WO2019230571A1 - Vapor deposition material containing silicon oxide, and method for producing base material provided with silicon oxide layer using same - Google Patents

Vapor deposition material containing silicon oxide, and method for producing base material provided with silicon oxide layer using same Download PDF

Info

Publication number
WO2019230571A1
WO2019230571A1 PCT/JP2019/020544 JP2019020544W WO2019230571A1 WO 2019230571 A1 WO2019230571 A1 WO 2019230571A1 JP 2019020544 W JP2019020544 W JP 2019020544W WO 2019230571 A1 WO2019230571 A1 WO 2019230571A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon oxide
group
vapor deposition
deposition material
surface layer
Prior art date
Application number
PCT/JP2019/020544
Other languages
French (fr)
Japanese (ja)
Inventor
万江美 岩橋
博之 土屋
貴人 梶原
裕 黒岩
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2019230571A1 publication Critical patent/WO2019230571A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Definitions

  • the present invention relates to a silicon oxide-containing vapor deposition material, a method for producing a substrate with a silicon oxide layer using the same, and a method for producing a substrate with a surface layer.
  • a technique for providing a surface layer having a target performance on a base material in order to modify the surface of various base materials is known.
  • the surface layer is required to have durability such as wear resistance, and a technique for imparting durability to the surface layer is also known.
  • Patent Document 1 uses a perfluoro (poly) ether group-containing silane compound having a specific structure as a surface treatment layer having water repellency, oil repellency, antifouling properties and excellent friction durability.
  • Patent Document 2 discloses a surface treatment layer having an outermost layer and a lower layer, wherein the outermost layer is formed of a surface treatment agent containing an isocyanate silane compound as an essential component, and is a lower layer provided between the outermost layer and the substrate. Describes a technique for improving the long-term durability of water repellency and antifouling properties by forming a surface treatment agent containing a silane compound such as Si (NCO) 4 .
  • a silane compound such as Si (NCO) 4
  • the inventors of the present invention obtained an article obtained using a known technique has good surface layer film formability and sufficient performance in the initial state. As a result, it was found that the performance disappeared.
  • the present invention has been made from the above viewpoint, and relates to an underlayer provided between the substrate and the surface layer, particularly a silicon oxide layer, in order to improve the durability of the surface layer provided on the substrate.
  • An object of the present invention is to provide a vapor deposition material capable of forming an underlayer capable of imparting sufficient durability to the surface layer, particularly a silicon oxide layer.
  • the present invention relates to a method for producing a substrate with a silicon oxide layer capable of imparting sufficient durability to a surface layer formed on a silicon oxide layer as an underlayer, and a surface layer with a surface layer having sufficient durability. It is an object to provide a method for manufacturing a base material.
  • the component obtained by removing the platinum group metal from the vapor deposition material is expressed in terms of mass% in terms of oxide, SiO 2 is 65 to 75%, Na 2 O is 1 to 20%, CaO is 5 to 32%,
  • a silicon oxide layer is formed on a substrate by vacuum deposition using a vapor deposition material containing silicon oxide as a main component and containing 0.03 to 800 ppm by mass of a platinum group metal in a ratio to the silicon oxide.
  • the manufacturing method of the base material with a silicon oxide layer including this.
  • a surface comprising forming a surface layer using an organic compound having a group capable of reacting with silicon oxide on the silicon oxide layer of the substrate with a silicon oxide layer obtained by the production method according to claim 9 The manufacturing method of a base material with a layer.
  • Q is a (k + 1) -valent linking group, and k is an integer of 1 to 10.
  • R is a monovalent hydrocarbon group.
  • L is a hydrolyzable group or a hydroxyl group.
  • n is an integer of 0-2.
  • Z 1 is a single bond or an oxyfluoroalkylene group having 1 to 20 carbon atoms or a poly (oxyfluoroalkylene) group in which one or more hydrogen atoms are substituted with fluorine atoms.
  • R f is a perfluoroalkylene group.
  • m is an integer of 2 to 200.
  • Z 2 is a (j + q) -valent linking group, j is an integer of 1 or more, and q is an integer of 1 or more.
  • the present invention in order to improve the durability of the surface layer provided on the base material, the underlying layer provided between the base material and the surface layer, in particular, oxidation that can impart sufficient durability to the surface layer.
  • An evaporation material capable of forming a silicon layer can be provided.
  • the present invention provides a method for producing a substrate with a silicon oxide layer capable of imparting sufficient durability to a surface layer formed on a silicon oxide layer as an underlayer, and a surface on which the surface layer has sufficient durability Provision of the manufacturing method of a base material with a layer can be provided.
  • “ ⁇ ” representing a numerical range is a range including the lower limit and the upper limit.
  • “Mean particle diameter” is the D 50. D 50 represents the particle size when the cumulative amount occupies 50% on a volume basis in the cumulative particle size curve of the particle size distribution measured using a laser diffraction / scattering type particle size distribution measuring apparatus.
  • the “reactive silyl group” means a group (hydrolyzable silyl group) and a silanol group that can form a silanol group (Si—OH) by a hydrolysis reaction.
  • —SiR n L 3-n in Formula 1 For example, —SiR n L 3-n in Formula 1.
  • the “etheric oxygen atom” means an oxygen atom that forms an ether bond (—O—) between carbon-carbon atoms. In the chemical formula of the oxyperfluoroalkylene group, the oxygen atom is described on the right side of the perfluoroalkylene group.
  • the “divalent organopolysiloxane residue” is a group represented by the following formula.
  • R a in the following formula is an alkyl group (preferably having 1 to 10 carbon atoms) or a phenyl group.
  • G1 is an integer of 1 or more, preferably 1 to 9, and particularly preferably 1 to 4.
  • the “silphenylene skeleton group” is a group represented by —Si (R b ) 2 PhSi (R b ) 2 — (where Ph is a phenylene group and R b is a monovalent organic group). It is. R b is preferably an alkyl group (preferably having 1 to 10 carbon atoms).
  • the “dialkylsilylene group” is a group represented by —Si (R c ) 2 — (wherein R c is an alkyl group (preferably having 1 to 10 carbon atoms)).
  • the “number average molecular weight” of the fluorinated ether compound is calculated by determining the number (average value) of oxyperfluoroalkylene groups based on the end groups by 1 H-NMR and 19 F-NMR using NMR analysis. Is done.
  • the vapor deposition material of the present invention is typically used for vacuum vapor deposition.
  • Vacuum deposition is one of the film formation techniques, and is a technique for forming a vapor deposition layer by heating and vaporizing a vapor deposition material in a high vacuum and attaching the vapor deposition material that has become a gas to the substrate surface.
  • the vapor deposition material of the present invention contains a silicon oxide as a main component, so that the vapor deposition layer obtained is a silicon oxide layer containing silicon oxide as a main component.
  • the vapor deposition material contains silicon oxide as a main component means that the silicon oxide contains 65% by mass or more of silicon oxide with respect to the total amount of the vapor deposition material. This also applies to the silicon oxide layer, and the silicon oxide layer in the present invention is a layer containing 65% by mass or more of silicon oxide.
  • the platinum group metal contained in the vapor deposition material precipitates as fine particles on the substrate surface at an appropriate interval, and the platinum group metal particles are used as seeds. It is considered that a dense silicon oxide layer is formed on the material surface.
  • the silicon oxide layer obtained by using the vapor deposition material of the present invention has high substrate adhesion and excellent wear resistance. Furthermore, if the surface layer is formed on the silicon oxide layer using an organic compound having a group capable of reacting with silicon oxide, a substrate with a surface layer having excellent surface layer durability can be obtained.
  • the vapor deposition material of the present invention may contain optional components in addition to the predetermined amounts of silicon oxide and platinum group metal. Hereinafter, each component contained in the vapor deposition material of the present invention will be described.
  • platinum group metal contained in the vapor deposition material of the present invention examples include platinum, rhodium, ruthenium, palladium, osmium, and iridium. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the platinum group metal is preferably at least one selected from platinum and rhodium.
  • the platinum group metal content in the vapor deposition material is 0.03 to 800 ppm by mass in terms of the silicon oxide contained in the vapor deposition material. When the content is within the above range, sufficient substrate adhesion can be obtained in the obtained silicon oxide layer.
  • the content is preferably 0.05 mass ppm or more, more preferably 1 mass ppm or more, in terms of the ratio to the silicon oxide.
  • the content is preferably 600 mass ppm or less, more preferably 200 mass ppm or less in terms of the ratio to the silicon oxide.
  • the content of the platinum group metal with respect to the total amount of the vapor deposition material is preferably 0.02 to 800 ppm by mass, more preferably 0.04 to 600 ppm by mass, and 0.7 to 200 ppm by mass from the same viewpoint as described above. Further preferred.
  • the lower limit of the ratio of silicon oxide contained in the vapor deposition material is 65% by mass with respect to the total amount of the vapor deposition material, and the upper limit is a value obtained by excluding the platinum group metal content from the total amount of the vapor deposition material.
  • the ratio of silicon oxide is within the above range, the resulting silicon oxide layer has high substrate adhesion.
  • the vapor deposition material when the content of silicon oxide is less than the above upper limit value, the vapor deposition material contains an optional component other than silicon oxide and a platinum group metal.
  • content of silicon oxide is 65 mass% or more from a viewpoint of base-material adhesiveness, 70 mass% or more is preferable and 75 mass% or more is further more preferable.
  • the content of silicon oxide is preferably 99% by mass or less, more preferably 90% by mass or less, and still more preferably 80% by mass or less, from the viewpoint of ease of manufacture of the vapor deposition material.
  • a metal oxide is preferable.
  • the metal oxide include alkali metals such as Li, Na, and K, alkaline earth metals such as Ca, Sr, Mg, and Ba, Mo, W, B, Fe, Sc, Y, La, Ce, Gd, Ti, Zr, V, Nb, Ta, Cr, Mn, Co, Ni, Cu, Zn, Al, Ga, Ge, Sn, Sb, Bi, P, etc. are mentioned.
  • the vapor deposition material of the present invention is usually constituted by using a component obtained by removing the platinum group metal from the vapor deposition material as a base material and containing the platinum group metal in a predetermined ratio in the base material.
  • the base material contains an amount of silicon oxide as a main component when used as a vapor deposition material.
  • the base material may be composed only of silicon oxide, or may be composed of silicon oxide and the optional components described above.
  • the base material contains a counter anion of the platinum group metal.
  • the base material in the vapor deposition material of the present invention is not particularly limited as long as it is silicon oxide or a composition containing silicon oxide in the above amount. Specific examples include silicon oxide, hydrolyzed condensate of silicic acid, hydrolyzed condensate of alkoxysilane, silicate glass such as soda lime glass, etc., and hydrolyzed condensate of silicic acid or soda lime glass is preferred.
  • the base material is a composition
  • the composition is appropriately adjusted according to the type of the base material.
  • the base material preferably contains at least one of sodium oxide and calcium oxide in addition to silicon oxide.
  • a method for producing a vapor deposition material is to mix silicon oxide powder and platinum group metal powder so that the ratio of silicon oxide and platinum group metal is in the above range in the obtained vapor deposition material.
  • examples thereof include a method of adding silicon to a platinum group metal-containing aqueous solution and removing water after stirring.
  • the average particle diameter of the powder is preferably 0.1 to 100 ⁇ m, and more preferably 1 to 10 ⁇ m. In this case, after mixing the powder, it is preferable to pelletize and use as described later.
  • the platinum group metal-containing aqueous solution include aqueous solutions of platinum group metal salts such as hydroxides, chlorides, and carbonates. Note that when an aqueous solution of a platinum group metal salt is used, the platinum group metal is contained in the vapor deposition material as a salt.
  • the base material is a hydrolyzed condensate of silicic acid
  • a method of drying a solution containing at least one selected from the group consisting of silicic acid and a partially hydrolyzed condensate thereof, a platinum group metal, and water can be mentioned.
  • the platinum group metal is usually contained in the solution as a salt. Examples of the platinum group metal salt include the same salts as described above.
  • As the silicic acid desalted sodium silicate or potassium silicate can be used.
  • sodium silicate examples include Na 2 O ⁇ nSiO 2 defined in JIS K1408-1966. Specifically, sodium metasilicate (Na 2 SiO 3 ), sodium orthosilicate (Na 4 SiO 4 ), sodium disilicate (Na 2 Si 2 O 5 ), sodium tetrasilicate (Na 2 Si 4 O 9 ) Etc.
  • potassium silicate examples include K 2 O ⁇ nSiO 2 , and specifically, potassium metasilicate (K 2 SiO 3 ), potassium orthosilicate (K 4 SiO 4 ), potassium disilicate (K 2 Si 2). O 5 ), potassium tetrasilicate (K 2 Si 4 O 9 ) and the like.
  • Examples of the desalting treatment include a method in which a sodium silicate aqueous solution or a potassium silicate aqueous solution and a cation exchange resin are mixed and stirred, and then the cation exchange resin is removed.
  • the temperature at which the solution containing silicic acid and / or the partial hydrolysis-condensation product, the platinum group metal, and water is dried is preferably 5 to 50 ° C., more preferably 15 to 30 ° C.
  • the base material may include sodium oxide or potassium oxide.
  • the total ratio of sodium oxide and potassium oxide to silicon oxide is preferably 0.1 to 13% by mass, and more preferably 1.0 to 10% by mass.
  • the base material is a composition containing silicon oxide in the above amount
  • the composition is appropriately adjusted according to the type of base material.
  • the base material is soda lime glass
  • the base material usually contains silicon oxide, sodium oxide and calcium oxide.
  • content of the silicon oxide in soda-lime glass is the quantity used as a main component, when it is set as a vapor deposition material.
  • soda lime glass an appropriate amount of the above metal oxide can be appropriately contained as other components other than these three components.
  • SiO 2 is 65 to 95%, Na 2 O is 0 to 20%, CaO is 0 to 32%, and Al 2 O is expressed in terms of mass% in terms of oxide.
  • a composition containing 3 to 0 to 15% and MgO to 0 to 4% is preferable.
  • silicate glasses particularly soda lime glass, SiO 2 is 65 to 75%, Na 2 O is 1 to 20%, CaO is 5 to 32%, Al 2 O 3 is 0 to 2%, and MgO is 0%.
  • a composition containing ⁇ 4% is preferred.
  • the content of each component in the soda lime glass is determined from the result of inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of the obtained glass.
  • ICP-AES inductively coupled plasma-atomic emission spectroscopy
  • the melting temperature is lowered and the productivity is improved.
  • the content of SiO 2 is more preferably 67 to 73%, further preferably 69 to 71%.
  • soda lime glass contains 1 to 20% of Na 2 O
  • the content of Na 2 O is more preferably 1 to 10%, further preferably 2 to 5%.
  • the soda lime glass contains 5 to 32% of CaO
  • the melting temperature is lowered, and the amount of CaO mixed into the silicon oxide layer can be appropriately reduced.
  • the content of CaO is more preferably 10 to 30%, further preferably 15 to 28%.
  • the melting temperature is lowered and the mixing into the silicon oxide layer is small.
  • the content of Al 2 O 3 is more preferably from 0.1 to 1.5%, further preferably from 0.5 to 1%.
  • the soda lime glass contains 0 to 4% of MgO, the melting temperature is lowered and the amount of MgO mixed into the silicon oxide layer can be moderately reduced.
  • the content of MgO is more preferably from 0.1 to 2%, further preferably from 0.5 to 1%.
  • the soda lime glass may further contain K 2 O, Fe 2 O 3 , TiO 2 and the like as optional components for the purpose of adjusting the melting temperature and phase separation characteristics.
  • the softening point is preferably 700 to 1700 ° C. from the viewpoint of workability as a deposition source.
  • the vapor deposition material of the present invention when the base material is soda lime glass can be produced, for example, by the method shown below.
  • a raw material mixture of soda lime glass is prepared.
  • the raw material is not particularly limited as long as it is a raw material used for production of ordinary oxide-based glass, and oxides, hydroxides, carbonates, sulfates, nitrates, and the like can be used.
  • raw material components include silica sand, calcium carbonate, sodium carbonate, slaked lime, magnesium hydroxide, aluminum hydroxide, sodium metasilicate hydrate, magnesium sulfate, soda ash, talc, aluminum oxide, bow glass, carbonate Examples include potassium and petals. From these raw material components, each component is appropriately selected according to the composition to be obtained and used for preparation.
  • the kind and ratio of the raw materials are appropriately adjusted so as to be in the above composition range to obtain a raw material mixture.
  • the platinum group metal is added to the raw material mixture of the base material so that the ratio of the platinum group metal to the silicon oxide is in the above range in the obtained vapor deposition material, and the raw material composition of the vapor deposition material
  • the platinum group metal to be added to the raw material mixture of the base material is, for example, a powder of the platinum group metal itself.
  • the size of the powder for example, the average particle diameter is preferably from 0.1 to 100 ⁇ m, more preferably from 1 to 10 ⁇ m, from the viewpoint of dispersibility and uniformity when the raw material composition is melted.
  • the raw material composition of the vapor deposition material is heated by a known method such as a high temperature electric furnace to obtain a melt.
  • the temperature for melting by heating (melting temperature) is preferably 700 to 1700 ° C, more preferably 700 to 1600 ° C.
  • the time for heating and melting is preferably 1 to 36 hours, and more preferably 3 to 12 hours.
  • the melt is cooled and solidified to obtain a molten granule, whereby the vapor deposition material of the present invention is obtained.
  • the cooling method is not particularly limited.
  • the cooling rate can be, for example, about 0.5 to 5 ° C./min.
  • a method of quenching by a roll-out machine, a press machine, dripping into a cooling liquid, or the like can be employed.
  • the vapor deposition material of the present invention may be in any form.
  • a block shape, a plate shape, a thin plate shape (flake shape), a bead shape, a powder shape, and the like may be used.
  • the powder is likely to be scattered during vacuum deposition, it is preferable to use it after processing into a pellet form.
  • the manufacturing method of a pellet is not ask
  • the pellet-shaped molded body and the granulated body may be fired to obtain a sintered body.
  • the size of the pellet-shaped formed body, granulated body or sintered body is preferably, for example, 0.5 mm or more in diameter or major axis from the viewpoint of suppressing scattering during vacuum deposition.
  • the upper limit is not particularly limited, but is preferably about 1 to 3 cm in diameter or major axis from the viewpoint of the size of the vapor deposition apparatus.
  • the size of the vapor deposition material in the form of a block, plate, flake, bead, etc. can also be the same as in the case of a pellet-shaped molded body.
  • the substrate for forming the silicon oxide layer using the vapor deposition material of the present invention is not particularly limited.
  • the vapor deposition material of the present invention is usually used for a substrate that requires surface modification (giving specific performance) by a surface layer further provided on a silicon oxide layer.
  • Examples of the material for the substrate include metals, resins, glass (which may be chemically strengthened), sapphire, ceramic, stone, and composite materials thereof.
  • the substrate may have a single layer structure or a laminated structure.
  • the shape, size, etc. of the substrate are not particularly limited.
  • a base material is suitably selected according to the use of the base material with a surface layer mentioned later.
  • the silicon oxide layer using the vapor deposition material of the present invention can be used suitably for a transparent substrate because it can achieve high adhesion to the substrate without impairing the transparency of the substrate when applied to a transparent substrate. It is done.
  • the surface of the substrate may be subjected to an activation treatment, for example, a dry activation treatment or a wet activation treatment.
  • a dry activation treatment include a process of irradiating the surface of the substrate with active energy rays (for example, ultraviolet rays, electron beams, X-rays), a corona discharge process, a plasma process (vacuum plasma process, atmospheric pressure plasma process) ), Flame treatment, and itro treatment.
  • active energy rays for example, ultraviolet rays, electron beams, X-rays
  • a corona discharge process for example, a corona discharge process
  • a plasma process vacuum plasma process, atmospheric pressure plasma process
  • Flame treatment for example, flame treatment, and itro treatment.
  • the wet activation treatment include a treatment in which the substrate surface is brought into contact with an acid or alkali solution.
  • corona discharge treatment or plasma treatment is preferable because the adhesion between the substrate and the silicon oxide layer is further improved.
  • a diamond-like carbon layer means a film having an amorphous structure in which both bonds of diamond bonds (bonds due to sp 3 hybrid orbitals between carbons) and graphite bonds (bonds due to sp 2 hybrid orbitals between carbons) are mixed.
  • Diamond-like carbon may contain atoms other than carbon atoms (for example, hydrogen atoms, oxygen atoms, silicon atoms, nitrogen atoms, aluminum atoms, boron atoms, phosphorus atoms).
  • the vapor deposition material used for the manufacturing method of the base material with a silicon oxide layer of this invention is the same as the vapor deposition material of this invention demonstrated above.
  • the base material on which the silicon oxide layer is formed is as described above.
  • a normal method using a normal vacuum deposition apparatus can be applied without any particular limitation.
  • a base material is installed in an apparatus capable of reducing pressure, and a deposition material container filled with a deposition material is installed at a position facing the silicon oxide layer forming surface of the base material.
  • the size and shape of the vapor deposition material container are not particularly limited.
  • the material for the vapor deposition material container may be any material that does not react with the vapor deposition material under the following vacuum vapor deposition conditions and does not evaporate. Examples thereof include molybdenum, tungsten, and copper.
  • the evaporation material is usually heated by heating the container material for the evaporation material with an electron gun or resistance heating.
  • the heating temperature of the container for the vapor deposition material is preferably 100 to 3000 ° C, more preferably 1000 to 2000 ° C, and further preferably 1200 to 1800 ° C.
  • the temperature in the apparatus during vacuum deposition is preferably 20 to 300 ° C, particularly preferably 30 to 200 ° C.
  • the pressure (absolute pressure) in the apparatus during vacuum deposition is preferably 1 ⁇ 10 ⁇ 1 Pa or less, particularly preferably 1 ⁇ 10 ⁇ 2 Pa or less.
  • the distance between the silicon oxide layer forming surface of the substrate and the vapor deposition material is preferably 100 to 4000 mm, more preferably 200 to 2000 mm. In the case of forming an underlayer using a vapor deposition material, one vapor deposition material may be used, or two or more vapor deposition materials containing different elements may be used.
  • the silicon oxide layer obtained as described above using the vapor deposition material of the present invention is a layer containing 65% by mass of silicon oxide.
  • the composition of the silicon oxide layer is not necessarily the same as the composition of the vapor deposition material.
  • the content of platinum group metal with respect to silicon oxide in the silicon oxide layer tends to increase, and the degree of increase tends to differ depending on the type of platinum group metal. This is presumably because, during vacuum deposition, platinum group metal precipitates as fine particles on the substrate surface, and a dense silicon oxide layer is formed on the substrate surface using the platinum group metal particles as seeds.
  • the base material of the vapor deposition material is a composition containing silicon oxide
  • the composition other than the platinum group metal is usually due to the difference in adhesion of the silicon oxide and other components to the platinum group metal or the substrate surface.
  • the vapor deposition material and the silicon oxide layer have different compositions.
  • the base material of the vapor deposition material is soda lime glass
  • the composition other than the platinum group metal in the obtained silicon oxide layer is usually a composition having a higher silicon oxide content than the composition of the soda lime glass. .
  • SiO 2 is 65 to 75%, Na 2 O is 1 to 20%, CaO is 5 to 32%, and Al 2 O 3 is 0 in terms of mass% in terms of oxide, which is a preferable composition as a base material for the vapor deposition material.
  • a soda lime glass having a composition containing ⁇ 2% and MgO as 0-4% as an example the composition other than the platinum group metal in the obtained silicon oxide layer is generally expressed in mass% in terms of oxide, and SiO 2 is 65-75%, Na 2 O 1-20%, CaO 0-32%, Al 2 O 3 0-2%, MgO 0-4%.
  • the thickness of the silicon oxide layer is preferably 2 to 200 nm, particularly preferably 2 to 20 nm. If thickness is more than the lower limit of the said range, the improvement effect of the base-material adhesiveness by a silicon oxide layer will be fully easy to be acquired. If thickness is below the upper limit of the said range, the abrasion resistance of silicon oxide layer itself will become high.
  • the method for measuring the thickness of the silicon oxide layer is not particularly limited. For example, a method by cross-sectional observation of the silicon oxide layer with an electron microscope (SEM, TEM, etc.), an optical interference film thickness meter, a spectroscopic ellipsometer, a step meter, etc. There is a way.
  • the silicon oxide layer formed on the substrate using the above-described vapor deposition material by the production method of the present invention is formed as a dense layer as described above. Therefore, if the silicon oxide layer is used as a base layer and a surface layer is formed thereon, sufficient durability can be imparted to the resulting surface layer.
  • the surface layer is formed using an organic compound having a group capable of reacting with silicon oxide, the effect of durability can be exhibited more remarkably. Furthermore, it is more preferable in terms of durability when formed using an organic compound having a reactive silyl group.
  • the substrate with a surface layer obtained by the production method of the present invention comprises a substrate, a silicon oxide layer laminated on the substrate, and a surface layer directly formed on the silicon oxide layer.
  • the silicon oxide layer is a layer mainly composed of silicon oxide formed using the vapor deposition material of the present invention described above, and the surface layer is a layer formed using a group capable of reacting with silicon oxide. .
  • the “layer laminated on the base material” is not limited to the case where the layer is directly laminated on the base material, and includes the case where another layer is provided between the base material and the layer. Is the same.
  • the method for producing a substrate with a surface layer of the present invention comprises a step (a) of obtaining a substrate with a silicon oxide layer by forming a silicon oxide layer on the substrate, and a silicon oxide layer obtained in this step (a) (B) forming a surface layer using an organic compound having a group capable of reacting with silicon oxide on the silicon oxide layer of the attached substrate.
  • a process can be implemented like the manufacturing method of the base material with a silicon oxide layer of the said invention.
  • the surface layer is directly formed on the silicon oxide layer.
  • a surface layer is a layer which plays the role which provides specific performance to a base material.
  • the silicon oxide layer is a layer that plays a role of suppressing deterioration of the performance of the surface layer over time and improving the durability of the functional layer.
  • the performance imparted to the base material by the surface layer is not particularly limited, and examples include antifouling properties, chemical resistance, abrasion resistance, weather resistance, hydrophilicity, water repellency, oil repellency, and the like. It is appropriately selected depending on the compound to be used.
  • the surface layer in the present invention is formed using an organic compound having a group capable of reacting with silicon oxide.
  • the group capable of reacting with silicon oxide of the organic compound reacts with silicon oxide of the silicon oxide layer to form a condensate.
  • Examples of the group capable of reacting with silicon oxide include a group having a hydroxyl group, a group capable of generating a hydroxyl group, for example, a group in which the hydroxyl group is protected by an arbitrary protecting group.
  • a reactive silyl group is preferable from the viewpoint of reactivity with silicon oxide, and a hydrolyzable silyl group is preferable from the viewpoint of storage stability of the compound.
  • the hydrolyzable silyl group in the organic compound (for example, in the following formula 1 in which L is a hydrolyzable group)
  • Silanol groups (Si—OH) are formed by the hydrolysis reaction of —SiR n L 3-n ).
  • the resulting silanol group undergoes a condensation reaction between molecules to form a Si—O—Si bond, or the silanol group in the compound reacts with a silanol group (Si—OH) in the silicon oxide layer to form a bond (Si— It is considered that (O—Si bond) is formed.
  • the surface layer in this case contains a condensate obtained by hydrolytic condensation of a compound having a hydrolyzable silyl group.
  • the surface layer may consist only of a condensate of a compound having a reactive silyl group, or may contain an unreacted product of a compound having a reactive silyl group. As described later, unreacted substances can be removed as necessary.
  • the compound having a reactive silyl group is preferably a fluorine-containing compound having a reactive silyl group (hereinafter also referred to as a fluorine-containing compound) from the viewpoint of obtaining a surface layer having water and oil repellency.
  • a fluorine-containing compound a fluorine-containing compound having a reactive silyl group
  • examples of the compound having no fluorine atom include an organosilane compound having a reactive silyl group, a silane compound having a polydimethylsiloxane chain structure (all of which have no fluorine atom).
  • the number of the reactive silyl groups in the compound having a reactive silyl group is preferably 2 or more, and particularly preferably 3 or more, from the viewpoint that the abrasion resistance of the surface layer is further improved.
  • the upper limit is not particularly limited, but 15 is preferable from the viewpoint of ease of production, and 12 is particularly preferable.
  • the fluorine-containing compound examples include a fluorine-containing compound having a fluoroalkyl group and a fluorine-containing compound having an etheric oxygen atom between carbon atoms of the fluoroalkyl group.
  • the fluorine-containing compound is preferably a fluorine-containing compound having a poly (oxyfluoroalkylene) chain from the viewpoint that a surface layer excellent in water / oil repellency, fingerprint stain removability, lubricity and the like can be formed.
  • a fluorine-containing compound having an (alkylene) chain is more preferable.
  • fluorine-containing compound in particular, a fluorine-containing compound having a fluoroalkyl group and a poly (oxyfluoroalkylene) chain (hereinafter, referred to as a surface layer excellent in water / oil repellency, fingerprint stain removability, lubricity, etc.) It is also referred to as a fluorine-containing ether compound).
  • the fluoroalkyl group is preferably a fluoroalkyl group having 1 to 20, more preferably 1 to 10, more preferably 1 to 6, and particularly preferably 1 to 3 carbon atoms from the viewpoint of excellent water and oil repellency. .
  • the fluoroalkyl group may be linear or branched, and is preferably linear.
  • the fluoroalkyl group is preferably a perfluoroalkyl group from the viewpoint of superior physical properties of the surface layer.
  • Examples of the fluorine-containing compound having a perfluoroalkyl group and a reactive silyl group include compounds represented by the formula (3) described in paragraphs [0010] and [0022] of Japanese Patent Application Laid-Open No. 2009-139530. It is done.
  • the poly (oxyfluoroalkylene) chain is preferably composed of an oxyperfluoroalkylene group having 1 to 10 carbon atoms, particularly preferably 1 to 10 carbon atoms. From the viewpoint of further excellent wear resistance and fingerprint stain removability of the surface layer, those composed of a plurality of oxyperfluoroalkylene groups having 1 to 10 carbon atoms are preferred.
  • the arrangement of the plurality of oxyperfluoroalkylene groups may be block, random or alternating.
  • the oxyperfluoroalkylene group has 2 or more carbon atoms, a straight-chain oxyperfluoroalkylene group is preferable.
  • a linear oxyperfluoroalkylene group having 1 carbon atom and a linear oxyperfluoroalkylene group having 2 carbon atoms are randomly arranged; Randomly arranged perfluoroalkylene groups and linear oxyperfluoroalkylene groups having 3 carbon atoms, alternating linear oxyperfluoroalkylene groups having 2 carbon atoms and linear oxyperfluoroalkylene groups having 4 carbon atoms Those arranged in are particularly preferred.
  • the fluorine-containing compound is a fluorine-containing ether compound
  • the fluorine-containing ether compound preferably has two or more reactive silyl groups from the viewpoint of high adhesion between the surface layer and the silicon oxide layer.
  • the number average molecular weight of the fluorinated ether compound is preferably 500 to 20,000, more preferably 800 to 10,000, and particularly preferably 1,000 to 8,000, from the viewpoint of the friction resistance of the surface layer.
  • Compound 1 is preferable in that the water and oil repellency of the surface layer is more excellent.
  • A is a perfluoroalkyl group or a -Q [-SiR n L 3-n ] k.
  • the number of carbon atoms in the perfluoroalkyl group is preferably from 1 to 20, more preferably from 1 to 10, still more preferably from 1 to 6, and particularly preferably from 1 to 3 from the viewpoint that the friction resistance of the surface layer is more excellent.
  • the perfluoroalkyl group may be linear or branched. However, j is 1 when A is -Q [-SiR n L 3-n ] k .
  • CF 3 —, CF 3 CF 2 —, CF 3 CF 2 CF 2 —, CF 3 CF 2 CF 2 —, CF 3 CF 2 CF 2 CF 2 —, CF 3 CF 2 CF 2 CF 2 —, CF 3 CF 2 CF 2 CF 2 —, CF 3 CF (CF 3 ) —, and the like can be given.
  • CF 3 —, CF 3 CF 2 —, or CF 3 CF 2 CF 2 — is preferable.
  • Q is a (k + 1) -valent linking group.
  • k is an integer of 1 to 10.
  • examples of Q include divalent to eleven valent linking groups.
  • examples of Q include an etheric oxygen atom or an alkylene group optionally having a divalent organopolysiloxane residue, a carbon atom, a nitrogen atom, a silicon atom, a divalent to octavalent organopolysiloxane residue, which will be described later. And groups obtained by removing SiR n L 3-n from formulas 2-1, 2-2, and 2-1-1 to 2-1-6.
  • R is a monovalent hydrocarbon group.
  • R is particularly preferably a monovalent saturated hydrocarbon group.
  • the carbon number of the monovalent hydrocarbon group is preferably 1 to 6, more preferably 1 to 3, and particularly preferably 1 to 2.
  • L is a hydrolyzable group or a hydroxyl group.
  • the hydrolyzable group of L is a group that becomes a hydroxyl group by a hydrolysis reaction. That is, the hydrolyzable silyl group becomes a silanol group by a hydrolysis reaction. Silanol groups further react between the silanol groups to form Si—O—Si bonds.
  • L examples include an alkoxy group, a halogen atom, an acyl group, and an isocyanate group (—NCO).
  • alkoxy group an alkoxy group having 1 to 4 carbon atoms is preferable.
  • halogen atom a chlorine atom is preferable.
  • L is preferably an alkoxy group having 1 to 4 carbon atoms or a halogen atom from the viewpoint of easy industrial production.
  • L is preferably an alkoxy group having 1 to 4 carbon atoms from the viewpoint of less outgassing at the time of coating and better storage stability of the compound, and an ethoxy group is particularly preferred when long-term storage stability of the compound is required.
  • a methoxy group is particularly preferable when the reaction time after coating is short.
  • n is an integer of 0-2. n is preferably 0 or 1, particularly preferably 0.
  • n is 1 or less, a plurality of L present in one molecule may be the same as or different from each other. From the viewpoint of availability of raw materials and ease of production, it is preferable that they are the same.
  • hydrolyzable silyl groups include —Si (OCH 3 ) 3 , —SiCH 3 (OCH 3 ) 2 , —Si (OCH 2 CH 3 ) 3 , — SiCl 3 , —Si (OC (O) CH 3 ) 3 , or —Si (NCO) 3 is preferred. From the viewpoint of easy handling in industrial production, —Si (OCH 3 ) 3 is particularly preferable.
  • Z 1 is a single bond, an oxyfluoroalkylene group having 1 to 20 carbon atoms in which one or more hydrogen atoms are substituted with fluorine atoms (excluding the oxyperfluoroalkylene group.
  • the oxygen atom in the oxyfluoroalkylene group is , (R f O) m ), or a poly (oxyfluoroalkylene) group having 1 to 20 carbon atoms in which one or more hydrogen atoms are replaced by fluorine atoms (bonded to (R f O) m oxygen atoms in the oxy-fluoroalkylene group is (R f O) binds to m.
  • oxyfluoroalkylene group bonded to (R f O) m is.
  • poly (oxy-fluoroalkylene comprising one or more hydrogen atoms ) Group includes both an oxyperfluoroalkylene group in which all hydrogen atoms are substituted with fluorine atoms and an oxyfluoroalkylene group containing one or more hydrogen atoms. May be included.)
  • the oxyfluoroalkylene group or poly (oxyfluoroalkylene) group preferably has 1 to 10 carbon atoms.
  • Z 1 may be a single bond, —CHFCF 2 OCH 2 CF 2 O—, —CF 2 CHFCF 2 OCH 2 CF 2 CF 2 O—, —CF 2 CF 2 CHFCF 2 OCH 2 CF, because it is easy to produce a compound.
  • R f is a perfluoroalkylene group.
  • the number of carbon atoms of the perfluoroalkylene group is preferably 1 to 6 because the water and oil repellency of the surface layer is more excellent.
  • the perfluoroalkylene group may be linear or branched, but is preferably linear because it is more excellent in water and oil repellency of the surface layer.
  • the plurality of R f may be the same or different. That is, (R f O) m may be composed of two or more types of R f O having different carbon numbers.
  • m is an integer of 2 to 200, preferably 5 to 150, particularly preferably 10 to 100.
  • the water and oil repellency of the surface layer is more excellent. If m is 200 or less, the durability of the surface layer is more excellent.
  • the bonding order of each R f O is not limited. For example, when two types of R f O are present, the two types of R f O may be randomly, alternately, and arranged in blocks.
  • (R f O) as the m from the viewpoint of water and oil repellency of the surface layer is more excellent, ⁇ (CF 2 O) m11 (CF 2 CF 2 O) m12 (CF 2 CF 2 CF 2 O) m13 (CF 2 CF 2 CF 2 O) m 14 ⁇ , (CF 2 CF 2 O) m 16, (CF 2 CF 2 CF 2 O) m 17 , (CF 2 CF 2 O—CF 2 CF 2 CF 2 CF 2 O) m 15 ( CF 2 CF 2 O), ( CF 2 O-CF 2 CF 2 CF 2 CF 2 CF 2 O) m18 (CF 2 O), (CF 2 CF 2 O-CF 2 CF 2 CF 2 CF 2 CF 2 O) m19 (CF 2 CF 2 O), ⁇ (CF 2 O) m20 (CF 2 CF 2 CF 2 O) m21 ⁇ , or ⁇ (CF 2 CF 2 O) m22 (CF
  • m11 and m12 are each an integer of 1 or more
  • m13 and m14 are each an integer of 0 or 1
  • m11 + m12 + m13 + m14 is an integer of 2 to 200
  • m11 CF 2 O m11 CF 2 O
  • m12 The bonding order of CF 2 CF 2 O, m13 CF 2 CF 2 CF 2 O, and m14 CF 2 CF 2 CF 2 O is not limited.
  • m16 and m17 are each an integer of 2 to 200
  • m15 and m18 to m23 are integers of 1 to 99.
  • m12 / M11 is preferably from 0.1 to 10, more preferably from 0.2 to 5.0, even more preferably from 0.2 to 2.0, from the point that the friction resistance of the surface layer is further improved, 1.5 is particularly preferred, and 0.2 to 0.85 is most preferred.
  • Z 2 is a (j + q) -valent linking group.
  • Z 2 is, for example, an etheric oxygen atom or an alkylene group optionally having a divalent organopolysiloxane residue, a carbon atom, a nitrogen atom, a silicon atom, a divalent to octavalent organopolysiloxane residue, which will be described later.
  • j is an integer of 1 or more, preferably 1 to 5 from the viewpoint of more excellent water and oil repellency of the surface layer, and particularly preferably 1 from the viewpoint of easy production of the compound.
  • q is an integer of 1 or more, and is preferably 2 or more, more preferably 2 to 4, more preferably 2 or 3, and even more preferably 3, from the viewpoint of better water / oil repellency of the surface layer.
  • Compound 1-1 is preferably Compound 1-1 because the surface layer is more excellent in water and oil repellency.
  • AOZ 1- (R f O) m -Z 3 Formula 1-1
  • the definitions of A, Z 1 , R f and m are the same as the definitions of each group in formula 1.
  • Z 3 is group 2-1 or group 2-2.
  • R f7 is a perfluoroalkylene group.
  • the perfluoroalkylene group preferably has 1 to 30 carbon atoms, particularly preferably 1 to 6 carbon atoms.
  • the perfluoroalkylene group may be linear or branched.
  • R f7 is preferably —CF 2 CF 2 CF 2 — or —CF 2 CF 2 CF 2 CF 2 CF 2 — from the viewpoint of easy production of the compound.
  • Q a is a single bond or a divalent linking group.
  • the divalent linking group include a divalent hydrocarbon group (a divalent saturated hydrocarbon group, a divalent aromatic hydrocarbon group, an alkenylene group, and an alkynylene group.
  • the hydrogen group may be linear, branched or cyclic and includes, for example, an alkylene group, preferably having 1 to 20 carbon atoms.
  • the divalent aromatic hydrocarbon group preferably has 5 to 20 carbon atoms, and examples thereof include a phenylene group.
  • an alkenylene group having 2 to 20 carbon atoms and an alkynylene group having 2 to 20 carbon atoms may be used.
  • a divalent heterocyclic group —O—, —S—, —SO 2 —, —N (R d ) —, —C (O) —, —Si (R a ) 2 — and these 2 Examples include groups in which more than one species are combined.
  • R a is an alkyl group (preferably having 1 to 10 carbon atoms) or a phenyl group.
  • R d is a hydrogen atom or an alkyl group (preferably having 1 to 10 carbon atoms).
  • Examples of the group in which two or more of these are combined include, for example, —OC (O) —, —C (O) N (R d ) —, an alkylene group —O-alkylene group, and an alkylene group —OC (O).
  • X is a single bond, an alkylene group, a carbon atom, a nitrogen atom, a silicon atom or a divalent to octavalent organopolysiloxane residue.
  • the alkylene group may have —O—, a silphenylene skeleton group, a divalent organopolysiloxane residue, or a dialkylsilylene group.
  • the alkylene group may have a plurality of groups selected from the group consisting of —O—, a silphenylene skeleton group, a divalent organopolysiloxane residue, and a dialkylsilylene group.
  • the alkylene group represented by X preferably has 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms.
  • Examples of the divalent to octavalent organopolysiloxane residues include divalent organopolysiloxane residues and (w + 1) valent organopolysiloxane residues described below.
  • Q b is a single bond or a divalent linking group. Definition of the divalent linking group are the same as those defined as described in the above-described Q a.
  • R 7 is a hydroxyl group or an alkyl group.
  • the alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms, and particularly preferably 1 carbon atom.
  • Q 71 is a single bond, an alkylene group, or a group having an etheric oxygen atom between carbon atoms of a C 2 or more alkylene group, and is preferably a single bond from the viewpoint of easy production of a compound.
  • the number of carbon atoms of the alkylene group is preferably 1-10, and particularly preferably 2-6.
  • the number of carbon atoms of the group having an etheric oxygen atom between carbon atoms of the alkylene group having 2 or more carbon atoms is preferably 2 to 10, and particularly preferably 2 to 6.
  • R 71 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and is preferably a hydrogen atom from the viewpoint of easy production of a compound.
  • the alkyl group a methyl group is preferable.
  • Q 72 is a single bond or an alkylene group.
  • the number of carbon atoms of the alkylene group is preferably 1 to 10, and more preferably 1 to 6.
  • Q 72 is preferably a single bond or —CH 2 — from the viewpoint of easy production of the compound.
  • R 72 is a hydrogen atom or a halogen atom, and is preferably a hydrogen atom from the viewpoint of easy production of a compound.
  • y is an integer of 1 to 10, and an integer of 1 to 6 is preferable.
  • Two or more [CH 2 C (R 71 ) (— Q 72 —SiR n L 3-n )] may be the same or different.
  • the group 2-1 is preferably any of the following groups 2-1-1 to 2-1-6. -R f7- (X 1 ) p -Q 1 -SiR n L 3-n Formula 2-1-1 -R f7- (X 2 ) r -Q 21 -N [-Q 22 -SiR n L 3-n ] 2 Formula 2-1-2 -R f7 -Q 31 -G (R 3 ) [-Q 32 -SiR n L 3-n ] 2 formula 2-1-3 -R f7 - [C (O) N (R d)] s -Q 41 - (O) t -C [- (O) u -Q 42 -SiR n L 3-n] 3 Formula 2-1-4 -R f7 -Q 51 -Si [-Q 52 -SiR n L 3-n ] Formula 3 2-1-5 -R f7- [C (O) N (R d )] v -Q 61
  • R f7 , R, L, and n are as described above.
  • X 1 is —O— or —C (O) N (R d ) — (wherein N binds to Q 1 ).
  • R d is as described above.
  • p is 0 or 1.
  • Q 1 is an alkylene group.
  • the alkylene group may have —O—, a silphenylene skeleton group, a divalent organopolysiloxane residue, or a dialkylsilylene group.
  • the alkylene group may have a plurality of groups selected from the group consisting of —O—, a silphenylene skeleton group, a divalent organopolysiloxane residue, and a dialkylsilylene group.
  • the alkylene group has —O—, a silphenylene skeleton group, a divalent organopolysiloxane residue or a dialkylsilylene group, it is preferable to have these groups between carbon atoms.
  • the alkylene group represented by Q 1 preferably has 1 to 10 carbon atoms, particularly preferably 2 to 6 carbon atoms.
  • Q 1 when p is 0, —CH 2 OCH 2 CH 2 CH 2 —, —CH 2 OCH 2 CH 2 OCH 2 CH 2 CH 2 —, —CH 2 CH 2 —, —CH 2 CH 2 CH 2 — or —CH 2 OCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 CH 2 CH 2 — is preferred.
  • X 1 When p is —O—, —CH 2 CH 2 CH 2 — or —CH 2 CH 2 OCH 2 CH 2 CH 2 — is preferred.
  • group 2-1-1 include the following groups.
  • X 2 is —O—, —NH—, or —C (O) N (R d ) —.
  • R d is as described above.
  • Q 21 represents a single bond, an alkylene group, or an etheric oxygen atom, —C (O) —, —C (O) O—, —OC (between a carbon atom and a carbon atom of an alkylene group having 2 or more carbon atoms. O) — or a group having —NH—.
  • the number of carbon atoms of the alkylene group represented by Q 21 is preferably 1 to 10, and particularly preferably 2 to 6.
  • the number of carbons in the group having — is preferably 2 to 10, and particularly preferably 2 to 6.
  • r is 0 or 1 (provided that 0 when Q 21 is a single bond). From the viewpoint of easy production of the compound, 0 is preferable.
  • Q 22 is an alkylene group or a group having a divalent organopolysiloxane residue, an etheric oxygen atom or —NH— between the carbon atoms of the alkylene group having 2 or more carbon atoms.
  • the alkylene group represented by Q 22 is preferably 1-10, 2-6 being particularly preferred.
  • the number of carbon atoms of the group having a divalent organopolysiloxane residue, an etheric oxygen atom or —NH— between the carbon atoms of the alkylene group having 2 or more carbon atoms represented by Q 22 is 2 to 10 2 to 6 are particularly preferable.
  • Q 22 is preferably —CH 2 CH 2 CH 2 — or —CH 2 CH 2 OCH 2 CH 2 CH 2 — (provided that the right side is bonded to Si) from the viewpoint of easy production of the compound.
  • Two [-Q 22 -SiR n L 3-n ] may be the same or different.
  • group 2-1-2 include the following groups.
  • Q 31 is a single bond, an alkylene group, or a group having an etheric oxygen atom between carbon atoms of an alkylene group having 2 or more carbon atoms, and is easy to produce a compound From the viewpoint, a single bond is preferable.
  • the alkylene group represented by Q 31 is preferably 1-10, 2-6 being particularly preferred.
  • the number of carbon atoms of the group having an etheric oxygen atom between the carbon atoms of the alkylene group having 2 or more carbon atoms represented by Q 31 is preferably 2 to 10, and particularly preferably 2 to 6.
  • G is a carbon atom or a silicon atom.
  • R 6 is a hydroxyl group or an alkyl group.
  • the alkyl group represented by R 3 preferably has 1 to 4 carbon atoms.
  • G (R 3 ) is C (OH) or Si (R 3a ) (provided that R 3a is an alkyl group.
  • the number of carbon atoms of the alkyl group is preferably 1 to 10, Group is particularly preferred.).
  • Q 32 is an alkylene group or a group having an etheric oxygen atom or a divalent organopolysiloxane residue between carbon atoms of a C 2 or more alkylene group.
  • the alkylene group represented by Q 32 is preferably 1-10, 2-6 being particularly preferred.
  • Carbon atom of the alkylene group having 2 or more carbon atoms represented by Q 32 - number of carbon atoms of the group having an etheric oxygen atom or a divalent organopolysiloxane residues between the carbon atoms is 2 to 10 preferably 2 to 6 is particularly preferred.
  • the Q 32 from the viewpoint of easily producing the compound, -CH 2 CH 2 -, - CH 2 CH 2 CH 2 -, - CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 - is preferred.
  • Two [—Q 32 —SiR n L 3-n ] may be the same or different.
  • group 2-1-3 include the following groups.
  • R d is as described above.
  • s is 0 or 1.
  • Q 41 is a single bond, an alkylene group, or a group having an etheric oxygen atom between carbon atoms of a C 2 or more alkylene group.
  • the number of carbon atoms of the alkylene group represented by Q 41 is preferably 1 to 10, and particularly preferably 2 to 6.
  • the number of carbon atoms of the group having an etheric oxygen atom between the carbon atoms of the alkylene group of 2 or more carbon atoms represented by Q 41 is preferably 2 to 10, and particularly preferably 2 to 6.
  • t is 0 or 1 (provided that 0 when Q 41 is a single bond).
  • —Q 41 — (O) t — represents a compound that is easy to produce.
  • a single bond, —CH 2 O—, —CH 2 OCH 2 —, —CH 2 OCH 2 CH 2 O—, —CH 2 OCH 2 CH 2 OCH 2 —, or —CH 2 OCH 2 CH 2 CH 2 OCH 2 — is preferred (where the left side is bonded to R f7 ), and when s is 1 , A single bond, —CH 2 —, or —CH 2 CH 2 — is preferred.
  • Q 42 is an alkylene group, and the alkylene group is —O—, —C (O) N (R d ) — [R d is as defined above. ], May have a silphenylene skeleton group, a divalent organopolysiloxane residue or a dialkylsilylene group.
  • the alkylene group has —O— or a silphenylene skeleton group, it is preferable to have —O— or a silphenylene skeleton group between carbon atoms.
  • alkylene group has —C (O) N (R d ) —, a dialkylsilylene group or a divalent organopolysiloxane residue, the terminal on the side bonded to the carbon atom-carbon atom or (O) u1 side It is preferable to have these groups.
  • the alkylene group represented by Q 42 is preferably 1-10, 2-6 being particularly preferred.
  • u is 0 or 1.
  • — (O) u —Q 42 — since it is easy to produce a compound, —CH 2 CH 2 —, —CH 2 CH 2 CH 2 —, —CH 2 OCH 2 CH 2 CH 2 —, —CH 2 OCH 2 CH 2 CH 2 CH 2 CH 2 CH 2 —, —OCH 2 CH 2 CH 2 —, —OSi (CH 3 ) 2 CH 2 CH 2 CH 2 —, —OSi (CH 3 ) 2 OSi (CH 3 ) 2 CH 2 CH 2 CH 2 — or —CH 2 CH 2 CH 2 Si (CH 3 ) 2 PhSi (CH 3 ) 2 CH 2 CH 2 — is preferred (the right side is bonded to Si).
  • the three [— (O) u -Q 42 -SiR n L 3-n ] may be the same or different.
  • group 2-1-4 include the following groups.
  • Q 51 represents an alkylene group or a group having an etheric oxygen atom between carbon atoms of the alkylene group having 2 or more carbon atoms.
  • the number of carbon atoms of the alkylene group represented by Q 51 is preferably 1 to 10, and particularly preferably 2 to 6.
  • the number of carbon atoms of the group having an etheric oxygen atom between carbon atoms of the alkylene group of 2 or more carbon atoms represented by Q 51 is preferably 2 to 10, and particularly preferably 2 to 6.
  • Q 51 is —CH 2 OCH 2 CH 2 CH 2 —, —CH 2 OCH 2 CH 2 OCH 2 CH 2 CH 2 —, —CH 2 CH 2 —, or —CH 2 because it is easy to produce a compound.
  • CH 2 CH 2 — is preferred (however, the right side is bonded to Si).
  • Q 52 is an alkylene group or a group having an etheric oxygen atom or a divalent organopolysiloxane residue between carbon atoms of a C 2 or more alkylene group.
  • the number of carbon atoms of the alkylene group represented by Q 52 is preferably 1 to 10, and particularly preferably 2 to 6.
  • the number of carbon atoms of the group having an etheric oxygen atom or a divalent organopolysiloxane residue between carbon atoms of the alkylene group of 2 or more carbon atoms represented by Q 52 is preferably 2 to 10. 6 is particularly preferred.
  • Q 52 is preferably —CH 2 CH 2 CH 2 — or —CH 2 CH 2 OCH 2 CH 2 CH 2 — (provided that the right side is bonded to SiR n L 3-n from the viewpoint of easy production of the compound). .)
  • the three [—Q 52 —SiR n L 3-n ] may be the same or different.
  • group 2-1-5 include the following groups.
  • R d is as described above.
  • v is 0 or 1.
  • Q 61 is an alkylene group or a group having an etheric oxygen atom between carbon atoms of a C 2 or more alkylene group.
  • the number of carbon atoms of the alkylene group represented by Q 61 is preferably 1 to 10, and particularly preferably 2 to 6.
  • the number of carbon atoms of the group having an etheric oxygen atom between carbon atoms of the alkylene group of 2 or more carbon atoms represented by Q 61 is preferably 2 to 10, and particularly preferably 2 to 6.
  • Q 61 represents —CH 2 OCH 2 CH 2 CH 2 —, —CH 2 OCH 2 CH 2 OCH 2 CH 2 CH 2 —, —CH 2 CH 2 —, or —CH 2 because it is easy to produce a compound.
  • CH 2 CH 2 — is preferred (where the right side is bonded to Z 3 ).
  • Z 3 is a (w + 1) valent organopolysiloxane residue.
  • w is an integer of 2 to 7.
  • Examples of the (w + 1) -valent organopolysiloxane residue include the following groups. However, R a in the following formula is as described above.
  • Q 62 is an alkylene group or a group having an etheric oxygen atom or a divalent organopolysiloxane residue between carbon atoms of a C 2 or more alkylene group.
  • the alkylene group represented by Q 62 is preferably 1-10, 2-6 being particularly preferred.
  • Carbon atom of the alkylene group having 2 or more carbon atoms represented by Q 62 - number of carbon atoms of the group having an etheric oxygen atom or a divalent organopolysiloxane residues between the carbon atoms is 2 to 10 preferably 2 to 6 is particularly preferred.
  • the Q 62 from the viewpoint of easily producing the compound, -CH 2 CH 2 -, - CH 2 CH 2 CH 2 - is preferred.
  • the w [—Q 62 —SiR n L 3-n ] may be the same or different.
  • Compound 1 include International Publication No. 2013/042732, International Publication No. 2013/121984, International Publication No. 2013/121985, International Publication No. 2013/121986, International Publication No. 2014/163004, International Publication. No. 2015/087902, Japanese Unexamined Patent Publication No. 2014-080473, Japanese Unexamined Patent Publication No. 2015-199906, International Publication No. 2017/038830, International Publication No. 2017/038832 and International Publication No. 2017/187775.
  • fluorine-containing ether compound Commercially available products can be used as the fluorine-containing ether compound.
  • KY-100 series KY-178, KY-185, KY-195, etc.
  • OPTOOL trade name
  • AES UF503, UD509 manufactured by Daikin Industries
  • Afluid manufactured by AGC (Registered trademark) S550.
  • the method for forming the surface layer using an organic compound having a group capable of reacting with silicon oxide may be wet coating or dry coating.
  • the dry coating include physical vapor deposition (vacuum vapor deposition, ion plating, sputtering), chemical vapor deposition (thermal CVD, plasma CVD, photo CVD), and ion beam sputtering.
  • the vacuum vapor deposition method is particularly preferable from the viewpoint of suppressing the decomposition of the compound and the simplicity of the apparatus.
  • vacuum deposition is performed by placing a substrate with a silicon oxide layer in an apparatus capable of reducing pressure, and forming a group capable of reacting with silicon oxide at a position facing the surface of the silicon oxide layer of the substrate with a silicon oxide layer.
  • An evaporation container containing an organic compound or a composition containing the organic compound or a solution or dispersion obtained by adding a solvent to the organic compound is installed.
  • an organic compound having a group capable of reacting with silicon oxide or a composition containing the same, or a pellet or impregnated metal porous body such as iron or steel impregnated with a solution or dispersion obtained by adding a solvent to these compounds A state substance may be accommodated.
  • the size and shape of the deposition container are not particularly limited.
  • Examples of the material for the vapor deposition container include molybdenum, tungsten, and copper.
  • the container for deposition is heated by an electron gun or resistance heating.
  • the heating temperature of the container for deposition is preferably 20 to 1000 ° C, more preferably 200 to 700 ° C, and further preferably 300 to 500 ° C.
  • the temperature in the apparatus during vacuum deposition is preferably 20 to 300 ° C, particularly preferably 30 to 200 ° C.
  • the pressure in the apparatus during vacuum deposition is preferably 1 ⁇ 10 ⁇ 1 Pa or less, particularly preferably 1 ⁇ 10 ⁇ 2 Pa or less.
  • the distance between the surface of the silicon oxide layer of the substrate with the silicon oxide layer, the organic compound having a group capable of reacting with silicon oxide or a composition containing the same, or a solution or dispersion obtained by adding a solvent to these is 100 to 4000 mm. Is preferable, and 200 to 2000 mm is more preferable.
  • one type of organic compound having a group capable of reacting with silicon oxide may be used alone or as a mixture of two or more types, and an organic compound having a group capable of reacting with silicon oxide and other components (however, And the solvent may be used as a composition or a dispersion obtained by adding a solvent to these.
  • wet coating methods include spin coating, wipe coating, spray coating, squeegee coating, dip coating, die coating, ink jet, flow coating, roll coating, casting, Langmuir-Blodgett, and gravure. Examples thereof include a coating method.
  • a surface layer forming coating solution is preferably used.
  • the surface layer forming coating liquid is a solution or dispersion containing an organic compound having a group capable of reacting with silicon oxide and a solvent.
  • the solvent is appropriately selected according to the type of organic compound having a group capable of reacting with silicon oxide.
  • the solvent is preferably an organic solvent.
  • the organic solvent may be a fluorinated organic solvent, a non-fluorinated organic solvent, or may include both solvents.
  • the fluorinated organic solvent include fluorinated alkanes, fluorinated aromatic compounds, fluoroalkyl ethers, fluorinated alkylamines, and fluoroalcohols.
  • non-fluorine-based organic solvent a compound consisting only of a hydrogen atom and a carbon atom and a compound consisting only of a hydrogen atom, a carbon atom and an oxygen atom are preferable, a hydrocarbon-based organic solvent, an alcohol-based organic solvent, a ketone-based organic solvent, Examples include ether organic solvents and ester organic solvents.
  • the surface layer forming coating solution contains other components and impurities (by-products generated in the production process of the compound having a reactive silyl group). May be included.
  • other components for example, in an organic compound having a group capable of reacting with silicon oxide, when the group is a hydrolyzable silyl group, an acid catalyst that promotes hydrolysis and condensation reaction of the hydrolyzable silyl group And known additives such as basic catalysts.
  • the solid content concentration of the coating solution for forming the surface layer is preferably 0.001 to 50% by mass, particularly preferably 0.05 to 30% by mass.
  • the solid content concentration is a value calculated from the mass of the surface layer forming coating liquid before heating and the mass after heating for 4 hours in a convection dryer at 120 ° C.
  • an operation for promoting the reaction between the organic compound having a group capable of reacting with silicon oxide and the silicon oxide layer may be performed as necessary.
  • the operation include heating, humidification, and light irradiation.
  • the group is a hydrolyzable silyl group
  • the substrate with the silicon oxide layer on which the surface layer is formed is heated in an atmosphere having moisture.
  • hydrolysis reaction of hydrolyzable silyl groups into silanol groups the formation of siloxane bonds by the condensation reaction of silanol groups, the silanol groups on the surface of the silicon oxide layer and the silanol groups of compounds having hydrolyzable silyl groups Reactions such as condensation reactions can be promoted.
  • compounds in the surface layer that are not chemically bonded to other compounds or the silicon oxide layer may be removed as necessary.
  • Specific examples of the method include a method of pouring a solvent over the surface layer and a method of wiping with a cloth soaked with a solvent.
  • the thickness of the surface layer is preferably from 0.1 to 100 nm, particularly preferably from 0.1 to 50 nm. If the thickness of the surface layer is 0.1 nm or more, the effect of the surface treatment can be easily obtained. If the thickness of the surface layer is 100 nm or less, the utilization efficiency is high.
  • the substrate with a surface layer obtained by the present invention is an article having excellent durability in which the deterioration of the performance of the surface layer over time is suppressed by having the silicon oxide layer.
  • a water contact angle may be mentioned as an index for achieving water repellency.
  • the water contact angle on the air side surface of the surface layer is preferably 100 degrees or more, more preferably 105 degrees or more, further preferably 110 degrees or more, and particularly preferably 115 degrees or more.
  • the water repellency of the surface layer is excellent. Since the water contact angle of the surface layer is preferably as high as possible, the upper limit is not particularly limited.
  • the water contact angle is measured using a contact angle measuring device (DM-500: product name, manufactured by Kyowa Interface Science Co., Ltd.).
  • the base material with a surface layer according to the present invention is, for example, a reciprocating traverse tester (manufactured by Daiei Seiki Co., Ltd.) according to JIS L0849: 2013 (ISO 105-X12: 2001) on the air side surface of the surface layer. It is possible to maintain a water contact angle of 100 degrees or more after a steel wool bonster (count: # 0000, dimensions: 5 mm ⁇ 10 mm ⁇ 10 mm) is reciprocated 3,000 times at a load of 9.8 N and a speed of 80 rpm. Preferably, it can hold
  • the substrate with a surface layer according to the present invention is, for example, a value obtained by subtracting the water contact angle of the surface layer after 3,000 reciprocations from the initial water contact angle for the air-side surface of the surface layer (contact angle reduction amount). ) Is preferably 25 degrees or less, more preferably 15 degrees or less, and particularly preferably 10 degrees or less. Since the contact angle reduction amount is preferably as small as possible, the lower limit value is not particularly limited.
  • the base material with a surface layer according to the present invention is assumed to be excellent in durability since the hardness measured on the air side surface of the surface layer, for example, Martens hardness is high.
  • an indentation test device Fischer, Picodenter HM500
  • the indentation load is 0.03 mN
  • the holding time is 5 seconds
  • the load speed is preferably 8,500 MPa or more, and more preferably 10,000 MPa or more.
  • Examples 1 to 6 are examples, and examples 7 to 9 are comparative examples.
  • a vapor deposition material was prepared as follows. Furthermore, using the following materials, a substrate with a surface layer comprising a silicon oxide layer on a glass substrate and a surface layer having water and oil repellency as performance on the silicon oxide layer is manufactured, and the following physical properties Measurements and evaluations were made.
  • Step wool wear test For the surface layer, in accordance with JIS L0849: 2013 (ISO 105-X12: 2001), using a reciprocating traverse tester (manufactured), a steel wool bonster (counter: # 0000, dimensions: 5 mm ⁇ 10 mm ⁇ 10 mm) It was reciprocated at a load of 9.8 N and a speed of 80 rpm. The water contact angle of the water / oil repellent layer was measured every 1000 times of wear of the steel wool, and the number of times the water contact angle became less than 100 degrees was defined as wear resistance.
  • Example 1 (Preparation of vapor deposition material) Silica sand, calcium carbonate, sodium carbonate, and platinum powder (average particle size: 7 ⁇ m) were mixed to prepare a raw material composition of a vapor deposition material.
  • the mixing ratio of silica sand, calcium carbonate, and sodium carbonate is that the components other than platinum in the obtained vapor deposition material are expressed in mass% in terms of oxide, SiO 2 is 70%, Na 2 O is 3%, and CaO is 27%. Each was adjusted to contain.
  • the platinum content was set to an amount of 0.05 mass ppm as a ratio to the silicon oxide in the vapor deposition material.
  • the above raw material composition was put in a crucible and heated to 1500 ° C. in an electric furnace to obtain a melt.
  • the obtained melt was poured onto a carbon plate, cooled and solidified at room temperature to obtain a plate-like vapor deposition material.
  • the cooling rate was 1 ° C./min.
  • the obtained plate-shaped vapor deposition material was pulverized with a hammer to obtain a flake-shaped vapor deposition material (1) having an average major axis of 3 mm.
  • the average major axis of the vapor deposition material (1) was measured with a saw.
  • ICP analysis of the obtained vapor deposition material (1) it was confirmed that the vapor deposition material having the composition as set above was obtained.
  • the discharge-treated glass substrate was placed in a vacuum deposition apparatus, and the inside of the vacuum deposition apparatus was evacuated to a pressure (absolute pressure) of 5 ⁇ 10 ⁇ 3 Pa or less.
  • a pressure absolute pressure
  • the boat A was heated to 1000 ° C. with an electron gun, the vapor deposition material (1) was vacuum deposited, and the thickness was 10 nm on the glass substrate.
  • the silicon oxide layer was formed by vapor deposition.
  • the temperature of vapor deposition material (1) is 1300 degreeC similarly to the heating temperature of the said boat A. As shown in FIG.
  • the boat B is heated to 300 ° C. by resistance heating, and the fluorine-containing ether compound F was vacuum evaporated to form a deposited film having a thickness of 10 nm.
  • the temperature of the fluorinated ether compound F was 300 ° C., similar to the heating temperature of the boat B.
  • the obtained glass substrate with a deposited film was heated (post-treatment) at a temperature of 200 ° C. for 30 minutes, and the glass substrate with a surface layer (1) having a silicon oxide layer and a surface layer in that order on the glass substrate.
  • Example 2 A vapor deposition material (2) was prepared in the same manner as in Example 1, except that the platinum powder was changed to rhodium powder (average particle size: 7 ⁇ m). Further, a glass substrate with a surface layer (2) was produced in the same manner as in Example 1 except that the vapor deposition material (1) was changed to the vapor deposition material (2).
  • Example 3 was carried out in the same manner as in Example 1 except that the platinum powder or rhodium powder used in Example 1 or Example 2 was adjusted so that the ratio of platinum or rhodium to silicon oxide in the vapor deposition material was the amount shown in Table 1.
  • Vapor deposition materials (3) to (8), (10), and (11) of ⁇ 8, 10, and 11 were prepared.
  • a vapor deposition material (9) was prepared in the same manner as in Example 1 using only silica sand, calcium carbonate, and sodium carbonate without adding platinum powder or rhodium powder.
  • glass substrates with surface layers (3) to (11) were produced in the same manner as in Example 1 except that the vapor deposition material (1) was changed to the vapor deposition materials (3) to (11).
  • Example 12 Except for adjusting the compounding ratio of silica sand and sodium carbonate so that the components other than platinum in the obtained vapor deposition material contain 90% of SiO 2 and 10% of Na 2 O in terms of mass% in terms of oxides.
  • a vapor deposition material (12) was prepared. Further, a glass substrate with a surface layer (12) was produced in the same manner as in Example 1 except that the vapor deposition material (1) was changed to the vapor deposition material (12).
  • the glass substrates with surface layers (1) to (8) and (12) obtained in Examples 1 to 8 and 12, which are examples, have a high initial contact angle,
  • the water contact angle after the steel wool abrasion test can be maintained at a high level.
  • the substrate with a surface layer according to the present invention is an article for transport equipment, an article for precision equipment, an article for optical equipment, an article for construction or an article for electronic equipment, and further, the substrate with a surface layer according to the present invention is the above-mentioned Used for goods other than various devices.
  • articles for transportation equipment include exterior members, interior members, glass (for example, windshields, side glasses, and rear glasses), mirrors, and tire wheels in trains, automobiles, ships, airplanes, and the like.
  • a window material in a photographing instrument can be cited.
  • a lens is mentioned as a specific example of the article for optical instruments.
  • Specific examples of building articles include windows, flooring materials, wall materials, and door materials.
  • Specific examples of the electronic device article include display glass, display protective film, antireflection film, and fingerprint sensor in a communication terminal or image display device.

Abstract

Provided are: a vapor deposition material from which a silicon oxide layer capable of imparting a sufficient durability to a surface layer can be formed; and a method for producing a base material provided with a silicon oxide layer which is capable of imparting a sufficient durability to a surface layer, said surface layer being formed on the silicon oxide layer serving as an underlayer. The vapor deposition material contains silicon oxide as a major component together with 0.03-800 ppm by mass, relative to the silicon oxide, of a platinum-group metal. The method for producing a base material provided with a silicon oxide layer comprises forming a silicon oxide layer on a base material by vacuum deposition using a vapor deposition material which contains silicon oxide as a major component together with 0.03-800 ppm by mass, relative to the silicon oxide, of a platinum-group metal.

Description

酸化ケイ素含有蒸着材料、これを用いる酸化ケイ素層付き基材の製造方法Silicon oxide-containing vapor deposition material and method for producing a substrate with a silicon oxide layer using the same
 本発明は、酸化ケイ素含有蒸着材料、これを用いる酸化ケイ素層付き基材の製造方法および表面層付き基材の製造方法に関する。 The present invention relates to a silicon oxide-containing vapor deposition material, a method for producing a substrate with a silicon oxide layer using the same, and a method for producing a substrate with a surface layer.
 従来から、各種基材の表面を改質するために、基材上に目的の性能を有する表面層を設ける技術が知られている。該表面層には、目的の性能を維持するために、さらに耐摩耗性等の耐久性が求められ、表面層に耐久性を付与する技術も知られている。 Conventionally, a technique for providing a surface layer having a target performance on a base material in order to modify the surface of various base materials is known. In order to maintain the target performance, the surface layer is required to have durability such as wear resistance, and a technique for imparting durability to the surface layer is also known.
 例えば、特許文献1には、撥水性、撥油性、防汚性を有し、かつ、優れた摩擦耐久性を有する表面処理層を、特定構造のパーフルオロ(ポリ)エーテル基含有シラン化合物を用いて形成する技術が記載されている。また、特許文献2には、最外層と下層を有する構成の表面処理層において、最外層をイソシアネートシラン化合物を必須成分とする表面処理剤により形成し、最外層と基材の間に設けられる下層をSi(NCO)等のシラン化合物を含む表面処理剤により形成することで、撥水性、防汚性の長期持続性を改善する技術が記載されている。 For example, Patent Document 1 uses a perfluoro (poly) ether group-containing silane compound having a specific structure as a surface treatment layer having water repellency, oil repellency, antifouling properties and excellent friction durability. The technology to form is described. Patent Document 2 discloses a surface treatment layer having an outermost layer and a lower layer, wherein the outermost layer is formed of a surface treatment agent containing an isocyanate silane compound as an essential component, and is a lower layer provided between the outermost layer and the substrate. Describes a technique for improving the long-term durability of water repellency and antifouling properties by forming a surface treatment agent containing a silane compound such as Si (NCO) 4 .
日本特開2014-218639号公報Japanese Unexamined Patent Publication No. 2014-218639 日本特開平10-180937号公報Japanese Unexamined Patent Publication No. 10-180937
 本発明者らは、公知の技術を用いて得た物品は、表面層の成膜性は良好であり初期状態では十分な性能が得られるが、使用しているうちに表面層の耐久性に起因してその性能が消失することを知見した。 The inventors of the present invention obtained an article obtained using a known technique has good surface layer film formability and sufficient performance in the initial state. As a result, it was found that the performance disappeared.
 本発明は、上記観点からなされたものであって、基材上に設けられる表面層の耐久性を向上させるために、基材と表面層の間に設けられる下地層、特には酸化ケイ素層に関し、表面層に十分な耐久性を付与できる下地層、特には酸化ケイ素層が形成可能な蒸着材料の提供を課題とする。本発明は、下地層としての酸化ケイ素層上に形成される表面層に十分な耐久性を付与できる酸化ケイ素層付き基材の製造方法、および、表面層が十分な耐久性を有する表面層付き基材の製造方法の提供を課題とする。 The present invention has been made from the above viewpoint, and relates to an underlayer provided between the substrate and the surface layer, particularly a silicon oxide layer, in order to improve the durability of the surface layer provided on the substrate. An object of the present invention is to provide a vapor deposition material capable of forming an underlayer capable of imparting sufficient durability to the surface layer, particularly a silicon oxide layer. The present invention relates to a method for producing a substrate with a silicon oxide layer capable of imparting sufficient durability to a surface layer formed on a silicon oxide layer as an underlayer, and a surface layer with a surface layer having sufficient durability. It is an object to provide a method for manufacturing a base material.
 本発明は、上記課題を達成しうるものであり、以下の態様を有する。
[1]酸化ケイ素を主成分として含有し、前記酸化ケイ素に対する割合で白金族金属を0.03~800質量ppm含有する蒸着材料。
[2]前記蒸着材料全量に対する前記酸化ケイ素の割合が65~99質量%である[1]の蒸着材料。
[3]前記蒸着材料全量に対する前記白金族金属の割合が0.02~800質量ppmである[1]または[2]の蒸着材料。
[4]さらに、酸化ナトリウムおよび酸化カルシウムのうち少なくとも一方を含有する[1]~[3]のいずれかの蒸着材料。
[5]前記酸化ケイ素に対する前記酸化ナトリウムおよび酸化カルシウムの合計が0.1~13質量%である[4]の蒸着材料。
[6]前記蒸着材料から前記白金族金属を除いた成分は、酸化物換算の質量%表示で、SiOを65~95%、NaOを0~20%、CaOを0~32%、Alを0~15%、MgOを0~4%含有する[1]~[5]のいずれかの蒸着材料。
[7]前記蒸着材料から前記白金族金属を除いた成分が、酸化物換算の質量%表示で、SiOを65~75%、NaOを1~20%、CaOを5~32%、Alを0~2%、MgOを0~4%含有するソーダライムガラスである[1]~[6]のいずれかの蒸着材料。
[8]前記白金族金属が、白金およびロジウムから選ばれる少なくとも1種である[1]~[7]のいずれかの蒸着材料。
[9]酸化ケイ素を主成分として含有し、前記酸化ケイ素に対する割合で白金族金属を0.03~800質量ppm含有する蒸着材料を用いて、真空蒸着により基材上に酸化ケイ素層を形成することを含む、酸化ケイ素層付き基材の製造方法。
[10]請求項9に記載の製造方法で得られた酸化ケイ素層付き基材の酸化ケイ素層上に酸化ケイ素と反応しうる基を有する有機化合物を用いて表面層を形成することを含む表面層付き基材の製造方法。
[11]前記有機化合物が含フッ素化合物を含む[10]の表面層付き基材の製造方法。
[12]前記含フッ素化合物は、ポリ(オキシペルフルオロアルキレン)鎖を有する[11]の表面層付き基材の製造方法。
[13]前記含フッ素化合物が、下記式1で表される含フッ素エーテル化合物である[9]~[12]のいずれかの表面層付き基材の製造方法。
 [A-O-Z-(RO)-][-SiR3-n  式1
 但し、Aは、ペルフルオロアルキル基または-Q[-SiR3-nである。Qは、(k+1)価の連結基であり、kは1~10の整数である。Rは、1価の炭化水素基である。Lは、加水分解性基または水酸基である。nは、0~2の整数である。
 Zは、単結合、または1個以上の水素原子がフッ素原子に置換された炭素数1~20のオキシフルオロアルキレン基若しくはポリ(オキシフルオロアルキレン)基である。Rは、ペルフルオロアルキレン基である。mは、2~200の整数である。Zは、(j+q)価の連結基であり、jは、1以上の整数であり、qは、1以上の整数である。
[14]前記酸化ケイ素層上に酸化ケイ素と反応しうる基を有する有機化合物を用いて真空蒸着法により表面層を形成する[9]~[13]のいずれかの表面層付き基材の製造方法。
[15]前記表面層の厚さは、0.1~100nmである[9]~[14]のいずれの表面層付き基材の製造方法。
The present invention can achieve the above-described problems and has the following aspects.
[1] A vapor deposition material containing silicon oxide as a main component and containing 0.03 to 800 ppm by mass of a platinum group metal in a ratio to the silicon oxide.
[2] The vapor deposition material according to [1], wherein a ratio of the silicon oxide to the total amount of the vapor deposition material is 65 to 99% by mass.
[3] The vapor deposition material according to [1] or [2], wherein a ratio of the platinum group metal to the total amount of the vapor deposition material is 0.02 to 800 ppm by mass.
[4] The vapor deposition material according to any one of [1] to [3], further comprising at least one of sodium oxide and calcium oxide.
[5] The vapor deposition material according to [4], wherein the total amount of the sodium oxide and calcium oxide relative to the silicon oxide is 0.1 to 13% by mass.
[6] The component obtained by removing the platinum group metal from the vapor deposition material is expressed by mass% in terms of oxide, SiO 2 is 65 to 95%, Na 2 O is 0 to 20%, CaO is 0 to 32%, The vapor deposition material of any one of [1] to [5], containing 0 to 15% Al 2 O 3 and 0 to 4% MgO.
[7] The component obtained by removing the platinum group metal from the vapor deposition material is expressed in terms of mass% in terms of oxide, SiO 2 is 65 to 75%, Na 2 O is 1 to 20%, CaO is 5 to 32%, The vapor deposition material according to any one of [1] to [6], which is soda-lime glass containing 0 to 2% Al 2 O 3 and 0 to 4% MgO.
[8] The vapor deposition material according to any one of [1] to [7], wherein the platinum group metal is at least one selected from platinum and rhodium.
[9] A silicon oxide layer is formed on a substrate by vacuum deposition using a vapor deposition material containing silicon oxide as a main component and containing 0.03 to 800 ppm by mass of a platinum group metal in a ratio to the silicon oxide. The manufacturing method of the base material with a silicon oxide layer including this.
[10] A surface comprising forming a surface layer using an organic compound having a group capable of reacting with silicon oxide on the silicon oxide layer of the substrate with a silicon oxide layer obtained by the production method according to claim 9 The manufacturing method of a base material with a layer.
[11] The method for producing a substrate with a surface layer according to [10], wherein the organic compound contains a fluorine-containing compound.
[12] The method for producing a substrate with a surface layer according to [11], wherein the fluorine-containing compound has a poly (oxyperfluoroalkylene) chain.
[13] The method for producing a substrate with a surface layer according to any one of [9] to [12], wherein the fluorine-containing compound is a fluorine-containing ether compound represented by the following formula 1.
[AO—Z 1 — (R f O) m —] j Z 2 [—SiR n L 3-n ] q Formula 1
However, A is a perfluoroalkyl group or a -Q [-SiR n L 3-n ] k. Q is a (k + 1) -valent linking group, and k is an integer of 1 to 10. R is a monovalent hydrocarbon group. L is a hydrolyzable group or a hydroxyl group. n is an integer of 0-2.
Z 1 is a single bond or an oxyfluoroalkylene group having 1 to 20 carbon atoms or a poly (oxyfluoroalkylene) group in which one or more hydrogen atoms are substituted with fluorine atoms. R f is a perfluoroalkylene group. m is an integer of 2 to 200. Z 2 is a (j + q) -valent linking group, j is an integer of 1 or more, and q is an integer of 1 or more.
[14] Production of a substrate with a surface layer according to any one of [9] to [13], wherein a surface layer is formed by a vacuum deposition method using an organic compound having a group capable of reacting with silicon oxide on the silicon oxide layer Method.
[15] The method for producing a substrate with a surface layer according to any one of [9] to [14], wherein the thickness of the surface layer is 0.1 to 100 nm.
 本発明によれば、基材上に設けられる表面層の耐久性を向上させるために、基材と表面層の間に設けられる下地層、特には、表面層に十分な耐久性を付与できる酸化ケイ素層が形成可能な蒸着材料を提供できる。また、本発明は、下地層としての酸化ケイ素層上に形成される表面層に十分な耐久性を付与できる酸化ケイ素層付き基材の製造方法、および、表面層が十分な耐久性を有する表面層付き基材の製造方法の提供が提供できる。 According to the present invention, in order to improve the durability of the surface layer provided on the base material, the underlying layer provided between the base material and the surface layer, in particular, oxidation that can impart sufficient durability to the surface layer. An evaporation material capable of forming a silicon layer can be provided. In addition, the present invention provides a method for producing a substrate with a silicon oxide layer capable of imparting sufficient durability to a surface layer formed on a silicon oxide layer as an underlayer, and a surface on which the surface layer has sufficient durability Provision of the manufacturing method of a base material with a layer can be provided.
 本明細書における用語の定義および記載の仕方は以下のとおりである。
 式1で表される化合物を化合物1と記す。他の式で表される化合物も同様に記す。式1で表される基を基1と記す。他の式で表される基も同様に記す。
 「アルキレン基がA基を有していてもよい」という場合、アルキレン基は、アルキレン基中の炭素原子-炭素原子間にA基を有していてもよいし、アルキレン基-A基-のように末端にA基を有していてもよい。
Definitions of terms and how to describe them in this specification are as follows.
The compound represented by Formula 1 is referred to as Compound 1. The same applies to compounds represented by other formulas. A group represented by Formula 1 is referred to as Group 1. Groups represented by other formulas are also described in the same manner.
When "an alkylene group may have an A group" is mentioned, the alkylene group may have an A group between carbon atoms in the alkylene group-carbon atom, or an alkylene group-A group- As such, the terminal may have an A group.
 数値範囲を表す「~」は、その下限値、その上限値を含む範囲である。また、数値範囲の下限値および上限値が同じ単位の場合、簡潔化のために、下限値の単位の記載を省略することがある。
 「平均粒子径」は、D50である。D50は、レーザー回折/散乱式粒度分布測定装置を用いて測定した粒径分布の累積粒度曲線において、その積算量が体積基準で50%を占めるときの粒径を表す。
“˜” representing a numerical range is a range including the lower limit and the upper limit. In addition, when the lower limit value and the upper limit value of the numerical range are in the same unit, the description of the unit of the lower limit value may be omitted for the sake of brevity.
"Mean particle diameter" is the D 50. D 50 represents the particle size when the cumulative amount occupies 50% on a volume basis in the cumulative particle size curve of the particle size distribution measured using a laser diffraction / scattering type particle size distribution measuring apparatus.
 「反応性シリル基」とは、加水分解反応することによってシラノール基(Si-OH)を形成し得る基(加水分解性シリル基)およびシラノール基を意味する。例えば、式1中の-SiR3-nである。
 「エーテル性酸素原子」とは、炭素-炭素原子間においてエーテル結合(-O-)を形成する酸素原子を意味する。なお、オキシペルフルオロアルキレン基の化学式は、その酸素原子をペルフルオロアルキレン基の右側に記載して表すものとする。
The “reactive silyl group” means a group (hydrolyzable silyl group) and a silanol group that can form a silanol group (Si—OH) by a hydrolysis reaction. For example, —SiR n L 3-n in Formula 1.
The “etheric oxygen atom” means an oxygen atom that forms an ether bond (—O—) between carbon-carbon atoms. In the chemical formula of the oxyperfluoroalkylene group, the oxygen atom is described on the right side of the perfluoroalkylene group.
 「2価のオルガノポリシロキサン残基」とは、下式で表される基である。下式におけるRは、アルキル基(好ましくは炭素数1~10)、またはフェニル基である。また、g1は、1以上の整数であり、1~9が好ましく、1~4が特に好ましい。
Figure JPOXMLDOC01-appb-C000001
The “divalent organopolysiloxane residue” is a group represented by the following formula. R a in the following formula is an alkyl group (preferably having 1 to 10 carbon atoms) or a phenyl group. G1 is an integer of 1 or more, preferably 1 to 9, and particularly preferably 1 to 4.
Figure JPOXMLDOC01-appb-C000001
 「シルフェニレン骨格基」とは、-Si(RPhSi(R-(ただし、Phはフェニレン基であり、Rは1価の有機基である。)で表される基である。Rとしては、アルキル基(好ましくは炭素数1~10)が好ましい。
 「ジアルキルシリレン基」は、-Si(R-(ただし、Rはアルキル基(好ましくは炭素数1~10)である。)で表される基である。
 含フッ素エーテル化合物の「数平均分子量」は、NMR分析法を用い、H-NMRおよび19F-NMRによって、末端基を基準にしてオキシペルフルオロアルキレン基の数(平均値)を求めることによって算出される。
The “silphenylene skeleton group” is a group represented by —Si (R b ) 2 PhSi (R b ) 2 — (where Ph is a phenylene group and R b is a monovalent organic group). It is. R b is preferably an alkyl group (preferably having 1 to 10 carbon atoms).
The “dialkylsilylene group” is a group represented by —Si (R c ) 2 — (wherein R c is an alkyl group (preferably having 1 to 10 carbon atoms)).
The “number average molecular weight” of the fluorinated ether compound is calculated by determining the number (average value) of oxyperfluoroalkylene groups based on the end groups by 1 H-NMR and 19 F-NMR using NMR analysis. Is done.
[蒸着材料]
 本発明の蒸着材料は、典型的には真空蒸着に用いられる。真空蒸着とは、成膜技術の1つであり、高真空中で蒸着材料を加熱して気化させ、気体となった蒸着材料を基材表面に付着させることによって蒸着層を形成する技術である。本発明の蒸着材料は、酸化ケイ素を主成分として含有することから得られる蒸着層は、酸化ケイ素を主成分として含有する酸化ケイ素層となる。
[Vapor deposition material]
The vapor deposition material of the present invention is typically used for vacuum vapor deposition. Vacuum deposition is one of the film formation techniques, and is a technique for forming a vapor deposition layer by heating and vaporizing a vapor deposition material in a high vacuum and attaching the vapor deposition material that has become a gas to the substrate surface. . The vapor deposition material of the present invention contains a silicon oxide as a main component, so that the vapor deposition layer obtained is a silicon oxide layer containing silicon oxide as a main component.
 本明細書において、蒸着材料が酸化ケイ素を主成分として含有するとは、蒸着材料の全量に対する酸化ケイ素を65質量%以上含有することをいう。これは、酸化ケイ素層においても同様であり、本発明における酸化ケイ素層とは、酸化ケイ素を65質量%以上含有する層である。 In this specification, that the vapor deposition material contains silicon oxide as a main component means that the silicon oxide contains 65% by mass or more of silicon oxide with respect to the total amount of the vapor deposition material. This also applies to the silicon oxide layer, and the silicon oxide layer in the present invention is a layer containing 65% by mass or more of silicon oxide.
 本発明の蒸着材料を用いて真空蒸着を行うと、蒸着材料に含まれる白金族金属が適度な間隔をおいて基材表面に微小な粒として析出し、その白金族金属の粒をシードとして基材表面に緻密な酸化ケイ素層が形成されると考えられる。このようにして、本発明の蒸着材料を用いて得られる酸化ケイ素層は基材密着性が高く、耐摩耗性に優れる。さらに、酸化ケイ素層上に、酸化ケイ素と反応し得る基を有する有機化合物を用いて表面層を形成すれば、表面層の耐久性に優れる表面層付き基材が得られる。
 本発明の蒸着材料は、上記所定量の酸化ケイ素および白金族金属以外に任意成分を含有してもよい。以下、本発明の蒸着材料が含有する各成分について説明する、
When vacuum deposition is performed using the vapor deposition material of the present invention, the platinum group metal contained in the vapor deposition material precipitates as fine particles on the substrate surface at an appropriate interval, and the platinum group metal particles are used as seeds. It is considered that a dense silicon oxide layer is formed on the material surface. Thus, the silicon oxide layer obtained by using the vapor deposition material of the present invention has high substrate adhesion and excellent wear resistance. Furthermore, if the surface layer is formed on the silicon oxide layer using an organic compound having a group capable of reacting with silicon oxide, a substrate with a surface layer having excellent surface layer durability can be obtained.
The vapor deposition material of the present invention may contain optional components in addition to the predetermined amounts of silicon oxide and platinum group metal. Hereinafter, each component contained in the vapor deposition material of the present invention will be described.
 本発明の蒸着材料が含有する白金族金属としては、白金、ロジウム、ルテニウム、パラジウム、オスミウム、イリジウムが挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。白金族金属としては、白金およびロジウムから選ばれる少なくとも1種が好ましい。 Examples of the platinum group metal contained in the vapor deposition material of the present invention include platinum, rhodium, ruthenium, palladium, osmium, and iridium. These may be used individually by 1 type and may be used in combination of 2 or more type. The platinum group metal is preferably at least one selected from platinum and rhodium.
 蒸着材料における白金族金属の含有量は、蒸着材料が含有する酸化ケイ素に対する割合で0.03~800質量ppmである。該含有量が、上記範囲内にあることで、得られる酸化ケイ素層において十分な基材密着性が得られる。該含有量は、上記酸化ケイ素に対する割合で0.05質量ppm以上が好ましく、1質量ppm以上がより好ましい。該含有量は、上記酸化ケイ素に対する割合で600質量ppm以下が好ましく、200質量ppm以下がより好ましい。 The platinum group metal content in the vapor deposition material is 0.03 to 800 ppm by mass in terms of the silicon oxide contained in the vapor deposition material. When the content is within the above range, sufficient substrate adhesion can be obtained in the obtained silicon oxide layer. The content is preferably 0.05 mass ppm or more, more preferably 1 mass ppm or more, in terms of the ratio to the silicon oxide. The content is preferably 600 mass ppm or less, more preferably 200 mass ppm or less in terms of the ratio to the silicon oxide.
 なお、白金族金属の蒸着材料全量に対する含有割合は、上記と同様の観点から、0.02~800質量ppmが好ましく、0.04~600質量ppmがより好ましく、0.7~200質量ppmがさらに好ましい。 The content of the platinum group metal with respect to the total amount of the vapor deposition material is preferably 0.02 to 800 ppm by mass, more preferably 0.04 to 600 ppm by mass, and 0.7 to 200 ppm by mass from the same viewpoint as described above. Further preferred.
 蒸着材料が含有する酸化ケイ素の割合は、蒸着材料全量に対して下限が65質量%であり、上限が蒸着材料全量から白金族金属の含有量を除いた値である。酸化ケイ素の割合が上記範囲内であれば、得られる酸化ケイ素層は高い基材密着性を有する。 The lower limit of the ratio of silicon oxide contained in the vapor deposition material is 65% by mass with respect to the total amount of the vapor deposition material, and the upper limit is a value obtained by excluding the platinum group metal content from the total amount of the vapor deposition material. When the ratio of silicon oxide is within the above range, the resulting silicon oxide layer has high substrate adhesion.
 蒸着材料において、酸化ケイ素の含有量が上記上限値未満の場合、蒸着材料は酸化ケイ素および白金族金属以外の任意成分を含有する。その場合、酸化ケイ素の含有量は、基材密着性の観点から65質量%以上であり、70質量%以上が好ましく、75質量%以上がさらに好ましい。酸化ケイ素の含有量は、蒸着材料の製造容易性の観点からは、99質量%以下が好ましく、90質量%以下がより好ましく、80質量%以下がさらに好ましい。 In the vapor deposition material, when the content of silicon oxide is less than the above upper limit value, the vapor deposition material contains an optional component other than silicon oxide and a platinum group metal. In that case, content of silicon oxide is 65 mass% or more from a viewpoint of base-material adhesiveness, 70 mass% or more is preferable and 75 mass% or more is further more preferable. The content of silicon oxide is preferably 99% by mass or less, more preferably 90% by mass or less, and still more preferably 80% by mass or less, from the viewpoint of ease of manufacture of the vapor deposition material.
 蒸着材料が含有してもよい任意成分としては、金属酸化物が好ましい。金属酸化物の金属としては、Li、Na、K等のアルカリ金属、Ca、Sr、Mg、Ba等のアルカリ土類金属、Mo、W、B、Fe、Sc、Y、La、Ce、Gd、Ti、Zr、V、Nb、Ta、Cr、Mn、Co、Ni、Cu、Zn、Al、Ga、Ge、Sn、Sb、Bi、P等が挙げられる。 As an optional component that may be contained in the vapor deposition material, a metal oxide is preferable. Examples of the metal oxide include alkali metals such as Li, Na, and K, alkaline earth metals such as Ca, Sr, Mg, and Ba, Mo, W, B, Fe, Sc, Y, La, Ce, Gd, Ti, Zr, V, Nb, Ta, Cr, Mn, Co, Ni, Cu, Zn, Al, Ga, Ge, Sn, Sb, Bi, P, etc. are mentioned.
 本発明の蒸着材料は、通常、蒸着材料から白金族金属を除いた成分を母材として、該母材に白金族金属を所定の割合で含有させて構成される。母材は、蒸着材料としたときに、主成分となる量の酸化ケイ素を含有する。母材は酸化ケイ素のみで構成されてもよく、酸化ケイ素と上に説明した任意成分から構成されてもよい。さらに、蒸着材料に白金族金属が塩として導入された場合は、母材は白金族金属の対アニオンを含有する。 The vapor deposition material of the present invention is usually constituted by using a component obtained by removing the platinum group metal from the vapor deposition material as a base material and containing the platinum group metal in a predetermined ratio in the base material. The base material contains an amount of silicon oxide as a main component when used as a vapor deposition material. The base material may be composed only of silicon oxide, or may be composed of silicon oxide and the optional components described above. Furthermore, when a platinum group metal is introduced as a salt into the vapor deposition material, the base material contains a counter anion of the platinum group metal.
 本発明の蒸着材料における母材としては、酸化ケイ素、または、酸化ケイ素を上記の量含有する組成物であれば特に制限されない。具体的には、酸化ケイ素、ケイ酸の加水分解縮合物、アルコキシシランの加水分解縮合物、ソーダライムガラス等のシリケートガラス等が挙げられ、ケイ酸の加水分解縮合物またはソーダライムガラスが好ましい。母材が組成物の場合、その組成は母材の種類に応じて適宜調整される。母材が組成物の場合、母材は酸化ケイ素以外に、酸化ナトリウムおよび酸化カルシウムのうち少なくとも一方を含むのが好ましい。 The base material in the vapor deposition material of the present invention is not particularly limited as long as it is silicon oxide or a composition containing silicon oxide in the above amount. Specific examples include silicon oxide, hydrolyzed condensate of silicic acid, hydrolyzed condensate of alkoxysilane, silicate glass such as soda lime glass, etc., and hydrolyzed condensate of silicic acid or soda lime glass is preferred. When the base material is a composition, the composition is appropriately adjusted according to the type of the base material. When the base material is a composition, the base material preferably contains at least one of sodium oxide and calcium oxide in addition to silicon oxide.
 母材が酸化ケイ素の場合、蒸着材料の製造方法としては、得られる蒸着材料において酸化ケイ素と白金族金属の割合が上記範囲となるように、酸化ケイ素粉末と白金族金属粉末を混合する、二酸化ケイ素を白金族金属含有水溶液に添加して撹拌後水を除去する等の方法が挙げられる。酸化ケイ素粉末と白金族金属粉末を混合する場合、粉末の平均粒子径は、いずれも0.1~100μmが好ましく、1~10μmがより好ましい。この場合、粉末を混合後、後述のようにペレット化して用いることが好ましい。白金族金属含有水溶液としては、白金族金属の塩、例えば、水酸化物、塩化物、炭酸塩等の水溶液が挙げられる。なお、白金族金属塩の水溶液を用いる場合、白金族金属は塩として蒸着材料に含有される。 When the base material is silicon oxide, a method for producing a vapor deposition material is to mix silicon oxide powder and platinum group metal powder so that the ratio of silicon oxide and platinum group metal is in the above range in the obtained vapor deposition material. Examples thereof include a method of adding silicon to a platinum group metal-containing aqueous solution and removing water after stirring. When the silicon oxide powder and the platinum group metal powder are mixed, the average particle diameter of the powder is preferably 0.1 to 100 μm, and more preferably 1 to 10 μm. In this case, after mixing the powder, it is preferable to pelletize and use as described later. Examples of the platinum group metal-containing aqueous solution include aqueous solutions of platinum group metal salts such as hydroxides, chlorides, and carbonates. Note that when an aqueous solution of a platinum group metal salt is used, the platinum group metal is contained in the vapor deposition material as a salt.
 母材がケイ酸の加水分解縮合物の場合、ケイ酸およびその部分加水分解縮合物からなる群から選ばれる少なくとも1種と、白金族金属と、水を含む溶液を乾燥させる方法が挙げられる。白金族金属は、通常、塩として該溶液に含有される。白金族金属の塩としては上記と同様の塩が挙げられる。ケイ酸としては、ケイ酸ナトリウムやケイ酸カリウムを脱塩処理したものが使用できる。なお、溶液には必要に応じて有機溶媒を含有させてもよい。 When the base material is a hydrolyzed condensate of silicic acid, a method of drying a solution containing at least one selected from the group consisting of silicic acid and a partially hydrolyzed condensate thereof, a platinum group metal, and water can be mentioned. The platinum group metal is usually contained in the solution as a salt. Examples of the platinum group metal salt include the same salts as described above. As the silicic acid, desalted sodium silicate or potassium silicate can be used. In addition, you may make the solution contain an organic solvent as needed.
 ケイ酸ナトリウムとしては、JIS K1408-1966に規定されたNaO・nSiOが挙げられる。具体的には、メタケイ酸ナトリウム(NaSiO)、オルトケイ酸ナトリウム(NaSiO)、二ケイ酸ナトリウム(NaSi)、四ケイ酸ナトリウム(NaSi)等が挙げられる。ケイ酸カリウムとしては、KO・nSiOが挙げられ、具体的には、メタケイ酸カリウム(KSiO)、オルトケイ酸カリウム(KSiO)、二ケイ酸カリウム(KSi)、四ケイ酸カリウム(KSi)等が挙げられる。 Examples of sodium silicate include Na 2 O · nSiO 2 defined in JIS K1408-1966. Specifically, sodium metasilicate (Na 2 SiO 3 ), sodium orthosilicate (Na 4 SiO 4 ), sodium disilicate (Na 2 Si 2 O 5 ), sodium tetrasilicate (Na 2 Si 4 O 9 ) Etc. Examples of potassium silicate include K 2 O · nSiO 2 , and specifically, potassium metasilicate (K 2 SiO 3 ), potassium orthosilicate (K 4 SiO 4 ), potassium disilicate (K 2 Si 2). O 5 ), potassium tetrasilicate (K 2 Si 4 O 9 ) and the like.
 脱塩処理の方法としては、例えば、ケイ酸ナトリウム水溶液やケイ酸カリウム水溶液と陽イオン交換樹脂とを混合し、撹拌した後、陽イオン交換樹脂を除去する方法が挙げられる。ケイ酸および/または部分加水分解縮合物と、白金族金属と、水を含む溶液を乾燥させる温度としては、5~50℃が好ましく、15~30℃がより好ましい。 Examples of the desalting treatment include a method in which a sodium silicate aqueous solution or a potassium silicate aqueous solution and a cation exchange resin are mixed and stirred, and then the cation exchange resin is removed. The temperature at which the solution containing silicic acid and / or the partial hydrolysis-condensation product, the platinum group metal, and water is dried is preferably 5 to 50 ° C., more preferably 15 to 30 ° C.
 なお、上記において、ケイ酸ナトリウムやケイ酸カリウムをそのまま用いて、または、上記脱塩処理において条件を適宜選択してナトリウム量やカリウム量を適宜調整したケイ酸ナトリウムやケイ酸カリウムを用いて、母材が酸化ナトリウムや酸化カリウムを含む構成としてもよい。その場合、酸化ケイ素に対する酸化ナトリウムおよび酸化カリウムの割合は合計で0.1~13質量%が好ましく、1.0~10質量%がより好ましい。 In addition, in the above, using sodium silicate or potassium silicate as it is, or using sodium silicate or potassium silicate in which the amount of sodium or potassium is appropriately adjusted by appropriately selecting conditions in the desalting treatment, The base material may include sodium oxide or potassium oxide. In that case, the total ratio of sodium oxide and potassium oxide to silicon oxide is preferably 0.1 to 13% by mass, and more preferably 1.0 to 10% by mass.
 母材が酸化ケイ素を上記の量含有する組成物の場合、その組成は、母材の種類に応じて適宜調整される。母材がソーダライムガラスの場合、母材は、通常、酸化ケイ素、酸化ナトリウムおよび酸化カルシウムを含む。なお、ソーダライムガラスにおける酸化ケイ素の含有量は、蒸着材料としたときに、主成分となる量である。ソーダライムガラスの場合、これらの3成分以外のその他成分として、上記の金属酸化物の適量を適宜含有できる。上記の金属酸化物の中でも、溶解特性調整の観点から酸化アルミニウムおよび酸化マグネシウムから選ばれる少なくとも1種を含有するのが好ましい。 When the base material is a composition containing silicon oxide in the above amount, the composition is appropriately adjusted according to the type of base material. When the base material is soda lime glass, the base material usually contains silicon oxide, sodium oxide and calcium oxide. In addition, content of the silicon oxide in soda-lime glass is the quantity used as a main component, when it is set as a vapor deposition material. In the case of soda lime glass, an appropriate amount of the above metal oxide can be appropriately contained as other components other than these three components. Among the above metal oxides, it is preferable to contain at least one selected from aluminum oxide and magnesium oxide from the viewpoint of adjusting dissolution characteristics.
 具体的には、母材に用いるシリケートガラスにおいては、酸化物換算の質量%表示で、SiOを65~95%、NaOを0~20%、CaOを0~32%、Alを0~15%、MgOを0~4%含有する組成が好ましい。また、シリケートガラスのうち特にソーダライムガラスにおいては、SiOを65~75%、NaOを1~20%、CaOを5~32%、Alを0~2%、MgOを0~4%含有する組成が好ましい。
 ソーダライムガラスにおける各成分の含有量は、得られたガラスの誘導結合プラズマ(ICP-AES:Inductively Coupled Plasma-Atomic Emission Spectroscopy)分析の結果から求められる。
Specifically, in a silicate glass used for a base material, SiO 2 is 65 to 95%, Na 2 O is 0 to 20%, CaO is 0 to 32%, and Al 2 O is expressed in terms of mass% in terms of oxide. A composition containing 3 to 0 to 15% and MgO to 0 to 4% is preferable. Among silicate glasses, particularly soda lime glass, SiO 2 is 65 to 75%, Na 2 O is 1 to 20%, CaO is 5 to 32%, Al 2 O 3 is 0 to 2%, and MgO is 0%. A composition containing ˜4% is preferred.
The content of each component in the soda lime glass is determined from the result of inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of the obtained glass.
 ソーダライムガラスがSiOを65~75%含有することで、溶解温度が低下して生産性が向上する。SiOの含有量は、67~73%がより好ましく、69~71%がさらに好ましい。ソーダライムガラスがNaOを1~20%含有することで、溶解温度が低下する。NaOの含有量は、1~10%がより好ましく、2~5%がさらに好ましい。ソーダライムガラスがCaOを5~32%含有することで、溶解温度が低下することに加えて、酸化ケイ素層へのCaOの混入量を適度に少なくできる。CaOの含有量は、10~30%がより好ましく、15~28%がさらに好ましい。 By containing 65 to 75% of SiO 2 in soda lime glass, the melting temperature is lowered and the productivity is improved. The content of SiO 2 is more preferably 67 to 73%, further preferably 69 to 71%. When soda lime glass contains 1 to 20% of Na 2 O, the melting temperature is lowered. The content of Na 2 O is more preferably 1 to 10%, further preferably 2 to 5%. When the soda lime glass contains 5 to 32% of CaO, the melting temperature is lowered, and the amount of CaO mixed into the silicon oxide layer can be appropriately reduced. The content of CaO is more preferably 10 to 30%, further preferably 15 to 28%.
 ソーダライムガラスがAlを0~2%含有することで、溶解温度が低下するとともに酸化ケイ素層への混入が小さい。Alの含有量は、0.1~1.5%がより好ましく、0.5~1%がさらに好ましい。ソーダライムガラスがMgOを0~4%含有することで、溶解温度が低下するとともに酸化ケイ素層へのMgOの混入量を適度に少なくできる。MgOの含有量は、0.1~2%がより好ましく、0.5~1%がさらに好ましい。 When the soda lime glass contains 0 to 2% of Al 2 O 3 , the melting temperature is lowered and the mixing into the silicon oxide layer is small. The content of Al 2 O 3 is more preferably from 0.1 to 1.5%, further preferably from 0.5 to 1%. When the soda lime glass contains 0 to 4% of MgO, the melting temperature is lowered and the amount of MgO mixed into the silicon oxide layer can be moderately reduced. The content of MgO is more preferably from 0.1 to 2%, further preferably from 0.5 to 1%.
 上記ソーダライムガラスは、任意成分としてさらに、溶解温度や分相特性を調整する目的でKO、Fe、TiO等を適宜含有してもよい。
 ソーダライムガラスにおける、軟化点は蒸着源としての加工性の観点から700~1700℃が好ましい。
The soda lime glass may further contain K 2 O, Fe 2 O 3 , TiO 2 and the like as optional components for the purpose of adjusting the melting temperature and phase separation characteristics.
In the soda lime glass, the softening point is preferably 700 to 1700 ° C. from the viewpoint of workability as a deposition source.
 母材をソーダライムガラスとした場合の本発明の蒸着材料は、例えば、以下に示す方法で製造することができる。
 まず、ソーダライムガラスの原料混合物を準備する。原料は、通常の酸化物系のガラスの製造に用いる原料であれば特に限定されず、酸化物、水酸化物、炭酸塩、硫酸塩、硝酸塩等を用いることができる。具体的には、原料成分としては、珪砂、炭酸カルシウム、炭酸ナトリウム、消石灰、水酸化マグネシウム、水酸化アルミニウム、メタケイ酸ナトリウム水和物、硫酸マグネシウム、ソーダ灰、タルク、酸化アルミニウム、ボウ硝、炭酸カリウム、弁柄等が挙げられる。これら原料成分のなかから、得ようとする組成に合わせて各成分が適宜選択され、調製に用いられる。
The vapor deposition material of the present invention when the base material is soda lime glass can be produced, for example, by the method shown below.
First, a raw material mixture of soda lime glass is prepared. The raw material is not particularly limited as long as it is a raw material used for production of ordinary oxide-based glass, and oxides, hydroxides, carbonates, sulfates, nitrates, and the like can be used. Specifically, raw material components include silica sand, calcium carbonate, sodium carbonate, slaked lime, magnesium hydroxide, aluminum hydroxide, sodium metasilicate hydrate, magnesium sulfate, soda ash, talc, aluminum oxide, bow glass, carbonate Examples include potassium and petals. From these raw material components, each component is appropriately selected according to the composition to be obtained and used for preparation.
 得られる蒸着材料における母材としてのソーダライムガラスにおいて、上記組成範囲となるように原料の種類および割合を適宜調整して原料混合物とする。該原料混合物を調製する際に、白金族金属を、得られる蒸着材料において酸化ケイ素に対する白金族金属の割合が上記範囲となるように母材の原料混合物に添加して、蒸着材料の原料組成物とする。 In the soda lime glass as a base material in the obtained vapor deposition material, the kind and ratio of the raw materials are appropriately adjusted so as to be in the above composition range to obtain a raw material mixture. When preparing the raw material mixture, the platinum group metal is added to the raw material mixture of the base material so that the ratio of the platinum group metal to the silicon oxide is in the above range in the obtained vapor deposition material, and the raw material composition of the vapor deposition material And
 母材の原料混合物に添加する際の白金族金属は、例えば、白金族金属自体の粉末とする。粉末の大きさは、例えば、原料組成物を溶融した際の分散性および均一性の観点から、平均粒子径が0.1~100μmが好ましく、1~10μmがより好ましい。 The platinum group metal to be added to the raw material mixture of the base material is, for example, a powder of the platinum group metal itself. As for the size of the powder, for example, the average particle diameter is preferably from 0.1 to 100 μm, more preferably from 1 to 10 μm, from the viewpoint of dispersibility and uniformity when the raw material composition is melted.
 次に、蒸着材料の原料組成物を高温電気炉等公知の方法で加熱して溶融物を得る。加熱溶融する温度(溶融温度)は、700~1700℃が好ましく、700~1600℃がより好ましい。加熱溶融する時間は、1~36時間が好ましく、3~12時間がより好ましい。
 その後、溶融物を冷却し固化し、溶融粒状体を得ることにより、本発明の蒸着材料が得られる。冷却方法は特に限定されない。冷却速度は、例えば、0.5~5℃/分程度とすることができる。溶融物をカーボン板等の冷却板の上に流出させ室温冷却する方法の他に、ロールアウトマシン、プレスマシン、冷却液体への滴下等により急冷する方法をとることもできる。
Next, the raw material composition of the vapor deposition material is heated by a known method such as a high temperature electric furnace to obtain a melt. The temperature for melting by heating (melting temperature) is preferably 700 to 1700 ° C, more preferably 700 to 1600 ° C. The time for heating and melting is preferably 1 to 36 hours, and more preferably 3 to 12 hours.
Thereafter, the melt is cooled and solidified to obtain a molten granule, whereby the vapor deposition material of the present invention is obtained. The cooling method is not particularly limited. The cooling rate can be, for example, about 0.5 to 5 ° C./min. In addition to the method of allowing the melt to flow out onto a cooling plate such as a carbon plate and cooling it at room temperature, a method of quenching by a roll-out machine, a press machine, dripping into a cooling liquid, or the like can be employed.
 本発明の蒸着材料は、いかなる形態であってもよい。例えば、ブロック状、板状、薄い板状(フレーク状)、ビーズ状、粉末状等であってもよい。これらのうち、粉末は真空蒸着時に飛散しやすいことから、ペレット状に加工して用いるのが好ましい。ペレットの製造方法は問わないが、例えば、粉末を圧粉成形してペレット状成形体にする方法が挙げられる。また粉末を造粒して造粒体としてもよい。さらにペレット状成形体、造粒体は焼成して焼結体を得てもよい。ペレット状成形体、造粒体または焼結体の大きさは、真空蒸着時の飛散を抑制する観点から、例えば、直径または長径で0.5mm以上が好ましい。上限は特に限定されないが、蒸着装置の大きさの観点から、直径または長径で1~3cm程度が好ましい。蒸着材料を、ブロック状、板状、フレーク状、ビーズ状等とする場合の大きさも、ペレット状成形体の場合と同様にできる。 The vapor deposition material of the present invention may be in any form. For example, a block shape, a plate shape, a thin plate shape (flake shape), a bead shape, a powder shape, and the like may be used. Among these, since the powder is likely to be scattered during vacuum deposition, it is preferable to use it after processing into a pellet form. Although the manufacturing method of a pellet is not ask | required, the method of compacting powder into a pellet-shaped molded object is mentioned, for example. Moreover, it is good also as a granulated body by granulating powder. Furthermore, the pellet-shaped molded body and the granulated body may be fired to obtain a sintered body. The size of the pellet-shaped formed body, granulated body or sintered body is preferably, for example, 0.5 mm or more in diameter or major axis from the viewpoint of suppressing scattering during vacuum deposition. The upper limit is not particularly limited, but is preferably about 1 to 3 cm in diameter or major axis from the viewpoint of the size of the vapor deposition apparatus. The size of the vapor deposition material in the form of a block, plate, flake, bead, etc. can also be the same as in the case of a pellet-shaped molded body.
 本発明の蒸着材料を用いて酸化ケイ素層を形成する基材は特に限定されない。本発明の蒸着材料は、通常、酸化ケイ素層上にさらに設けられる表面層による表面改質(特定の性能の付与)が求められる基材を対象として用いられる。基材の材料としては、金属、樹脂、ガラス(化学強化されていてもよい。)、サファイア、セラミック、石、これらの複合材料が挙げられる。基材は、単層構造であってもよく、積層構造であってもよい。基材の形状、大きさ等は特に限定されない。基材は、後述する表面層付き基材の用途に応じて適宜選択される。本発明の蒸着材料を用いた酸化ケイ素層は、透明基材に適用した際に、基材の透明性を損なうことなく基材との高い密着性を実現できることから、透明基材に好適に用いられる。 The substrate for forming the silicon oxide layer using the vapor deposition material of the present invention is not particularly limited. The vapor deposition material of the present invention is usually used for a substrate that requires surface modification (giving specific performance) by a surface layer further provided on a silicon oxide layer. Examples of the material for the substrate include metals, resins, glass (which may be chemically strengthened), sapphire, ceramic, stone, and composite materials thereof. The substrate may have a single layer structure or a laminated structure. The shape, size, etc. of the substrate are not particularly limited. A base material is suitably selected according to the use of the base material with a surface layer mentioned later. The silicon oxide layer using the vapor deposition material of the present invention can be used suitably for a transparent substrate because it can achieve high adhesion to the substrate without impairing the transparency of the substrate when applied to a transparent substrate. It is done.
 基材と酸化ケイ素層との密着性をより向上させる点から、基材の表面には活性化処理、例えば、乾式の活性化処理、湿式の活性化処理が施されていてもよい。乾式の活性化処理の具体例としては、活性エネルギー線(例えば、紫外線、電子線、X線)を基材の表面に照射する処理、コロナ放電処理、プラズマ処理(真空プラズマ処理、常圧プラズマ処理)、火炎処理、イトロ処理が挙げられる。湿式の活性化処理の具体例としては、基材表面を酸ないしアルカリ溶液に接触させる処理が挙げられる。上記活性化処理の中でも、基材と酸化ケイ素層との密着性がより向上する点から、コロナ放電処理またはプラズマ処理が好ましい。 From the viewpoint of further improving the adhesion between the substrate and the silicon oxide layer, the surface of the substrate may be subjected to an activation treatment, for example, a dry activation treatment or a wet activation treatment. Specific examples of the dry activation process include a process of irradiating the surface of the substrate with active energy rays (for example, ultraviolet rays, electron beams, X-rays), a corona discharge process, a plasma process (vacuum plasma process, atmospheric pressure plasma process) ), Flame treatment, and itro treatment. Specific examples of the wet activation treatment include a treatment in which the substrate surface is brought into contact with an acid or alkali solution. Among the above activation treatments, corona discharge treatment or plasma treatment is preferable because the adhesion between the substrate and the silicon oxide layer is further improved.
 また、上述した材料からなる基材本体の表面上にさらなる層を有するものを基材として用いてもよい。この層は、本発明の効果に優れる点から、基材本体との密着性に優れる層が好ましく、具体例としては、ダイヤモンドライクカーボン層が挙げられる。
 ダイヤモンドライクカーボン層とは、ダイヤモンド結合(炭素同士のsp混成軌道による結合)とグラファイト結合(炭素同士のsp混成軌道による結合)との両方の結合が混在するアモルファス構造をもつ膜を意味する。ダイヤモンドライクカーボンは、炭素原子以外の原子(例えば、水素原子、酸素原子、ケイ素原子、窒素原子、アルミニウム原子、ホウ素原子、リン原子)を含んでいてもよい。
Moreover, you may use what has a further layer on the surface of the base-material main body which consists of the material mentioned above as a base material. This layer is preferably a layer having excellent adhesion to the base body from the viewpoint of excellent effects of the present invention, and specific examples include a diamond-like carbon layer.
A diamond-like carbon layer means a film having an amorphous structure in which both bonds of diamond bonds (bonds due to sp 3 hybrid orbitals between carbons) and graphite bonds (bonds due to sp 2 hybrid orbitals between carbons) are mixed. . Diamond-like carbon may contain atoms other than carbon atoms (for example, hydrogen atoms, oxygen atoms, silicon atoms, nitrogen atoms, aluminum atoms, boron atoms, phosphorus atoms).
[酸化ケイ素層付き基材の製造方法]
 本発明の酸化ケイ素層付き基材の製造方法に用いる蒸着材料は、上に説明した本発明の蒸着材料と同様である。酸化ケイ素層を形成する基材についても上に説明したとおりである。
[Method for producing substrate with silicon oxide layer]
The vapor deposition material used for the manufacturing method of the base material with a silicon oxide layer of this invention is the same as the vapor deposition material of this invention demonstrated above. The base material on which the silicon oxide layer is formed is as described above.
 蒸着材料を用いて基材上に酸化ケイ素層を形成する真空蒸着の方法は、通常の真空蒸着の装置を用いた通常の方法が特に制限なく適用できる。具体的には、減圧が可能な装置内に基材を設置し、基材の酸化ケイ素層形成面に対向する位置に蒸着材料を充填した蒸着材料用容器を設置する。蒸着材料用容器の大きさ、形状は特に制限されない。蒸着材料用容器の材質は、以下の真空蒸着の条件下で蒸着材料と反応性を有さず、かつ蒸発しない材質であればよく、例えば、モリブデン、タングステン、銅等が挙げられる。 As a vacuum deposition method for forming a silicon oxide layer on a substrate using a deposition material, a normal method using a normal vacuum deposition apparatus can be applied without any particular limitation. Specifically, a base material is installed in an apparatus capable of reducing pressure, and a deposition material container filled with a deposition material is installed at a position facing the silicon oxide layer forming surface of the base material. The size and shape of the vapor deposition material container are not particularly limited. The material for the vapor deposition material container may be any material that does not react with the vapor deposition material under the following vacuum vapor deposition conditions and does not evaporate. Examples thereof include molybdenum, tungsten, and copper.
 蒸着材料の加熱は、通常、蒸着材料用容器収容物を電子銃や抵抗加熱により加熱することにより行う。蒸着材料用容器収容物の加熱温度は、100~3000℃が好ましく、1000~2000℃がより好ましく、1200~1800℃がさらに好ましい。真空蒸着の際の装置内の温度は、20~300℃が好ましく、30~200℃が特に好ましい。真空蒸着の際の装置内の圧力(絶対圧)は、1×10-1Pa以下が好ましく、1×10-2Pa以下が特に好ましい。基材の酸化ケイ素層形成面と蒸着材料との距離は、100~4000mmが好ましく、200~2000mmがより好ましい。蒸着材料を用いて下地層を形成する場合、1つの蒸着材料を用いてもよいし、異なる元素を含む2つ以上の蒸着材料を用いてもよい。 The evaporation material is usually heated by heating the container material for the evaporation material with an electron gun or resistance heating. The heating temperature of the container for the vapor deposition material is preferably 100 to 3000 ° C, more preferably 1000 to 2000 ° C, and further preferably 1200 to 1800 ° C. The temperature in the apparatus during vacuum deposition is preferably 20 to 300 ° C, particularly preferably 30 to 200 ° C. The pressure (absolute pressure) in the apparatus during vacuum deposition is preferably 1 × 10 −1 Pa or less, particularly preferably 1 × 10 −2 Pa or less. The distance between the silicon oxide layer forming surface of the substrate and the vapor deposition material is preferably 100 to 4000 mm, more preferably 200 to 2000 mm. In the case of forming an underlayer using a vapor deposition material, one vapor deposition material may be used, or two or more vapor deposition materials containing different elements may be used.
 本発明の蒸着材料を用いて、上記のようにして得られる酸化ケイ素層は、酸化ケイ素を65質量%含有する層である。酸化ケイ素層の組成は蒸着材料の組成と必ずしも同じではない。例えば、酸化ケイ素層における、白金族金属の酸化ケイ素に対する含有量は、増加する傾向にあり、さらに白金族金属の種類により増加の度合いが異なる傾向にある。これは、真空蒸着に際して、白金族金属が基材表面に微小な粒として析出し、その白金族金属の粒をシードとして基材表面に緻密な酸化ケイ素層が形成されるためと考えられる。 The silicon oxide layer obtained as described above using the vapor deposition material of the present invention is a layer containing 65% by mass of silicon oxide. The composition of the silicon oxide layer is not necessarily the same as the composition of the vapor deposition material. For example, the content of platinum group metal with respect to silicon oxide in the silicon oxide layer tends to increase, and the degree of increase tends to differ depending on the type of platinum group metal. This is presumably because, during vacuum deposition, platinum group metal precipitates as fine particles on the substrate surface, and a dense silicon oxide layer is formed on the substrate surface using the platinum group metal particles as seeds.
 また、蒸着材料の母材が酸化ケイ素を含む組成物の場合、酸化ケイ素とその他の成分が白金族金属や基材表面への付着性に差があることにより、通常、白金族金属以外の組成も蒸着材料と酸化ケイ素層で異なる組成となる。例えば、蒸着材料の母材がソーダライムガラスの場合、得られる酸化ケイ素層における白金族金属以外の組成は、通常、上記ソーダライムガラスの組成に比べて、酸化ケイ素の含有量が多い組成となる。 In addition, in the case where the base material of the vapor deposition material is a composition containing silicon oxide, the composition other than the platinum group metal is usually due to the difference in adhesion of the silicon oxide and other components to the platinum group metal or the substrate surface. Also, the vapor deposition material and the silicon oxide layer have different compositions. For example, when the base material of the vapor deposition material is soda lime glass, the composition other than the platinum group metal in the obtained silicon oxide layer is usually a composition having a higher silicon oxide content than the composition of the soda lime glass. .
 蒸着材料の母材として好ましい組成とした、酸化物換算の質量%表示で、SiOを65~75%、NaOを1~20%、CaOを5~32%、Alを0~2%、MgOを0~4%含有する組成のソーダライムガラスを例にすると、得られる酸化ケイ素層における白金族金属以外の組成は、概ね、酸化物換算の質量%表示で、SiOが65~75%、NaOが1~20%、CaOが0~32%、Alが0~2%、MgOが0~4%となる。 SiO 2 is 65 to 75%, Na 2 O is 1 to 20%, CaO is 5 to 32%, and Al 2 O 3 is 0 in terms of mass% in terms of oxide, which is a preferable composition as a base material for the vapor deposition material. Taking a soda lime glass having a composition containing ˜2% and MgO as 0-4% as an example, the composition other than the platinum group metal in the obtained silicon oxide layer is generally expressed in mass% in terms of oxide, and SiO 2 is 65-75%, Na 2 O 1-20%, CaO 0-32%, Al 2 O 3 0-2%, MgO 0-4%.
 酸化ケイ素層の厚さは、2~200nmが好ましく、2~20nmが特に好ましい。厚さが上記範囲の下限値以上であれば、酸化ケイ素層による基材密着性の向上効果が充分に得られやすい。厚さが上記範囲の上限値以下であれば、酸化ケイ素層自体の耐摩耗性が高くなる。酸化ケイ素層の厚さを測定する方法は特に限定されないが、例えば、電子顕微鏡(SEM、TEM等)による酸化ケイ素層の断面観察による方法や光干渉膜厚計、分光エリプソメータ、段差計等を用いる方法がある。 The thickness of the silicon oxide layer is preferably 2 to 200 nm, particularly preferably 2 to 20 nm. If thickness is more than the lower limit of the said range, the improvement effect of the base-material adhesiveness by a silicon oxide layer will be fully easy to be acquired. If thickness is below the upper limit of the said range, the abrasion resistance of silicon oxide layer itself will become high. The method for measuring the thickness of the silicon oxide layer is not particularly limited. For example, a method by cross-sectional observation of the silicon oxide layer with an electron microscope (SEM, TEM, etc.), an optical interference film thickness meter, a spectroscopic ellipsometer, a step meter, etc. There is a way.
 本発明の製造方法により基材上に上記の蒸着材料を用いて形成される酸化ケイ素層は、上記のとおり緻密な層として形成される。したがって、該酸化ケイ素層を下地層として、その上に表面層を形成すれば、得られる表面層に十分な耐久性を付与できる。表面層は、酸化ケイ素と反応しうる基を有する有機化合物を用いて形成されると耐久性の効果をより顕著に発揮できる。さらには、反応性シリル基を有する有機化合物を用いて形成されると耐久性の点でより好ましい。 The silicon oxide layer formed on the substrate using the above-described vapor deposition material by the production method of the present invention is formed as a dense layer as described above. Therefore, if the silicon oxide layer is used as a base layer and a surface layer is formed thereon, sufficient durability can be imparted to the resulting surface layer. When the surface layer is formed using an organic compound having a group capable of reacting with silicon oxide, the effect of durability can be exhibited more remarkably. Furthermore, it is more preferable in terms of durability when formed using an organic compound having a reactive silyl group.
[表面層付き基材の製造方法]
 本発明の製造方法により得られる表面層付き基材は、基材と、基材上に積層された酸化ケイ素層と、酸化ケイ素層上に直接形成された表面層とからなる。酸化ケイ素層は、上に説明した本発明の蒸着材料を用いて形成された酸化ケイ素を主成分とする層であり、表面層は酸化ケイ素と反応しうる基を用いて形成された層である。なお「基材上に積層された層」とは、基材上に直接層が積層される場合に限らず、基材と層との間に、別の層が備わる場合も含み、以下の構成も同様である。
[Method for producing substrate with surface layer]
The substrate with a surface layer obtained by the production method of the present invention comprises a substrate, a silicon oxide layer laminated on the substrate, and a surface layer directly formed on the silicon oxide layer. The silicon oxide layer is a layer mainly composed of silicon oxide formed using the vapor deposition material of the present invention described above, and the surface layer is a layer formed using a group capable of reacting with silicon oxide. . The “layer laminated on the base material” is not limited to the case where the layer is directly laminated on the base material, and includes the case where another layer is provided between the base material and the layer. Is the same.
 本発明の表面層付き基材の製造方法は、基材上に酸化ケイ素層を形成して酸化ケイ素層付き基材を得る(a)工程と、この(a)工程で得られた酸化ケイ素層付き基材の酸化ケイ素層上に酸化ケイ素と反応しうる基を有する有機化合物を用いて表面層を形成する(b)工程を有する。(a)工程は、上記本発明の酸化ケイ素層付き基材の製造方法と同様に実施できる。 The method for producing a substrate with a surface layer of the present invention comprises a step (a) of obtaining a substrate with a silicon oxide layer by forming a silicon oxide layer on the substrate, and a silicon oxide layer obtained in this step (a) (B) forming a surface layer using an organic compound having a group capable of reacting with silicon oxide on the silicon oxide layer of the attached substrate. (A) A process can be implemented like the manufacturing method of the base material with a silicon oxide layer of the said invention.
 以下、(b)工程について説明する。(b)工程において表面層は酸化ケイ素層上に直接形成される。表面層は、基材に特定の性能を付与する役割を果たす層である。酸化ケイ素層は、表面層の性能の経時的な性能の低下を抑制し、かつ機能層の耐久性を向上する役割を果たす層である。表面層によって基材に付与される性能としては、特に限定されず、防汚性、耐薬品性、耐摩耗性、耐候性、親水性、撥水性、撥油性等が挙げられ、表面層を構成する化合物によって適宜選択される。 Hereinafter, the step (b) will be described. In the step (b), the surface layer is directly formed on the silicon oxide layer. A surface layer is a layer which plays the role which provides specific performance to a base material. The silicon oxide layer is a layer that plays a role of suppressing deterioration of the performance of the surface layer over time and improving the durability of the functional layer. The performance imparted to the base material by the surface layer is not particularly limited, and examples include antifouling properties, chemical resistance, abrasion resistance, weather resistance, hydrophilicity, water repellency, oil repellency, and the like. It is appropriately selected depending on the compound to be used.
 本発明における表面層は、酸化ケイ素と反応しうる基を有する有機化合物を用いて形成される。表面層の形成に際して、上記有機化合物の酸化ケイ素と反応しうる基は、少なくとも一部が酸化ケイ素層の酸化ケイ素と反応して縮合物を形成する。このようにして、表面層と酸化ケイ素層とは、極めて密接不可分な界面を形成するため、本発明の製造方法により得られる表面層付き基材は、耐久性に優れる。 The surface layer in the present invention is formed using an organic compound having a group capable of reacting with silicon oxide. In forming the surface layer, at least a part of the group capable of reacting with silicon oxide of the organic compound reacts with silicon oxide of the silicon oxide layer to form a condensate. Thus, since the surface layer and the silicon oxide layer form an extremely inseparable interface, the substrate with the surface layer obtained by the production method of the present invention is excellent in durability.
 酸化ケイ素と反応しうる基としては、水酸基を有する基、水酸基を生成可能な基、例えば、水酸基が任意の保護基によって保護されている基が挙げられる。なかでも、酸化ケイ素との反応性の点から、反応性シリル基が好ましく、化合物の保存安定性の点から、加水分解性シリル基が好ましい。 Examples of the group capable of reacting with silicon oxide include a group having a hydroxyl group, a group capable of generating a hydroxyl group, for example, a group in which the hydroxyl group is protected by an arbitrary protecting group. Among these, a reactive silyl group is preferable from the viewpoint of reactivity with silicon oxide, and a hydrolyzable silyl group is preferable from the viewpoint of storage stability of the compound.
 上記有機化合物における、酸化ケイ素と反応しうる基が、加水分解性シリル基である場合、上記有機化合物中の加水分解性シリル基(例えば、Lが加水分解性基である後述の式1中の-SiR3-n)が加水分解反応することによってシラノール基(Si-OH)が形成される。得られたシラノール基が分子間で縮合反応してSi-O-Si結合が形成され、または該化合物中のシラノール基が酸化ケイ素層のシラノール基(Si-OH)と反応して結合(Si-O-Si結合)が形成されると考えられる。すなわち、この場合の表面層は、加水分解性シリル基を有する化合物が加水分解縮合した縮合物を含む。表面層は、反応性シリル基を有する化合物の縮合物のみからなってもよく、反応性シリル基を有する化合物の未反応物を含んでいてもよい。後述のとおり、未反応物は必要に応じて除去されうる。 When the group capable of reacting with silicon oxide in the organic compound is a hydrolyzable silyl group, the hydrolyzable silyl group in the organic compound (for example, in the following formula 1 in which L is a hydrolyzable group) Silanol groups (Si—OH) are formed by the hydrolysis reaction of —SiR n L 3-n ). The resulting silanol group undergoes a condensation reaction between molecules to form a Si—O—Si bond, or the silanol group in the compound reacts with a silanol group (Si—OH) in the silicon oxide layer to form a bond (Si— It is considered that (O—Si bond) is formed. That is, the surface layer in this case contains a condensate obtained by hydrolytic condensation of a compound having a hydrolyzable silyl group. The surface layer may consist only of a condensate of a compound having a reactive silyl group, or may contain an unreacted product of a compound having a reactive silyl group. As described later, unreacted substances can be removed as necessary.
(反応性シリル基を有する化合物)
 反応性シリル基を有する化合物は、撥水撥油性を有する表面層を得る点からは反応性シリル基を有する含フッ素化合物(以下、含フッ素化合物とも記す。)であることが好ましい。
 反応性シリル基を有する化合物のうちフッ素原子を有しない化合物としては、反応性シリル基を有するオルガノシラン化合物、ポリジメチルシロキサン鎖構造を有するシラン化合物(いずれもフッ素原子を有しない)等が挙げられる。
(Compound having a reactive silyl group)
The compound having a reactive silyl group is preferably a fluorine-containing compound having a reactive silyl group (hereinafter also referred to as a fluorine-containing compound) from the viewpoint of obtaining a surface layer having water and oil repellency.
Among the compounds having a reactive silyl group, examples of the compound having no fluorine atom include an organosilane compound having a reactive silyl group, a silane compound having a polydimethylsiloxane chain structure (all of which have no fluorine atom). .
 反応性シリル基を有する化合物中の反応性シリル基は、表面層の耐摩耗性がさらに優れる点からは、2個以上が好ましく、3個以上が特に好ましい。上限は特に限定されないが、製造容易性の点から15個が好ましく、12個が特に好ましい。 The number of the reactive silyl groups in the compound having a reactive silyl group is preferably 2 or more, and particularly preferably 3 or more, from the viewpoint that the abrasion resistance of the surface layer is further improved. The upper limit is not particularly limited, but 15 is preferable from the viewpoint of ease of production, and 12 is particularly preferable.
 含フッ素化合物としては、フルオロアルキル基を有する含フッ素化合物、フルオロアルキル基の炭素原子間にさらにエーテル性酸素原子を有する含フッ素化合物が挙げられる。撥水撥油性、指紋汚れ除去性、潤滑性等に優れる表面層を形成できる点から、ペルフルオロアルキル基を有する含フッ素化合物、ペルフルオロアルキル基の炭素原子間にさらにエーテル性酸素原子を有する含フッ素化合物が好ましい。 Examples of the fluorine-containing compound include a fluorine-containing compound having a fluoroalkyl group and a fluorine-containing compound having an etheric oxygen atom between carbon atoms of the fluoroalkyl group. A fluorine-containing compound having a perfluoroalkyl group and a fluorine-containing compound further having an etheric oxygen atom between the carbon atoms of the perfluoroalkyl group from the viewpoint that a surface layer excellent in water / oil repellency, fingerprint stain removability, lubricity and the like can be formed. Is preferred.
 また、含フッ素化合物としては、撥水撥油性、指紋汚れ除去性、潤滑性等に優れる表面層を形成できる点から、ポリ(オキシフルオロアルキレン)鎖を有する含フッ素化合物が好ましく、ポリ(オキシペルフルオロアルキレン)鎖を有する含フッ素化合物がより好ましい。 In addition, the fluorine-containing compound is preferably a fluorine-containing compound having a poly (oxyfluoroalkylene) chain from the viewpoint that a surface layer excellent in water / oil repellency, fingerprint stain removability, lubricity and the like can be formed. A fluorine-containing compound having an (alkylene) chain is more preferable.
 含フッ素化合物としては、特に、撥水撥油性、指紋汚れ除去性、潤滑性等に優れる表面層を形成できる点から、フルオロアルキル基およびポリ(オキシフルオロアルキレン)鎖を有する含フッ素化合物(以下、含フッ素エーテル化合物とも記す。)が好ましい。 As the fluorine-containing compound, in particular, a fluorine-containing compound having a fluoroalkyl group and a poly (oxyfluoroalkylene) chain (hereinafter, referred to as a surface layer excellent in water / oil repellency, fingerprint stain removability, lubricity, etc.) It is also referred to as a fluorine-containing ether compound).
 フルオロアルキル基としては、撥水撥油性に優れる点から、炭素数が好ましくは1~20、より好ましくは1~10、さらに好ましくは1~6、特に好ましくは1~3のフルオロアルキル基である。また、フルオロアルキル基は、直鎖状でも、分岐鎖状であってもよく、直鎖状が好ましい。また、上記フルオロアルキル基は、表面層の物性により優れる点から、ペルフルオロアルキル基であるのが好ましい。 The fluoroalkyl group is preferably a fluoroalkyl group having 1 to 20, more preferably 1 to 10, more preferably 1 to 6, and particularly preferably 1 to 3 carbon atoms from the viewpoint of excellent water and oil repellency. . The fluoroalkyl group may be linear or branched, and is preferably linear. The fluoroalkyl group is preferably a perfluoroalkyl group from the viewpoint of superior physical properties of the surface layer.
 ペルフルオロアルキル基および反応性シリル基を有する含フッ素化合物としては、例えば、日本特開2009-139530号公報の段落[0010]、[0022]に記載の式(3)で表される化合物等が挙げられる。 Examples of the fluorine-containing compound having a perfluoroalkyl group and a reactive silyl group include compounds represented by the formula (3) described in paragraphs [0010] and [0022] of Japanese Patent Application Laid-Open No. 2009-139530. It is done.
 ポリ(オキシフルオロアルキレン)鎖としては、炭素数が好ましくは1~10、特に好ましくは1~10のオキシペルフルオロアルキレン基からなるものである。表面層の耐摩耗性および指紋汚れ除去性がさらに優れる点から、炭素数1~10のオキシペルフルオロアルキレン基の複数からなるものが好ましい。 The poly (oxyfluoroalkylene) chain is preferably composed of an oxyperfluoroalkylene group having 1 to 10 carbon atoms, particularly preferably 1 to 10 carbon atoms. From the viewpoint of further excellent wear resistance and fingerprint stain removability of the surface layer, those composed of a plurality of oxyperfluoroalkylene groups having 1 to 10 carbon atoms are preferred.
 例えば、炭素数1のオキシペルフルオロアルキレン基の複数と炭素数2のオキシペルフルオロアルキレン基の複数からなるもの、炭素数1のオキシペルフルオロアルキレン基の複数と炭素数3のオキシペルフルオロアルキレン基の複数からなるもの、炭素数2のオキシペルフルオロアルキレン基の複数と炭素数3のオキシペルフルオロアルキレン基の複数からなるもの、炭素数2のオキシペルフルオロアルキレン基の複数と炭素数4のオキシペルフルオロアルキレン基の複数からなるもの、炭素数1のオキシペルフルオロアルキレン基の複数と炭素数5のオキシペルフルオロアルキレン基の複数からなるもの、炭素数1のオキシペルフルオロアルキレン基の複数と炭素数6のオキシペルフルオロアルキレン基の複数からなるもの、炭素数1~4から選択される少なくとも3種以上のオキシペルフルオロアルキレン基の複数からなるものが挙げられる。 For example, a plurality of oxyperfluoroalkylene groups having 1 carbon atom and a plurality of oxyperfluoroalkylene groups having 2 carbon atoms, a plurality of oxyperfluoroalkylene groups having 1 carbon atom, and a plurality of oxyperfluoroalkylene groups having 3 carbon atoms. A plurality of oxyperfluoroalkylene groups having 2 carbon atoms and a plurality of oxyperfluoroalkylene groups having 3 carbon atoms, a plurality of oxyperfluoroalkylene groups having 2 carbon atoms and a plurality of oxyperfluoroalkylene groups having 4 carbon atoms. A plurality of oxyperfluoroalkylene groups having 1 carbon atom and a plurality of oxyperfluoroalkylene groups having 5 carbon atoms, a plurality of oxyperfluoroalkylene groups having 1 carbon atom and a plurality of oxyperfluoroalkylene groups having 6 carbon atoms. Thing, carbon number 1 4 made of a plurality of at least three or more oxyperfluoroalkylene groups selected from and the like.
 複数のオキシペルフルオロアルキレン基の配置は、ブロック、ランダム、交互のいずれであってもよい。オキシペルフルオロアルキレン基の炭素数が2以上の場合には、直鎖のオキシペルフルオロアルキレン基であることが好ましい。 The arrangement of the plurality of oxyperfluoroalkylene groups may be block, random or alternating. When the oxyperfluoroalkylene group has 2 or more carbon atoms, a straight-chain oxyperfluoroalkylene group is preferable.
 ポリ(オキシペルフルオロアルキレン)鎖としては、炭素数1の直鎖のオキシペルフルオロアルキレン基と炭素数2の直鎖のオキシペルフルオロアルキレン基とがランダムに配置されたもの、炭素数1の直鎖のオキシペルフルオロアルキレン基と炭素数3の直鎖のオキシペルフルオロアルキレン基とがランダムに配置されたもの、炭素数2の直鎖のオキシペルフルオロアルキレン基と炭素数4の直鎖のオキシペルフルオロアルキレン基とが交互に配置されたものが特に好ましい。 As the poly (oxyperfluoroalkylene) chain, a linear oxyperfluoroalkylene group having 1 carbon atom and a linear oxyperfluoroalkylene group having 2 carbon atoms are randomly arranged; Randomly arranged perfluoroalkylene groups and linear oxyperfluoroalkylene groups having 3 carbon atoms, alternating linear oxyperfluoroalkylene groups having 2 carbon atoms and linear oxyperfluoroalkylene groups having 4 carbon atoms Those arranged in are particularly preferred.
 含フッ素化合物が含フッ素エーテル化合物である場合、含フッ素エーテル化合物は、表面層と酸化ケイ素層との高い密着性の点から、反応性シリル基を2以上有するのが好ましい。
 また、含フッ素エーテル化合物の数平均分子量は、表面層の耐摩擦性の点から、500~20,000が好ましく、800~10,000がより好ましく、1,000~8,000が特に好ましい。
When the fluorine-containing compound is a fluorine-containing ether compound, the fluorine-containing ether compound preferably has two or more reactive silyl groups from the viewpoint of high adhesion between the surface layer and the silicon oxide layer.
The number average molecular weight of the fluorinated ether compound is preferably 500 to 20,000, more preferably 800 to 10,000, and particularly preferably 1,000 to 8,000, from the viewpoint of the friction resistance of the surface layer.
 含フッ素エーテル化合物としては、表面層の撥水撥油性がより優れる点で、化合物1が好ましい。
 [A-O-Z-(RO)-][-SiR3-n  式1
 Aは、ペルフルオロアルキル基または-Q[-SiR3-nである。ペルフルオロアルキル基中の炭素数は、表面層の耐摩擦性がより優れる点から、1~20が好ましく、1~10がより好ましく、1~6がさらに好ましく、1~3が特に好ましい。ペルフルオロアルキル基は、直鎖状であってもよく、分岐鎖状であってもよい。
 ただし、Aが-Q[-SiR3-nである場合、jは1である。
As the fluorine-containing ether compound, Compound 1 is preferable in that the water and oil repellency of the surface layer is more excellent.
[AO—Z 1 — (R f O) m —] j Z 2 [—SiR n L 3-n ] q Formula 1
A is a perfluoroalkyl group or a -Q [-SiR n L 3-n ] k. The number of carbon atoms in the perfluoroalkyl group is preferably from 1 to 20, more preferably from 1 to 10, still more preferably from 1 to 6, and particularly preferably from 1 to 3 from the viewpoint that the friction resistance of the surface layer is more excellent. The perfluoroalkyl group may be linear or branched.
However, j is 1 when A is -Q [-SiR n L 3-n ] k .
 ペルフルオロアルキル基としては、CF-、CFCF-、CFCFCF-、CFCFCFCF-、CFCFCFCFCF-、CFCFCFCFCFCF-、CFCF(CF)-等が挙げられる。表面層の撥水撥油性がより優れる点から、CF-、CFCF-またはCFCFCF-が好ましい。 As perfluoroalkyl groups, CF 3 —, CF 3 CF 2 —, CF 3 CF 2 CF 2 —, CF 3 CF 2 CF 2 CF 2 —, CF 3 CF 2 CF 2 CF 2 CF 2 —, CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 —, CF 3 CF (CF 3 ) —, and the like can be given. From the viewpoint of more excellent water and oil repellency of the surface layer, CF 3 —, CF 3 CF 2 —, or CF 3 CF 2 CF 2 — is preferable.
 Qは、(k+1)価の連結基である。後述するように、kは1~10の整数である。よって、Qとしては、2~11価の連結基が挙げられる。
 Qとしては、例えば、エーテル性酸素原子または2価のオルガノポリシロキサン残基を有していてもよいアルキレン基、炭素原子、窒素原子、ケイ素原子、2~8価のオルガノポリシロキサン残基、後述する式2-1、式2-2、式2-1-1~式2-1-6からSiR3-nを除いた基が挙げられる。
Q is a (k + 1) -valent linking group. As will be described later, k is an integer of 1 to 10. Accordingly, examples of Q include divalent to eleven valent linking groups.
Examples of Q include an etheric oxygen atom or an alkylene group optionally having a divalent organopolysiloxane residue, a carbon atom, a nitrogen atom, a silicon atom, a divalent to octavalent organopolysiloxane residue, which will be described later. And groups obtained by removing SiR n L 3-n from formulas 2-1, 2-2, and 2-1-1 to 2-1-6.
 Rは、1価の炭化水素基である。 Rは、1価の飽和炭化水素基が特に好ましい。1価の炭化水素基の炭素数は、1~6が好ましく、1~3がより好ましく、1~2が特に好ましい。
 Lは、加水分解性基または水酸基である。Lの加水分解性基は、加水分解反応により水酸基となる基である。すなわち、加水分解性シリル基は、加水分解反応によりシラノール基となる。シラノール基は、さらにシラノール基間で反応してSi-O-Si結合を形成する。
R is a monovalent hydrocarbon group. R is particularly preferably a monovalent saturated hydrocarbon group. The carbon number of the monovalent hydrocarbon group is preferably 1 to 6, more preferably 1 to 3, and particularly preferably 1 to 2.
L is a hydrolyzable group or a hydroxyl group. The hydrolyzable group of L is a group that becomes a hydroxyl group by a hydrolysis reaction. That is, the hydrolyzable silyl group becomes a silanol group by a hydrolysis reaction. Silanol groups further react between the silanol groups to form Si—O—Si bonds.
 Lとしては、アルコキシ基、ハロゲン原子、アシル基、イソシアナート基(-NCO)等が挙げられる。アルコキシ基としては、炭素数1~4のアルコキシ基が好ましい。ハロゲン原子としては、塩素原子が好ましい。
 Lとしては、工業的な製造が容易な点から、炭素数1~4のアルコキシ基またはハロゲン原子が好ましい。Lとしては、塗布時のアウトガスが少なく、化合物の保存安定性がより優れる点から、炭素数1~4のアルコキシ基が好ましく、化合物の長期の保存安定性が必要な場合にはエトキシ基が特に好ましく、塗布後の反応時間を短時間とする場合にはメトキシ基が特に好ましい。
Examples of L include an alkoxy group, a halogen atom, an acyl group, and an isocyanate group (—NCO). As the alkoxy group, an alkoxy group having 1 to 4 carbon atoms is preferable. As the halogen atom, a chlorine atom is preferable.
L is preferably an alkoxy group having 1 to 4 carbon atoms or a halogen atom from the viewpoint of easy industrial production. L is preferably an alkoxy group having 1 to 4 carbon atoms from the viewpoint of less outgassing at the time of coating and better storage stability of the compound, and an ethoxy group is particularly preferred when long-term storage stability of the compound is required. A methoxy group is particularly preferable when the reaction time after coating is short.
 nは、0~2の整数である。nは、0または1が好ましく、0が特に好ましい。Lが複数存在することによって、表面層と酸化ケイ素層との相互作用が良好となり、本発明の機能層の耐久性に優れる。
 nが1以下である場合、1分子中に存在する複数のLは互いに同じであっても異なっていてもよい。原料の入手容易性や製造容易性の点からは、互いに同じであることが好ましい。
n is an integer of 0-2. n is preferably 0 or 1, particularly preferably 0. By the presence of a plurality of L, the interaction between the surface layer and the silicon oxide layer is good, and the durability of the functional layer of the present invention is excellent.
When n is 1 or less, a plurality of L present in one molecule may be the same as or different from each other. From the viewpoint of availability of raw materials and ease of production, it is preferable that they are the same.
 反応性シリル基(SiR3-n)のうち加水分解性シリル基としては、-Si(OCH、-SiCH(OCH、-Si(OCHCH、-SiCl、-Si(OC(O)CH、または-Si(NCO)が好ましい。工業的な製造における取扱いやすさの点から、-Si(OCHが特に好ましい。 Among the reactive silyl groups (SiR n L 3-n ), hydrolyzable silyl groups include —Si (OCH 3 ) 3 , —SiCH 3 (OCH 3 ) 2 , —Si (OCH 2 CH 3 ) 3 , — SiCl 3 , —Si (OC (O) CH 3 ) 3 , or —Si (NCO) 3 is preferred. From the viewpoint of easy handling in industrial production, —Si (OCH 3 ) 3 is particularly preferable.
 Zは、単結合、1個以上の水素原子がフッ素原子に置換された炭素数1~20のオキシフルオロアルキレン基(ただし、オキシペルフルオロアルキレン基を除く。上記オキシフルオロアルキレン基中の酸素原子は、(RO)に結合する。)、または、1個以上の水素原子がフッ素原子に置換された炭素数1~20のポリ(オキシフルオロアルキレン)基((RO)に結合するオキシフルオロアルキレン基中の酸素原子は、(RO)に結合する。(RO)に結合するオキシフルオロアルキレン基は、1個以上の水素原子を含む。ポリ(オキシフルオロアルキレン)基には、全ての水素原子がフッ素原子に置換されたオキシペルフルオロアルキレン基と、1個以上の水素原子を含むオキシフルオロアルキレン基との両方が含まれていてもよい。)である。オキシフルオロアルキレン基またはポリ(オキシフルオロアルキレン)基の炭素数は1~10が好ましい。 Z 1 is a single bond, an oxyfluoroalkylene group having 1 to 20 carbon atoms in which one or more hydrogen atoms are substituted with fluorine atoms (excluding the oxyperfluoroalkylene group. The oxygen atom in the oxyfluoroalkylene group is , (R f O) m ), or a poly (oxyfluoroalkylene) group having 1 to 20 carbon atoms in which one or more hydrogen atoms are replaced by fluorine atoms (bonded to (R f O) m oxygen atoms in the oxy-fluoroalkylene group is (R f O) binds to m. oxyfluoroalkylene group bonded to (R f O) m is. poly (oxy-fluoroalkylene comprising one or more hydrogen atoms ) Group includes both an oxyperfluoroalkylene group in which all hydrogen atoms are substituted with fluorine atoms and an oxyfluoroalkylene group containing one or more hydrogen atoms. May be included.) The oxyfluoroalkylene group or poly (oxyfluoroalkylene) group preferably has 1 to 10 carbon atoms.
 Zとしては、化合物を製造しやすい点から、単結合、-CHFCFOCHCFO-、-CFCHFCFOCHCFCFO-、-CFCFCHFCFOCHCFO-、-CFCFOCHFCFOCHCFO-、-CFCFOCFCFOCHFCFOCHCFO-、-CFCHOCHCFO-、または-CFCFOCFCHOCHCFO-が好ましく(ただし、左側がA-Oに結合する。)、単結合または-CHFCFOCHCFO-が特に好ましい。 Z 1 may be a single bond, —CHFCF 2 OCH 2 CF 2 O—, —CF 2 CHFCF 2 OCH 2 CF 2 CF 2 O—, —CF 2 CF 2 CHFCF 2 OCH 2 CF, because it is easy to produce a compound. 2 O—, —CF 2 CF 2 OCHFCF 2 OCH 2 CF 2 O—, —CF 2 CF 2 OCF 2 CF 2 OCHFCF 2 OCH 2 CF 2 O—, —CF 2 CH 2 OCH 2 CF 2 O—, or — CF 2 CF 2 OCF 2 CH 2 OCH 2 CF 2 O— is preferable (where the left side is bonded to A—O), and a single bond or —CHFCF 2 OCH 2 CF 2 O— is particularly preferable.
 Rは、ペルフルオロアルキレン基である。ペルフルオロアルキレン基の炭素数は、表面層の撥水撥油性がより優れる点から、1~6が好ましい。ペルフルオロアルキレン基は、直鎖状であっても分岐鎖状であってもよいが、表面層の撥水撥油性により優れる点から、直鎖状が好ましい。
 なお、複数のRは、同一であっても異なっていてもよい。つまり、(RO)は、炭素数の異なる2種以上のROから構成されていてもよい。
R f is a perfluoroalkylene group. The number of carbon atoms of the perfluoroalkylene group is preferably 1 to 6 because the water and oil repellency of the surface layer is more excellent. The perfluoroalkylene group may be linear or branched, but is preferably linear because it is more excellent in water and oil repellency of the surface layer.
The plurality of R f may be the same or different. That is, (R f O) m may be composed of two or more types of R f O having different carbon numbers.
 mは、2~200の整数であり、5~150が好ましく、10~100が特に好ましい。mが2以上であれば、表面層の撥水撥油性がより優れる。mが200以下であれば、表面層の耐久性がより優れる。
 (RO)において、炭素数の異なる2種以上のROが存在する場合、各ROの結合順序は限定されない。例えば、2種のROが存在する場合、2種のROがランダム、交互、ブロックに配置されてもよい。
m is an integer of 2 to 200, preferably 5 to 150, particularly preferably 10 to 100. When m is 2 or more, the water and oil repellency of the surface layer is more excellent. If m is 200 or less, the durability of the surface layer is more excellent.
In (R f O) m , when two or more types of R f O having different carbon numbers are present, the bonding order of each R f O is not limited. For example, when two types of R f O are present, the two types of R f O may be randomly, alternately, and arranged in blocks.
 (RO)としては、表面層の撥水撥油性がより優れる点から、{(CFO)m11(CFCFO)m12(CFCFCFO)m13(CFCFCFCFO)m14}、(CFCFO)m16、(CFCFCFO)m17、(CFCFO-CFCFCFCFO)m15(CFCFO)、(CFO-CFCFCFCFCFO)m18(CFO)、(CFCFO-CFCFCFCFCFCFO)m19(CFCFO)、{(CFO)m20(CFCFCFO)m21}、または{(CFCFO)m22(CFCFCFO)m23}が好ましい。{(CFO)m11(CFCFO)m12(CFCFCFO)m13(CFCFCFCFO)m14}、(CFCFO-CFCFCFCFO)m15(CFCFO)、または(CFO-CFCFCFCFCFO)m18(CFO)、(CFCFO-CFCFCFCFCFCFO)m19(CFCFO)が特に好ましい。 (R f O) as the m, from the viewpoint of water and oil repellency of the surface layer is more excellent, {(CF 2 O) m11 (CF 2 CF 2 O) m12 (CF 2 CF 2 CF 2 O) m13 (CF 2 CF 2 CF 2 CF 2 O) m 14 }, (CF 2 CF 2 O) m 16, (CF 2 CF 2 CF 2 O) m 17 , (CF 2 CF 2 O—CF 2 CF 2 CF 2 CF 2 O) m 15 ( CF 2 CF 2 O), ( CF 2 O-CF 2 CF 2 CF 2 CF 2 CF 2 O) m18 (CF 2 O), (CF 2 CF 2 O-CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 O) m19 (CF 2 CF 2 O), {(CF 2 O) m20 (CF 2 CF 2 CF 2 O) m21 }, or {(CF 2 CF 2 O) m22 (CF 2 CF 2 CF 2 O) m23 } Is preferred . {(CF 2 O) m11 ( CF 2 CF 2 O) m12 (CF 2 CF 2 CF 2 O) m13 (CF 2 CF 2 CF 2 CF 2 O) m14}, (CF 2 CF 2 O-CF 2 CF 2 CF 2 CF 2 O) m15 ( CF 2 CF 2 O), or (CF 2 O-CF 2 CF 2 CF 2 CF 2 CF 2 O) m18 (CF 2 O), (CF 2 CF 2 O-CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 O) m19 (CF 2 CF 2 O) are particularly preferred.
 ただし、m11およびm12は、それぞれ1以上の整数であり、m13およびm14は、それぞれ0または1以上の整数であり、m11+m12+m13+m14は2~200の整数であり、m11個のCFO、m12個のCFCFO、m13個のCFCFCFO、m14個のCFCFCFCFOの結合順序は限定されない。m16およびm17は、それぞれ2~200の整数であり、m15、m18~m23は、1~99の整数である。
 また{(CFO)m11(CFCFO)m12(CFCFCFO)m13(CFCFCFCFO)m14}において、m13およびm14が0の場合、m12/m11は、表面層の耐摩擦性がさらに優れる点から、0.1~10が好ましく、0.2~5.0がより好ましく、0.2~2.0がさらに好ましく、0.2~1.5が特に好ましく、0.2~0.85が最も好ましい。
However, m11 and m12 are each an integer of 1 or more, m13 and m14 are each an integer of 0 or 1 and m11 + m12 + m13 + m14 is an integer of 2 to 200, m11 CF 2 O, m12 The bonding order of CF 2 CF 2 O, m13 CF 2 CF 2 CF 2 O, and m14 CF 2 CF 2 CF 2 CF 2 O is not limited. m16 and m17 are each an integer of 2 to 200, and m15 and m18 to m23 are integers of 1 to 99.
In addition {(CF 2 O) m11 ( CF 2 CF 2 O) m12 (CF 2 CF 2 CF 2 O) m13 (CF 2 CF 2 CF 2 CF 2 O) m14}, when m13 and m14 is 0, m12 / M11 is preferably from 0.1 to 10, more preferably from 0.2 to 5.0, even more preferably from 0.2 to 2.0, from the point that the friction resistance of the surface layer is further improved, 1.5 is particularly preferred, and 0.2 to 0.85 is most preferred.
 Zは、(j+q)価の連結基である。Zは、例えば、エーテル性酸素原子または2価のオルガノポリシロキサン残基を有していてもよいアルキレン基、炭素原子、窒素原子、ケイ素原子、2~8価のオルガノポリシロキサン残基、後述する式2-1、式2-2、式2-1-1~2-1-6からSiR3-nを除いた基が挙げられる。 Z 2 is a (j + q) -valent linking group. Z 2 is, for example, an etheric oxygen atom or an alkylene group optionally having a divalent organopolysiloxane residue, a carbon atom, a nitrogen atom, a silicon atom, a divalent to octavalent organopolysiloxane residue, which will be described later. And groups obtained by removing SiR n L 3-n from the formulas 2-1, 2-2, and 2-1-1 to 2-1-6.
 jは、1以上の整数であり、表面層の撥水撥油性がより優れる点から、1~5が好ましく、化合物を製造しやすい点から、1が特に好ましい。
 qは、1以上の整数であり、表面層の撥水撥油性がより優れる点から、2以上が好ましく、2~4がより好ましく、2または3が特に好ましく、3がさらに好ましい。
j is an integer of 1 or more, preferably 1 to 5 from the viewpoint of more excellent water and oil repellency of the surface layer, and particularly preferably 1 from the viewpoint of easy production of the compound.
q is an integer of 1 or more, and is preferably 2 or more, more preferably 2 to 4, more preferably 2 or 3, and even more preferably 3, from the viewpoint of better water / oil repellency of the surface layer.
 化合物1は、表面層の撥水撥油性がより優れる点から、化合物1-1が好ましい。
 A-O-Z-(RO)-Z  式1-1
 式1-1中、A、Z、Rおよびmの定義は、式1中の各基の定義と同義である。
 Zは、基2-1または基2-2である。
 -Rf7-Q-X(-Q-SiR3-n(-R  式2-1
 -Rf7-Q71-[CHC(R71)(-Q72-SiR3-n)]-R72  式2-2
 式2-1および2-2中、R、Lおよびnの定義は、式1中の各基の定義と同義である。
Compound 1-1 is preferably Compound 1-1 because the surface layer is more excellent in water and oil repellency.
AOZ 1- (R f O) m -Z 3 Formula 1-1
In formula 1-1, the definitions of A, Z 1 , R f and m are the same as the definitions of each group in formula 1.
Z 3 is group 2-1 or group 2-2.
-R f7 -Q a -X (-Q b -SiR n L 3-n ) h (-R 7 ) i Formula 2-1
-R f7 -Q 71 - [CH 2 C (R 71) (- Q 72 -SiR n L 3-n)] y -R 72 Formula 2-2
In formulas 2-1 and 2-2, the definitions of R, L, and n are the same as the definitions of each group in formula 1.
 Rf7は、ペルフルオロアルキレン基である。 ペルフルオロアルキレン基の炭素数は、1~30が好ましく、1~6が特に好ましい。ペルフルオロアルキレン基は、直鎖状であっても分岐鎖状であってもよい。
 Rf7としては、化合物を製造しやすい点から、-CFCFCFCF-または-CFCFCFCFCF-が好ましい。
R f7 is a perfluoroalkylene group. The perfluoroalkylene group preferably has 1 to 30 carbon atoms, particularly preferably 1 to 6 carbon atoms. The perfluoroalkylene group may be linear or branched.
R f7 is preferably —CF 2 CF 2 CF 2 CF 2 — or —CF 2 CF 2 CF 2 CF 2 CF 2 — from the viewpoint of easy production of the compound.
 Qは、単結合または2価の連結基である。
 2価の連結基としては、例えば、2価の炭化水素基(2価の飽和炭化水素基、2価の芳香族炭化水素基、アルケニレン基、アルキニレン基であってもよい。2価の飽和炭化水素基は、直鎖状、分岐鎖状または環状であってもよく、例えば、アルキレン基が挙げられる。炭素数は1~20が好ましい。
 また、2価の芳香族炭化水素基は、炭素数5~20が好ましく、例えば、フェニレン基が挙げられる。それ以外にも、炭素数2~20のアルケニレン基、炭素数2~20のアルキニレン基であってもよい。)、2価の複素環基、-O-、-S-、-SO-、-N(R)-、-C(O)-、-Si(R-および、これらを2種以上組み合わせた基が挙げられる。ここで、Rは、アルキル基(好ましくは炭素数1~10)、または、フェニル基である。Rは、水素原子またはアルキル基(好ましくは炭素数1~10)である。
 なお、上記これらを2種以上組み合わせた基としては、例えば、-OC(O)-、-C(O)N(R)-、アルキレン基-O-アルキレン基、アルキレン基-OC(O)-アルキレン基、アルキレン基-Si(R-フェニレン基-Si(Rが挙げられる。
Q a is a single bond or a divalent linking group.
Examples of the divalent linking group include a divalent hydrocarbon group (a divalent saturated hydrocarbon group, a divalent aromatic hydrocarbon group, an alkenylene group, and an alkynylene group. A divalent saturated carbonization group. The hydrogen group may be linear, branched or cyclic and includes, for example, an alkylene group, preferably having 1 to 20 carbon atoms.
The divalent aromatic hydrocarbon group preferably has 5 to 20 carbon atoms, and examples thereof include a phenylene group. In addition, an alkenylene group having 2 to 20 carbon atoms and an alkynylene group having 2 to 20 carbon atoms may be used. ) A divalent heterocyclic group, —O—, —S—, —SO 2 —, —N (R d ) —, —C (O) —, —Si (R a ) 2 — and these 2 Examples include groups in which more than one species are combined. Here, R a is an alkyl group (preferably having 1 to 10 carbon atoms) or a phenyl group. R d is a hydrogen atom or an alkyl group (preferably having 1 to 10 carbon atoms).
Examples of the group in which two or more of these are combined include, for example, —OC (O) —, —C (O) N (R d ) —, an alkylene group —O-alkylene group, and an alkylene group —OC (O). -Alkylene group, alkylene group-Si (R a ) 2 -phenylene group-Si (R a ) 2
 Xは、単結合、アルキレン基、炭素原子、窒素原子、ケイ素原子または2~8価のオルガノポリシロキサン残基である。
 なお、上記アルキレン基は、-O-、シルフェニレン骨格基、2価のオルガノポリシロキサン残基またはジアルキルシリレン基を有していてもよい。アルキレン基は、-O-、シルフェニレン骨格基、2価のオルガノポリシロキサン残基およびジアルキルシリレン基からなる群から選択される基を複数有していてもよい。
 Xで表されるアルキレン基の炭素数は、1~20が好ましく、1~10が特に好ましい。
 2~8価のオルガノポリシロキサン残基としては、2価のオルガノポリシロキサン残基、および、後述する(w+1)価のオルガノポリシロキサン残基が挙げられる。
X is a single bond, an alkylene group, a carbon atom, a nitrogen atom, a silicon atom or a divalent to octavalent organopolysiloxane residue.
The alkylene group may have —O—, a silphenylene skeleton group, a divalent organopolysiloxane residue, or a dialkylsilylene group. The alkylene group may have a plurality of groups selected from the group consisting of —O—, a silphenylene skeleton group, a divalent organopolysiloxane residue, and a dialkylsilylene group.
The alkylene group represented by X preferably has 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms.
Examples of the divalent to octavalent organopolysiloxane residues include divalent organopolysiloxane residues and (w + 1) valent organopolysiloxane residues described below.
 Qは、単結合または2価の連結基である。2価の連結基の定義は、上述したQで説明した定義と同義である。
 Rは、水酸基またはアルキル基である。アルキル基の炭素数は、1~5が好ましく、1~3がより好ましく、1が特に好ましい。
Q b is a single bond or a divalent linking group. Definition of the divalent linking group are the same as those defined as described in the above-described Q a.
R 7 is a hydroxyl group or an alkyl group. The alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms, and particularly preferably 1 carbon atom.
 Xが単結合またはアルキレン基の場合、hは1、iは0であり、
 Xが窒素原子の場合、hは1~2の整数であり、iは0~1の整数であり、h+i=2を満たし、Xが炭素原子またはケイ素原子の場合、hは1~3の整数であり、iは0~2の整数であり、h+i=3を満たし、
 Xが2~8価のオルガノポリシロキサン残基の場合、hは1~7の整数であり、iは0~6の整数であり、h+i=1~7を満たす。
 (-Q-SiR3-n)が2個以上ある場合は、それらは、同一であっても異なっていてもよい。Rが2個以上ある場合は、それらは、同一であっても異なっていてもよい。
When X is a single bond or an alkylene group, h is 1, i is 0,
When X is a nitrogen atom, h is an integer of 1 to 2, i is an integer of 0 to 1, satisfies h + i = 2, and when X is a carbon atom or a silicon atom, h is an integer of 1 to 3. And i is an integer from 0 to 2, satisfies h + i = 3,
When X is a divalent to octavalent organopolysiloxane residue, h is an integer of 1 to 7, i is an integer of 0 to 6, and h + i = 1 to 7 is satisfied.
When there are two or more (—Q b —SiR n L 3-n ), they may be the same or different. When two or more R 7 are present, they may be the same or different.
 Q71は、単結合、アルキレン基、または、炭素数2以上のアルキレン基の炭素原子-炭素原子間にエーテル性酸素原子を有する基であり、化合物を製造しやすい点から、単結合が好ましい。
 アルキレン基の炭素数は、1~10が好ましく、2~6が特に好ましい。
 炭素数2以上のアルキレン基の炭素原子-炭素原子間にエーテル性酸素原子を有する基の炭素数は、2~10が好ましく、2~6が特に好ましい。
Q 71 is a single bond, an alkylene group, or a group having an etheric oxygen atom between carbon atoms of a C 2 or more alkylene group, and is preferably a single bond from the viewpoint of easy production of a compound.
The number of carbon atoms of the alkylene group is preferably 1-10, and particularly preferably 2-6.
The number of carbon atoms of the group having an etheric oxygen atom between carbon atoms of the alkylene group having 2 or more carbon atoms is preferably 2 to 10, and particularly preferably 2 to 6.
 R71は、水素原子または炭素数1~10のアルキル基であり、化合物を製造しやすい点から、水素原子が好ましい。アルキル基としては、メチル基が好ましい。 R 71 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and is preferably a hydrogen atom from the viewpoint of easy production of a compound. As the alkyl group, a methyl group is preferable.
 Q72は、単結合またはアルキレン基である。アルキレン基の炭素数は、1~10が好ましく、1~6が特に好ましい。化合物を製造しやすい点から、Q72は、単結合または-CH-が好ましい。 Q 72 is a single bond or an alkylene group. The number of carbon atoms of the alkylene group is preferably 1 to 10, and more preferably 1 to 6. Q 72 is preferably a single bond or —CH 2 — from the viewpoint of easy production of the compound.
 R72は、水素原子またはハロゲン原子であり、化合物を製造しやすい点から、水素原子が好ましい。
 yは、1~10の整数であり、1~6の整数が好ましい。
 2個以上の[CHC(R71)(-Q72-SiR3-n)]は、同一であっても異なっていてもよい。
R 72 is a hydrogen atom or a halogen atom, and is preferably a hydrogen atom from the viewpoint of easy production of a compound.
y is an integer of 1 to 10, and an integer of 1 to 6 is preferable.
Two or more [CH 2 C (R 71 ) (— Q 72 —SiR n L 3-n )] may be the same or different.
 基2-1としては、下記の基2-1-1~2-1-6のいずれかであるのが好ましい。
 -Rf7-(X-Q-SiR3-n  式2-1-1
 -Rf7-(X-Q21-N[-Q22-SiR3-n  式2-1-2
 -Rf7-Q31-G(R)[-Q32-SiR3-n  式2-1-3
 -Rf7-[C(O)N(R)]-Q41-(O)-C[-(O)-Q42-SiR3-n  式2-1-4
 -Rf7-Q51-Si[-Q52-SiR3-n  式2-1-5
 -Rf7-[C(O)N(R)]-Q61-Z[-Q62-SiR3-n  式2-1-6
The group 2-1 is preferably any of the following groups 2-1-1 to 2-1-6.
-R f7- (X 1 ) p -Q 1 -SiR n L 3-n Formula 2-1-1
-R f7- (X 2 ) r -Q 21 -N [-Q 22 -SiR n L 3-n ] 2 Formula 2-1-2
-R f7 -Q 31 -G (R 3 ) [-Q 32 -SiR n L 3-n ] 2 formula 2-1-3
-R f7 - [C (O) N (R d)] s -Q 41 - (O) t -C [- (O) u -Q 42 -SiR n L 3-n] 3 Formula 2-1-4
-R f7 -Q 51 -Si [-Q 52 -SiR n L 3-n ] Formula 3 2-1-5
-R f7- [C (O) N (R d )] v -Q 61 -Z 3 [-Q 62 -SiR n L 3-n ] w formula 2-1-6
 なお、式2-1-1~2-1-6中、Rf7、R、L、および、nの定義は、上述した通りである。
 式2-1-1中、Xは、-O-、または、-C(O)N(R)-である(ただし、式中のNはQに結合する)。Rの定義は、上述した通りである。pは、0または1である。
In formulas 2-1-1 to 2-1-6, the definitions of R f7 , R, L, and n are as described above.
In Formula 2-1-1, X 1 is —O— or —C (O) N (R d ) — (wherein N binds to Q 1 ). The definition of R d is as described above. p is 0 or 1.
 Qは、アルキレン基である。なお、アルキレン基は、-O-、シルフェニレン骨格基、2価のオルガノポリシロキサン残基またはジアルキルシリレン基を有していてもよい。アルキレン基は、-O-、シルフェニレン骨格基、2価のオルガノポリシロキサン残基およびジアルキルシリレン基からなる群から選択される基を複数有していてもよい。
 なお、アルキレン基が-O-、シルフェニレン骨格基、2価のオルガノポリシロキサン残基またはジアルキルシリレン基を有する場合、炭素原子-炭素原子間にこれらの基を有することが好ましい。
Q 1 is an alkylene group. The alkylene group may have —O—, a silphenylene skeleton group, a divalent organopolysiloxane residue, or a dialkylsilylene group. The alkylene group may have a plurality of groups selected from the group consisting of —O—, a silphenylene skeleton group, a divalent organopolysiloxane residue, and a dialkylsilylene group.
In addition, when the alkylene group has —O—, a silphenylene skeleton group, a divalent organopolysiloxane residue or a dialkylsilylene group, it is preferable to have these groups between carbon atoms.
 Qで表されるアルキレン基の炭素数は、1~10が好ましく、2~6が特に好ましい。
 Qとしては、pが0の場合は、-CHOCHCHCH-、-CHOCHCHOCHCHCH-、-CHCH-、-CHCHCH-、または-CHOCHCHCHSi(CHOSi(CHCHCH-が好ましい。(Xが-O-の場合は、-CHCHCH-、または-CHCHOCHCHCH-が好ましい。(Xが-C(O)N(R)-の場合は、炭素数2~6のアルキレン基が好ましい(ただし、式中のNはQに結合する)。Qがこれらの基であると化合物が製造しやすい。
The alkylene group represented by Q 1 preferably has 1 to 10 carbon atoms, particularly preferably 2 to 6 carbon atoms.
As Q 1 , when p is 0, —CH 2 OCH 2 CH 2 CH 2 —, —CH 2 OCH 2 CH 2 OCH 2 CH 2 CH 2 —, —CH 2 CH 2 —, —CH 2 CH 2 CH 2 — or —CH 2 OCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 CH 2 CH 2 — is preferred. (X 1 ) When p is —O—, —CH 2 CH 2 CH 2 — or —CH 2 CH 2 OCH 2 CH 2 CH 2 — is preferred. When (X 1 ) p is —C (O) N (R d ) —, an alkylene group having 2 to 6 carbon atoms is preferred (where N in the formula binds to Q 1 ). Q 1 is the compound is likely to manufacture and is these groups.
 基2-1-1の具体例としては、以下の基が挙げられる。
Figure JPOXMLDOC01-appb-C000002
Specific examples of the group 2-1-1 include the following groups.
Figure JPOXMLDOC01-appb-C000002
 式2-1-2中 Xは、-O-、-NH-、または、-C(O)N(R)-である。
 Rの定義は、上述した通りである。
 Q21は、単結合、アルキレン基、または、炭素数2以上のアルキレン基の炭素原子-炭素原子間にエーテル性酸素原子、-C(O)-、-C(O)O-、-OC(O)-もしくは-NH-を有する基である。
 Q21で表されるアルキレン基の炭素数は、1~10が好ましく、2~6が特に好ましい。Q21で表される炭素数2以上のアルキレン基の炭素原子-炭素原子間にエーテル性酸素原子、-C(O)-、-C(O)O-、-OC(O)-または-NH-を有する基の炭素数は、2~10が好ましく、2~6が特に好ましい。
In Formula 2-1-2, X 2 is —O—, —NH—, or —C (O) N (R d ) —.
The definition of R d is as described above.
Q 21 represents a single bond, an alkylene group, or an etheric oxygen atom, —C (O) —, —C (O) O—, —OC (between a carbon atom and a carbon atom of an alkylene group having 2 or more carbon atoms. O) — or a group having —NH—.
The number of carbon atoms of the alkylene group represented by Q 21 is preferably 1 to 10, and particularly preferably 2 to 6. An etheric oxygen atom, —C (O) —, —C (O) O—, —OC (O) — or —NH between carbon atoms of the alkylene group having 2 or more carbon atoms represented by Q 21 The number of carbons in the group having — is preferably 2 to 10, and particularly preferably 2 to 6.
 Q21としては、化合物を製造しやすい点から、-CH-、-CHCH-、-CHCHCH-、-CHOCHCH-、-CHNHCHCH-、-CHCHOC(OCHCH-が好ましい(ただし、右側がNに結合する。)。
 rは、0または1(ただし、Q21が単結合の場合は0である。)である。化合物を製造しやすい点から、0が好ましい。
The Q 21, from the viewpoint of easily producing the compound, -CH 2 -, - CH 2 CH 2 -, - CH 2 CH 2 CH 2 -, - CH 2 OCH 2 CH 2 -, - CH 2 NHCH 2 CH 2 —, —CH 2 CH 2 OC (OCH 2 CH 2 — is preferred (the right side is bonded to N).
r is 0 or 1 (provided that 0 when Q 21 is a single bond). From the viewpoint of easy production of the compound, 0 is preferable.
 Q22は、アルキレン基、または、炭素数2以上のアルキレン基の炭素原子-炭素原子間に、2価のオルガノポリシロキサン残基、エーテル性酸素原子もしくは-NH-を有する基である。Q22で表されるアルキレン基の炭素数は、1~10が好ましく、2~6が特に好ましい。
 Q22で表される炭素数2以上のアルキレン基の炭素原子-炭素原子間に、2価のオルガノポリシロキサン残基、エーテル性酸素原子または-NH-を有する基の炭素数は、2~10が好ましく、2~6が特に好ましい。
Q 22 is an alkylene group or a group having a divalent organopolysiloxane residue, an etheric oxygen atom or —NH— between the carbon atoms of the alkylene group having 2 or more carbon atoms. The alkylene group represented by Q 22 is preferably 1-10, 2-6 being particularly preferred.
The number of carbon atoms of the group having a divalent organopolysiloxane residue, an etheric oxygen atom or —NH— between the carbon atoms of the alkylene group having 2 or more carbon atoms represented by Q 22 is 2 to 10 2 to 6 are particularly preferable.
 Q22としては、化合物を製造しやすい点から、-CHCHCH-、-CHCHOCHCHCH-が好ましい(ただし、右側がSiに結合する。)。
 2個の[-Q22-SiR3-n]は、同一であっても異なっていてもよい。
Q 22 is preferably —CH 2 CH 2 CH 2 — or —CH 2 CH 2 OCH 2 CH 2 CH 2 — (provided that the right side is bonded to Si) from the viewpoint of easy production of the compound.
Two [-Q 22 -SiR n L 3-n ] may be the same or different.
 基2-1-2の具体例としては、以下の基が挙げられる。
Figure JPOXMLDOC01-appb-C000003
Specific examples of the group 2-1-2 include the following groups.
Figure JPOXMLDOC01-appb-C000003
 式2-1-3中、Q31は、単結合、アルキレン基、または、炭素数2以上のアルキレン基の炭素原子-炭素原子間にエーテル性酸素原子を有する基であり、化合物を製造しやすい点から、単結合が好ましい。Q31で表されるアルキレン基の炭素数は、1~10が好ましく、2~6が特に好ましい。
 Q31で表される炭素数2以上のアルキレン基の炭素原子-炭素原子間にエーテル性酸素原子を有する基の炭素数は、2~10が好ましく、2~6が特に好ましい。
In formula 2-1-3, Q 31 is a single bond, an alkylene group, or a group having an etheric oxygen atom between carbon atoms of an alkylene group having 2 or more carbon atoms, and is easy to produce a compound From the viewpoint, a single bond is preferable. The alkylene group represented by Q 31 is preferably 1-10, 2-6 being particularly preferred.
The number of carbon atoms of the group having an etheric oxygen atom between the carbon atoms of the alkylene group having 2 or more carbon atoms represented by Q 31 is preferably 2 to 10, and particularly preferably 2 to 6.
 Gは、炭素原子またはケイ素原子である。
 Rは、水酸基またはアルキル基である。Rで表されるアルキル基の炭素数は、1~4が好ましい。
 G(R)としては、化合物を製造しやすい点から、C(OH)またはSi(R3a)(ただし、R3aはアルキル基である。アルキル基の炭素数は1~10が好ましく、メチル基が特に好ましい。)が好ましい。
G is a carbon atom or a silicon atom.
R 6 is a hydroxyl group or an alkyl group. The alkyl group represented by R 3 preferably has 1 to 4 carbon atoms.
G (R 3 ) is C (OH) or Si (R 3a ) (provided that R 3a is an alkyl group. The number of carbon atoms of the alkyl group is preferably 1 to 10, Group is particularly preferred.).
 Q32は、アルキレン基、または、炭素数2以上のアルキレン基の炭素原子-炭素原子間にエーテル性酸素原子もしくは2価のオルガノポリシロキサン残基を有する基である。
 Q32で表されるアルキレン基の炭素数は、1~10が好ましく、2~6が特に好ましい。Q32で表される炭素数2以上のアルキレン基の炭素原子-炭素原子間にエーテル性酸素原子または2価のオルガノポリシロキサン残基を有する基の炭素数は、2~10が好ましく、2~6が特に好ましい。
 Q32としては、化合物を製造しやすい点から、-CHCH-、-CHCHCH-、-CHCHCHCHCHCHCHCH-が好ましい。
 2個の[-Q32-SiR3-n]は、同一であっても異なっていてもよい。
Q 32 is an alkylene group or a group having an etheric oxygen atom or a divalent organopolysiloxane residue between carbon atoms of a C 2 or more alkylene group.
The alkylene group represented by Q 32 is preferably 1-10, 2-6 being particularly preferred. Carbon atom of the alkylene group having 2 or more carbon atoms represented by Q 32 - number of carbon atoms of the group having an etheric oxygen atom or a divalent organopolysiloxane residues between the carbon atoms is 2 to 10 preferably 2 to 6 is particularly preferred.
The Q 32, from the viewpoint of easily producing the compound, -CH 2 CH 2 -, - CH 2 CH 2 CH 2 -, - CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 - is preferred.
Two [—Q 32 —SiR n L 3-n ] may be the same or different.
 基2-1-3の具体例としては、以下の基が挙げられる。
Figure JPOXMLDOC01-appb-C000004
Specific examples of the group 2-1-3 include the following groups.
Figure JPOXMLDOC01-appb-C000004
 式2-1-4中、Rの定義は、上述した通りである。
 sは、0または1である。
 Q41は、単結合、アルキレン基、または、炭素数2以上のアルキレン基の炭素原子-炭素原子間にエーテル性酸素原子を有する基である。Q41で表されるアルキレン基の炭素数は、1~10が好ましく、2~6が特に好ましい。
 Q41で表される炭素数2以上のアルキレン基の炭素原子-炭素原子間にエーテル性酸素原子を有する基の炭素数は、2~10が好ましく、2~6が特に好ましい。
 tは、0または1(ただし、Q41が単結合の場合は0である。)である。
 -Q41-(O)-としては、化合物を製造しやすい点から、sが0の場合は、単結合、-CHO-、-CHOCH-、-CHOCHCHO-、-CHOCHCHOCH-、または-CHOCHCHCHCHOCH-が好ましく(ただし、左側がRf7に結合する。)、sが1の場合は、単結合、-CH-、または-CHCH-が好ましい。
In formula 2-1-4, the definition of R d is as described above.
s is 0 or 1.
Q 41 is a single bond, an alkylene group, or a group having an etheric oxygen atom between carbon atoms of a C 2 or more alkylene group. The number of carbon atoms of the alkylene group represented by Q 41 is preferably 1 to 10, and particularly preferably 2 to 6.
The number of carbon atoms of the group having an etheric oxygen atom between the carbon atoms of the alkylene group of 2 or more carbon atoms represented by Q 41 is preferably 2 to 10, and particularly preferably 2 to 6.
t is 0 or 1 (provided that 0 when Q 41 is a single bond).
—Q 41 — (O) t — represents a compound that is easy to produce. When s is 0, a single bond, —CH 2 O—, —CH 2 OCH 2 —, —CH 2 OCH 2 CH 2 O—, —CH 2 OCH 2 CH 2 OCH 2 —, or —CH 2 OCH 2 CH 2 CH 2 CH 2 OCH 2 — is preferred (where the left side is bonded to R f7 ), and when s is 1 , A single bond, —CH 2 —, or —CH 2 CH 2 — is preferred.
 Q42は、アルキレン基であり、上記アルキレン基は-O-、-C(O)N(R)-〔Rの定義は、上述した通りである。〕、シルフェニレン骨格基、2価のオルガノポリシロキサン残基またはジアルキルシリレン基を有していてもよい。
 なお、アルキレン基が-O-またはシルフェニレン骨格基を有する場合、炭素原子-炭素原子間に-O-またはシルフェニレン骨格基を有することが好ましい。また、アルキレン基が-C(O)N(R)-、ジアルキルシリレン基または2価のオルガノポリシロキサン残基を有する場合、炭素原子-炭素原子間または(O)u1と結合する側の末端にこれらの基を有することが好ましい。
 Q42で表されるアルキレン基の炭素数は、1~10が好ましく、2~6が特に好ましい。
Q 42 is an alkylene group, and the alkylene group is —O—, —C (O) N (R d ) — [R d is as defined above. ], May have a silphenylene skeleton group, a divalent organopolysiloxane residue or a dialkylsilylene group.
In the case where the alkylene group has —O— or a silphenylene skeleton group, it is preferable to have —O— or a silphenylene skeleton group between carbon atoms. Further, when the alkylene group has —C (O) N (R d ) —, a dialkylsilylene group or a divalent organopolysiloxane residue, the terminal on the side bonded to the carbon atom-carbon atom or (O) u1 side It is preferable to have these groups.
The alkylene group represented by Q 42 is preferably 1-10, 2-6 being particularly preferred.
 uは、0または1である。
 -(O)-Q42-としては、化合物を製造しやすい点から、-CHCH-、-CHCHCH-、-CHOCHCHCH-、-CHOCHCHCHCHCH-、-OCHCHCH-、-OSi(CHCHCHCH-、-OSi(CHOSi(CHCHCHCH-、または-CHCHCHSi(CHPhSi(CHCHCH-が好ましい(ただし、右側がSiに結合する。)
 3個の[-(O)-Q42-SiR3-n]は、同一であっても異なっていてもよい。
u is 0 or 1.
As — (O) u —Q 42 —, since it is easy to produce a compound, —CH 2 CH 2 —, —CH 2 CH 2 CH 2 —, —CH 2 OCH 2 CH 2 CH 2 —, —CH 2 OCH 2 CH 2 CH 2 CH 2 CH 2 —, —OCH 2 CH 2 CH 2 —, —OSi (CH 3 ) 2 CH 2 CH 2 CH 2 —, —OSi (CH 3 ) 2 OSi (CH 3 ) 2 CH 2 CH 2 CH 2 — or —CH 2 CH 2 CH 2 Si (CH 3 ) 2 PhSi (CH 3 ) 2 CH 2 CH 2 — is preferred (the right side is bonded to Si).
The three [— (O) u -Q 42 -SiR n L 3-n ] may be the same or different.
 基2-1-4の具体例としては、以下の基が挙げられる。
Figure JPOXMLDOC01-appb-C000005
Specific examples of the group 2-1-4 include the following groups.
Figure JPOXMLDOC01-appb-C000005
 式2-1-5中、Q51は、アルキレン基、または、炭素数2以上のアルキレン基の炭素原子-炭素原子間にエーテル性酸素原子を有する基である。Q51で表されるアルキレン基の炭素数は、1~10が好ましく、2~6が特に好ましい。
 Q51で表される炭素数2以上のアルキレン基の炭素原子-炭素原子間にエーテル性酸素原子を有する基の炭素数は、2~10が好ましく、2~6が特に好ましい。
 Q51としては、化合物を製造しやすい点から、-CHOCHCHCH-、-CHOCHCHOCHCHCH-、-CHCH-、または-CHCHCH-が好ましい(ただし、右側がSiに結合する。)。
In formula 2-1-5, Q 51 represents an alkylene group or a group having an etheric oxygen atom between carbon atoms of the alkylene group having 2 or more carbon atoms. The number of carbon atoms of the alkylene group represented by Q 51 is preferably 1 to 10, and particularly preferably 2 to 6.
The number of carbon atoms of the group having an etheric oxygen atom between carbon atoms of the alkylene group of 2 or more carbon atoms represented by Q 51 is preferably 2 to 10, and particularly preferably 2 to 6.
Q 51 is —CH 2 OCH 2 CH 2 CH 2 —, —CH 2 OCH 2 CH 2 OCH 2 CH 2 CH 2 —, —CH 2 CH 2 —, or —CH 2 because it is easy to produce a compound. CH 2 CH 2 — is preferred (however, the right side is bonded to Si).
 Q52は、アルキレン基、または、炭素数2以上のアルキレン基の炭素原子-炭素原子間にエーテル性酸素原子もしくは2価のオルガノポリシロキサン残基を有する基である。Q52で表されるアルキレン基の炭素数は、1~10が好ましく、2~6が特に好ましい。
 Q52で表される炭素数2以上のアルキレン基の炭素原子-炭素原子間にエーテル性酸素原子または2価のオルガノポリシロキサン残基を有する基の炭素数は、2~10が好ましく、2~6が特に好ましい。
 Q52としては、化合物を製造しやすい点から、-CHCHCH-、-CHCHOCHCHCH-が好ましい(ただし、右側がSiR3-nに結合する。)。
 3個の[-Q52-SiR3-n]は、同一であっても異なっていてもよい。
Q 52 is an alkylene group or a group having an etheric oxygen atom or a divalent organopolysiloxane residue between carbon atoms of a C 2 or more alkylene group. The number of carbon atoms of the alkylene group represented by Q 52 is preferably 1 to 10, and particularly preferably 2 to 6.
The number of carbon atoms of the group having an etheric oxygen atom or a divalent organopolysiloxane residue between carbon atoms of the alkylene group of 2 or more carbon atoms represented by Q 52 is preferably 2 to 10. 6 is particularly preferred.
Q 52 is preferably —CH 2 CH 2 CH 2 — or —CH 2 CH 2 OCH 2 CH 2 CH 2 — (provided that the right side is bonded to SiR n L 3-n from the viewpoint of easy production of the compound). .)
The three [—Q 52 —SiR n L 3-n ] may be the same or different.
 基2-1-5の具体例としては、以下の基が挙げられる。 Specific examples of the group 2-1-5 include the following groups.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式2-1-6中、Rの定義は、上述の通りである。
 vは、0または1である。
 Q61は、アルキレン基、または、炭素数2以上のアルキレン基の炭素原子-炭素原子間にエーテル性酸素原子を有する基である。Q61で表されるアルキレン基の炭素数は、1~10が好ましく、2~6が特に好ましい。
 Q61で表される炭素数2以上のアルキレン基の炭素原子-炭素原子間にエーテル性酸素原子を有する基の炭素数は、2~10が好ましく、2~6が特に好ましい。
 Q61としては、化合物を製造しやすい点から、-CHOCHCHCH-、-CHOCHCHOCHCHCH-、-CHCH-、または-CHCHCH-が好ましい(ただし、右側がZに結合する。)。
In formula 2-1-6, the definition of R d is as described above.
v is 0 or 1.
Q 61 is an alkylene group or a group having an etheric oxygen atom between carbon atoms of a C 2 or more alkylene group. The number of carbon atoms of the alkylene group represented by Q 61 is preferably 1 to 10, and particularly preferably 2 to 6.
The number of carbon atoms of the group having an etheric oxygen atom between carbon atoms of the alkylene group of 2 or more carbon atoms represented by Q 61 is preferably 2 to 10, and particularly preferably 2 to 6.
Q 61 represents —CH 2 OCH 2 CH 2 CH 2 —, —CH 2 OCH 2 CH 2 OCH 2 CH 2 CH 2 —, —CH 2 CH 2 —, or —CH 2 because it is easy to produce a compound. CH 2 CH 2 — is preferred (where the right side is bonded to Z 3 ).
 Zは、(w+1)価のオルガノポリシロキサン残基である。
 wは、2~7の整数である。
 (w+1)価のオルガノポリシロキサン残基としては、下記の基が挙げられる。ただし、下式におけるRは、上述の通りである。
Z 3 is a (w + 1) valent organopolysiloxane residue.
w is an integer of 2 to 7.
Examples of the (w + 1) -valent organopolysiloxane residue include the following groups. However, R a in the following formula is as described above.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 Q62は、アルキレン基、または、炭素数2以上のアルキレン基の炭素原子-炭素原子間にエーテル性酸素原子もしくは2価のオルガノポリシロキサン残基を有する基である。
 Q62で表されるアルキレン基の炭素数は、1~10が好ましく、2~6が特に好ましい。Q62で表される炭素数2以上のアルキレン基の炭素原子-炭素原子間にエーテル性酸素原子または2価のオルガノポリシロキサン残基を有する基の炭素数は、2~10が好ましく、2~6が特に好ましい。
 Q62としては、化合物を製造しやすい点から、-CHCH-、-CHCHCH-が好ましい。
 w個の[-Q62-SiR3-n]は、同一であっても異なっていてもよい。
Q 62 is an alkylene group or a group having an etheric oxygen atom or a divalent organopolysiloxane residue between carbon atoms of a C 2 or more alkylene group.
The alkylene group represented by Q 62 is preferably 1-10, 2-6 being particularly preferred. Carbon atom of the alkylene group having 2 or more carbon atoms represented by Q 62 - number of carbon atoms of the group having an etheric oxygen atom or a divalent organopolysiloxane residues between the carbon atoms is 2 to 10 preferably 2 to 6 is particularly preferred.
The Q 62, from the viewpoint of easily producing the compound, -CH 2 CH 2 -, - CH 2 CH 2 CH 2 - is preferred.
The w [—Q 62 —SiR n L 3-n ] may be the same or different.
 化合物1の具体例としては、国際公開第2013/042732号、国際公開第2013/121984号、国際公開第2013/121985号、国際公開第2013/121986号、国際公開第2014/163004号、国際公開第2015/087902号、日本特開2014-080473号公報、日本特開2015-199906号公報、国際公開第2017/038830号、国際公開第2017/038832号および国際公開第2017/187775号に記載の含フッ素エーテル化合物、特許文献1、日本特開平11-029585号公報、国際公開第2017/022437号、国際公開第2018/079743号、国際公開第2018/143433号に記載のパーフルオロ(ポリ)エーテル含有シラン化合物、特許文献2に記載のフルオロオキシアルキレン基含有ポリマー、日本特許第2874715号公報に記載のケイ素含有有機含フッ素ポリマー、日本特開2000-144097号公報に記載の有機ケイ素化合物、日本特開2000-327772号公報に記載のパーフルオロポリエーテル変性アミノシラン、日本特表2002-506887号公報に記載のフッ素化シロキサン、日本特表2008-534696号公報に記載の有機シリコーン化合物、日本特許第4138936号公報に記載のフッ素化変性水素含有重合体、米国特許出願公開第2010/0129672号明細書に記載の化合物、国際公開第2011/060047号に記載のオルガノシリコン化合物、国際公開第2011/059430号に記載のオルガノシリコン化合物、国際公開第2012/064649号に記載の含フッ素オルガノシラン化合物、日本特開2012-72272号公報に記載のフルオロオキシアルキレン基含有ポリマー、国際公開第2014/126064号に記載の化合物、日本特開2014-070163号公報に記載の化合物、日本特開2016-204656号公報に記載のフルオロポリエーテル基含有ポリマー変性シラン、日本特開2016-210854号公報に記載のフルオロポリエーテル基含有ポリマー変性シラン、日本特開2016-222859号公報に記載のフルオロポリエーテル基含有ポリマー変性シラン、国際公開第2018/216630号、国際公開第2019/039226号、国際公開第2019/039341号、国際公開第2019/039186号、国際公開第2019/044479号、日本特開2019-44158号公報に記載の含フッ素エーテル化合物等が挙げられる。 Specific examples of Compound 1 include International Publication No. 2013/042732, International Publication No. 2013/121984, International Publication No. 2013/121985, International Publication No. 2013/121986, International Publication No. 2014/163004, International Publication. No. 2015/087902, Japanese Unexamined Patent Publication No. 2014-080473, Japanese Unexamined Patent Publication No. 2015-199906, International Publication No. 2017/038830, International Publication No. 2017/038832 and International Publication No. 2017/187775. Fluorinated ether compounds, perfluoro (poly) ethers described in Japanese Patent Application Laid-Open No. 11-029585, International Publication No. 2017/022437, International Publication No. 2018/079743, International Publication No. 2018/143433 Silane compound , A fluorooxyalkylene group-containing polymer described in Patent Document 2, a silicon-containing organic fluorine-containing polymer described in Japanese Patent No. 2874715, an organic silicon compound described in Japanese Unexamined Patent Publication No. 2000-144097, and Japanese Unexamined Patent Publication 2000- Perfluoropolyether-modified aminosilane described in Japanese Patent No. 327772, fluorinated siloxane described in Japanese Patent Special Publication No. 2002-506687, organosilicone compound described in Japanese Special Patent Publication No. 2008-534696, and Japanese Patent No. 4138936 The fluorinated modified hydrogen-containing polymer described in the above, the compound described in US Patent Application Publication No. 2010/0129672, the organosilicon compound described in International Publication No. 2011/060047, and described in International Publication No. 2011/059430 Organosilicon Compound, fluorine-containing organosilane compound described in International Publication No. 2012/064649, fluorooxyalkylene group-containing polymer described in Japanese Patent Application Laid-Open No. 2012-72272, compound described in International Publication No. 2014/122604, Japan Compounds described in JP-A-2014-070163, fluoropolyether group-containing polymer-modified silane described in JP-A-2016-204656, and fluoropolyether group-containing polymer-modified described in JP-A-2016-210854 Silane, fluoropolyether group-containing polymer-modified silane described in Japanese Patent Application Laid-Open No. 2016-222859, International Publication No. 2018/216630, International Publication No. 2019/039226, International Publication No. 2019/039341, International Publication No. 2019 / 039 No. 186, International Publication No. 2019/044479, and Japanese Unexamined Patent Publication No. 2019-44158, and the like.
 含フッ素エーテル化合物は、市販品を使用することもできる。例えば信越化学工業社製のKY-100シリーズ(KY-178、KY-185、KY-195等)、ダイキン工業社製のオプツール(商品名)DSX、AES、UF503、UD509、AGC社製のAfluid(登録商標)S550が挙げられる。 Commercially available products can be used as the fluorine-containing ether compound. For example, KY-100 series (KY-178, KY-185, KY-195, etc.) manufactured by Shin-Etsu Chemical Co., Ltd., OPTOOL (trade name) DSX, AES, UF503, UD509 manufactured by Daikin Industries, and Afluid manufactured by AGC ( (Registered trademark) S550.
(表面層の形成方法)
 酸化ケイ素と反応しうる基を有する有機化合物を用いて表面層を形成する方法は、ウェットコーティングであってもドライコーティングであってもよい。
 ドライコーティングとしては、物理的蒸着法(真空蒸着法、イオンプレーティング法、スパッタリング法)、化学的蒸着法(熱CVD法、プラズマCVD法、光CVD法)、イオンビームスパッタリング法等が挙げられる。酸化ケイ素と反応しうる基を有する有機化合物において、該基が反応性シリル基である場合に、化合物の分解を抑制できる点、および装置の簡便さの点から、真空蒸着法が特に好ましい。
(Method for forming surface layer)
The method for forming the surface layer using an organic compound having a group capable of reacting with silicon oxide may be wet coating or dry coating.
Examples of the dry coating include physical vapor deposition (vacuum vapor deposition, ion plating, sputtering), chemical vapor deposition (thermal CVD, plasma CVD, photo CVD), and ion beam sputtering. In the case of an organic compound having a group capable of reacting with silicon oxide, when the group is a reactive silyl group, the vacuum vapor deposition method is particularly preferable from the viewpoint of suppressing the decomposition of the compound and the simplicity of the apparatus.
 真空蒸着は、具体的には、減圧が可能な装置内に酸化ケイ素層付き基材を設置し、酸化ケイ素層付き基材の酸化ケイ素層表面に対向する位置に酸化ケイ素と反応しうる基を有する有機化合物またはこれを含む組成物や、これらに溶媒を加えた溶液または分散液を収容した蒸着用容器を設置する。蒸着用容器には、酸化ケイ素と反応しうる基を有する有機化合物またはこれを含む組成物や、これらに溶媒を加えた溶液または分散液を、鉄や鋼等の金属多孔体に含浸させたペレット状物質を収容してもよい。 Specifically, vacuum deposition is performed by placing a substrate with a silicon oxide layer in an apparatus capable of reducing pressure, and forming a group capable of reacting with silicon oxide at a position facing the surface of the silicon oxide layer of the substrate with a silicon oxide layer. An evaporation container containing an organic compound or a composition containing the organic compound or a solution or dispersion obtained by adding a solvent to the organic compound is installed. For the vapor deposition container, an organic compound having a group capable of reacting with silicon oxide or a composition containing the same, or a pellet or impregnated metal porous body such as iron or steel impregnated with a solution or dispersion obtained by adding a solvent to these compounds A state substance may be accommodated.
 蒸着用容器の大きさ、形状は特に制限されない。蒸着用容器の材質としては、例えば、モリブデン、タングステン、銅等が挙げられる。真空蒸着時には、蒸着用容器収容物を電子銃や抵抗加熱により加熱する。蒸着用容器収容物の加熱温度は、20~1000℃が好ましく、200~700℃がより好ましく、300~500℃がさらに好ましい。 The size and shape of the deposition container are not particularly limited. Examples of the material for the vapor deposition container include molybdenum, tungsten, and copper. During vacuum deposition, the container for deposition is heated by an electron gun or resistance heating. The heating temperature of the container for deposition is preferably 20 to 1000 ° C, more preferably 200 to 700 ° C, and further preferably 300 to 500 ° C.
 真空蒸着の際の装置内の温度は、20~300℃が好ましく、30~200℃が特に好ましい。真空蒸着の際の装置内の圧力は、1×10-1Pa以下が好ましく、1×10-2Pa以下が特に好ましい。酸化ケイ素層付き基材の酸化ケイ素層表面と、酸化ケイ素と反応しうる基を有する有機化合物またはこれを含む組成物や、これらに溶媒を加えた溶液または分散液との距離は、100~4000mmが好ましく、200~2000mmがより好ましい。 The temperature in the apparatus during vacuum deposition is preferably 20 to 300 ° C, particularly preferably 30 to 200 ° C. The pressure in the apparatus during vacuum deposition is preferably 1 × 10 −1 Pa or less, particularly preferably 1 × 10 −2 Pa or less. The distance between the surface of the silicon oxide layer of the substrate with the silicon oxide layer, the organic compound having a group capable of reacting with silicon oxide or a composition containing the same, or a solution or dispersion obtained by adding a solvent to these is 100 to 4000 mm. Is preferable, and 200 to 2000 mm is more preferable.
 ドライコーティングにおいては、酸化ケイ素と反応しうる基を有する有機化合物の1種を単独または2種以上の混合物として用いてもよく、酸化ケイ素と反応しうる基を有する有機化合物と他の成分(ただし、溶媒を除く。)とを含む組成物として用いてもよく、これらに溶媒を加えた溶液または分散液として用いてもよい。 In dry coating, one type of organic compound having a group capable of reacting with silicon oxide may be used alone or as a mixture of two or more types, and an organic compound having a group capable of reacting with silicon oxide and other components (however, And the solvent may be used as a composition or a dispersion obtained by adding a solvent to these.
 ウェットコーティング法としては、スピンコート法、ワイプコート法、スプレーコート法、スキージーコート法、ディップコート法、ダイコート法、インクジェット法、フローコート法、ロールコート法、キャスト法、ラングミュア・ブロジェット法、グラビアコート法等が挙げられる。
 ウェットコーティングにおいては、表面層形成用コーティング液が好適に用いられる。表面層形成用コーティング液は、酸化ケイ素と反応しうる基を有する有機化合物と溶媒とを含む溶液または分散液である。
Wet coating methods include spin coating, wipe coating, spray coating, squeegee coating, dip coating, die coating, ink jet, flow coating, roll coating, casting, Langmuir-Blodgett, and gravure. Examples thereof include a coating method.
In the wet coating, a surface layer forming coating solution is preferably used. The surface layer forming coating liquid is a solution or dispersion containing an organic compound having a group capable of reacting with silicon oxide and a solvent.
 溶媒は、酸化ケイ素と反応しうる基を有する有機化合物の種類に応じて適宜選択される。上記化合物が含フッ素化合物である場合、溶媒としては、有機溶媒が好ましい。有機溶媒は、フッ素系有機溶媒であってもよく、非フッ素系有機溶媒であってもよく、両溶媒を含んでもよい。フッ素系有機溶媒としては、フッ素化アルカン、フッ素化芳香族化合物、フルオロアルキルエーテル、フッ素化アルキルアミン、フルオロアルコール等が挙げられる。
 非フッ素系有機溶媒としては、水素原子および炭素原子のみからなる化合物と、水素原子、炭素原子および酸素原子のみからなる化合物が好ましく、炭化水素系有機溶媒、アルコール系有機溶媒、ケトン系有機溶媒、エーテル系有機溶媒、エステル系有機溶媒が挙げられる。
The solvent is appropriately selected according to the type of organic compound having a group capable of reacting with silicon oxide. When the compound is a fluorine-containing compound, the solvent is preferably an organic solvent. The organic solvent may be a fluorinated organic solvent, a non-fluorinated organic solvent, or may include both solvents. Examples of the fluorinated organic solvent include fluorinated alkanes, fluorinated aromatic compounds, fluoroalkyl ethers, fluorinated alkylamines, and fluoroalcohols.
As the non-fluorine-based organic solvent, a compound consisting only of a hydrogen atom and a carbon atom and a compound consisting only of a hydrogen atom, a carbon atom and an oxygen atom are preferable, a hydrocarbon-based organic solvent, an alcohol-based organic solvent, a ketone-based organic solvent, Examples include ether organic solvents and ester organic solvents.
 表面層形成用コーティング液は、酸化ケイ素と反応しうる基を有する有機化合物および溶媒の他に、その他の成分、不純物(反応性シリル基を有する化合物の製造工程で生成した副生成物等)を含んでいてもよい。その他の成分としては、例えば、酸化ケイ素と反応しうる基を有する有機化合物において、該基が加水分解性シリル基である場合に、加水分解性シリル基の加水分解と縮合反応を促進する酸触媒や塩基性触媒等の公知の添加剤が挙げられる。 In addition to the organic compound having a group capable of reacting with silicon oxide and the solvent, the surface layer forming coating solution contains other components and impurities (by-products generated in the production process of the compound having a reactive silyl group). May be included. As other components, for example, in an organic compound having a group capable of reacting with silicon oxide, when the group is a hydrolyzable silyl group, an acid catalyst that promotes hydrolysis and condensation reaction of the hydrolyzable silyl group And known additives such as basic catalysts.
 表面層形成用コーティング液の固形分濃度は、0.001~50質量%が好ましく、0.05~30質量%が特に好ましい。該固形分濃度は、加熱前の表面層形成用コーティング液の質量と、120℃の対流式乾燥機にて4時間加熱した後の質量とから算出する値である。 The solid content concentration of the coating solution for forming the surface layer is preferably 0.001 to 50% by mass, particularly preferably 0.05 to 30% by mass. The solid content concentration is a value calculated from the mass of the surface layer forming coating liquid before heating and the mass after heating for 4 hours in a convection dryer at 120 ° C.
<後処理>
 表面層の耐摩耗性を向上させるために、必要に応じて、酸化ケイ素と反応しうる基を有する有機化合物と酸化ケイ素層との反応を促進するための操作を行ってもよい。該操作としては、加熱、加湿、光照射等が挙げられる。例えば、酸化ケイ素と反応しうる基を有する有機化合物において、該基が加水分解性シリル基である場合には、水分を有する大気中で表面層が形成された酸化ケイ素層付き基材を加熱して、加水分解性シリル基のシラノール基への加水分解反応、シラノール基の縮合反応によるシロキサン結合の生成、酸化ケイ素層の表面のシラノール基等と加水分解性シリル基を有する化合物のシラノール基との縮合反応等の反応を促進できる。
<Post-processing>
In order to improve the abrasion resistance of the surface layer, an operation for promoting the reaction between the organic compound having a group capable of reacting with silicon oxide and the silicon oxide layer may be performed as necessary. Examples of the operation include heating, humidification, and light irradiation. For example, in an organic compound having a group capable of reacting with silicon oxide, when the group is a hydrolyzable silyl group, the substrate with the silicon oxide layer on which the surface layer is formed is heated in an atmosphere having moisture. The hydrolysis reaction of hydrolyzable silyl groups into silanol groups, the formation of siloxane bonds by the condensation reaction of silanol groups, the silanol groups on the surface of the silicon oxide layer and the silanol groups of compounds having hydrolyzable silyl groups Reactions such as condensation reactions can be promoted.
 表面処理後、表面層中の化合物であって他の化合物や酸化ケイ素層と化学結合していない化合物は、必要に応じて除去してもよい。具体的な方法としては、例えば、表面層に溶媒をかけ流す方法、溶媒をしみ込ませた布でふき取る方法等が挙げられる。 After the surface treatment, compounds in the surface layer that are not chemically bonded to other compounds or the silicon oxide layer may be removed as necessary. Specific examples of the method include a method of pouring a solvent over the surface layer and a method of wiping with a cloth soaked with a solvent.
 表面層の厚さは、0.1~100nmが好ましく、0.1~50nmが特に好ましい。表面層の厚さが0.1nm以上であれば、表面処理による効果が充分に得られやすい。表面層の厚さが100nm以下であれば、利用効率が高い。 The thickness of the surface layer is preferably from 0.1 to 100 nm, particularly preferably from 0.1 to 50 nm. If the thickness of the surface layer is 0.1 nm or more, the effect of the surface treatment can be easily obtained. If the thickness of the surface layer is 100 nm or less, the utilization efficiency is high.
 このようにして本発明により得られる表面層付き基材は、上記酸化ケイ素層を有することで、表面層の性能の経時的な低下が抑制された、耐久性に優れる物品である。例えば、表面層が撥水撥油性を有する場合、撥水性を図る指標として水接触角が挙げられる。表面層の空気側の表面の水接触角は、100度以上が好ましく、105度以上がより好ましく、さらには110度以上が好ましく、特には115度以上が特に好ましい。水接触角が100度以上であれば、表面層の撥水性に優れる。表面層の水接触角は、高いほど好ましいため、上限値は特に限定されない。水接触角は、接触角測定装置(DM-500:製品名、協和界面科学社製)を用いて測定される。 Thus, the substrate with a surface layer obtained by the present invention is an article having excellent durability in which the deterioration of the performance of the surface layer over time is suppressed by having the silicon oxide layer. For example, when the surface layer has water and oil repellency, a water contact angle may be mentioned as an index for achieving water repellency. The water contact angle on the air side surface of the surface layer is preferably 100 degrees or more, more preferably 105 degrees or more, further preferably 110 degrees or more, and particularly preferably 115 degrees or more. When the water contact angle is 100 degrees or more, the water repellency of the surface layer is excellent. Since the water contact angle of the surface layer is preferably as high as possible, the upper limit is not particularly limited. The water contact angle is measured using a contact angle measuring device (DM-500: product name, manufactured by Kyowa Interface Science Co., Ltd.).
 本発明に係る表面層付き基材は、例えば、表面層の空気側の表面について、JIS L0849:2013(ISO 105-X12:2001)に準拠して往復式トラバース試験機(大栄精機社製)を用い、スチールウールボンスター(番手:♯0000、寸法:5mm×10mm×10mm)を荷重:9.8N、速度:80rpmで3,000回往復させた後の水接触角を100度以上に保持できることが好ましく、105度以上にも保持できることがより好ましい。 The base material with a surface layer according to the present invention is, for example, a reciprocating traverse tester (manufactured by Daiei Seiki Co., Ltd.) according to JIS L0849: 2013 (ISO 105-X12: 2001) on the air side surface of the surface layer. It is possible to maintain a water contact angle of 100 degrees or more after a steel wool bonster (count: # 0000, dimensions: 5 mm × 10 mm × 10 mm) is reciprocated 3,000 times at a load of 9.8 N and a speed of 80 rpm. Preferably, it can hold | maintain also at 105 degree | times or more.
 本発明に係る表面層付き基材は、例えば、表面層の空気側の表面について、初期水接触角から上記3,000回往復後の表面層の水接触角を引いた値(接触角低下量)が、25度以下にあるのが好ましく、さらには15度以下であるのがより好ましく、10度以下であるのが特に好ましい。接触角低下量は、小さいほど好ましいため、下限値は特に限定されない。 The substrate with a surface layer according to the present invention is, for example, a value obtained by subtracting the water contact angle of the surface layer after 3,000 reciprocations from the initial water contact angle for the air-side surface of the surface layer (contact angle reduction amount). ) Is preferably 25 degrees or less, more preferably 15 degrees or less, and particularly preferably 10 degrees or less. Since the contact angle reduction amount is preferably as small as possible, the lower limit value is not particularly limited.
 本発明に係る表面層付き基材は、表面層の空気側の表面で測定される硬度、例えば、マルテンス硬度が高いことから、耐久性に優れると想定される。本発明に係る表面層付き基材において、表面層の空気側の表面について、インデンテーション試験装置(フィッシャー製、ピコデンターHM500)を用い、押込荷重を0.03mN、保持時間を5秒、負荷速度および除荷速度0.05mN/5秒として測定されるマルテンス硬度は、8,500MPa以上が好ましく、10,000MPa以上より好ましい。 The base material with a surface layer according to the present invention is assumed to be excellent in durability since the hardness measured on the air side surface of the surface layer, for example, Martens hardness is high. In the base material with a surface layer according to the present invention, an indentation test device (Fischer, Picodenter HM500) is used for the air side surface of the surface layer, the indentation load is 0.03 mN, the holding time is 5 seconds, the load speed and The Martens hardness measured as an unloading speed of 0.05 mN / 5 seconds is preferably 8,500 MPa or more, and more preferably 10,000 MPa or more.
 以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されない。例1~6は実施例であり、例7~9は比較例である。 Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto. Examples 1 to 6 are examples, and examples 7 to 9 are comparative examples.
 各例において、以下のとおり蒸着材料を調製した。さらに、以下の材料を用いて、ガラス基材上に酸化ケイ素層と、該酸化ケイ素層上に性能として撥水撥油性を有する表面層とを備える表面層付き基材を製造し、以下の物性測定および評価を行った。 In each example, a vapor deposition material was prepared as follows. Furthermore, using the following materials, a substrate with a surface layer comprising a silicon oxide layer on a glass substrate and a surface layer having water and oil repellency as performance on the silicon oxide layer is manufactured, and the following physical properties Measurements and evaluations were made.
[材料]
 ガラス基材:Dragontrail(AGC社登録商標)、サイズ:縦50mm×横50mm、厚さ0.5mm
 酸化ケイ素と反応しうる基を有する有機化合物:WO2014/126064中の化合物(ii-2)の合成方法で製造した、以下の化学式で表される含フッ素エーテル化合物(数平均分子量:4,920)(以下、含フッ素エーテル化合物Fと記す。)。
 CFCFOCFCFO(CFCFCFCFOCFCFO)13CFCFCFC(O)NHCHCHCHSi(OCH
[material]
Glass substrate: Dragontrail (registered trademark of AGC), Size: 50 mm long x 50 mm wide, 0.5 mm thick
Organic compound having a group capable of reacting with silicon oxide: a fluorinated ether compound represented by the following chemical formula (number average molecular weight: 4,920) produced by the method for synthesizing compound (ii-2) in WO2014 / 1226064 (Hereinafter referred to as fluorine-containing ether compound F).
CF 3 CF 2 OCF 2 CF 2 O (CF 2 CF 2 CF 2 CF 2 OCF 2 CF 2 O) 13 CF 2 CF 2 CF 2 C (O) NHCH 2 CH 2 CH 2 Si (OCH 3) 3
(初期水接触角)
 表面層の空気側の表面に、2μLの蒸留水を滴下した際の接触角を、接触角測定装置(協和界面科学社製DM-701)を用いて20℃で測定した。表面層の表面における異なる5箇所で測定を行い、その平均値を算出した。
(Initial water contact angle)
The contact angle when 2 μL of distilled water was dropped onto the air side surface of the surface layer was measured at 20 ° C. using a contact angle measuring device (DM-701, Kyowa Interface Science Co., Ltd.). Measurement was performed at five different locations on the surface of the surface layer, and the average value was calculated.
(スチールウール摩耗試験)
 表面層について、JIS L0849:2013(ISO 105-X12:2001)に準拠して、往復式トラバース試験機(製)を用い、スチールウールボンスター(番手:♯0000、寸法:5mm×10mm×10mm)を荷重9.8N、速度80rpmで往復させた。スチールウール摩耗回数の1000回毎に、撥水撥油層の水の接触角を測定し、水の接触角が100度未満になった回数を耐摩耗性とした。
(Steel wool wear test)
For the surface layer, in accordance with JIS L0849: 2013 (ISO 105-X12: 2001), using a reciprocating traverse tester (manufactured), a steel wool bonster (counter: # 0000, dimensions: 5 mm × 10 mm × 10 mm) It was reciprocated at a load of 9.8 N and a speed of 80 rpm. The water contact angle of the water / oil repellent layer was measured every 1000 times of wear of the steel wool, and the number of times the water contact angle became less than 100 degrees was defined as wear resistance.
[例1]
(蒸着材料の調製)
 珪砂、炭酸カルシウム、炭酸ナトリウム、および白金粉末(平均粒子径:7μm)を混合して蒸着材料の原料組成物を調製した。珪砂、炭酸カルシウム、および炭酸ナトリウムの配合割合は、得られる蒸着材料の白金を除く成分が、酸化物換算の質量%表示で、SiOを70%、NaOを3%、CaOを27%それぞれ含有するように調整した。白金の含有量は、蒸着材料における酸化ケイ素に対する割合として0.05質量ppmとなる量とした。
[Example 1]
(Preparation of vapor deposition material)
Silica sand, calcium carbonate, sodium carbonate, and platinum powder (average particle size: 7 μm) were mixed to prepare a raw material composition of a vapor deposition material. The mixing ratio of silica sand, calcium carbonate, and sodium carbonate is that the components other than platinum in the obtained vapor deposition material are expressed in mass% in terms of oxide, SiO 2 is 70%, Na 2 O is 3%, and CaO is 27%. Each was adjusted to contain. The platinum content was set to an amount of 0.05 mass ppm as a ratio to the silicon oxide in the vapor deposition material.
 上記原料組成物をるつぼに入れ、電気炉中で1500℃に加熱し溶融物とした。得られた溶融物をカーボン板上に流し出し、室温で冷却、固化させて板状の蒸着材料を得た。冷却速度は、1℃/分であった。得られた板状の蒸着材料をハンマーで粉砕して、平均長径が3mmのフレーク状の蒸着材料(1)とした。なお、蒸着材料(1)の平均長径はのぎすにより測定した。得られた蒸着材料(1)をICP分析した結果、上記の設定とおりの組成の蒸着材料が得られていることが確認された。 The above raw material composition was put in a crucible and heated to 1500 ° C. in an electric furnace to obtain a melt. The obtained melt was poured onto a carbon plate, cooled and solidified at room temperature to obtain a plate-like vapor deposition material. The cooling rate was 1 ° C./min. The obtained plate-shaped vapor deposition material was pulverized with a hammer to obtain a flake-shaped vapor deposition material (1) having an average major axis of 3 mm. In addition, the average major axis of the vapor deposition material (1) was measured with a saw. As a result of ICP analysis of the obtained vapor deposition material (1), it was confirmed that the vapor deposition material having the composition as set above was obtained.
(基材の洗浄(不純物除去))
 ガラス基材の一方の表面を、高周波電源(春日電機社製CG102A)を用いて80V、3.5Aの条件下でコロナ放電処理した。
(酸化ケイ素層および表面層の成膜)
 真空蒸着装置(アルバック機工社製VTR-350M)に2個のモリブデン製のボートA、ボートBを配置した。ボートAに蒸着材料(1)の0.5gを収容し、ボートBに含フッ素エーテル化合物Fの0.5gを収容した。
(Washing substrate (removing impurities))
One surface of the glass substrate was subjected to corona discharge treatment under conditions of 80 V and 3.5 A using a high-frequency power source (CG102A manufactured by Kasuga Electric Co., Ltd.).
(Formation of silicon oxide layer and surface layer)
Two molybdenum boats A and B were placed in a vacuum evaporation system (VTR-350M manufactured by ULVAC Kiko Co., Ltd.). In boat A, 0.5 g of the vapor deposition material (1) was accommodated, and in boat B, 0.5 g of the fluorinated ether compound F was accommodated.
 真空蒸着装置内に上記放電処理済みのガラス基材を配置し、真空蒸着装置内を5×10-3Pa以下の圧力(絶対圧)になるまで排気した。ボートAをガラス基材に対向するように距離1000mmの位置に配置した後、ボートAを電子銃で1000℃に加熱し、蒸着材料(1)を真空蒸着させ、ガラス基材上に厚さ10nmの酸化ケイ素層を蒸着によって形成した。なお、蒸着材料(1)の温度は、上記ボートAの加熱温度と同様に1300℃である。 The discharge-treated glass substrate was placed in a vacuum deposition apparatus, and the inside of the vacuum deposition apparatus was evacuated to a pressure (absolute pressure) of 5 × 10 −3 Pa or less. After disposing the boat A at a distance of 1000 mm so as to face the glass substrate, the boat A was heated to 1000 ° C. with an electron gun, the vapor deposition material (1) was vacuum deposited, and the thickness was 10 nm on the glass substrate. The silicon oxide layer was formed by vapor deposition. In addition, the temperature of vapor deposition material (1) is 1300 degreeC similarly to the heating temperature of the said boat A. As shown in FIG.
 次いで、ボートBを酸化ケイ素層が形成されたガラス基材の酸化ケイ素層表面に対向するように距離1000mmの位置に配置した後、ボートBを抵抗加熱によって300℃に加熱し、含フッ素エーテル化合物Fを真空蒸着させて厚さ10nmの蒸着膜を形成した。なお、含フッ素エーテル化合物Fの温度は、上記ボートBの加熱温度と同様に300℃であった。その後、得られた蒸着膜付きガラス基材を、温度200℃で30分間加熱(後処理)して、ガラス基材上に酸化ケイ素層と表面層をその順に有する表面層付きガラス基材(1)を得た。 Next, after the boat B is disposed at a distance of 1000 mm so as to face the surface of the silicon oxide layer of the glass substrate on which the silicon oxide layer is formed, the boat B is heated to 300 ° C. by resistance heating, and the fluorine-containing ether compound F was vacuum evaporated to form a deposited film having a thickness of 10 nm. The temperature of the fluorinated ether compound F was 300 ° C., similar to the heating temperature of the boat B. Thereafter, the obtained glass substrate with a deposited film was heated (post-treatment) at a temperature of 200 ° C. for 30 minutes, and the glass substrate with a surface layer (1) having a silicon oxide layer and a surface layer in that order on the glass substrate. )
[例2]
 例1において、白金粉末をロジウム粉末(平均粒子径:7μm)に変更した以外は同様にして蒸着材料(2)を調製した。さらに、例1において、蒸着材料(1)を蒸着材料(2)に変更した以外は同様にして表面層付きガラス基材(2)を作製した。
[Example 2]
A vapor deposition material (2) was prepared in the same manner as in Example 1, except that the platinum powder was changed to rhodium powder (average particle size: 7 μm). Further, a glass substrate with a surface layer (2) was produced in the same manner as in Example 1 except that the vapor deposition material (1) was changed to the vapor deposition material (2).
[例3~9]
 例1または例2に用いた白金粉末またはロジウム粉末を用いて、蒸着材料における酸化ケイ素に対する白金またはロジウムの割合が表1の量となるように調整した以外は、例1と同様にして例3~8、10、11の蒸着材料(3)~(8)、(10)、(11)を調製した。なお、例9では、白金粉末またはロジウム粉末を添加せずに、珪砂、炭酸カルシウム、炭酸ナトリウムのみを用いて例1と同様にして蒸着材料(9)を調製した。さらに、例1において、蒸着材料(1)を蒸着材料(3)~(11)に変更した以外は同様にして表面層付きガラス基材(3)~(11)を作製した。
[Examples 3 to 9]
Example 3 was carried out in the same manner as in Example 1 except that the platinum powder or rhodium powder used in Example 1 or Example 2 was adjusted so that the ratio of platinum or rhodium to silicon oxide in the vapor deposition material was the amount shown in Table 1. Vapor deposition materials (3) to (8), (10), and (11) of ˜8, 10, and 11 were prepared. In Example 9, a vapor deposition material (9) was prepared in the same manner as in Example 1 using only silica sand, calcium carbonate, and sodium carbonate without adding platinum powder or rhodium powder. Further, glass substrates with surface layers (3) to (11) were produced in the same manner as in Example 1 except that the vapor deposition material (1) was changed to the vapor deposition materials (3) to (11).
[例12]
 珪砂、炭酸ナトリウムの配合割合を、得られる蒸着材料の白金を除く成分が、酸化物換算の質量%表示で、SiOを90%、NaOを10%それぞれ含有するように調整した以外は、例3と同様にして蒸着材料(12)を調製した。さらに例1において、蒸着材料(1)を蒸着材料(12)に変更した以外は同様にして表面層付きガラス基材(12)を作製した。
[Example 12]
Except for adjusting the compounding ratio of silica sand and sodium carbonate so that the components other than platinum in the obtained vapor deposition material contain 90% of SiO 2 and 10% of Na 2 O in terms of mass% in terms of oxides. In the same manner as in Example 3, a vapor deposition material (12) was prepared. Further, a glass substrate with a surface layer (12) was produced in the same manner as in Example 1 except that the vapor deposition material (1) was changed to the vapor deposition material (12).
[評価]
(酸化ケイ素層の組成)
 上記各例において酸化ケイ素層付きガラス基材の酸化ケイ素層について白金(Pt)またはロジウム(Rh)の酸化ケイ素に対する含有割合[質量ppm]を、二重収束ダイナミックSIMSにより求めた。結果を、蒸着材料中の白金族金属含有量(質量ppm対SiO)とともに表1に示す。また、例1~11において、酸化ケイ素層における白金族金属以外の成分の組成を同様の方法で測定したところ、その組成は、酸化物換算の質量%表示で、それぞれ、SiOを96%、NaOを2.6%、CaOを1.4%含有する組成であり、例12においてSiOを88%、NaOを12%それぞれ含有する組成であった。
[Evaluation]
(Composition of silicon oxide layer)
In each of the above examples, the content ratio [mass ppm] of platinum (Pt) or rhodium (Rh) to silicon oxide in the silicon oxide layer of the glass substrate with a silicon oxide layer was determined by double convergence dynamic SIMS. The results are shown in Table 1 together with the platinum group metal content (mass ppm vs. SiO 2 ) in the vapor deposition material. Further, in Examples 1 to 11, the composition of components other than the platinum group metal in the silicon oxide layer was measured by the same method. The composition was expressed in mass% in terms of oxide, and each of SiO 2 was 96%, The composition contained 2.6% Na 2 O and 1.4% CaO. In Example 12, the composition contained 88% SiO 2 and 12% Na 2 O.
(酸化ケイ素層組成)
 表面層付きガラス基材(1)~(12)について、上記方法により、初期水接触角の測定、スチールウール摩耗試験による評価を行った。結果を表1に示す。
(Silicon oxide layer composition)
With respect to the glass substrates (1) to (12) with a surface layer, the initial water contact angle was measured and the steel wool abrasion test was evaluated by the above method. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表1から明らかなように、実施例である例1~8、12で得られた表面層付きガラス基材(1)~(8)、(12)は、初期接触角が高いレベルにあり、スチールウール摩耗試験後の水接触角に関しても高いレベルを維持できている。 As is apparent from Table 1, the glass substrates with surface layers (1) to (8) and (12) obtained in Examples 1 to 8 and 12, which are examples, have a high initial contact angle, The water contact angle after the steel wool abrasion test can be maintained at a high level.
 本発明に係る表面層付き基材は、輸送機器用物品、精密機器用物品、光学機器用物品、建築用物品または電子機器用物品、さらには、本発明に係る表面層付き基材は、上記各種機器以外の物品に用いられる。
 輸送機器用物品の具体例としては、電車、自動車、船舶および航空機等における、外装部材、内装部材、ガラス(例えば、フロントガラス、サイドガラス及びリアガラス)、ミラー、タイヤホイールが挙げられる。精密機器用物品の具体例としては、撮影機器における窓材が挙げられる。光学機器用物品の具体例としては、レンズが挙げられる。建築用物品の具体例としては、窓、床材、壁材、ドア材が挙げられる。電子機器用物品の具体例は、通信用端末または画像表示装置におけるディスプレイ用ガラス、ディスプレイ用保護フィルム、反射防止フィルム、指紋センサーが挙げられる。
The substrate with a surface layer according to the present invention is an article for transport equipment, an article for precision equipment, an article for optical equipment, an article for construction or an article for electronic equipment, and further, the substrate with a surface layer according to the present invention is the above-mentioned Used for goods other than various devices.
Specific examples of articles for transportation equipment include exterior members, interior members, glass (for example, windshields, side glasses, and rear glasses), mirrors, and tire wheels in trains, automobiles, ships, airplanes, and the like. As a specific example of the precision instrument article, a window material in a photographing instrument can be cited. A lens is mentioned as a specific example of the article for optical instruments. Specific examples of building articles include windows, flooring materials, wall materials, and door materials. Specific examples of the electronic device article include display glass, display protective film, antireflection film, and fingerprint sensor in a communication terminal or image display device.
 なお、2018年5月30日に出願された日本特許出願2018-103786号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 Note that the entire content of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2018-103786 filed on May 30, 2018 is cited herein as the disclosure of the specification of the present invention. Incorporate.

Claims (15)

  1.  酸化ケイ素を主成分として含有し、前記酸化ケイ素に対する割合で白金族金属を0.03~800質量ppm含有する蒸着材料。 A vapor deposition material containing silicon oxide as a main component and containing 0.03 to 800 ppm by mass of a platinum group metal in a ratio to the silicon oxide.
  2.  前記蒸着材料全量に対する前記酸化ケイ素の割合が65~99質量%である請求項1に記載の蒸着材料。 The vapor deposition material according to claim 1, wherein a ratio of the silicon oxide to the total amount of the vapor deposition material is 65 to 99 mass%.
  3.  前記蒸着材料全量に対する前記白金族金属の割合が0.02~800質量ppmである請求項1または2に記載の蒸着材料。 The vapor deposition material according to claim 1 or 2, wherein a ratio of the platinum group metal to the total amount of the vapor deposition material is 0.02 to 800 ppm by mass.
  4.  さらに、酸化ナトリウムおよび酸化カルシウムのうち少なくとも一方を含有する請求項1~3のいずれか1項に記載の蒸着材料。 The vapor deposition material according to any one of claims 1 to 3, further comprising at least one of sodium oxide and calcium oxide.
  5.  前記酸化ケイ素に対する前記酸化ナトリウムおよび酸化カルシウムの合計が0.1~13質量%である請求項4に記載の蒸着材料。 The vapor deposition material according to claim 4, wherein the total of the sodium oxide and calcium oxide with respect to the silicon oxide is 0.1 to 13% by mass.
  6.  前記蒸着材料から前記白金族金属を除いた成分は、酸化物換算の質量%表示で、SiOを65~95%、NaOを0~20%、CaOを0~32%、Alを0~15%、MgOを0~4%含有する請求項1~5のいずれか1項に記載の蒸着材料。 Components obtained by removing the platinum group metal from the vapor deposition material are expressed in terms of mass% in terms of oxide, SiO 2 is 65 to 95%, Na 2 O is 0 to 20%, CaO is 0 to 32%, Al 2 O. The vapor deposition material according to any one of claims 1 to 5, comprising 3 to 0 to 15% and MgO to 0 to 4%.
  7.  前記蒸着材料から前記白金族金属を除いた成分が、酸化物換算の質量%表示で、SiOを65~75%、NaOを1~20%、CaOを5~32%、Alを0~2%、MgOを0~4%含有するソーダライムガラスである請求項1~6のいずれか1項に記載の蒸着材料。 Components obtained by removing the platinum group metal from the vapor deposition material are expressed in terms of mass% in terms of oxide, SiO 2 is 65 to 75%, Na 2 O is 1 to 20%, CaO is 5 to 32%, Al 2 O. The vapor deposition material according to any one of claims 1 to 6, which is soda lime glass containing 0 to 2% of 3 and 0 to 4% of MgO.
  8.  前記白金族金属が、白金およびロジウムから選ばれる少なくとも1種である請求項1~7のいずれか1項に記載の蒸着材料。 The vapor deposition material according to any one of claims 1 to 7, wherein the platinum group metal is at least one selected from platinum and rhodium.
  9.  酸化ケイ素を主成分として含有し、前記酸化ケイ素に対する割合で白金族金属を0.03~800質量ppm含有する蒸着材料を用いて、真空蒸着により基材上に酸化ケイ素層を形成する、酸化ケイ素層付き基材の製造方法。 Silicon oxide containing silicon oxide as a main component and forming a silicon oxide layer on a substrate by vacuum deposition using a vapor deposition material containing 0.03 to 800 ppm by mass of a platinum group metal in a ratio to the silicon oxide. The manufacturing method of a base material with a layer.
  10.  請求項9に記載の製造方法で得られた酸化ケイ素層付き基材の酸化ケイ素層上に酸化ケイ素と反応しうる基を有する有機化合物を用いて表面層を形成する表面層付き基材の製造方法。 Production of a substrate with a surface layer, wherein a surface layer is formed using an organic compound having a group capable of reacting with silicon oxide on the silicon oxide layer of the substrate with a silicon oxide layer obtained by the production method according to claim 9. Method.
  11.  前記有機化合物が含フッ素化合物を含む請求項10に記載の表面層付き基材の製造方法。 The method for producing a substrate with a surface layer according to claim 10, wherein the organic compound contains a fluorine-containing compound.
  12.  前記含フッ素化合物は、ポリ(オキシペルフルオロアルキレン)鎖を有する請求項11に記載の表面層付き基材の製造方法。 The method for producing a substrate with a surface layer according to claim 11, wherein the fluorine-containing compound has a poly (oxyperfluoroalkylene) chain.
  13.  前記含フッ素化合物が、下記式1で表される含フッ素エーテル化合物である請求項9~12のいずれか1項に記載の表面層付き基材の製造方法。
     [A-O-Z-(RO)-][-SiR3-n 式1
     但し、Aは、ペルフルオロアルキル基または-Q[-SiR3-nである。Qは、(k+1)価の連結基であり、kは1~10の整数である。Rは、1価の炭化水素基である。Lは、加水分解性基または水酸基である。nは、0~2の整数である。
     Zは、単結合、または1個以上の水素原子がフッ素原子に置換された炭素数1~20のオキシフルオロアルキレン基若しくはポリ(オキシフルオロアルキレン)基である。Rは、ペルフルオロアルキレン基である。mは、2~200の整数である。Zは、(j+q)価の連結基であり、jは、1以上の整数であり、qは、1以上の整数である。
    The method for producing a substrate with a surface layer according to any one of claims 9 to 12, wherein the fluorine-containing compound is a fluorine-containing ether compound represented by the following formula 1.
    [AO—Z 1 — (R f O) m —] j Z 2 [—SiR n L 3-n ] q Formula 1
    However, A is a perfluoroalkyl group or a -Q [-SiR n L 3-n ] k. Q is a (k + 1) -valent linking group, and k is an integer of 1 to 10. R is a monovalent hydrocarbon group. L is a hydrolyzable group or a hydroxyl group. n is an integer of 0-2.
    Z 1 is a single bond or an oxyfluoroalkylene group having 1 to 20 carbon atoms or a poly (oxyfluoroalkylene) group in which one or more hydrogen atoms are substituted with fluorine atoms. R f is a perfluoroalkylene group. m is an integer of 2 to 200. Z 2 is a (j + q) -valent linking group, j is an integer of 1 or more, and q is an integer of 1 or more.
  14.  前記酸化ケイ素層上に酸化ケイ素と反応しうる基を有する有機化合物を用いて真空蒸着法により表面層を形成する請求項9~13のいずれか1項に記載の表面層付き基材の製造方法。 The method for producing a substrate with a surface layer according to any one of claims 9 to 13, wherein a surface layer is formed on the silicon oxide layer by a vacuum deposition method using an organic compound having a group capable of reacting with silicon oxide. .
  15.  前記表面層の厚さは、0.1~100nmである請求項9~14のいずれか1項に記載の表面層付き基材の製造方法。 The method for producing a substrate with a surface layer according to any one of claims 9 to 14, wherein the thickness of the surface layer is 0.1 to 100 nm.
PCT/JP2019/020544 2018-05-30 2019-05-23 Vapor deposition material containing silicon oxide, and method for producing base material provided with silicon oxide layer using same WO2019230571A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-103786 2018-05-30
JP2018103786A JP2021138973A (en) 2018-05-30 2018-05-30 Vapor deposition material, method of manufacturing substrate with silicon oxide layer, and method of manufacturing substrate with surface layer

Publications (1)

Publication Number Publication Date
WO2019230571A1 true WO2019230571A1 (en) 2019-12-05

Family

ID=68697000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020544 WO2019230571A1 (en) 2018-05-30 2019-05-23 Vapor deposition material containing silicon oxide, and method for producing base material provided with silicon oxide layer using same

Country Status (2)

Country Link
JP (1) JP2021138973A (en)
WO (1) WO2019230571A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005171269A (en) * 2003-12-05 2005-06-30 Noritake Co Ltd Method for manufacturing composite material
WO2005064714A1 (en) * 2003-12-26 2005-07-14 Nec Corporation Negative electrode material for secondary battery, negative electrode for secondary battery and secondary battery using same
WO2017030046A1 (en) * 2015-08-19 2017-02-23 旭硝子株式会社 Laminate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005171269A (en) * 2003-12-05 2005-06-30 Noritake Co Ltd Method for manufacturing composite material
WO2005064714A1 (en) * 2003-12-26 2005-07-14 Nec Corporation Negative electrode material for secondary battery, negative electrode for secondary battery and secondary battery using same
WO2017030046A1 (en) * 2015-08-19 2017-02-23 旭硝子株式会社 Laminate

Also Published As

Publication number Publication date
JP2021138973A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
TW201906800A (en) Item with water dialing oil layer and manufacturing method thereof
JP7439769B2 (en) Base material with water- and oil-repellent layer and method for producing the same
US20210230735A1 (en) Substrate with water-and-oil repellent layer, vapor deposition material, and method for producing substrate with water-and-oil repellent layer
WO2019203237A1 (en) Vapor deposition material, base-layer-comprising substrate, functional-layer-comprising article, and methods for manufacturing same
US20220220318A1 (en) Article with water and oil repellent layer
US11873415B2 (en) Substrate with water repellent oil repellent layer, vapor deposition material, and method for producing substrate with water repellent oil repellent layer
WO2019230571A1 (en) Vapor deposition material containing silicon oxide, and method for producing base material provided with silicon oxide layer using same
JP7415951B2 (en) Substrate with water- and oil-repellent layer, vapor deposition material, and manufacturing method of substrate with water- and oil-repellent layer
JP7428142B2 (en) Vapor deposition material, and method for producing a base material with a base layer and a base material with a water- and oil-repellent layer using the same
JPWO2020137993A1 (en) A method for manufacturing a vapor-deposited material, a base material with a base layer, and a method for manufacturing a base material with a water-repellent and oil-repellent layer.
JPWO2020137990A1 (en) A method for manufacturing a vapor-deposited material, a base material with a base layer, and a method for manufacturing a base material with a water-repellent and oil-repellent layer.
JP2021172842A (en) Substrate with water and oil repellent layer, vapor deposition material, and manufacturing method of substrate with water and oil repellent layer
JP2021035725A (en) Article with functional layer and method for manufacturing article with functional layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19811739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP