WO2019230636A1 - Particle imaging device, particle size measuring device, duplex particle size measuring device, computer program, particle observation method, and duplex particle measuring device - Google Patents

Particle imaging device, particle size measuring device, duplex particle size measuring device, computer program, particle observation method, and duplex particle measuring device Download PDF

Info

Publication number
WO2019230636A1
WO2019230636A1 PCT/JP2019/020860 JP2019020860W WO2019230636A1 WO 2019230636 A1 WO2019230636 A1 WO 2019230636A1 JP 2019020860 W JP2019020860 W JP 2019020860W WO 2019230636 A1 WO2019230636 A1 WO 2019230636A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
particle
image
sample
particles
Prior art date
Application number
PCT/JP2019/020860
Other languages
French (fr)
Japanese (ja)
Inventor
久 秋山
森 哲也
武 赤松
誠 名倉
Original Assignee
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場製作所 filed Critical 株式会社堀場製作所
Priority to JP2020522174A priority Critical patent/JP6982175B2/en
Publication of WO2019230636A1 publication Critical patent/WO2019230636A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements

Definitions

  • the present invention relates to a particle imaging device for imaging particles dispersed in a dispersion medium.
  • the image type particle size measuring device includes a particle imaging device for imaging particles.
  • the particle imaging device is configured such that a light source and an imaging element face each other with a sample particle in between.
  • the particle imaging device captures a shadow of particles with an image sensor.
  • the image-type particle size measuring device detects the contour of a shadow image captured by the particle imaging device, and calculates the particle size by analyzing the contour of the shadow image.
  • a particle size measuring device including such a particle imaging device obtains the particle size only from the contour. For this reason, the surface state of the particles cannot be observed, and even if non-spherical particles or particles having irregularities in the surface shape are mixed, it is difficult to distinguish them.
  • the present invention has been made in view of such circumstances.
  • the purpose is to provide a particle imaging apparatus or the like that can acquire an image for measuring the particle diameter and an image for classifying the particles by one imaging.
  • the first light having the first wavelength and the second light including the light having the second wavelength are different from each other in the sample in which the particles are dispersed in the dispersion medium.
  • the first light emission surface is provided at a position facing the imaging unit with the sample in between, and the second light emission surface is connected to the imaging unit with respect to the sample. It is provided in the position which illuminates the said sample from the same side.
  • the particle imaging device is characterized in that the first wavelength is included in a green wavelength range, and the second wavelength is included in a red wavelength range or a blue wavelength range.
  • the first wavelength and the second wavelength are set to the wavelength ranges of the three primary colors of light, so that the image by the first light and the image by the second light can be easily extracted from the captured image. It becomes possible.
  • the second light is mixed light including light having a second wavelength and light having a third wavelength
  • the first wavelength is in a green wavelength range.
  • the second wavelength is included in a red wavelength range
  • the third wavelength is included in a blue wavelength range.
  • the configuration of the light source constituting the irradiation unit can be simplified.
  • the irradiating unit has a first light source that emits the first light, a white light source that emits white light, and an optical that blocks the first light out of the light emitted by the white light source.
  • a filter and a half mirror facing the first light source with the sample interposed therebetween are provided, and the imaging unit images the particles illuminated by the first light and the mixed light via the half mirror. It is characterized by.
  • an inexpensive white light source can be used as the light source.
  • the irradiation unit emits white light that emits white light, an optical mirror that transmits the first light and reflects the mixed light, and the mixed light reflected by the optical mirror, A mirror group for illuminating the sample from a position facing the white light source with the sample in between, and a half mirror provided from a position facing the optical mirror with the sample in between; The particles illuminated by the first light and the mixed light are imaged through a half mirror.
  • the light source can be one white light source.
  • the irradiation unit includes a first light source that emits the first light, and a second light source that emits the mixed light facing the first light source with the sample interposed therebetween, and the imaging The unit is opposed to the first light source across the sample and images the particles illuminated by the first light, and opposed to the second light source across the sample, A second imaging unit that images the particles illuminated by the mixed light is included.
  • the present invention it is possible to acquire images at two different magnifications (view angles) by providing two imaging units. Thereby, it is possible to widen the measurement range of the particle diameter as compared with the case of one imaging unit.
  • the particle imaging apparatus is characterized in that the irradiation unit irradiates the first light and the second light intermittently in synchronization.
  • the first light and the second light are intermittently irradiated synchronously, the correspondence between the same particles projected in the image by the first light and the image by the second light Can be easily attached.
  • the particle imaging apparatus is characterized in that the irradiation unit irradiates the sample with third light having a third wavelength from the vicinity of the irradiation port of the second light.
  • the particles can be observed in more detail.
  • the particle imaging device is characterized in that the first wavelength is included in a green wavelength region, the second wavelength is included in a red wavelength region, and the third wavelength is included in a blue wavelength region.
  • the first wavelength, the second wavelength, and the third wavelength are set to the wavelength ranges of the three primary colors of light, so that an image by the first light and an image by the second light are captured from the captured image.
  • the image by the third light it is possible to easily extract the image by the third light.
  • the irradiating unit may irradiate the first light, the second light, and the third light intermittently in synchronization with each other.
  • the light source is controlled.
  • the first light, the second light, and the third light are intermittently irradiated in synchronization, the image by the first light, the image by the second light, and the third light It is possible to easily associate the same particles displayed in the image by
  • the particle imaging device is generated by a first storage cell that stores a particle group dispersed in a dispersion medium, a light source that irradiates light to the particle group in the first storage cell, and irradiation of the light.
  • the sample is incorporated in a laser diffraction / scattering particle size measuring apparatus including a circulation mechanism that circulates and supplies a sample solution obtained by dispersing the particle group in the dispersion medium to the first storage cell.
  • a second storage cell that stores the sample liquid that is provided in the second storage cell and that flows out of the first storage cell via the circulation mechanism, and the second storage cell. Provided in and accepted The serial sample and further comprising a delivery port delivering to the circulation mechanism.
  • the particle size can be measured by a plurality of methods.
  • a particle diameter measuring device is illuminated by the particle imaging device according to any one of the above and the first light and the second light obtained by the imaging unit of the particle imaging device.
  • An image of the particles a calculation unit for calculating a particle diameter from the first image in which the particles illuminated by the acquired first light are projected, the first image, and the second image A second image in which the particles illuminated by light are projected, and a result output unit that outputs the calculated particle diameter.
  • the particle diameter can be measured from the image acquired by the particle imaging device.
  • the dual particle size measuring apparatus includes a storage cell that stores a group of particles dispersed in a dispersion medium, a light source that irradiates light to the particle group in the storage cell, and diffraction that is generated by the irradiation of the light.
  • a laser diffraction / scattering particle size measuring device provided with a circulation mechanism for circulating and supplying a sample solution in which a group is dispersed in the dispersion medium, and the particle size measuring device described above.
  • particle diameter measurement using diffracted light or scattered light and particle diameter measurement using image processing are performed with a single device. Can be performed.
  • the computer program according to the present invention acquires an image of the particles illuminated by the first light and the second light obtained by the imaging unit of the particle imaging device according to any one of the above.
  • the particle diameter is calculated from the first image in which the particles illuminated by the acquired first light are projected, and the particles illuminated by the first image and the second light are projected.
  • the computer is caused to perform processing for outputting the second image and the calculated particle diameter.
  • the particle diameter and the particle image measured from the image obtained by imaging the particle it is possible to refer to the particle diameter and the particle image measured from the image obtained by imaging the particle.
  • the computer program according to the present invention is characterized in that the particles are classified using the second image and the classification result is output together with the first image.
  • the particles since the particles are classified by the second image, the particles can be observed for each classification.
  • the computer program according to the present invention is characterized in that for each classification, the particle diameter calculated from the first image is calculated, and the particle diameter for each classification is output.
  • the particle diameter distribution can be calculated more correctly even if particles having different characteristics are mixed.
  • the computer program according to the present invention is characterized in that only the particles whose signal amount in the second image is equal to or greater than a predetermined value are targeted for particle diameter calculation.
  • the present invention when measuring particles having a high light reflectance, only particles having a signal amount equal to or larger than a predetermined value are targeted for calculation of the particle diameter, so that the object facing the imaging unit is targeted. Therefore, the accuracy of the particle diameter can be improved.
  • a sample in which particles are dispersed in a dispersion medium includes a second light including a first light having a first wavelength and a light having a second wavelength. Irradiation is performed from a position where the light emission surfaces face each other with the sample in between, the particles illuminated by the first light and the second light are imaged, and the first light is illuminated. A shadow image in which the shadow of the particles is projected and a surface image in which the surface of the particle illuminated by the second light is projected, a particle diameter calculated from the shadow image, and The surface image is output.
  • the particle diameter and the particle image measured from the image obtained by imaging the particle it is possible to refer to the particle diameter and the particle image measured from the image obtained by imaging the particle.
  • the compound particle measuring apparatus includes a first light source that irradiates light to the particle group in the first storage cell that stores the sample, and an intensity of diffraction or / and scattered light generated by irradiation of the irradiated light.
  • a light intensity signal output unit that outputs a light intensity signal to a calculation device that calculates a particle size distribution of the particle group based on a light intensity signal output from the light detector; 2.
  • a holding body that holds one storage cell and the second storage cell, and a connecting pipe that connects the first storage cell and the second storage cell and delivers the sample liquid, and the first storage cell and the second storage cell
  • the height of the bottom surface is different from the second storage cell. Characterized that you have urchin arranged.
  • the sample is placed between the first storage cell and the second storage cell. It is possible to suppress the retention.
  • the composite particle measuring apparatus is characterized in that the bottom surface of the second storage cell is disposed at a position higher than the bottom surface of the first storage cell.
  • the bottom surface of the second storage cell is arranged at a position higher than the bottom surface of the first storage cell, so that the sample is retained between the first storage cell and the second storage cell. Can be suppressed.
  • the compound particle measuring apparatus includes a circulation mechanism that circulates and supplies the sample
  • the first storage cell includes a first receiving port that receives the sample from the circulation mechanism, and a first delivery port that delivers the sample.
  • the second receiving cell includes a second receiving port for receiving the sample sent out from the first receiving cell, and a second sending port for sending the sample to the circulation mechanism, and the first receiving port.
  • the height positions of the respective mouths increase in the order of the first delivery port, the second reception port, and the second delivery port.
  • the composite particle measuring apparatus includes a housing that houses the holding body, and the housing detachably houses the holding body.
  • the holding body is detachable, work such as detachment and replacement of the first storage cell and the second storage cell can be easily performed.
  • a sample in which particles are dispersed in a dispersion medium is supplied with first light having a first wavelength and second light having a second wavelength. Irradiate from a position where the radiation surface faces the sample. Particles illuminated by the first wavelength light and the second light are imaged by a color camera with a shutter.
  • the shutter is a mechanically controlled shutter or an electronically controlled shutter.
  • a mechanically controlled shutter is a shutter that opens and closes a light blocking mechanism that physically blocks light. The electronically controlled shutter adjusts the exposure time (electrically).
  • a shadow image in which the shadow of the particle illuminated by the first light is projected and a surface image in which the surface of the particle illuminated by the second light is projected are acquired.
  • the particle diameter is calculated from the acquired shadow image.
  • the acquired surface image is used for estimating the shape of the particle, determining whether the particle has fluorescence, estimating the direction of the particle when captured, and the like.
  • the second light may be mixed light including light having a second wavelength and light having a third wavelength.
  • the first light and the second light are intermittently irradiated on the sample in synchronization.
  • the exposure time of the camera is controlled by the shutter so as to be synchronized with the first light and the second light.
  • the light irradiation time and the camera exposure time do not need to be strictly synchronized.
  • light may be irradiated only for a part of the exposure time of the camera.
  • irradiation may be started before exposure of the camera by the shutter is started, and irradiation may be ended after the exposure is completed.
  • the shutter when the shutter is a mechanically controlled shutter, the light shielding mechanism is opened simultaneously with or just before the start of light irradiation, and the light shielding mechanism is closed simultaneously with or immediately after the end of light irradiation.
  • the shutter is an electronically controlled shutter, exposure is started simultaneously with or just before the start of light irradiation, and exposure is ended simultaneously with or immediately after the end of light irradiation.
  • the first wavelength is included in the green wavelength range.
  • the second wavelength is included in the red wavelength range.
  • the third wavelength is included in the blue wavelength range.
  • Mixed light is light mixed with red light and blue light.
  • Imaging is performed with a color camera capable of acquiring a color image.
  • a RAW image is acquired from a color camera. From the RAW image, a G image obtained by extracting only the pixels receiving green light is acquired. The first light is green and is transmitted from behind the particles as viewed from the color camera. Therefore, the G image is a shadow image in which the shadow of particles is projected. The particle diameter is calculated from the shadow image. Further, an R image obtained by extracting only the red subpixel, a B image obtained by extracting only the blue subpixel, or an RB image obtained by extracting the red subpixel and the blue subpixel from the RAW image are acquired. The second light is red, blue, or a magenta color in which red and blue are mixed.
  • the second light is red, blue, or magenta, and is light that has reflected the surface of the particle as viewed from the color camera. Therefore, the R image, the B image, or the RB image is a surface image in which the surface of the particle is projected.
  • the combination of colors that can separate the shadow image and the surface image from the RAW image obtained from the color camera may be determined by the characteristics of the color filter mounted on the color camera. The colors of the first light and the second light are appropriately determined from the characteristics of the color filter of the color camera and the configuration of the RAW image.
  • the reason why the first light is green light is as follows.
  • the image sensor of the color camera includes a plurality of photoelectric elements, and the photoelectric elements are arranged two-dimensionally.
  • a color filter is arranged in front of the plurality of photoelectric elements arranged. The light incident on the color filter is separated into red, green, and blue. The photoelectric element receives the separated light of each color.
  • a Bayer filter is generally used as a color filter for an image sensor. In the Bayer filter, the number of photoelectric elements that normally record green light is configured to be larger than that of red and blue. Therefore, in order to increase the measurement accuracy of the particle diameter, green light is suitable for capturing a shadow image.
  • the pixel values are interpolated with surrounding pixels. For example, an average value of pixel values of four pixels surrounding the missing pixel is set as the pixel value of the missing pixel.
  • the interpolation method is not limited to this, and can be realized by a known technique. Interpolation is similarly performed for the R image, the B image, and the RB image. When priority is given to particle surface observation over particle diameter measurement accuracy, the light for capturing the surface image may be green, and the light for capturing the shadow image may be other than green.
  • the missing pixels are interpolated after obtaining the G image from the RAW image, but the procedure may be reversed. That is, Bayer interpolation is performed on the RAW image to create a color image in which missing pixels are interpolated. The created color image may be separated into a G image, an R image, and a B image.
  • the particles reflected on the G image acquired from the RAW image and the R image, the B image, or the RB image are displayed. It is possible to associate with the particles.
  • the blue light may be third light and the particles may be irradiated from a direction different from the second light.
  • the positional relationship among the sample, the color camera, and the light source is determined so that the reflected light from the particles can be observed.
  • FIG. 1 is a block diagram illustrating a configuration example of a particle imaging apparatus.
  • the particle imaging device 1 includes a storage unit 11, a light irradiation unit 12, an imaging unit 13, and an output unit 14.
  • the storage unit 11 includes a storage cell (second storage cell) 111 and a stirrer 112.
  • the accommodation cell 111 is, for example, a rectangular parallelepiped container.
  • the side surface of the containing cell 111 is made of a light transmissive material, such as glass or acrylic.
  • a sample is stored in the storage cell 111.
  • the sample is formed by dispersing particles in a dispersion medium such as water or alcohol.
  • the particle group includes a plurality of types of particles having different sizes, shapes, and surface states.
  • the stirrer 112 is connected to the storage cell 111 and stirs the sample stored in the storage cell 111.
  • the dispersion medium is not limited to a liquid, and may be a gas. When the dispersion medium is gasified, imaging is performed while dropping the sample from above the storage cell 111.
  • the light irradiation unit 12 includes a light source control unit 121, a first light source 122 and a second light source 123.
  • the light source control unit 121 controls light emission of the first light source 122 and the second light source 123.
  • the light source control unit 121 blinks the first light source 122 and the second light source 123 at a predetermined frequency.
  • the light source control unit 121 controls the first light source 122 and the second light source 123 so that blinking is synchronized.
  • the first light source 122 includes an LED (light emitting diode).
  • the first light source 122 emits first light.
  • the first light is green.
  • the wavelength of the first light and the first wavelength are, for example, 480 to 580 nm.
  • the light component of the first wavelength only needs to be remarkably strong, and light components of other wavelengths may be included.
  • the dashed line in FIG. 1 indicates the first light.
  • the second light source 123 includes an LED.
  • the second light source 123 emits mixed light obtained by mixing the second light and the third light.
  • the second light is red.
  • the wavelength of the second light, the second wavelength is, for example, 580 to 700 nm.
  • the third light is blue.
  • the wavelength of the third light and the third wavelength are, for example, 400 to 480 nm.
  • the mixed light is magenta.
  • the imaging unit 13 includes a camera 131 and a lens 132.
  • the camera 131 is a color camera that can acquire a color image.
  • the camera 131 can output not only an RGB image that reproduces a wide range of colors by mixing three primary colors of red, green, and blue, but also a RAW image.
  • the lens 132 is obtained by arranging an optical lens in a cylindrical casing.
  • the lens 132 is a lens that enables imaging by coaxial illumination by being attached to the camera 131.
  • Coaxial illumination refers to illumination that irradiates illumination light coaxially with the imaging optical axis and parallel to the imaging optical axis direction.
  • the lens 132 has a built-in half mirror 1321.
  • the lens 132 reflects the second light emitted from the second light source 123 by the half mirror 1321, and the second light is irradiated toward the sample.
  • the dotted line in FIG. 1 indicates the second light.
  • the lens 132 is a part of the configuration of the imaging unit 13 and a part of the configuration of the light irradiation unit 12.
  • the first light source 122 and the imaging unit 13 are provided so as to face each other with the containing cell 111 therebetween.
  • the particles contained in the sample stored in the storage unit 11 are irradiated with the first light emitted from the first light source 122 and the mixed light emitted from the second light source 123.
  • the camera 131 images the particles in the storage unit 11.
  • a RAW image obtained by imaging by the camera 131 is output to the output unit 14.
  • a broken line that passes vertically through the accommodation cell 111 indicates a focus plane on which the camera focuses.
  • the first light source 122 and the imaging unit 13 face each other with the containing cell 111 therebetween.
  • the first light is light irradiated from the back surface of the sample as viewed from the imaging unit 13. Since the first light is green, the G image extracted from the RAW image is a shadow image. A shadow image is an image in which the shadow of particles is projected.
  • the light emitted from the second light source 123 is a mixed light obtained by mixing the second light and the third light. The second light is red and the third light is blue.
  • the mixed light is coaxial illumination. Therefore, the image formed by the imaging unit 13 with the mixed light is based on the mixed light reflected on the surface of the particles. Therefore, the RB image extracted from the RAW image is a surface image.
  • the surface image is an image in which the surface of the particle is projected.
  • the output unit 14 acquires the RAW image output from the camera 131.
  • the output unit 14 extracts a shadow image and a surface image from the acquired RAW image.
  • the output unit 14 outputs the extracted shadow image and surface image.
  • the configuration of the light irradiation unit 12 is simple. Since only the optical axis of the first light source is aligned with the optical axis of the second light source, the optical axis adjustment is relatively easy.
  • FIG. 2A is an explanatory diagram illustrating an example of a shadow image.
  • FIG. 2B is an explanatory diagram illustrating an example of a surface image.
  • the particle image 2A1 looks like one particle.
  • FIG. 2B when the particle image 2B1 corresponding to the particle image 2A1 is confirmed, it can be seen that the two particles are superimposed.
  • the particle image 2A2 cannot confirm the surface state of the particles.
  • FIG. 2B when the particle image 2B2 corresponding to the particle image 2A2 is confirmed, it can be seen that the particle may be uneven or aggregated on the surface.
  • FIG. 3 is a block diagram illustrating a configuration example of the particle imaging apparatus. Similar to the first embodiment, the particle imaging device 1 includes a storage unit 11, a light irradiation unit 12, an imaging unit 13, and an output unit 14. In the present embodiment, the storage unit 11 and the output unit 14 excluding the light irradiation unit 12 are the same as those in the first embodiment, and thus the description thereof is omitted.
  • the imaging unit 13 is the same as that of the first embodiment except that the lens 132 does not need to be a lens that enables imaging by coaxial illumination. In FIG. 3, the contents indicated by the dotted line, the dashed line, and the broken line are the same as those in FIG.
  • the light irradiation unit 12 includes a light source control unit 121, a first light source 122, a white light source 124, a condenser lens 125, a filter 126, and a half mirror 127.
  • the light source control unit 121 controls light emission of the first light source 122 and the white light source 124.
  • the light source control unit 121 blinks the first light source 122 and the white light source 124 at a predetermined frequency.
  • the light source controller 121 controls the first light source 122 and the white light source 124 so that blinking is synchronized.
  • the first light source 122 is a light source that emits green light.
  • the white light source 124 includes a white LED.
  • the first light source 122 and the white light source 124 are arranged to face each other with the containing cell 111 interposed therebetween.
  • the condenser lens 125 guides the light from the white light source 124 to the filter 126.
  • the position of the condenser lens 125 can be adjusted in the left-right direction on the paper surface.
  • the filter 126 is a dichroic filter.
  • the filter 126 blocks light in the green wavelength region of the incident light and transmits light in other wavelength regions.
  • the filter 126 emits mixed light in which the second light and the third light are mixed.
  • the half mirror 127 transmits the mixed light emitted from the filter 126 and irradiates the mixed light to the accommodating portion 11.
  • the half mirror 127 reflects the light emitted from the first light source and transmitted through the housing portion 11. Further, of the transmitted mixed light, the light reflected by the sample is reflected. The light reflected by the half mirror 127 enters the imaging unit 13.
  • the illumination NA (Numerical Aperture) can be adjusted by adjusting the position of the condenser lens 125. Since it can be adjusted, the condenser lens can be arranged at an appropriate position according to the particle size of the sample and the surface state of the sample.
  • FIG. 4 is a block diagram illustrating a configuration example of the particle imaging apparatus. Similar to the second embodiment, the particle imaging device 1 includes a storage unit 11, a light irradiation unit 12, an imaging unit 13, and an output unit 14. In the present embodiment, the storage unit 11, the imaging unit 13, and the output unit 14 except for the light irradiation unit 12 are the same as those in the second embodiment, and thus description thereof is omitted.
  • the contents indicated by the dotted line, the alternate long and short dash line, and the broken line passing through the accommodation cell 111 are the same as those in FIG.
  • a dotted line from the white light source 124 indicates a luminous flux of white light.
  • a dotted line belonging to the lens 132 indicates that white light is incident on the lens 132.
  • the light irradiation unit 12 includes a light source control unit 121, a white light source 124, a condenser lens 125, a half mirror 127, a dichroic mirror 128, and a plurality of reflection mirrors 129.
  • the white light source 124 and the half mirror 127 are arranged to face each other with the containing cell 111 in between.
  • the light source control unit 121 controls light emission of the white light source 124.
  • the light source control unit 121 blinks the white light source 124 at a predetermined frequency.
  • the condenser lens 125 guides the light from the white light source 124 to the dichroic mirror 128.
  • the dichroic mirror 128 transmits light in the green wavelength range, that is, the first light, and reflects light in other wavelength ranges.
  • the reflected light is a mixed light in which the second light and the third light are mixed.
  • the mixed light is magenta.
  • the plurality of reflection mirrors 129 guide the mixed light reflected by the dichroic mirror 128 to the half mirror 127.
  • the half mirror 127 transmits the mixed light and irradiates the housing portion 11 with the mixed light.
  • the half mirror 127 transmits the dichroic mirror 128 and reflects the first light transmitted through the housing portion 11.
  • the half mirror 127 reflects the mixed light that has been reflected and returned by the accommodation cell 111 out of the transmitted mixed light.
  • the first light and the mixed light reflected by the half mirror 127 enter the imaging unit 13.
  • FIG. 5 is a block diagram illustrating a configuration example of the particle imaging apparatus. Similar to the first embodiment, the particle imaging device 1 includes a storage unit 11, a light irradiation unit 12, an imaging unit 13, and an output unit 14. In the present embodiment, the accommodating portion 11 is the same as that in the first embodiment, and thus the description thereof is omitted. In FIG. 5, the contents indicated by the dotted line, the alternate long and short dash line, and the broken line passing through the accommodation cell 111 are the same as those in FIG.
  • the light irradiation unit 12 includes a light source control unit 121, a first light source 122 and a second light source 120.
  • the light source controller 121 controls the light emission of the first light source 122 and the second light source 120.
  • the light source control unit 121 blinks the first light source 122 and the second light source 120 at a predetermined frequency.
  • the light source control unit 121 controls the first light source 122 and the second light source 120 so that blinking is synchronized.
  • the first light source 122 includes an LED.
  • the first light source 122 emits first light.
  • the second light source 120 includes an LED.
  • the second light source 120 emits mixed light obtained by mixing the second light and the third light.
  • the imaging unit 13 includes a first camera 131, a first lens 132, a second camera 133, and a second lens 134.
  • the first camera 131 and the second camera 133 are color cameras that can capture color moving images and that can output RAW images.
  • the first lens 132 and the second lens 134 are half mirrors 1321 and 1341 built-in lenses that enable imaging by coaxial illumination by being attached to the first camera 131 and the second camera 133, respectively.
  • a first light source 122 is attached to the first lens 132.
  • the second light source 120 is attached to the second lens 134.
  • the first lens 132 and the second lens 134 are part of the configuration of the imaging unit 13 and are also part of the configuration of the light irradiation unit 12.
  • the first camera 131 and the first lens 132, and the second camera 133 and the second lens 134 are arranged to face each other with the accommodating cell 111 in between.
  • the first camera 131 captures an image of the first light emitted from the first lens 132 and reflected by the sample and returned.
  • the first camera 131 captures an image of the mixed light radiated from the second lens 134 and transmitted through the accommodation cell 111.
  • the second camera 133 captures an image of the mixed light radiated from the second lens 134 and the light reflected and returned by the accommodation cell 111.
  • the second camera 133 captures an image of the first light emitted from the first lens 132 and transmitted through the accommodation cell 111.
  • the output unit (image data output unit) 14 acquires the RAW image output from the first camera 131 and the second camera 133.
  • the output unit 14 extracts a shadow image and a surface image from the acquired RAW image.
  • the G image extracted from the RAW image obtained by imaging by the first camera 131 is a surface image.
  • the RB image extracted from the RAW image acquired by the first camera 131 is a shadow image.
  • the G image extracted from the RAW image obtained by imaging by the second camera 133 is a shadow image.
  • the RB image extracted from the RAW image obtained by imaging by the second camera 133 is a surface image.
  • the output unit 14 outputs the extracted shadow image and surface image.
  • the configuration of the light irradiation unit 12 is simple, and the optical axis adjustment is relatively easy.
  • a shaded image of green light is used for particle diameter calculation, and a surface image of magenta light is used for surface observation.
  • a magenta light shadow image and a green light surface image can be used as auxiliary data.
  • the measurement range of the particle diameter is expanded as compared with the case of one camera.
  • FIG. 6 is a block diagram illustrating a configuration example of the particle imaging apparatus.
  • the particle imaging device 1 includes a storage unit 11, a light irradiation unit 12, an imaging unit 13, and an output unit 14.
  • the accommodating portion 11 is the same as that in the first embodiment, and thus the description thereof is omitted.
  • the light irradiation unit 12 includes a light source control unit 121, a green light source 12a, a red light source 12b, and a blue light source 12c.
  • the light source controller 121 controls the light emission of the green light source 12a, the red light source 12b, and the blue light source 12c.
  • the light source controller 121 blinks the green light source 12a, the red light source 12b, and the blue light source 12c at a predetermined frequency.
  • the light source control unit 121 controls the green light source 12a, the red light source 12b, and the blue light source 12c so that blinking is synchronized.
  • the light source control unit 121 controls blinking of each light source based on an operation clock acquired from the camera 131 or the like.
  • Each of the green light source 12a, the red light source 12b, and the blue light source 12c includes an LED.
  • the green light source 12a emits the first light.
  • the red light source 12b emits second light.
  • the blue light source 12c emits third light.
  • the blue light source 12c is ambient illumination.
  • the blue light source 12c is arranged on the same side as the red light source 12b when viewed from the accommodation cell 111.
  • the blue light source 12c irradiates the surface of the accommodation cell 111 on the same side as the red light source 12b with the third light.
  • the number of blue light sources 12c may be one, or three or more.
  • the imaging unit 13 includes a camera 131 and a lens 132.
  • the camera 131 is a color camera capable of capturing a color moving image and outputting a RAW image.
  • the lens 132 is a lens that enables imaging by coaxial illumination with a built-in half mirror. The lens 132 emits light emitted from the red light source 12b.
  • the green light source 12a and the imaging unit 13 are provided to face each other with the accommodation cell 111 interposed therebetween.
  • the particles contained in the sample stored in the storage cell 111 are irradiated with green light emitted from the green light source 12a, red light emitted from the red light source 12b, and blue light emitted from the blue light source 12c.
  • the camera 131 images the accommodation cell 111.
  • a RAW image obtained by imaging by the camera 131 is output to the output unit 14.
  • the output unit 14 extracts the R layer, the G image, and the B image from the RAW image.
  • the extracted G image is a shadow image.
  • the R image and the B image are surface images.
  • the R image is called a first surface image
  • the B image is called a second surface image.
  • the output unit 14 outputs the extracted shadow image and surface image. Since the red light is coaxial illumination, the first surface image is suitable for observation of a planar shape. Since the blue light is ambient illumination, the second surface image is suitable for observation of spherical particles.
  • the blue light source 12c may be omitted.
  • the wavelength selectivity is high, that is, the degree of freedom in selecting a wavelength filter is high. Therefore, it is possible to improve the color separation accuracy of the R image, the G image, and the B image.
  • the light source control unit 121 blinks a plurality of light sources in a synchronized manner, but may not be strictly synchronized. It is sufficient if there is an overlap of times when a plurality of light sources emit light. That is, the timing of switching from turning off to turning on may be different between a plurality of light sources. In addition, the timing of switching from turning on to turning off may be different between a plurality of light sources.
  • the blinking cycle of the light source may be determined according to the speed of the particles in the containing cell 111. The distance that the particles move within the time when the light source is on may be within a few pixels on the captured image.
  • the surface state includes a smooth surface with no irregularities, fine irregularities, and rough surfaces.
  • the particle size of the particles is calculated for each category after the above classification, the particle size distribution can be calculated more correctly.
  • FIG. 7 is a block diagram showing a configuration example of the particle diameter measuring apparatus.
  • the particle diameter measuring device 20 includes the particle imaging device 1 and the control device 2 described above.
  • the control device 2 calculates the particle diameter of the particles in the sample using the image output from the particle imaging device 1.
  • the control device 2 is configured using a computer such as a personal computer.
  • the control device 2 may be incorporated in the particle imaging device 1.
  • the control device 2 includes a control unit 21 that performs calculation, a RAM (Random Access Memory) 22 that stores temporary data generated along with the calculation, and a non-volatile storage unit 23 such as a hard disk.
  • RAM Random Access Memory
  • control device 2 includes an interface unit 24, an operation unit 25 such as a keyboard or a mouse that accepts a user's operation, a display unit 26 such as a liquid crystal display, and a drive unit 27 that reads information from a recording medium 2a such as an optical disk. I have.
  • the control unit 21 includes a CPU (Central Processing Unit) and an MPU (Micro Processing Unit).
  • the control unit 21 may include a DSP (Digital Signal Processor).
  • the control unit 21 causes the drive unit 27 to read the computer program 231 recorded on the recording medium 2a, and causes the storage unit 23 to store the read computer program 231.
  • the computer program 231 is loaded from the storage unit 23 to the RAM 22 as necessary, and the control unit 21 executes processing necessary for the particle size measuring apparatus 20 according to the loaded computer program 231.
  • the control unit 21 implements various functional units by executing a computer program.
  • the computer program 231 may be downloaded from outside the control device 2.
  • FIG. 8 is a block diagram showing a functional configuration example of the control unit.
  • the control unit 21 includes a surface image acquisition unit 21a, a shadow image acquisition unit 21b, an association unit 21c, a classification unit 21d, a particle diameter calculation unit 21e, and a distribution calculation unit 21f.
  • the surface image acquisition unit 21 a acquires a surface image from the particle imaging device 1.
  • the shadow image acquisition unit 21 b acquires a shadow image from the particle imaging device 1.
  • the association unit 21c associates the same particles in the surface image and the shadow image.
  • the classification unit 21d classifies particles based on the surface image. For example, it is classified whether each imaged particle is spherical, plate-shaped, uneven, or fluorescent.
  • the particle size calculator 21e calculates the particle size using the shadow image.
  • the particle size calculation target may be all the captured particles, or only particles belonging to a specific classification based on the classification obtained by the classification unit 21d. All particles may be calculated and assigned with classification.
  • the distribution calculation unit 21f calculates the particle size distribution from the particle size of each particle obtained from the particle size calculation unit 21e.
  • the distribution calculation unit 21f calculates the particle size distribution for all captured particles without using classification.
  • the distribution calculation unit 21f may calculate the particle size distribution of particles belonging to a specific classification using the classification.
  • the distribution calculation unit 21f may calculate the particle size distribution of the particles belonging to each classification using a classification.
  • the distribution calculation unit 21f may calculate the distribution of all particles and the distribution of particles of each classification together.
  • the calculation result of the distribution calculation unit 21f is displayed on the display unit 26.
  • the agitator 112, the light source control unit 121, and the output unit 14 of the particle imaging device 1 are connected to the interface unit 24.
  • the control device 2 controls the stirrer 112, the light source control unit 121, the camera 131, or the first camera 131 and the second camera 133 connected to the interface unit 24.
  • the control device 2 acquires the shadow image and the surface image output from the output unit 14 via the interface unit 24 and stores them in the storage unit 23.
  • the storage unit 23 stores particle characteristic data 232 for measuring the particle diameter.
  • the characteristic data 232 includes, for example, a signal amount threshold in an image for determining whether or not it is a fluorescent particle, a signal amount threshold in an image for determining whether or not a particle is facing, a pattern image of a particle surface shape, and the like. It is.
  • the characteristic data 232 may be stored in the storage unit 23 in advance. Further, a threshold value may be input by the user operating the operation unit 25, and the storage unit 23 may store characteristic data 232 in which the input threshold value is recorded.
  • the pattern image may be read from the recording medium 2 a by the user using the drive unit 27 and stored in the storage unit 23.
  • FIG. 9 is a flowchart showing a procedure of processing executed by the particle size measuring apparatus.
  • the control unit 21 loads the computer program 231 from the storage unit 23 to the RAM 22 and executes the following processing according to the loaded computer program 231.
  • the particle size measuring apparatus 20 receives an instruction to start measurement by the user operating the operation unit 25, and starts measurement (step S1).
  • the control unit 21 acquires a shadow image and a surface image from the particle imaging device 1 (step S2).
  • the control unit 21 associates images of the same particle projected on the shadow image and the surface image (step S3). Since the shadow image and the surface image are images extracted from the same image, the pixels at the same position capture the same subject. The association may be performed by associating pixels at the same position.
  • the control unit 21 classifies the particles using the surface image and the characteristic data 232, and deletes the particle images that are not targeted for particle diameter calculation from the processing targets (step S4). For example, the coordinate value of a pixel whose surface image signal amount is equal to or less than a threshold value is stored, and in the case of a shadow image, if the pixel at the stored coordinate value is not a processing target, the process proceeds to the next pixel. .
  • the particle image not to be processed is an image of particles that are not facing each other or an image in which a plurality of particles are overlapped. Particle classification may be performed using machine learning such as deep learning.
  • the control unit 21 calculates the particle diameter using the shadow image (step S5).
  • the contour of the shadow image is extracted, and the particle diameter is obtained from the extracted contour by the number of pixels on the image. And the particle diameter calculated
  • the control unit 21 associates the calculated particle diameter with the shadow image and the surface image, and stores them in the storage unit 23 for each classification (step S6).
  • the controller 21 determines whether or not to end the measurement (step S7). That is, the control unit 21 determines whether the user has operated the operation unit 25 to instruct the end of measurement. When it is determined that the measurement is not finished (NO in step S7), the control unit 21 returns the process to step S2 and continues the measurement.
  • the control unit 21 ends the measurement (step S8).
  • the control unit 21 outputs the measurement result stored in the storage unit 23 to the display unit 26 (step S9).
  • the particle image which is not targeted for the particle diameter calculation in step S4 is deleted from the processing target, the present invention is not limited to this.
  • the particle size distribution of all particles may be obtained, and the obtained result may be classified and output.
  • the result displayed on the display unit 26 can have a plurality of forms.
  • display of only the particle size distribution of uneven particles display of a distribution obtained by removing the particle size distribution of uneven particles from the distribution of all particles, and the like.
  • the particle size distribution of all particles and the particle size distribution of uneven particles may be displayed together. You may display so that uneven
  • FIG. 10 is a graph showing a display example of the particle size distribution.
  • the horizontal axis is the particle size.
  • the vertical axis is frequency.
  • Graph G1 shows the particle size distribution of all particles.
  • Graph G2 shows the particle size distribution of the uneven particles.
  • Graph G3 shows the particle size distribution of the spherical particles.
  • the particle diameter measuring apparatus 20 the particle diameter can be calculated from the shadow image obtained from the particle imaging apparatus 1.
  • particle classification is performed using the surface image, and particle images that are not targeted for particle size calculation are deleted from the processing target, so that the particle size distribution can be calculated more correctly.
  • FIG. 11 is an explanatory diagram showing a schematic configuration of a dual particle size measuring apparatus.
  • the dual particle size measuring apparatus 200 includes a main body 210, opening / closing lids 211 and 212, a changer unit (holding body) 220, a dispersion bath 240, a supply pipe 241 and a recovery pipe 242.
  • the main body 210 is a housing in which a laser light source, a plurality of photodetectors, an arithmetic device, a power source, and the like are housed.
  • the laser light source irradiates the particle group in the first containing cell with light.
  • the plurality of photodetectors are discretely arranged to detect the intensity of diffraction or / and scattered light generated by irradiating the particle group in the first containing cell with light.
  • the arithmetic device calculates the particle size distribution of the particle group based on the light intensity signal output from the photodetector.
  • the changer unit 220 is a table on which a plurality of cells containing samples can be installed.
  • the open / close lids 211 and 212 are lids that can be opened and closed to facilitate the insertion and removal of the changer unit 220.
  • the dispersion bath 240 agitates a dispersion medium (sample) in which particles to be measured are dispersed.
  • the supply pipe 241 supplies the sample stirred by the dispersion bath 240 to the cell.
  • the collection tube 242 collects the sample circulated through the cell in the dispersion bath 240.
  • the distribution bus 240, the supply pipe 241, the recovery pipe 242, and the connection pipe 243 described later are components constituting the circulation mechanism.
  • FIG. 12 is an explanatory diagram showing a schematic configuration of the changer unit.
  • the changer unit 220 includes a flat base 221.
  • the first storage cell 222 and the second storage cell 223 can be detachably installed on the base 221. As shown in FIG. 12, the first storage cell 222 and the second storage cell 223 are installed with a height difference.
  • the second storage cell 223 is positioned higher than the first storage cell 222.
  • the first storage cell 222 is a cell that stores a sample in order to perform particle size measurement by a laser diffraction / scattering method. A sample is supplied from the receiving port (first receiving port) 2221 of the first storage cell 222 through the supply pipe 241.
  • the sample is discharged from the delivery port (first delivery port) 2222 of the first storage cell 222 and is supplied to the second storage cell 223 from the reception port (second reception port) 2231 through the connection pipe 243.
  • the sample discharged from the delivery port (second delivery port) 2232 of the second storage cell 223 is collected in the dispersion bath 240 by the collection tube 242.
  • the positions of the reception port 2221 and the transmission port 2222 of the first storage cell 222 and the reception port 2231 and the transmission port 2223 of the second storage cell 223 are higher in the order of description.
  • the changer unit 220 is provided with a camera 224, a lens 225, a mirror 226, and the like.
  • a light source, a light source control unit, and the like are installed. These constitute the particle imaging device 1 described above (excluding the stirrer).
  • the computing device classifies particles from the surface image output by the particle imaging device 1 and calculates the particle diameter using the shadow image output by the particle imaging device 1.
  • the dual particle size measuring apparatus 200 can perform laser diffraction / scattering type particle size measurement and image type particle size measurement on the same material by a single measurement operation. Become. Multiple analyzes can be performed in a short time. Alternatively, a new distribution utilizing both characteristics may be obtained by calculating the particle size distribution measured by the laser diffraction / scattering method and the particle size distribution measured by the image method.

Abstract

Provided are a particle imaging device and the like capable of acquiring an image for carrying out particle size measurement, and an image for classifying particles, by performing image capture once. This particle imaging device is provided with a radiating unit for radiating first light of which the wavelength is a first wavelength, and second light including light of which the wavelength is a second wavelength, from different directions toward a sample in which particles are dispersed in a dispersion medium, an image capturing unit for capturing an image of the particles irradiated by the first light and the second light, and an output unit for outputting the captured image in order to calculate a particle size distribution, wherein a radiation plane of the first light is provided in a position facing the image capturing unit, with the sample therebetween, and a radiation plane of the second light is provided in a position illuminating the sample from the same side of the sample as the image capturing unit.

Description

粒子撮像装置、粒子径測定装置、複式粒子径測定装置、コンピュータプログラム、粒子観察方法、及び複式粒子測定装置Particle imaging device, particle size measuring device, compound particle size measuring device, computer program, particle observation method, and compound particle measuring device
 本発明は、分散媒中に分散させた粒子を撮像する粒子撮像装置等に関する。 The present invention relates to a particle imaging device for imaging particles dispersed in a dispersion medium.
 粒子径を測定する装置の1つとして、画像式粒子径測定装置が提案されている(特許文献1)。画像式粒子径測定装置は粒子を撮像する粒子撮像装置を備えている。粒子撮像装置は、サンプルとなる粒子を間にして、光源と撮像素子が対向した状態となるよう構成される。当該粒子撮像装置は撮像素子で粒子の影絵を撮像する。画像式粒子径測定装置は粒子撮像装置が撮像した影絵の輪郭を検出し、その影絵の輪郭を画像解析することで粒子径を求める。 An image type particle size measuring device has been proposed as one of the devices for measuring the particle size (Patent Document 1). The image type particle size measuring device includes a particle imaging device for imaging particles. The particle imaging device is configured such that a light source and an imaging element face each other with a sample particle in between. The particle imaging device captures a shadow of particles with an image sensor. The image-type particle size measuring device detects the contour of a shadow image captured by the particle imaging device, and calculates the particle size by analyzing the contour of the shadow image.
特開平11-316184号公報JP 11-316184 A
 しかしながら、このような粒子撮像装置を含む粒子径測定装置は、輪郭のみから粒子径を求める。そのため、粒子の表面状態の観察はできず、非球状の粒子や表面形状に凹凸のある粒子などが混在していても、それを区別することが困難であった。 However, a particle size measuring device including such a particle imaging device obtains the particle size only from the contour. For this reason, the surface state of the particles cannot be observed, and even if non-spherical particles or particles having irregularities in the surface shape are mixed, it is difficult to distinguish them.
 本発明はこのような事情に鑑みてされたものである。その目的は、粒子径の測定を行うための画像と、粒子を分類するための画像とを一度の撮像で取得することが可能な粒子撮像装置等の提供である。 The present invention has been made in view of such circumstances. The purpose is to provide a particle imaging apparatus or the like that can acquire an image for measuring the particle diameter and an image for classifying the particles by one imaging.
 本発明に係る粒子撮像装置は、分散媒中で粒子が分散している試料へ波長が第1波長である第1の光、並びに波長が第2波長である光を含む第2の光を異なる方向から照射する照射部と、前記第1の光、前記第2の光に照らされた前記粒子を撮像する撮像部と、粒子径分布を算出するために撮像した画像を出力する出力部とを備え、前記第1の光の放射面は前記試料を間にして、前記撮像部に対向する位置に設けられ、かつ、前記第2の光の放射面は、前記試料を基準として前記撮像部と同じ側から前記試料を照明する位置に設けてあることを特徴とする。 In the particle imaging device according to the present invention, the first light having the first wavelength and the second light including the light having the second wavelength are different from each other in the sample in which the particles are dispersed in the dispersion medium. An irradiation unit that irradiates from a direction, an imaging unit that images the particles illuminated by the first light and the second light, and an output unit that outputs an image captured to calculate a particle size distribution The first light emission surface is provided at a position facing the imaging unit with the sample in between, and the second light emission surface is connected to the imaging unit with respect to the sample. It is provided in the position which illuminates the said sample from the same side.
 本発明にあっては、粒子径の測定を行うための画像と、粒子を分類するための画像とを一度の撮像で取得することが可能である。 In the present invention, it is possible to acquire an image for measuring the particle diameter and an image for classifying the particles by one imaging.
 本発明に係る粒子撮像装置は、前記第1波長は緑色波長域に含まれ、前記第2波長は赤色波長域に又は青色波長域に含まれることを特徴とする。 The particle imaging device according to the present invention is characterized in that the first wavelength is included in a green wavelength range, and the second wavelength is included in a red wavelength range or a blue wavelength range.
 本発明にあっては、第1波長及び第2波長それぞれを光の三原色の波長域としたことにより、撮像した画像から第1の光による画像と第2の光による画像とを容易に抽出することが可能となる。 In the present invention, the first wavelength and the second wavelength are set to the wavelength ranges of the three primary colors of light, so that the image by the first light and the image by the second light can be easily extracted from the captured image. It becomes possible.
 本発明に係る粒子撮像装置は、前記第2の光は、波長が第2波長である光、及び波長が第3波長である光が含まれる混合光であり、前記第1波長は緑色波長域に含まれ、前記第2波長は赤色波長域に含まれ、前記第3波長は青色波長域に含まれることを特徴とする。 In the particle imaging device according to the present invention, the second light is mixed light including light having a second wavelength and light having a third wavelength, and the first wavelength is in a green wavelength range. And the second wavelength is included in a red wavelength range, and the third wavelength is included in a blue wavelength range.
 本発明にあっては、第2の光を混合光としたことにより、照射部を構成する光源の構成を簡素化することが可能となる。 In the present invention, since the second light is mixed light, the configuration of the light source constituting the irradiation unit can be simplified.
 本発明に係る粒子撮像装置は、前記照射部は前記第1の光を発する第1光源、白色の光を発する白色光源、該白色光源が発した光のうち前記第1の光を遮蔽する光学フィルタ、及び前記試料を挟んで前記第1光源に対向するハーフミラーを備え、前記撮像部は前記ハーフミラーを介して、前記第1の光及び前記混合光に照らされた前記粒子を撮像することを特徴とする。 In the particle imaging apparatus according to the present invention, the irradiating unit has a first light source that emits the first light, a white light source that emits white light, and an optical that blocks the first light out of the light emitted by the white light source. A filter and a half mirror facing the first light source with the sample interposed therebetween are provided, and the imaging unit images the particles illuminated by the first light and the mixed light via the half mirror. It is characterized by.
 本発明にあっては、光源として安価な白色光源を利用することが可能となる。 In the present invention, an inexpensive white light source can be used as the light source.
 本発明に係る粒子撮像装置は、前記照射部は白色の光を発する白色光源、前記第1の光を透過し、前記混合光を反射する光学ミラー、該光学ミラーが反射した前記混合光を、前記試料を間にして前記白色光源に対向する位置から前記試料に照明するミラー群、及び前記試料を間にして前記光学ミラーに対向する位置から設けられたハーフミラーを備え、前記撮像部は前記ハーフミラーを介して、前記第1の光及び前記混合光に照らされた前記粒子を撮像することを特徴とする。 In the particle imaging device according to the present invention, the irradiation unit emits white light that emits white light, an optical mirror that transmits the first light and reflects the mixed light, and the mixed light reflected by the optical mirror, A mirror group for illuminating the sample from a position facing the white light source with the sample in between, and a half mirror provided from a position facing the optical mirror with the sample in between; The particles illuminated by the first light and the mixed light are imaged through a half mirror.
 本発明にあっては、光源を白色光源1つとすることが可能となる。 In the present invention, the light source can be one white light source.
 本発明に係る粒子撮像装置は、前記照射部は前記第1の光を発する第1光源、及び前記試料を挟んで前記第1光源に対向する前記混合光を発する第2光源を備え、前記撮像部は、前記試料を挟んで前記第1光源に対向し前記第1の光に照らされた前記粒子を撮像する第1撮像部、及び、前記試料を挟んで前記第2光源に対向し、前記混合光に照らされた前記粒子を撮像する第2撮像部を含むことを特徴とする。 In the particle imaging apparatus according to the present invention, the irradiation unit includes a first light source that emits the first light, and a second light source that emits the mixed light facing the first light source with the sample interposed therebetween, and the imaging The unit is opposed to the first light source across the sample and images the particles illuminated by the first light, and opposed to the second light source across the sample, A second imaging unit that images the particles illuminated by the mixed light is included.
 本発明にあっては、撮像部を2つ設けることにより、異なる2つの倍率(画角)での画像を取得可能となる。それにより、撮像部が1つの場合と比べ、粒子径の測定レンジを広げることが可能となる。 In the present invention, it is possible to acquire images at two different magnifications (view angles) by providing two imaging units. Thereby, it is possible to widen the measurement range of the particle diameter as compared with the case of one imaging unit.
 本発明に係る粒子撮像装置は、前記照射部は、前記第1の光、及び、前記第2の光を同期して間欠的に照射するようしてあることを特徴とする。 The particle imaging apparatus according to the present invention is characterized in that the irradiation unit irradiates the first light and the second light intermittently in synchronization.
 本発明にあっては、第1の光及び第2の光を同期して間欠的に照射するので、第1の光による画像及び第2の光による画像に写し出されている同一の粒子の対応付けを容易に行える。 In the present invention, since the first light and the second light are intermittently irradiated synchronously, the correspondence between the same particles projected in the image by the first light and the image by the second light Can be easily attached.
 本発明に係る粒子撮像装置は、前記照射部は、前記第2の光の照射口周辺から前記試料を波長が第3波長である第3の光で照射することを特徴とする。 The particle imaging apparatus according to the present invention is characterized in that the irradiation unit irradiates the sample with third light having a third wavelength from the vicinity of the irradiation port of the second light.
 本発明にあっては、第3の光による画像も取得するので、粒子についてより詳細な観察が可能となる。 In the present invention, since the image by the third light is also acquired, the particles can be observed in more detail.
 本発明に係る粒子撮像装置は、前記第1波長は緑色波長域に含まれ、前記第2波長は赤色波長域に含まれ、前記第3波長は青色波長域に含まれることを特徴とする。 The particle imaging device according to the present invention is characterized in that the first wavelength is included in a green wavelength region, the second wavelength is included in a red wavelength region, and the third wavelength is included in a blue wavelength region.
 本発明にあっては、第1波長、第2波長及び第3波長それぞれを光の三原色の波長域としたことにより、撮像した画像から第1の光による画像と、第2の光による画像と、第3の光による画像とを容易に抽出することが可能となる。 In the present invention, the first wavelength, the second wavelength, and the third wavelength are set to the wavelength ranges of the three primary colors of light, so that an image by the first light and an image by the second light are captured from the captured image. Thus, it is possible to easily extract the image by the third light.
 本発明に係る粒子撮像装置は、前記照射部は、前記第1の光、前記第2の光、及び前記第3の光を同期して間欠的に照射するよう前記第1乃至第3の光の光源を制御することを特徴とする。 In the particle imaging apparatus according to the aspect of the invention, the irradiating unit may irradiate the first light, the second light, and the third light intermittently in synchronization with each other. The light source is controlled.
 本発明にあっては、第1の光、第2の光及び第3の光を同期して間欠的に照射するので、第1の光による画像、第2の光による画像及び第3の光による画像に写し出されている同一の粒子の対応付けを容易に行える。 In the present invention, since the first light, the second light, and the third light are intermittently irradiated in synchronization, the image by the first light, the image by the second light, and the third light It is possible to easily associate the same particles displayed in the image by
 本発明に係る粒子撮像装置は、分散媒中に分散させた粒子群を収容する第1収容セルと、その第1収容セル中の粒子群に光を照射する光源と、その光の照射によって発生する回折又は/及び散乱光の強度を検出する離散配置した複数の光検出器と、前記光検出器から出力される光強度信号に基づいて前記粒子群の粒子径分布を算出する演算装置と、前記粒子群を前記分散媒に分散させてなる試料液を前記第1収容セルに循環供給する循環機構とを備えたレーザ回析/散乱式粒子径測定装置に組み込まれるものであって、前記試料を収容する第2収容セルと、該第2収容セルに設けられ、前記循環機構を介して前記第1収容セルから流出された前記試料液を前記試料として受け入れる受入口と、前記第2収容セルに設けられ、前記受け入れた前記試料を前記循環機構へ送出する送出口とを更に備えることを特徴とする。 The particle imaging device according to the present invention is generated by a first storage cell that stores a particle group dispersed in a dispersion medium, a light source that irradiates light to the particle group in the first storage cell, and irradiation of the light. A plurality of discretely arranged photodetectors for detecting the intensity of diffraction or / and scattered light, and an arithmetic device for calculating a particle size distribution of the particle group based on a light intensity signal output from the photodetector; The sample is incorporated in a laser diffraction / scattering particle size measuring apparatus including a circulation mechanism that circulates and supplies a sample solution obtained by dispersing the particle group in the dispersion medium to the first storage cell. A second storage cell that stores the sample liquid that is provided in the second storage cell and that flows out of the first storage cell via the circulation mechanism, and the second storage cell. Provided in and accepted The serial sample and further comprising a delivery port delivering to the circulation mechanism.
 本発明にあっては、回折光又は散乱光を用いた粒子径測定装置に組み込み可能であるので、複数の方式で粒子径の測定が可能となる。 In the present invention, since it can be incorporated into a particle size measuring apparatus using diffracted light or scattered light, the particle size can be measured by a plurality of methods.
 本発明に係る粒子径測定装置は、上記の何れか一つに記載の粒子撮像装置と、前記粒子撮像装置の前記撮像部により得られた前記第1の光及び前記第2の光に照らされた前記粒子の画像を取得部と、取得した前記第1の光に照らされた前記粒子が写し出されている第1画像から粒子径を算出する算出部と、前記第1画像及び前記第2の光に照らされた前記粒子が写し出されている第2画像、並びに算出した粒子径を出力する結果出力部とを備えることを特徴とする。 A particle diameter measuring device according to the present invention is illuminated by the particle imaging device according to any one of the above and the first light and the second light obtained by the imaging unit of the particle imaging device. An image of the particles, a calculation unit for calculating a particle diameter from the first image in which the particles illuminated by the acquired first light are projected, the first image, and the second image A second image in which the particles illuminated by light are projected, and a result output unit that outputs the calculated particle diameter.
 本発明にあっては、粒子撮像装置が取得した画像より粒子径の測定が可能となる。 In the present invention, the particle diameter can be measured from the image acquired by the particle imaging device.
 本発明に係る複式粒子径測定装置は、分散媒中に分散させた粒子群を収容する収容セルと、その収容セル中の粒子群に光を照射する光源と、その光の照射によって発生する回折又は/及び散乱光の強度を検出する離散配置した複数の光検出器と、前記光検出器から出力される光強度信号に基づいて前記粒子群の粒子径分布を算出する演算装置と、前記粒子群を前記分散媒に分散させてなる試料液を前記収容セルに循環供給する循環機構とを備えたレーザ回析/散乱式粒子径測定装置と、上記の粒子径測定装置とを備えることを特徴とする。 The dual particle size measuring apparatus according to the present invention includes a storage cell that stores a group of particles dispersed in a dispersion medium, a light source that irradiates light to the particle group in the storage cell, and diffraction that is generated by the irradiation of the light. Or / and a plurality of discretely arranged photodetectors that detect the intensity of scattered light, an arithmetic device that calculates a particle size distribution of the particle group based on a light intensity signal output from the photodetector, and the particles A laser diffraction / scattering particle size measuring device provided with a circulation mechanism for circulating and supplying a sample solution in which a group is dispersed in the dispersion medium, and the particle size measuring device described above. And
 本発明にあっては、粒子群を分散媒に分散させてなる試料液に対して、回折光又は散乱光を用いた粒子径測定、及び画像処理を用いた粒子径測定を、単一の装置で行うことが可能となる。 In the present invention, for a sample liquid in which a particle group is dispersed in a dispersion medium, particle diameter measurement using diffracted light or scattered light and particle diameter measurement using image processing are performed with a single device. Can be performed.
 本発明に係るコンピュータプログラムは、上記の何れか一つに記載の粒子撮像装置の前記撮像部により得られた前記第1の光及び前記第2の光に照らされた前記粒子の画像を取得し、取得した前記第1の光に照らされた前記粒子が写し出されている第1画像から粒子径を算出し、前記第1画像及び前記第2の光に照らされた前記粒子が写し出されている第2画像、並びに算出した粒子径を出力する処理をコンピュータに行わせることを特徴とする。 The computer program according to the present invention acquires an image of the particles illuminated by the first light and the second light obtained by the imaging unit of the particle imaging device according to any one of the above. The particle diameter is calculated from the first image in which the particles illuminated by the acquired first light are projected, and the particles illuminated by the first image and the second light are projected. The computer is caused to perform processing for outputting the second image and the calculated particle diameter.
 本発明にあっては、粒子を撮像した画像より測定した粒子径と粒子の画像が、参照可能となる。 In the present invention, it is possible to refer to the particle diameter and the particle image measured from the image obtained by imaging the particle.
 本発明に係るコンピュータプログラムは、前記第2画像を用いて、前記粒子を分類し、分類結果を前記第1画像と共に出力することを特徴とする。 The computer program according to the present invention is characterized in that the particles are classified using the second image and the classification result is output together with the first image.
 本発明にあっては、第2画像により粒子を分類するので、分類毎に粒子の観察が可能となる。 In the present invention, since the particles are classified by the second image, the particles can be observed for each classification.
 本発明に係るコンピュータプログラムは、分類毎に、前記第1画像から算出した粒子径を算出し、分類毎の粒子径を出力することを特徴とする。 The computer program according to the present invention is characterized in that for each classification, the particle diameter calculated from the first image is calculated, and the particle diameter for each classification is output.
 本発明にあっては、第2画像により粒子を分類し、分類毎に粒子径を算出するので、異なる特性を持つ粒子が混在していても、粒子径分布をより正しく算出可能となる。 In the present invention, since the particles are classified by the second image and the particle diameter is calculated for each classification, the particle diameter distribution can be calculated more correctly even if particles having different characteristics are mixed.
 本発明に係るコンピュータプログラムは、前記第2画像における信号量が所定値以上の前記粒子のみを、粒子径の算出対象とすることを特徴とする。 The computer program according to the present invention is characterized in that only the particles whose signal amount in the second image is equal to or greater than a predetermined value are targeted for particle diameter calculation.
 本発明にあっては、光の反射率が高い粒子の測定を行う場合、信号量が所定値以上の粒子のみを粒子径の算出対象とすることで、撮像部に正対しているものを対象とするので、粒子径の精度を向上することが可能となる。 In the present invention, when measuring particles having a high light reflectance, only particles having a signal amount equal to or larger than a predetermined value are targeted for calculation of the particle diameter, so that the object facing the imaging unit is targeted. Therefore, the accuracy of the particle diameter can be improved.
 本発明に係る粒子観察方法は、分散媒中で粒子が分散している試料に、波長が第1波長である第1の光及び波長が第2波長である光を含む第2の光を、それぞれの光の放射面が前記試料を間にして対向するような位置より照射し、前記第1の光及び前記第2の光に照らされた前記粒子を撮像し、前記第1の光に照らされた前記粒子の陰影が写し出されている陰影画像と、前記第2の光に照らされた前記粒子の表面が映し出されている表面画像とを取得し、前記陰影画像から算出した粒子径、及び前記表面画像を出力することを特徴とする。 In the particle observation method according to the present invention, a sample in which particles are dispersed in a dispersion medium includes a second light including a first light having a first wavelength and a light having a second wavelength. Irradiation is performed from a position where the light emission surfaces face each other with the sample in between, the particles illuminated by the first light and the second light are imaged, and the first light is illuminated. A shadow image in which the shadow of the particles is projected and a surface image in which the surface of the particle illuminated by the second light is projected, a particle diameter calculated from the shadow image, and The surface image is output.
 本発明にあっては、粒子を撮像した画像より測定した粒子径と粒子の画像が、参照可能となる。 In the present invention, it is possible to refer to the particle diameter and the particle image measured from the image obtained by imaging the particle.
 本発明に係る複式粒子測定装置は、前記試料を収容する第1収容セル中の前記粒子群に光を照射する第1光源、照射した光の照射によって発生する回折又は/及び散乱光の強度を検出する光検出器、及び、前記光検出器から出力される光強度信号に基づいて前記粒子群の粒子径分布を算出する演算装置へ光強度信号を出力する光強度信号出力部、前記照射部が、前記試料を収容する第2収容セル中の前記粒子群に前記第1の光と前記第2の光とを照射するようしてある請求項1に記載の粒子撮像装置、並びに、前記第1収容セル及び前記第2収容セルを保持する保持体、及び、前記第1収容セル及び前記第2収容セル間を接続し前記試料液を受け渡しする連結管を備え、前記第1収容セルと前記第2収容セルとは、底面の高さ位置が異なるように配置してあることを特徴とする。 The compound particle measuring apparatus according to the present invention includes a first light source that irradiates light to the particle group in the first storage cell that stores the sample, and an intensity of diffraction or / and scattered light generated by irradiation of the irradiated light. A light intensity signal output unit that outputs a light intensity signal to a calculation device that calculates a particle size distribution of the particle group based on a light intensity signal output from the light detector; 2. The particle imaging apparatus according to claim 1, wherein the first light and the second light are applied to the particle group in a second storage cell that stores the sample. A holding body that holds one storage cell and the second storage cell, and a connecting pipe that connects the first storage cell and the second storage cell and delivers the sample liquid, and the first storage cell and the second storage cell The height of the bottom surface is different from the second storage cell. Characterized that you have urchin arranged.
 本発明にあっては、前記第1収容セルと前記第2収容セルとは、底面の高さ位置に異なるように配置してあるので、第1収容セルと第2収容セル間で、試料が滞留することを抑制可能である。 In the present invention, since the first storage cell and the second storage cell are arranged so as to be different in the height position of the bottom surface, the sample is placed between the first storage cell and the second storage cell. It is possible to suppress the retention.
 本発明に係る複式粒子測定装置は、前記第2収容セルの底面は、前記第1収容セルの底面よりも高い位置に配置してあることを特徴とする。 The composite particle measuring apparatus according to the present invention is characterized in that the bottom surface of the second storage cell is disposed at a position higher than the bottom surface of the first storage cell.
 本発明にあっては、前記第2収容セルの底面は、前記第1収容セルの底面よりも高い位置に配置してあるので、第1収容セルと前記第2収容セル間で、試料が滞留することを抑制可能である。 In the present invention, the bottom surface of the second storage cell is arranged at a position higher than the bottom surface of the first storage cell, so that the sample is retained between the first storage cell and the second storage cell. Can be suppressed.
 本発明に係る複式粒子測定装置は、前記試料を循環供給する循環機構を備え、前記第1収容セルは前記循環機構から前記試料を受け入れる第1受入口と、前記試料を送り出す第1送出口とを備え、前記第2収容セルは前記第1収容セルから送り出された前記試料を受け入れる第2受入口と、前記試料を前記循環機構へ送出する第2送出口とを備え、前記第1受入口、前記第1送出口、前記第2受入口、前記第2送出口の順に夫々の口の高さ位置が高くなっていることを特徴とする。 The compound particle measuring apparatus according to the present invention includes a circulation mechanism that circulates and supplies the sample, and the first storage cell includes a first receiving port that receives the sample from the circulation mechanism, and a first delivery port that delivers the sample. The second receiving cell includes a second receiving port for receiving the sample sent out from the first receiving cell, and a second sending port for sending the sample to the circulation mechanism, and the first receiving port. The height positions of the respective mouths increase in the order of the first delivery port, the second reception port, and the second delivery port.
 本発明にあっては、試料が流路の途中で滞留することを抑制することが可能である。 In the present invention, it is possible to suppress the sample from staying in the middle of the flow path.
 本発明に係る複式粒子測定装置は、前記保持体を収容する筐体を備え、該筐体は前記保持体を着脱可能に収容することを特徴とする。 The composite particle measuring apparatus according to the present invention includes a housing that houses the holding body, and the housing detachably houses the holding body.
 本発明にあっては、保持体が着脱可能であるので、第1収容セル及び第2収容セルの着脱交換といった作業が用意に実行可能となる。 In the present invention, since the holding body is detachable, work such as detachment and replacement of the first storage cell and the second storage cell can be easily performed.
 本発明にあっては、粒子径の測定を行うための画像と、粒子を分類するための画像とを一度の撮像で取得することが可能である。 In the present invention, it is possible to acquire an image for measuring the particle diameter and an image for classifying the particles by one imaging.
粒子撮像装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of a particle imaging device. 陰影画像の例を示す説明図である。It is explanatory drawing which shows the example of a shadow image. 表面画像の例を示す説明図である。It is explanatory drawing which shows the example of a surface image. 粒子撮像装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of a particle imaging device. 粒子撮像装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of a particle imaging device. 粒子撮像装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of a particle imaging device. 粒子撮像装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of a particle imaging device. 粒子径測定装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of a particle diameter measuring apparatus. 制御部の機能構成例を示すブロック図である。It is a block diagram which shows the function structural example of a control part. 粒子径測定装置が実行する処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the process which a particle diameter measuring apparatus performs. 粒子径分布の表示例を示すグラフである。It is a graph which shows the example of a display of particle diameter distribution. 複式粒子径測定装置の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of a compound particle diameter measuring apparatus. チェンジャーユニットの概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of a changer unit.
 以下、図面を参照して実施の形態を説明する。まず、すべての実施の形態に共通する基本的な概念について説明する。以下の実施の形態では、分散媒中で粒子が分散している試料に、波長が第1波長である第1の光、並びに波長が第2波長である第2の光を、それぞれの光の放射面が試料を挟んで対向するような位置より照射する。第1波長の光及び第2の光に照らされた粒子をシャッター付きのカラーカメラで撮像する。シャッターは機械制御式シャッター、又は電子制御式シャッターである。機械制御式シャッターは物理的に光を遮る遮光機構を開閉させてシャッターを切るものである。電子制御式シャッターは、露光時間を(電気的に)調節するものである。第1の光に照らされた粒子の陰影が写し出されている陰影画像と、第2の光に照らされた粒子の表面が映し出されている表面画像とを取得する。取得した陰影画像から粒子径を算出する。取得した表面画像は、粒子の形状推定、粒子が蛍光性を有するか否かの判定、撮像されたときにおける粒子の向きの推定等に用いる。なお、第2の光は、波長が第2波長である光、及び波長が第3波長である光が含まれる混合光でもよい。 Hereinafter, embodiments will be described with reference to the drawings. First, a basic concept common to all the embodiments will be described. In the following embodiments, a sample in which particles are dispersed in a dispersion medium is supplied with first light having a first wavelength and second light having a second wavelength. Irradiate from a position where the radiation surface faces the sample. Particles illuminated by the first wavelength light and the second light are imaged by a color camera with a shutter. The shutter is a mechanically controlled shutter or an electronically controlled shutter. A mechanically controlled shutter is a shutter that opens and closes a light blocking mechanism that physically blocks light. The electronically controlled shutter adjusts the exposure time (electrically). A shadow image in which the shadow of the particle illuminated by the first light is projected and a surface image in which the surface of the particle illuminated by the second light is projected are acquired. The particle diameter is calculated from the acquired shadow image. The acquired surface image is used for estimating the shape of the particle, determining whether the particle has fluorescence, estimating the direction of the particle when captured, and the like. Note that the second light may be mixed light including light having a second wavelength and light having a third wavelength.
 第1の光及び第2の光は、同期して試料に間欠的に照射される。カメラの露光時間はシャッターにより、第1の光及び第2の光と同期するように制御する。光の照射時間とカメラの露光時間とは厳密に同期する必要はない。動作速度が遅いシャッターの場合、カメラの露光時間中の一部の時間のみ光が照射されていても良い。動作速度が高速のシャッターの場合、シャッターによるカメラの露光を開始する前に照射を開始し、露光終了後に照射を終了してもよい。すなわち、シャッターが機械制御式シャッターの場合、光の照射開始と同時又は開始直前に遮光機構を開き、光の照射終了と同時又は終了直後に遮光機構を閉じる。シャッターが電子制御式シャッターの場合、光の照射開始と同時又は開始直前に露光を開始させ、光の照射終了と同時又は終了直後に露光を終了させる。短い時間だけ、光を照射又はカメラを露光させることにより、分散媒中を移動している粒子が静止しているかのような画像を、撮像可能となる。第1波長は緑色波長域に含まれる。第2波長は赤色波長域に含まれる。第3波長は青色波長域に含まれる。混合光は赤色光と青色光と混合した光である。撮像はカラー画像を取得可能なカラーカメラで行う。カラーカメラからRAW画像を取得する。RAW画像から、緑色の光を受光した画素のみを取り出したG画像を取得する。第1の光は緑色であり、カラーカメラから見て粒子の後方から透過してきた光である。したがって、G画像は粒子の陰影が写し出されている陰影画像である。当該陰影画像より粒子径を算出する。また、RAW画像から、赤色の副画素のみを取り出したR画像、青色の副画素のみを取り出したB画像、又は赤色の副画素及び青色の副画素を取り出したRB画像を取得する。第2の光は赤色、青色、又は赤色及び青色が混色したマゼンタ色である。第2の光は赤色、青色、又はマゼンタ色であり、カラーカメラから見て粒子の表面を反射してきた光である。したがって、R画像、B画像又はRB画像は、粒子の表面が映し出されている表面画像である。カラーカメラから得られるRAW画像から、陰影画像と表面画像とを分離可能な色の組み合わせは、カラーカメラに搭載されたカラーフィルタの特性で決めればよい。第1の光及び第2の光をどのような色にするかは、カラーカメラのカラーフィルタの特性、RAW画像の構成より、適宜決定する。 The first light and the second light are intermittently irradiated on the sample in synchronization. The exposure time of the camera is controlled by the shutter so as to be synchronized with the first light and the second light. The light irradiation time and the camera exposure time do not need to be strictly synchronized. In the case of a shutter having a slow operation speed, light may be irradiated only for a part of the exposure time of the camera. In the case of a shutter having a high operating speed, irradiation may be started before exposure of the camera by the shutter is started, and irradiation may be ended after the exposure is completed. That is, when the shutter is a mechanically controlled shutter, the light shielding mechanism is opened simultaneously with or just before the start of light irradiation, and the light shielding mechanism is closed simultaneously with or immediately after the end of light irradiation. When the shutter is an electronically controlled shutter, exposure is started simultaneously with or just before the start of light irradiation, and exposure is ended simultaneously with or immediately after the end of light irradiation. By irradiating light or exposing the camera for a short time, an image as if the particles moving in the dispersion medium are stationary can be captured. The first wavelength is included in the green wavelength range. The second wavelength is included in the red wavelength range. The third wavelength is included in the blue wavelength range. Mixed light is light mixed with red light and blue light. Imaging is performed with a color camera capable of acquiring a color image. A RAW image is acquired from a color camera. From the RAW image, a G image obtained by extracting only the pixels receiving green light is acquired. The first light is green and is transmitted from behind the particles as viewed from the color camera. Therefore, the G image is a shadow image in which the shadow of particles is projected. The particle diameter is calculated from the shadow image. Further, an R image obtained by extracting only the red subpixel, a B image obtained by extracting only the blue subpixel, or an RB image obtained by extracting the red subpixel and the blue subpixel from the RAW image are acquired. The second light is red, blue, or a magenta color in which red and blue are mixed. The second light is red, blue, or magenta, and is light that has reflected the surface of the particle as viewed from the color camera. Therefore, the R image, the B image, or the RB image is a surface image in which the surface of the particle is projected. The combination of colors that can separate the shadow image and the surface image from the RAW image obtained from the color camera may be determined by the characteristics of the color filter mounted on the color camera. The colors of the first light and the second light are appropriately determined from the characteristics of the color filter of the color camera and the configuration of the RAW image.
 第1の光を緑色の光とするのは、次の理由による。カラーカメラの撮像素子は複数の光電素子を含み、当該光電素子は2次元に配列される。配列された複数の光電素子の前には、カラーフィルタが配置されている。カラーフィルタに入射した光は、赤色、緑色、青色に分離される。分離された各色の光を、光電素子は受光する。撮像素子用のカラーフィルタで一般的に使われているのは、ベイヤーフィルタである。ベイヤーフィルタでは、通常緑色の光を記録する光電素子が、赤色、青色よりも多くなるように構成されている。そのため、粒子径の測定精度を高めるためには、陰影画像を撮像するための光は緑色が適している。RAW画像から、G画像のみを取得すると、画素値が欠落している画素(欠落画素)があるので、画素値を周囲の画素により補間する。例えば、欠落画素を囲んでいる4画素の画素値の平均値を、欠落画素の画素値とする。補間方法はこれに限らず公知の技術で実現可能である。R画像、B画像及びRB画像についても、同様に補間を行う。粒子径の測定精度よりも、粒子の表面観察を優先する場合は、表面画像を撮像するための光を緑色とし、陰影画像を撮像するための光を緑色以外としてもよい。上述では、RAW画像からG画像を取得後に欠落画素を補間するとしたが、手順を逆にしてもよい。すなわち、RAW画像に対してベイヤー補間を行い、欠落画素を補間したカラー画像を作成する。作成したカラー画像を、G画像、R画像及びB画像に分離してもよい。 The reason why the first light is green light is as follows. The image sensor of the color camera includes a plurality of photoelectric elements, and the photoelectric elements are arranged two-dimensionally. A color filter is arranged in front of the plurality of photoelectric elements arranged. The light incident on the color filter is separated into red, green, and blue. The photoelectric element receives the separated light of each color. A Bayer filter is generally used as a color filter for an image sensor. In the Bayer filter, the number of photoelectric elements that normally record green light is configured to be larger than that of red and blue. Therefore, in order to increase the measurement accuracy of the particle diameter, green light is suitable for capturing a shadow image. If only the G image is acquired from the RAW image, there are pixels with missing pixel values (missing pixels), so the pixel values are interpolated with surrounding pixels. For example, an average value of pixel values of four pixels surrounding the missing pixel is set as the pixel value of the missing pixel. The interpolation method is not limited to this, and can be realized by a known technique. Interpolation is similarly performed for the R image, the B image, and the RB image. When priority is given to particle surface observation over particle diameter measurement accuracy, the light for capturing the surface image may be green, and the light for capturing the shadow image may be other than green. In the above description, the missing pixels are interpolated after obtaining the G image from the RAW image, but the procedure may be reversed. That is, Bayer interpolation is performed on the RAW image to create a color image in which missing pixels are interpolated. The created color image may be separated into a G image, an R image, and a B image.
 第1の光及び第2の光は、同期して試料に間欠的に照射されるので、RAW画像から取得したG画像に写し出されている粒子と、R画像、B画像又はRB画像に映し出されている粒子との対応付けが可能となる。なお、第2の光を赤色光とした場合、青色光を第3の光として、第2の光とは異なる方向から、粒子に照射してもよい。第3の光についても、粒子による反射光が観察できるように、試料、カラーカメラ、光源の位置関係を定める。 Since the first light and the second light are intermittently irradiated onto the sample synchronously, the particles reflected on the G image acquired from the RAW image and the R image, the B image, or the RB image are displayed. It is possible to associate with the particles. Note that when the second light is red light, the blue light may be third light and the particles may be irradiated from a direction different from the second light. For the third light, the positional relationship among the sample, the color camera, and the light source is determined so that the reflected light from the particles can be observed.
 (実施の形態1)
 図1は粒子撮像装置の構成例を示すブロック図である。粒子撮像装置1は収容部11、光照射部12、撮像部13及び出力部14を含む。
(Embodiment 1)
FIG. 1 is a block diagram illustrating a configuration example of a particle imaging apparatus. The particle imaging device 1 includes a storage unit 11, a light irradiation unit 12, an imaging unit 13, and an output unit 14.
 収容部11は収容セル(第2収容セル)111及び撹拌機112を含む。収容セル111は例えば、直方体状をなす容器である。収容セル111の側面は光透過性の材質、例えばガラス、アクリルで構成されている。収容セル111には試料が収容される。試料は粒子群を水やアルコールなどの分散媒に分散させてなる。粒子群は大きさ、形状、表面状態を異なる複数種類の粒子を含んでいる。撹拌機112は収容セル111に接続され、収容セル111に収容された試料を撹拌する。なお、分散媒は液体に限らず、気体であってもよい。分散媒を気体した場合、試料を収容セル111の上方から、落下させながら撮像を行う。 The storage unit 11 includes a storage cell (second storage cell) 111 and a stirrer 112. The accommodation cell 111 is, for example, a rectangular parallelepiped container. The side surface of the containing cell 111 is made of a light transmissive material, such as glass or acrylic. A sample is stored in the storage cell 111. The sample is formed by dispersing particles in a dispersion medium such as water or alcohol. The particle group includes a plurality of types of particles having different sizes, shapes, and surface states. The stirrer 112 is connected to the storage cell 111 and stirs the sample stored in the storage cell 111. The dispersion medium is not limited to a liquid, and may be a gas. When the dispersion medium is gasified, imaging is performed while dropping the sample from above the storage cell 111.
 光照射部12は光源制御部121、第1光源122及び第2光源123を含む。光源制御部121は第1光源122及び第2光源123の発光を制御する。光源制御部121は所定の周波数で、第1光源122及び第2光源123を点滅させる。光源制御部121は第1光源122及び第2光源123を点滅が同期するように制御する。第1光源122はLED(light emitting diode)を含む。第1光源122は第1の光を発する。第1の光は緑色である。第1の光の波長、第1波長は例えば480~580nmである。第1波長の光成分が際立って強ければよく、他の波長の光成分が含まれてもよい。図1の1点破線は第1の光を示している。第2光源123はLEDを含む。第2光源123は第2の光及び第3の光を混合した混合光を発する。第2の光は赤色である。第2の光の波長、第2波長は例えば580~700nmである。第3の光は青色である。第3の光の波長、第3波長は例えば400~480nmである。混合光はマゼンタ色である。 The light irradiation unit 12 includes a light source control unit 121, a first light source 122 and a second light source 123. The light source control unit 121 controls light emission of the first light source 122 and the second light source 123. The light source control unit 121 blinks the first light source 122 and the second light source 123 at a predetermined frequency. The light source control unit 121 controls the first light source 122 and the second light source 123 so that blinking is synchronized. The first light source 122 includes an LED (light emitting diode). The first light source 122 emits first light. The first light is green. The wavelength of the first light and the first wavelength are, for example, 480 to 580 nm. The light component of the first wavelength only needs to be remarkably strong, and light components of other wavelengths may be included. The dashed line in FIG. 1 indicates the first light. The second light source 123 includes an LED. The second light source 123 emits mixed light obtained by mixing the second light and the third light. The second light is red. The wavelength of the second light, the second wavelength is, for example, 580 to 700 nm. The third light is blue. The wavelength of the third light and the third wavelength are, for example, 400 to 480 nm. The mixed light is magenta.
 撮像部13はカメラ131及びレンズ132を含む。カメラ131はカラーの画像が取得可能なカラーカメラである。カメラ131は赤、緑、青の3つの原色を混ぜて幅広い色を再現するRGB画像だけでなく、RAW画像を出力可能である。レンズ132は筒状の筐体に光学レンズを配したものである。レンズ132はカメラ131に取り付けることにより、同軸照明による撮像を可能とするレンズである。同軸照明とは、撮像光軸と同軸上、撮像光軸方向と平行に照明光を照射する照明を言う。レンズ132はハーフミラー1321を内蔵している。レンズ132は、第2光源123が発した第2の光をハーフミラー1321で反射させ、第2の光が試料に向けて照射される。図1の点線は第2の光を示している。レンズ132は撮像部13の構成の一部であると共に、光照射部12の構成の一部でもある。 The imaging unit 13 includes a camera 131 and a lens 132. The camera 131 is a color camera that can acquire a color image. The camera 131 can output not only an RGB image that reproduces a wide range of colors by mixing three primary colors of red, green, and blue, but also a RAW image. The lens 132 is obtained by arranging an optical lens in a cylindrical casing. The lens 132 is a lens that enables imaging by coaxial illumination by being attached to the camera 131. Coaxial illumination refers to illumination that irradiates illumination light coaxially with the imaging optical axis and parallel to the imaging optical axis direction. The lens 132 has a built-in half mirror 1321. The lens 132 reflects the second light emitted from the second light source 123 by the half mirror 1321, and the second light is irradiated toward the sample. The dotted line in FIG. 1 indicates the second light. The lens 132 is a part of the configuration of the imaging unit 13 and a part of the configuration of the light irradiation unit 12.
 第1光源122と撮像部13とは収容セル111を間にして、互いに対向するように設けてある。収容部11に収容された試料に含まれる粒子は、第1光源122が発した第1の光と、第2光源123が発した混合光が照射される。カメラ131は収容部11内の粒子を撮像する。カメラ131が撮像して得たRAW画像を出力部14に出力する。図1において、収容セル111を上下に貫く破線は、カメラがフォーカスを合わせるフォーカス面を示す。 The first light source 122 and the imaging unit 13 are provided so as to face each other with the containing cell 111 therebetween. The particles contained in the sample stored in the storage unit 11 are irradiated with the first light emitted from the first light source 122 and the mixed light emitted from the second light source 123. The camera 131 images the particles in the storage unit 11. A RAW image obtained by imaging by the camera 131 is output to the output unit 14. In FIG. 1, a broken line that passes vertically through the accommodation cell 111 indicates a focus plane on which the camera focuses.
 第1光源122と撮像部13とは収容セル111を間にして、互いに対向する。第1の光は撮像部13から見て、試料の背面から照射された光である。第1の光は緑色であるから、RAW画像から抽出したG画像は陰影画像である。陰影画像は粒子の陰影が写し出されている画像である。第2光源123が発する光は第2の光と第3の光とを混合した混合光である。第2の光は赤色、第3の光は青色である。混合光は同軸照明である。したがって、撮像部13が混合光により形成する像は、粒子の表面等で反射された混合光によるものである。よって、RAW画像から抽出したRB画像は表面画像である。表面画像は粒子の表面が写し出されている画像である。 The first light source 122 and the imaging unit 13 face each other with the containing cell 111 therebetween. The first light is light irradiated from the back surface of the sample as viewed from the imaging unit 13. Since the first light is green, the G image extracted from the RAW image is a shadow image. A shadow image is an image in which the shadow of particles is projected. The light emitted from the second light source 123 is a mixed light obtained by mixing the second light and the third light. The second light is red and the third light is blue. The mixed light is coaxial illumination. Therefore, the image formed by the imaging unit 13 with the mixed light is based on the mixed light reflected on the surface of the particles. Therefore, the RB image extracted from the RAW image is a surface image. The surface image is an image in which the surface of the particle is projected.
 出力部14はカメラ131が出力したRAW画像を取得する。出力部14は取得したRAW画像から陰影画像及び表面画像を抽出する。出力部14は抽出した陰影画像及び表面画像を出力する。 The output unit 14 acquires the RAW image output from the camera 131. The output unit 14 extracts a shadow image and a surface image from the acquired RAW image. The output unit 14 outputs the extracted shadow image and surface image.
 実施の形態1では、光照射部12の構成が簡単である。第1光源の光軸と第2光源の光軸とを合わせるだけであるので、光軸調整が比較的容易である。 In the first embodiment, the configuration of the light irradiation unit 12 is simple. Since only the optical axis of the first light source is aligned with the optical axis of the second light source, the optical axis adjustment is relatively easy.
 次に、出力部14が出力する画像について説明する。図2Aは陰影画像の例を示す説明図である。図2Bは表面画像の例を示す説明図である。図2Aにおいて、粒子像2A1は1つの粒子のように見える。しかし、図2Bにおいて、粒子像2A1に対応する粒子像2B1を確認すると、2つの粒子が重なって写っていることが分かる。また、図2Aにおいて、粒子像2A2は粒子の表面状態を確認できない。しかし、図2Bにおいて、粒子像2A2に対応する粒子像2B2を確認すると、表面に凹凸や凝集している粒子であることがあることが分かる。 Next, the image output by the output unit 14 will be described. FIG. 2A is an explanatory diagram illustrating an example of a shadow image. FIG. 2B is an explanatory diagram illustrating an example of a surface image. In FIG. 2A, the particle image 2A1 looks like one particle. However, in FIG. 2B, when the particle image 2B1 corresponding to the particle image 2A1 is confirmed, it can be seen that the two particles are superimposed. In FIG. 2A, the particle image 2A2 cannot confirm the surface state of the particles. However, in FIG. 2B, when the particle image 2B2 corresponding to the particle image 2A2 is confirmed, it can be seen that the particle may be uneven or aggregated on the surface.
 (実施の形態2)
 図3は粒子撮像装置の構成例を示すブロック図である。実施の形態1と同様に、粒子撮像装置1は収容部11、光照射部12、撮像部13及び出力部14を含む。本実施の形態において、光照射部12を除く収容部11及び出力部14は実施の形態1と同様であるから、説明を省略する。撮像部13はレンズ132が、同軸照明による撮像を可能とするレンズである必要はない点を除き、実施の形態1と同様である。図3において、点線、1点鎖線、破線が示す内容は、図1と同様である。
(Embodiment 2)
FIG. 3 is a block diagram illustrating a configuration example of the particle imaging apparatus. Similar to the first embodiment, the particle imaging device 1 includes a storage unit 11, a light irradiation unit 12, an imaging unit 13, and an output unit 14. In the present embodiment, the storage unit 11 and the output unit 14 excluding the light irradiation unit 12 are the same as those in the first embodiment, and thus the description thereof is omitted. The imaging unit 13 is the same as that of the first embodiment except that the lens 132 does not need to be a lens that enables imaging by coaxial illumination. In FIG. 3, the contents indicated by the dotted line, the dashed line, and the broken line are the same as those in FIG.
 光照射部12は光源制御部121、第1光源122、白色光源124、コンデンサレンズ125、フィルタ126、及びハーフミラー127を含む。光源制御部121は第1光源122及び白色光源124の発光を制御する。光源制御部121は所定の周波数で、第1光源122及び白色光源124を点滅させる。光源制御部121は第1光源122及び白色光源124を点滅が同期するように制御する。第1光源122は実施の形態1と同様、緑色の光を発する光源である。白色光源124は白色LEDを含む。第1光源122と白色光源124は収容セル111を挟んで対向するように配置する。コンデンサレンズ125は白色光源124からの光をフィルタ126に導く。コンデンサレンズ125は紙面左右方向に位置の調整が可能である。フィルタ126はダイクロイックフィルタである。フィルタ126は入射光のうち緑色波長域の光を遮蔽し、その他の波長域の光を透過する。その結果、フィルタ126は第2の光と第3の光とが混合された混合光を出射する。ハーフミラー127は、フィルタ126が出射した混合光を透過させ、収容部11に混合光を照射する。また、ハーフミラー127は第1光源が発し、収容部11を透過した光を反射する。更に、透過させた混合光のうち、試料で反射された光を反射する。ハーフミラー127で反射した光は、撮像部13に入射する。 The light irradiation unit 12 includes a light source control unit 121, a first light source 122, a white light source 124, a condenser lens 125, a filter 126, and a half mirror 127. The light source control unit 121 controls light emission of the first light source 122 and the white light source 124. The light source control unit 121 blinks the first light source 122 and the white light source 124 at a predetermined frequency. The light source controller 121 controls the first light source 122 and the white light source 124 so that blinking is synchronized. As in the first embodiment, the first light source 122 is a light source that emits green light. The white light source 124 includes a white LED. The first light source 122 and the white light source 124 are arranged to face each other with the containing cell 111 interposed therebetween. The condenser lens 125 guides the light from the white light source 124 to the filter 126. The position of the condenser lens 125 can be adjusted in the left-right direction on the paper surface. The filter 126 is a dichroic filter. The filter 126 blocks light in the green wavelength region of the incident light and transmits light in other wavelength regions. As a result, the filter 126 emits mixed light in which the second light and the third light are mixed. The half mirror 127 transmits the mixed light emitted from the filter 126 and irradiates the mixed light to the accommodating portion 11. The half mirror 127 reflects the light emitted from the first light source and transmitted through the housing portion 11. Further, of the transmitted mixed light, the light reflected by the sample is reflected. The light reflected by the half mirror 127 enters the imaging unit 13.
 実施の形態2では、コンデンサレンズ125の位置調整を行うことにより、照明NA(Numerical Aperture:開口数)を調整可能である。調整可能であるので、試料の粒子径サイズや試料の表面状態に合わせた適切な位置に、コンデンサレンズを配置可能である。 In the second embodiment, the illumination NA (Numerical Aperture) can be adjusted by adjusting the position of the condenser lens 125. Since it can be adjusted, the condenser lens can be arranged at an appropriate position according to the particle size of the sample and the surface state of the sample.
 (実施の形態3)
 図4は粒子撮像装置の構成例を示すブロック図である。実施の形態2と同様に、粒子撮像装置1は収容部11、光照射部12、撮像部13及び出力部14を含む。本実施の形態において、光照射部12を除く収容部11、撮像部13及び出力部14は実施の形態2と同様であるから、説明を省略する。図4において、点線、1点鎖線、収容セル111を貫く破線が示す内容は、図1と同様である。白色光源124からの点線は白色光の光束を示す。レンズ132に属する点線は、白色光がレンズ132に入射することを示す。
(Embodiment 3)
FIG. 4 is a block diagram illustrating a configuration example of the particle imaging apparatus. Similar to the second embodiment, the particle imaging device 1 includes a storage unit 11, a light irradiation unit 12, an imaging unit 13, and an output unit 14. In the present embodiment, the storage unit 11, the imaging unit 13, and the output unit 14 except for the light irradiation unit 12 are the same as those in the second embodiment, and thus description thereof is omitted. In FIG. 4, the contents indicated by the dotted line, the alternate long and short dash line, and the broken line passing through the accommodation cell 111 are the same as those in FIG. A dotted line from the white light source 124 indicates a luminous flux of white light. A dotted line belonging to the lens 132 indicates that white light is incident on the lens 132.
 光照射部12は光源制御部121、白色光源124、コンデンサレンズ125、ハーフミラー127、ダイクロイックミラー128、及び複数の反射ミラー129を含む。白色光源124とハーフミラー127は収容セル111を間にして、対向するように配置する。光源制御部121は白色光源124の発光を制御する。光源制御部121は所定の周波数で、白色光源124を点滅させる。コンデンサレンズ125は白色光源124からの光をダイクロイックミラー128に導く。ダイクロイックミラー128は緑色波長域の光、すなわち第1の光を透過させ、その他の波長域の光を反射する。反射された光は第2の光と第3の光とが混合された混合光である。混合光はマゼンタ色である。複数の反射ミラー129は、ダイクロイックミラー128が反射した混合光をハーフミラー127に導く。ハーフミラー127は混合光を透過させ、混合光を収容部11に照射する。ハーフミラー127はダイクロイックミラー128が透過させ、収容部11を透過した第1の光を反射する。ハーフミラー127は透過させた混合光のうち、収容セル111で反射され戻ってきた混合光を反射する。ハーフミラー127が反射した第1の光及び混合光は、撮像部13に入射する。 The light irradiation unit 12 includes a light source control unit 121, a white light source 124, a condenser lens 125, a half mirror 127, a dichroic mirror 128, and a plurality of reflection mirrors 129. The white light source 124 and the half mirror 127 are arranged to face each other with the containing cell 111 in between. The light source control unit 121 controls light emission of the white light source 124. The light source control unit 121 blinks the white light source 124 at a predetermined frequency. The condenser lens 125 guides the light from the white light source 124 to the dichroic mirror 128. The dichroic mirror 128 transmits light in the green wavelength range, that is, the first light, and reflects light in other wavelength ranges. The reflected light is a mixed light in which the second light and the third light are mixed. The mixed light is magenta. The plurality of reflection mirrors 129 guide the mixed light reflected by the dichroic mirror 128 to the half mirror 127. The half mirror 127 transmits the mixed light and irradiates the housing portion 11 with the mixed light. The half mirror 127 transmits the dichroic mirror 128 and reflects the first light transmitted through the housing portion 11. The half mirror 127 reflects the mixed light that has been reflected and returned by the accommodation cell 111 out of the transmitted mixed light. The first light and the mixed light reflected by the half mirror 127 enter the imaging unit 13.
 本実施の形態においては、光源が1つであるので、複数の光源を同期して点滅させることが不要である。ハーフミラー、反射ミラーなどの光学部品と比較して高価な光源が1つで済むので、構築に要するコストを抑えることが可能となる。 In this embodiment, since there is one light source, it is not necessary to blink a plurality of light sources in synchronization. Since only one expensive light source is required as compared with optical components such as a half mirror and a reflection mirror, the cost required for construction can be suppressed.
 (実施の形態4)
 図5は粒子撮像装置の構成例を示すブロック図である。実施の形態1と同様に、粒子撮像装置1は収容部11、光照射部12、撮像部13及び出力部14を含む。本実施の形態において、収容部11は実施の形態1と同様であるから、説明を省略する。図5において、点線、1点鎖線、収容セル111を貫く破線が示す内容は、図1と同様である。
(Embodiment 4)
FIG. 5 is a block diagram illustrating a configuration example of the particle imaging apparatus. Similar to the first embodiment, the particle imaging device 1 includes a storage unit 11, a light irradiation unit 12, an imaging unit 13, and an output unit 14. In the present embodiment, the accommodating portion 11 is the same as that in the first embodiment, and thus the description thereof is omitted. In FIG. 5, the contents indicated by the dotted line, the alternate long and short dash line, and the broken line passing through the accommodation cell 111 are the same as those in FIG.
 光照射部12は光源制御部121、第1光源122及び第2光源120を含む。光源制御部121は第1光源122及び第2光源120の発光を制御する。光源制御部121は所定の周波数で、第1光源122及び第2光源120を点滅させる。光源制御部121は第1光源122及び第2光源120を点滅が同期するように制御する。第1光源122はLEDを含む。第1光源122は第1の光を発する。第2光源120はLEDを含む。第2光源120は第2の光及び第3の光を混合した混合光を発する。 The light irradiation unit 12 includes a light source control unit 121, a first light source 122 and a second light source 120. The light source controller 121 controls the light emission of the first light source 122 and the second light source 120. The light source control unit 121 blinks the first light source 122 and the second light source 120 at a predetermined frequency. The light source control unit 121 controls the first light source 122 and the second light source 120 so that blinking is synchronized. The first light source 122 includes an LED. The first light source 122 emits first light. The second light source 120 includes an LED. The second light source 120 emits mixed light obtained by mixing the second light and the third light.
 撮像部13は第1カメラ131、第1レンズ132、第2カメラ133及び第2レンズ134を含む。第1カメラ131及び第2カメラ133はカラーの動画像が撮像可能で、RAW画像を出力可能なカラーカメラである。第1レンズ132及び第2レンズ134はそれぞれ第1カメラ131及び第2カメラ133に取り付けることにより、同軸照明による撮像を可能とするハーフミラー1321、1341内蔵レンズである。第1レンズ132には第1光源122が取り付けられる。第2レンズ134には第2光源120が取り付けられる。第1レンズ132及び第2レンズ134は撮像部13の構成の一部であると共に、光照射部12の構成の一部でもある。 The imaging unit 13 includes a first camera 131, a first lens 132, a second camera 133, and a second lens 134. The first camera 131 and the second camera 133 are color cameras that can capture color moving images and that can output RAW images. The first lens 132 and the second lens 134 are half mirrors 1321 and 1341 built-in lenses that enable imaging by coaxial illumination by being attached to the first camera 131 and the second camera 133, respectively. A first light source 122 is attached to the first lens 132. The second light source 120 is attached to the second lens 134. The first lens 132 and the second lens 134 are part of the configuration of the imaging unit 13 and are also part of the configuration of the light irradiation unit 12.
 第1カメラ131及び第1レンズ132と、第2カメラ133及び第2レンズ134とは、収容セル111を間にして、対向するように配置する。第1カメラ131は、第1レンズ132から放射した第1の光のうち、試料で反射され戻ってきた光による画像を撮像する。また、第1カメラ131は、第2レンズ134から放射した混合光のうち、収容セル111を透過した光による画像を撮像する。第2カメラ133は、第2レンズ134から放射した混合光のうち、収容セル111で反射され戻ってきた光による画像を撮像する。また、第2カメラ133は、第1レンズ132から放射した第1の光のうち、収容セル111を透過した光による画像を撮像する。 The first camera 131 and the first lens 132, and the second camera 133 and the second lens 134 are arranged to face each other with the accommodating cell 111 in between. The first camera 131 captures an image of the first light emitted from the first lens 132 and reflected by the sample and returned. In addition, the first camera 131 captures an image of the mixed light radiated from the second lens 134 and transmitted through the accommodation cell 111. The second camera 133 captures an image of the mixed light radiated from the second lens 134 and the light reflected and returned by the accommodation cell 111. In addition, the second camera 133 captures an image of the first light emitted from the first lens 132 and transmitted through the accommodation cell 111.
 出力部(画像データ出力部)14は第1カメラ131及び第2カメラ133が出力したRAW画像を取得する。出力部14は取得したRAW画像から陰影画像及び表面画像を抽出する。第1カメラ131が撮像して得たRAW画像から抽出したG画像は表面画像である。第1カメラ131が撮像して得たRAW画像から抽出したRB画像は陰影画像である。第2カメラ133が撮像して得たRAW画像から抽出したG画像は陰影画像である。第2カメラ133が撮像して得たRAW画像から抽出したRB画像は表面画像である。出力部14は抽出した陰影画像及び表面画像を出力する。 The output unit (image data output unit) 14 acquires the RAW image output from the first camera 131 and the second camera 133. The output unit 14 extracts a shadow image and a surface image from the acquired RAW image. The G image extracted from the RAW image obtained by imaging by the first camera 131 is a surface image. The RB image extracted from the RAW image acquired by the first camera 131 is a shadow image. The G image extracted from the RAW image obtained by imaging by the second camera 133 is a shadow image. The RB image extracted from the RAW image obtained by imaging by the second camera 133 is a surface image. The output unit 14 outputs the extracted shadow image and surface image.
 本実施の形態においては、カメラを2台備えるため、異なる2つの倍率(画角)での観察が可能である。光照射部12の構成が簡単で、光軸調整が比較的容易である。他の実施の形態同様、緑色光の陰影画像を粒子径の算出に用い、マゼンタ光の表面画像を表面観察に用いる。それに加え、マゼンタ光の陰影画像、緑色光の表面画像を補助的なデータとして活用可能となる。また、2台のカメラそれぞれから異なる倍率で撮像した2枚の陰影画像を得ることが可能となるので、カメラが1台の場合と比較して、粒子径の測定レンジが広がる。 In this embodiment, since two cameras are provided, observation at two different magnifications (field angles) is possible. The configuration of the light irradiation unit 12 is simple, and the optical axis adjustment is relatively easy. As in the other embodiments, a shaded image of green light is used for particle diameter calculation, and a surface image of magenta light is used for surface observation. In addition, a magenta light shadow image and a green light surface image can be used as auxiliary data. In addition, since it is possible to obtain two shadow images captured at different magnifications from each of the two cameras, the measurement range of the particle diameter is expanded as compared with the case of one camera.
 (実施の形態5)
 図6は粒子撮像装置の構成例を示すブロック図である。粒子撮像装置1は収容部11、光照射部12、撮像部13及び出力部14を含む。本実施の形態において、収容部11は実施の形態1と同様であるから、説明を省略する。
(Embodiment 5)
FIG. 6 is a block diagram illustrating a configuration example of the particle imaging apparatus. The particle imaging device 1 includes a storage unit 11, a light irradiation unit 12, an imaging unit 13, and an output unit 14. In the present embodiment, the accommodating portion 11 is the same as that in the first embodiment, and thus the description thereof is omitted.
 光照射部12は光源制御部121、緑色光原12a、赤色光源12b、及び青色光源12cを含む。光源制御部121は緑色光原12a、赤色光源12b、及び青色光源12cの発光を制御する。光源制御部121は所定の周波数で、緑色光原12a、赤色光源12b、及び青色光源12cを点滅させる。光源制御部121は緑色光原12a、赤色光源12b、及び青色光源12cを点滅が同期するように制御する。光源制御部121はカメラ131等より取得した動作クロックに基づき、各光源の点滅を制御する。それにより、上述したようなシャッターの開閉と光源の点滅とを略同期することが可能となる。緑色光原12a、赤色光源12b、及び青色光源12cそれぞれはLEDを含む。緑色光原12aは第1の光を発する。赤色光源12bは第2の光を発する。青色光源12cは第3の光を発する。青色光源12cは周囲照明である。青色光源12cは、収容セル111から見て、赤色光源12bと同じ側に配される。青色光源12cは、収容セル111について、赤色光源12bと同じ側の面に第3の光を照射する。図6では青色光源12cを2つ配しているが、青色光源12cは1つでもよいし、3つ以上でもよい。 The light irradiation unit 12 includes a light source control unit 121, a green light source 12a, a red light source 12b, and a blue light source 12c. The light source controller 121 controls the light emission of the green light source 12a, the red light source 12b, and the blue light source 12c. The light source controller 121 blinks the green light source 12a, the red light source 12b, and the blue light source 12c at a predetermined frequency. The light source control unit 121 controls the green light source 12a, the red light source 12b, and the blue light source 12c so that blinking is synchronized. The light source control unit 121 controls blinking of each light source based on an operation clock acquired from the camera 131 or the like. As a result, the opening / closing of the shutter and the blinking of the light source as described above can be substantially synchronized. Each of the green light source 12a, the red light source 12b, and the blue light source 12c includes an LED. The green light source 12a emits the first light. The red light source 12b emits second light. The blue light source 12c emits third light. The blue light source 12c is ambient illumination. The blue light source 12c is arranged on the same side as the red light source 12b when viewed from the accommodation cell 111. The blue light source 12c irradiates the surface of the accommodation cell 111 on the same side as the red light source 12b with the third light. Although two blue light sources 12c are arranged in FIG. 6, the number of blue light sources 12c may be one, or three or more.
 撮像部13の構成は実施の形態1と略同様であるので、簡単に説明する。撮像部13はカメラ131及びレンズ132を含む。カメラ131はカラーの動画像が撮像可能でRAW画像を出力可能なカラーカメラである。レンズ132はハーフミラーを内蔵する同軸照明による撮像を可能とするレンズである。レンズ132は赤色光源12bが発した光を放射する。 Since the configuration of the imaging unit 13 is substantially the same as that of the first embodiment, it will be briefly described. The imaging unit 13 includes a camera 131 and a lens 132. The camera 131 is a color camera capable of capturing a color moving image and outputting a RAW image. The lens 132 is a lens that enables imaging by coaxial illumination with a built-in half mirror. The lens 132 emits light emitted from the red light source 12b.
 緑色光原12aと撮像部13とは収容セル111を挟んで、互いに対向するように設けてある。収容セル111に収容された試料に含まれる粒子は、緑色光原12aが発した緑色光と、赤色光源12bが発した赤色光、及び青色光源12cが発した青色光が照射される。カメラ131は収容セル111を撮像する。カメラ131が撮像して得たRAW画像を出力部14に出力する。 The green light source 12a and the imaging unit 13 are provided to face each other with the accommodation cell 111 interposed therebetween. The particles contained in the sample stored in the storage cell 111 are irradiated with green light emitted from the green light source 12a, red light emitted from the red light source 12b, and blue light emitted from the blue light source 12c. The camera 131 images the accommodation cell 111. A RAW image obtained by imaging by the camera 131 is output to the output unit 14.
 出力部14はRAW画像からR画層、G画像、B画像を抽出する。抽出したG画像は陰影画像である。R画像及びB画像は表面画像である。R画像を第1表面画像、B画像を第2表面画像と呼ぶ。出力部14は抽出した陰影画像及び表面画像を出力する。なお、赤色光は同軸照明であるから、第1表面画像は平面形状の観察に適している。青色光は周囲照明であるから、第2表面画像は球状粒子の観察に適している。 The output unit 14 extracts the R layer, the G image, and the B image from the RAW image. The extracted G image is a shadow image. The R image and the B image are surface images. The R image is called a first surface image, and the B image is called a second surface image. The output unit 14 outputs the extracted shadow image and surface image. Since the red light is coaxial illumination, the first surface image is suitable for observation of a planar shape. Since the blue light is ambient illumination, the second surface image is suitable for observation of spherical particles.
 更に、同軸照明から得る第1表面画像で十分であれば、青色光源12cはなくともよい。 Furthermore, if the first surface image obtained from the coaxial illumination is sufficient, the blue light source 12c may be omitted.
 本実施の形態は、各色に光源を設けたので、必要な光量の確保が容易である。波長選択性が高い、すなわち、波長フィルタの選択自由度が高い。そのため、R画像、G画像、B画像の色の分離精度を高めることが可能である。 In this embodiment, since a light source is provided for each color, it is easy to secure a necessary light amount. The wavelength selectivity is high, that is, the degree of freedom in selecting a wavelength filter is high. Therefore, it is possible to improve the color separation accuracy of the R image, the G image, and the B image.
 上述の実施の形態1、2、4及び5において、光源制御部121は複数の光源を同期して点滅させるとしたが、厳密に同期していなくてもよい。複数の光源が発光している時間の重なりがあればよい。すなわち、消灯から点灯に切り替わるタイミングが複数の光源間で食い違ってもよい。また、点灯から消灯に切り替わるタイミングが複数の光源間で食い違ってもよい。光源の点滅の周期は、収容セル111内の粒子の速さに応じて決定すればよい。光源が点灯している時間内に、粒子が動く距離が撮像した画像上で数ピクセル以内であればよい。 In the first, second, fourth, and fifth embodiments described above, the light source control unit 121 blinks a plurality of light sources in a synchronized manner, but may not be strictly synchronized. It is sufficient if there is an overlap of times when a plurality of light sources emit light. That is, the timing of switching from turning off to turning on may be different between a plurality of light sources. In addition, the timing of switching from turning on to turning off may be different between a plurality of light sources. The blinking cycle of the light source may be determined according to the speed of the particles in the containing cell 111. The distance that the particles move within the time when the light source is on may be within a few pixels on the captured image.
 (活用例1)
 試料中に蛍光粒子とそうでない粒子が含まれている場合、表面画像の信号量を見ることにより、蛍光粒子であるか否かの判定が可能である。信号量により、蛍光粒子とそうではない粒子を分類できる。
(Utilization example 1)
When the sample includes fluorescent particles and other particles, it is possible to determine whether the sample is a fluorescent particle by looking at the signal amount of the surface image. Depending on the signal level, fluorescent particles and non-fluorescent particles can be classified.
 (活用例2)
 試料中に表面状態が異なる複数種類の粒子が含まれている場合は、表面画像から認識した表面状態により、粒子が分類できる。表面状態とは、凹凸がなく滑らかな面であるとか、細かい凹凸があり、ざらざらである等である。
(Utilization example 2)
When a sample includes a plurality of types of particles having different surface states, the particles can be classified according to the surface state recognized from the surface image. The surface state includes a smooth surface with no irregularities, fine irregularities, and rough surfaces.
 (活用例3)
 光の反射率が高く、板状のように向きにより、算出される粒子径が大きく異なる場合、表面画像で計測された信号量により、正対した姿勢で撮像されたものとそうでないものとを分類可能である。
(Utilization example 3)
If the calculated particle diameter varies greatly depending on the orientation, such as a plate-like shape, the light reflectance is high, and what is captured in a face-to-face orientation and what is not based on the amount of signal measured in the surface image. Classification is possible.
 そして、以上のような分類をした上で、分類毎に粒子の粒子径を算出すれば、粒子径分布をより正しく算出することが可能となる。 If the particle size of the particles is calculated for each category after the above classification, the particle size distribution can be calculated more correctly.
 (粒子径測定装置)
 次に粒子径測定装置について説明する。図7は粒子径測定装置の構成例を示すブロック図である。粒子径測定装置20は上述の粒子撮像装置1と制御装置2を含む。制御装置2は粒子撮像装置1の出力した画像を用いて、試料中の粒子の粒子径を算出する。制御装置2は、パーソナルコンピュータ等のコンピュータを用いて構成されている。制御装置2は粒子撮像装置1に組み込まれていてもよい。制御装置2は、演算を行う制御部21と、演算に伴って発生する一時的なデータを記憶するRAM(Random Access Memory)22と、ハードディスク等の不揮発性の記憶部23とを備えている。また制御装置2は、インタフェース部24、使用者の操作を受け付けるキーボード又はマウス等の操作部25と、液晶ディスプレイ等の表示部26と、光ディスク等の記録媒体2aから情報を読み取るドライブ部27とを備えている。
(Particle size measuring device)
Next, a particle diameter measuring apparatus will be described. FIG. 7 is a block diagram showing a configuration example of the particle diameter measuring apparatus. The particle diameter measuring device 20 includes the particle imaging device 1 and the control device 2 described above. The control device 2 calculates the particle diameter of the particles in the sample using the image output from the particle imaging device 1. The control device 2 is configured using a computer such as a personal computer. The control device 2 may be incorporated in the particle imaging device 1. The control device 2 includes a control unit 21 that performs calculation, a RAM (Random Access Memory) 22 that stores temporary data generated along with the calculation, and a non-volatile storage unit 23 such as a hard disk. Further, the control device 2 includes an interface unit 24, an operation unit 25 such as a keyboard or a mouse that accepts a user's operation, a display unit 26 such as a liquid crystal display, and a drive unit 27 that reads information from a recording medium 2a such as an optical disk. I have.
 制御部21はCPU(Central Processing Unit)やMPU(Micro Processing Unit)を含む。制御部21はDSP(Digital Signal Processor)を含んでもよい。制御部21は、記録媒体2aに記録されたコンピュータプログラム231をドライブ部27に読み取らせ、読み取ったコンピュータプログラム231を記憶部23に記憶させる。コンピュータプログラム231は必要に応じて記憶部23からRAM22へロードされ、制御部21は、ロードされたコンピュータプログラム231に従って、粒子径測定装置20に必要な処理を実行する。制御部21は、コンピュータプログラムを実行することにより各種の機能部を実現する。なお、コンピュータプログラム231は、制御装置2の外部からダウンロードされてもよい。 The control unit 21 includes a CPU (Central Processing Unit) and an MPU (Micro Processing Unit). The control unit 21 may include a DSP (Digital Signal Processor). The control unit 21 causes the drive unit 27 to read the computer program 231 recorded on the recording medium 2a, and causes the storage unit 23 to store the read computer program 231. The computer program 231 is loaded from the storage unit 23 to the RAM 22 as necessary, and the control unit 21 executes processing necessary for the particle size measuring apparatus 20 according to the loaded computer program 231. The control unit 21 implements various functional units by executing a computer program. The computer program 231 may be downloaded from outside the control device 2.
 図8は制御部の機能構成例を示すブロック図である。制御部21は表面画像取得部21a、陰影画像取得部21b、対応付け部21c、分類部21d、粒子径算出部21e、及び分布算出部21fを含む。表面画像取得部21aは粒子撮像装置1から表面画像を取得する。陰影画像取得部21bは粒子撮像装置1から陰影画像を取得する。対応付け部21cは表面画像及び陰影画像における同一粒子の対応付けを行う。分類部21dは表面画像により粒子の分類を行う。例えば、撮像された各粒子が、球状なのか、板状状なのか、凸凹状なのか、蛍光を発するものであるかを分類する。粒子径算出部21eは陰影画像を用いて粒子径を算出する。粒子径の算出対象は撮像されたすべての粒子でもよいし、分類部21dにより得た分類に基づいて、特定の分類に属する粒子のみとしてもよい。すべての粒子を算出対象とし、分類を付与して出力してもよい。分布算出部21fは粒子径算出部21eから得た各粒子の粒子径から、粒子径の分布を算出する。分布算出部21fは分類を用いず、撮像されたすべての粒子についての粒子径分布を算出する。分布算出部21fは分類を用いて、特定の分類に属する粒子の粒子径分布を算出してもよい。分布算出部21fは分類を用いて、複数の分類について、各分類に属する粒子の粒子径分布を算出してもよい。また、分布算出部21fは、すべての粒子の分布と各分類の粒子の分布とを合わせて算出してもよい。分布算出部21fの算出結果は表示部26に表示する。 FIG. 8 is a block diagram showing a functional configuration example of the control unit. The control unit 21 includes a surface image acquisition unit 21a, a shadow image acquisition unit 21b, an association unit 21c, a classification unit 21d, a particle diameter calculation unit 21e, and a distribution calculation unit 21f. The surface image acquisition unit 21 a acquires a surface image from the particle imaging device 1. The shadow image acquisition unit 21 b acquires a shadow image from the particle imaging device 1. The association unit 21c associates the same particles in the surface image and the shadow image. The classification unit 21d classifies particles based on the surface image. For example, it is classified whether each imaged particle is spherical, plate-shaped, uneven, or fluorescent. The particle size calculator 21e calculates the particle size using the shadow image. The particle size calculation target may be all the captured particles, or only particles belonging to a specific classification based on the classification obtained by the classification unit 21d. All particles may be calculated and assigned with classification. The distribution calculation unit 21f calculates the particle size distribution from the particle size of each particle obtained from the particle size calculation unit 21e. The distribution calculation unit 21f calculates the particle size distribution for all captured particles without using classification. The distribution calculation unit 21f may calculate the particle size distribution of particles belonging to a specific classification using the classification. The distribution calculation unit 21f may calculate the particle size distribution of the particles belonging to each classification using a classification. In addition, the distribution calculation unit 21f may calculate the distribution of all particles and the distribution of particles of each classification together. The calculation result of the distribution calculation unit 21f is displayed on the display unit 26.
 インタフェース部24には、粒子撮像装置1の撹拌機112、光源制御部121及び出力部14が接続されている。 The agitator 112, the light source control unit 121, and the output unit 14 of the particle imaging device 1 are connected to the interface unit 24.
 制御装置2は、インタフェース部24に接続された撹拌機112、光源制御部121、カメラ131、又は第1カメラ131及び第2カメラ133を制御する。制御装置2はインタフェース部24を介して、出力部14から出力された陰影画像及び表面画像を取得し、記憶部23に記憶する。 The control device 2 controls the stirrer 112, the light source control unit 121, the camera 131, or the first camera 131 and the second camera 133 connected to the interface unit 24. The control device 2 acquires the shadow image and the surface image output from the output unit 14 via the interface unit 24 and stores them in the storage unit 23.
 記憶部23は、粒子径を測定する粒子の特性データ232を記憶している。特性データ232は例えば、蛍光粒子か否か判定するための画像における信号量の閾値、粒子が正対しているか否かを判定するための画像における信号量の閾値、粒子の表面形状のパターン画像などである。特性データ232は、予め記憶部23に記憶されていてもよい。また、使用者が操作部25を操作することによって閾値が入力され、入力された閾値を記録した特性データ232を記憶部23が記憶してもよい。パターン画像については、使用者がドライブ部27を用いて、記録媒体2aから読み取らせ、記憶部23に記憶させてもよい。 The storage unit 23 stores particle characteristic data 232 for measuring the particle diameter. The characteristic data 232 includes, for example, a signal amount threshold in an image for determining whether or not it is a fluorescent particle, a signal amount threshold in an image for determining whether or not a particle is facing, a pattern image of a particle surface shape, and the like. It is. The characteristic data 232 may be stored in the storage unit 23 in advance. Further, a threshold value may be input by the user operating the operation unit 25, and the storage unit 23 may store characteristic data 232 in which the input threshold value is recorded. The pattern image may be read from the recording medium 2 a by the user using the drive unit 27 and stored in the storage unit 23.
 図9は粒子径測定装置が実行する処理の手順を示すフローチャートである。制御部21は、コンピュータプログラム231を記憶部23からRAM22へロードし、ロードしたコンピュータプログラム231に従って以下の処理を実行する。粒子径測定装置20は使用者が操作部25を操作することによって測定開始の指示を受け付け、測定を開始する(ステップS1)。制御部21は粒子撮像装置1から陰影画像及び表面画像を取得する(ステップS2)。制御部21は陰影画像及び表面画像に写し出されている同一粒子の像の対応付けを行う(ステップS3)。陰影画像及び表面画像は同一の画像から抽出した画像であるから、同じ位置にある画素は同一の被写体を撮像している。対応付けは同じ位置にある画素を対応付ければよい。制御部21は表面画像及び特性データ232を用いて、粒子の分類を行うと共に、粒子径算出の対象としない粒子画像を処理対象から削除する(ステップS4)。例えば、表面画像の信号量が閾値以下の画素の座標値を記憶しておき、陰影画像時、記憶した座標値における画素が処理対象としないときは処理をせず、次の画素の処理に進む。処理対象としない粒子画像とは、正対していない粒子の画像や複数の粒子が重なってしまっている画像などである。粒子の分類はディープラーニングなどの機械学習を用いて行ってもよい。制御部21は陰影画像を用いて粒子径を算出する(ステップS5)。陰影画像の輪郭を抽出し、抽出した輪郭より粒子径を画像上での画素数で求める。そして、既知の手法で、画素数で求めた粒子径を寸法値に変換する。陰影画像から制御部21は算出した粒子径と陰影画像及び表面画像とを対応付けて、分類毎に記憶部23に記憶する(ステップS6)。制御部21は測定を終了するか否かを判定する(ステップS7)。すなわち、制御部21は使用者が操作部25を操作して測定終了を指示したか否かを判定する。制御部21は測定を終了しないと判定した場合(ステップS7でNO)、処理をステップS2に戻し、測定を継続する。制御部21は測定を終了すると判定した場合(ステップS7でYES)、測定を終了する(ステップS8)。制御部21は記憶部23に記憶した測定結果を表示部26に出力する(ステップS9)。なお、ステップS4で粒子径算出の対象としない粒子画像を処理対象から削除するとしたが、それに限らない。すべての粒子の粒子径分布を求め、求めた結果に分類を付与して出力してもよい。更に、全粒子の粒子径の分布から、ある分類、例えば凸凹粒子の粒子分布を引いたものを求めてもよい。同様に、表示部26に表示する結果についても、複数の形態が可能である。例えば、凸凹粒子の粒子径分布のみの表示、全粒子の分布から凸凹粒子の粒子径分布を除いた分布を表示などである。また、全粒子の粒子径分布と凸凹粒子の粒子径分布とを合わせて表示してもよい。グラフの色や線種(破線・点線等)で凹凸粒子と球状粒子を区別できるように表示してもよい。 FIG. 9 is a flowchart showing a procedure of processing executed by the particle size measuring apparatus. The control unit 21 loads the computer program 231 from the storage unit 23 to the RAM 22 and executes the following processing according to the loaded computer program 231. The particle size measuring apparatus 20 receives an instruction to start measurement by the user operating the operation unit 25, and starts measurement (step S1). The control unit 21 acquires a shadow image and a surface image from the particle imaging device 1 (step S2). The control unit 21 associates images of the same particle projected on the shadow image and the surface image (step S3). Since the shadow image and the surface image are images extracted from the same image, the pixels at the same position capture the same subject. The association may be performed by associating pixels at the same position. The control unit 21 classifies the particles using the surface image and the characteristic data 232, and deletes the particle images that are not targeted for particle diameter calculation from the processing targets (step S4). For example, the coordinate value of a pixel whose surface image signal amount is equal to or less than a threshold value is stored, and in the case of a shadow image, if the pixel at the stored coordinate value is not a processing target, the process proceeds to the next pixel. . The particle image not to be processed is an image of particles that are not facing each other or an image in which a plurality of particles are overlapped. Particle classification may be performed using machine learning such as deep learning. The control unit 21 calculates the particle diameter using the shadow image (step S5). The contour of the shadow image is extracted, and the particle diameter is obtained from the extracted contour by the number of pixels on the image. And the particle diameter calculated | required with the number of pixels is converted into a dimension value by a known method. From the shadow image, the control unit 21 associates the calculated particle diameter with the shadow image and the surface image, and stores them in the storage unit 23 for each classification (step S6). The controller 21 determines whether or not to end the measurement (step S7). That is, the control unit 21 determines whether the user has operated the operation unit 25 to instruct the end of measurement. When it is determined that the measurement is not finished (NO in step S7), the control unit 21 returns the process to step S2 and continues the measurement. When it is determined that the measurement is to be ended (YES in step S7), the control unit 21 ends the measurement (step S8). The control unit 21 outputs the measurement result stored in the storage unit 23 to the display unit 26 (step S9). In addition, although the particle image which is not targeted for the particle diameter calculation in step S4 is deleted from the processing target, the present invention is not limited to this. The particle size distribution of all particles may be obtained, and the obtained result may be classified and output. Furthermore, you may obtain | require what subtracted a certain classification, for example, the particle distribution of uneven | corrugated particle | grains, from the distribution of the particle diameter of all the particles. Similarly, the result displayed on the display unit 26 can have a plurality of forms. For example, display of only the particle size distribution of uneven particles, display of a distribution obtained by removing the particle size distribution of uneven particles from the distribution of all particles, and the like. Alternatively, the particle size distribution of all particles and the particle size distribution of uneven particles may be displayed together. You may display so that uneven | corrugated particle | grains and spherical particle | grains can be distinguished with the color and line | wire type (a broken line, a dotted line, etc.) of a graph.
 図10は粒子径分布の表示例を示すグラフである。横軸は粒子径である。縦軸は頻度である。グラフG1は全粒子の粒子径分布を示す。グラフG2は凸凹粒子の粒子径分布を示す。グラフG3は球状粒子の粒子径分布を示す。このように、分類毎にグラフ表示を行うことで分類毎の粒子径の分布を的確に把握可能となる。 FIG. 10 is a graph showing a display example of the particle size distribution. The horizontal axis is the particle size. The vertical axis is frequency. Graph G1 shows the particle size distribution of all particles. Graph G2 shows the particle size distribution of the uneven particles. Graph G3 shows the particle size distribution of the spherical particles. As described above, by performing graph display for each classification, the particle size distribution for each classification can be accurately grasped.
 粒子径測定装置20においては、粒子撮像装置1から得た陰影画像により、粒子径の算出が可能となる。また、表面画像を用いて、粒子の分類を行うと共に、粒子径算出の対象としない粒子画像を処理対象から削除するので、粒子径分布をより正しく算出することが可能となる。 In the particle diameter measuring apparatus 20, the particle diameter can be calculated from the shadow image obtained from the particle imaging apparatus 1. In addition, particle classification is performed using the surface image, and particle images that are not targeted for particle size calculation are deleted from the processing target, so that the particle size distribution can be calculated more correctly.
 (複式粒子径測定装置)
 粒子径の測定を行う装置として、レーザ回折/散乱式の粒子径測定装置が提案されている。以下では、上述の粒子撮像装置1をレーザ回折/散乱式の粒子径測定装置に組み込むことにより実現する複式粒子径測定装置について、説明する。
(Dual particle size measuring device)
As a device for measuring the particle size, a laser diffraction / scattering particle size measuring device has been proposed. Hereinafter, a dual particle size measuring device that is realized by incorporating the particle imaging device 1 described above into a laser diffraction / scattering particle size measuring device will be described.
 図11は複式粒子径測定装置の概略構成を示す説明図である。複式粒子径測定装置200は本体210、開閉蓋211、212、チェンジャーユニット(保持体)220、分散バス240、供給管241、回収管242を含む。本体210は筐体に、レーザ光源、複数の光検出器、演算装置、及び電源等を収めたものである。レーザ光源は第1収容セル中の粒子群に光を照射する。複数の光検出器(光強度信号出力部)は離散配置され、光を第1収容セル中の粒子群に照射することによって発生する回折又は/及び散乱光の強度を検出する。演算装置は光検出器から出力される光強度信号に基づいて粒子群の粒子径分布を算出する。チェンジャーユニット220は試料を収容したセルを複数設置可能なテーブルである。開閉蓋211、212はチェンジャーユニット220の出し入れを容易にするために設けた開閉可能な蓋である。分散バス240は測定対象となる粒子を分散させた分散媒(試料)を撹拌する。供給管241は分散バス240で撹拌された試料をセルに供給する。回収管242はセルを循環した試料を分散バス240に回収する。分散バス240、供給管241、回収管242及び後述する連結管243は、循環機構の構成する部品である。 FIG. 11 is an explanatory diagram showing a schematic configuration of a dual particle size measuring apparatus. The dual particle size measuring apparatus 200 includes a main body 210, opening / closing lids 211 and 212, a changer unit (holding body) 220, a dispersion bath 240, a supply pipe 241 and a recovery pipe 242. The main body 210 is a housing in which a laser light source, a plurality of photodetectors, an arithmetic device, a power source, and the like are housed. The laser light source irradiates the particle group in the first containing cell with light. The plurality of photodetectors (light intensity signal output units) are discretely arranged to detect the intensity of diffraction or / and scattered light generated by irradiating the particle group in the first containing cell with light. The arithmetic device calculates the particle size distribution of the particle group based on the light intensity signal output from the photodetector. The changer unit 220 is a table on which a plurality of cells containing samples can be installed. The open / close lids 211 and 212 are lids that can be opened and closed to facilitate the insertion and removal of the changer unit 220. The dispersion bath 240 agitates a dispersion medium (sample) in which particles to be measured are dispersed. The supply pipe 241 supplies the sample stirred by the dispersion bath 240 to the cell. The collection tube 242 collects the sample circulated through the cell in the dispersion bath 240. The distribution bus 240, the supply pipe 241, the recovery pipe 242, and the connection pipe 243 described later are components constituting the circulation mechanism.
 図12はチェンジャーユニットの概略構成を示す説明図である。チェンジャーユニット220は平板状のベース221を備える。ベース221上に第1収容セル222、第2収容セル223を着脱可能に設置可能である。図12に示すように第1収容セル222と第2収容セル223は高低差を設けて設置してある。第2収容セル223は第1収容セル222よりも高い位置としてある。第1収容セル222はレーザ回折/散乱式で粒子径測定を行うために、試料を収容するセルである。第1収容セル222の受入口(第1受入口)2221より供給管241を介して、試料が供給される。試料は第1収容セル222の送出口(第1送出口)2222から排出され、連結管243を介して、受入口(第2受入口)2231より第2収容セル223に供給される。第2収容セル223の送出口(第2送出口)2232から排出された試料は回収管242により分散バス240に回収される。第1収容セル222の受入口2221及び送出口2222、並びに、第2収容セル223の受入口2231及び送出口2223のそれぞれの位置は、当該記載順に高い位置となっている。チェンジャーユニット220には、カメラ224、レンズ225、ミラー226などが設置してある。その他、光源、光源制御部などが設置してある。これらにより、上述の粒子撮像装置1(撹拌機を除く)が構成されている。 FIG. 12 is an explanatory diagram showing a schematic configuration of the changer unit. The changer unit 220 includes a flat base 221. The first storage cell 222 and the second storage cell 223 can be detachably installed on the base 221. As shown in FIG. 12, the first storage cell 222 and the second storage cell 223 are installed with a height difference. The second storage cell 223 is positioned higher than the first storage cell 222. The first storage cell 222 is a cell that stores a sample in order to perform particle size measurement by a laser diffraction / scattering method. A sample is supplied from the receiving port (first receiving port) 2221 of the first storage cell 222 through the supply pipe 241. The sample is discharged from the delivery port (first delivery port) 2222 of the first storage cell 222 and is supplied to the second storage cell 223 from the reception port (second reception port) 2231 through the connection pipe 243. The sample discharged from the delivery port (second delivery port) 2232 of the second storage cell 223 is collected in the dispersion bath 240 by the collection tube 242. The positions of the reception port 2221 and the transmission port 2222 of the first storage cell 222 and the reception port 2231 and the transmission port 2223 of the second storage cell 223 are higher in the order of description. The changer unit 220 is provided with a camera 224, a lens 225, a mirror 226, and the like. In addition, a light source, a light source control unit, and the like are installed. These constitute the particle imaging device 1 described above (excluding the stirrer).
 演算装置は、粒子撮像装置1が出力した表面画像から粒子を分類し、粒子撮像装置1が出力した陰影画像を用いて、粒子径を算出する。 The computing device classifies particles from the surface image output by the particle imaging device 1 and calculates the particle diameter using the shadow image output by the particle imaging device 1.
 以上のように、複式粒子径測定装置200は、同一の資料に対して、一度の測定作業により、レーザ回折/散乱式の粒子径測定と、画像式の粒子径測定とを行うことが可能となる。短時間で複数の分析が行える。また、レーザ回折/散乱式で測定した粒子径分布と画像式で測定した粒子径分布との演算を行い、双方の特性を生かした新たな分布を求めてもよい。 As described above, the dual particle size measuring apparatus 200 can perform laser diffraction / scattering type particle size measurement and image type particle size measurement on the same material by a single measurement operation. Become. Multiple analyzes can be performed in a short time. Alternatively, a new distribution utilizing both characteristics may be obtained by calculating the particle size distribution measured by the laser diffraction / scattering method and the particle size distribution measured by the image method.
 各実施の形態で記載されている技術的特徴(構成要件)はお互いに組み合わせ可能であり、組み合わせすることにより、新しい技術的特徴を形成することができる。
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
The technical features (components) described in each embodiment can be combined with each other, and a new technical feature can be formed by combining them.
The embodiments disclosed herein are illustrative in all respects and should not be considered restrictive. The scope of the present invention is defined not by the above-described meaning but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 1    粒子撮像装置
 11   収容部
 12   光照射部
 13   撮像部
 14   出力部
 2    制御装置
 21   制御部
 22   RAM
 23   記憶部
 24   インタフェース部
 25   操作部
 26   表示部
 27   ドライブ部
 20   粒子径測定装置
 200  複式粒子径測定装置
 
DESCRIPTION OF SYMBOLS 1 Particle imaging device 11 Storage part 12 Light irradiation part 13 Imaging part 14 Output part 2 Control apparatus 21 Control part 22 RAM
DESCRIPTION OF SYMBOLS 23 Memory | storage part 24 Interface part 25 Operation part 26 Display part 27 Drive part 20 Particle diameter measuring apparatus 200 Duplex particle diameter measuring apparatus

Claims (22)

  1.  分散媒中で粒子が分散している試料へ波長が第1波長である第1の光、並びに波長が第2波長である光を含む第2の光を異なる方向から照射する照射部と、
     前記第1の光、前記第2の光に照らされた前記粒子を撮像する撮像部と、
     粒子径分布を算出するために撮像した画像を出力する出力部と
     を備え、
     前記第1の光の放射面は前記試料を間にして、前記撮像部に対向する位置に設けられ、かつ、前記第2の光の放射面は、前記試料を基準として前記撮像部と同じ側から前記試料を照明する位置に設けてある
     ことを特徴とする粒子撮像装置。
    An irradiation unit that irradiates the sample in which the particles are dispersed in the dispersion medium with the first light having the first wavelength and the second light including the light having the second wavelength from different directions;
    An imaging unit that images the particles illuminated by the first light and the second light;
    An output unit for outputting a captured image to calculate a particle size distribution,
    The emission surface of the first light is provided at a position facing the imaging unit with the sample interposed therebetween, and the emission surface of the second light is on the same side as the imaging unit with respect to the sample. A particle imaging device, wherein the particle imaging device is provided at a position to illuminate the sample.
  2.  前記第1波長は緑色波長域に含まれ、前記第2波長は赤色波長域に又は青色波長域に含まれる
     ことを特徴とする請求項1に記載の粒子撮像装置。
    The particle imaging apparatus according to claim 1, wherein the first wavelength is included in a green wavelength range, and the second wavelength is included in a red wavelength range or a blue wavelength range.
  3.  前記第2の光は、波長が第2波長である光、及び波長が第3波長である光が含まれる混合光であり、
     前記第1波長は緑色波長域に含まれ、前記第2波長は赤色波長域に含まれ、前記第3波長は青色波長域に含まれる
     ことを特徴とする請求項1に記載の粒子撮像装置。
    The second light is mixed light including light having a second wavelength and light having a third wavelength;
    2. The particle imaging apparatus according to claim 1, wherein the first wavelength is included in a green wavelength range, the second wavelength is included in a red wavelength range, and the third wavelength is included in a blue wavelength range.
  4.  前記照射部は前記第1の光を発する第1光源、白色の光を発する白色光源、該白色光源が発した光のうち前記第1の光を遮蔽する光学フィルタ、及び前記試料を挟んで前記第1光源に対向するハーフミラーを備え、
     前記撮像部は前記ハーフミラーを介して、前記第1の光及び前記混合光に照らされた前記粒子を撮像する
     ことを特徴とする請求項3に記載の粒子撮像装置。
    The irradiation unit includes a first light source that emits the first light, a white light source that emits white light, an optical filter that shields the first light among light emitted from the white light source, and the sample sandwiched between the light source and the sample. A half mirror facing the first light source;
    The particle imaging apparatus according to claim 3, wherein the imaging unit images the particles illuminated by the first light and the mixed light via the half mirror.
  5.  前記照射部は白色の光を発する白色光源、前記第1の光を透過し、前記混合光を反射する光学ミラー、該光学ミラーが反射した前記混合光を、前記試料を間にして前記白色光源に対向する位置から前記試料に照明するミラー群、及び前記試料を間にして前記光学ミラーに対向する位置から設けられたハーフミラーを備え、
     前記撮像部は前記ハーフミラーを介して、前記第1の光及び前記混合光に照らされた前記粒子を撮像する
     ことを特徴とする請求項3に記載の粒子撮像装置。
    The irradiation unit includes a white light source that emits white light, an optical mirror that transmits the first light and reflects the mixed light, and the mixed light reflected by the optical mirror is placed between the sample and the white light source. A mirror group that illuminates the sample from a position that faces the optical mirror, and a half mirror provided from a position that faces the optical mirror with the sample in between,
    The particle imaging apparatus according to claim 3, wherein the imaging unit images the particles illuminated by the first light and the mixed light via the half mirror.
  6.  前記照射部は前記第1の光を発する第1光源、及び前記試料を挟んで前記第1光源に対向する前記混合光を発する第2光源を備え、
     前記撮像部は、前記試料を挟んで前記第1光源に対向し前記第1の光に照らされた前記粒子を撮像する第1撮像部、及び、前記試料を挟んで前記第2光源に対向し、前記混合光に照らされた前記粒子を撮像する第2撮像部を含む
     ことを特徴とする請求項3に記載の粒子撮像装置。
    The irradiation unit includes a first light source that emits the first light, and a second light source that emits the mixed light that faces the first light source across the sample,
    The imaging unit is opposed to the first light source across the sample and the first imaging unit that images the particles illuminated by the first light, and opposed to the second light source across the sample. The particle imaging apparatus according to claim 3, further comprising: a second imaging unit that images the particles illuminated by the mixed light.
  7.  前記照射部は、前記第1の光、及び、前記第2の光を同期して間欠的に照射するようしてある
     ことを特徴とする請求項1から請求項6の何れか一つに記載の粒子撮像装置。
    The said irradiation part radiates | emits the said 1st light and the said 2nd light intermittently synchronously. The any one of Claims 1-6 characterized by the above-mentioned. Particle imaging device.
  8.  前記照射部は、前記第2の光の照射口周辺から前記試料を波長が第3波長である第3の光で照射する
     ことを特徴とする請求項1に記載の粒子撮像装置。
    2. The particle imaging apparatus according to claim 1, wherein the irradiation unit irradiates the sample with a third light having a third wavelength from the vicinity of an irradiation port of the second light.
  9.  前記第1波長は緑色波長域に含まれ、前記第2波長は赤色波長域に含まれ、前記第3波長は青色波長域に含まれる
     ことを特徴とする請求項8に記載の粒子撮像装置。
    The particle imaging apparatus according to claim 8, wherein the first wavelength is included in a green wavelength range, the second wavelength is included in a red wavelength range, and the third wavelength is included in a blue wavelength range.
  10.  前記照射部は、前記第1の光、前記第2の光、及び前記第3の光を同期して間欠的に照射するよう前記第1乃至第3の光の光源を制御する
     ことを特徴とする請求項8又は請求項9に記載の粒子撮像装置。
    The irradiation unit controls the light sources of the first to third lights so as to intermittently irradiate the first light, the second light, and the third light synchronously. The particle imaging device according to claim 8 or 9.
  11.  分散媒中に分散させた粒子群を収容する第1収容セルと、その第1収容セル中の粒子群に光を照射する光源と、その光の照射によって発生する回折又は/及び散乱光の強度を検出する離散配置した複数の光検出器と、前記光検出器から出力される光強度信号に基づいて前記粒子群の粒子径分布を算出する演算装置と、前記粒子群を前記分散媒に分散させてなる試料液を前記第1収容セルに循環供給する循環機構とを備えたレーザ回析/散乱式粒子径測定装置に組み込まれるものであって、
     前記試料を収容する第2収容セルと、
     該第2収容セルに設けられ、前記循環機構を介して前記第1収容セルから流出された前記試料液を前記試料として受け入れる受入口と、
     前記第2収容セルに設けられ、前記受け入れた前記試料を前記循環機構へ送出する送出口と
     を更に備える
     ことを特徴とする請求項1から請求項10の何れか一項に記載の粒子撮像装置。
    A first storage cell that stores a group of particles dispersed in a dispersion medium, a light source that irradiates light to the group of particles in the first storage cell, and the intensity of diffraction or / and scattered light generated by the irradiation of the light A plurality of photodetectors arranged in a discrete manner, an arithmetic device for calculating a particle size distribution of the particle group based on a light intensity signal output from the photodetector, and dispersing the particle group in the dispersion medium And a laser diffraction / scattering particle size measuring device equipped with a circulation mechanism that circulates and supplies the sample liquid to the first storage cell,
    A second storage cell for storing the sample;
    A receiving port provided in the second storage cell for receiving the sample liquid flowing out from the first storage cell via the circulation mechanism as the sample;
    The particle imaging apparatus according to any one of claims 1 to 10, further comprising: a delivery port provided in the second storage cell and sending the received sample to the circulation mechanism. .
  12.  請求項1から請求項10の何れか一項に記載の粒子撮像装置と、
     前記粒子撮像装置の前記撮像部により得られた前記第1の光及び前記第2の光に照らされた前記粒子の画像を取得部と、
     取得した前記第1の光に照らされた前記粒子が写し出されている第1画像から粒子径を算出する算出部と、
     前記第1画像及び前記第2の光に照らされた前記粒子が写し出されている第2画像、並びに算出した粒子径を出力する結果出力部と
     を備えることを特徴とする粒子径測定装置。
    The particle imaging device according to any one of claims 1 to 10,
    An acquisition unit for obtaining an image of the particles illuminated by the first light and the second light obtained by the imaging unit of the particle imaging device;
    A calculation unit that calculates a particle diameter from a first image in which the particles illuminated by the acquired first light are projected;
    A particle diameter measuring apparatus comprising: the first image; a second image in which the particles illuminated by the second light are projected; and a result output unit that outputs the calculated particle diameter.
  13.  分散媒中に分散させた粒子群を収容する収容セルと、その収容セル中の粒子群に光を照射する光源と、その光の照射によって発生する回折又は/及び散乱光の強度を検出する離散配置した複数の光検出器と、前記光検出器から出力される光強度信号に基づいて前記粒子群の粒子径分布を算出する演算装置と、前記粒子群を前記分散媒に分散させてなる試料液を前記収容セルに循環供給する循環機構とを備えたレーザ回析/散乱式粒子径測定装置と、
     請求項12に記載の粒子径測定装置と
     を備えることを特徴とする複式粒子径測定装置。
    A storage cell that stores a group of particles dispersed in a dispersion medium, a light source that irradiates light to the particle group in the storage cell, and a discrete that detects the intensity of diffraction or / and scattered light generated by the irradiation of the light A plurality of photodetectors, an arithmetic device that calculates a particle size distribution of the particle group based on a light intensity signal output from the photodetector, and a sample in which the particle group is dispersed in the dispersion medium A laser diffraction / scattering particle size measuring device comprising a circulation mechanism for circulating and supplying the liquid to the containing cell;
    A dual particle size measuring device comprising: the particle size measuring device according to claim 12.
  14.  請求項1から請求項11の何れか一項に記載の粒子撮像装置の前記撮像部により得られた前記第1の光及び前記第2の光に照らされた前記粒子の画像を取得し、
     取得した前記第1の光に照らされた前記粒子が写し出されている第1画像から粒子径を算出し、
     前記第1画像及び前記第2の光に照らされた前記粒子が写し出されている第2画像、並びに算出した粒子径を出力する
     処理をコンピュータに行わせることを特徴とするコンピュータプログラム。
    An image of the particles illuminated by the first light and the second light obtained by the imaging unit of the particle imaging device according to any one of claims 1 to 11,
    Calculating a particle diameter from the first image in which the particles illuminated by the acquired first light are projected;
    A computer program for causing a computer to perform processing for outputting the first image, the second image in which the particles illuminated by the second light are projected, and the calculated particle diameter.
  15.  前記第2画像を用いて、前記粒子を分類し、
     分類結果を前記第1画像と共に出力する
     ことを特徴とする請求項14に記載のコンピュータプログラム。
    Using the second image to classify the particles;
    The computer program according to claim 14, wherein a classification result is output together with the first image.
  16.  分類毎に、前記第1画像から算出した粒子径を算出し、
     分類毎の粒子径を出力する
     ことを特徴とする請求項15に記載のコンピュータプログラム。
    For each classification, calculate the particle size calculated from the first image,
    The computer program according to claim 15, wherein the particle size for each classification is output.
  17.  前記第2画像における信号量が所定値以上の前記粒子のみを、粒子径の算出対象とする
     ことを特徴とする請求項14に記載のコンピュータプログラム。
    The computer program according to claim 14, wherein only the particles having a signal amount in the second image equal to or greater than a predetermined value are targeted for particle diameter calculation.
  18.  分散媒中で粒子が分散している試料に、波長が第1波長である第1の光及び波長が第2波長である光を含む第2の光を、それぞれの光の放射面が前記試料を間にして対向するような位置より照射し、
     前記第1の光及び前記第2の光に照らされた前記粒子を撮像し、
     前記第1の光に照らされた前記粒子の陰影が写し出されている陰影画像と、前記第2の光に照らされた前記粒子の表面が映し出されている表面画像とを取得し、
     前記陰影画像から算出した粒子径、及び前記表面画像を出力する
     ことを特徴とする粒子観察方法。
    In a sample in which particles are dispersed in a dispersion medium, the first light having a wavelength of the first wavelength and the second light including light having a wavelength of the second wavelength are used. Irradiate from a position facing each other with
    Imaging the particles illuminated by the first light and the second light;
    Obtaining a shadow image in which the shadow of the particle illuminated by the first light is projected and a surface image in which the surface of the particle illuminated by the second light is projected;
    A particle observation method, wherein the particle diameter calculated from the shadow image and the surface image are output.
  19.  前記試料を収容する第1収容セル中の粒子群に光を照射する第1光源、
     照射した光の照射によって発生する回折又は/及び散乱光の強度を検出する光検出器、及び、
     前記光検出器から出力される光強度信号に基づいて前記粒子群の粒子径分布を算出する演算装置へ光強度信号を出力する光強度信号出力部、
     前記照射部が、前記試料を収容する第2収容セル中の前記粒子群に前記第1の光と前記第2の光とを照射するようしてある請求項1に記載の粒子撮像装置、並びに、
     前記第1収容セル及び前記第2収容セルを保持する保持体、及び、
     前記第1収容セル及び前記第2収容セル間を接続し前記試料を受け渡しする連結管
     を備え、
     前記第1収容セルと前記第2収容セルとは、底面の高さ位置に異なるように配置してあることを特徴とする複式粒子測定装置。
    A first light source for irradiating light to a particle group in a first containing cell containing the sample;
    A photodetector for detecting the intensity of diffraction or / and scattered light generated by irradiation of the irradiated light; and
    A light intensity signal output unit that outputs a light intensity signal to a computing device that calculates a particle size distribution of the particle group based on a light intensity signal output from the photodetector;
    2. The particle imaging apparatus according to claim 1, wherein the irradiation unit irradiates the first light and the second light to the particle group in a second storage cell that stores the sample, and ,
    A holding body for holding the first storage cell and the second storage cell; and
    A connecting pipe for connecting the first storage cell and the second storage cell and delivering the sample;
    The double particle measuring apparatus, wherein the first containing cell and the second containing cell are arranged so as to be different from each other at the height of the bottom surface.
  20.  前記第2収容セルの底面は、前記第1収容セルの底面よりも高い位置に配置してある
     ことを特徴とする請求項19に記載の複式粒子測定装置。
    The double particle measuring apparatus according to claim 19, wherein the bottom surface of the second storage cell is disposed at a position higher than the bottom surface of the first storage cell.
  21.  前記試料を循環供給する循環機構を備え、
     前記第1収容セルは前記循環機構から前記試料を受け入れる第1受入口と、前記試料を送り出す第1送出口とを備え、
     前記第2収容セルは前記第1収容セルから送り出された前記試料を受け入れる第2受入口と、前記試料を前記循環機構へ送出する第2送出口とを備え、
     前記第1受入口、前記第1送出口、前記第2受入口、前記第2送出口の順に夫々の口の高さ位置が高くなっている
     ことを特徴とする請求項20に記載の複式粒子測定装置。
    A circulation mechanism for circulating the sample;
    The first storage cell includes a first receiving port for receiving the sample from the circulation mechanism, and a first sending port for sending the sample.
    The second storage cell includes a second receiving port for receiving the sample sent from the first storage cell, and a second sending port for sending the sample to the circulation mechanism,
    21. The composite particle according to claim 20, wherein the height positions of the respective mouths are higher in the order of the first receiving port, the first sending port, the second receiving port, and the second sending port. measuring device.
  22.  前記保持体を収容する筐体を備え、
     該筐体は前記保持体を着脱可能に収容する
     ことを特徴とする請求項19から請求項21のいずか一項に記載の複式粒子測定装置。
     
    A housing for housing the holding body;
    The compound particle measuring device according to any one of claims 19 to 21, wherein the housing detachably accommodates the holding body.
PCT/JP2019/020860 2018-06-01 2019-05-27 Particle imaging device, particle size measuring device, duplex particle size measuring device, computer program, particle observation method, and duplex particle measuring device WO2019230636A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020522174A JP6982175B2 (en) 2018-06-01 2019-05-27 Particle imager, particle size measuring device, compound particle size measuring device, computer program, particle observation method, and compound particle measuring device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-106345 2018-06-01
JP2018106345 2018-06-01
JP2018-199546 2018-10-23
JP2018199546 2018-10-23

Publications (1)

Publication Number Publication Date
WO2019230636A1 true WO2019230636A1 (en) 2019-12-05

Family

ID=68696950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020860 WO2019230636A1 (en) 2018-06-01 2019-05-27 Particle imaging device, particle size measuring device, duplex particle size measuring device, computer program, particle observation method, and duplex particle measuring device

Country Status (2)

Country Link
JP (1) JP6982175B2 (en)
WO (1) WO2019230636A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113702813A (en) * 2021-09-18 2021-11-26 深钛智能科技(苏州)有限公司 Mixed light generation system for chip testing
US11195299B2 (en) * 2017-09-12 2021-12-07 Nec Corporation Image processing device, image processing method and storage medium
WO2022163230A1 (en) * 2021-01-26 2022-08-04 株式会社堀場製作所 Particle diameter estimation method, learning model generation method, particle diameter estimation device, and computer program
WO2023189169A1 (en) * 2022-03-31 2023-10-05 株式会社堀場製作所 Particle analyzing device, particle analysis method, and particle analysis program
JP7442798B2 (en) 2020-03-27 2024-03-05 株式会社ナガセインテグレックス Abrasive grain inspection method and abrasive grain inspection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048120A (en) * 1996-07-31 1998-02-20 Toa Medical Electronics Co Ltd Particle analyzer
WO2004086503A1 (en) * 2003-03-27 2004-10-07 Green Vision Systems Ltd. Generating intra-particle crystallographic parameter maps and histograms of a chemically pure crystalline particulate substance
WO2013002223A1 (en) * 2011-06-27 2013-01-03 シスメックス株式会社 Cell analyzer
JP2013535686A (en) * 2010-08-05 2013-09-12 アボット ポイント オブ ケア インコーポレイテッド Method and apparatus for automated whole blood sample analysis from microscopic images
JP2014089119A (en) * 2012-10-30 2014-05-15 Kubota Corp Granular material inspection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048120A (en) * 1996-07-31 1998-02-20 Toa Medical Electronics Co Ltd Particle analyzer
WO2004086503A1 (en) * 2003-03-27 2004-10-07 Green Vision Systems Ltd. Generating intra-particle crystallographic parameter maps and histograms of a chemically pure crystalline particulate substance
JP2013535686A (en) * 2010-08-05 2013-09-12 アボット ポイント オブ ケア インコーポレイテッド Method and apparatus for automated whole blood sample analysis from microscopic images
WO2013002223A1 (en) * 2011-06-27 2013-01-03 シスメックス株式会社 Cell analyzer
JP2014089119A (en) * 2012-10-30 2014-05-15 Kubota Corp Granular material inspection device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11195299B2 (en) * 2017-09-12 2021-12-07 Nec Corporation Image processing device, image processing method and storage medium
JP7442798B2 (en) 2020-03-27 2024-03-05 株式会社ナガセインテグレックス Abrasive grain inspection method and abrasive grain inspection device
WO2022163230A1 (en) * 2021-01-26 2022-08-04 株式会社堀場製作所 Particle diameter estimation method, learning model generation method, particle diameter estimation device, and computer program
CN113702813A (en) * 2021-09-18 2021-11-26 深钛智能科技(苏州)有限公司 Mixed light generation system for chip testing
CN113702813B (en) * 2021-09-18 2023-06-20 深钛智能科技(苏州)有限公司 Mixed light generating system for chip test
WO2023189169A1 (en) * 2022-03-31 2023-10-05 株式会社堀場製作所 Particle analyzing device, particle analysis method, and particle analysis program

Also Published As

Publication number Publication date
JPWO2019230636A1 (en) 2021-05-20
JP6982175B2 (en) 2021-12-17

Similar Documents

Publication Publication Date Title
WO2019230636A1 (en) Particle imaging device, particle size measuring device, duplex particle size measuring device, computer program, particle observation method, and duplex particle measuring device
JP5806504B2 (en) Imaging apparatus and microscope system including the same
JP5703609B2 (en) Microscope and region determination method
US8842173B2 (en) Biological image acquisition device
US10539773B2 (en) Imaging system for counting and sizing particles in fluid-filled vessels
JP7003241B2 (en) Paste slide judgment system
JP6560694B2 (en) microscope
US10116848B2 (en) Illumination and imaging system for imaging raw samples with liquid in a sample container
JP2022084889A (en) Slide inventory and reinsertion system
JP2011095181A (en) Particle analyzer
EP3431966B1 (en) Display device for photometric analyzer
JP4043417B2 (en) Particle size measuring device
US20200026316A1 (en) Imaging apparatus, imaging system, and imaging method
JP2019020362A (en) Spectrofluoro-photometer, and spectrofluorometric measurement and image capturing method
WO2015042523A1 (en) Diagnostic apparatus for capturing medical specimen image
JP2022132488A (en) Device, method and program
JP2014523545A (en) Microscope system and method for in vivo imaging
EP3511773B1 (en) Image inspection device and illumination device
JP2019508746A (en) Imaging system and method with scattering to reduce source autofluorescence and improve uniformity
WO2021177446A1 (en) Signal acquisition apparatus, signal acquisition system, and signal acquisition method
JP2005164815A (en) Optical device
CN110967821A (en) Microscope device
JP2013109205A (en) Image detection device
JP2021044694A (en) Fluorescence photography device
JP6867916B2 (en) Observation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810329

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020522174

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810329

Country of ref document: EP

Kind code of ref document: A1