the nineteenth embodiment is shown in FIG. The nineteenth embodiment differs from the fourteenth embodiment in the shape of the restriction recess 63.
<8-4>
 図118に示すように、規制凹部63の底面630は、内筒壁面632側から外筒壁面633側へ向かうに従い駆動部70に近付くようテーパ状に形成されている。
<8-4>
As shown in FIG. 118, the bottom surface 630 of the restricting recess 63 is formed in a tapered shape so as to approach the drive unit 70 from the inner cylinder wall surface 632 side toward the outer cylinder wall surface 633 side.
 そのため、規制凹部63の底面630上の異物を規制凹部63の径方向外側の異物堆積部68に積極的に導き、異物をシャフト挿通穴62から遠ざけることができる。これにより、軸シール部材603によるシール性を効果的に確保できる。 Therefore, the foreign matter on the bottom surface 630 of the restricting concave portion 63 can be actively guided to the foreign matter depositing portion 68 on the radially outer side of the restricting concave portion 63, and the foreign matter can be moved away from the shaft insertion hole 62. Thereby, the sealing performance by the shaft seal member 603 can be effectively ensured.
  (第20実施形態)
 第20実施形態によるバルブ装置の一部を図119に示す。第20実施形態は、バルブ30、規制部631の構成等が第14実施形態と異なる。
(20th embodiment)
A part of the valve device according to the twentieth embodiment is shown in FIG. The twentieth embodiment differs from the fourteenth embodiment in the configuration of the valve 30 and the restricting portion 631.
<8-8>
 図119に示すように、バルブ30は、弁体31から駆動部70側へ筒状に延びる弁体筒部315を有している。弁体筒部315の先端部は、内筒壁面632の径方向外側に位置している。
<8-8>
As shown in FIG. 119, the valve 30 has a valve body cylinder portion 315 that extends in a cylindrical shape from the valve body 31 to the drive section 70 side. The distal end portion of the valve body cylinder portion 315 is located on the radially outer side of the inner cylinder wall surface 632.
 そのため、規制凹部63の異物がシャフト挿通穴62に侵入するのを抑制できる。これにより、軸シール部材603によるシール性を確保できる。 Therefore, it is possible to suppress the foreign matter in the restriction recess 63 from entering the shaft insertion hole 62. Thereby, the sealing performance by the shaft seal member 603 can be ensured.
<8-9>
 バルブ30は、弁体筒部315に形成され内筒壁面632との間にラビリンス状の空間Sr1を形成可能なラビリンス形成部316を有している。
<8-9>
The valve 30 includes a labyrinth forming portion 316 that is formed in the valve body cylindrical portion 315 and can form a labyrinth-like space Sr1 between the inner cylindrical wall surface 632.
 そのため、規制凹部63の異物がシャフト挿通穴62に侵入するのを効果的に抑制できる。これにより、軸シール部材603によるシール性を効果的に確保できる。 Therefore, it is possible to effectively suppress the foreign matter in the restriction recess 63 from entering the shaft insertion hole 62. Thereby, the sealing performance by the shaft seal member 603 can be effectively ensured.
<8-10>
 ラビリンス形成部316は、弁体筒部315の先端部から径方向内側へ向かって突出するよう環状に形成されている。
<8-10>
The labyrinth forming portion 316 is formed in an annular shape so as to protrude radially inward from the distal end portion of the valve body cylinder portion 315.
 そのため、簡単な構成で、規制凹部63の異物がシャフト挿通穴62に侵入するのを効果的に抑制できる。 Therefore, it is possible to effectively suppress the foreign matter in the restriction recess 63 from entering the shaft insertion hole 62 with a simple configuration.
<8-11>
 弁体筒部315は、規制凹部63の径方向において規制部631に対し内筒壁面632側に位置するよう形成されている。
<8-11>
The valve body cylinder portion 315 is formed so as to be positioned on the inner cylinder wall surface 632 side with respect to the restriction portion 631 in the radial direction of the restriction recess 63.
 そのため、弁体31の回転時、弁体筒部315と規制部631とが干渉するのを抑制できる。 Therefore, it is possible to suppress interference between the valve body cylinder portion 315 and the restriction portion 631 when the valve body 31 rotates.
  (第21実施形態)
 第21実施形態によるバルブ装置の一部を図120、121に示す。第21実施形態は、遮蔽部95の配置等が第14実施形態と異なる。
(21st Embodiment)
A part of the valve device according to the twenty-first embodiment is shown in FIGS. The twenty-first embodiment differs from the fourteenth embodiment in the arrangement of the shielding portion 95 and the like.
<11-3>
 遮蔽部95は、シャフト32に対し入口ポート220側に位置するようハウジング本体21に設けられている。
<11-3>
The shielding part 95 is provided in the housing main body 21 so as to be positioned on the inlet port 220 side with respect to the shaft 32.
 そのため、遮蔽部95をリリーフ弁39から適度に離して配置でき、リリーフ弁39への冷却水の直撃を抑制しつつ、リリーフ弁39の反応性を確保できる。 Therefore, the shielding portion 95 can be disposed at a suitable distance from the relief valve 39, and the reactivity of the relief valve 39 can be ensured while suppressing direct hit of the cooling water to the relief valve 39.
<11-4>
 本実施形態では、遮蔽部95は、入口ポート220の軸方向またはリリーフポート224の軸方向に入口ポート220、リリーフ弁39および遮蔽部95を投影したとき、入口ポート220の投影とリリーフ弁39の投影とが重なる部分B2の面積以上の面積の投影となるよう形成されている。
<11-4>
In this embodiment, the shielding part 95 projects the inlet port 220 and the relief valve 39 when the inlet port 220, the relief valve 39 and the shielding part 95 are projected in the axial direction of the inlet port 220 or the axial direction of the relief port 224. The projection is formed so as to have an area larger than the area of the portion B2 where the projection overlaps.
 そのため、リリーフ弁39への冷却水の直撃を確実に防ぎつつ、必要以上に流路面積を絞らないことで通水性を確保できる。 Therefore, it is possible to ensure water permeability by preventing the cooling water from directly hitting the relief valve 39 and not reducing the flow area more than necessary.
<11-6>
 図120、121に示すように、遮蔽部95は、板状に形成され、板厚が均一である。
<11-6>
As shown in FIGS. 120 and 121, the shielding part 95 is formed in a plate shape, and the plate thickness is uniform.
 そのため、遮蔽部95への応力集中を防ぎ、ハウジング本体21の耐久性を高めることができる。 Therefore, stress concentration on the shielding part 95 can be prevented, and the durability of the housing body 21 can be improved.
  (第22実施形態)
 第22実施形態によるバルブ装置について図122に基づき説明する。第22実施形態は、弁体31の構成、駆動部70および弁体31の制御の仕方等が第15実施形態と異なる。
(Twenty-second embodiment)
A valve device according to a twenty-second embodiment will be described with reference to FIG. The twenty-second embodiment differs from the fifteenth embodiment in the configuration of the valve body 31, the manner of controlling the drive unit 70 and the valve body 31, and the like.
 本実施形態では、弁体31の周方向における弁体開口部410、420、430の形成位置および大きさが第15実施形態と異なる。 In this embodiment, the formation positions and sizes of the valve body openings 410, 420, and 430 in the circumferential direction of the valve body 31 are different from those in the fifteenth embodiment.
<12-3>
 図122に示すように、ECU8は、弁体31が回転方向の一方側に回転駆動するに従い、ラジエータポート221、ヒータポート222およびデバイスポート223の全ての開度が前記所定開度になった後、ヒータポート222およびデバイスポート223がデバイスポート223、ヒータポート222の順で閉じるよう駆動部70および弁体31を制御可能である。
<12-3>
As shown in FIG. 122, as the valve body 31 is rotationally driven to one side in the rotational direction, the ECU 8 is configured so that all the openings of the radiator port 221, the heater port 222, and the device port 223 become the predetermined opening. The drive unit 70 and the valve body 31 can be controlled so that the heater port 222 and the device port 223 are closed in the order of the device port 223 and the heater port 222.
 そのため、例えば冬季の暖房性能を保持したまま、エンジン2の冷却効率を高めることができる。 Therefore, for example, the cooling efficiency of the engine 2 can be increased while maintaining the heating performance in winter.
 次に、本実施形態のバルブ装置10における冷却水のフローダイアグラムについて、図122に基づき詳細に説明する。 Next, a flow diagram of cooling water in the valve device 10 of the present embodiment will be described in detail based on FIG.
 図122に示すように、弁体31の回転位置が基準位置である0のとき(図122における回転位置Pr0のとき)、すなわち、第1規制凸部332または第2規制凸部342の一方が規制部631に当接し弁体31の回転が規制されているとき、ラジエータポート221、ヒータポート222、デバイスポート223の開度は、いずれも、0%(全閉)である。以下、Pr0~13と記載した場合、図122における回転位置Pr0~13を意味する。 As shown in FIG. 122, when the rotational position of the valve body 31 is 0, which is the reference position (when the rotational position Pr0 in FIG. 122), that is, one of the first restriction convex part 332 or the second restriction convex part 342 is When the rotation of the valve body 31 is restricted by contacting the restricting portion 631, the opening degrees of the radiator port 221, the heater port 222, and the device port 223 are all 0% (fully closed). Hereinafter, when described as Pr0 to 13, it means rotational positions Pr0 to Pr13 in FIG.
 弁体31の回転に伴うラジエータポート221、ヒータポート222、デバイスポート223の開度の変化の仕方は、弁体31の回転位置がPr0~8までは、第15実施形態と同様のため、説明を省略する。 The way of changing the opening degree of the radiator port 221, the heater port 222, and the device port 223 according to the rotation of the valve body 31 is the same as that of the fifteenth embodiment when the rotational position of the valve body 31 is Pr0 to Pr8. Is omitted.
 弁体31がPr8から回転方向の一方側にさらに回転駆動すると、Pr9とPr10との間で、デバイスポート223の開度が100%から所定の割合で減少する。これにより、デバイス7側に流れる冷却水の量がデバイスポート223の開度に応じて減少する。デバイスポート223の開度は、Pr10で0%(全閉)になる。これにより、デバイスポート223が閉じ、デバイス7側への冷却水の流れが遮断される。 When the valve body 31 is further rotationally driven from Pr8 to one side in the rotational direction, the opening degree of the device port 223 decreases at a predetermined rate from 100% between Pr9 and Pr10. As a result, the amount of cooling water flowing to the device 7 side decreases according to the opening degree of the device port 223. The opening degree of the device port 223 becomes 0% (fully closed) at Pr10. Thereby, the device port 223 is closed and the flow of the cooling water to the device 7 side is blocked.
 弁体31が回転方向の一方側にさらに回転駆動すると、Pr11とPr12との間で、ヒータポート222の開度が100%から所定の割合で減少する。これにより、ヒータ6側に流れる冷却水の量がヒータポート222の開度に応じて減少する。ヒータポート222の開度は、Pr12で0%(全閉)になる。これにより、ヒータポート222が閉じ、ヒータ6側への冷却水の流れが遮断される。 When the valve body 31 is further rotationally driven to one side in the rotational direction, the opening degree of the heater port 222 decreases at a predetermined rate from 100% between Pr11 and Pr12. As a result, the amount of cooling water flowing to the heater 6 side decreases according to the opening degree of the heater port 222. The opening degree of the heater port 222 is 0% (fully closed) at Pr12. Thereby, the heater port 222 is closed and the flow of the cooling water to the heater 6 side is interrupted.
 ここで、弁体31の単位回転角度当りのPr9とPr10との間におけるデバイスポート223の開度の減少割合は、Pr11とPr12との間におけるヒータポート222の開度の減少割合と同じである。 Here, the decreasing rate of the opening degree of the device port 223 between Pr9 and Pr10 per unit rotation angle of the valve body 31 is the same as the decreasing rate of the opening degree of the heater port 222 between Pr11 and Pr12. .
 弁体31が回転方向の一方側にさらに回転駆動すると、Pr13で、第1規制凸部332または第2規制凸部342の他方が規制部631に当接し、弁体31の回転駆動が停止する。このとき、ラジエータポート221の開度は、100%のままである。すなわち、このとき、ラジエータポート221のみ開度が100%(全開:前記所定開度)になっている。 When the valve body 31 is further rotationally driven to one side in the rotation direction, at Pr13, the other of the first restriction convex part 332 or the second restriction convex part 342 contacts the restriction part 631, and the rotational drive of the valve body 31 stops. . At this time, the opening degree of the radiator port 221 remains 100%. That is, at this time, only the radiator port 221 has an opening degree of 100% (fully open: the predetermined opening degree).
 本実施形態では、上述のように、ECU8は、弁体31が回転方向の一方側に回転駆動するに従い、ラジエータポート221、ヒータポート222およびデバイスポート223の全ての開度がPr8で前記所定開度(100%)になった後、Pr10、Pr12でデバイスポート223およびヒータポート222が閉じ、Pr13でラジエータポート221のみ開度が前記所定開度(100%)になるよう駆動部70および弁体31を制御可能である。 In the present embodiment, as described above, as the valve body 31 is rotationally driven to one side in the rotational direction, the ECU 8 is configured such that all the opening degrees of the radiator port 221, the heater port 222, and the device port 223 are Pr8. After reaching the degree (100%), the device port 223 and the heater port 222 are closed by Pr10 and Pr12, and the opening of only the radiator port 221 is set to the predetermined opening (100%) at Pr13 and the valve body 70 31 can be controlled.
 また、本実施形態では、上述のように、ECU8は、弁体31が回転方向の一方側に回転駆動するに従い、ラジエータポート221、ヒータポート222およびデバイスポート223の全ての開度がPr8で前記所定開度(100%)になった後、ヒータポート222およびデバイスポート223がデバイスポート223、ヒータポート222の順(Pr10、Pr12)で閉じるよう駆動部70および弁体31を制御可能である。 In the present embodiment, as described above, the ECU 8 is configured such that the opening degree of the radiator port 221, the heater port 222, and the device port 223 is Pr8 as the valve body 31 is rotationally driven to one side in the rotational direction. After reaching the predetermined opening (100%), the drive unit 70 and the valve body 31 can be controlled so that the heater port 222 and the device port 223 are closed in the order of the device port 223 and the heater port 222 (Pr10, Pr12).
  (第23実施形態)
 第23実施形態によるバルブ装置について図123に基づき説明する。第23実施形態は、弁体31の構成、駆動部70および弁体31の制御の仕方等が第15実施形態と異なる。
(23rd Embodiment)
A valve device according to a twenty-third embodiment will be described with reference to FIG. The twenty-third embodiment is different from the fifteenth embodiment in the configuration of the valve body 31, the manner of controlling the drive unit 70 and the valve body 31, and the like.
 本実施形態では、弁体31の周方向における弁体開口部410、420、430の形成位置および大きさが第15実施形態と異なる。 In this embodiment, the formation positions and sizes of the valve body openings 410, 420, and 430 in the circumferential direction of the valve body 31 are different from those in the fifteenth embodiment.
<12-4>
 図123に示すように、ECU8は、弁体31が回転方向の一方側に回転駆動するに従い、ラジエータポート221、ヒータポート222およびデバイスポート223の全ての開度が前記所定開度になった後、ヒータポート222およびデバイスポート223が同時に閉じるよう駆動部70および弁体31を制御可能である。
<12-4>
As shown in FIG. 123, as the valve body 31 is rotationally driven to one side in the rotational direction, the ECU 8 is configured so that all the opening degrees of the radiator port 221, the heater port 222, and the device port 223 become the predetermined opening degree. The drive unit 70 and the valve body 31 can be controlled so that the heater port 222 and the device port 223 are simultaneously closed.
 そのため、エンジン2の高負荷時、ヒータ6、デバイス7からの熱交換を即座に遮断し、エンジン2の冷却速度および冷却効率を高めることができる。 Therefore, when the engine 2 is under a high load, the heat exchange from the heater 6 and the device 7 can be immediately interrupted, and the cooling rate and cooling efficiency of the engine 2 can be increased.
 次に、本実施形態のバルブ装置10における冷却水のフローダイアグラムについて、図123に基づき詳細に説明する。 Next, a flow diagram of the cooling water in the valve device 10 of the present embodiment will be described in detail based on FIG.
 図123に示すように、弁体31の回転位置が基準位置である0のとき(図123における回転位置Pr0のとき)、すなわち、第1規制凸部332または第2規制凸部342の一方が規制部631に当接し弁体31の回転が規制されているとき、ラジエータポート221、ヒータポート222、デバイスポート223の開度は、いずれも、0%(全閉)である。以下、Pr0~11と記載した場合、図123における回転位置Pr0~11を意味する。 As shown in FIG. 123, when the rotational position of the valve body 31 is 0, which is the reference position (when the rotational position Pr0 in FIG. 123), that is, one of the first restriction convex part 332 or the second restriction convex part 342 is When the rotation of the valve body 31 is restricted by contacting the restricting portion 631, the opening degrees of the radiator port 221, the heater port 222, and the device port 223 are all 0% (fully closed). Hereinafter, when described as Pr0 to 11, it means the rotational positions Pr0 to Pr11 in FIG.
 弁体31の回転に伴うラジエータポート221、ヒータポート222、デバイスポート223の開度の変化の仕方は、弁体31の回転位置がPr0~8までは、第15実施形態と同様のため、説明を省略する。 The way of changing the opening degree of the radiator port 221, the heater port 222, and the device port 223 according to the rotation of the valve body 31 is the same as that of the fifteenth embodiment when the rotational position of the valve body 31 is Pr0 to Pr8. Is omitted.
 弁体31がPr8から回転方向の一方側にさらに回転駆動すると、Pr9とPr10との間で、ヒータポート222の開度およびデバイスポート223の開度が100%から所定の割合で減少する。これにより、ヒータ6側およびデバイス7側に流れる冷却水の量がヒータポート222の開度およびデバイスポート223の開度に応じて減少する。ヒータポート222の開度およびデバイスポート223の開度は、Pr10で0%(全閉)になる。これにより、ヒータポート222およびデバイスポート223が閉じ、ヒータ6側およびデバイス7側への冷却水の流れが遮断される。 When the valve element 31 is further rotated from Pr8 to one side in the rotation direction, the opening degree of the heater port 222 and the opening degree of the device port 223 are decreased from 100% at a predetermined rate between Pr9 and Pr10. Thereby, the amount of cooling water flowing to the heater 6 side and the device 7 side decreases according to the opening degree of the heater port 222 and the opening degree of the device port 223. The opening degree of the heater port 222 and the opening degree of the device port 223 become 0% (fully closed) at Pr10. Thereby, the heater port 222 and the device port 223 are closed, and the flow of the cooling water to the heater 6 side and the device 7 side is blocked.
 ここで、弁体31の単位回転角度当りのPr9とPr10との間におけるヒータポート222の開度の減少割合は、Pr9とPr10との間におけるデバイスポート223の開度の減少割合と同じである。 Here, the decreasing rate of the opening degree of the heater port 222 between Pr9 and Pr10 per unit rotation angle of the valve body 31 is the same as the decreasing rate of the opening degree of the device port 223 between Pr9 and Pr10. .
 弁体31が回転方向の一方側にさらに回転駆動すると、Pr11で、第1規制凸部332または第2規制凸部342の他方が規制部631に当接し、弁体31の回転駆動が停止する。このとき、ラジエータポート221の開度は、100%のままである。すなわち、このとき、ラジエータポート221のみ開度が100%(全開:前記所定開度)になっている。 When the valve body 31 is further rotationally driven to one side in the rotational direction, at Pr11, the other of the first restriction convex part 332 or the second restriction convex part 342 contacts the restriction part 631, and the rotational drive of the valve body 31 is stopped. . At this time, the opening degree of the radiator port 221 remains 100%. That is, at this time, only the radiator port 221 has an opening degree of 100% (fully open: the predetermined opening degree).
 本実施形態では、上述のように、ECU8は、弁体31が回転方向の一方側に回転駆動するに従い、ラジエータポート221、ヒータポート222およびデバイスポート223の全ての開度がPr8で前記所定開度(100%)になった後、Pr10でヒータポート222およびデバイスポート223が閉じ、Pr11でラジエータポート221のみ開度が前記所定開度(100%)になるよう駆動部70および弁体31を制御可能である。 In the present embodiment, as described above, as the valve body 31 is rotationally driven to one side in the rotational direction, the ECU 8 is configured such that all the opening degrees of the radiator port 221, the heater port 222, and the device port 223 are Pr8. After that, the heater port 222 and the device port 223 are closed with Pr10, and the drive unit 70 and the valve body 31 are set so that the opening degree of only the radiator port 221 becomes the predetermined opening degree (100%) with Pr11. It can be controlled.
 また、本実施形態では、上述のように、ECU8は、弁体31が回転方向の一方側に回転駆動するに従い、ラジエータポート221、ヒータポート222およびデバイスポート223の全ての開度がPr8で前記所定開度(100%)になった後、ヒータポート222およびデバイスポート223が同時(Pr10)に閉じるよう駆動部70および弁体31を制御可能である。 In the present embodiment, as described above, the ECU 8 is configured such that the opening degree of the radiator port 221, the heater port 222, and the device port 223 is Pr8 as the valve body 31 is rotationally driven to one side in the rotational direction. After reaching the predetermined opening (100%), the drive unit 70 and the valve body 31 can be controlled so that the heater port 222 and the device port 223 are simultaneously closed (Pr10).
  (第24実施形態)
 第24実施形態によるバルブ装置について図124、125に基づき説明する。第24実施形態は、弁体31の構成、駆動部70および弁体31の制御の仕方等が第15実施形態と異なる。
(24th Embodiment)
A valve device according to a twenty-fourth embodiment will be described with reference to FIGS. The twenty-fourth embodiment differs from the fifteenth embodiment in the configuration of the valve body 31, the way of controlling the drive unit 70 and the valve body 31, and the like.
 本実施形態では、弁体31の周方向における弁体開口部410、420、430の形成位置および大きさが第15実施形態と異なる。 In this embodiment, the formation positions and sizes of the valve body openings 410, 420, and 430 in the circumferential direction of the valve body 31 are different from those in the fifteenth embodiment.
<12-5>フローダイアグラム
 本実施形態は、車両1のエンジン2の冷却水を制御可能なバルブ装置10であって、ハウジング20とバルブ30と駆動部70と制御部としてのECU8とを備える。
<12-5> Flow Diagram The present embodiment is a valve device 10 that can control the cooling water of the engine 2 of the vehicle 1, and includes a housing 20, a valve 30, a drive unit 70, and an ECU 8 as a control unit.
 図124、125に示すように、ECU8は、例えば環境温度が所定の温度以下のときである冬季、弁体31を回転方向の基準位置である0(度)に対し一方側において回転させる通常モードで弁体31を回転駆動し、例えば環境温度が所定の温度より高いときである夏季、弁体31を回転方向の基準位置に対し他方側において回転させる冷却優先モードで弁体31を回転駆動する。なお、他の実施形態では、ECU8は、例えばエアコンがオフのとき通常モード、エアコンがオンのとき冷却優先モードで弁体31を回転駆動する等、車両状態としてのエアコンの作動状態に応じて、通常モードと冷却優先モードとを切り替えてもよい。また、ECU8は、車両環境および車両状態の両方に応じて、通常モードと冷却優先モードとを切り替えてもよい。さらに、ECU8は、「外気温、車室内の温度、または、外気温と車室内の温度との温度差等の車両環境」および/または「エンジン2の負荷状態、車速、または、車両1の加速状態等、エアコンの作動状態以外の車両状態」に応じて、通常モードと冷却優先モードとを切り替えてもよい。 As shown in FIGS. 124 and 125, the ECU 8 causes the valve body 31 to rotate on one side with respect to 0 (degrees) which is the reference position in the rotation direction, for example, in winter when the environmental temperature is equal to or lower than a predetermined temperature. The valve body 31 is rotationally driven, for example, in summer when the environmental temperature is higher than a predetermined temperature, the valve body 31 is rotationally driven in a cooling priority mode in which the valve body 31 is rotated on the other side with respect to the reference position in the rotational direction. . In other embodiments, the ECU 8 may be configured according to the operating state of the air conditioner as a vehicle state, such as rotating the valve body 31 in a normal mode when the air conditioner is off, and in a cooling priority mode when the air conditioner is on. The normal mode and the cooling priority mode may be switched. Further, the ECU 8 may switch between the normal mode and the cooling priority mode according to both the vehicle environment and the vehicle state. Furthermore, the ECU 8 determines that “the vehicle environment such as the outside air temperature, the temperature inside the vehicle interior, or the temperature difference between the outside air temperature and the vehicle interior temperature” and / or “the load state of the engine 2, the vehicle speed, or the acceleration of the vehicle 1. The normal mode and the cooling priority mode may be switched according to the vehicle state other than the air conditioner operating state such as the state.
 ECU8は、通常モードの弁体31の特定の回転位置において、ラジエータポート221のみ開度が0より大きい所定開度になるよう駆動部70および弁体31を制御可能である。 The ECU 8 can control the drive unit 70 and the valve body 31 so that only the radiator port 221 has a predetermined opening larger than 0 at a specific rotational position of the valve body 31 in the normal mode.
 そのため、通常モードにおいても、エンジン2の冷却効率を高めることが可能な程度の開度に前記所定開度を設定し、ラジエータポート221のみ開度が前記所定開度になるよう駆動部70および弁体31を制御することで、エンジン2の高負荷時の冷却効率の最大化を図ることができる。 Therefore, even in the normal mode, the predetermined opening is set to such an extent that the cooling efficiency of the engine 2 can be increased, and only the radiator port 221 has the predetermined opening so that the opening becomes the predetermined opening. By controlling the body 31, the cooling efficiency at the time of high load of the engine 2 can be maximized.
<12-6>
 図124、125に示すように、ECU8は、通常モードと冷却優先モードの両側において、ラジエータポート221が前記所定開度になるよう駆動部70および弁体31を制御可能である。
<12-6>
As shown in FIGS. 124 and 125, the ECU 8 can control the drive unit 70 and the valve body 31 so that the radiator port 221 has the predetermined opening degree on both sides of the normal mode and the cooling priority mode.
 そのため、通常モードまたは冷却優先モードのいずれにおいても、エンジン2の高負荷時の冷却効率を高めることができる。 Therefore, the cooling efficiency at the time of high load of the engine 2 can be enhanced in either the normal mode or the cooling priority mode.
<12-7>
 図124、125に示すように、ECU8は、ラジエータポート221、ヒータポート222またはデバイスポート223の開度がそれぞれ単独で前記所定開度になるよう駆動部70および弁体31を制御可能である。
<12-7>
As shown in FIGS. 124 and 125, the ECU 8 can control the drive unit 70 and the valve body 31 so that the opening degree of the radiator port 221, the heater port 222, or the device port 223 becomes the predetermined opening degree.
 そのため、必要な部位に冷却水の回りを集中させ、熱交換の効率を高めることができる。 Therefore, it is possible to increase the efficiency of heat exchange by concentrating around the cooling water on the necessary part.
<12-8>
 図124、125に示すように、ECU8は、通常モードにおいて、ラジエータポート221、ヒータポート222およびデバイスポート223の全ての開度が前記所定開度になるよう駆動部70および弁体31を制御可能である。
<12-8>
As shown in FIGS. 124 and 125, the ECU 8 can control the drive unit 70 and the valve body 31 so that all the opening degrees of the radiator port 221, the heater port 222, and the device port 223 become the predetermined opening degrees in the normal mode. It is.
 そのため、通常モードにおいて、ラジエータ5、ヒータ6およびデバイス7の全てにおいて熱交換することができ、暖房性能を確保しつつ、エンジン2の冷却等を行うことができる。 Therefore, in the normal mode, heat can be exchanged in all of the radiator 5, the heater 6, and the device 7, and the engine 2 can be cooled while ensuring the heating performance.
<12-9>
 前記所定開度は、60%以上に設定されている。
<12-9>
The predetermined opening is set to 60% or more.
 そのため、通常モードの弁体31の特定の回転位置において、ラジエータポート221のみ開度が前記所定開度になるよう駆動部70および弁体31を制御することで、通常モードにおいても、エンジン2の高負荷時の冷却効率の最大化を適切に図ることができる。 Therefore, by controlling the drive unit 70 and the valve body 31 so that the opening degree of only the radiator port 221 becomes the predetermined opening degree at a specific rotational position of the valve body 31 in the normal mode, even in the normal mode, It is possible to appropriately maximize the cooling efficiency at the time of high load.
 また、通常モードと冷却優先モードの両側において、ラジエータポート221が前記所定開度になるよう駆動部70および弁体31を制御することで、通常モードまたは冷却優先モードのいずれにおいても、エンジン2の高負荷時の冷却効率を適切に高めることができる。 Further, in both the normal mode and the cooling priority mode, the drive unit 70 and the valve body 31 are controlled so that the radiator port 221 has the predetermined opening degree in both the normal mode and the cooling priority mode. Cooling efficiency at high load can be increased appropriately.
 また、ラジエータポート221、ヒータポート222またはデバイスポート223の開度がそれぞれ単独で前記所定開度になるよう駆動部70および弁体31を制御することで、必要な部位に冷却水の回りを集中させ、熱交換の効率を適切に高めることができる。 Further, by controlling the drive unit 70 and the valve body 31 so that the opening degree of the radiator port 221, the heater port 222 or the device port 223 becomes the predetermined opening degree alone, the surroundings of the cooling water are concentrated on the necessary portions. Therefore, the efficiency of heat exchange can be increased appropriately.
 また、通常モードにおいて、ラジエータポート221、ヒータポート222およびデバイスポート223の全ての開度が前記所定開度になるよう駆動部70および弁体31を制御することで、通常モードにおいて、ラジエータ5、ヒータ6およびデバイス7の全てにおいて熱交換することができ、暖房性能を確保しつつ、エンジン2の冷却等を適切に行うことができる。 Further, in the normal mode, by controlling the drive unit 70 and the valve body 31 so that all the openings of the radiator port 221, the heater port 222, and the device port 223 become the predetermined opening, in the normal mode, the radiator 5, Heat can be exchanged in all of the heater 6 and the device 7, and the engine 2 can be appropriately cooled while ensuring the heating performance.
 なお、本実施形態では、エンジン2の冷却効率を最大限に高めるため、前記所定開度は100%に設定されている。 In the present embodiment, the predetermined opening degree is set to 100% in order to maximize the cooling efficiency of the engine 2.
 そのため、エンジン2の高負荷時の冷却効率を最大限に高めることができる。 Therefore, the cooling efficiency at the time of high load of the engine 2 can be maximized.
 次に、本実施形態のバルブ装置10における冷却水のフローダイアグラムについて、図124、125に基づき詳細に説明する。 Next, a flow diagram of cooling water in the valve device 10 of the present embodiment will be described in detail based on FIGS.
 図124、125に示すように、弁体31の回転位置が基準位置である0(度)のとき(図125における回転位置Pr0のとき)、ラジエータポート221、ヒータポート222、デバイスポート223の開度は、いずれも、0%(全閉)である。以下、Pr-5~10と記載した場合、図125における回転位置Pr-5~10を意味する。 As shown in FIGS. 124 and 125, when the rotational position of the valve body 31 is 0 (degrees), which is the reference position (at the rotational position Pr0 in FIG. 125), the radiator port 221, the heater port 222, and the device port 223 are opened. In all cases, the degree is 0% (fully closed). Hereinafter, Pr-5 to 10 means the rotational positions Pr-5 to 10 in FIG.
 上述のように、ECU8は、車両環境および/または車両状態に応じて、弁体31を回転方向の基準位置である0(度)に対し一方側(Pr0~10)において回転させる通常モード、あるいは回転方向の基準位置に対し他方側(Pr0~-5)において回転させる冷却優先モードで弁体31を回転駆動する。 As described above, the ECU 8 performs the normal mode in which the valve body 31 is rotated on one side (Pr0 to 10) with respect to 0 (degrees) that is the reference position in the rotation direction, depending on the vehicle environment and / or the vehicle state, or The valve element 31 is rotationally driven in a cooling priority mode in which the rotation is performed on the other side (Pr0 to −5) with respect to the reference position in the rotation direction.
 ECU8の通常モードによる弁体31の制御によって、弁体31が回転方向の一方側に回転駆動し、弁体31の回転位置が0から大きくなると、Pr1とPr2との間で、ヒータポート222の開度が0(%)から所定の割合で増大する。これにより、ヒータポート222の開度に応じた量の冷却水がヒータ6側に流れる。ヒータポート222の開度は、Pr2で100%(全開:前記所定開度)に達する。 When the valve body 31 is rotationally driven to one side in the rotational direction by the control of the valve body 31 in the normal mode of the ECU 8, and the rotational position of the valve body 31 increases from 0, the heater port 222 is connected between Pr1 and Pr2. The opening degree increases from 0 (%) at a predetermined rate. Thereby, an amount of cooling water corresponding to the opening degree of the heater port 222 flows to the heater 6 side. The opening degree of the heater port 222 reaches 100% (full open: the predetermined opening degree) at Pr2.
 弁体31が回転方向の一方側にさらに回転駆動すると、Pr3とPr4との間で、デバイスポート223の開度が0(%)から所定の割合で増大する。これにより、デバイスポート223の開度に応じた量の冷却水がデバイス7側に流れる。デバイスポート223の開度は、Pr4で100%(全開:前記所定開度)に達する。 When the valve body 31 is further rotationally driven to one side in the rotational direction, the opening degree of the device port 223 increases from 0 (%) to a predetermined ratio between Pr3 and Pr4. Thereby, an amount of cooling water corresponding to the opening degree of the device port 223 flows to the device 7 side. The opening degree of the device port 223 reaches 100% at Pr4 (fully open: the predetermined opening degree).
 ここで、弁体31の単位回転角度当りのPr1とPr2との間におけるヒータポート222の開度の増大割合は、Pr3とPr4との間におけるデバイスポート223の開度の増大割合と同じである(図124、125参照)。 Here, the increasing rate of the opening degree of the heater port 222 between Pr1 and Pr2 per unit rotation angle of the valve body 31 is the same as the increasing rate of the opening degree of the device port 223 between Pr3 and Pr4. (See FIGS. 124 and 125).
 弁体31が回転方向の一方側にさらに回転駆動すると、Pr5とPr6との間で、ラジエータポート221の開度が0(%)から所定の割合で増大する。これにより、ラジエータポート221の開度に応じた量の冷却水がラジエータ5側に流れる。 When the valve body 31 is further rotationally driven to one side in the rotational direction, the opening degree of the radiator port 221 increases from 0 (%) at a predetermined rate between Pr5 and Pr6. Thereby, an amount of cooling water corresponding to the opening degree of the radiator port 221 flows to the radiator 5 side.
 弁体31が回転方向の一方側にさらに回転駆動すると、Pr6とPr7との間で、ラジエータポート221の開度が所定の割合でさらに増大する。ラジエータポート221の開度は、Pr7で100%(全開:前記所定開度)に達する。そのため、Pr7において、ラジエータポート221、ヒータポート222およびデバイスポート223の全ての開度が前記所定開度すなわち100%になる。 When the valve body 31 is further rotationally driven to one side in the rotational direction, the opening degree of the radiator port 221 further increases at a predetermined rate between Pr6 and Pr7. The opening degree of the radiator port 221 reaches 100% (full opening: the predetermined opening degree) at Pr7. Therefore, in Pr7, all the openings of the radiator port 221, the heater port 222, and the device port 223 become the predetermined opening, that is, 100%.
 ここで、弁体31の単位回転角度当りのPr5とPr6との間におけるラジエータポート221の開度の増大割合は、Pr6とPr7との間におけるラジエータポート221の開度の増大割合より小さい(図124、125参照)。これは、ラジエータ用開口部410が延伸開口部413と大開口部412とから形成されていることによる(図93、94等参照)。 Here, the increasing rate of the opening of the radiator port 221 between Pr5 and Pr6 per unit rotation angle of the valve body 31 is smaller than the increasing rate of the opening of the radiator port 221 between Pr6 and Pr7 (FIG. 124, 125). This is because the radiator opening 410 is formed of the extended opening 413 and the large opening 412 (see FIGS. 93 and 94).
 そのため、ラジエータポート221の開弁初期において、ラジエータ5への冷却水の流量を徐々に大きくすることができる。これにより、通常モードにおいて、ラジエータ5の熱交換による冷却水の急激な温度変化を抑制することができる。 Therefore, at the initial opening of the radiator port 221, the flow rate of the cooling water to the radiator 5 can be gradually increased. Thereby, the rapid temperature change of the cooling water by heat exchange of the radiator 5 can be suppressed in the normal mode.
 また、弁体31の単位回転角度当りのPr5とPr6との間におけるラジエータポート221の開度の増大割合、および、Pr6とPr7との間におけるラジエータポート221の開度の増大割合は、Pr1とPr2との間におけるヒータポート222の開度の増大割合、Pr3とPr4との間におけるデバイスポート223の開度の増大割合より小さい(図124、125参照)。 Further, the rate of increase of the opening of the radiator port 221 between Pr5 and Pr6 per unit rotation angle of the valve body 31, and the rate of increase of the opening of the radiator port 221 between Pr6 and Pr7 are Pr1 and Pr6. The rate of increase in the opening degree of the heater port 222 with respect to Pr2 is smaller than the rate of increase in the opening degree of the device port 223 between Pr3 and Pr4 (see FIGS. 124 and 125).
 そのため、開弁初期におけるラジエータ5への冷却水の流量変化を、ヒータ6、デバイス7への冷却水の流量変化と比べ、緩やかにすることができる。これにより、通常モードにおいて、ラジエータ5の熱交換による冷却水の急激な温度変化を抑制することができる。 Therefore, the change in the flow rate of the cooling water to the radiator 5 at the initial stage of the valve opening can be made slower than the change in the flow rate of the cooling water to the heater 6 and the device 7. Thereby, the rapid temperature change of the cooling water by heat exchange of the radiator 5 can be suppressed in the normal mode.
 弁体31が回転方向の一方側にさらに回転駆動すると、Pr8とPr9との間で、ヒータポート222の開度およびデバイスポート223の開度が100%から所定の割合で減少する。これにより、ヒータ6側およびデバイス7側に流れる冷却水の量がヒータポート222の開度およびデバイスポート223の開度に応じて減少する。ヒータポート222の開度およびデバイスポート223の開度は、Pr9で0%(全閉)になる。これにより、ヒータポート222およびデバイスポート223が閉じ、ヒータ6側およびデバイス7側への冷却水の流れが遮断される。 When the valve body 31 is further rotated to one side in the rotation direction, the opening degree of the heater port 222 and the opening degree of the device port 223 are decreased from 100% at a predetermined rate between Pr8 and Pr9. Thereby, the amount of cooling water flowing to the heater 6 side and the device 7 side decreases according to the opening degree of the heater port 222 and the opening degree of the device port 223. The opening degree of the heater port 222 and the opening degree of the device port 223 become 0% (fully closed) at Pr9. Thereby, the heater port 222 and the device port 223 are closed, and the flow of the cooling water to the heater 6 side and the device 7 side is blocked.
 ここで、弁体31の単位回転角度当りのPr8とPr9との間におけるヒータポート222の開度の減少割合は、Pr8とPr9との間におけるデバイスポート223の開度の減少割合と同じである(図124、125参照)。 Here, the decreasing rate of the opening degree of the heater port 222 between Pr8 and Pr9 per unit rotation angle of the valve body 31 is the same as the decreasing rate of the opening degree of the device port 223 between Pr8 and Pr9. (See FIGS. 124 and 125).
 弁体31が回転方向の一方側にさらに回転駆動すると、Pr10で、第1規制凸部332または第2規制凸部342の一方が規制部631に当接し、弁体31の回転駆動が停止する。このとき、ラジエータポート221の開度は、100%のままである。すなわち、このとき、ラジエータポート221のみ開度が100%(全開:前記所定開度)になっている。 When the valve body 31 is further rotationally driven to one side in the rotational direction, at Pr10, one of the first restriction convex part 332 or the second restriction convex part 342 contacts the restriction part 631, and the rotational drive of the valve body 31 stops. . At this time, the opening degree of the radiator port 221 remains 100%. That is, at this time, only the radiator port 221 has an opening degree of 100% (fully open: the predetermined opening degree).
 ECU8の冷却優先モードによる弁体31の制御によって、弁体31が回転方向の他方側に回転駆動し、弁体31の回転位置が0から小さくなると、Pr-1とPr-2との間で、デバイスポート223の開度が0(%)から所定の割合で増大する。これにより、デバイスポート223の開度に応じた量の冷却水がデバイス7側に流れる。デバイスポート223の開度は、Pr-2で100%(全開:前記所定開度)に達する。 When the valve body 31 is driven to rotate to the other side in the rotational direction by the control of the valve body 31 in the cooling priority mode of the ECU 8, and the rotational position of the valve body 31 is reduced from 0, it is between Pr-1 and Pr-2. The opening degree of the device port 223 increases from 0 (%) at a predetermined rate. Thereby, an amount of cooling water corresponding to the opening degree of the device port 223 flows to the device 7 side. The opening degree of the device port 223 reaches 100% (full opening: the predetermined opening degree) at Pr-2.
 ここで、弁体31の単位回転角度当りのPr-1とPr-2との間におけるデバイスポート223の開度の増大割合は、Pr3とPr4との間におけるデバイスポート223の開度の増大割合と同じである(図124、125参照)。 Here, the increasing rate of the opening degree of the device port 223 between Pr-1 and Pr-2 per unit rotation angle of the valve body 31 is the increasing rate of the opening degree of the device port 223 between Pr3 and Pr4. (See FIGS. 124 and 125).
 弁体31が回転方向の他方側にさらに回転駆動すると、Pr-3とPr-4との間で、ラジエータポート221の開度が0(%)から所定の割合で増大する。これにより、ラジエータポート221の開度に応じた量の冷却水がラジエータ5側に流れる。ラジエータポート221の開度は、Pr-4で100%(全開:前記所定開度)に達する。そのため、Pr-4において、ラジエータポート221およびデバイスポート223の開度が前記所定開度すなわち100%になる。 When the valve body 31 is further rotated to the other side in the rotation direction, the opening degree of the radiator port 221 increases from 0 (%) at a predetermined rate between Pr-3 and Pr-4. Thereby, an amount of cooling water corresponding to the opening degree of the radiator port 221 flows to the radiator 5 side. The opening degree of the radiator port 221 reaches 100% at Pr-4 (fully open: the predetermined opening degree). Therefore, at Pr-4, the opening degree of the radiator port 221 and the device port 223 becomes the predetermined opening degree, that is, 100%.
 ここで、弁体31の単位回転角度当りのPr-3とPr-4との間におけるラジエータポート221の開度の増大割合は、Pr6とPr7との間におけるラジエータポート221の開度の増大割合と同じである(図124、125参照)。 Here, the increase rate of the opening of the radiator port 221 between Pr-3 and Pr-4 per unit rotation angle of the valve body 31 is the increase rate of the opening of the radiator port 221 between Pr6 and Pr7. (See FIGS. 124 and 125).
 弁体31が回転方向の他方側にさらに回転駆動すると、Pr-5で、第1規制凸部332または第2規制凸部342の他方が規制部631に当接し、弁体31の回転駆動が停止する。このとき、ラジエータポート221の開度およびデバイスポート223の開度は、100%のままである。すなわち、このとき、ラジエータポート221の開度およびデバイスポート223の開度は100%(全開:前記所定開度)になっている。 When the valve body 31 is further rotationally driven to the other side in the rotational direction, at Pr-5, the other of the first restriction convex part 332 or the second restriction convex part 342 comes into contact with the restriction part 631, and the valve body 31 is rotationally driven. Stop. At this time, the opening degree of the radiator port 221 and the opening degree of the device port 223 remain 100%. That is, at this time, the opening degree of the radiator port 221 and the opening degree of the device port 223 are 100% (fully open: the predetermined opening degree).
 本実施形態では、上述のように、ECU8は、通常モードの弁体31の特定の回転位置であるPr9~10において、ラジエータポート221のみ開度が0より大きい所定開度になるよう駆動部70および弁体31を制御可能である。 In the present embodiment, as described above, the ECU 8 controls the drive unit 70 so that only the radiator port 221 has a predetermined opening larger than 0 at Pr9 to 10 which are specific rotational positions of the valve body 31 in the normal mode. And the valve body 31 can be controlled.
 また、ECU8は、通常モードのPr7~10、および、冷却優先モードのPr-4~-5において、ラジエータポート221が前記所定開度になるよう駆動部70および弁体31を制御可能である。 Further, the ECU 8 can control the drive unit 70 and the valve body 31 so that the radiator port 221 is at the predetermined opening degree in the normal mode Pr7 to 10 and the cooling priority mode Pr-4 to -5.
 また、ECU8は、ラジエータポート221、ヒータポート222またはデバイスポート223の開度がそれぞれ、Pr9~10、Pr2~3、Pr-2~-3において、単独で前記所定開度になるよう駆動部70および弁体31を制御可能である。 Further, the ECU 8 drives the driving unit 70 so that the opening degree of the radiator port 221, the heater port 222 or the device port 223 becomes the predetermined opening degree independently at Pr9 to 10, Pr2 to 3, and Pr-2 to -3, respectively. And the valve body 31 can be controlled.
 また、ECU8は、通常モードにおいて、ラジエータポート221、ヒータポート222およびデバイスポート223の全ての開度がPr7~8において前記所定開度になるよう駆動部70および弁体31を制御可能である。 In the normal mode, the ECU 8 can control the drive unit 70 and the valve body 31 so that all the opening degrees of the radiator port 221, the heater port 222, and the device port 223 become the predetermined opening degree in Pr7-8.
  (第25実施形態)
 第25実施形態によるバルブ装置の一部を図126に示す。第25実施形態は、軸受部602近傍の構成が第1実施形態と異なる。
(25th Embodiment)
A part of the valve device according to the twenty-fifth embodiment is shown in FIG. The twenty-fifth embodiment differs from the first embodiment in the configuration near the bearing portion 602.
<6-23>
 図126に示すように、本実施形態は、軸シール部材603に代えて、シャフトシール部96を備えている。
<6-23>
As shown in FIG. 126, this embodiment includes a shaft seal portion 96 instead of the shaft seal member 603.
 シャフトシール部96は、シャフト挿通穴62に設けられ、内縁部がシャフト32の外周壁に当接可能な環状のシール部環状部材97、および、シール部環状部材97より柔らかく内縁部がシャフト32の外周壁に当接しシャフト32との間を液密に保持可能な環状のシャフトシール部材98を有する。 The shaft seal portion 96 is provided in the shaft insertion hole 62, and an annular seal portion annular member 97 whose inner edge portion can abut against the outer peripheral wall of the shaft 32, and the inner edge portion of the shaft 32 is softer than the seal portion annular member 97. An annular shaft seal member 98 that abuts on the outer peripheral wall and can hold fluid tightly between the shaft 32 is provided.
 本実施形態では、シャフト32の径方向外側に入口ポート220が形成されている。そのため、入口ポート220から内部空間200に流入した冷却水がシャフト32の外周壁にぶつかり、シャフト32の軸ブレが生じやすい。シャフト32に軸ブレが生じると、シャフトシール部材98への負荷が増大するおそれがある。 In this embodiment, the inlet port 220 is formed on the radially outer side of the shaft 32. Therefore, the cooling water flowing into the internal space 200 from the inlet port 220 collides with the outer peripheral wall of the shaft 32, and the shaft 32 is likely to be shaken. When shaft blurring occurs in the shaft 32, the load on the shaft seal member 98 may increase.
 そこで、本実施形態では、上記構成のシャフトシール部96を設け、シール部環状部材97によりシャフト32の軸ブレを抑制し、軸ブレによるシャフトシール部材98への負荷の低減を図っている。これにより、シャフトシール部材98の劣化、摩耗、変形等によるシール性の低下を抑制できる。 Therefore, in this embodiment, the shaft seal portion 96 having the above-described configuration is provided, and the shaft portion of the shaft 32 is suppressed by the seal portion annular member 97 to reduce the load on the shaft seal member 98 due to the shaft shake. Thereby, the deterioration of the sealing performance due to deterioration, wear, deformation or the like of the shaft seal member 98 can be suppressed.
<6-24>
 シャフトシール部96は、シール部環状部材97より硬くシャフト挿通穴62においてシール部環状部材97およびシャフトシール部材98を保持可能なシール部保持部材99をさらに有している。
<6-24>
The shaft seal portion 96 further includes a seal portion holding member 99 that is harder than the seal portion annular member 97 and can hold the seal portion annular member 97 and the shaft seal member 98 in the shaft insertion hole 62.
 そのため、シャフト挿通穴62におけるシール部環状部材97およびシャフトシール部材98の位置を安定させることができる。したがって、シール部環状部材97によりシャフト32の軸ブレを効果的に抑制するとともに、軸ブレによるシャフトシール部材98への負荷を効果的に低減できる。 Therefore, the positions of the seal portion annular member 97 and the shaft seal member 98 in the shaft insertion hole 62 can be stabilized. Therefore, the shaft portion of the shaft 32 is effectively suppressed by the seal portion annular member 97, and the load on the shaft seal member 98 due to the shaft shake can be effectively reduced.
<6-25>
 シール部環状部材97は、樹脂により形成されている。シャフトシール部材98は、ゴムにより形成されている。シール部保持部材99は、金属により形成されている。
<6-25>
The seal portion annular member 97 is made of resin. The shaft seal member 98 is made of rubber. The seal portion holding member 99 is made of metal.
 そのため、シール部環状部材97によりシャフト32の軸ブレを効果的に抑制し、シャフトシール部材98のシール性を確保し、シール部保持部材99によりシール部環状部材97およびシャフトシール部材98を安定して保持することができる。 Therefore, the shaft portion of the shaft 32 is effectively suppressed by the seal portion annular member 97, the sealing performance of the shaft seal member 98 is secured, and the seal portion annular member 97 and the shaft seal member 98 are stabilized by the seal portion holding member 99. Can be held.
<6-26>
 シャフトシール部材98は、シール部環状部材97とシャフト32の外周壁との当接箇所に対し弁体31側においてシャフト32の外周壁に当接する第1シャフトシール部材981、および、シール部環状部材97とシャフト32の外周壁との当接箇所に対し駆動部70側においてシャフト32の外周壁に当接する第2シャフトシール部材982を有する。
<6-26>
The shaft seal member 98 includes a first shaft seal member 981 that abuts the outer peripheral wall of the shaft 32 on the valve body 31 side with respect to a contact portion between the seal portion annular member 97 and the outer peripheral wall of the shaft 32, and the seal portion annular member The second shaft seal member 982 is in contact with the outer peripheral wall of the shaft 32 on the drive unit 70 side with respect to the contact portion between 97 and the outer peripheral wall of the shaft 32.
 そのため、1つのシール部環状部材97により、シャフト32の軸ブレを抑制し、軸ブレによる第1シャフトシール部材981および第2シャフトシール部材982への負荷を低減できる。また、シール部環状部材97の弁体31側および駆動部70側においてシャフト32の外周壁に当接する第1シャフトシール部材981および第2シャフトシール部材982により、シャフト32の外周のシール性をより高めることができる。 Therefore, the shaft seal of the shaft 32 can be suppressed by the single seal portion annular member 97, and the load on the first shaft seal member 981 and the second shaft seal member 982 due to the shaft shake can be reduced. Further, the first shaft seal member 981 and the second shaft seal member 982 that contact the outer peripheral wall of the shaft 32 on the valve body 31 side and the drive unit 70 side of the seal portion annular member 97 further improve the sealing performance of the outer periphery of the shaft 32. Can be increased.
 以下、シャフトシール部96の構成について、より詳細に説明する。 Hereinafter, the configuration of the shaft seal portion 96 will be described in more detail.
 シール部環状部材97は、例えばPTFE(ポリテトラフルオロエチレン)等の樹脂により環状に形成されている。シール部環状部材97は、内縁部がシャフト32の外周壁に当接および摺動可能に設けられている。シール部環状部材97を摩擦係数の小さいPTFEで形成することにより、シャフト32は、シール部環状部材97の内側で円滑に回転可能である。なお、シール部環状部材97は、隔壁貫通穴65に対し弁体31側に設けられている(図126参照)。 The seal portion annular member 97 is formed in an annular shape from a resin such as PTFE (polytetrafluoroethylene). The seal portion annular member 97 is provided such that an inner edge portion thereof can contact and slide on the outer peripheral wall of the shaft 32. The shaft 32 can be smoothly rotated inside the seal portion annular member 97 by forming the seal portion annular member 97 with PTFE having a small friction coefficient. The seal portion annular member 97 is provided on the valve body 31 side with respect to the partition wall through hole 65 (see FIG. 126).
 第1シャフトシール部材981は、例えばEPDM(エチレンプロピレンゴム)等のゴムにより、弾性変形可能なよう環状に形成されている。第1シャフトシール部材981は、シール部環状部材97とシャフト32の外周壁との当接箇所に対し弁体31側において内縁部がシャフト32の外周壁に密着するよう当接する。ここで、第1シャフトシール部材981の内縁部は、シャフト32の外周壁と摺動可能である。なお、シール部環状部材97は、第1シャフトシール部材981の内側に位置している(図126参照)。 The first shaft seal member 981 is formed in an annular shape so as to be elastically deformable by rubber such as EPDM (ethylene propylene rubber). The first shaft seal member 981 is in contact with the contact portion between the seal portion annular member 97 and the outer peripheral wall of the shaft 32 so that the inner edge portion is in close contact with the outer peripheral wall of the shaft 32 on the valve body 31 side. Here, the inner edge portion of the first shaft seal member 981 is slidable with the outer peripheral wall of the shaft 32. The seal annular member 97 is located inside the first shaft seal member 981 (see FIG. 126).
 第2シャフトシール部材982は、例えばNBR(ニトリルゴム)等のゴムにより、弾性変形可能なよう環状に形成されている。第2シャフトシール部材982は、シール部環状部材97とシャフト32の外周壁との当接箇所に対し駆動部70側において内縁部がシャフト32の外周壁に密着するよう当接する。ここで、第2シャフトシール部材982の内縁部は、シャフト32の外周壁と摺動可能である。なお、第2シャフトシール部材982は、シャフト32の軸方向において隔壁貫通穴65と軸受部602との間に設けられている(図126参照)。 The second shaft seal member 982 is formed in an annular shape so as to be elastically deformable by rubber such as NBR (nitrile rubber). The second shaft seal member 982 is in contact with the contact portion between the seal portion annular member 97 and the outer peripheral wall of the shaft 32 so that the inner edge portion is in close contact with the outer peripheral wall of the shaft 32 on the drive unit 70 side. Here, the inner edge portion of the second shaft seal member 982 is slidable with the outer peripheral wall of the shaft 32. The second shaft seal member 982 is provided between the partition wall through hole 65 and the bearing portion 602 in the axial direction of the shaft 32 (see FIG. 126).
 シール部保持部材99は、外側シール部保持部材990、内側シール部保持部材991、992、993を有している。外側シール部保持部材990、内側シール部保持部材991、992、993は、例えば金属により形成されている。 The seal part holding member 99 has an outer seal part holding member 990 and inner seal part holding members 991, 992, and 993. The outer seal portion holding member 990 and the inner seal portion holding members 991, 992, and 993 are made of, for example, metal.
 外側シール部保持部材990は、筒状に形成され、外周壁がシャフト挿通穴62に嵌合するよう設けられている。外側シール部保持部材990は、内周壁が第1シャフトシール部材981の外周壁に当接するようにして第1シャフトシール部材981を保持している。 The outer seal portion holding member 990 is formed in a cylindrical shape, and is provided so that the outer peripheral wall is fitted in the shaft insertion hole 62. The outer seal portion holding member 990 holds the first shaft seal member 981 so that the inner peripheral wall comes into contact with the outer peripheral wall of the first shaft seal member 981.
 内側シール部保持部材991は、環状に形成され、外縁部が外側シール部保持部材990の内周壁に嵌合するよう第1シャフトシール部材981の弁体31側の端部と外側シール部保持部材990との間に設けられている。内側シール部保持部材991は、第1シャフトシール部材981の弁体31側の端部を保持している。 The inner seal portion holding member 991 is formed in an annular shape, and the end portion on the valve body 31 side of the first shaft seal member 981 and the outer seal portion holding member so that the outer edge portion is fitted to the inner peripheral wall of the outer seal portion holding member 990. 990. The inner seal portion holding member 991 holds the end portion of the first shaft seal member 981 on the valve body 31 side.
 内側シール部保持部材992は、筒状に形成され、外周壁が第1シャフトシール部材981の駆動部70側の端部の内周壁に当接するよう、外側シール部保持部材990および第1シャフトシール部材981の駆動部70側の端部の内側に設けられている。内側シール部保持部材992は、内周壁がシール部環状部材97の外縁部に当接するようにしてシール部環状部材97を保持している。 The inner seal portion holding member 992 is formed in a cylindrical shape, and the outer seal portion holding member 990 and the first shaft seal are arranged such that the outer peripheral wall comes into contact with the inner peripheral wall of the end portion of the first shaft seal member 981 on the drive portion 70 side. The member 981 is provided inside the end on the drive unit 70 side. The inner seal portion holding member 992 holds the seal portion annular member 97 such that the inner peripheral wall comes into contact with the outer edge portion of the seal portion annular member 97.
 内側シール部保持部材993は、環状に形成され、外縁部が内側シール部保持部材992の内周壁に嵌合するよう、内側シール部保持部材992の駆動部70側の端部の内側に設けられている。内側シール部保持部材993は、弁体31側の端部がシール部環状部材97の駆動部70側の面に当接するようにしてシール部環状部材97を保持している。 The inner seal portion holding member 993 is formed in an annular shape, and is provided inside the end portion of the inner seal portion holding member 992 on the drive unit 70 side so that the outer edge portion is fitted to the inner peripheral wall of the inner seal portion holding member 992. ing. The inner seal portion holding member 993 holds the seal portion annular member 97 such that the end portion on the valve body 31 side comes into contact with the surface on the drive portion 70 side of the seal portion annular member 97.
 ここで、シール部環状部材97、内側シール部保持部材992、993は、弾性変形可能な第1シャフトシール部材981の内側に設けられていることにより、シャフト挿通穴62の内側において、径方向に一体的に移動可能である。そのため、シール部環状部材97により、シャフト32の軸ブレをより一層効果的に抑制することができる。 Here, the seal portion annular member 97 and the inner seal portion holding members 992, 993 are provided on the inner side of the elastically deformable first shaft seal member 981, so that the radial direction is formed inside the shaft insertion hole 62. It can move together. Therefore, the shaft portion of the shaft 32 can be more effectively suppressed by the seal portion annular member 97.
 上述のように、本実施形態では、第1シャフトシール部材981がEPDMにより形成され、第2シャフトシール部材982がNBRにより形成される例を示した。これに対し、他の実施形態では、第1シャフトシール部材981をNBRにより形成し、第2シャフトシール部材982をEPDMにより形成してもよい。また、他の実施形態では、第1シャフトシール部材981および第2シャフトシール部材982をいずれもNBRにより形成してもよい。さらに他の実施形態では、第1シャフトシール部材981および第2シャフトシール部材982をいずれもEPDMにより形成してもよい。 As described above, in the present embodiment, an example in which the first shaft seal member 981 is formed of EPDM and the second shaft seal member 982 is formed of NBR is shown. On the other hand, in other embodiments, the first shaft seal member 981 may be formed of NBR, and the second shaft seal member 982 may be formed of EPDM. In other embodiments, both the first shaft seal member 981 and the second shaft seal member 982 may be formed of NBR. In yet another embodiment, both the first shaft seal member 981 and the second shaft seal member 982 may be formed of EPDM.
 また、本実施形態では、シャフト32が鉛直方向に沿うようにしてバルブ装置10をエンジン2に取り付ける例を示した。これに対し、他の実施形態では、シャフト32が鉛直方向に対し垂直になるよう、または、傾斜するようにしてバルブ装置10をエンジン2に取り付けてもよい。この場合、重力によるシャフト32の軸の偏りが生じるおそれがあるものの、シール部環状部材97により、重力によるシャフト32の軸の偏りを抑制できる。 Moreover, in this embodiment, the example which attaches the valve apparatus 10 to the engine 2 was shown so that the shaft 32 may follow a perpendicular direction. On the other hand, in another embodiment, the valve device 10 may be attached to the engine 2 such that the shaft 32 is perpendicular to the vertical direction or is inclined. In this case, although the shaft 32 may be biased due to gravity, the seal portion annular member 97 can suppress the shaft 32 bias due to gravity.
  (第26実施形態)
 第26実施形態によるバルブ装置および冷却システムを図127に示す。第26実施形態は、ウォーターポンプ4の配置、および、冷却水の流れる方向等が第1実施形態と異なる。
(26th Embodiment)
FIG. 127 shows a valve device and a cooling system according to the twenty-sixth embodiment. The twenty-sixth embodiment differs from the first embodiment in the arrangement of the water pump 4, the direction in which the cooling water flows, and the like.
 本実施形態では、ウォーターポンプ4の吸入口と吐出口が第1実施形態と逆になるよう設けられている。ウォーターポンプ4は、ウォータージャケット3の出口側に設けられ、ウォータージャケット3を流れた冷却水を吸入し、吸入した冷却水をラジエータ5、ヒータ6、デバイス7に向けて圧送する。 In the present embodiment, the suction port and the discharge port of the water pump 4 are provided to be opposite to those in the first embodiment. The water pump 4 is provided on the outlet side of the water jacket 3, sucks the cooling water flowing through the water jacket 3, and pumps the sucked cooling water toward the radiator 5, the heater 6, and the device 7.
 ラジエータ5の出口は、バルブ装置10の出口ポート221に接続される。ヒータ6の出口は、バルブ装置10の出口ポート222に接続される。デバイス7の出口は、バルブ装置10の出口ポート223に接続される。バルブ装置10は、入口ポート220がウォータージャケット3の入口に接続するようエンジン2に取り付けられる。 The outlet of the radiator 5 is connected to the outlet port 221 of the valve device 10. The outlet of the heater 6 is connected to the outlet port 222 of the valve device 10. The outlet of the device 7 is connected to the outlet port 223 of the valve device 10. The valve device 10 is attached to the engine 2 so that the inlet port 220 is connected to the inlet of the water jacket 3.
 ラジエータ5、ヒータ6、デバイス7を流れた冷却水は、出口ポート221、222、223からバルブ装置10に流入し、入口ポート220からウォータージャケット3に流入する。バルブ装置10は、ラジエータ5、ヒータ6、デバイス7からウォータージャケット3に流れる冷却水の流量を調整する。 The cooling water that has flowed through the radiator 5, the heater 6, and the device 7 flows into the valve device 10 from the outlet ports 221, 222, and 223, and flows into the water jacket 3 from the inlet port 220. The valve device 10 adjusts the flow rate of the cooling water flowing from the radiator 5, the heater 6, and the device 7 to the water jacket 3.
 このように、バルブ装置10は、3つの出口ポート(221~223)から冷却水が流入し、1つの入口ポート(220)から冷却水が流出するような使い方もできる。 As described above, the valve device 10 can be used in such a way that cooling water flows in from the three outlet ports (221 to 223) and cooling water flows out of the one inlet port (220).
 上述の実施形態では、バルブ装置10を、入口ポート220がウォータージャケット3の入口に接続するようエンジン2に取り付ける例を示した。これに対し、他の実施形態では、パイプ等の部材を介して入口ポート220とウォータージャケット3とを接続し、バルブ装置10のハウジング20をエンジン2から離して設けてもよい。 In the above-described embodiment, the example in which the valve device 10 is attached to the engine 2 so that the inlet port 220 is connected to the inlet of the water jacket 3 is shown. On the other hand, in another embodiment, the inlet port 220 and the water jacket 3 may be connected via a member such as a pipe, and the housing 20 of the valve device 10 may be provided away from the engine 2.
  (他の実施形態)
<3-7-1>
 第3実施形態に対し、第1規制凸部332は、第2規制凸部342から離れた位置に形成されていてもよい。
(Other embodiments)
<3-7-1>
In contrast to the third embodiment, the first restriction convex part 332 may be formed at a position away from the second restriction convex part 342.
<3-7-2>
 また、第1規制凸部332と回転軸Axr1との距離は、第2規制凸部342と回転軸Axr1との距離と同じでもよいし、異なっていてもよい。
<3-7-2>
Further, the distance between the first restriction convex part 332 and the rotation axis Axr1 may be the same as or different from the distance between the second restriction convex part 342 and the rotation axis Axr1.
 なお、第1規制凸部332と回転軸Axr1との距離と、第2規制凸部342と回転軸Axr1との距離とが同じ場合、第1規制凸部332、第2規制凸部342が規制部631に当接し弁体31の回転が規制されるときの当接荷重を同じにすることができる。 When the distance between the first restriction convex part 332 and the rotation axis Axr1 is the same as the distance between the second restriction convex part 342 and the rotation axis Axr1, the first restriction convex part 332 and the second restriction convex part 342 are restricted. The contact load when contacting the part 631 and the rotation of the valve body 31 is restricted can be made the same.
<6-1-16-1>
 第13実施形態に対し、隔壁貫通穴65は、シャフト挿通穴62の径方向外側から径方向内側へ向かうに従い、その断面積が徐々に大きくなるよう形成されていてもよい。
<6-1-16-1>
In contrast to the thirteenth embodiment, the partition wall through hole 65 may be formed so that its cross-sectional area gradually increases from the radially outer side to the radially inner side of the shaft insertion hole 62.
 この場合、ハウジング貫通穴270を経由して外部から水等が侵入したとしても、当該水等が隔壁貫通穴65を経由してシャフト挿通穴62まで流れるのを抑制できる。 In this case, even if water or the like enters from the outside via the housing through hole 270, the water or the like can be prevented from flowing to the shaft insertion hole 62 via the partition wall through hole 65.
 上述の実施形態では、ハウジング本体21と隔壁部60とを別体に形成する例を示した。これに対し、他の実施形態では、ハウジング本体21と隔壁部60とを一体に形成してもよい。 In the above-described embodiment, an example in which the housing main body 21 and the partition wall 60 are formed separately has been described. On the other hand, in other embodiments, the housing body 21 and the partition wall 60 may be integrally formed.
 また、上述の実施形態では、入口ポート220、出口ポート221~223、リリーフポート224がシャフト32の軸に対し直交する方向に形成される例を示した。これに対し、他の実施形態では、入口ポート220、出口ポート221~223、リリーフポート224は、シャフト32の軸方向に形成されていてもよい。また、出口ポート221~223から冷却水が流入し、入口ポート220から冷却水が流出するようバルブ装置10を用いてもよい。また、入口ポート、出口ポート、リリーフポートは、ハウジング本体21にいくつ形成されていてもよい。 In the above-described embodiment, the example in which the inlet port 220, the outlet ports 221 to 223, and the relief port 224 are formed in a direction orthogonal to the axis of the shaft 32 is shown. On the other hand, in another embodiment, the inlet port 220, the outlet ports 221 to 223, and the relief port 224 may be formed in the axial direction of the shaft 32. Further, the valve device 10 may be used so that the cooling water flows in from the outlet ports 221 to 223 and the cooling water flows out from the inlet port 220. In addition, any number of inlet ports, outlet ports, and relief ports may be formed in the housing body 21.
 上述の実施形態では、バルブ装置10を発熱体としてのエンジン2に適用する例を示した。これに対し、他の実施形態では、ハイブリッド車や電気自動車等に搭載される発熱体としてのバッテリの冷却水を制御するバルブ装置として採用してもよい。 In the above-described embodiment, the example in which the valve device 10 is applied to the engine 2 as a heating element is shown. On the other hand, in other embodiments, it may be adopted as a valve device for controlling cooling water of a battery as a heating element mounted on a hybrid vehicle, an electric vehicle or the like.
 また、バルブ装置10は、発熱体に対し、どのような姿勢で取り付けてもよい。 Further, the valve device 10 may be attached to the heating element in any posture.
 上述の実施形態では、駆動部カバー80が6つのカバー固定部を有する例を示した。これに対し、他の実施形態では、カバー固定部は、カバー本体81に対し、6つに限らず、5つ等、いくつ形成されていてもよい。 In the above-described embodiment, an example in which the drive unit cover 80 has six cover fixing units has been described. On the other hand, in other embodiments, the number of cover fixing portions is not limited to six, but may be any number, such as five, with respect to the cover main body 81.
<12-10>
 上述の第15実施形態では、弁体31の外周壁および内周壁を球面状に形成する例を示した。これに対し、他の実施形態では、弁体31は、外周壁および内周壁が円筒状に形成されていてもよい。また、弁体31は、少なくとも外周壁の一部が球面状または円筒状に形成されていてもよい。このような形状のロータリーバルブであっても、第15実施形態と同様の効果を奏することができる。
<12-10>
In the fifteenth embodiment described above, the example in which the outer peripheral wall and the inner peripheral wall of the valve body 31 are formed in a spherical shape has been described. On the other hand, in other embodiments, the valve body 31 may have an outer peripheral wall and an inner peripheral wall formed in a cylindrical shape. Further, the valve body 31 may have at least a part of the outer peripheral wall formed in a spherical shape or a cylindrical shape. Even with such a rotary valve, the same effects as those of the fifteenth embodiment can be obtained.
 本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリーを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリーと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。 The control unit and the method described in the present disclosure are realized by a dedicated computer provided by configuring a processor and a memory programmed to execute one or more functions embodied by a computer program. May be. Alternatively, the control unit and the method thereof described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits. Alternatively, the control unit and the method thereof described in the present disclosure are based on a combination of a processor and a memory programmed to execute one or more functions and a processor configured by one or more hardware logic circuits. It may be realized by one or more configured dedicated computers. The computer program may be stored in a computer-readable non-transition tangible recording medium as instructions executed by the computer.
 このように、本開示は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の形態で実施可能である。 As described above, the present disclosure is not limited to the above embodiment, and can be implemented in various forms without departing from the gist thereof.
<1><課題>
 例えば特許文献1に記載されたバルブ装置では、インレットポートまたはアウトレットポートは、ホース等を介して車両の内燃機関に接続される。ここで、ホース等を介さず、インレットポートまたはアウトレットポートを内燃機関に直接接続する場合、バルブ装置と内燃機関との締結箇所の配置によっては、インレットポートまたはアウトレットポートと内燃機関との間のシール性が低下し、冷却水が外部に漏れるおそれがある。
<1><Problem>
For example, in the valve device described in Patent Document 1, the inlet port or the outlet port is connected to the internal combustion engine of the vehicle via a hose or the like. Here, when the inlet port or the outlet port is directly connected to the internal combustion engine without using a hose or the like, the seal between the inlet port or the outlet port and the internal combustion engine depends on the arrangement of the fastening portion between the valve device and the internal combustion engine. The cooling performance may be reduced and the cooling water may leak outside.
 本開示の目的は、車両の発熱体との間からの冷却水の漏れを抑制可能なバルブ装置を提供することにある。 An object of the present disclosure is to provide a valve device that can suppress leakage of cooling water from a vehicle heating element.
<1><手段>
<1-1>
 本開示の第1の態様は、車両の発熱体の冷却水を制御可能なバルブ装置であって、ハウジングとバルブとを備える。ハウジング本体は、締結穴を通り発熱体に螺合する締結部材により発熱体に固定される。締結穴は、少なくとも3つ形成されている。ポートの開口は、3つの締結穴を結んで形成される三角形の内側に形成されている。
<1><Means>
<1-1>
A first aspect of the present disclosure is a valve device that can control cooling water of a heating element of a vehicle, and includes a housing and a valve. The housing body is fixed to the heating element by a fastening member that passes through the fastening hole and is screwed to the heating element. At least three fastening holes are formed. The port opening is formed inside a triangle formed by connecting three fastening holes.
 そのため、ポートの周りに環状の弾性部材からなるシール部材を設けた場合、3つの締結穴を通る締結部材によりハウジング本体を発熱体に固定したとき、シール部材をバランスよく圧縮できる。これにより、ポート周りのシール性を効果的に確保できる。 Therefore, when a seal member made of an annular elastic member is provided around the port, the seal member can be compressed with a good balance when the housing body is fixed to the heating element by the fastening member passing through the three fastening holes. Thereby, the sealing performance around the port can be effectively secured.
<1-2>
 本開示の第2の態様は、車両の発熱体の冷却水を制御可能なバルブ装置であって、ハウジングとバルブと隔壁部と駆動部とを備える。ハウジング本体は、締結穴を通り発熱体に螺合する締結部材により発熱体に固定される。締結穴は、ポートの開口の径方向外側に形成された第1締結穴、第1締結穴との間にポートの開口を挟むよう形成された第2締結穴、および、第1締結穴および第2締結穴に対し駆動部側に形成された第3締結穴を含む。
<1-2>
A 2nd mode of this indication is a valve device which can control cooling water of a heating element of vehicles, and is provided with a housing, a valve, a partition part, and a drive part. The housing body is fixed to the heating element by a fastening member that passes through the fastening hole and is screwed to the heating element. The fastening hole includes a first fastening hole formed radially outside the opening of the port, a second fastening hole formed so as to sandwich the opening of the port between the first fastening hole, and the first fastening hole and the first fastening hole. 3rd fastening hole formed in the drive part side with respect to 2 fastening holes is included.
 そのため、ポートの周りに環状の弾性部材からなるシール部材を設けた場合、第1締結穴および第2締結穴を通る締結部材によりハウジング本体を発熱体に固定したとき、シール部材をバランスよく圧縮できる。これにより、ポート周りのシール性を効果的に確保できる。 Therefore, when a seal member made of an annular elastic member is provided around the port, the seal member can be compressed in a balanced manner when the housing body is fixed to the heating element by the fastening member passing through the first fastening hole and the second fastening hole. . Thereby, the sealing performance around the port can be effectively secured.
 また、第3締結穴を通る締結部材により締結部が発熱体に固定されることにより、発熱体の振動の駆動部への影響を抑制することができる。 In addition, the fastening part is fixed to the heating element by the fastening member passing through the third fastening hole, so that the influence of the vibration of the heating element on the driving part can be suppressed.
 以下、各実施形態から把握される請求の範囲に記載した以外の技術的思想について説明する。 Hereinafter, technical ideas other than those described in the scope of claims ascertained from each embodiment will be described.
<1-2-1>
 前記ポートの開口の中心は、前記第1締結穴と前記第2締結穴とを結ぶ直線上に位置しているバルブ装置。
<1-2-1>
A valve device in which the center of the opening of the port is located on a straight line connecting the first fastening hole and the second fastening hole.
<1-2-2>
 前記ポートの開口の中心と前記第1締結穴との距離は、前記ポートの開口の中心と前記第2締結穴との距離と同じであるバルブ装置。
<1-2-2>
The valve device, wherein a distance between a center of the port opening and the first fastening hole is the same as a distance between the center of the port opening and the second fastening hole.
<1-2-3>
 前記第3締結穴と前記駆動部との距離は、前記第3締結穴と前記ポートの開口の中心との距離より短いバルブ装置。
<1-2-3>
A valve device in which a distance between the third fastening hole and the drive unit is shorter than a distance between the third fastening hole and the center of the opening of the port.
<1-2-4>
 前記第3締結穴は、中心が、出口ポート223の中心を通り回転軸Axr1に直交する仮想平面に対し駆動部70側に位置するよう形成されているバルブ装置。
<1-2-4>
The valve device is formed such that the third fastening hole is positioned on the drive unit 70 side with respect to a virtual plane passing through the center of the outlet port 223 and orthogonal to the rotation axis Axr1.
<1-3-1>
 前記ポートの開口の中心に対し点対称となる前記第1締結穴および前記第2締結穴は、前記ポートの開口面に垂直で、かつ、前記ポートの開口の中心を通る直線が前記回転軸を通るよう形成されているバルブ装置。
<1-3-1>
The first fastening hole and the second fastening hole that are point-symmetric with respect to the center of the port opening are perpendicular to the port opening surface, and a straight line passing through the center of the port opening serves as the rotation axis. A valve device configured to pass through.
<1-4-1>
 前記第1位置決め部および前記第2位置決め部は、前記第1締結穴と前記第2締結穴とを結ぶ第1直線に対し、前記第1位置決め部と前記第2位置決め部とを結ぶ第2直線が直交するよう形成されているバルブ装置。
<1-4-1>
The first positioning part and the second positioning part are a second straight line connecting the first positioning part and the second positioning part with respect to a first straight line connecting the first fastening hole and the second fastening hole. Is a valve device formed so as to be orthogonal to each other.
<1-4-2>
 前記第1直線の中心と前記第2直線の中心とは一致するバルブ装置。
<1-4-2>
The valve device in which the center of the first straight line coincides with the center of the second straight line.
<1-5-1>
 前記取付面凹部は、複数形成され、複数の前記取付面凹部の間には凹部間リブが形成されているバルブ装置。
<1-5-1>
A valve device in which a plurality of the mounting surface recesses are formed and an inter-recess rib is formed between the plurality of mounting surface recesses.
<1-1-5-1>
 前記ハウジング本体は、フィラーを含むポリフェニレンスルファイド樹脂により形成されているバルブ装置。
<1-1-5-1>
The housing body is a valve device formed of polyphenylene sulfide resin containing a filler.
<2-1-1>
 前記ハウジング開口部と前記隔壁部との間に設けられ、前記ハウジング開口部と前記隔壁部との間を液密に保持可能な環状シール部材をさらに備え、
 前記ハウジング開口部は、内壁が筒状に形成され、
 前記隔壁部は、前記ハウジング開口部の内側に位置し外壁が筒状に形成された隔壁部本体を有し、
 前記環状シール部材は、前記ハウジング開口部と前記隔壁部本体との間に設けられ、
 前記ハウジング開口部の内径と前記隔壁部本体の外径との差は、自由状態の前記環状シール部材の内径と外径との差より小さいバルブ装置。
<2-1-1>
An annular seal member provided between the housing opening and the partition, and capable of maintaining a liquid-tight relationship between the housing opening and the partition;
The housing opening has an inner wall formed in a cylindrical shape,
The partition wall has a partition wall body that is located inside the housing opening and has an outer wall formed in a cylindrical shape.
The annular seal member is provided between the housing opening and the partition wall body,
A valve device in which a difference between an inner diameter of the housing opening and an outer diameter of the partition wall body is smaller than a difference between an inner diameter and an outer diameter of the annular seal member in a free state.
<2-2-1>
 前記環状シール部材の軸方向において前記ハウジング本体または前記隔壁部との間の少なくとも一方に軸方向隙間が形成されているバルブ装置。
<2-2-1>
A valve device in which an axial clearance is formed in at least one of the housing main body and the partition wall in the axial direction of the annular seal member.
<3-4-1>
 前記弁体は、前記シール開口部の全てが前記弁体の外周壁で塞がれた全閉状態のとき、前記回転軸方向および周方向の少なくとも前記シール開口部に対応する範囲において、内周壁と外周壁との距離が同じであるバルブ装置。
<3-4-1>
The valve body has an inner peripheral wall in a range corresponding to at least the seal opening in the rotation axis direction and the circumferential direction when all the seal openings are closed by the outer peripheral wall of the valve body. Valve device with the same distance from the outer peripheral wall.
<3-7-1>
 前記第1規制凸部は、前記第2規制凸部から離れた位置に形成されているバルブ装置。
<3-7-1>
The first restriction convex portion is a valve device formed at a position away from the second restriction convex portion.
<3-7-2>
 前記第1規制凸部と前記回転軸との距離は、前記第2規制凸部と前記回転軸との距離と同じであるバルブ装置。
<3-7-2>
A valve device in which a distance between the first restricting convex portion and the rotating shaft is the same as a distance between the second restricting convex portion and the rotating shaft.
<3-9-1>
 前記弁体開口リブは、前記仮想球面から所定の距離を空けて円弧状に形成されているバルブ装置。
<3-9-1>
The valve body opening rib is a valve device formed in an arc shape with a predetermined distance from the virtual spherical surface.
<3-12-1>
 前記特定形状部は、外壁が前記筒状部の外周壁から外側へ突出するよう形成されているバルブ装置。
<3-12-1>
The specific shape portion is a valve device formed so that an outer wall protrudes outward from an outer peripheral wall of the tubular portion.
<3-12-2>
 前記特定形状部は、外壁が前記筒状部の外周壁から内側へ凹むよう形成されているバルブ装置。
<3-12-2>
The specific shape portion is a valve device in which an outer wall is formed to be recessed inward from an outer peripheral wall of the cylindrical portion.
<3-12-3>
 前記特定形状部は、外壁が平面状に形成されているバルブ装置。
<3-12-3>
The specific shape portion is a valve device in which an outer wall is formed in a flat shape.
<3-17-1>
 前記シャフトの一端を経由して前記弁体を回転駆動可能な駆動部をさらに備え、
 前記バルブは、前記第2最外端面が前記駆動部側を向くよう設けられ、
 前記第2最外端面の面積は、前記第1最外端面の面積より大きいバルブ装置。
<3-17-1>
A drive unit capable of rotationally driving the valve body via one end of the shaft;
The valve is provided so that the second outermost end surface faces the drive unit side,
The valve device has an area of the second outermost end surface larger than an area of the first outermost end surface.
<3-19-1>
 前記第1端面開口リブと前記第2端面開口リブと前記第2弁体開口リブと前記第3弁体開口リブとは、前記弁体の周方向において同じ位置に形成されているバルブ装置。
<3-19-1>
The valve device in which the first end surface opening rib, the second end surface opening rib, the second valve body opening rib, and the third valve body opening rib are formed at the same position in the circumferential direction of the valve body.
<3-22-23-1>
 前記第1型は、前記第1分割体の外周壁の形状に対応する第1凹面が形成された第1外型、および、前記第1分割体の内周壁の形状に対応する第1凸面が形成された第1内型を有し、
 前記第2型は、前記第2分割体の外周壁の形状に対応する第2凹面が形成された第2外型、および、前記第2分割体の内周壁の形状に対応する第2凸面が形成された第2内型を有し、
 前記1次成形工程において前記第1分割体と前記第2分割体とを樹脂成形するとき、前記回転軸方向および周方向の少なくとも一部の範囲において、前記第1凹面と前記第1凸面との距離、ならびに、前記第2凹面と前記第2凸面との距離は同じであるバルブの製造方法。
<3-22-23-1>
The first mold has a first outer mold formed with a first concave surface corresponding to the shape of the outer peripheral wall of the first divided body, and a first convex surface corresponding to the shape of the inner peripheral wall of the first divided body. Having a first inner mold formed;
The second mold has a second outer mold formed with a second concave surface corresponding to the shape of the outer peripheral wall of the second divided body, and a second convex surface corresponding to the shape of the inner peripheral wall of the second divided body. Having a second inner mold formed;
When the first divided body and the second divided body are resin-molded in the primary molding step, the first concave surface and the first convex surface in at least a part of the rotational axis direction and the circumferential direction. The method for manufacturing a valve, wherein the distance and the distance between the second concave surface and the second convex surface are the same.
<3-25-1>
 前記外側型は、前記弁体の外周壁の形状に対応する凹面を有し、
 前記内側型は、前記弁体の内周壁の形状に対応する凸面を有し、
 前記樹脂成形工程において前記弁体を樹脂成形するとき、前記回転軸方向および周方向の少なくとも一部の範囲において、前記凹面と前記凸面との距離が同じであるバルブの製造方法。
<3-25-1>
The outer mold has a concave surface corresponding to the shape of the outer peripheral wall of the valve body,
The inner mold has a convex surface corresponding to the shape of the inner peripheral wall of the valve body,
A method of manufacturing a valve, wherein when the valve body is resin-molded in the resin molding step, the distance between the concave surface and the convex surface is the same in at least a part of the range of the rotation axis direction and the circumferential direction.
<4-1-1>
 前記カバー固定部は、複数形成されており、
 複数の前記カバー固定部は、前記取付面に対し垂直な仮想平面上に位置しているバルブ装置。
<4-1-1>
A plurality of the cover fixing portions are formed,
The plurality of cover fixing portions are valve devices positioned on a virtual plane perpendicular to the mounting surface.
<4-2-1>
 前記隔壁部は、前記ハウジング本体と別体に形成され、
 前記ハウジング本体は、前記取付面とは反対側の端部において前記隔壁部が露出する程度の切欠き部を有しているバルブ装置。
<4-2-1>
The partition wall is formed separately from the housing body,
The housing body has a notch portion that exposes the partition wall at an end opposite to the mounting surface.
<4-3-1>
 前記コネクタ部は、前記カバー本体の外縁部から前記取付面に対し垂直な方向以外の方向へ突出するよう形成されているバルブ装置。
<4-3-1>
The said connector part is a valve apparatus currently formed so that it may protrude in directions other than the direction perpendicular | vertical with respect to the said attachment surface from the outer edge part of the said cover main body.
<4-3-2>
 前記コネクタ部は、前記カバー本体の外縁部から前記取付面に対し平行な方向へ突出するよう形成されているバルブ装置。
<4-3-2>
The said connector part is a valve apparatus currently formed so that it may protrude in the direction parallel to the said attachment surface from the outer edge part of the said cover main body.
<5-2-1>
 複数の前記ポートのうち少なくとも前記シールユニットが設けられた前記ポートは、互いの軸が平行となるよう形成されているバルブ装置。
<5-2-1>
The valve device in which at least the seal unit is provided among the plurality of ports is formed such that the axes thereof are parallel to each other.
<5-13-1>
 前記ハウジング開口部と前記隔壁部との間に設けられ、前記ハウジング開口部と前記隔壁部との間を液密に保持可能な環状シール部材を備えるバルブ装置。
<5-13-1>
A valve device comprising an annular seal member provided between the housing opening and the partition wall and capable of maintaining a liquid-tight space between the housing opening and the partition wall.
<6-1-1>
 前記隔壁貫通穴は、断面形状が長円形または長方形となるよう形成されているバルブ装置。
<6-1-1>
The partition wall through-hole is a valve device formed so that a cross-sectional shape is an oval or a rectangle.
<6-2-1>
 前記ハウジング貫通穴は、断面形状が長円形または長方形となるよう形成されているバルブ装置。
<6-2-1>
The housing through-hole is a valve device formed so that a cross-sectional shape is an oval or a rectangle.
<6-2-2>
 前記隔壁貫通穴と前記ハウジング貫通穴とは、同軸に形成されているバルブ装置。
<6-2-2>
The partition wall through-hole and the housing through-hole are valve devices formed coaxially.
<6-11-1>
 前記隔壁貫通穴の軸と前記ハウジング貫通穴の軸との距離をL、前記シャフト挿通穴の軸方向における前記ハウジング貫通穴の大きさをDとすると、
 前記隔壁貫通穴および前記ハウジング貫通穴は、D≦L≦10Dの関係を満たすよう形成されているバルブ装置。
<6-11-1>
When the distance between the shaft of the partition wall through hole and the shaft of the housing through hole is L, and the size of the housing through hole in the axial direction of the shaft insertion hole is D,
The valve device, wherein the partition wall through hole and the housing through hole are formed so as to satisfy a relationship of D ≦ L ≦ 10D.
<6-1-16-1>
 前記隔壁貫通穴は、前記シャフト挿通穴の径方向外側から径方向内側へ向かうに従い、その断面積が徐々に大きくなるよう形成されているバルブ装置。
<6-1-16-1>
The partition wall through hole is formed such that a cross-sectional area thereof gradually increases from the radially outer side to the radially inner side of the shaft insertion hole.
 各実施形態の最小の基本構成を以下に示す。 The minimum basic configuration of each embodiment is shown below.
 車両(1)の発熱体(2)の冷却水を制御可能なバルブ装置(10)であって、
 内側に形成された内部空間(200)、前記内部空間と外部とを接続するポート(220、221、222、223)を有するハウジング(20)と、
 回転軸(Axr1)周りに回転可能なよう前記内部空間内に設けられた弁体(31)を有し、前記弁体の回転位置により前記ポートを開閉可能なバルブ(30)と、
 を備えるバルブ装置。
A valve device (10) capable of controlling cooling water of a heating element (2) of a vehicle (1),
An inner space (200) formed inside, a housing (20) having ports (220, 221, 222, 223) connecting the inner space and the outside;
A valve body (31) provided in the internal space so as to be rotatable around a rotation axis (Axr1), and a valve (30) capable of opening and closing the port according to a rotational position of the valve body;
A valve device comprising:
 つまり、上記最小の基本構成に示した構成要素以外の構成要素は、各実施形態の必須要素ではない。 That is, constituent elements other than the constituent elements shown in the minimum basic configuration are not essential elements of each embodiment.
 各実施形態に記載されている課題を解決するために、適宜、実施形態に記載されている技術的思想を上記最小の基本構成に組み合わせることができる。 In order to solve the problem described in each embodiment, the technical idea described in the embodiment can be appropriately combined with the minimum basic configuration.
 以下、各実施形態から把握される代表的な技術的思想について説明する。 Hereinafter, typical technical ideas grasped from each embodiment will be described.
<1>
[A01]
 車両(1)の発熱体(2)の冷却水を制御可能なバルブ装置(10)であって、
 内側に内部空間(200)を形成するハウジング本体(21)、前記発熱体に取り付けられた状態において前記発熱体に対向するよう前記ハウジング本体の外壁に形成された取付面(201)、前記取付面に開口し前記内部空間と前記ハウジング本体の外部とを接続するポート(220)、前記ハウジング本体と一体に形成された複数の締結部(231、232、233)、および、複数の前記締結部のそれぞれに対応して形成された複数の締結穴(241、242、243)を有するハウジング(20)と、
 前記内部空間内において回転軸(Axr1)周りに回転可能な弁体(31)、および、前記弁体の内側に形成され前記ポートに連通可能な弁体内流路(300)を有するバルブ(30)と、を備え、
 前記ハウジング本体は、前記締結穴を通り前記発熱体に螺合する締結部材(240)により前記発熱体に固定され、
 前記締結穴は、少なくとも3つ形成されており、
 前記ポートの開口は、3つの前記締結穴を結んで形成される三角形(Ti1)の内側に形成されているバルブ装置。
<1>
[A01]
A valve device (10) capable of controlling cooling water of a heating element (2) of a vehicle (1),
A housing main body (21) forming an internal space (200) on the inside; a mounting surface (201) formed on an outer wall of the housing main body so as to face the heat generating body when mounted on the heat generating body; A port (220) that connects to the interior space and the outside of the housing body, a plurality of fastening portions (231, 232, 233) formed integrally with the housing body, and a plurality of the fastening portions. A housing (20) having a plurality of fastening holes (241, 242, 243) formed in correspondence with each other;
A valve (30) having a valve body (31) rotatable around a rotation axis (Axr1) in the internal space, and a valve body flow path (300) formed inside the valve body and communicating with the port. And comprising
The housing body is fixed to the heating element by a fastening member (240) screwed into the heating element through the fastening hole,
At least three of the fastening holes are formed,
The opening of the port is a valve device formed inside a triangle (Ti1) formed by connecting the three fastening holes.
[A02]
 車両(1)の発熱体(2)の冷却水を制御可能なバルブ装置(10)であって、
 内側に内部空間(200)を形成するハウジング本体(21)、前記ハウジング本体の外壁に形成され前記発熱体に取り付けられた状態において前記発熱体に対向する取付面(201)、前記取付面に開口し前記内部空間と前記ハウジング本体の外部とを接続するポート(220)、前記ハウジング本体と一体に形成された複数の締結部(231、232、233)、および、複数の前記締結部のそれぞれに対応して形成された複数の締結穴(241、242、243)を有するハウジング(20)と、
 前記内部空間内において回転軸(Axr1)周りに回転可能な弁体(31)、前記弁体の内側に形成され前記ポートに連通可能な弁体内流路(300)、および、前記回転軸に設けられたシャフト(32)を有するバルブ(30)と、
 前記内部空間と前記ハウジング本体の外部とを隔てる隔壁部(60)と、
 前記隔壁部に対し前記内部空間とは反対側に設けられ、前記シャフトを経由して前記弁体を回転駆動可能な駆動部(70)と、を備え、
 前記ハウジング本体は、前記締結穴を通り前記発熱体に螺合する締結部材(240)により前記発熱体に固定され、
 前記締結穴は、前記ポートの開口の径方向外側に形成された第1締結穴(241)、前記第1締結穴との間に前記ポートの開口を挟むよう形成された第2締結穴(242)、および、前記第1締結穴および前記第2締結穴に対し前記駆動部側に形成された第3締結穴(243)を含むバルブ装置。
[A02]
A valve device (10) capable of controlling cooling water of a heating element (2) of a vehicle (1),
A housing body (21) that forms an internal space (200) inside, a mounting surface (201) that is formed on the outer wall of the housing body and that is mounted on the heating element, and that faces the heating element; A port (220) for connecting the internal space and the outside of the housing body, a plurality of fastening portions (231, 232, 233) formed integrally with the housing body, and a plurality of the fastening portions, respectively. A housing (20) having a plurality of correspondingly formed fastening holes (241, 242, 243);
A valve body (31) rotatable around a rotation axis (Axr1) in the internal space, a valve body flow path (300) formed inside the valve body and communicating with the port, and provided on the rotation shaft A valve (30) having a defined shaft (32);
A partition wall (60) separating the internal space and the outside of the housing body;
A drive unit (70) provided on the opposite side of the internal space with respect to the partition wall, and capable of rotationally driving the valve body via the shaft;
The housing body is fixed to the heating element by a fastening member (240) screwed into the heating element through the fastening hole,
The fastening hole includes a first fastening hole (241) formed radially outside the port opening and a second fastening hole (242) formed so as to sandwich the port opening between the first fastening hole and the first fastening hole. And a third fastening hole (243) formed on the drive unit side with respect to the first fastening hole and the second fastening hole.
[A03]
 前記第1締結穴と前記第2締結穴とは、前記ポートの開口の中心(Cp1)に対し点対称となるよう形成されている[A02]に記載のバルブ装置。
[A03]
The valve device according to [A02], wherein the first fastening hole and the second fastening hole are formed to be point-symmetric with respect to a center (Cp1) of the opening of the port.
[A04]
 前記ハウジングは、前記取付面に形成され他部材と係合することで前記ハウジング本体の位置決めが可能な位置決め部(205、206)を有し、
 前記位置決め部は、前記ポートの開口の径方向外側に形成された第1位置決め部(205)、および、前記第1位置決め部との間に前記ポートの開口を挟むよう形成された第2位置決め部(206)を含む[A02]または[A03]に記載のバルブ装置。
[A04]
The housing has positioning portions (205, 206) formed on the mounting surface and capable of positioning the housing body by engaging with other members,
The positioning portion includes a first positioning portion (205) formed radially outside the opening of the port, and a second positioning portion formed so as to sandwich the opening of the port between the first positioning portion and the first positioning portion. The valve device according to [A02] or [A03], including (206).
[A05]
 前記ハウジングは、前記取付面から前記発熱体とは反対側へ凹む取付面凹部(207)を有している[A01]~[A04]のいずれか一項に記載のバルブ装置。
[A05]
The valve device according to any one of [A01] to [A04], wherein the housing has a mounting surface recess (207) that is recessed from the mounting surface to a side opposite to the heating element.
[A06]
 前記第3締結穴が形成された前記締結部(233)は、前記隔壁部に隣接した位置に形成されている[A02]~[A04]のいずれか一項に記載のバルブ装置。
[A06]
The valve device according to any one of [A02] to [A04], wherein the fastening portion (233) in which the third fastening hole is formed is formed at a position adjacent to the partition wall portion.
[A07]
 前記締結部は、前記発熱体側に前記取付面を有し、前記取付面から前記発熱体とは反対側へ凹む前記取付面凹部を有している[A05]に記載のバルブ装置。
[A07]
The valve device according to [A05], wherein the fastening portion includes the mounting surface on the heat generating body side and the mounting surface concave portion that is recessed from the mounting surface to the side opposite to the heat generating body.
[A08]
 前記ハウジングは、前記取付面に形成され他部材と係合することで前記ハウジング本体の位置決めが可能な位置決め部(205、206)、および、複数の前記取付面凹部の間に形成される凹部間リブ(208)を有し、
 前記位置決め部は、前記凹部間リブの格子点(204)に形成されている[A07]に記載のバルブ装置。
[A08]
The housing has a positioning portion (205, 206) formed on the mounting surface and capable of positioning the housing body by engaging with another member, and a recess formed between the mounting surface recesses. Having ribs (208),
The valve device according to [A07], wherein the positioning portion is formed at a lattice point (204) of the rib between the recesses.
[A09]
 前記ハウジングは、前記取付面に形成され他部材と係合することで前記ハウジング本体の位置決めが可能な位置決め部(205、206)を有し、
 前記締結部は、前記ハウジング本体の幅方向の一方の側に1つ、前記ハウジング本体の幅方向の他方の側に2つ形成されており、
 前記位置決め部は、前記締結部が1つ形成された前記ハウジング本体の幅方向の一方の側に形成されている[A01]~[A08]のいずれか一項に記載のバルブ装置。
[A09]
The housing has positioning portions (205, 206) formed on the mounting surface and capable of positioning the housing body by engaging with other members,
The fastening portion is formed on one side in the width direction of the housing body and two on the other side in the width direction of the housing body,
The valve device according to any one of [A01] to [A08], wherein the positioning portion is formed on one side in the width direction of the housing main body in which one fastening portion is formed.
[A10]
 前記ポートは、複数の前記締結部のうち前記ポートから最も離れた前記締結部と前記位置決め部との間に形成されている[A09]に記載のバルブ装置。
[A10]
The valve device according to [A09], wherein the port is formed between the fastening portion farthest from the port and the positioning portion among the plurality of fastening portions.
[A11]
 前記締結部は、前記締結穴に垂直な面による断面における形状が直線状となる2つの外壁を有し、当該2つの外壁の成す角が鈍角となるよう形成されている[A01]~[A10]のいずれか一項に記載のバルブ装置。
[A11]
The fastening portion has two outer walls having a straight shape in a cross section by a plane perpendicular to the fastening hole, and is formed such that an angle formed by the two outer walls is an obtuse angle [A01] to [A10. ] The valve apparatus as described in any one of.
<2>
[B01]
 車両(1)の発熱体(2)の冷却水を制御可能なバルブ装置(10)であって、
 内側に内部空間(200)を形成するハウジング本体(21)、前記内部空間と前記ハウジング本体の外部とを接続するポート(220、221、222、223)、および、前記内部空間と前記ハウジング本体の外部とを接続するハウジング開口部(210)を有するハウジング(20)と、
 前記内部空間内において回転軸(Axr1)周りに回転可能な弁体(31)、前記弁体の内側に形成された弁体内流路(300)、前記弁体内流路と前記弁体の外側とを接続する弁体開口部(410、420、430)、および、前記回転軸に設けられたシャフト(32)を有し、前記弁体開口部を経由した前記弁体内流路と前記ポートとの連通状態を前記弁体の回転位置により変更可能なバルブ(30)と、
 前記内部空間と前記ハウジング本体の外部とを隔てるよう前記ハウジング開口部に設けられ、前記シャフトを軸受け可能な隔壁部(60)と、
 前記隔壁部に対し前記内部空間とは反対側に設けられ、前記隔壁部との間に駆動部空間(800)を形成する駆動部カバー(80)と、
 前記駆動部空間に設けられ、前記シャフトを経由して前記弁体を回転駆動可能な駆動部(70)と、
 を備えるバルブ装置。
<2>
[B01]
A valve device (10) capable of controlling cooling water of a heating element (2) of a vehicle (1),
A housing body (21) that forms an internal space (200) inside, ports (220, 221, 222, 223) that connect the internal space and the outside of the housing body, and the internal space and the housing body A housing (20) having a housing opening (210) connecting the outside;
A valve body (31) rotatable around a rotation axis (Axr1) in the internal space, a valve body channel (300) formed inside the valve body, the valve body channel and the outside of the valve body; A valve body opening (410, 420, 430) for connecting the valve body, and a shaft (32) provided on the rotating shaft, and the valve body flow path and the port via the valve body opening A valve (30) capable of changing the communication state according to the rotational position of the valve body;
A partition wall (60) provided in the housing opening so as to separate the internal space and the outside of the housing body, and capable of bearing the shaft;
A driving portion cover (80) provided on the opposite side of the inner space with respect to the partition portion, and forming a driving portion space (800) between the partition portion,
A drive unit (70) provided in the drive unit space and capable of rotationally driving the valve body via the shaft;
A valve device comprising:
[B02]
 前記ハウジング開口部と前記隔壁部との間に設けられ、前記ハウジング開口部と前記隔壁部との間を液密に保持可能な環状シール部材(600)をさらに備え、
 前記環状シール部材は、前記ハウジング開口部と前記隔壁部との間において径方向に圧縮されている[B01]に記載のバルブ装置。
[B02]
An annular seal member (600) provided between the housing opening and the partition wall and capable of maintaining a liquid-tight space between the housing opening and the partition;
The valve device according to [B01], wherein the annular seal member is compressed in a radial direction between the housing opening and the partition wall.
[B03]
 前記隔壁部が前記ハウジング本体と前記駆動部カバーとの間に挟み込まれた状態で前記ハウジング本体と前記駆動部カバーとを固定可能な固定部材(830)をさらに備える[B01]または[B02]に記載のバルブ装置。
[B03]
[B01] or [B02] further including a fixing member (830) capable of fixing the housing body and the drive unit cover in a state where the partition wall is sandwiched between the housing body and the drive unit cover. The valve device as described.
[B04]
 前記隔壁部は、前記シャフトの一端を挿通可能なシャフト挿通穴(62)を有し、
 前記シャフト挿通穴において前記隔壁部にインサート成型された金属環(601)と、
 前記金属環の内側に設けられ、前記シャフトの一端を軸受けする軸受部(602)と、
 をさらに備える[B01]~[B03]のいずれか一項に記載のバルブ装置。
[B04]
The partition portion has a shaft insertion hole (62) into which one end of the shaft can be inserted,
A metal ring (601) insert-molded in the partition wall in the shaft insertion hole;
A bearing portion (602) provided inside the metal ring and bearing one end of the shaft;
The valve device according to any one of [B01] to [B03], further comprising:
[B05]
 前記隔壁部は、前記金属環の径方向外側において前記駆動部カバー側の面(609)から前記駆動部カバーとは反対側へ凹む隔壁凹部(64)を有している[B04]に記載のバルブ装置。
[B05]
The partition wall portion has a partition wall recess (64) that is recessed from the surface on the drive unit cover side (609) to the opposite side of the drive unit cover on the radially outer side of the metal ring [B04]. Valve device.
[B06]
 前記駆動部は、前記シャフトを回転駆動可能なモータ(71)を有している[B01]~[B05]のいずれか一項に記載のバルブ装置。
[B06]
The valve device according to any one of [B01] to [B05], wherein the drive unit includes a motor (71) capable of rotationally driving the shaft.
[B07]
 前記モータと前記隔壁部との間において圧縮された状態で設けられた弾性部材(74)をさらに備える[B06]に記載のバルブ装置。
[B07]
The valve device according to [B06], further including an elastic member (74) provided in a compressed state between the motor and the partition wall.
[B08]
 前記モータは、軸(Axm1)が前記シャフトの軸(Axs1)と直交するよう設けられている[B06]または[B07]に記載のバルブ装置。
[B08]
The valve device according to [B06] or [B07], wherein the motor is provided such that an axis (Axm1) is orthogonal to an axis (Axs1) of the shaft.
[B09]
 開口側の端部が前記隔壁部側を向くよう前記駆動部カバーに設けられ、前記モータへ供給する電流が流れるU字状の給電端子(85)をさらに備え、
 前記モータは、軸方向の端部において前記給電端子の開口に接続するモータ側端子(713)を有し、軸(Axm1)が前記駆動部カバーの前記隔壁部側を向く面(808)に対し平行となるよう設けられている[B06]~[B08]のいずれか一項に記載のバルブ装置。
[B09]
A U-shaped power supply terminal (85) that is provided on the drive unit cover so that an end on the opening side faces the partition wall side, and through which current to be supplied to the motor flows;
The motor has a motor side terminal (713) connected to the opening of the power supply terminal at an end in the axial direction, and the shaft (Axm1) faces the surface (808) of the drive unit cover facing the partition wall side. The valve device according to any one of [B06] to [B08] provided to be parallel.
[B10]
 前記駆動部は、前記モータの駆動力を前記シャフトに伝達可能なギア部(72)を有し、
 前記駆動部カバーに対しスナップフィット結合可能なスナップフィット部(731)を有し、前記駆動部カバーとの間に前記モータおよび前記ギア部を保持する保持部材(73)をさらに備える[B06]~[B09]のいずれか一項に記載のバルブ装置。
[B10]
The drive part has a gear part (72) capable of transmitting the drive force of the motor to the shaft,
A snap fit portion (731) that can be snap-fit coupled to the drive portion cover, and further includes a holding member (73) that holds the motor and the gear portion between the drive portion cover [B06] to The valve device according to any one of [B09].
[B11]
 前記ハウジングは、前記発熱体に取り付けられた状態において前記発熱体に対向するよう前記ハウジング本体の外壁に形成された取付面(201)を有し、
 前記モータは、駆動力を出力するモータシャフト(711)、および、前記モータシャフトの先端に設けられたウォームギア(712)を有し、前記モータシャフトが前記取付面に対し垂直となるよう、かつ、前記ウォームギアが前記取付面とは反対側を向くよう設けられている[B06]~[B10]のいずれか一項に記載のバルブ装置。
[B11]
The housing has an attachment surface (201) formed on the outer wall of the housing body so as to face the heating element in a state of being attached to the heating element,
The motor has a motor shaft (711) that outputs a driving force, and a worm gear (712) provided at the tip of the motor shaft, the motor shaft being perpendicular to the mounting surface, and The valve device according to any one of [B06] to [B10], wherein the worm gear is provided so as to face a side opposite to the mounting surface.
[B12]
 前記モータは、駆動力を出力するモータシャフト(711)、および、前記モータシャフトの先端に設けられたウォームギア(712)を有し、
 前記保持部材は、前記スナップフィット部が前記ウォームギアの径方向外側に位置するよう形成されている[B10]に記載のバルブ装置。
[B12]
The motor has a motor shaft (711) for outputting a driving force, and a worm gear (712) provided at the tip of the motor shaft,
The valve device according to [B10], wherein the holding member is formed such that the snap-fit portion is positioned on a radially outer side of the worm gear.
[B13]
 内側の空間が前記ポートに連通する筒状のパイプ部(511、512、513)を有し、前記ハウジング本体に取り付けられるパイプ部材(50)を備え、
 前記保持部材は、前記スナップフィット部が前記回転軸に対し前記パイプ部材側に位置するよう形成されている[B12]に記載のバルブ装置。
[B13]
An inner space has a cylindrical pipe portion (511, 512, 513) communicating with the port, and includes a pipe member (50) attached to the housing body,
The valve device according to [B12], wherein the holding member is formed such that the snap-fit portion is positioned on the pipe member side with respect to the rotation shaft.
<3>
[C01]
 車両(1)の発熱体(2)の冷却水を制御可能なバルブ装置(10)であって、
 内部空間(200)と外部とを接続するポート(220、221、222、223)を有するハウジング(20)と、
 前記内部空間内において回転軸(Axr1)周りに回転可能な弁体(31)、前記弁体の内側に形成された弁体内流路(300)、前記弁体内流路と前記弁体の外側とを接続する弁体開口部(410、420、430)、および、前記回転軸に設けられたシャフト(32)を有し、前記弁体開口部を経由した前記弁体内流路と前記ポートとの連通状態を前記弁体の回転位置により変更可能なバルブ(30)と、
 前記弁体の外周壁に当接可能なよう前記ポートに対応する位置に設けられ、前記弁体の回転位置により前記弁体開口部に連通可能なシール開口部(360)を内側に形成し、前記弁体の外周壁との間を液密に保持可能な環状のバルブシール(36)と、を備え、
 前記弁体は、外周壁の少なくとも一部が球面状に形成され、内周壁の少なくとも一部が外側へ凹むよう形成されているバルブ装置。
<3>
[C01]
A valve device (10) capable of controlling cooling water of a heating element (2) of a vehicle (1),
A housing (20) having ports (220, 221, 222, 223) connecting the internal space (200) and the outside;
A valve body (31) rotatable around a rotation axis (Axr1) in the internal space, a valve body channel (300) formed inside the valve body, the valve body channel and the outside of the valve body; A valve body opening (410, 420, 430) for connecting the valve body, and a shaft (32) provided on the rotating shaft, and the valve body flow path and the port via the valve body opening A valve (30) capable of changing the communication state according to the rotational position of the valve body;
A seal opening (360) that is provided at a position corresponding to the port so as to be able to contact the outer peripheral wall of the valve body, and that can communicate with the valve body opening by the rotational position of the valve body, is formed inside, An annular valve seal (36) capable of maintaining fluid tightness with the outer peripheral wall of the valve body,
The valve body is a valve device in which at least a part of an outer peripheral wall is formed in a spherical shape and at least a part of an inner peripheral wall is recessed outward.
[C02]
 前記弁体は、内周壁の少なくとも一部が球面状に形成されている[C01]に記載のバルブ装置。
[C02]
The valve device according to [C01], wherein at least a part of an inner peripheral wall of the valve body is formed in a spherical shape.
[C03]
 前記弁体は、前記回転軸方向および周方向の少なくとも一部の範囲において、内周壁と外周壁との距離が同じである[C02]に記載のバルブ装置。
[C03]
The valve device according to [C02], wherein the valve body has the same distance between the inner peripheral wall and the outer peripheral wall in at least a part of the range of the rotation axis direction and the circumferential direction.
[C04]
 前記弁体は、前記回転軸方向および周方向の少なくとも前記シール開口部に対応する範囲において、内周壁と外周壁との距離が同じである[C03]に記載のバルブ装置。
[C04]
The valve device according to [C03], wherein the valve body has the same distance between the inner peripheral wall and the outer peripheral wall in a range corresponding to at least the seal opening in the rotation axis direction and the circumferential direction.
[C05]
 前記弁体は、樹脂により形成され、
 前記シャフトは、インサート成型により前記弁体と一体に形成されている[C01]~[C04]のいずれか一項に記載のバルブ装置。
[C05]
The valve body is formed of resin,
The valve device according to any one of [C01] to [C04], wherein the shaft is formed integrally with the valve body by insert molding.
[C06]
 前記弁体は、前記回転軸を含む仮想平面(Vp1)で2つに分割された第1分割体(33)と第2分割体(34)とを有し、前記第1分割体と前記第2分割体とがそれぞれの接合面(331、341)で接合されている[C01]~[C05]のいずれか一項に記載のバルブ装置。
[C06]
The valve body includes a first divided body (33) and a second divided body (34) which are divided into two by a virtual plane (Vp1) including the rotation axis, and the first divided body and the first divided body The valve device according to any one of [C01] to [C05], in which the two-divided body is joined at the respective joining surfaces (331, 341).
[C07]
 前記内部空間と前記ハウジングの外部とを隔てる隔壁部本体(61)、前記シャフトの一端を挿通可能なよう前記隔壁部本体に形成されたシャフト挿通穴(62)、および、前記隔壁部本体の前記内部空間側の面から前記内部空間とは反対側へ凹む規制凹部(63)を有する隔壁部(60)をさらに備え、
 前記第1分割体は、前記隔壁部側の面から前記規制凹部側へ延びて先端部が前記規制凹部に位置する第1規制凸部(332)を有し、
 前記第2分割体は、前記隔壁部側の面から前記規制凹部側へ延びて先端部が前記規制凹部に位置する第2規制凸部(342)を有している[C06]に記載のバルブ装置。
[C07]
A partition wall body (61) that separates the internal space from the outside of the housing, a shaft insertion hole (62) formed in the partition wall body so that one end of the shaft can be inserted, and the partition wall body main body It further comprises a partition wall (60) having a regulating recess (63) that is recessed from the surface on the inner space side to the side opposite to the inner space,
The first divided body has a first restricting protrusion (332) extending from the surface on the partition wall side to the restricting recess and having a tip portion located in the restricting recess.
The valve according to [C06], wherein the second divided body has a second restricting protrusion (342) extending from the surface on the partition wall side toward the restricting recess and having a tip portion positioned in the restricting recess. apparatus.
[C08]
 前記第1規制凸部は、前記接合面の面方向に沿って前記規制凹部側へ延び、
 前記第2規制凸部は、前記第1規制凸部に当接しつつ、前記接合面の面方向に沿って前記規制凹部側へ延びている[C07]に記載のバルブ装置。
[C08]
The first restricting convex portion extends toward the restricting concave portion along the surface direction of the joint surface,
The valve device according to [C07], wherein the second restriction convex portion extends toward the restriction concave portion along a surface direction of the joint surface while being in contact with the first restriction convex portion.
[C09]
 前記弁体は、前記弁体開口部の内縁端を接続する弁体開口リブ(411、421、422、431、432)を有し、
 前記弁体開口リブは、前記弁体の外周壁に沿う仮想球面(Vs1)から径方向内側へ離れた位置に形成されている[C06]~[C08]のいずれか一項に記載のバルブ装置。
[C09]
The valve body has valve body opening ribs (411, 421, 422, 431, 432) that connect inner edge ends of the valve body opening,
The valve device according to any one of [C06] to [C08], wherein the valve body opening rib is formed at a position spaced radially inward from a virtual spherical surface (Vs1) along the outer peripheral wall of the valve body. .
[C10]
 前記弁体開口リブは、直線状に形成されている[C09]に記載のバルブ装置。
[C10]
The valve device opening rib according to [C09], wherein the valve body opening rib is formed in a straight line.
[C11]
 前記接合面は、前記シール開口部の全てが前記弁体の外周壁で塞がれた全閉状態のとき、前記バルブシールから離れた位置にある[C06]~[C10]のいずれか一項に記載のバルブ装置。
[C11]
The joint surface is any one of [C06] to [C10] located at a position away from the valve seal when all of the seal opening is closed by the outer peripheral wall of the valve body. The valve device described in 1.
[C12]
 前記弁体は、外周壁が球面状に形成されたボールバルブ(41、42、43)、前記ボールバルブに対し前記回転軸方向に位置し外周壁が筒状に形成された筒状部(44、45)、および、前記筒状部において前記接合面上に形成され前記筒状部の外周壁の曲率と曲率が異なる外壁を有する特定形状部(441、451)を有している[C06]~[C11]のいずれか一項に記載のバルブ装置。
[C12]
The valve body includes a ball valve (41, 42, 43) having an outer peripheral wall formed in a spherical shape, and a cylindrical portion (44) positioned in the rotational axis direction with respect to the ball valve and having an outer peripheral wall formed in a cylindrical shape. 45), and a specific shape portion (441, 451) formed on the joint surface in the tubular portion and having an outer wall having a curvature different from the curvature of the outer peripheral wall of the tubular portion [C06] The valve device according to any one of to [C11].
[C13]
 前記弁体は、外周壁が球面状に形成された第1ボールバルブ(41)、前記回転軸方向において前記第1ボールバルブに接続し外周壁が筒状に形成された筒状接続部(44)、前記筒状接続部に対し前記第1ボールバルブとは反対側において前記筒状接続部に接続し外周壁が球面状に形成された第2ボールバルブ(42)、前記筒状接続部の径方向外側において前記第1ボールバルブと前記第2ボールバルブとの間に形成されるバルブ間空間(400)と前記第1ボールバルブの前記弁体内流路とを接続するよう前記第1ボールバルブの前記回転軸方向の端面に形成された第1端面開口部(415)、および、前記バルブ間空間と前記第2ボールバルブの前記弁体内流路とを接続するよう前記第2ボールバルブの前記回転軸方向の端面に形成された第2端面開口部(425)を有し、
 前記ポート(220)は、前記バルブ間空間に連通している[C06]~[C12]のいずれか一項に記載のバルブ装置。
[C13]
The valve body includes a first ball valve (41) having an outer peripheral wall formed in a spherical shape, and a cylindrical connection portion (44) connected to the first ball valve in the rotation axis direction and having an outer peripheral wall formed in a cylindrical shape. ), A second ball valve (42) connected to the cylindrical connection portion on the opposite side of the cylindrical connection portion from the first ball valve and having an outer peripheral wall formed in a spherical shape, The first ball valve is configured to connect an inter-valve space (400) formed between the first ball valve and the second ball valve on a radially outer side and the valve body flow path of the first ball valve. The first end surface opening (415) formed on the end surface in the rotation axis direction of the second ball valve and the second ball valve so as to connect the inter-valve space and the valve body flow passage of the second ball valve. Formed on the end face in the rotation axis direction The second has an end face opening (425) which,
The valve device according to any one of [C06] to [C12], wherein the port (220) communicates with the inter-valve space.
[C14]
 前記弁体は、樹脂により形成され、
 前記シャフトは、前記筒状接続部においてインサート成型により前記弁体と一体に形成されている[C13]に記載のバルブ装置。
[C14]
The valve body is formed of resin,
The valve device according to [C13], wherein the shaft is formed integrally with the valve body by insert molding at the cylindrical connection portion.
[C15]
 前記シャフトは、前記筒状接続部との相対回転を規制可能な回り止め部(321)を有し、
 前記回り止め部は、断面形状が多角形または非真円形状となるよう形成されている[C14]に記載のバルブ装置。
[C15]
The shaft has a detent portion (321) capable of restricting relative rotation with the cylindrical connection portion,
The said rotation prevention part is a valve apparatus as described in [C14] formed so that a cross-sectional shape may become a polygon or a non-circular shape.
[C16]
 前記弁体は、前記第2ボールバルブに対し前記筒状接続部とは反対側において前記第2ボールバルブに接続し外周壁および内周壁が筒状に形成され内側に前記弁体内流路を形成する筒状バルブ接続部(45)、および、前記筒状バルブ接続部に対し前記第2ボールバルブとは反対側において前記筒状バルブ接続部に接続し外周壁が球面状に形成された第3ボールバルブ(43)を有している[C13]~[C15]のいずれか一項に記載のバルブ装置。
[C16]
The valve body is connected to the second ball valve on a side opposite to the cylindrical connection portion with respect to the second ball valve, and an outer peripheral wall and an inner peripheral wall are formed in a cylindrical shape, and the flow path in the valve body is formed inside. A cylindrical valve connecting portion (45) that is connected to the cylindrical valve connecting portion on the side opposite to the second ball valve with respect to the cylindrical valve connecting portion, and a third outer wall is formed in a spherical shape. The valve device according to any one of [C13] to [C15], which includes a ball valve (43).
[C17]
 前記第1ボールバルブの外周壁の外径は、前記第3ボールバルブの外周壁の外径と同じであり、
 前記第1ボールバルブの前記回転軸方向の前記第3ボールバルブとは反対側の端面である第1最外端面(301)の面積は、前記第3ボールバルブの前記回転軸方向の前記第1ボールバルブとは反対側の端面である第2最外端面(302)の面積と異なる[C16]に記載のバルブ装置。
[C17]
The outer diameter of the outer peripheral wall of the first ball valve is the same as the outer diameter of the outer peripheral wall of the third ball valve;
The area of the first outermost end surface (301), which is the end surface of the first ball valve opposite to the third ball valve in the rotation axis direction, is the first ball valve valve in the rotation axis direction. The valve device according to [C16], which is different from an area of a second outermost end surface (302) which is an end surface opposite to the ball valve.
[C18]
 前記弁体は、前記第2ボールバルブの前記弁体開口部の内縁端を接続する第2弁体開口リブ(422)、および、前記第3ボールバルブの前記弁体開口部の内縁端を接続する第3弁体開口リブ(432)を有し、
 前記第2弁体開口リブと前記第3弁体開口リブとは、前記弁体の周方向において同じ位置に形成されている[C16]または[C17]に記載のバルブ装置。
[C18]
The valve body connects a second valve body opening rib (422) that connects an inner edge of the valve body opening of the second ball valve, and an inner edge of the valve body opening of the third ball valve. A third valve body opening rib (432)
The valve device according to [C16] or [C17], wherein the second valve body opening rib and the third valve body opening rib are formed at the same position in a circumferential direction of the valve body.
[C19]
 前記弁体は、前記第1端面開口部を跨ぐようにして前記筒状接続部と前記第1ボールバルブとを接続する第1端面開口リブ(416、417)、および、前記第2端面開口部を跨ぐようにして前記筒状接続部と前記第2ボールバルブとを接続する第2端面開口リブ(426、427)を有している[C13]~[C18]のいずれか一項に記載のバルブ装置。
[C19]
The valve body includes first end surface opening ribs (416, 417) that connect the cylindrical connecting portion and the first ball valve so as to straddle the first end surface opening, and the second end surface opening. [C13] to [C18] having second end face opening ribs (426, 427) for connecting the cylindrical connecting portion and the second ball valve so as to straddle each other. Valve device.
[C20]
 前記第1端面開口リブは、前記第1ボールバルブの前記回転軸方向の端面との間に第1リブ端面隙間(418)を形成し、
 前記第2端面開口リブは、前記第2ボールバルブの前記回転軸方向の端面との間に第2リブ端面隙間(428)を形成している[C19]に記載のバルブ装置。
[C20]
The first end face opening rib forms a first rib end face gap (418) between the first ball valve and the end face in the rotation axis direction of the first ball valve;
The valve device according to [C19], wherein the second end surface opening rib forms a second rib end surface gap (428) between the second ball valve and an end surface in the rotation axis direction of the second ball valve.
[C21]
 前記第1端面開口リブは、前記第2ボールバルブ側の面が前記回転軸に対し傾斜するよう形成され、
 前記第2端面開口リブは、前記第1ボールバルブ側の面が前記回転軸に対し傾斜するよう形成されている[C19]または[C20]に記載のバルブ装置。
[C21]
The first end surface opening rib is formed such that a surface on the second ball valve side is inclined with respect to the rotation axis,
The valve device according to [C19] or [C20], wherein the second end surface opening rib is formed such that a surface on the first ball valve side is inclined with respect to the rotation axis.
[C22]
 回転軸(Axr1)周りに回転可能な弁体(31)、および、前記弁体の内側に形成された弁体内流路(300)を有するバルブ(30)の製造方法であって、
 前記弁体は、外周壁の少なくとも一部が球面状に形成され、内周壁の少なくとも一部が外側へ凹むよう形成され、前記回転軸を含む仮想平面(Vp1)で2つに分割された第1分割体(33)と第2分割体(34)とを有し、前記第1分割体と前記第2分割体とがそれぞれの接合面(331、341)で接合され、
 前記第1分割体と前記第2分割体とをそれぞれ第1型(110)と第2型(120)とにより樹脂成形する1次成形工程と、
 前記第1分割体の前記接合面における溶着部と前記第2分割体の前記接合面における溶着部との間に樹脂を射出し、前記第1分割体と前記第2分割体とを溶着する第2成形工程と、
 を含むバルブの製造方法。
[C22]
A valve body (31) rotatable around a rotation axis (Axr1), and a method for producing a valve (30) having a valve body flow path (300) formed inside the valve body,
In the valve body, at least a part of the outer peripheral wall is formed in a spherical shape, at least a part of the inner peripheral wall is formed to be recessed outward, and divided into two on a virtual plane (Vp1) including the rotation axis. A first divided body (33) and a second divided body (34), wherein the first divided body and the second divided body are joined at their respective joining surfaces (331, 341);
A primary molding step of resin-molding the first divided body and the second divided body with a first mold (110) and a second mold (120), respectively;
A resin is injected between a welded portion on the joint surface of the first divided body and a welded portion on the joint surface of the second divided body, and the first divided body and the second divided body are welded. Two molding processes;
The manufacturing method of the valve | bulb containing.
[C23]
 前記1次成形工程と前記第2成形工程との間において、前記第1分割体と前記第2分割体とのそれぞれの前記接合面が対向するよう、前記第1分割体または前記第2分割体を前記第1型または前記第2型ごとスライドさせるスライド工程をさらに含む[C22]に記載のバルブの製造方法。
[C23]
The first divided body or the second divided body so that the joint surfaces of the first divided body and the second divided body face each other between the primary molding step and the second molding step. The method for manufacturing a valve according to [C22], further including a sliding step of sliding the first die or the second die together.
[C24]
 前記バルブは、前記回転軸に設けられたシャフト(32)を有し、
 前記1次成形工程と前記第2成形工程との間において、前記シャフトを前記回転軸に配置するシャフト配置工程をさらに含む[C22]または[C23]に記載のバルブの製造方法。
[C24]
The valve has a shaft (32) provided on the rotating shaft,
The valve manufacturing method according to [C22] or [C23], further including a shaft arrangement step of arranging the shaft on the rotating shaft between the primary molding step and the second molding step.
[C25]
 回転軸(Axr1)周りに回転可能な弁体(31)、および、前記弁体の内側に形成された弁体内流路(300)を有するバルブ(30)の製造方法であって、
 前記弁体は、外周壁の少なくとも一部が球面状に形成され、内周壁の少なくとも一部が外側へ凹むよう形成され、
 外側型(180)と前記外側型の内側に配置される内側型(160、170)との間において前記弁体を樹脂成形する樹脂成形工程と、
 前記樹脂成形工程の後、前記内側型を前記弁体の内側へ移動させる型移動工程と、
 を含むバルブの製造方法。
[C25]
A valve body (31) rotatable around a rotation axis (Axr1), and a method for producing a valve (30) having a valve body flow path (300) formed inside the valve body,
The valve body is formed such that at least a part of the outer peripheral wall is formed in a spherical shape, and at least a part of the inner peripheral wall is recessed outward.
A resin molding step of resin molding the valve body between an outer mold (180) and an inner mold (160, 170) disposed inside the outer mold;
After the resin molding step, a mold moving step of moving the inner mold to the inside of the valve body,
The manufacturing method of the valve | bulb containing.
[C26]
 前記内側型は、前記弁体の内周壁の形状に対応する凸面(161、171)を有し、
 前記凸面の突出高さ(H1)は、前記型移動工程において前記内側型が移動可能な距離(Dm1)より小さく設定されている[C25]に記載のバルブの製造方法。
[C26]
The inner mold has convex surfaces (161, 171) corresponding to the shape of the inner peripheral wall of the valve body,
The protrusion height (H1) of the convex surface is set to be smaller than the distance (Dm1) that the inner mold can move in the mold moving step, [C25].
[C27]
 前記弁体は、内周壁のうち少なくとも、冷却水が流入する前記ポートに対向する部分である対向部分が外側へ凹むよう形成されている[C01]~[C21]のいずれか一項に記載のバルブ装置。
[C27]
The valve body according to any one of [C01] to [C21], wherein at least a facing portion of the inner peripheral wall facing the port through which cooling water flows is recessed outward. Valve device.
[C28]
 前記バルブシールは、前記弁体の外周壁のうち少なくとも前記対向部分に対応する部分に当接する[C27]に記載のバルブ装置。
[C28]
The valve device according to [C27], wherein the valve seal is in contact with at least a portion of the outer peripheral wall of the valve body corresponding to the facing portion.
[C29]
 前記第1ボールバルブの前記弁体開口部の大きさは、前記第2ボールバルブの前記弁体開口部の大きさ、および、前記第3ボールバルブの前記弁体開口部の大きさより大きい[C16]~[C18]のいずれか一項に記載のバルブ装置。
[C29]
The size of the valve body opening of the first ball valve is larger than the size of the valve body opening of the second ball valve and the size of the valve body opening of the third ball valve [C16. ] To [C18].
[C30]
 前記内部空間と前記ハウジングの外部とを隔てる隔壁部本体(61)、前記シャフトの一端を挿通可能なよう前記隔壁部本体に形成されたシャフト挿通穴(62)、および、前記隔壁部本体の前記内部空間側の面から前記内部空間とは反対側へ凹む規制凹部(63)を有する隔壁部(60)をさらに備え、
 前記弁体は、前記第1分割体または前記第2分割体の前記隔壁部側の面から前記規制凹部側へ延びて先端部が前記規制凹部に位置する規制凸部(343)を有している[C06]に記載のバルブ装置。
[C30]
A partition wall body (61) that separates the internal space from the outside of the housing, a shaft insertion hole (62) formed in the partition wall body so that one end of the shaft can be inserted, and the partition wall body main body It further comprises a partition wall (60) having a regulating recess (63) that is recessed from the surface on the inner space side to the side opposite to the inner space,
The valve body has a regulation convex part (343) extending from the surface on the partition wall side of the first divided body or the second divided body to the regulation recess side and having a tip portion positioned in the regulation recess. The valve device according to [C06].
[C31]
 前記第1規制凸部は、前記接合面の面方向に沿って前記規制凹部側へ延び、
 前記第2規制凸部は、前記第1規制凸部に当接することなく、前記接合面の面方向に沿って前記規制凹部側へ延びている[C07]に記載のバルブ装置。
[C31]
The first restricting convex portion extends toward the restricting concave portion along the surface direction of the joint surface,
The valve device according to [C07], wherein the second restriction convex portion extends toward the restriction concave portion along a surface direction of the joint surface without coming into contact with the first restriction convex portion.
<4>
[D01]
 車両(1)の発熱体(2)の冷却水を制御可能なバルブ装置(10)であって、
 内側に内部空間(200)を形成するハウジング本体(21)、前記発熱体に取り付けられた状態において前記発熱体に対向するよう前記ハウジング本体の外壁に形成された取付面(201)、および、前記内部空間と前記ハウジング本体の外部とを接続するポート(220、221、222、223)を有するハウジング(20)と、
 前記内部空間内において回転軸(Axr1)周りに回転可能な弁体(31)、前記弁体の内側に形成された弁体内流路(300)、前記弁体内流路と前記弁体の外側とを接続する弁体開口部(410、420、430)、および、前記回転軸に設けられたシャフト(32)を有し、前記弁体開口部を経由した前記弁体内流路と前記ポートとの連通状態を前記弁体の回転位置により変更可能なバルブ(30)と、
 前記内部空間と前記ハウジング本体の外部とを隔てるよう設けられ、前記シャフトの一端を挿通可能なよう形成されたシャフト挿通穴(62)を有する隔壁部(60)と、
 前記隔壁部に対し前記内部空間とは反対側に設けられ、前記隔壁部との間に駆動部空間(800)を形成する駆動部カバー(80)と、
 前記駆動部空間に設けられ、前記シャフトの一端を経由して前記弁体を回転駆動可能な駆動部(70)と、を備え、
 前記駆動部カバーは、前記駆動部空間を形成するカバー本体(81)、および、前記カバー本体の外縁部に形成され前記ハウジング本体に固定されるカバー固定部(821~826)を有し、
 前記カバー固定部は、前記ハウジング本体の前記取付面に垂直な方向(Dv1)の両端部(215、216)のうち少なくとも一方より外側へ突出しないよう形成されているバルブ装置。
<4>
[D01]
A valve device (10) capable of controlling cooling water of a heating element (2) of a vehicle (1),
A housing body (21) forming an internal space (200) on the inside, a mounting surface (201) formed on an outer wall of the housing body so as to face the heating element in a state of being attached to the heating element; A housing (20) having ports (220, 221, 222, 223) for connecting an internal space and the outside of the housing body;
A valve body (31) rotatable around a rotation axis (Axr1) in the internal space, a valve body channel (300) formed inside the valve body, the valve body channel and the outside of the valve body; A valve body opening (410, 420, 430) for connecting the valve body, and a shaft (32) provided on the rotating shaft, and the valve body flow path and the port via the valve body opening A valve (30) capable of changing the communication state according to the rotational position of the valve body;
A partition wall portion (60) having a shaft insertion hole (62) provided so as to separate the inner space and the outside of the housing main body and capable of being inserted through one end of the shaft;
A driving portion cover (80) provided on the opposite side of the inner space with respect to the partition portion, and forming a driving portion space (800) between the partition portion,
A drive unit (70) provided in the drive unit space and capable of rotationally driving the valve body via one end of the shaft;
The drive unit cover includes a cover main body (81) that forms the drive unit space, and cover fixing portions (821 to 826) that are formed on the outer edge of the cover main body and are fixed to the housing main body.
The said cover fixing | fixed part is a valve apparatus formed so that it may not protrude outside at least one among the both ends (215, 216) of the direction (Dv1) perpendicular | vertical to the said attachment surface of the said housing main body.
[D02]
 前記ハウジング本体の前記取付面とは反対側の端部(215)は、前記カバー本体の前記取付面とは反対側の端部(815)より外側へ突出しないよう形成されている[D01]に記載のバルブ装置。
[D02]
The end (215) opposite to the mounting surface of the housing body is formed so as not to protrude outward from the end (815) of the cover main body opposite to the mounting surface [D01]. The valve device as described.
[D03]
 前記駆動部カバーは、前記カバー本体の外縁部に形成され外部と電気的に接続する端子(841)を有するコネクタ部(84)を有し、
 前記コネクタ部は、前記カバー本体の前記取付面に垂直な方向の両端部(815、816)のうち少なくとも一方より外側へ突出しないよう形成されている[D01]または[D02]に記載のバルブ装置。
[D03]
The drive unit cover has a connector portion (84) having a terminal (841) formed on an outer edge portion of the cover body and electrically connected to the outside,
The valve device according to [D01] or [D02], wherein the connector portion is formed so as not to protrude outward from at least one of both end portions (815, 816) in a direction perpendicular to the mounting surface of the cover body. .
[D04]
 車両(1)の発熱体(2)の冷却水を制御可能なバルブ装置(10)であって、
 内側に内部空間(200)を形成するハウジング本体(21)、前記ハウジング本体の外壁から突出するよう前記ハウジング本体とは異なる部位として形成されたハウジング側カバー固定部(291~296)、前記発熱体に取り付けられた状態において前記発熱体に対向するよう前記ハウジング本体の外壁に形成された取付面(201)、および、前記内部空間と前記ハウジング本体の外部とを接続するポート(220、221、222、223)を有するハウジング(20)と、
 前記内部空間内において回転軸(Axr1)周りに回転可能な弁体(31)、前記弁体の内側に形成された弁体内流路(300)、前記弁体内流路と前記弁体の外側とを接続する弁体開口部(410、420、430)、および、前記回転軸に設けられたシャフト(32)を有し、前記弁体開口部を経由した前記弁体内流路と前記ポートとの連通状態を前記弁体の回転位置により変更可能なバルブ(30)と、
 前記内部空間と前記ハウジング本体の外部とを隔てるよう設けられ、前記シャフトの一端を挿通可能なよう形成されたシャフト挿通穴(62)を有する隔壁部(60)と、
 前記隔壁部に対し前記内部空間とは反対側に設けられ、前記隔壁部との間に駆動部空間(800)を形成する駆動部カバー(80)と、
 前記駆動部空間に設けられ、前記シャフトの一端を経由して前記弁体を回転駆動可能な駆動部(70)と、を備え、
 前記駆動部カバーは、前記駆動部空間を形成するカバー本体(81)、および、前記カバー本体の外壁から突出するよう前記カバー本体とは異なる部位として形成され前記ハウジング側カバー固定部に固定されるカバー固定部(821~826)を有し、
 前記カバー固定部は、前記ハウジング本体の前記取付面に垂直な方向(Dv1)の両端部(215、216)のうち少なくとも一方より外側へ突出しないよう、または、前記ハウジング本体の前記取付面に平行な方向(Dp1)の両端部(215、216)のうち少なくとも一方より外側へ突出しないよう形成されているバルブ装置。
[D04]
A valve device (10) capable of controlling cooling water of a heating element (2) of a vehicle (1),
A housing body (21) forming an internal space (200) on the inside, a housing side cover fixing portion (291 to 296) formed as a portion different from the housing body so as to protrude from the outer wall of the housing body, and the heating element The mounting surface (201) formed on the outer wall of the housing body so as to face the heating element in a state of being attached to the heating element, and the ports (220, 221, 222) for connecting the inner space and the outside of the housing body 223) a housing (20);
A valve body (31) rotatable around a rotation axis (Axr1) in the internal space, a valve body channel (300) formed inside the valve body, the valve body channel and the outside of the valve body; A valve body opening (410, 420, 430) for connecting the valve body, and a shaft (32) provided on the rotating shaft, and the valve body flow path and the port via the valve body opening A valve (30) capable of changing the communication state according to the rotational position of the valve body;
A partition wall portion (60) having a shaft insertion hole (62) provided so as to separate the inner space and the outside of the housing main body and capable of being inserted through one end of the shaft;
A driving portion cover (80) provided on the opposite side of the inner space with respect to the partition portion, and forming a driving portion space (800) between the partition portion,
A drive unit (70) provided in the drive unit space and capable of rotationally driving the valve body via one end of the shaft;
The drive unit cover is formed as a part different from the cover body so as to protrude from a cover body (81) that forms the drive unit space and the outer wall of the cover body, and is fixed to the housing side cover fixing part. Cover fixing part (821 to 826),
The cover fixing portion does not protrude outward from at least one of both end portions (215, 216) in a direction (Dv1) perpendicular to the mounting surface of the housing body, or parallel to the mounting surface of the housing body. The valve device is formed so as not to protrude outward from at least one of both end portions (215, 216) in the right direction (Dp1).
[D05]
 前記ハウジング本体が前記発熱体に取り付けられた状態において、前記カバー固定部は、前記ハウジング本体の前記取付面に垂直な方向(Dv1)かつ水平方向の両端部(215、216)のうち少なくとも一方より外側へ突出しないよう、または、前記ハウジング本体の前記取付面に平行な方向(Dp1)かつ水平方向の両端部(215、216)のうち少なくとも一方より外側へ突出しないよう形成されている[D04]に記載のバルブ装置。
[D05]
In a state where the housing main body is attached to the heating element, the cover fixing portion is formed by at least one of a direction (Dv1) perpendicular to the attachment surface of the housing main body and both ends (215, 216) in the horizontal direction. It is formed so as not to protrude outward or to protrude outwardly from at least one of both ends (215, 216) in the direction parallel to the mounting surface (Dp1) and the horizontal direction of the housing body [D04]. The valve device described in 1.
[D06]
 前記ハウジングは、複数の前記ポートを有し、
 前記ハウジング本体が前記発熱体に取り付けられた状態において、前記車両のヒータ(6)に接続される前記ポートは、複数の前記ポートの中で鉛直方向の最も上側に位置しないよう形成されている[D04]または[D05]に記載のバルブ装置。
[D06]
The housing has a plurality of the ports,
In a state where the housing body is attached to the heating element, the port connected to the heater (6) of the vehicle is formed so as not to be positioned on the uppermost side in the vertical direction among the plurality of ports [ D04] or [D05].
<5>
[E01]
 車両(1)の発熱体(2)の冷却水を制御可能なバルブ装置(10)であって、
 内側に内部空間(200)を形成するハウジング本体(21)、前記ハウジング本体と一体に形成されたハウジング側固定部(251~256)、前記ハウジング側固定部に形成されたハウジング側締結穴(261~266)、および、前記内部空間と前記ハウジング本体の外部とを接続するポート(220、221、222、223、224)を有するハウジング(20)と、
 前記内部空間内において回転軸(Axr1)周りに回転可能な弁体(31)、前記弁体の内側に形成された弁体内流路(300)、および、前記弁体内流路と前記弁体の外側とを接続する弁体開口部(410、420、430)を有し、前記弁体開口部を経由した前記弁体内流路と前記ポートとの連通状態を前記弁体の回転位置により変更可能なバルブ(30)と、
 内側の空間が前記ポート(221、222、223、224)に連通する筒状のパイプ部(511、512、513、514)、前記パイプ部と一体に形成され前記ハウジング側固定部に固定されるパイプ側固定部(531~536)、および、前記パイプ側固定部に形成されたパイプ側締結穴(541~546)を有するパイプ部材(50)と、
 前記パイプ側締結穴を通り前記ハウジング側締結穴に螺合することで前記パイプ側固定部と前記ハウジング側固定部とを固定するパイプ締結部材(540)と、を備え、
 前記ハウジング側固定部は、前記ハウジング本体の外壁との間に隙間(Sh1)を形成しているバルブ装置。
<5>
[E01]
A valve device (10) capable of controlling cooling water of a heating element (2) of a vehicle (1),
A housing body (21) that forms an internal space (200) inside, a housing side fixing portion (251 to 256) formed integrally with the housing body, and a housing side fastening hole (261) formed in the housing side fixing portion 266), and a housing (20) having ports (220, 221, 222, 223, 224) connecting the internal space and the outside of the housing body,
A valve body (31) rotatable around a rotation axis (Axr1) in the internal space, a valve body channel (300) formed inside the valve body, and the valve body channel and the valve body It has a valve body opening (410, 420, 430) that connects to the outside, and the communication state between the valve body flow path and the port via the valve body opening can be changed by the rotational position of the valve body A valve (30),
A cylindrical pipe portion (511, 512, 513, 514) whose inner space communicates with the ports (221, 222, 223, 224) is formed integrally with the pipe portion, and is fixed to the housing side fixing portion. A pipe member (50) having a pipe side fixing portion (531 to 536) and a pipe side fastening hole (541 to 546) formed in the pipe side fixing portion;
A pipe fastening member (540) for fixing the pipe side fixing portion and the housing side fixing portion by screwing into the housing side fastening hole through the pipe side fastening hole;
The valve device in which the housing side fixing portion forms a gap (Sh1) with the outer wall of the housing body.
[E02]
 前記ハウジングは、複数の前記ポートを有し、
 前記パイプ部材は、互いに連結する複数の前記パイプ部を有し、
 複数の前記パイプ部(511~513)のそれぞれに設けられ、前記弁体の外周壁との間を液密に保持可能な複数のシールユニット(35)を備える[E01]に記載のバルブ装置。
[E02]
The housing has a plurality of the ports,
The pipe member has a plurality of the pipe portions connected to each other,
The valve device according to [E01], including a plurality of seal units (35) provided in each of the plurality of pipe portions (511 to 513) and capable of being liquid-tightly held between the outer peripheral walls of the valve bodies.
[E03]
 複数の前記パイプ部のそれぞれの径方向外側において前記パイプ部材と前記ハウジング本体との間に設けられ、前記パイプ部材と前記ハウジング本体との間を液密に保持可能なガスケット(509)を備える[E02]に記載のバルブ装置。
[E03]
A gasket (509) is provided between the pipe member and the housing body on the radially outer side of each of the plurality of pipe portions, and is capable of maintaining a liquid-tight relationship between the pipe member and the housing body. E02].
[E04]
 前記ハウジングは、複数の前記ハウジング側締結穴を有し、
 前記ポートは、複数の前記ハウジング側締結穴のうち2つの前記ハウジング側締結穴を結ぶ直線(Lo1)上、または、3つの前記ハウジング側締結穴を結んで形成される三角形(To1、To2)の内側に前記ポートの中心が位置するよう形成されている[E01]~[E03]のいずれか一項に記載のバルブ装置。
[E04]
The housing has a plurality of housing side fastening holes,
The port is a straight line (Lo1) connecting two housing side fastening holes among the plurality of housing side fastening holes, or a triangle (To1, To2) formed by connecting three housing side fastening holes. The valve device according to any one of [E01] to [E03], which is formed so that a center of the port is located inside.
[E05]
 前記ハウジングは、前記ハウジング本体に前記パイプ部材が取り付けられた状態において前記パイプ部材に対向するよう前記ハウジング本体の外壁に形成されたパイプ取付面(202)を有し、
 前記ポートは、前記パイプ取付面に開口する3つの出口ポート(221~223)、および、1つのリリーフポート(224)を含み、
 前記リリーフポートに設けられ、条件に応じて前記リリーフポートを経由した前記内部空間と前記ハウジング本体の外部との連通を許容または遮断するリリーフ弁(39)を備え、
 3つの前記出口ポートのうち少なくとも2つは、それぞれの開口の中心が、前記パイプ取付面上の1つの直線であるポート配列直線(Lp1)上に位置するよう形成され、
 前記リリーフポートは、開口の中心が、前記ポート配列直線から離れた位置に位置するよう形成されている[E01]~[E04]のいずれか一項に記載のバルブ装置。
[E05]
The housing has a pipe attachment surface (202) formed on an outer wall of the housing body so as to face the pipe member in a state where the pipe member is attached to the housing body,
The port includes three outlet ports (221 to 223) that open to the pipe mounting surface, and one relief port (224),
A relief valve (39) provided in the relief port, which allows or blocks communication between the internal space via the relief port and the outside of the housing body according to conditions;
At least two of the three outlet ports are formed such that the center of each opening is located on a port arrangement line (Lp1), which is one straight line on the pipe mounting surface,
The valve device according to any one of [E01] to [E04], wherein the relief port is formed such that a center of an opening is located at a position away from the port arrangement straight line.
[E06]
 前記ポート配列直線の方向から見たとき、3つの前記出口ポートのうち少なくとも2つと、前記リリーフポートとは、一部が重なるよう形成されている[E05]に記載のバルブ装置。
[E06]
The valve device according to [E05], wherein when viewed from the direction of the port arrangement straight line, at least two of the three outlet ports and the relief port are formed to partially overlap each other.
[E07]
 前記リリーフポートは、開口の中心が、前記ポート配列直線に平行な前記パイプ取付面上の直線であるリリーフ配置直線(Lr1)上に位置するよう形成され、
 前記ポート配列直線の方向から見たとき、3つの前記出口ポートのうち少なくとも2つの前記ポート配列直線に対し前記リリーフ配置直線側の部位と、前記リリーフポートの前記リリーフ配置直線に対し前記ポート配列直線側の部位とは、一部が重なるようにして形成されている[E05]または[E06]に記載のバルブ装置。
[E07]
The relief port is formed such that the center of the opening is located on a relief arrangement line (Lr1) that is a straight line on the pipe mounting surface parallel to the port arrangement line,
When viewed from the direction of the port arrangement line, at least two of the three outlet ports are located on the relief arrangement line side with respect to the port arrangement line, and the port arrangement line with respect to the relief arrangement line of the relief port The valve device according to [E05] or [E06], which is formed so as to partially overlap with the side portion.
[E08]
 前記ハウジングは、複数の前記ハウジング側締結穴を有し、
 複数の前記ハウジング側締結穴のうち少なくとも2つは、前記ポート配列直線に対し前記リリーフポート側に位置する直線である締結穴配列直線(Lh1)上に形成され、
 前記リリーフポートは、前記締結穴配列直線の一部と重なるよう形成されている[E05]~[E07]のいずれか一項に記載のバルブ装置。
[E08]
The housing has a plurality of housing side fastening holes,
At least two of the plurality of housing side fastening holes are formed on a fastening hole array straight line (Lh1) that is a straight line located on the relief port side with respect to the port array straight line.
The valve device according to any one of [E05] to [E07], wherein the relief port is formed to overlap a part of the fastening hole array straight line.
[E09]
 前記パイプ部は、パイプ部本体(501)、および、前記パイプ部本体の前記ポートとは反対側に形成され内径が前記パイプ部本体の内径より大きく外径が前記パイプ部本体の外径より大きいパイプ部端部(502)を有している[E01]~[E08]のいずれか一項に記載のバルブ装置。
[E09]
The pipe part is formed on the opposite side of the pipe part body (501) and the port of the pipe part body, and has an inner diameter larger than an inner diameter of the pipe part body and an outer diameter larger than an outer diameter of the pipe part body. The valve device according to any one of [E01] to [E08], which has a pipe end (502).
[E10]
 前記パイプ部は、パイプ部本体(501)、および、前記パイプ部本体の外壁から外側へ突出するパイプ部突起(503)を有している[E01]~[E09]のいずれか一項に記載のバルブ装置。
[E10]
The pipe part includes a pipe part main body (501) and a pipe part protrusion (503) protruding outward from an outer wall of the pipe part main body, according to any one of [E01] to [E09]. Valve device.
[E11]
 前記ハウジングは、前記発熱体に取り付けられた状態において前記発熱体に対向するよう前記ハウジング本体の外壁に形成された取付面(201)を有し、
 前記パイプ部突起は、前記取付面に対し平行な仮想平面(Vp5)上に形成されている[E10]に記載のバルブ装置。
[E11]
The housing has an attachment surface (201) formed on the outer wall of the housing body so as to face the heating element in a state of being attached to the heating element,
The pipe device projection according to [E10], wherein the pipe protrusion is formed on a virtual plane (Vp5) parallel to the mounting surface.
[E12]
 前記パイプ部材は、複数の前記パイプ部、および、複数の前記パイプ部のハウジング本体側の部位を連結するパイプ連結部(52)を有している[E01]~[E11]のいずれか一項に記載のバルブ装置。
[E12]
The pipe member has any one of [E01] to [E11] including a plurality of the pipe portions and a pipe connecting portion (52) for connecting portions of the plurality of the pipe portions on the housing main body side. The valve device described in 1.
[E13]
 前記ハウジングは、前記内部空間と前記ハウジング本体の外部とを接続するハウジング開口部(210)、および、一端が前記ハウジング開口部に接続し前記内部空間を形成する筒状のハウジング内壁(211)を有し、
 前記バルブは、前記回転軸に設けられたシャフト(32)を有し、
 前記内部空間と前記ハウジング本体の外部とを隔てるよう前記ハウジング開口部に設けられた隔壁部本体(61)、および、前記シャフトの一端を挿通可能なよう前記隔壁部本体に形成されたシャフト挿通穴(62)を有する隔壁部(60)を備え、
 前記ハウジング開口部の内径は、前記ハウジング内壁の前記ハウジング開口部とは反対側の端部の内径より大きい[E01]~[E12]のいずれか一項に記載のバルブ装置。
[E13]
The housing includes a housing opening (210) that connects the internal space and the outside of the housing body, and a cylindrical housing inner wall (211) that has one end connected to the housing opening and forms the internal space. Have
The valve has a shaft (32) provided on the rotating shaft,
A partition wall body (61) provided in the housing opening so as to separate the internal space from the outside of the housing body, and a shaft insertion hole formed in the partition wall body so that one end of the shaft can be inserted A partition wall (60) having (62),
The valve device according to any one of [E01] to [E12], wherein an inner diameter of the housing opening is larger than an inner diameter of an end portion of the housing inner wall opposite to the housing opening.
[E14]
 前記ハウジング内壁は、前記ハウジング開口部側から前記ハウジング開口部とは反対側へ向かうに従い内径が小さくなるようテーパ状に形成されている[E13]に記載のバルブ装置。
[E14]
The valve device according to [E13], wherein the inner wall of the housing is formed in a tapered shape so that an inner diameter becomes smaller from the housing opening side toward the opposite side of the housing opening.
[E15]
 前記ハウジングは、複数の前記ポート、および、前記発熱体に取り付けられた状態において前記発熱体に対向するよう前記ハウジング本体の外壁に形成された取付面(201)を有し、
 複数の前記ポートのうち少なくとも2つは、前記取付面に対し平行な方向へ並ぶよう形成されている[E01]~[E14]のいずれか一項に記載のバルブ装置。
[E15]
The housing has a plurality of the ports and a mounting surface (201) formed on the outer wall of the housing body so as to face the heating element in a state of being attached to the heating element,
The valve device according to any one of [E01] to [E14], wherein at least two of the plurality of ports are formed to be aligned in a direction parallel to the mounting surface.
[E16]
 前記パイプ締結部材は、前記ハウジング側締結穴に対しねじ立てしながら螺合可能なタッピングスクリューである[E01]~[E15]のいずれか一項に記載のバルブ装置。
[E16]
The valve device according to any one of [E01] to [E15], wherein the pipe fastening member is a tapping screw that can be screwed into the housing side fastening hole while being threaded.
<6>
[F01]
 車両(1)の発熱体(2)の冷却水を制御可能なバルブ装置(10)であって、
 内側に内部空間(200)を形成するハウジング本体(21)、前記内部空間と前記ハウジング本体の外部とを接続するポート(220、221、222、223)、および、前記内部空間と前記ハウジング本体の外部とを接続するハウジング開口部(210)を有するハウジング(20)と、
 前記内部空間内において回転軸(Axr1)周りに回転可能な弁体(31)、前記弁体の内側に形成された弁体内流路(300)、前記弁体内流路と前記弁体の外側とを接続する弁体開口部(410、420、430)、および、前記回転軸に設けられたシャフト(32)を有し、前記弁体開口部を経由した前記弁体内流路と前記ポートとの連通状態を前記弁体の回転位置により変更可能なバルブ(30)と、
 前記内部空間と前記ハウジング本体の外部とを隔てるよう前記ハウジング開口部に設けられた隔壁部本体(61)、および、前記シャフトの一端を挿通可能なよう前記隔壁部本体に形成されたシャフト挿通穴(62)を有する隔壁部(60)と、
 前記隔壁部に対し前記内部空間とは反対側に設けられ、前記シャフトの一端を経由して前記弁体を回転駆動可能な駆動部(70)と、を備え、
 前記隔壁部は、前記シャフト挿通穴から外側へ延びて前記隔壁部本体の外壁に開口する隔壁貫通穴(65)を有しているバルブ装置。
<6>
[F01]
A valve device (10) capable of controlling cooling water of a heating element (2) of a vehicle (1),
A housing body (21) that forms an internal space (200) inside, ports (220, 221, 222, 223) that connect the internal space and the outside of the housing body, and the internal space and the housing body A housing (20) having a housing opening (210) connecting the outside;
A valve body (31) rotatable around a rotation axis (Axr1) in the internal space, a valve body channel (300) formed inside the valve body, the valve body channel and the outside of the valve body; A valve body opening (410, 420, 430) for connecting the valve body, and a shaft (32) provided on the rotating shaft, and the valve body flow path and the port via the valve body opening A valve (30) capable of changing the communication state according to the rotational position of the valve body;
A partition wall body (61) provided in the housing opening so as to separate the internal space from the outside of the housing body, and a shaft insertion hole formed in the partition wall body so that one end of the shaft can be inserted A partition (60) having (62);
A drive part (70) provided on the opposite side of the internal space with respect to the partition part and capable of rotationally driving the valve body via one end of the shaft;
The said partition part is a valve apparatus which has a partition through-hole (65) extended outside from the said shaft penetration hole, and opening to the outer wall of the said partition part main body.
[F02]
 前記ハウジングは、前記ハウジング開口部の内壁から外側へ延びて前記ハウジング本体の外壁に開口し、前記隔壁貫通穴と連通可能に形成されたハウジング貫通穴(270)を有している[F01]に記載のバルブ装置。
[F02]
The housing has a housing through hole (270) that extends outward from the inner wall of the housing opening and opens in the outer wall of the housing body, and is formed to be able to communicate with the partition wall through hole [F01]. The valve device as described.
[F03]
 前記隔壁貫通穴に対し前記内部空間側に設けられ、前記シャフトと前記シャフト挿通穴との間を液密に保持可能な第1シール部材(603)と、
 前記ハウジング貫通穴に対し前記内部空間側に設けられ、前記隔壁部本体と前記ハウジング開口部の内壁との間を液密に保持可能な第2シール部材(600)と、
 をさらに備える[F02]に記載のバルブ装置。
[F03]
A first seal member (603) provided on the inner space side with respect to the partition wall through-hole and capable of maintaining a liquid-tight space between the shaft and the shaft insertion hole;
A second seal member (600) provided on the inner space side with respect to the housing through hole and capable of maintaining a liquid-tight space between the partition wall body and the inner wall of the housing opening;
The valve device according to [F02], further including:
[F04]
 前記第1シール部材と前記隔壁貫通穴との距離(Ds1)は、前記第2シール部材と前記ハウジング貫通穴との距離(Ds2)より短い[F03]に記載のバルブ装置。
[F04]
The valve device according to [F03], wherein a distance (Ds1) between the first seal member and the partition wall through hole is shorter than a distance (Ds2) between the second seal member and the housing through hole.
[F05]
 前記隔壁部は、前記シャフト挿通穴の前記隔壁貫通穴と前記第1シール部材との間において段差を形成する隔壁内側段差面(661)を有し、
 前記ハウジングは、前記ハウジング開口部の内壁の前記ハウジング貫通穴と前記第2シール部材との間において段差を形成するハウジング段差面(281)を有している[F03]または[F04]に記載のバルブ装置。
[F05]
The partition portion has a partition inner step surface (661) that forms a step between the partition through hole of the shaft insertion hole and the first seal member,
The said housing has a housing level | step difference surface (281) which forms a level | step difference between the said housing through-hole of the inner wall of the said housing opening part, and the said 2nd sealing member. [F03] or [F04] Valve device.
[F06]
 前記ハウジング段差面は、前記内部空間側から前記駆動部側へ向かうに従い内径が大きくなるようテーパ状に形成されている[F05]に記載のバルブ装置。
[F06]
The valve device according to [F05], wherein the housing step surface is formed in a tapered shape so that an inner diameter increases from the inner space side toward the driving unit side.
[F07]
 前記ハウジングは、前記発熱体に取り付けられた状態において前記発熱体に対向するよう前記ハウジング本体の外壁に形成された取付面(201)を有し、
 前記ハウジング貫通穴は、前記取付面に開口している[F02]~[F06]のいずれか一項に記載のバルブ装置。
[F07]
The housing has an attachment surface (201) formed on the outer wall of the housing body so as to face the heating element in a state of being attached to the heating element,
The valve device according to any one of [F02] to [F06], wherein the housing through hole is open to the mounting surface.
[F08]
 前記ハウジングが前記発熱体に取り付けられた状態において、前記隔壁貫通穴は、前記シャフトに対し鉛直方向下側に位置する[F02]~[F07]のいずれか一項に記載のバルブ装置。
[F08]
The valve device according to any one of [F02] to [F07], in which the partition through hole is positioned vertically below the shaft in a state where the housing is attached to the heating element.
[F09]
 前記ハウジングが前記発熱体に取り付けられた状態において、前記ハウジング貫通穴は、前記シャフトに対し鉛直方向下側に位置する[F02]~[F08]のいずれか一項に記載のバルブ装置。
[F09]
The valve device according to any one of [F02] to [F08], in which the housing through hole is positioned vertically below the shaft in a state where the housing is attached to the heating element.
[F10]
 前記隔壁貫通穴と前記ハウジング貫通穴とは、互いに断面積が異なる[F02]~[F09]のいずれか一項に記載のバルブ装置。
[F10]
The valve device according to any one of [F02] to [F09], wherein the partition wall through hole and the housing through hole have different cross-sectional areas.
[F11]
 前記隔壁貫通穴と前記ハウジング貫通穴とは、前記シャフト挿通穴の軸(Axh1)方向において互いの軸の位置が異なる[F02]~[F10]のいずれか一項に記載のバルブ装置。
[F11]
The valve device according to any one of [F02] to [F10], in which the partition through hole and the housing through hole are different from each other in the position of the shaft in the axis (Axh1) direction of the shaft insertion hole.
[F12]
 前記隔壁部は、前記隔壁部本体の外壁の前記隔壁貫通穴と前記ハウジング貫通穴との間において段差を形成する隔壁外側段差面(671)を有している[F11]に記載のバルブ装置。
[F12]
The said partition part is a valve apparatus as described in [F11] which has a partition outer side level | step difference surface (671) which forms a level | step difference between the said partition through hole and the housing through hole of the outer wall of the said partition part main body.
[F13]
 前記シャフト挿通穴の前記隔壁貫通穴に対し前記駆動部側に設けられ、前記シャフトの一端を軸受けする軸受部(602)をさらに備える[F02]~[F12]のいずれか一項に記載のバルブ装置。
[F13]
The valve according to any one of [F02] to [F12], further including a bearing portion (602) provided on the drive unit side with respect to the partition wall through-hole of the shaft insertion hole and bearing one end of the shaft. apparatus.
[F14]
 前記シャフト挿通穴は、内側に前記軸受部が設けられる小径部(621)、前記小径部より内径が大きく前記隔壁貫通穴が開口する大径部(622)、および、前記小径部と前記大径部との間に形成された挿通穴内段差面(623)を有している[F13]に記載のバルブ装置。
[F14]
The shaft insertion hole includes a small diameter portion (621) in which the bearing portion is provided inside, a large diameter portion (622) having an inner diameter larger than the small diameter portion and opening the partition wall through hole, and the small diameter portion and the large diameter The valve device according to [F13], which has a step surface (623) in the insertion hole formed between the two portions.
[F15]
 前記隔壁部は、前記隔壁貫通穴の一端と他端との間において段差を形成する隔壁貫通穴内段差面(651)を有している[F02]~[F14]のいずれか一項に記載のバルブ装置。
[F15]
The partition wall section has a partition wall through-hole step surface (651) that forms a step between one end and the other end of the partition wall through-hole, according to any one of [F02] to [F14]. Valve device.
[F16]
 前記隔壁貫通穴および前記ハウジング貫通穴は、それぞれの軸が、前記シャフト挿通穴の軸に対し直交しないよう形成されている[F02]~[F15]のいずれか一項に記載のバルブ装置。
[F16]
The valve device according to any one of [F02] to [F15], wherein each of the partition wall through hole and the housing through hole is formed such that an axis thereof is not orthogonal to an axis of the shaft insertion hole.
[F17]
 前記隔壁貫通穴は、前記シャフト挿通穴の径方向内側から径方向外側へ向かうに従い、その断面積が徐々に大きくなるよう形成されている[F01]~[F16]のいずれか一項に記載のバルブ装置。
[F17]
The partition wall through-hole is formed such that a cross-sectional area thereof gradually increases from a radially inner side to a radially outer side of the shaft insertion hole, according to any one of [F01] to [F16]. Valve device.
[F18]
 前記ハウジングが前記発熱体に取り付けられた状態において、前記隔壁貫通穴は、前記シャフトの下側に位置する[F02]~[F07]のいずれか一項に記載のバルブ装置。
[F18]
The valve device according to any one of [F02] to [F07], in which the partition through-hole is positioned below the shaft in a state where the housing is attached to the heating element.
[F19]
 前記ハウジングが前記発熱体に取り付けられた状態において、前記ハウジング貫通穴は、前記シャフトの下側に位置する[F02]~[F07]、[F18]のいずれか一項に記載のバルブ装置。
[F19]
The valve device according to any one of [F02] to [F07] and [F18], in which the housing through-hole is positioned below the shaft in a state where the housing is attached to the heating element.
[F20]
 前記シャフトの軸の真下方向を0度とすると、前記隔壁貫通穴は、前記シャフトの周方向の0~80度の範囲に形成されている[F18]に記載のバルブ装置。
[F20]
The valve device according to [F18], wherein the partition through-hole is formed in a range of 0 to 80 degrees in a circumferential direction of the shaft, where a direction directly below the shaft axis is 0 degrees.
[F21]
 前記シャフトの軸の真下方向を0度とすると、前記ハウジング貫通穴は、前記シャフトの周方向の0~80度の範囲に形成されている[F19]に記載のバルブ装置。
[F21]
The valve device according to [F19], in which the housing through hole is formed in a range of 0 to 80 degrees in a circumferential direction of the shaft, where a direction directly below the shaft axis is 0 degrees.
[F22]
 前記ハウジングは、前記発熱体に取り付けられた状態において前記発熱体に対向するよう前記ハウジング本体の外壁に形成された取付面(201)を有し、
 前記ハウジング貫通穴は、前記取付面側に開口している[F02]~[F06]のいずれか一項に記載のバルブ装置。
[F22]
The housing has an attachment surface (201) formed on the outer wall of the housing body so as to face the heating element in a state of being attached to the heating element,
The valve device according to any one of [F02] to [F06], wherein the housing through hole is open to the mounting surface side.
[F23]
 前記シャフト挿通穴に設けられ、内縁部が前記シャフトの外周壁に当接可能な環状のシール部環状部材(97)、および、前記シール部環状部材より柔らかく内縁部が前記シャフトの外周壁に当接し前記シャフトとの間を液密に保持可能な環状のシャフトシール部材(98)を有するシャフトシール部(96)をさらに備える[F01]~[F22]のいずれか一項に記載のバルブ装置。
[F23]
An annular seal portion annular member (97) provided in the shaft insertion hole, the inner edge portion of which can abut against the outer peripheral wall of the shaft, and the inner edge portion softer than the seal portion annular member that abuts the outer peripheral wall of the shaft. The valve device according to any one of [F01] to [F22], further including a shaft seal portion (96) having an annular shaft seal member (98) that is in contact with the shaft and is capable of maintaining fluid tightness between the shaft.
[F24]
 前記シャフトシール部は、前記シール部環状部材より硬く前記シャフト挿通穴において前記シール部環状部材および前記シャフトシール部材を保持可能なシール部保持部材(99)をさらに有する[F23]に記載のバルブ装置。
[F24]
The valve device according to [F23], wherein the shaft seal portion further includes a seal portion holding member (99) that is harder than the seal portion annular member and can hold the seal portion annular member and the shaft seal member in the shaft insertion hole. .
[F25]
 前記シール部環状部材は、樹脂により形成され、
 前記シャフトシール部材は、ゴムにより形成され、
 前記シール部保持部材は、金属により形成されている[F24]に記載のバルブ装置。
[F25]
The seal portion annular member is formed of resin,
The shaft seal member is formed of rubber,
The valve device according to [F24], wherein the seal portion holding member is made of metal.
[F26]
 前記シャフトシール部材は、前記シール部環状部材と前記シャフトの外周壁との当接箇所に対し前記弁体側において前記シャフトの外周壁に当接する第1シャフトシール部材(981)、および、前記シール部環状部材と前記シャフトの外周壁との当接箇所に対し前記駆動部側において前記シャフトの外周壁と当接する第2シャフトシール部材(982)を有する[F23]~[F25]のいずれか一項に記載のバルブ装置。
[F26]
The shaft seal member includes a first shaft seal member (981) that contacts the outer peripheral wall of the shaft on the valve body side with respect to a contact portion between the seal member annular member and the outer peripheral wall of the shaft; and the seal portion Any one of [F23] to [F25] including a second shaft seal member (982) that contacts the outer peripheral wall of the shaft on the drive unit side with respect to a contact portion between the annular member and the outer peripheral wall of the shaft. The valve device described in 1.
<7>
[G01]
 車両(1)の発熱体(2)の冷却水を制御可能なバルブ装置(10)であって、
 内側に内部空間(200)を形成するハウジング本体(21)、前記内部空間と前記ハウジング本体の外部とを接続するポート(220、221、222、223、224)、前記ハウジング本体の外壁から突出するよう前記ハウジング本体とは異なる部位として形成されたハウジング側カバー固定部(291~296)、および、前記ハウジング側カバー固定部に形成されたハウジング側カバー締結穴(290)を有するハウジング(20)と、
 前記内部空間内において回転軸(Axr1)周りに回転可能な弁体(31)、および、前記回転軸に設けられたシャフト(32)を有し、前記弁体の回転位置により前記ポートを開閉可能なバルブ(30)と、
 内側の空間が前記ポート(221、222、223、224)に連通する筒状のパイプ部(511、512、513、514)を有し、前記ハウジング本体に取り付けられたパイプ部材(50)と、
 前記内部空間と前記ハウジング本体の外部とを隔てるよう設けられ、前記シャフトの一端を挿通可能なよう形成されたシャフト挿通穴(62)を有する隔壁部(60)と、
 前記隔壁部に対し前記内部空間とは反対側に設けられ、前記隔壁部との間に駆動部空間(800)を形成するカバー本体(81)、前記カバー本体の外壁から突出するよう前記カバー本体とは異なる部位として形成されたカバー固定部(821~826)、および、前記カバー固定部に形成されたカバー締結穴(831~836)を有する駆動部カバー(80)と、
 前記駆動部空間に設けられ、前記シャフトの一端を経由して前記弁体を回転駆動可能な駆動部(70)と、
 前記カバー締結穴を通り前記ハウジング側カバー締結穴に螺合することで前記カバー固定部と前記ハウジング側カバー固定部とを固定する固定部材(830)と、を備え、
 前記ハウジング側カバー固定部は、前記ハウジング本体の外壁から突出するカバー固定基部(298)、および、前記カバー固定基部から前記カバー固定部側へ突出し前記カバー固定部に固定されるカバー固定突出部(299)を有し、
 前記パイプ部材の少なくとも一部は、前記カバー固定基部に対し前記カバー固定突出部とは反対側に位置しているバルブ装置。
<7>
[G01]
A valve device (10) capable of controlling cooling water of a heating element (2) of a vehicle (1),
A housing body (21) forming an internal space (200) on the inside, ports (220, 221, 222, 223, 224) connecting the internal space and the outside of the housing body, and protruding from the outer wall of the housing body A housing (20) having a housing side cover fixing part (291 to 296) formed as a part different from the housing body, and a housing side cover fastening hole (290) formed in the housing side cover fixing part. ,
It has a valve body (31) rotatable around the rotation axis (Axr1) in the internal space, and a shaft (32) provided on the rotation axis, and the port can be opened and closed depending on the rotation position of the valve body. A valve (30),
A pipe member (50) attached to the housing body, the inner space having cylindrical pipe portions (511, 512, 513, 514) communicating with the ports (221, 222, 223, 224);
A partition wall portion (60) having a shaft insertion hole (62) provided so as to separate the inner space and the outside of the housing main body and capable of being inserted through one end of the shaft;
A cover body (81) that is provided on the opposite side of the inner space with respect to the partition wall and forms a drive space (800) between the partition wall and the cover body so as to protrude from the outer wall of the cover body A cover fixing part (821 to 826) formed as a part different from the driving part cover (80) having cover fastening holes (831 to 836) formed in the cover fixing part,
A drive unit (70) provided in the drive unit space and capable of rotationally driving the valve body via one end of the shaft;
A fixing member (830) for fixing the cover fixing part and the housing side cover fixing part by screwing into the housing side cover fastening hole through the cover fastening hole;
The housing side cover fixing portion includes a cover fixing base portion (298) protruding from an outer wall of the housing body, and a cover fixing protrusion portion protruding from the cover fixing base portion to the cover fixing portion side and fixed to the cover fixing portion ( 299),
At least a part of the pipe member is a valve device that is located on the opposite side of the cover fixing projection from the cover fixing protrusion.
[G02]
 前記カバー固定突出部は、前記カバー本体の外壁との間に隙間(Sc1)を形成している[G01]に記載のバルブ装置。
[G02]
The valve device according to [G01], wherein the cover fixing protruding portion forms a gap (Sc1) with an outer wall of the cover main body.
[G03]
 前記ハウジング側カバー締結穴の軸方向の長さは、前記ハウジング側カバー締結穴の軸方向における前記カバー固定基部の長さと前記カバー固定突出部の長さとを合わせた長さより短い[G01]または[G02]に記載のバルブ装置。
[G03]
The length of the housing side cover fastening hole in the axial direction is shorter than the total length of the cover fixing base portion and the cover fixing protruding portion in the axial direction of the housing side cover fastening hole [G01] or [ G02].
[G04]
 前記ハウジング側カバー締結穴の内側における前記固定部材の軸方向の長さは、前記ハウジング側カバー締結穴の軸方向の長さより短い[G03]に記載のバルブ装置。
[G04]
The valve device according to [G03], wherein an axial length of the fixing member inside the housing side cover fastening hole is shorter than an axial length of the housing side cover fastening hole.
[G05]
 前記固定部材は、前記ハウジング側カバー締結穴に対しねじ立てしながら螺合可能なタッピングスクリューである[G01]~[G04]のいずれか一項に記載のバルブ装置。
[G05]
The valve device according to any one of [G01] to [G04], wherein the fixing member is a tapping screw that can be screwed into the housing side cover fastening hole while being tapped.
<8>
[H01]
 車両(1)の発熱体(2)の冷却水を制御可能なバルブ装置(10)であって、
 内側に内部空間(200)を形成するハウジング本体(21)、前記内部空間と前記ハウジング本体の外部とを接続するポート(220、221、222、223)、および、前記内部空間と前記ハウジング本体の外部とを接続するハウジング開口部(210)を有するハウジング(20)と、
 前記内部空間内において回転軸(Axr1)周りに回転可能な弁体(31)、および、前記回転軸に設けられたシャフト(32)を有し、前記弁体の回転位置により前記ポートを開閉可能なバルブ(30)と、
 前記内部空間と前記ハウジング本体の外部とを隔てるよう前記ハウジング開口部に設けられた隔壁部本体(61)、および、前記シャフトの一端を挿通可能なよう前記隔壁部本体に形成されたシャフト挿通穴(62)を有する隔壁部(60)と、
 前記隔壁部に対し前記内部空間とは反対側に設けられ、前記シャフトの一端を経由して前記弁体を回転駆動可能な駆動部(70)と、を備え、
 前記バルブは、前記弁体に形成された被規制部(332、342)を有し、
 前記隔壁部は、前記シャフト挿通穴の径方向外側において前記隔壁部本体の前記内部空間側の面から前記駆動部側へ凹む環状の規制凹部(63)、前記規制凹部の周方向の一部に形成され前記被規制部に当接することで前記弁体の回転を規制可能な規制部(631)、および、前記規制凹部の底面(630)から前記駆動部側へ凹む異物堆積部(68)を有しているバルブ装置。
<8>
[H01]
A valve device (10) capable of controlling cooling water of a heating element (2) of a vehicle (1),
A housing body (21) that forms an internal space (200) inside, ports (220, 221, 222, 223) that connect the internal space and the outside of the housing body, and the internal space and the housing body A housing (20) having a housing opening (210) connecting the outside;
It has a valve body (31) rotatable around the rotation axis (Axr1) in the internal space, and a shaft (32) provided on the rotation axis, and the port can be opened and closed depending on the rotation position of the valve body. A valve (30),
A partition wall body (61) provided in the housing opening so as to separate the internal space from the outside of the housing body, and a shaft insertion hole formed in the partition wall body so that one end of the shaft can be inserted A partition (60) having (62);
A drive part (70) provided on the opposite side of the internal space with respect to the partition part and capable of rotationally driving the valve body via one end of the shaft;
The valve has a regulated portion (332, 342) formed in the valve body,
The partition wall is formed in an annular restriction recess (63) that is recessed from the inner space side surface of the partition wall main body toward the drive portion on the radially outer side of the shaft insertion hole, and a part of the restriction recess in the circumferential direction. A restriction portion (631) that is formed and abutted against the restricted portion to restrict the rotation of the valve body, and a foreign matter accumulation portion (68) that is recessed from the bottom surface (630) of the restriction recess to the drive portion side. Has a valve device.
[H02]
 前記規制凹部は、径方向内側に形成された筒状の壁面である内筒壁面(632)、および、径方向外側に形成された筒状の壁面である外筒壁面(633)を有している[H01]に記載のバルブ装置。
[H02]
The restriction recess has an inner cylindrical wall surface (632) that is a cylindrical wall surface formed on the radially inner side and an outer cylindrical wall surface (633) that is a cylindrical wall surface formed on the radially outer side. The valve device according to [H01].
[H03]
 前記異物堆積部は、前記規制凹部の底面(630)の少なくとも一部に対し前記外筒壁面側に形成されている[H02]に記載のバルブ装置。
[H03]
The valve device according to [H02], wherein the foreign matter accumulation portion is formed on the outer cylinder wall surface side with respect to at least a part of a bottom surface (630) of the restriction recess.
[H04]
 前記規制凹部の底面(630)は、前記内筒壁面側から前記外筒壁面側へ向かうに従い前記駆動部に近付くようテーパ状に形成されている[H02]または[H03]に記載のバルブ装置。
[H04]
The valve device according to [H02] or [H03], wherein a bottom surface (630) of the restricting recess is formed in a tapered shape so as to approach the driving unit from the inner cylinder wall surface side toward the outer cylinder wall surface side.
[H05]
 前記内筒壁面は、前記被規制部と摺動することで前記弁体の回転を案内可能である[H02]~[H04]のいずれか一項に記載のバルブ装置。
[H05]
The valve device according to any one of [H02] to [H04], wherein the inner cylinder wall surface can guide rotation of the valve body by sliding with the regulated portion.
[H06]
 前記規制部は、前記内筒壁面から前記外筒壁面まで延びるよう形成されている[H02]~[H05]のいずれか一項に記載のバルブ装置。
[H06]
The valve device according to any one of [H02] to [H05], wherein the restricting portion is formed to extend from the inner cylindrical wall surface to the outer cylindrical wall surface.
[H07]
 前記規制凹部の径方向における前記規制部の長さは、前記規制凹部の径方向における前記異物堆積部の長さより大きい[H06]に記載のバルブ装置。
[H07]
The valve device according to [H06], wherein a length of the restriction portion in a radial direction of the restriction recess is larger than a length of the foreign matter accumulation portion in a radial direction of the restriction recess.
[H08]
 前記バルブは、前記弁体から前記駆動部側へ筒状に延びる弁体筒部(315)を有し、
 前記弁体筒部の先端部は、前記内筒壁面の径方向外側に位置している[H02]~[H07]のいずれか一項に記載のバルブ装置。
[H08]
The valve has a valve body cylinder portion (315) extending in a cylindrical shape from the valve body to the drive portion side,
The valve device according to any one of [H02] to [H07], wherein a distal end portion of the valve body cylinder portion is located on a radially outer side of the inner cylinder wall surface.
[H09]
 前記バルブは、前記弁体筒部に形成され前記内筒壁面との間にラビリンス状の空間(Sr1)を形成可能なラビリンス形成部(316)を有している[H08]に記載のバルブ装置。
[H09]
The valve device according to [H08], wherein the valve device includes a labyrinth forming portion (316) formed in the valve body tube portion and capable of forming a labyrinth-like space (Sr1) with the inner cylinder wall surface. .
[H10]
 前記ラビリンス形成部は、前記弁体筒部の先端部から径方向内側へ向かって突出するよう形成されている[H09]に記載のバルブ装置。
[H10]
The said labyrinth formation part is a valve apparatus as described in [H09] formed so that it may protrude toward the radial inside from the front-end | tip part of the said valve body cylinder part.
[H11]
 前記弁体筒部は、前記規制凹部の径方向において前記規制部に対し前記内筒壁面側に位置するよう形成されている[H08]~[H10]のいずれか一項に記載のバルブ装置。
[H11]
The valve device according to any one of [H08] to [H10], wherein the valve body cylinder portion is formed to be positioned on the inner cylinder wall surface side with respect to the restriction portion in a radial direction of the restriction recess.
[H12]
 前記異物堆積部は、前記シャフト挿通穴の軸に垂直な断面においてC字状に形成されている[H01]~[H11]のいずれか一項に記載のバルブ装置。
[H12]
The valve device according to any one of [H01] to [H11], wherein the foreign material accumulation portion is formed in a C shape in a cross section perpendicular to the axis of the shaft insertion hole.
[H13]
 前記隔壁部は、前記シャフト挿通穴から外側へ延びて前記隔壁部本体の外壁に開口する隔壁貫通穴(65)を有し、
 前記隔壁貫通穴は、前記異物堆積部の周方向の端部間に形成されている[H12]に記載のバルブ装置。
[H13]
The partition wall has a partition wall through hole (65) extending outward from the shaft insertion hole and opening in the outer wall of the partition wall body,
The partition wall through-hole is the valve device according to [H12], which is formed between end portions in the circumferential direction of the foreign material accumulation portion.
[H14]
 前記規制凹部の底面は、前記異物堆積部の周方向の端部間において、径方向外側へ向かうに従い周方向の長さが大きくなるよう形成されている[H12]または[H13]に記載のバルブ装置。
[H14]
The valve according to [H12] or [H13], wherein the bottom surface of the restricting recess is formed such that the circumferential length increases in the radial direction between the circumferential ends of the foreign material accumulation portion. apparatus.
[H15]
 前記規制部は、前記規制凹部の底面上を径方向外側へ向かって延びるよう形成されている[H01]~[H14]のいずれか一項に記載のバルブ装置。
[H15]
The valve device according to any one of [H01] to [H14], wherein the restricting portion is formed to extend radially outward on a bottom surface of the restricting recess.
[H16]
 前記規制部は、前記規制凹部の径方向外側へ向かうに従い周方向の長さが大きくなるよう形成されている[H15]に記載のバルブ装置。
[H16]
The valve device according to [H15], wherein the restriction portion is formed so that a length in a circumferential direction becomes larger toward a radially outer side of the restriction recess.
[H17]
 前記ハウジングが前記発熱体に取り付けられた状態において、前記異物堆積部は、前記弁体の下側に位置する[H01]~[H16]のいずれか一項に記載のバルブ装置。
[H17]
The valve device according to any one of [H01] to [H16], wherein the foreign material accumulation portion is positioned below the valve body in a state where the housing is attached to the heating element.
<9>
[I01]
 車両(1)の発熱体(2)の冷却水を制御可能なバルブ装置(10)であって、
 内側に内部空間(200)を形成するハウジング本体(21)、および、前記内部空間と前記ハウジング本体の外部とを接続するポート(220、221、222、223)を有するハウジング(20)と、
 前記内部空間内において回転軸(Axr1)周りに回転可能な弁体(31)、および、前記回転軸に設けられたシャフト(32)を有し、前記弁体の回転位置により前記ポートを開閉可能なバルブ(30)と、
 前記内部空間を形成する前記ハウジング本体の内壁のうち前記シャフトの端部に対向する内壁である対向内壁(213)から筒状に延び内側で前記シャフトの端部を軸受け可能な軸受部本体(91)、および、前記軸受部本体の内周壁と外周壁とを接続するよう形成された軸受部流路(92)を有するシャフト軸受部(90)と、
 を備えるバルブ装置。
<9>
[I01]
A valve device (10) capable of controlling cooling water of a heating element (2) of a vehicle (1),
A housing (20) having a housing body (21) forming an internal space (200) on the inside, and ports (220, 221, 222, 223) connecting the internal space and the outside of the housing body;
It has a valve body (31) rotatable around the rotation axis (Axr1) in the internal space, and a shaft (32) provided on the rotation axis, and the port can be opened and closed depending on the rotation position of the valve body. A valve (30),
A bearing body (91) that extends in a cylindrical shape from an opposing inner wall (213), which is an inner wall facing the end of the shaft, of the inner wall of the housing body that forms the internal space, and is capable of bearing the end of the shaft on the inside. ), And a shaft bearing portion (90) having a bearing portion flow path (92) formed to connect the inner peripheral wall and the outer peripheral wall of the bearing portion main body,
A valve device comprising:
[I02]
 前記軸受部流路は、前記軸受部本体の前記対向内壁側の部位から前記対向内壁とは反対側の端部まで延びるよう形成されている[I01]に記載のバルブ装置。
[I02]
The valve device according to [I01], wherein the bearing portion channel is formed to extend from a portion on the opposite inner wall side of the bearing portion main body to an end portion on the opposite side to the opposite inner wall.
[I03]
 前記弁体は、内側に前記シャフトの端部および前記軸受部本体が位置するよう形成された弁体端部穴部(314)を有している[I01]または[I02]に記載のバルブ装置。
[I03]
The valve device according to [I01] or [I02], wherein the valve body has a valve body end hole portion (314) formed so that an end portion of the shaft and the bearing portion main body are located inside. .
[I04]
 前記シャフト軸受部は、前記軸受部本体の内側に設けられ内側で前記シャフトの端部を軸受け可能な筒状の内側軸受部(93)を有している[I01]~[I03]のいずれか一項に記載のバルブ装置。
[I04]
The shaft bearing portion has a cylindrical inner bearing portion (93) provided on the inner side of the bearing portion main body and capable of bearing the end portion of the shaft on the inner side. Any one of [I01] to [I03] The valve device according to one item.
[I05]
 前記弁体は、内側に前記シャフトの端部および前記軸受部本体が位置するよう形成された弁体端部穴部(314)を有し、
 前記シャフト軸受部は、前記軸受部本体の内側に設けられ内側で前記シャフトの端部を軸受け可能な筒状の内側軸受部(93)を有し、
 前記弁体端部穴部の内径と前記軸受部本体の外径との差は、前記軸受部本体の内径と前記シャフトの端部の外径との差より小さい[I01]または[I02]に記載のバルブ装置。
[I05]
The valve body has a valve body end hole (314) formed so that an end of the shaft and the bearing body are located inside,
The shaft bearing portion has a cylindrical inner bearing portion (93) provided inside the bearing portion main body and capable of bearing the end portion of the shaft inside.
The difference between the inner diameter of the valve body end hole and the outer diameter of the bearing body is smaller than the difference between the inner diameter of the bearing body and the outer diameter of the shaft end [I01] or [I02]. The valve device as described.
[I06]
 前記ハウジングが前記発熱体に取り付けられた状態において、前記シャフト軸受部は、前記対向内壁の下側に位置する[I01]~[I05]のいずれか一項に記載のバルブ装置。
[I06]
The valve device according to any one of [I01] to [I05], wherein the shaft bearing portion is positioned below the opposed inner wall in a state where the housing is attached to the heating element.
<10>
[J01]
 車両(1)の発熱体(2)の冷却水を制御可能なバルブ装置(10)であって、
 内側に内部空間(200)を形成する筒状のハウジング内壁(211)が形成されたハウジング本体(21)、前記ハウジング内壁に開口し前記内部空間と前記ハウジング本体の外部とを接続するポート(220、221、222、223)を有するハウジング(20)と、
 前記内部空間内において前記ハウジング内壁の軸(Axn1)に沿う回転軸(Axr1)周りに回転可能な弁体(31)、および、前記弁体の外周壁と内周壁とを接続するよう形成された弁体開口部(410、420、430)を有し、前記弁体の回転位置により前記ポートを開閉可能なバルブ(30)と、を備え、
 前記ハウジング内壁は、軸からの距離が周方向で異なるよう形成されているバルブ装置。
<10>
[J01]
A valve device (10) capable of controlling cooling water of a heating element (2) of a vehicle (1),
A housing main body (21) in which a cylindrical housing inner wall (211) forming an internal space (200) is formed, and a port (220) that opens to the inner wall of the housing and connects the internal space and the outside of the housing main body. , 221, 222, 223),
A valve body (31) rotatable around a rotation axis (Axr1) along the axis (Axn1) of the housing inner wall in the inner space, and formed so as to connect the outer peripheral wall and the inner peripheral wall of the valve body. A valve (30) having a valve body opening (410, 420, 430) and capable of opening and closing the port according to the rotational position of the valve body,
A valve device in which the inner wall of the housing is formed such that the distance from the shaft differs in the circumferential direction.
[J02]
 前記弁体は、前記回転軸から外周壁までの距離が周方向で同じになるよう形成されている[J01]に記載のバルブ装置。
[J02]
The valve device according to [J01], wherein the valve body is formed such that a distance from the rotating shaft to an outer peripheral wall is the same in a circumferential direction.
[J03]
 前記ハウジング内壁は、軸に垂直な断面において非真円となるよう形成されている[J01]または[J02]に記載のバルブ装置。
[J03]
The valve device according to [J01] or [J02], wherein the inner wall of the housing is formed to be non-circular in a cross section perpendicular to an axis.
[J04]
 前記ハウジング内壁は、軸に垂直な断面において多角形となるよう形成されている[J03]に記載のバルブ装置。
[J04]
The valve device according to [J03], wherein the inner wall of the housing is formed in a polygonal shape in a cross section perpendicular to the axis.
[J05]
 「前記弁体の外径が最も大きい部分を含み、かつ、前記ハウジング内壁の軸に垂直な断面」において、前記弁体の外周壁と前記ハウジング内壁との距離は、周方向で異なる[J01]~[J04]のいずれか一項に記載のバルブ装置。
[J05]
In the “cross section including the portion having the largest outer diameter of the valve body and perpendicular to the axis of the housing inner wall”, the distance between the outer peripheral wall of the valve body and the inner wall of the housing differs in the circumferential direction [J01] The valve device according to any one of [J04].
[J06]
 「前記ハウジング内壁のうち前記ポートが開口している部分以外の部分、および、前記弁体のうち前記弁体開口部が形成されている部分以外の部分を含み、かつ、前記ハウジング内壁の軸に垂直な断面」において、前記弁体の外周壁と前記ハウジング内壁との距離は、周方向で異なる[J01]~[J05]のいずれか一項に記載のバルブ装置。
[J06]
“A portion of the inner wall of the housing other than the portion where the port is open, and a portion of the valve body other than the portion where the valve body opening is formed, and the shaft of the inner wall of the housing The valve device according to any one of [J01] to [J05], in which the distance between the outer peripheral wall of the valve body and the inner wall of the housing differs in the circumferential direction in the “vertical cross section”.
[J07]
 前記ハウジングは、前記ハウジング内壁に開口し前記内部空間と前記ハウジング本体の外部とを接続するリリーフポート(224)を有し、
 前記リリーフポートに設けられ、条件に応じて前記リリーフポートを開閉するリリーフ弁(39)をさらに備える[J01]~[J06]のいずれか一項に記載のバルブ装置。
[J07]
The housing has a relief port (224) that opens in the inner wall of the housing and connects the internal space and the outside of the housing body;
The valve device according to any one of [J01] to [J06], further comprising a relief valve (39) provided in the relief port and opening and closing the relief port according to a condition.
[J08]
 前記弁体の外周壁と摺動可能なよう前記ポートに対応する位置に設けられ、前記弁体の外周壁との間を液密に保持可能な環状のバルブシール(36)をさらに備え、
 「前記バルブシールを含み、かつ、前記ハウジング内壁の軸に垂直な断面」において、前記弁体の外周壁と前記ハウジング内壁との距離は、周方向で異なる[J01]~[J07]のいずれか一項に記載のバルブ装置。
[J08]
An annular valve seal (36) provided at a position corresponding to the port so as to be slidable with the outer peripheral wall of the valve body, and capable of maintaining a liquid-tight relationship with the outer peripheral wall of the valve body;
In the “cross section including the valve seal and perpendicular to the axis of the inner wall of the housing”, the distance between the outer peripheral wall of the valve body and the inner wall of the housing is any of [J01] to [J07] The valve device according to one item.
[J09]
 前記ハウジングは、内周面が前記ハウジング内壁の軸方向の端部に接続し前記内部空間と前記ハウジング本体の外部とを接続するハウジング開口部(210)を有し、
 前記バルブは、前記回転軸に設けられたシャフト(32)を有し、
 前記内部空間と前記ハウジング本体の外部とを隔てるよう前記ハウジング開口部に設けられた隔壁部本体(61)、および、前記シャフトの一端を挿通可能なよう前記隔壁部本体に形成されたシャフト挿通穴(62)を有する隔壁部(60)と、
 前記隔壁部本体に対し前記内部空間とは反対側に設けられ、前記シャフトの一端を経由して前記弁体を回転駆動可能な駆動部(70)と、
 前記ハウジング開口部と前記隔壁部本体との間に設けられ、前記ハウジング開口部と前記隔壁部本体との間を液密に保持可能な環状シール部材(600)と、をさらに備え、
 前記ハウジング開口部の内周面は、円筒状に形成されている[J01]~[J08]のいずれか一項に記載のバルブ装置。
[J09]
The housing has a housing opening (210) having an inner peripheral surface connected to an axial end of the housing inner wall and connecting the internal space and the outside of the housing body,
The valve has a shaft (32) provided on the rotating shaft,
A partition wall body (61) provided in the housing opening so as to separate the internal space from the outside of the housing body, and a shaft insertion hole formed in the partition wall body so that one end of the shaft can be inserted A partition (60) having (62);
A drive unit (70) provided on the opposite side of the inner space with respect to the partition wall body, and capable of rotationally driving the valve body via one end of the shaft;
An annular seal member (600) provided between the housing opening and the partition wall main body and capable of maintaining a liquid-tight relationship between the housing opening and the partition wall main body,
The valve device according to any one of [J01] to [J08], wherein an inner peripheral surface of the housing opening is formed in a cylindrical shape.
<11>
[K01]
 車両(1)の発熱体(2)の冷却水を制御可能なバルブ装置(10)であって、
 内側に内部空間(200)を形成するハウジング本体(21)、前記内部空間と前記ハウジング本体の外部とを接続し冷却水が流入する入口ポート(220)、および、前記内部空間と前記ハウジング本体の外部とを接続するリリーフポート(224)を有するハウジング(20)と、
 前記内部空間内において回転軸(Axr1)周りに回転可能な弁体(31)、および、前記回転軸に設けられたシャフト(32)を有するバルブ(30)と、
 前記リリーフポートに設けられ、条件に応じて開弁または閉弁し、前記リリーフポートを経由した前記内部空間と前記ハウジング本体の外部との連通を許容または遮断するリリーフ弁(39)と、
 前記入口ポートから前記リリーフ弁が目視できないよう前記リリーフ弁を遮蔽可能な遮蔽部(95)と、
 を備えるバルブ装置。
<11>
[K01]
A valve device (10) capable of controlling cooling water of a heating element (2) of a vehicle (1),
A housing body (21) that forms an internal space (200) inside, an inlet port (220) that connects the internal space and the outside of the housing body and into which cooling water flows, and the internal space and the housing body A housing (20) having a relief port (224) for connecting to the outside;
A valve body (31) rotatable around a rotation axis (Axr1) in the internal space, and a valve (30) having a shaft (32) provided on the rotation axis;
A relief valve (39) that is provided in the relief port, opens or closes depending on conditions, and allows or blocks communication between the internal space and the outside of the housing body via the relief port;
A shielding portion (95) capable of shielding the relief valve so that the relief valve cannot be seen from the inlet port;
A valve device comprising:
[K02]
 前記遮蔽部は、前記シャフトに対し前記リリーフポート側に位置するよう前記ハウジング本体に設けられている[K01]に記載のバルブ装置。
[K02]
The valve device according to [K01], wherein the shielding portion is provided in the housing main body so as to be positioned on the relief port side with respect to the shaft.
[K03]
 前記遮蔽部は、前記シャフトに対し前記入口ポート側に位置するよう前記ハウジング本体に設けられている[K01]に記載のバルブ装置。
[K03]
The valve device according to [K01], wherein the shielding portion is provided in the housing main body so as to be positioned on the inlet port side with respect to the shaft.
[K04]
 前記遮蔽部は、前記入口ポートの軸方向または前記リリーフポートの軸方向に前記入口ポート、前記リリーフ弁および前記遮蔽部を投影したとき、前記入口ポートの投影と前記リリーフ弁の投影とが重なる部分の面積以上の面積の投影となるよう形成されている[K01]~[K03]のいずれか一項に記載のバルブ装置。
[K04]
The shielding portion is a portion where the projection of the inlet port and the projection of the relief valve overlap when the inlet port, the relief valve, and the shielding portion are projected in the axial direction of the inlet port or the axial direction of the relief port. The valve device according to any one of [K01] to [K03], wherein the valve device is formed so as to project an area that is greater than or equal to the area.
[K05]
 前記遮蔽部の前記バルブ側の面(951)は、前記内部空間を形成する前記ハウジング本体の内壁(211)の形状にならう形状となるよう形成されている[K01]~[K04]のいずれか一項に記載のバルブ装置。
[K05]
The valve-side surface (951) of the shielding part is formed to have a shape that follows the shape of the inner wall (211) of the housing body that forms the internal space. The valve device according to claim 1.
[K06]
 前記遮蔽部は、板状に形成され、板厚が均一である[K01]~[K05]のいずれか一項に記載のバルブ装置。
[K06]
The valve device according to any one of [K01] to [K05], wherein the shielding portion is formed in a plate shape and has a uniform plate thickness.
<12>
[L01]
 車両(1)の発熱体(2)の冷却水を制御可能なバルブ装置(10)であって、
 内部空間(200)、前記内部空間に接続し前記車両のラジエータ(5)に接続されるラジエータポート(221)、前記内部空間に接続し前記車両のヒータ(6)に接続されるヒータポート(222)、および、前記内部空間に接続し前記車両のデバイス(7)に接続されるデバイスポート(223)を有するハウジング(20)と、
 前記内部空間内において回転軸(Axr1)周りに回転可能な弁体(31)を有し、前記弁体の回転位置により前記ラジエータポート、前記ヒータポートまたは前記デバイスポートを開閉可能なバルブ(30)と、
 前記弁体を回転駆動可能な駆動部(70)と、
 前記駆動部の作動を制御し前記弁体の回転駆動を制御することで、前記ラジエータポートと前記ラジエータとの間、前記ヒータポートと前記ヒータとの間、および、前記デバイスポートと前記デバイスとの間の冷却水の流れを制御可能な制御部(8)と、を備え、
 前記制御部は、前記弁体が回転方向の一方側に回転駆動するに従い、前記ラジエータポート、前記ヒータポートおよび前記デバイスポートの全ての開度が所定開度になった後、前記ヒータポートおよび前記デバイスポートが閉じ、前記ラジエータポートのみ開度が前記所定開度になるよう前記駆動部および前記弁体を制御可能であるバルブ装置。
<12>
[L01]
A valve device (10) capable of controlling cooling water of a heating element (2) of a vehicle (1),
An internal space (200), a radiator port (221) connected to the internal space and connected to the radiator (5) of the vehicle, and a heater port (222) connected to the internal space and connected to the heater (6) of the vehicle And a housing (20) having a device port (223) connected to the interior space and connected to the vehicle device (7),
A valve (30) having a valve element (31) rotatable around a rotation axis (Axr1) in the internal space, and capable of opening and closing the radiator port, the heater port or the device port according to the rotation position of the valve element. When,
A drive unit (70) capable of rotationally driving the valve body;
By controlling the operation of the drive unit and controlling the rotational drive of the valve body, between the radiator port and the radiator, between the heater port and the heater, and between the device port and the device A control unit (8) capable of controlling the flow of cooling water between,
As the valve body is driven to rotate in one direction of rotation, the controller, after all the openings of the radiator port, the heater port, and the device port have reached a predetermined opening, A valve device capable of controlling the drive unit and the valve body so that a device port is closed and an opening degree of only the radiator port becomes the predetermined opening degree.
[L02]
 前記制御部は、前記弁体が回転方向の一方側に回転駆動するに従い、前記ラジエータポート、前記ヒータポートおよび前記デバイスポートの全ての開度が前記所定開度になった後、前記ヒータポートおよび前記デバイスポートが前記ヒータポート、前記デバイスポートの順で閉じるよう前記駆動部および前記弁体を制御可能である[L01]に記載のバルブ装置。
[L02]
As the valve body is rotationally driven to one side in the rotational direction, the controller port, after all the openings of the radiator port, the heater port, and the device port have reached the predetermined opening degree, The valve device according to [L01], wherein the drive unit and the valve body can be controlled so that the device port is closed in the order of the heater port and the device port.
[L03]
 前記制御部は、前記弁体が回転方向の一方側に回転駆動するに従い、前記ラジエータポート、前記ヒータポートおよび前記デバイスポートの全ての開度が前記所定開度になった後、前記ヒータポートおよび前記デバイスポートが前記デバイスポート、前記ヒータポートの順で閉じるよう前記駆動部および前記弁体を制御可能である[L01]に記載のバルブ装置。
[L03]
As the valve body is rotationally driven to one side in the rotational direction, the controller port, after all the openings of the radiator port, the heater port, and the device port have reached the predetermined opening degree, The valve device according to [L01], wherein the drive unit and the valve body can be controlled so that the device port is closed in the order of the device port and the heater port.
[L04]
 前記制御部は、前記弁体が回転方向の一方側に回転駆動するに従い、前記ラジエータポート、前記ヒータポートおよび前記デバイスポートの全ての開度が前記所定開度になった後、前記ヒータポートおよび前記デバイスポートが同時に閉じるよう前記駆動部および前記弁体を制御可能である[L01]に記載のバルブ装置。
[L04]
As the valve body is rotationally driven to one side in the rotational direction, the controller port, after all the openings of the radiator port, the heater port, and the device port have reached the predetermined opening degree, The valve device according to [L01], wherein the drive unit and the valve body can be controlled so that the device ports are closed simultaneously.
[L05]
 車両(1)の発熱体(2)の冷却水を制御可能なバルブ装置(10)であって、
 内部空間(200)、前記内部空間に接続し前記車両のラジエータ(5)に接続されるラジエータポート(221)、前記内部空間に接続し前記車両のヒータ(6)に接続されるヒータポート(222)、および、前記内部空間に接続し前記車両のデバイス(7)に接続されるデバイスポート(223)を有するハウジング(20)と、
 前記内部空間内において回転軸(Axr1)周りに回転可能な弁体(31)を有し、前記弁体の回転位置により前記ラジエータポート、前記ヒータポートまたは前記デバイスポートを開閉可能なバルブ(30)と、
 前記弁体を回転駆動可能な駆動部(70)と、
 前記駆動部の作動を制御し前記弁体の回転駆動を制御することで、前記ラジエータポートと前記ラジエータとの間、前記ヒータポートと前記ヒータとの間、および、前記デバイスポートと前記デバイスとの間の冷却水の流れを制御可能な制御部(8)と、を備え、
 前記制御部は、
 車両環境および/または車両状態に応じて、前記弁体を回転方向の基準位置に対し一方側において回転させる通常モード、あるいは他方側において回転させる冷却優先モードで前記弁体を回転駆動し、
 前記通常モードの前記弁体の特定の回転位置において、前記ラジエータポートのみ開度が所定開度になるよう前記駆動部および前記弁体を制御可能であるバルブ装置。
[L05]
A valve device (10) capable of controlling cooling water of a heating element (2) of a vehicle (1),
An internal space (200), a radiator port (221) connected to the internal space and connected to the radiator (5) of the vehicle, and a heater port (222) connected to the internal space and connected to the heater (6) of the vehicle And a housing (20) having a device port (223) connected to the interior space and connected to the vehicle device (7),
A valve (30) having a valve element (31) rotatable around a rotation axis (Axr1) in the internal space, and capable of opening and closing the radiator port, the heater port or the device port according to the rotation position of the valve element. When,
A drive unit (70) capable of rotationally driving the valve body;
By controlling the operation of the drive unit and controlling the rotational drive of the valve body, between the radiator port and the radiator, between the heater port and the heater, and between the device port and the device A control unit (8) capable of controlling the flow of cooling water between,
The controller is
Depending on the vehicle environment and / or vehicle state, the valve body is driven to rotate in a normal mode in which the valve body is rotated on one side with respect to a reference position in the rotation direction, or in a cooling priority mode in which the valve body is rotated on the other side,
The valve device capable of controlling the drive unit and the valve body so that the opening degree of only the radiator port becomes a predetermined opening degree at a specific rotational position of the valve body in the normal mode.
[L06]
 前記制御部は、前記通常モードと前記冷却優先モードの両側において、前記ラジエータポートが前記所定開度になるよう前記駆動部および前記弁体を制御可能である[L05]に記載のバルブ装置。
[L06]
The said control part is a valve apparatus as described in [L05] which can control the said drive part and the said valve body so that the said radiator port may become the said predetermined opening in both sides of the said normal mode and the said cooling priority mode.
[L07]
 前記制御部は、前記ラジエータポート、前記ヒータポートまたは前記デバイスポートの開度がそれぞれ単独で前記所定開度になるよう前記駆動部および前記弁体を制御可能である[L06]に記載のバルブ装置。
[L07]
The said control part can control the said drive part and the said valve body so that the opening degree of the said radiator port, the said heater port, or the said device port may respectively become the said predetermined opening degree [L06]. .
[L08]
 前記制御部は、前記通常モードにおいて、前記ラジエータポート、前記ヒータポートおよび前記デバイスポートの全ての開度が前記所定開度になるよう前記駆動部および前記弁体を制御可能である[L05]~[L07]のいずれか一項に記載のバルブ装置。
[L08]
In the normal mode, the control unit can control the drive unit and the valve body so that all the opening degrees of the radiator port, the heater port, and the device port are the predetermined opening degrees [L05] to The valve device according to any one of [L07].
[L09]
 前記所定開度は、60%以上に設定されている[L01]~[L08]のいずれか一項に記載のバルブ装置。
[L09]
The valve device according to any one of [L01] to [L08], wherein the predetermined opening is set to 60% or more.
[L10]
 前記弁体は、外周壁または内周壁が球面状または円筒状に形成され、
 前記バルブは、前記弁体の内周壁の内側に形成された弁体内流路(300)、前記弁体の外周壁と内周壁とを接続するよう形成され前記弁体の回転位置により前記ラジエータポートとの重合割合であるラジエータ重合割合が変化するラジエータ用開口部(410)、前記弁体の外周壁と内周壁とを接続するよう形成され前記弁体の回転位置により前記ヒータポートとの重合割合であるヒータ重合割合が変化するヒータ用開口部(420)、および、前記弁体の外周壁と内周壁とを接続するよう形成され前記弁体の回転位置により前記デバイスポートとの重合割合であるデバイス重合割合が変化するデバイス用開口部(430)を有している[L01]~[L09]のいずれか一項に記載のバルブ装置。
[L10]
The valve body has an outer peripheral wall or an inner peripheral wall formed into a spherical shape or a cylindrical shape,
The valve is formed so as to connect a valve body flow path (300) formed inside an inner peripheral wall of the valve body, and an outer peripheral wall and an inner peripheral wall of the valve body, and the radiator port according to a rotational position of the valve body. A radiator opening portion (410) in which a polymerization rate of the radiator is changed, and a polymerization rate with the heater port is formed so as to connect the outer peripheral wall and the inner peripheral wall of the valve body. The heater opening (420) in which the heater polymerization rate is changed, and the polymerization rate with the device port is formed so as to connect the outer peripheral wall and the inner peripheral wall of the valve body. The valve device according to any one of [L01] to [L09], which has a device opening (430) in which a device polymerization ratio changes.
[L11]
 前記ラジエータ重合割合が0より大きいとき、前記ラジエータポートが開き、前記ラジエータ用開口部および前記ラジエータポートを経由して前記弁体内流路と前記ラジエータとが連通し、
 前記ヒータ重合割合が0より大きいとき、前記ヒータポートが開き、前記ヒータ用開口部および前記ヒータポートを経由して前記弁体内流路と前記ヒータとが連通し、
 前記デバイス重合割合が0より大きいとき、前記デバイスポートが開き、前記デバイス用開口部および前記デバイスポートを経由して前記弁体内流路と前記デバイスとが連通する[L10]に記載のバルブ装置。
[L11]
When the radiator polymerization rate is greater than 0, the radiator port opens, the valve body flow path and the radiator communicate with each other via the radiator opening and the radiator port,
When the heater polymerization ratio is greater than 0, the heater port is opened, and the flow passage in the valve body and the heater communicate with each other via the heater opening and the heater port,
The valve device according to [L10], wherein when the device polymerization ratio is greater than 0, the device port opens, and the valve body flow path and the device communicate with each other via the device opening and the device port.
 本開示は、実施形態に基づき記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も、本開示の範疇および思想範囲に入るものである。 This disclosure has been described based on embodiments. However, the present disclosure is not limited to the embodiments and structures. The present disclosure also includes various modifications and modifications within the equivalent scope. Also, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (6)

  1.  車両(1)の発熱体(2)の冷却水を制御可能なバルブ装置(10)であって、
     内側に内部空間(200)を形成するハウジング本体(21)、および、前記内部空間と前記ハウジング本体の外部とを接続するポート(220、221、222、223)を有するハウジング(20)と、
     前記内部空間内において回転軸(Axr1)周りに回転可能な弁体(31)、および、前記回転軸に設けられたシャフト(32)を有し、前記弁体の回転位置により前記ポートを開閉可能なバルブ(30)と、
     前記内部空間を形成する前記ハウジング本体の内壁のうち前記シャフトの端部に対向する内壁である対向内壁(213)から筒状に延び内側で前記シャフトの端部を軸受け可能な軸受部本体(91)、および、前記軸受部本体の内周壁と外周壁とを接続するよう形成された軸受部流路(92)を有するシャフト軸受部(90)と、
     を備えるバルブ装置。
    A valve device (10) capable of controlling cooling water of a heating element (2) of a vehicle (1),
    A housing (20) having a housing body (21) forming an internal space (200) on the inside, and ports (220, 221, 222, 223) connecting the internal space and the outside of the housing body;
    It has a valve body (31) rotatable around the rotation axis (Axr1) in the internal space, and a shaft (32) provided on the rotation axis, and the port can be opened and closed depending on the rotation position of the valve body. A valve (30),
    A bearing body (91) that extends in a cylindrical shape from an opposing inner wall (213), which is an inner wall facing the end of the shaft, of the inner wall of the housing body that forms the internal space, and is capable of bearing the end of the shaft on the inside. ), And a shaft bearing portion (90) having a bearing portion flow path (92) formed to connect the inner peripheral wall and the outer peripheral wall of the bearing portion main body,
    A valve device comprising:
  2.  前記軸受部流路は、前記軸受部本体の前記対向内壁側の部位から前記対向内壁とは反対側の端部まで延びるよう形成されている請求項1に記載のバルブ装置。 The valve device according to claim 1, wherein the bearing portion flow path is formed to extend from a portion of the bearing portion main body on the opposite inner wall side to an end portion on the opposite side to the opposite inner wall.
  3.  前記弁体は、内側に前記シャフトの端部および前記軸受部本体が位置するよう形成された弁体端部穴部(314)を有している請求項1または2に記載のバルブ装置。 The valve device according to claim 1 or 2, wherein the valve body has a valve body end hole portion (314) formed so that an end portion of the shaft and the bearing portion main body are located inside.
  4.  前記シャフト軸受部は、前記軸受部本体の内側に設けられ内側で前記シャフトの端部を軸受け可能な筒状の内側軸受部(93)を有している請求項1~3のいずれか一項に記載のバルブ装置。 The shaft bearing portion has a cylindrical inner bearing portion (93) provided inside the bearing portion main body and capable of bearing an end portion of the shaft inside. The valve device described in 1.
  5.  前記弁体は、内側に前記シャフトの端部および前記軸受部本体が位置するよう形成された弁体端部穴部(314)を有し、
     前記シャフト軸受部は、前記軸受部本体の内側に設けられ内側で前記シャフトの端部を軸受け可能な筒状の内側軸受部(93)を有し、
     前記弁体端部穴部の内径と前記軸受部本体の外径との差は、前記軸受部本体の内径と前記シャフトの端部の外径との差より小さい請求項1または2に記載のバルブ装置。
    The valve body has a valve body end hole (314) formed so that an end of the shaft and the bearing body are located inside,
    The shaft bearing portion has a cylindrical inner bearing portion (93) provided inside the bearing portion main body and capable of bearing the end portion of the shaft inside.
    The difference between the inner diameter of the valve body end hole and the outer diameter of the bearing body is smaller than the difference between the inner diameter of the bearing body and the outer diameter of the end of the shaft. Valve device.
  6.  前記ハウジングが前記発熱体に取り付けられた状態において、前記シャフト軸受部は、前記対向内壁の下側に位置する請求項1~5のいずれか一項に記載のバルブ装置。 The valve device according to any one of claims 1 to 5, wherein the shaft bearing portion is located below the opposed inner wall in a state where the housing is attached to the heating element.
PCT/JP2019/021355 2018-05-31 2019-05-29 Valve device WO2019230825A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112019002720.4T DE112019002720B4 (en) 2018-05-31 2019-05-29 Valve device
KR1020207034223A KR20210005192A (en) 2018-05-31 2019-05-29 Valve device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-105458 2018-05-31
JP2018105458 2018-05-31
JP2018233917A JP6996484B2 (en) 2018-05-31 2018-12-13 Valve device
JP2018-233917 2018-12-13

Publications (1)

Publication Number Publication Date
WO2019230825A1 true WO2019230825A1 (en) 2019-12-05

Family

ID=68696657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021355 WO2019230825A1 (en) 2018-05-31 2019-05-29 Valve device

Country Status (1)

Country Link
WO (1) WO2019230825A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018071779A (en) * 2016-10-27 2018-05-10 株式会社山田製作所 Control valve

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018071779A (en) * 2016-10-27 2018-05-10 株式会社山田製作所 Control valve

Similar Documents

Publication Publication Date Title
WO2019230749A1 (en) Valve device
JP7192467B2 (en) valve device
JP7355193B2 (en) valve device
WO2018230664A1 (en) Valve device
JP7435873B2 (en) valve device
JP7163752B2 (en) valve device
WO2019230793A1 (en) Valve device
WO2018230652A1 (en) Valve device
WO2019230825A1 (en) Valve device
WO2019230804A1 (en) Valve device
WO2019230817A1 (en) Valve device
WO2019230819A1 (en) Valve device and valve manufacturing method
WO2019230800A1 (en) Valve device
WO2019230746A1 (en) Valve device
WO2019230799A1 (en) Valve device
JP7087978B2 (en) Valve device and valve manufacturing method
JP7099294B2 (en) Valve device
JP7087979B2 (en) Valve device
JP7163753B2 (en) valve device
WO2018230661A1 (en) Valve device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812531

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207034223

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19812531

Country of ref document: EP

Kind code of ref document: A1